
Vol:.(1234567890)

The Journal of Supercomputing (2024) 80:14978–15005
https://doi.org/10.1007/s11227-024-06040-w

1 3

Analysis and prediction of performance variability
in large‑scale computing systems

Majid Salimi Beni1 · Sascha Hunold2 · Biagio Cosenza1

Accepted: 3 March 2024 / Published online: 28 March 2024
© The Author(s) 2024

Abstract
The development of new exascale supercomputers has dramatically increased the
need for fast, high-performance networking technology. Efficient network topolo-
gies, such as Dragonfly+, have been introduced to meet the demands of data-inten-
sive applications and to match the massive computing power of GPUs and accel-
erators. However, these supercomputers still face performance variability mainly
caused by the network that affects system and application performance. This study
comprehensively analyzes performance variability on a large-scale HPC system
with Dragonfly+ network topology, focusing on factors such as communication pat-
terns, message size, job placement locality, MPI collective algorithms, and overall
system workload. The study also proposes an easy-to-measure metric for estimat-
ing network background traffic generated by other users, which can be used to esti-
mate the performance of our job accurately. The insights gained from this study
contribute to improving performance predictability, enhancing job placement poli-
cies and MPI algorithm selection, and optimizing resource management strategies in
supercomputers.

Keywords High performance interconnects · Performance variability · MPI ·
Dragonfly+ topology · Performance predictability

 * Majid Salimi Beni
 msalimibeni@unisa.it

 Sascha Hunold
 hunold@par.tuwien.ac.at

 Biagio Cosenza
 bcosenza@unisa.it

1 Department of Computer Science, University of Salerno, Salerno, Italy
2 Faculty of Informatics, TU Wien, Vienna, Austria

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-06040-w&domain=pdf

14979

1 3

Analysis and prediction of performance variability in…

1 Introduction

This text will be highlighted. In recent years, with the development of Exascale
computing systems and the desire to add more computation resources and nodes
to the clusters, the gap between computation and communication has become
wider. Recent high performance computing (HPC) and distributed applications
require high amounts of computational resources, leading to the development
of supercomputers with many nodes [1–3]. Adding more nodes and reaching
Exascale, however, is challenging, and there is a need to have efficient software
tools [4, 5], high-performance network interconnects [6] and topologies that offer
high bandwidth and low latency [7, 8], and therefore higher performance. Hence,
modern HPC systems use efficient intra/inter-node interconnects [9] such as
NVlink [10] and Infiniband [11], and topologies like Dragonfly [12], Torus [13],
and Fat-tree [14]. Employing an efficient network technology can also contribute
to improving performance predictability in such large-scale systems [15].

Network topologies play a crucial role in the overall performance of supercom-
puters, determining how the nodes are connected and how the data is transmitted.
Efficient network topologies enable faster communication and facilitate higher
levels of parallelism, contributing to higher resource utilization, better scalabil-
ity, energy efficiency, performance predictability, and fault tolerance [16, 17].
Therefore, recent topologies aim to develop novel network architectures that meet
the increasing demands for computational power and data-intensive applications.
Well-designed network topologies can minimize communication bottlenecks and
reduce latency, leading to more reliable and consistent execution times for vari-
ous computational tasks. As a result, advancements in network architectures are
continually sought to enhance performance predictability and meet the growing
requirements of modern computing workloads.

Dragonfly-based topologies are widely used, and many of the top supercom-
puters worldwide are developed based on these topologies [18]. Dragonfly+ [19]
has recently been introduced as an improved version of Dragonfly, which offers
better network utilization, scalability, and router buffer utilization. However,
despite these enhancements, it still suffers performance variability. The variabil-
ity affects system and application performance, making it crucial for the batch
scheduler to have a more precise estimate of application runtime to make accurate
scheduling decisions [20, 21].

Performance variability is the fluctuation in a single program’s perfor-
mance over different executions, and the program’s performance deviates from
its expected or average behavior. Performance variability can arise due to fac-
tors such as system load, resource contention, hardware characteristics, software
design, or environmental conditions [22, 23]. It can impact the predictability, reli-
ability, and overall quality of a system or application and can be a critical con-
cern in supercomputers. Since supercomputers often execute highly parallel and
demanding computational tasks, even slight variations in their performance can
significantly affect the accuracy and efficiency of simulations, data analysis, or
scientific computations. Load imbalance, network congestion, system noise, and

14980 M. Salimi Beni et al.

1 3

communication patterns are among the most influential factors making the per-
formance varying. It has been, however, shown that the performance variability is
primarily caused by the network-related elements [15, 24–26].

In large-scale systems, network elements such as routers and links are the
resources that, unlike the computation units, cannot be exclusively used by a sin-
gle user. Large-scale clusters are usually used by many users simultaneously, each
with different utilization patterns in terms of program workflow, number of nodes,
and data communication. Performance variability may arise when multiple users
or jobs compete for limited network bandwidth and resources. This may cause net-
work congestion, decrease the quality of service, and make the network performance
unpredictable since a significant share of each MPI communication primitive is
spent while transferring the data [27]. Especially when multiple users have vary-
ing communication patterns, different jobs may require different amounts of network
bandwidth, resulting in imbalances and potential performance degradation, impact-
ing the performance of other jobs sharing the same network elements. Recent stud-
ies have been focusing on addressing these issues and providing more performance
predictability through the monitoring, prediction, and balancing of network traffic
[28–31], and taking into consideration the topological and network design aspects
[32–35]. Performance predictability is crucial in supercomputers as it enables effi-
cient resource allocation, supports workflow management, ensures scientific repro-
ducibility, facilitates real-time applications, maintains Quality of Service (QoS), and
improves user satisfaction [36].

This study investigates performance variability in a large-scale compute cluster
featuring a Dragonfly+ topology. The analysis focuses on several factors known to
contribute to performance variability. We study the influence of various collective
operations (Broadcast, Reduce, and Alltoall), different message sizes, the localities
of job placement by the job scheduler (SLURM), MPI collective algorithms (pro-
vided through Open MPI), and the effects of system workload. As part of our study,
we tackle the challenging measurement of network background traffic generated
by other users. To address this issue, we propose an easy-to-measure and low-cost
metric that uses the information provided by the job scheduler and estimates such
utilization. Additionally, we highlight the effect of the routing strategy on commu-
nication performance in this cluster. By analyzing these aspects, we aim to compre-
hensively understand performance variance in a supercomputer and provide some
hints to predict the performance.

2 Motivation and contributions

In this section, we explain the motivations behind the paper and present our con-
tributions. Figure 1 shows the latency distribution of running Broadcast 100 times,
three times a day on different days and at different hours. Although most of the
latencies happen in less than 0.2 ms, some runs take much longer, and their average
latency takes up to 1.3 ms. From this figure, it is clear there is high variability in
the runtime of a communication benchmark, and a fraction of runs are taking longer
than the majority. Unlike Fig. 1 where each point on the plot represents the mean of

14981

1 3

Analysis and prediction of performance variability in…

running the benchmark on different days, Fig. 2 shows the distribution of a single
run and represents the distribution of 1000 iterations of that run. Interestingly, the
data are not distributed symmetrically (e.g., not Gaussian), and the density distribu-
tion is skewed-shaped, causing a gap between the mean and median. In this figure,
although most of the latencies are spread around the median, almost 15% of them
take longer than the 90th percentile (the hatched area), indicating that the distribu-
tion has a long tail. This long tail in the distribution has an adverse effect on the
overall performance, resulting in highly unpredictable job execution.

The performance variability is mainly associated with several network and com-
munication-related aspects; this article aims to study and identify the main rea-
sons behind such differences in performance and provide more insights into per-
formance predictability in such clusters and topologies. This work focuses on the
Dragonfly+ topology, which is one of the most popular topologies among the top

Fig. 1 The runtime distribution of running a Broadcast for 100 times on different days, with 10KB data,
on 16 nodes (32 processes per node and 512 processes overall). There is no restriction on the node allo-
cation; the allocated nodes may have changed from run to run. Each point is the arithmetic mean of 1000
iterations of running the benchmark

Fig. 2 Long-tail (90th percentile) of the latency distribution of 1000 iterations of Broadcast with 10KB
data on 512 processes on Dragonfly+

14982 M. Salimi Beni et al.

1 3

supercomputers [37, 38], and has shown a better network utilization than Dragonfly
[19].

