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Abstract: For materials with high stacking fault energy (SFE), such as aluminum alloys, dynamic
recovery (DRV) and dynamic recrystallization (DRX) are essential softening mechanisms during
plastic deformation, which lead to the continuous generation and refinement of newborn subgrains
(2◦ < misorientation angle < 15◦). The present work investigates the influence of compression
parameters on the evolution of the substructures for a 1050 aluminum alloy at elevated temperatures.
The alloy microstructure was investigated under deformation temperatures ranging from 300 ◦C
to 500 ◦C and strain rates from 0.01 to 0.1 s−1, respectively. A well-defined substructure and
subsequent subgrain refinement provided indication of the evolution laws of the substructure under
high-temperature compression. Corresponding experimental data on the average subgrain size
under various compression conditions were obtained. Two different independent average subgrain
size evolution models (empirical and substructure-based) were used and applied with several
internal state variables. The substructure model employed physical variables to simulate subgrain
refinement and thermal coarsening during deformation, incorporating a corresponding dislocation
density evolution model. The correlation coefficient (R) and root mean square error (RMSE) of
the substructure-based model were calculated to be 0.98 and 5.7%, respectively. These models
can provide good estimates of the average subgrain size, with both predictions and experiments
reproducing the expected subgrain size evolution using physically meaningful variables during
continuous deformation.

Keywords: substructure evolution; subgrain size model; high-temperature compression; aluminum
alloy

1. Introduction

Aluminum alloys are widely used in automotive, aerospace, and other branches of
industry due to their low mass and mechanical features. The hot forming of Al alloys is
a complex metallurgical process that involves work hardening (WH), dynamic recovery
(DRV), static recovery (SRV), dynamic recrystallization (DRX), grain growth, and other
phenomena [1–3].

For materials with high stacking fault energy (SFE), such as Al alloys, DRV and
continuous dynamic recrystallization (CDRX) [4–8] are the prominent softening mecha-
nisms during hot forming, and they are observed in different series of Al alloys. Recent
research [9–11] has indicated that low-angle subgrains (2◦ < misorientation angle < 15◦)
develop through the absorption of new mobile dislocations, subsequently transforming into
high-angle grain boundaries (HAGBs) with misorientation angles > 15◦. This process results
in a well-defined substructure and subsequent DRX during high-temperature deformation.

The understanding and modeling of low-angle subgrain evolution are recognized as
the key for describing the mechanisms of DRV and DRX during plastic deformation. Huang
et al. [12] and Sakai et al. [13] reviewed the microstructural evolution and mechanism of
Al alloy during deformation. Zhang et al. [14], Ding et al. [15], and Li et al. [16] studied
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the deformation behavior and DRX of various Al alloys, such as 2195 Al alloy and 5083 Al
alloy. Current research has focused more on the CDRX process for Al alloy, which has
been observed in the hot deformation or severe plastic deformation (SPD) processes of Al-
Mg [17], Al-Li [18], Al-Cu [19], and other Al alloys. There are only a few studies that have
analyzed and investigated substructural changes under varying compression conditions.

The majority of existing models [20–23] rely on empirical relationships to quantify
parameters such as flow stress and steady-state subgrain size with the Zener–Hollomon
parameter (Z). Material models of the subgrain size evolution of high-SFE alloy are scarcer.
Nes et al. [24,25] as well as Duan and Sheppard [26–28] have developed mathematical
models to describe the substructure evolution and the recrystallization kinetics during
aluminum rolling and extrusion, respectively. In subsequent work, Marthinsen and Nes [29]
considered the influence of grains, particles, and dispersoids on the subgrain size model.
Gourdet and Montheillet [30] (GM) introduced a subgrain size evolution model as part
of the CDRX model framework, which considers the misorientation evolution caused by
subgrain rotation and the migration of HAGBs. Furthermore, some extended subgrain
models [31–33] have also been developed recently on the basis of the GM model within the
CDRX framework.

Most of the subgrain models developed in recent years rely on translating subgrain
size δsub into volumetric boundary density Ssub, defined as δsub = 2/Ssub [30–33]. This ap-
proach lacks physical interpretability and is challenging to verify experimentally. Currently,
subgrain size can be measured experimentally using electron backscatter diffraction (EBSD),
allowing for the investigation of its effects on material properties. An independent model
of average subgrain size, incorporating physically meaningful variables, is applied based
on experimental values. In this study, an AA1050 pure Al alloy was selected to minimize
the influence of solute atoms and precipitated particles as defects/pinning position on the
evolution of low-angle subgrain boundaries (or dislocation cells).