To our knowledge, this study is the first comprehensive analysis of performance
variability in a Dragonfly+-based supercomputer. Unlike previous research that
relies on simulated environment [39, 40], our approach leverages real-world data
extracted from a large-scale compute cluster. The insights of this work can be used to
model the cluster’s workload occupancy and provide valuable feedback to improve
performance predictability by enhancing job placement policies and resource man-
agement strategies and, overall, improving the performance of a supercomputer.

2.1 Contributions

The contributions of this work, which is an extension of our previous work [41, 42],
include a comprehensive study of performance variability on a real-world supercom-
puter with Dragonfly+ topology, an easy-to-measure and low-cost metric to estimate
the cluster’s workload based on the information available at the job submission time,
an analysis of the impact of routing strategy and the MPI collective algorithm on the
performance variability, and further evaluation of two real-world communication-
intensive applications, HACC and miniAMR.

The remaining sections of the article are structured as follows: Sect. 3 provides an
overview of related work in the field. Section 4 details the experimental setup used
in the study. Section 5 presents the analysis of the latency distribution. Section 6
describes our approach for measuring background traffic. Section 7 offers further
analysis of the measured background traffic, and lastly, Sect. 8 provides the discus-
sion and concludes the article.

3 Related work

Since the development of supercomputers, performance predictability has always
been of attention, and many researchers have studied the performance variance in
such clusters and tried to mitigate this problem. In many studies, network-related
elements are investigated as the main reason for performance variability in large-
scale clusters [43–46].

Application-related variability studies Some research has investigated the appli-
cation itself to identify which characteristics in an application can potentially make
the performance variable. Zahn et al. [47] explored how communication patterns of
an application and their mapping to the topology may vary the performance. Micro-
benchmarking [48, 49], program profiling [50], stack tracing [51], performance
modeling [52], and studying the collective communications [53] have been other
approaches to detect the variance in an application’s runtime on a cluster. Taking
into account the internal characteristics of the program is, however, not enough to
have an accurate understanding of the variance in its performance. Running the pro-
gram itself or doing benchmarking is time-consuming and imposes high overhead.
Besides, in online performance variability detection, in which the external condition

14983

1 3

Analysis and prediction of performance variability in…

changes and the analysis should be done in different time frames to have updated
information, these methods may discard time sequence information, which reduces
the accuracy of the variance detection.

Studies considering external factors In some works, the external factors that can
potentially impact job performance have been taken into account. Routing strate-
gies [54, 61–65], network designs [66–68], congestion and interference [55, 56, 69],
background traffic [57], and job allocation strategies [70–74] are among the studied
characteristics that can make the performance variable. Monitoring the cluster and
collecting detailed information from the network can provide a good indicator to
identify the performance behavior of the running jobs on the cluster. However, this
information is not always accessible to the users, and root access is usually needed
to perform such monitoring. Moreover, these methods are not generally portable
to other clusters since clusters may have different hardware vendors with different
profiling tools and counters. Accordingly, many of these methods rely on simulated
data, which might not reflect the exact behavior of a real-world supercomputer. Also,
not considering the application’s behavior, such as its communication intensity and
communication patterns, may lead to inaccurate performance prediction.

Mixed approaches Due to the inaccuracies associated with the aforementioned
methods, some studies have considered both the program’s internal and external
characteristics. Application-related attributes such as MPI communications, I/O traf-
fic, and message size, together with job allocation policies, are explored by Brown
et al. [58]. Bhatele et al. [24] performed application profiling and network traffic
analysis to understand the performance variability better. Other studies also con-
sidered program code analysis [59, 60] while profiling network counters or doing
offline analyses. Although these studies can better predict performance variance,
they still have some problems of the studies, which consider external factors only.
Moreover, offline analysis done in some of these works may not reflect the transient
behavior of a supercomputer.

Table 1 compares our approach with the related work on different parameters in
predicting and analyzing performance variability. Our work is shown with bold.

4 Experimental setup

The current study was conducted on a high-performance computing cluster, Mar-
coni100, located at the CINECA supercomputing center [18].

4.1 Computing and network

The Marconi100 cluster comprises 980 compute nodes (plus the login nodes), each
equipped with two IBM POWER9 AC922 processors with 16 cores running at
2.6 (3.1 turbo) GHz, four NVIDIA Volta V100 GPUs with 16GB, and 256 GB of
memory per node. In total, the cluster has 347,776 CPU cores and 347,776 GB of
memory.

14984 M. Salimi Beni et al.

1 3

Ta
bl

e
1

 C
om

pa
ris

on
 o

f d
iff

er
en

t p
er

fo
rm

an
ce

 v
ar

ia
bi

lit
y

stu
di

es

W
or

k
M

et
ho

d/
A

pp
ro

ac
h

C
on

si
de

re
d

Pa
ra

m
et

er
s

H
oe

fle
r e

t a
l.

[4
8]

B
en

ch
m

ar
ki

ng
, s

im
ul

at
io

n-
ba

se
d

Sy
ste

m
 n

oi
se

, c
ol

le
ct

iv
e

op
er

at
io

ns
M

ar
ic

q
et

 a
l.

[4
9]

B
en

ch
m

ar
ki

ng
, s

ta
tis

tic
al

 m
et

ho
ds

B
en

ch
m

ar
k

pe
rfo

rm
an

ce
 d

at
a

Sm
ith

 e
t a

l.
[5

4]
B

en
ch

m
ar

ki
ng

N
et

w
or

k
co

un
te

rs
, r

ou
tin

g,
 to

po
lo

gy
M

cG
lo

ho
n

et
 a

l.
[5

5]
Si

m
ul

at
io

n-
ba

se
d

Ro
ut

in
g,

 c
on

ge
sti

on
Sh

ah
 e

t a
l.

[5
6]

A
pp

lic
at

io
n

pr
ofi

lin
g

Pr
ofi

le
 o

ut
pu

t,
co

m
m

un
ic

at
io

n
an

d
I/O

 fe
at

ur
es

Zh
an

g
et

 a
l.

[5
7]

B
en

ch
m

ar
ki

ng
, n

et
w

or
k

co
un

te
rs

 p
ro

fil
in

g
N

et
w

or
k

co
ng

es
tio

n,
 n

od
e

al
lo

ca
tio

n
W

an
g

et
 a

l.
[2

8]
Si

m
ul

at
io

n-
ba

se
d

N
od

e
al

lo
ca

tio
n,

 a
pp

lic
at

io
n

pe
rfo

rm
an

ce
 d

at
a

B
ro

w
n

et
 a

l.
[5

8]
Si

m
ul

at
io

n-
ba

se
d

I/O
, m

es
sa

ge
 si

ze
s,

co
m

m
un

ic
at

io
n

in
te

rv
al

s,
jo

b
si

ze
s

Ta
ng

 e
t a

l.
[5

9]
O

n-
lin

e
co

m
pi

le
r-b

as
ed

St
at

ic
 c

od
e

fe
at

ur
es

, a
pp

lic
at

io
n

pe
rfo

rm
an

ce
Zh

en
g

et
 a

l.
[6

0]
C

om
pi

le
r-b

as
ed

, w
or

kl
oa

d
an

al
ys

is
, s

ta
tis

tic
al

 a
na

ly
se

s
St

at
ic

 c
od

e
fe

at
ur

es
, m

em
or

y,
 IO

O
ur

 w
or

k
H

eu
ri

st
ic

-b
as

ed
, s

ta
tis

tic
al

 a
na

ly
se

s
N

od
e

al
lo

ca
tio

n,
 c

om
m

un
ic

at
io

n
pa

tte
rn

s,
m

es
sa

ge

siz
e,

 c
ol

le
ct

iv
e

al
go

ri
th

m
s,

sy
st

em
 w

or
kl

oa
d,

ro

ut
in

g

14985

1 3

Analysis and prediction of performance variability in…

The internal interconnect of Marconi100 is a Mellanox InfiniBand EDR Dragon-
fly+. This Dragonfly+ implemented in this cluster, as shown in Fig. 3, consists of
four large groups of nodes called "islands" and smaller groups of nodes within each
island connected to one switch called "groups." The main difference between Drag-
onfly and Dragonfly+ is that in Dragonfly+, intra-island routers are connected as a
bipartite graph to enhance scalability.

4.2 Software, microbenchmarks, and applications

The operating system of the machines is Red Hat Enterprise 7.6, IBM Spectrum-
MPI 10.4 and OpenMPI 4.1.4 are installed on the cluster, and SLURM 21.08 is used
for resource management. Adaptive Routing [75] is the default routing strategy used
to prevent link contention and handle hardware failures.