In this study, the influence of deformation parameters on the evolution of the sub-
structures for an AA1050 Al alloy was investigated under high-temperature compression,
experimentally obtaining the average grain size under various conditions. The occurrence
of a well-defined substructure and subsequent low-angle subgrain refinement were an-
alyzed under different strains, temperatures, and strain rates. The mechanisms driving
substructure evolution were evaluated by analyzing the average subgrain size, misorien-
tation angles, and the distribution of subgrains. Subsequently, an empirical model and
an advanced substructure-based model of average subgrain size were established with
several internal state variables. These models were validated using a detailed substruc-
tural investigation, and model input parameters are herein described in detail as well as
their dependencies.

2. Model Description
2.1. Empirical Average Subgrain Size Model

During the hot forming of Al alloys, DRV serves as the main recovery process, resulting
in the formation of well-defined substructures. Recent studies have indicated that the
average subgrain size gradually attains a “saturation value” δs, which becomes invariant
with respect to strain during deformation [1,21–24,34]. This saturated subgrain size is
balanced during DRV after the alloy microstructure reaches steady state, and it depends on
the temperature and strain rate, as in [21].

δs =

[
α1 + β1ln

(
.
εexp

(
Q
RT

))]−1
(1)

where δs is the saturated average subgrain size, α1 and β1 are material constants,
.
ε is the

strain rate, Q is the deformation activation energy, R is the gas constant, and T is the
absolute deformation temperature. In the present work, the values of α1 and β1 are derived
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from the EBSD experimental data, with the average value of the coefficients being α1 = 0.015
and β1 = −0.15.

The activation energy Q is a key material parameter that indicates the resistance of the
deformation. In the present work, the activation energy Q is 142 kJ.mol−1, close to that for
pure Al alloy [35].

The empirical model describes the process of subgrain evolution under deforma-
tion based on the initial subgrain size δ0, which gradually decreases until a steady-state
microstructure is achieved. The relationship between the average subgrain size and the
saturated subgrain size is represented by the following empirical formulation [36]:{

δsub = δ0 − (δ0 − δs)
[
1 − exp

(
−α2(εd − εc)

β2
)]

, εd < εs

δsub = δs, εd > εs
(2)

where δsub is the average subgrain size, δ0 is the initial average subgrain size, α2 and β2
are material constants, εd is the strain during deformation, εc is the critical strain up to
which subgrains can be distinguished, and εs is the strain where the subgrain size starts to
become saturated.

To determine the values of α2 and β2, Equation (2) can be rewritten in double natural
logarithm form:

ln
(
−ln

(
1 − δ0 − δsub

δ0 − δs

))
= ln α2 + β2 ln((εd − εc)) (3)

In the present work, the material constants α2 and β2 are derived from the mean values
of the slopes and intercepts as α1 = 5.00 and β1 = 1.15.

2.2. Substructure-Based Model

The plastic deformation of Al alloys generally occurs in three key stages [1,12,13,25]:
(1) initial stage: increasing dislocation activity, whereby cells/subgrain boundaries are
formed; (2) subgrain refinement: subgrains continue to form and refine; and (3) thermal
coarsening of subgrain: involves the thermally induced coarsening of subgrains during
deformation, resulting in an increase in subgrain size.

The substructure-based model of average subgrain size describes the evolution of
subgrains using physical internal state variables. The first part of the model is to simulate
the subgrain refinement as the deformation progresses, incorporating the effects of various
deformation parameters. To better represent the subgrain refinement process during high-
temperature compression, a substructure-based model was developed as follows [25,29]:

dδ−sub = − fr

√
3

.
εb1/2

θs
3/2

δs
2 δsub

v1 dt (4)

where δsub is the average subgrain size during deformation, b is the Burger’s vector, θs is
the average subgrain boundary misorientation in the steady-state stage, v1 is a material
coefficient that controls the subgrain refinement rate and is set to 1 in this work, fr is a
material coefficient related to subgrain refinement, and δs is the average subgrain size of
steady-state stage, expressed as follows:

δs =
1
3

(
σs

c1Gb

)−1
, with σs = f1

[
.
εexp

(
Q
RT

)
]

f2

(5)

where σs is the steady-state flow stress, G is the shear modulus, f1 and f2 are material
constants, and c1 is a material coefficient related to the flow stress.