The analyses are done using the OSU microbenchmarks [76], and we have used
three communication microbenchmarks (Broadcast, Reduce, and Alltoall) as well as
two real-world applications (HACC [77] and miniAMR [78]). As suggested by [79],
each collective is executed in 1-millisecond intervals 1000 times inside a loop to
show the performance variance. Furthermore, in all the experiments, we allocate 16
nodes on the cluster (We cannot go beyond due to the limitations of our accounts).
The data shown in the article have been collected over 3 months, encompassing dif-
ferent cluster utilizations.

Fig. 3 The Dragonfly+ schematic implemented in Marconi100. The blue points show the compute nodes
and intermediate network switches (color figure online)

14986 M. Salimi Beni et al.

1 3

5 Analysis of performance variability

In this section, we perform a latency analysis to highlight the performance variance
problem on this Dragonfly+-based cluster. For this purpose, we indicate the impact
of the locality of node allocation on different collective communications and show
how node allocation can push the tail of the latency distribution.

5.1 The impact of node allocation on performance variance

This section shows how node allocation (job placement) affects performance vari-
ance. Considering the topology shown in Fig. 3, we define the three following local-
ity levels, sorted from highest to lowest locality:

1. Same Group: All the nodes are allocated within a single group; only a single
network switch connects every two nodes. This case exposes the most locality.

2. Same Island: Nodes are allocated across different groups of a single island.
3. Different Islands: There is no limitation on node allocation, and they are distrib-

uted on all the islands and different groups; this scenario imposes less locality
than the previous scenarios.

The latency distribution of three collectives with three node allocation levels is
depicted in Fig. 4. We show the 90th percentile for each distribution as an indicator
of the tail of the distributions. The different islands’ experiments are performed at
the same time, one after the other, to have their runtimes with similar network con-
ditions. The observations from this figure are:

• The Broadcast (Fig. 4a) exhibits the best performance for all the allocation strat-
egies compared to the other collectives, with the shortest tail between three col-
lectives (notice, the x-axes being in different scales in the three plots). For the
three locality levels, Broadcast shows less variance than the correspondings in
Reduce and Alltoall.

• For Broadcast, the peaks of different islands and the same island are 8 and 4,
respectively, and they possess a peak much lower than the same group (44). This
collective significantly benefits local communications within the same group,
demonstrating lower latency (mean time = 0.20 ms) and shorter tail (90th per-
centile = 0.21 ms).

• The Reduce (Fig. 4b) demonstrates similar mean latency for the same group
and same island allocations, with values of approximately 1.17 ms and 1.18 ms,
respectively. The distribution of these communication times does not exhibit a
significant long tail. However, when considering different islands, the 90th per-
centile is 2.45 ms, and the distribution extends further, with a tail reaching up to
10 ms (not shown in the plot).

• The Alltoall collective (Fig. 4c) demonstrates the slowest and most variable
performance, mainly when all the nodes are allocated on different islands. The

14987

1 3

Analysis and prediction of performance variability in…

frequency distribution of communication times reveals a very long tail, with
the maximum observed communication time reaching 13 ms and the peak of
the distribution of 1.

In general, allocating all nodes to the same group has shown benefits for collective
communications. There are, however, two barriers making us unable to allocate all
the required nodes to the same group. First, the number of nodes within each group
in Dragonfly+ is limited (20 nodes in Marconi100), and the job may require more
than available nodes in each group. Second, since many users utilize the cluster at
the same time, some nodes within the groups may have already been allocated by
their jobs, and the job scheduler has to wait a long time to find idle nodes within the
same group for our jobs. In our experiments, the maximum waiting time to allocate
16 nodes in the same group by SLURM has been around 21 days.

By default, SLURM [80] attempts to allocate jobs to idle nodes within the
same group unless the user specifies specific nodes in the host file or modifies the
allocation policy. However, due to the limited number of available idle nodes in
the same group, the job scheduler searches for switches (groups) with the fewest

Fig. 4 Latency frequency distribution of the three collectives with 1 MB message size, repeated for 1000
iterations, with the three allocation locality levels on 16 nodes, one process per node to emphasize only
the inter-node latency

14988 M. Salimi Beni et al.

1 3

idle nodes and assigns the nodes connected to these switches. This process is
repeated until all requested nodes are assigned. Therefore, based on the requested
node count and the availability of idle nodes in the cluster, SLURM may allo-
cate jobs to nodes in different groups within the same island or across multiple
islands. Our observations suggest that the latter scenario is more likely due to the
constraints imposed by the availability of idle nodes. Therefore, in the rest of the
paper, no node allocation restriction has been specified for all the experiments,
and the nodes are allocated on different islands by default.

6 Predicting variability

As suggested by the related work [48, 57], it is essential to monitor the external con-
ditions on the cluster alongside considering the application’s communication pat-
terns. In real-world supercomputers, users do not have exclusive access to dedicated
systems; instead, multiple users submit jobs concurrently. While computing nodes
can be allocated exclusively (by default, they are shared), the network is a shared
resource and, therefore, inherently subject to contention. As the number of active
jobs increases, more nodes will be allocated, and consequently, the network conges-
tion can potentially increase due to the heavier competition for network resources.
This section examines the impact of background traffic generated by other users’
jobs on performance variability. We propose a heuristic that provides an estimate of
the workload on the system and then investigate the correlation between this work-
load and the latency of our job.

6.1 Benchmarking‑based estimation

The most straightforward way to estimate the network background traffic and cluster
utilization is to measure the bandwidth of the utilized links with a microbenchmark.
By correlating the measured bandwidth with the latency of our job, we can estimate

Fig. 5 The correlation between latencies of HP2P and Broadcast on 16 nodes, one process per node, and
10KB of message size. HP2P is performed 1000 iterations with 4KB

14989

1 3

Analysis and prediction of performance variability in…

how long the main job takes to be executed. In Fig. 5, we run HP2P microbenchmark
[81], which measures the P2P bandwidth and latency between all the pairs involved
in the communication by interchanging asynchronous messages, before running the
Broadcast. As indicated in the figure, HP2P and Broadcast are 0.81 correlated, and
this way can almost accurately predict the runtime of the Broadcast.

This method, however, has some disadvantages and shortcomings. First, by
only running a benchmark, we are not collecting any information about the clus-
ter’s workload, and it is not clear where the variability originates from and what the
external sources of variability are. Second, running a benchmark every time before
running a task is an overhead and consumes some computation time. In benchmark-
ing-based methods, there is a trade-off between accuracy and overhead. This means
that we need to run the benchmark (HP2P in this case) with an appropriate mes-
sage size for a certain amount of time, to reach a good accuracy in our estimations.
The longer we run the benchmark and the larger the message size we use within
the benchmark, the higher the accuracy we will achieve. However, we need to min-
imize the overhead of running this benchmark by choosing a small message size
and running it for fewer iterations while achieving an acceptable accuracy. In this
paper, we tested different numbers of iterations and message sizes for HP2P, and the
configuration reported (1000 iterations with 4KB) was the point where we observed
an acceptable correlation of over 0.8. So, achieving an acceptable accuracy through
benchmarking methods takes up to tens of milliseconds, which in our case is even
higher than the runtime of the main task (Broadcast operation). In the rest of this
article, we propose a zero-overhead method that is also aware of the cluster’s work-
load and can accurately predict the performance.

6.2 Heuristic‑based estimation of variability

This section introduces our proposed method to estimate how the cluster’s current
workload can impact our job’s performance. The main source of performance vari-
ance is due to external factors, which are mainly the consequences of the activities
of other users running their jobs on the cluster simultaneously. Therefore, we try
to monitor the cluster’s usage by analyzing the job schedule’s queue. To that end,
we define a new metric, background network utilization, which estimates the exter-
nal workload and network usage by other users’ jobs. To collect such information,
before running the main job, we query the SLURM’s job queue and extract the fol-
lowing information:

• The total number of running jobs.
• The number of nodes allocated by the running jobs.
• The number of nodes shared between the running jobs.
• The total number of cluster’s compute nodes (which is constant for each cluster).

Pending jobs, whose scheduling times are uncertain, are not considered in our
analysis of background traffic. Additionally, running jobs that allocate only one
node are excluded from our calculations since they have minimal communication

14990 M. Salimi Beni et al.

1 3

with other nodes and thus have no notable network activity. Consequently, our
analysis focuses solely on running jobs that allocate at least two nodes. To quan-
tify background traffic, we introduce a heuristic called background network utili-
zation (b). This metric is calculated as the number of distinct nodes allocated by
running jobs, where each allocation involves at least two nodes, divided by the
total number of physical nodes in the cluster. In essence, it represents the propor-
tion of nodes that contribute to communication among all the nodes in the cluster.

The background network utilization (b) ratio is formally defined as

where N
c
 denotes the number of distinct nodes involved in communication within

the cluster and N
t
 the total number of physical compute nodes of the cluster,

respectively.
By default, SLURM assigns the nodes to the jobs so that if there are unallo-

cated resources on each node (e.g., GPU), the idle resources can be utilized by
other jobs, and hence, those nodes may do more network activities. To account
for cases where a node is shared among multiple jobs and to improve the accu-
racy of the heuristic, we introduce a refinement to the background network utili-
zation metric. In this refined version, we address the presence of shared nodes by
counting each shared node multiple times based on their appearance in the allo-
cated nodes by the jobs (that allocate more than two nodes). This approach allows
us to give more weight to the nodes that are exploited by more than one job.

As a result, the total number of running nodes may exceed the physical nodes of
the cluster (N

t
) since we are counting the shared nodes more than once. To incorpo-

rate the effect of shared nodes, we introduce a new ratio by dividing the number of
nodes contributing to communication (including the shared ones) by the total num-
ber of allocated running nodes (including the shared ones). This ratio accounts for
the presence of nodes that contribute to different jobs and engage in communication
with other nodes. The updated version of the background network utilization, which
will be utilized throughout the paper, can be defined as follows:

where N′

c
 denotes the number of nodes involved in the communication, and N

a

denotes the total number of allocated running nodes, both accounting for duplicates.
To accurately measure and validate the stability of the background network

utilization (b) during the microbenchmark’s execution, we incorporate an addi-
tional step and query the status of the job scheduler after the execution of the
microbenchmark in addition to the previous querying. We compare the two cal-
culated b values, and only if the difference between the two values is below a
predefined threshold (5%), we capture the b value as a valid measurement. This
approach ensures that the measured b value accurately represents the true utiliza-
tion and remains consistent throughout the microbenchmark execution.

(1)b =
N
c

N
t

,

(2)b =
1

2

(

N
c

N
t

+

N
�

c

N
a

)

,

14991

1 3

Analysis and prediction of performance variability in…

6.3 Correlation analysis

The correlation analysis was conducted to examine the relationship between the
background network utilization (b) and communication time, considering various
workloads with different data sizes and communication patterns. Two correlation
coefficients, Pearson Correlation Coefficient (r) [82] and Spearman Rank Correla-
tion (�) [83], were used for this analysis. Pearson’s correlation coefficient measures
the linear relationship between variables, while Spearman’s correlation coefficient
assesses the monotonic relationship in the data. In both cases, a value of +1 indi-
cates a strong positive correlation, a value of 0 indicates independence between the
variables, and negative values indicate inverse relationships.

Figures 6, 7, and 8 show the relationship between background network utilization
(b) and latency for three communication patterns: Broadcast, Reduce, and Alltoall,
respectively. Note that point-to-point communication was not explored in this analy-
sis as it was found to be minimally affected by the background traffic. The results
presented in this figure demonstrate a strong correlation between the latency of
the collectives and the background network utilization metric (b). Moreover, when
examining the effect of message size on the correlation between b and communi-
cation time, as the message size grows from 2 2 , 2 10 , and 2 15 to 2 20 bytes, the cor-
relation between these variables strengthens, as a general trend. This indicates that
larger data sizes experience a greater impact from background traffic. The correla-
tions in the Reduce collective for larger data sizes (215 and 2 20 bytes) are particularly
strong compared to other communication patterns. This implies that the communi-
cation time in the Reduce collective is heavily influenced by the background traf-
fic, especially when dealing with larger data sizes. Besides, when comparing the

Fig. 6 The correlation between background traffic (b) and the average communication time for Broad-
cast with different message sizes. The experiments were performed on 16 nodes (1 process per node)
allocated on different islands, and each point on the plot represents the average communication time over
1000 iterations

14992 M. Salimi Beni et al.

1 3

Pearson and Spearman correlations, it can be concluded that the Spearman correla-
tion consistently provides a better fit for our use case. This is due to the monotonic
relationship between the two sets of our data in which the variables tend to increase
or decrease together without considering the specific magnitude of the change. As

Fig. 7 The correlation between background traffic (b) and the average communication time for Reduce
with different message sizes. The experiments were performed on 16 nodes (1 process per node) allo-
cated on different islands, and each point on the plot represents the average communication time over
1000 iterations

Fig. 8 The correlation between background traffic (b) and the average communication time for Alltoall
with different message sizes. The experiments were performed on 16 nodes (1 process per node) allo-
cated on different islands, and each point on the plot represents the average communication time over
1000 iterations

14993

1 3

Analysis and prediction of performance variability in…

shown, it has the tendency to exhibit a stronger correlation between variables, mak-
ing it a more suitable measure for accurately capturing the relationship between
background network utilization and communication time in our experiments.

7 Variability on collectives and applications

So far, we have introduced a heuristic to estimate cluster workload and showed the
relation between our metric and the performance of collective communications. In
this section, we focus on our definition of performance variability (as the motivation
example in Fig. 2) and reveal how the current workload of the cluster impacts the
distribution of latency of a single collective when running it multiple times.

Figure 9 illustrates the density distribution of latencies of 1000 iterations of three
collectives; This figure focuses on the relationship between background network uti-
lization (b) and the distribution of execution times. To have different b values, the
benchmarks were executed on different days. Notice all three plots are on the same

Fig. 9 Frequency distribution of latency of 1000 iterations of Broadcast, Reduce, and Alltoall on 16
nodes (1 process per node) with different background network utilization (b). These nodes are allocated
across different islands, and the message size is 2 20 bytes

14994 M. Salimi Beni et al.

1 3

x-axis. Across all three collectives, there is a clear pattern: as the background net-
work utilization increases, the peak of the distribution drops, and the tail becomes
longer. This indicates that higher background network utilization leads to more per-
formance variability and degrades communication performance. For the Broadcast
collective (Fig. 9a) with b = 0.17 , the distribution exhibits a high peak, and there
is a noticeable gap between the peaks of the higher and lower b values. However,
when the background network utilization increases to b = 0.70 , the corresponding
distribution shows an extended tail, indicating highly variable latency ranging from
0.2 ms to 8 ms. It is important to note that the average execution time for 1000 itera-
tions of Broadcast with b = 0.70 is up to 6.4 times larger than with b = 0.17 . This
emphasizes the significant impact of background traffic on Broadcast performance.
Interestingly, when the nodes are distributed across different islands, and the back-
ground traffic is low, Broadcast’s performance is comparable to the case where the
nodes are allocated to the same group.

Likewise, in Fig. 9b, c, we observe a long-tailed distribution as the background
network utilization increases. Particularly for Alltoall, when the background network
utilization is high, the tail of the distribution becomes longer, the peak drops and the
average latency is much larger. In fact, the mean of the distribution with b = 0.75 is
approximately 1.6 times larger than with b = 0.21 . Unlike the other collectives, the
Alltoall collective exhibits a significant shift in the peak of the distributions (repre-
sented by the median) across different background network utilizations. This shift is
attributed to the inherent communication intensity of the All-to-All pattern. In this
pattern, all nodes exchange data, leading to a higher volume of data being transmit-
ted through the network. Consequently, the network links become more congested,
resulting in a major shift in the peak of the distribution for different traffics.

Furthermore, we observe a bimodal distribution for high background network
utilizations in the Reduce and Alltoall collectives. This indicates that a significant
number of latencies are mainly happening in 2 time intervals. This behavior is
closely related to the Adaptive routing algorithm utilized in this cluster. With Adap-
tive routing, routers have multiple paths available for each packet transmission. Con-
sequently, some packets follow the shortest (minimal) path, while others traverse
alternative, longer (non-minimal) paths. As a result, certain communications experi-
ence slower performance compared to the majority due to the penalty associated
with selecting the non-minimal path. Figure 9b, c illustrate this phenomenon, where
higher background network utilization increases the probability of packets being
routed through non-minimal paths, thereby elongating the distribution tail and mak-
ing it bimodal. It is important to note that the routing strategy cannot be altered in
our experiments as we are not using any simulator in our experiments, and changing
such policies requires admin access.

Overall, it is evident how background traffic impacts the distributions. While the
Adaptive routing strategy helps alleviate the issue to some extent, there are cases
where the problem persists, particularly when there is a very high background traf-
fic load. On top of that, when the cluster is highly utilized, and the distributions are
bimodal, finding a metric to represent the whole data is a complex task. Neither
arithmetic mean nor median is a good representative of the entire distribution as

14995

1 3

Analysis and prediction of performance variability in…

they do not contain any information regarding the number of peaks of the distribu-
tion, and they do not provide accurate details on the tail of the distribution.