In the process of high-temperature compression, the occurrence of subgrain refinement
is dynamically counteracted by thermally induced coarsening. This coarsening occurs by
mechanisms such as subgrain boundary migration, subgrain rotation, and the evolution
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of dislocation density, resulting in the movement of subgrain boundaries. In the present
work, a coarsening model was applied, where the subgrain size is related to the evolution
of subgrain migration and dislocation density, as follows [25]:

dδ+sub = fcνDb2√ρ

[
exp

(
−Us + PVa

kBT

)]
dt (6)

where νD is the Debye frequency, ρ is the dislocation density, P is the driving force on the
subgrain boundary, Va is the average activation volume of subgrain boundaries, kB is the
Boltzmann constant, Us is the activation energy for self-diffusion in Al with unit J.atom−1,
and fc is a material coefficient related to subgrain coarsening.

For the two material coefficients, the coefficient fr exhibits sensitivity to both defor-
mation temperature and strain rate, making it a critical factor in controlling the trend and
rate of subgrain refinement under various deformation conditions. Similarly, the material
coefficient fc is also dependent on temperature and strain rate. Therefore, the coefficients
can be formulated as given below:

fr = f3

[
.
εexp

(
Q
RT

)
]

f4

, and fc = f5

[
.
εexp

(
Q
RT

)
]

f6

, (7)

where f3, f4, f5, and f6 are material constants.
The driving force for subgrain boundary migration [37] is taken as P = 4γ/δsub,

where γ is the subgrain boundary energy. The average activation volume of subgrain
boundary [25] can be expressed as Va = b3/θsub, where θsub is the average subgrain
boundary misorientation angle.

The dislocation density model incorporates several key mechanisms affecting the
dislocation evolution, including dislocation generation due to work hardening (WH) and
reduction in dislocation density through DRV and static recovery (SRV) with dislocation
climbing and gliding, as follows [38–40]:

dρ/dt =
M
√

ρ

Ab
.
ε − 2BMρ

dcrit

b
.
ε − 2CDd

Gb3

kbT

(
ρ2 − ρeq

2
)

dt − 2 fHvHρ
1

δsub
(8)

where A, B, and C are material-dependent coefficients; M is the Taylor factor; dcrit is the
critical distance of dislocation annihilation; Dd is the diffusion coefficient along dislocation
pipes; ρeq is the equilibrium dislocation density; fH is the fraction of HAGBs; and vH is the
migration rate of HAGBs.

The last term in Equation (8) accounts for the reduction in the average internal dislo-
cation density accompanying the migration of HAGBs. The migration rate of HAGBs is
adopted from Gourdet and Montheillet [30] as follows:

vH = v0

( .
ε
.

ε0

)m

, (9)

where
.

ε0 is the initial strain rate, v0 is the initial migration rate of HAGBs, and m is a
material constant related to the migration rate.

3. Experimental Results
3.1. Material and Experiments

In this study, AA1050 Al alloy billets provided by Neuman Aluminium Austria GmbH
(Marktl, Austria) were investigated and subsequently machined into cylinders with a diam-
eter of 5 mm and a height of 10 mm. Single-pass isothermal compression was conducted
using a deformation dilatometer DIL 805 A/D from Bähr (Hüllhorst, Germany). The
procedures of the compression experiments are shown in Figure 1. Three different forming
temperatures within the range of 0.5Tm < Tdef < 0.7Tm [11] (300 ◦C, 400 ◦C, and 500 ◦C), two
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different strain rates (0.01 s−1 and 0.1 s−1), and four true strains (0.1, 0.3, 0.6, and 0.9) were
applied. The true strain values were set within the deformation dilatometer using a built-in
calculation formula, defined as true strain = Ln(L/L0), where L0 is the original length of
samples, and L is the current length after deformation. The specimens were quenched with
over 100 K/s cooling speed to room temperature immediately after compression.
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Figure 1. Schematic of the isothermal compression experiments history.

EBSD tests were carried out in a Zeiss Sigma 500 VP (Oberkochen, DE) high-resolution
scanning electron microscope with an EDAX detector with an accelerating voltage of 20 kV
and a step size of 0.5 µm. The data processing of EBSD results was carried out with the
EDAX OIM Analysis8 software (v8, EDAX Inc., Mahwah, NJ, USA). The post-processing
procedure to distinguish most of the subgrains consisted of the following: (1) the standard
“clean up” algorithm; (2) construction of the grains with grain tolerance angle 1.0, which
enabled the software to identify most subgrains; (3) setting up a confidence index > 0.1 filter
in the partition properties dialog to hide all mis-indexed points; (4) performing a confidence
index standardization (CIS) to allow points from overlapping patterns at grain boundaries
to be maintained in the map; (5) acquiring distinct grain color maps and subgrain size
distributions, and areas containing significant errors or unresolved regions were excluded
from the analysis.