7.1 Collective algorithms and latency distributions

In recent MPI implementations, multiple algorithms have been developed for
each collective operation, and each algorithm possesses unique internal charac-
teristics, including communication costs and scalability attributes. The selection
of an efficient algorithm for MPI collectives is of utmost importance in achiev-
ing optimal performance since each algorithm has different scalability, commu-
nication overhead, and resource utilization [84–87]. In this section, we highlight
how different implementations of each collective can impact its latency distribu-
tion. Figure 10 shows the latency distributions of different algorithms of Alltoall.
Although all the algorithms deliver the same output, they show pretty different
distributions, and unlike the others, Modified Bruck and Linear do not have a
completely bimodal distribution.

To better understand, Fig. 11 presents the same data with Violin and Box plots.
There are several interesting observations from this figure:

• Besides the difference in the mean and median, the different algorithms have dif-
ferent latency distributions.

Fig. 10 The latency density distribution of different algorithms of Alltoall implemented in OpenMPI
with 512 processes (16 nodes with 32 processes per node), with 4KB data size. Each distribution is rep-
resentative of 20 runs (each with 1000 iterations) performed on different days. The default algorithm is
mapped to Linear Sync in this plot

14996 M. Salimi Beni et al.

1 3

• In addition to the cluster’s workload, the chosen collective algorithm can impact
the bimodality of the distribution.

• Linear Alltoall algorithm has the shortest tail, and its distribution is not bimodal.
Therefore it has the best mean and median. It is probably due to the inherent
features of this algorithm, which make it deal better with the packet transmission
policy of the Adaptive routing algorithm.

• The Default is mapped to Linear Sync in the OpenMPI selection decision tree,
and therefore they not only have similar distribution shape, but the mean, median,
and tail of the distribution is also the same for them.

So, apart from the elements discussed in the article, the chosen algorithm for the
collective operations can also have an impact on performance variability. However,
the behavior of each algorithm may vary with different data sizes and number of
nodes (processes). Also, each algorithm may have a different distribution shape
while changing the routing strategy. Therefore, it is not possible to find the best
algorithm with less variable performance before testing all the possible scenarios.

7.2 Application analysis

Thus far, we have discussed the influence of cluster and network utilization, rout-
ing strategy, and the collective algorithm on microbenchmarks latency distribution.
In this section, we delve into the effects of background network utilization on two
real-world communication-intensive applications to see how does the execution time
distribution look like when a program consists of several communication patterns
in addition to computation. The chosen applications and their specifications are as
follows:

Fig. 11 The latency distribution of different algorithms of Alltoall implemented in OpenMPI with 512
processes (16 nodes with 32 processes per node), with 4KB data size. Each distribution is representative
of 20 runs (each with 1000 iterations) performed on different days. The default algorithm is mapped to
Linear Sync in this plot

14997

1 3

Analysis and prediction of performance variability in…

• HACC 1: A cosmology framework designed for performing N-body simulations.
It simulates the intricate structure formation process in an expanding space and
heavily relies on communication between particles to accurately model gravita-
tional interactions. HACC includes various MPI communication patterns. The
number of particles in our experiments is 10 M.

• miniAMR: A mini-application that focuses on stencil calculations performed
on a computational domain in the shape of a unit cube. miniAMR is a simpli-
fied representation of more complex adaptive mesh refinement (AMR) applica-
tions commonly used in computational fluid dynamics (CFD) and other scientific
domains. The communication-intensive nature of miniAMR arises from the need
to exchange boundary data between neighboring subdomains utilizing several
communication patterns. Our test is performed using 4K 3D blocks as input.

In Fig. 12, the network latency distributions for HACC and miniAMR are presented
using histograms and density distributions. The HACC distribution, depicted in
Fig. 12a, exhibits two distinct distributions. The orange distribution corresponds
to a background network utilization (b) of 34, with an average execution time of
1.37s and a peak of 8.9. On the other hand, the blue distribution represents b = 58 ,
resulting in an average execution time of 1.43s and a peak latency of 5.2. This indi-
cates that with a 24% increase in b, the average execution time experiences a 4.4%
increase. Additionally, both distributions in Fig. 12a have a single bell-shaped curve.
Nevertheless, the blue distribution is more dilated, with its tail reaching a latency
of 2.5, while the tail of the orange distribution only grows to 2.1. This implies that
higher background network utilization leads to a broader range of latencies and
potentially longer tails in the distribution.

Nonetheless, for miniAMR, as shown in Fig. 12b, when the background network
utilization (b) slightly increases from 51 to 64 with a 13% change, the average exe-
cution time rises from 7.71 to 7.86, indicating a 2% increase, and it does not impact
so much the distribution shape and just shifts the plot to the right a bit. In contrast to

Fig. 12 The frequency and density distributions of 1000 iterations of running HACC and miniAMR
applications, considering two different background network utilization on 16 nodes (1 process per node)

1 Hardware/Hybrid Accelerated Cosmology Code.

14998 M. Salimi Beni et al.

1 3

the previous observations, both plots in this figure exhibit multiple peaks and dem-
onstrate different behaviors, suggesting that the impact of background network uti-
lization on miniAMR differs from HACC. Analyzing the previous study on the two
applications [57], it was found that approximately 67% of the overall execution time
of HACC is attributed to MPI operations (mostly Allreduce, Scatter, and Gather),
while only a negligible fraction (0.1%) is related to blocking collective communica-
tions. On the other hand, in the case of miniAMR, Allreduce alone contributed to
9.2% of the overall execution time, and it is the dominant collective pattern. This
indicates that miniAMR involves more collective communications with more com-
plex communication patterns.

As shown in this article, the Alltoall and Reduce collectives are more affected by
network background traffic. In fact, they exhibit a flatter distribution when exposed
to higher network background traffic, and their usage, together with the routing
strategy of the cluster, can result in a bimodal distribution in their latency distribu-
tion. In the case of miniAMR, an analysis of its code reveals the presence of over
10,000 MPI_Allreduce operations that possess a high communication intensity.
According to our experience, the latency distribution’s shape is mainly dominated
by the dominant collective. In Fig. 12b, the distribution of communication latencies
becomes flat-topped, primarily attributed to the dominant communication patterns
and complexities of the applications compared to microbenchmarks since they also
contain computation and their communication part consists of different collective
and point-to-point communications with different message sizes. Furthermore, the
routing algorithm employed in the cluster plays a role due to the high communi-
cation intensity, and a multi-modal distribution is expected as it combines various
distributions related to complex communication patterns of the MPI_Allreduce
operation with the computation times.

8 Discussion and conclusion

In this article, we have analyzed the network latency distribution on a large-scale
compute cluster with Dragonfly+ topology and have provided several insights. One
notable finding is the significant difference between the performance of the different
node allocation strategies; notably, the "same group" allocation policy delivers con-
siderably better performance than the two other policies. When all nodes are allo-
cated to a single group, there is only one hop between any two nodes. Therefore,
the minimal and non-minimal paths are the same for Adaptive routing, resulting in
a very low impact from the global workload of the cluster. Hence, the latency dis-
tribution exhibits a shorter tail and a higher peak and minimizes the effects of back-
ground traffic for this allocation strategy. Thus, allocating all required nodes to the
same group is advisable if there are enough available idle nodes in that group.

Analyzing the latency distribution based on communication patterns, we have
observed that the Broadcast pattern benefits significantly from the locality of job
allocation. It exhibits the shortest tail and the higher peak compared to the Reduce
and Alltoall, particularly in the same group and same island allocations. However,

14999

1 3

Analysis and prediction of performance variability in…

when nodes are allocated across different islands, Broadcast is highly affected by
the background traffic, resulting in a very long tail compared to cases with lower
background traffic. It demonstrates that the communication performance of Broad-
cast becomes more variable only if the cluster is highly utilized. Nonetheless, the
possibility of encountering this situation is rare, as the measured background net-
work utilization has mostly been between 0.40 and 0.70. On the other hand, Alltoall
exhibits the most extended tail when there is less locality in job placement. While
its distribution is similar to Reduce on the same group, performing Alltoall across
different islands leads to a significantly longer tail due to this collective’s higher vol-
ume of communication.

While allocating the nodes on different islands, our experimental analysis has
revealed a two-peak (bimodal) distribution in communication latency, which is
attributed to the routing algorithm. This behavior arises from offloading the packets
to longer paths while the minimal paths become congested. On top of that, the cho-
sen collective algorithm itself can be another source of performance variability, and
its combination with other factors, such as routing, can impact the performance and
make it bimodal. Examining the latency distribution of real-world communication-
intensive applications, we have observed that the distribution is primarily influenced
by its dominant communication pattern. Consequently, as the network background
traffic increases, the overall average execution time of the application also tends to
increase, and the distribution becomes more skewed.

Above all, when describing the performance of communication-intensive applica-
tions on large-scale supercomputers, we showed that neither arithmetic mean nor
median can describe the overall performance. They do not retain enough information
about the tail of the distribution or the number of peaks. Moreover, when running a
distributed application on such systems, if the experiment is not executed enough
iterations, the presented execution times may be too discrete and not describe the
actual performance.

Regarding the performance variability sources, although there are several factors
affecting the performance, such as system activities, MPI, background daemons, file
system, and garbage collection, the network-related elements have been proven to be
the main sources since they are prone to congestion [22, 88]. Network congestion
is not, however, easy to measure and is very challenging in the real world. Network
counters available in some clusters can be monitored to estimate network utiliza-
tion more accurately. Still, these counters are not available in all the clusters, and
they are vendor-specific. Moreover, to access such information, admin access to the
cluster might be needed. So, in this article, we rely on the data provided by SLURM
in user space as the external information alongside the application-related informa-
tion, which makes our method portable to any cluster that uses SLURM as its job
scheduler. However, it should be noted that our estimation of the background net-
work utilization is based on available information from other users and their node
allocations, which introduces the possibility of errors since we have no information
about their communication patterns, etc. That is why the correlations between our
introduced metric and the latency of collectives are not +1 in Figs. 6, 7, and 8.

The b metric introduced in this article can be a good indicator for HPC users to
find the right moment to submit their communication-intensive jobs to experience

15000 M. Salimi Beni et al.

1 3

minimum performance variability and estimate how long their job may take con-
sidering the current background traffic on the cluster. According to our findings,
the job scheduler needs to consider balancing the node allocation between the jobs
allocating single nodes and the jobs that require multiple nodes to avoid congest-
ing links. Moreover, the job scheduler can use the metric introduced in this study
to decide when to submit the communication-performing tasks (the ones requiring
many nodes) to experience the minimum variability. It also can use this metric to
predict the runtime of each of the MPI tasks and further improve its scheduling deci-
sions for other tasks.

Overall, in this article, we tried to analyze and show how the high utilization of
the cluster contributes to more competition for shared resources such as the network,
causing resource contention and, therefore, making the performance of our job vary
from the normal conditions. For future work, we plan to improve the accuracy of our
method first by collecting more static and runtime data from the applications and
network and then combining our heuristic with regression, statistical, and machine
learning techniques. The second future direction is to embed this model into the job
scheduler so that it takes care of the utilization of the cluster when making schedul-
ing decisions and, at the right moment, allocates the nodes where performance vari-
ability is minimized. The third future work is to design an MPI collective algorithm
selection logic that also takes into account the utilization of the cluster and chooses
the algorithms that cause less performance variability.

Acknowledgements We acknowledge the CINECA award under the ISCRA initiative, for the availability
of high-performance computing resources and support.

Funding Open access funding provided by Università degli Studi di Salerno within the CRUI-CARE
Agreement.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

 1. Thoman P, Salzmann P, Cosenza B, Fahringer T (2019) Celerity: high-level C++ for accelera-
tor clusters. In: Euro-Par 2019: Parallel Processing: 25th International Conference on Parallel and
Distributed Computing, Göttingen, Germany, August 26–30, 2019, Proceedings 25. Springer, pp
291–303

 2. Sojoodi AH, Salimi Beni M, Khunjush F (2021) Ignite-gpu: a gpu-enabled in-memory computing
architecture on clusters. J Supercomput 77:3165–3192

 3. Bhattacharjee A, Wells J (2021) Preface to special topic: bilding the bridge to the exascale-applica-
tions and opportunities for plasma physics. Phys Plasmas 28(9):090401

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

15001

1 3

Analysis and prediction of performance variability in…

 4. Träff JL, Lübbe FD, Rougier A, Hunold S (2015) Isomorphic, sparse MPI-like collective commu-
nication operations for parallel stencil computations. In: Proceedings of the 22nd European MPI
Users’ Group Meeting, pp 1–10

 5. Salzmann P, Knorr F, Thoman P, Cosenza B (2022) Celerity: how (well) does the sycl api translate
to distributed clusters? In: International workshop on OpenCL, pp 1–2

 6. Temuçin YH, Sojoodi AH, Alizadeh P, Kitor B, Afsahi A (2022) Accelerating deep learning using
interconnect-aware UCX communication for MPI collectives. IEEE Micro 42(2):68–76

 7. Jain N, Bhatele A, White S, Gamblin T, Kale LV (2016) Evaluating HPC networks via simulation
of parallel workloads. In: SC’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, pp 154–165

 8. Temuçin YH, Sojoodi A, Alizadeh P, Afsahi A (2021) Efficient multi-path NVLink/PCIe-aware
UCX based collective communication for deep learning. In: 2021 IEEE Symposium on High-Per-
formance Interconnects (HOTI). IEEE, pp 25–34

 9. Alizadeh P, Sojoodi A, Hassan Temucin Y, Afsahi A (2022) Efficient process arrival pattern aware
collective communication for deep learning. In: Proceedings of the 29th European MPI Users’
Group Meeting, pp 68–78

 10. NVLink and NVSwitch. https:// www. nvidia. com/ en- us/ data- center/ nvlink/. Accessed 2023-06-30
 11. Pentakalos OI (2002) An introduction to the Infini-Band architecture. In: International CMG Con-

ference 2002, Reno, USA, pp 425–432
 12. Kim J, Dally WJ, Scott S, Abts D (2008) Technology-driven, highly-scalable Dragonfly topology.

In: 2008 International Symposium on Computer Architecture. IEEE, pp 77–88
 13. Camara JM, Moreto M, Vallejo E, Beivide R, Miguel-Alonso J, Martínez C, Navaridas J (2010)

Twisted torus topologies for enhanced interconnection networks. IEEE Trans Parallel Distrib Syst
21(12):1765–1778

 14. Jain N, Bhatele A, Howell LH, Böhme D, Karlin I, León EA, Mubarak M, Wolfe N, Gamblin T,
Leininger ML (2017) Predicting the performance impact of different Fat-Tree configurations. In:
Proceedings of the International Conference for High Performance Computing, Networking, Storage
and Analysis, pp 1–13

 15. Chunduri S, Harms K, Parker S, Morozov V, Oshin S, Cherukuri N, Kumaran K (2017) Run-to-run
variability on Xeon Phi based Cray XC systems. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pp 1–13

 16. Yu H, Chung I-H, Moreira J (2006) Topology mapping for Blue Gene/L supercomputer. In: Pro-
ceedings of the 2006 ACM/IEEE Conference on Supercomputing, p 116

 17. Jyothi SA, Singla A, Godfrey PB, Kolla A (2016) Measuring and understanding throughput of net-
work topologies. In: SC’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, pp 761–772

 18. Top500, MARCONI-100. https:// www. top500. org/ system/ 179845/. Accessed 2023-07-01
 19. Shpiner A, Haramaty Z, Eliad S, Zdornov V, Gafni B, Zahavi E (2017) Dragonfly+: low cost topol-

ogy for scaling datacenters. In: 2017 IEEE 3rd International Workshop on High-Performance Inter-
connection Networks in the Exascale and Big-Data Era (HiPINEB). IEEE, pp 1–8

 20. Zhou Z, Yang X, Lan Z, Rich P, Tang W, Morozov V, Desai N (2015) Improving batch scheduling
on blue Gene/Q by relaxing 5d torus network allocation constraints. In: 2015 IEEE International
Parallel and Distributed Processing Symposium. IEEE, pp 439–448

 21. Tang W, Desai N, Buettner D, Lan Z (2010) Analyzing and adjusting user runtime estimates to
improve job scheduling on the Blue Gene/P. In: 2010 IEEE International Symposium on Parallel &
Distributed Processing (IPDPS). IEEE, pp 1–11

 22. Skinner D, Kramer W (2005) Understanding the causes of performance variability in HPC work-
loads. In: IEEE International. 2005 Proceedings of the IEEE Workload Characterization Sympo-
sium, 2005. IEEE, pp 137–149

 23. Afzal A, Hager G, Wellein G (2023) The role of idle waves, desynchronization, and bottleneck eva-
sion in the performance of parallel programs. IEEE Transa Parallel Distrib Syst 34(02):623–638