3.2. Substructure Evolution

Figure 2a–c show the microstructure maps after compression at temperatures of 300 ◦C.
Low-angle subgrain boundaries and HAGBs are shown as white and black lines, respec-
tively. Under conditions of low strain (Figure 2a), the generation of initial subgrains was
observed within the parent grains, characterized by an irregular morphology. In materials
with high SFE, dislocations rearrangement and annihilation occurred through DRV, result-
ing in the formation of subgrain boundaries within the pancaked parent grains [12,13,21,22].
It is noteworthy that the initial subgrain boundaries were formed without a nucleation
process, consistent with the conclusions reported by Huang et al. [12] and Sakai et al. [13].

As deformation progressed (Figure 2b), an increased formation of subgrain boundaries
was observed due to the continued accumulation of dislocations. Concurrently, the gener-
ation of some unclosed subgrains within the original grains was observed, which is also
shown by the corresponding unique grain color maps depicted in Figure 2e. Additionally,
Figure 2c reveals the presence of more newborn subgrains with an equiaxed morphology,
suggesting subgrain rotation and an increase in the misorientation angle of boundaries.
This continuous formation of new subgrain boundaries resulted in a substantial decrease
in the average subgrain size.



Materials 2024, 17, 4385 6 of 17
Materials 2024, 17, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 2. EBSD images of 1050 Al alloy deformed to a different strain at a temperature of 300 °C and 
a strain rate of 0.1 s−1: (a–c) inverse pole figure (IPF) maps of the specimens with strain 0.1, 0.3, and 
0.6; (d–f) corresponding unique grain color maps; and (g–i) subgrain size distribution maps. 

As deformation progressed (Figure 2b), an increased formation of subgrain 
boundaries was observed due to the continued accumulation of dislocations. 
Concurrently, the generation of some unclosed subgrains within the original grains was 
observed, which is also shown by the corresponding unique grain color maps depicted in 
Figure 2e. Additionally, Figure 2c reveals the presence of more newborn subgrains with 
an equiaxed morphology, suggesting subgrain rotation and an increase in the 
misorientation angle of boundaries. This continuous formation of new subgrain 
boundaries resulted in a substantial decrease in the average subgrain size. 

The corresponding unique grain color maps and subgrain size distribution maps at 
300 °C are presented in Figure 2d–i. It is clear that the average subgrain size (area fraction) 
exhibits a relatively random distribution. The average subgrain size of the specimens 
progressively decreased with increasing strain, decreasing deformation temperature, and 
increasing strain rate. Consequently, the continuous formation of subgrain boundaries 
was responsible for the decrease in the subgrain size, which was also accompanied by an 
increase in wall dislocation density and misorientation angle, serving as a typical 
identification of DRV and, subsequently, the CDRX phenomenon. [1,12,13] The average 
subgrain size, calculated from the EBSD data under different conditions, is summarized 
in Table 1. 
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a strain rate of 0.1 s−1: (a–c) inverse pole figure (IPF) maps of the specimens with strain 0.1, 0.3, and
0.6; (d–f) corresponding unique grain color maps; and (g–i) subgrain size distribution maps.

The corresponding unique grain color maps and subgrain size distribution maps at
300 ◦C are presented in Figure 2d–i. It is clear that the average subgrain size (area fraction)
exhibits a relatively random distribution. The average subgrain size of the specimens
progressively decreased with increasing strain, decreasing deformation temperature, and
increasing strain rate. Consequently, the continuous formation of subgrain boundaries
was responsible for the decrease in the subgrain size, which was also accompanied by
an increase in wall dislocation density and misorientation angle, serving as a typical
identification of DRV and, subsequently, the CDRX phenomenon. [1,12,13] The average
subgrain size, calculated from the EBSD data under different conditions, is summarized in
Table 1.

Table 1. Measured average subgrain size under different deformation conditions.