 24. Bhatele A, Thiagarajan JJ, Groves T, Anirudh R, Smith SA, Cook B, Lowenthal DK (2020) The
case of performance variability on Dragonfly-based systems. In: 2020 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, pp 896–905

 25. Chester D, Groves T, Hammond SD, Law TR, Wright SA, Smedley-Stevenson R, Fahmy SA, Muda-
lige GR, Jarvis S (2021) Stressbench: a configurable full system network and I/O benchmark frame-
work. In: IEEE High Performance Extreme Computing Conference. York

https://www.nvidia.com/en-us/data-center/nvlink/
https://www.top500.org/system/179845/

15002 M. Salimi Beni et al.

1 3

 26. Propagation and Decay of Injected One-Off Delays on Clusters: A Case Study | IEEE Conference
Publication|IEEE Xplore. https:// ieeex plore. ieee. org/ docum ent/ 88909 95. Accessed 02/04/2024

 27. Salimi Beni M, Crisci L, Cosenza B (2023) EMPI: enhanced message passing interface in mod-
ern c++. In: 2023 23rd IEEE International Symposium on Cluster, Cloud and Internet Computing
(CCGrid). IEEE

 28. Wang X, Mubarak M, Yang X, Ross RB, Lan Z (2018) Trade-off study of localizing communication
and balancing network traffic on a Dragonfly system. In: 2018 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS). IEEE, pp 1113–1122

 29. De Sensi D, Di Girolamo S, Hoefler T (2019) Mitigating network noise on Dragonfly networks
through application-aware routing. In: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp 1–32

 30. Liu Y, Liu Z, Kettimuthu R, Rao N, Chen Z, Foster I (2019) Data transfer between scientific facili-
ties - bottleneck analysis, insights and optimizations. In: 2019 19th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGRID), pp 122–131

 31. Kousha P, Sankarapandian Dayala Ganesh Ram KR, Kedia M, Subramoni H, Jain A, Shafi A, Panda
D, Dockendorf T, Na H, Tomko K (2021) Inam: cross-stack profiling and analysis of communica-
tion in MPI-based applications. In: Practice and Experience in Advanced Research Computing, pp
1–11

 32. Brown KA, McGlohon N, Chunduri S, Borch E, Ross RB, Carothers CD, Harms K (2021) A tun-
able implementation of Quality-of-Service classes for HPC networks. In: International Conference
on High Performance Computing. Springer, pp 137–156

 33. Suresh KK, Ramesh B, Ghazimirsaeed SM, Bayatpour M, Hashmi J, Panda DK (2020) Performance
characterization of network mechanisms for non-contiguous data transfers in MPI. In: 2020 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE, pp
896–905

 34. Hemmert KS, Bair R, Bhatale A, Groves T, Jain N, Lewis C, Mubarak M, Pakin SD, Ross R, Wilke
JJ (2020) Evaluating trade-offs in potential exascale interconnect technologies. Lawrence Livermore
National Lab. (LLNL), Livermore

 35. Cheng Q, Huang Y, Bahadori M, Glick M, Rumley S, Bergman K (2018) Advanced routing strat-
egy with highly-efficient fabric-wide characterization for optical integrated switches. In: 2018 20th
International Conference on Transparent Optical Networks (ICTON). IEEE, pp 1–4

 36. Zacarias FV, Nishtala R, Carpenter P (2020) Contention-aware application performance prediction
for disaggregated memory systems. In: Proceedings of the 17th ACM International Conference on
Computing Frontiers, pp 49–59

 37. Ponce M, Zon R, Northrup S, Gruner D, Chen J, Ertinaz F, Fedoseev A, Groer L, Mao F, Mundim
BC et al (2019) Deploying a top-100 supercomputer for large parallel workloads: the Niagara super-
computer. In: Proceedings of the Practice and Experience in Advanced Research Computing on Rise
of the Machines (learning), pp 1–8

 38. Marconi100. The new accelerated system. https:// www. hpc. cineca. it/ hardw are/ marco ni100.
Accessed 2023-07-01

 39. Kang Y, Wang X, McGlohon N, Mubarak M, Chunduri S, Lan Z (2019) Modeling and analysis of
application interference on Dragonfly+. In: Proceedings of the 2019 ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation, pp 161–172

 40. Wang X, Mubarak M, Kang Y, Ross RB, Lan, Z (2020) Union: an automatic workload manager for
accelerating network simulation. In: 2020 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pp 821–830

 41. Salimi Beni M, Cosenza B (2023) An analysis of long-tailed network latency distribution and back-
ground traffic on dragonfly+. In: International Symposium on Benchmarking, Measuring and Opti-
mization. Springer, pp 123–142

 42. Beni MS, Cosenza B (2022) An analysis of performance variability on Dragonfly+ topology. In:
2022 IEEE International Conference on Cluster Computing (CLUSTER). IEEE, pp 500–501

 43. Navaridas J, Lant J, Pascual JA, Lujan M, Goodacre J (2019) Design exploration of multi-tier inter-
connection networks for exascale systems. In: Proceedings of the 48th International Conference on
Parallel Processing, pp 1–10

 44. Hashmi JM, Xu S, Ramesh B, Bayatpour M, Subramoni H, Panda DKD (2020) Machine-agnostic
and communication-aware designs for MPI on emerging architectures. In: 2020 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, pp 32–41

https://ieeexplore.ieee.org/document/8890995
https://www.hpc.cineca.it/hardware/marconi100

15003

1 3

Analysis and prediction of performance variability in…

 45. Subramoni H, Lu X, Panda DK (2017) A scalable network-based performance analysis tool for MPI
on large-scale HPC systems. In: 2017 IEEE International Conference on Cluster Computing (CLUS-
TER). IEEE, pp 354–358

 46. Teh MY, Wilke JJ, Bergman K, Rumley S (2017) Design space exploration of the Dragonfly topol-
ogy. In: International Conference on High Performance Computing. Springer, pp 57–74

 47. Zahn F, Fröning H (2020) On network locality in MPI-based HPC applications. In: 49th Interna-
tional Conference on Parallel Processing-ICPP, pp 1–10

 48. Hoefler T, Schneider T, Lumsdaine A (2010)Characterizing the influence of system noise on large-
scale applications by simulation. In: SC’10: Proceedings of the 2010 ACM/IEEE International Con-
ference for High Performance Computing, Networking, Storage and Analysis. IEEE, pp 1–11

 49. Maricq A, Duplyakin D, Jimenez I, Maltzahn C, Stutsman R, Ricci R (2018) Taming performance
variability. In: 13th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 18), pp 409–425

 50. Vetter J, Chambreau C (2005) MPIP: lightweight, scalable MPI profiling
 51. Arnold DC, Ahn DH, De Supinski B, Lee G, Miller B, Schulz M (2007) Stack trace analysis for

large scale applications. In: 21st IEEE International Parallel & Distributed Processing Sympo-
sium (IPDPS’07), Long Beach, CA

 52. Petrini F, Kerbyson DJ, Pakin S (2003) The case of the missing supercomputer performance:
achieving optimal performance on the 8,192 processors of asci q. In: Proceedings of the 2003
ACM/IEEE Conference on Supercomputing, p 55

 53. Sato K, Ahn DH, Laguna I, Lee GL, Schulz M, Chambreau CM (2017) Noise injection tech-
niques to expose subtle and unintended message races. In: Proceedings of the 22Nd ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, pp 89–101

 54. Smith SA, Cromey CE, Lowenthal DK, Domke J, Jain N, Thiagarajan JJ, Bhatele A(2018) Miti-
gating inter-job interference using adaptive flow-aware routing. In: SC18: International Confer-
ence for High Performance Computing, Networking, Storage and Analysis. IEEE, pp 346–360

 55. McGlohon N, Carothers CD, Hemmert KS, Levenhagen M, Brown KA, Chunduri S, Ross RB
(2021) Exploration of congestion control techniques on Dragonfly-class HPC networks through
simulation. In: 2021 International Workshop on Performance Modeling, Benchmarking and Sim-
ulation of High Performance Computer Systems (PMBS). IEEE, pp 40–50

 56. Shah A, Müller M, Wolf F (2018) Estimating the impact of external interference on application
performance. In: Euro-Par 2018: Parallel Processing: 24th International Conference on Parallel and
Distributed Computing, Turin, Italy, August 27-31, 2018, Proceedings 24. Springer, pp 46–58

 57. Zhang Y, Groves T, Cook B, Wright NJ, Coskun AK (2020)Quantifying the impact of network
congestion on application performance and network metrics. In: 2020 IEEE International Con-
ference on Cluster Computing (CLUSTER). IEEE, pp 162–168

 58. Brown KA, Jain N, Matsuoka S, Schulz M, Bhatele A (2018) Interference between I/O and MPI
traffic on Fat-Tree networks. In: Proceedings of the 47th International Conference on Parallel
Processing, pp 1–10

 59. Tang X, Zhai J, Qian X, He B, Xue W, Chen W (2018) Vsensor: leveraging fixed-workload snip-
pets of programs for performance variance detection. In: Proceedings of the 23rd ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, pp 124–136

 60. Zheng L, Zhai J, Tang X, Wang H, Yu T, Jin Y, Song SL, Chen W (2022) Vapro: performance vari-
ance detection and diagnosis for production-run parallel applications. In: Proceedings of the 27th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp 150–162

 61. Besta M, Schneider M, Konieczny M, Cynk K, Henriksson E, Di Girolamo S, Singla A, Hoefler
T (2020) Fatpaths: routing in supercomputers and data centers when shortest paths fall short. In:
SC20: International Conference for High Performance Computing, Networking, Storage and Analy-
sis. IEEE, pp 1–18

 62. Kang Y, Wang X, Lan Z (2020) Q-adaptive: a multi-agent reinforcement learning based routing on
Dragonfly network. In: Proceedings of the 30th International Symposium on High-Performance Par-
allel and Distributed Computing, pp 189–200

 63. Newaz MN, Mollah MA, Faizian P, Tong Z (2021) Improving adaptive routing performance on
large scale Megafly topology. In: 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud
and Internet Computing (CCGrid). IEEE, pp 406–416

 64. Mollah MA, Wang W, Faizian P, Rahman MS, Yuan X, Pakin S, Lang M (2019) Modeling universal
globally adaptive load-balanced routing. ACM Trans Parallel Comput 6(2):1–23

15004 M. Salimi Beni et al.

1 3

 65. Faizian P, Alfaro JF, Rahman MS, Mollah MA, Yuan X, Pakin S, Lang M (2018) Tpr: traffic pattern-
based adaptive routing for Dragonfly networks. IEEE Trans Multi-Scale Comput Syst 4(4):931–943

 66. De Sensi D, Di Girolamo S, McMahon KH, Roweth D, Hoefler T (2020) An in-depth analysis of
the slingshot interconnect. In: SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, pp 1–14

 67. Wen K, Samadi P, Rumley S, Chen CP, Shen Y, Bahadori M, Bergman K, Wilke J (2016)Flexfly: ena-
bling a reconfigurable Dragonfly through silicon photonics. In: SC’16: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, pp 166–177

 68. Rahman MS, Bhowmik S, Ryasnianskiy Y, Yuan X, Lang M (2019) Topology-custom ugal routing
on Dragonfly. In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. SC ’19. Association for Computing Machinery, New York, NY,
USA

 69. Rocher-Gonzalez J, Escudero-Sahuquillo J, Garcia PJ, Quiles FJ, Mora G (2019) Efficient conges-
tion management for high-speed interconnects using adaptive routing. In: 2019 19th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID). IEEE, pp 221–230

 70. Kaplan F, Tuncer O, Leung VJ, Hemmert SK, Coskun AK (2017) Unveiling the interplay between
global link arrangements and network management algorithms on Dragonfly networks. In: 2017
17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID).
IEEE, pp 325–334

 71. Michelogiannakis G, Ibrahim KZ, Shalf J, Wilke JJ, Knight S, Kenny JP (2017) Aphid: hierarchical
task placement to enable a tapered Fat Tree topology for lower power and cost in HPC networks. In:
2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID).
IEEE, pp 228–237

 72. Zhang Y, Tuncer O, Kaplan F, Olcoz K, Leung VJ, Coskun AK (2018) Level-spread: a new job allo-
cation policy for Dragonfly networks. In: 2018 IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS). IEEE, pp 1123–1132

 73. Wang X, Yang X, Mubarak M, Ross RB, Lan Z (2017) A preliminary study of intra-application
interference on Dragonfly network. In: 2017 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, pp 643–644

 74. Aseeri SA, Gopal Chatterjee A, Verma MK, Keyes DE (2021) A scheduling policy to save 10% of
communication time in parallel fast Fourier transform. Concurr Comput Pract Exp 35:e6508

 75. Glass CJ, Ni LM (1992) The turn model for adaptive routing. ACM SIGARCH Comput Architect
News 20(2):278–287

 76. OSU Micro-Benchmarks 5.8, The Ohio State University.https:// mvapi ch. cse. ohio- state. edu/ bench
marks/. Accessed 2023-07-01

 77. Heitmann K, Finkel H, Pope A, Morozov V, Frontiere N, Habib S, Rangel E, Uram T, Korytov D,
Child H et al (2019) The outer rim simulation: a path to many-core supercomputers. Astrophys J
Suppl Ser 245(1):16

 78. Heroux MA, Doerfler DW, Crozier PS, Willenbring JM, Edwards HC, Williams A, Rajan M, Keiter
ER, Thornquist HK, Numrich RW (2009) Improving performance via mini-applications. Sandia
National Laboratories, Technical Report SAND2009-5574, vol 3

 79. Hunold S, Carpen-Amarie A (2016) Reproducible MPI benchmarking is still not as easy as you
think. IEEE Trans Parallel Distrib Syst 27(12):3617–3630

 80. Slurm, Slurm’s job allocation policy for Dragonfly network. https:// github. com/ Sched MD/ slurm/
blob/ master/ src/ plugi ns/ select/ linear/ select_ linear.c. Accessed 2023-07-01

 81. GitHub - cea-hpc/hp2p: Heavy Peer To Peer: a MPI based benchmark for network diagnostic.
https:// github. com/ cea- hpc/ hp2p. Accessed 15 May 2023

 82. (2008) Pearson’s correlation coefficient. In: Kirch W (eds) Encyclopedia of public health. Springer,
Dordrecht. https:// doi. org/ 10. 1007/ 978-1- 4020- 5614-7_ 256

 83. Zar JH (2005) Spearman rank correlation. In: Encyclopedia of biostatistics, vol 7. https:// doi. org/ 10.
1002/ 04700 11815. b2a15 150

 84. Hunold S, Carpen-Amarie A (2018) Autotuning MPI collectives using performance guidelines.
In: Proceedings of the International Conference on High Performance Computing in Asia-Pacific
Region, pp 64–74

 85. Hunold S, Carpen-Amarie A (2018) Algorithm selection of MPI collectives using machine learning
techniques. In: 2018 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems (PMBS). IEEE, pp 45–50

https://mvapich.cse.ohio-state.edu/benchmarks/
https://mvapich.cse.ohio-state.edu/benchmarks/
https://github.com/SchedMD/slurm/blob/master/src/plugins/select/linear/select_linear.c
https://github.com/SchedMD/slurm/blob/master/src/plugins/select/linear/select_linear.c
https://github.com/cea-hpc/hp2p
https://doi.org/10.1007/978-1-4020-5614-7_256
https://doi.org/10.1002/0470011815.b2a15150
https://doi.org/10.1002/0470011815.b2a15150

15005

1 3

Analysis and prediction of performance variability in…

 86. Hunold S, Steiner S (2022) OMPICollTune: Autotuning MPI collectives by incremental online
learning. In: 2022 IEEE/ACM International Workshop on Performance Modeling, Benchmarking
and Simulation of High Performance Computer Systems (PMBS). IEEE, pp 123–128

 87. Salimi Beni M, Hunold S, Cosenza B (2023) Algorithm selection of MPI collectives considering
system utilization. In: Euro-Par 2023: Parallel Processing Workshops. Springer

 88. Dean J, Barroso LA (2013) The tail at scale. Commun ACM 56(2):74–80. https:// doi. org/ 10. 1145/
24087 76. 24087 94

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1145/2408776.2408794
https://doi.org/10.1145/2408776.2408794

	Analysis and prediction of performance variability in large-scale computing systems
	Abstract
	1 Introduction
	2 Motivation and contributions
	2.1 Contributions

	3 Related work
	4 Experimental setup
	4.1 Computing and network
	4.2 Software, microbenchmarks, and applications

	5 Analysis of performance variability
	5.1 The impact of node allocation on performance variance

	6 Predicting variability
	6.1 Benchmarking-based estimation
	6.2 Heuristic-based estimation of variability
	6.3 Correlation analysis

	7 Variability on collectives and applications
	7.1 Collective algorithms and latency distributions
	7.2 Application analysis

	8 Discussion and conclusion
	Acknowledgements
	References