Average
Subgrain Size (µm) Temperature (◦C) Strain Rate (s−1) Strain 0.1 Strain 0.3 Strain 0.6 Strain 0.9

subgrain
size

300 0.1 63 21 11 1.7
400 0.1 71 33 21 3.5
500 0.1 65 37 25 11
500 0.01 83 43 28 19
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Different from Figure 2, the presence of subgrain coarsening became evident when
subjected to deformation at high temperatures, as shown in Figure 3b,c. During the DRV
process, elevated temperatures enhanced their mobility, facilitating the migration of sub-
grain boundaries and thereby leading to an increase in subgrain size [25,29]. As deformation
proceeded, the primary mechanism remained the continued generation and refinement
of finer subgrains, which was manifested in a significant reduction in subgrain size, as
shown in Figure 3d–i and Table 1. This demonstrates that some low-angle sub-boundaries
disappeared, while others expanded due to the continuous growth of subgrains (cells)
during hot deformation [41]. Consequently, the increasing of mean subgrain misorientation
remained constant even under high strain conditions, in agreement with results from
McQueen and Kassner [42].
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Figure 3. EBSD images of 1050 Al alloy deformed to a different strain with a temperature of 500 ◦C
and a strain rate of 0.1 s−1: (a–c) IPF maps of the specimens deformed with strain 0.1, 0.3, and 0.6;
(d–f) corresponding unique grain color maps; and (g–i) subgrain size distribution maps.

The unique grain color maps of specimens deformed to strain 0.9 are illustrated
in Figure 4. As expected, the average subgrain size was sensitive to both deformation
temperature and strain rate; i.e., the subgrain size increased with increasing temperature or
decreasing strain rate.
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4. Model Application and Discussion
4.1. Model Input Parameters

The initial parameters for the variables are defined as follows: The initial average sub-
grain size δ0 was 100 µm. Furthermore, the critical strain εc, at which subgrain boundaries
become distinguishable within the deformed microstructure, was simplified to zero.

The average subgrain boundary misorientation θs of the steady-state stage can be
found in the literature as 3◦, as suggested by Nes [25]. The value of the material coefficient
c1 was 60, and the calculation of σs was temperature- and strain rate-dependent, such as
σs = 0.6

[ .
εexp(Q/RT)]0.16 MPa. The value of subgrain boundary energy γ was selected

to be 0.3 J.m−2 in this work [37], and the activation energy for self-diffusion in Al [43]
was 2·10−19 J.atom−1. The list of input parameters for the substructure-based model is
summarized in Table 2.

Table 2. List of input parameters for substructure-based model.

Symbol Name Unit Value Ref.

ν Poisson’s ratio - 0.347 [44]
G Shear modulus MPa 29,438.4–15.052T [45,46]
b Burgers vector m 2.86·10−10 [47]
M Taylor factor - 3.06 [48]
νD Debye frequency s−1 1·1013 [49]

θsub
Subgrain boundary

misorientation
◦ 5 This work

fr
Material coefficient for

subgrain refinement - 3.5·109
[ .
εexp(Q/RT)]−0.23 This work

fc
Material coefficient for

subgrain coarsening - 6000
[ .
εexp(Q/RT)]0.53 This work

A A parameter - 2.76 exp(0.0046T) This work
B B parameter - 2.5 This work
C C parameter - 1·10−3 This work
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The dislocation density evolution parameters A, B, and C were adjusted to the experi-
mental flow curve with the empirical coefficient a in the Taylor relationship, taken as 0.2.
The calculation of the critical distance for dislocation annihilation dcrit and diffusion coeffi-
cient along dislocation pipes Dd can be found in the literature as suggested by Sherstnev,
Lang, and Kozeschnik [38] and Kreyca and Kozeschnik [39]. The parameters of the HAGBs
migration rate were selected for Al alloy as suggested by Gourdet and Montheillet [30].

4.2. Model Validation

This section presents a comparative analysis of the simulated results from the
substructure-based model against the experimental data on the evolution of average sub-
grain size. The experimental measurements of average subgrain size were obtained by
EBSD and are detailed in Table 1. The simulations were conducted using MATLAB software
version R2016b with given true strain values, employing one single set of input parameters
(refer to Section 4.1) applied across all deformation conditions.

Figure 5 presents a comparison between the substructure-based model and the ex-
perimental values. At the onset of deformation, a substantial formation of new subgrain
boundaries occurred with the progression of compression, resulting in a rapid reduction
in the average subgrain size. As the compression progressed, the rate of subgrain size
reduction decreased. It is suggested that the subgrain size eventually reaches a “saturation
value” at higher strain [1,21–24,34]. The analysis indicated that the substructure-based
model clearly reproduced the evolution of the subgrain size. Both the model and the
experimental data exhibited the anticipated behavior of the average subgrain size evolution
during continuous deformation. Furthermore, this model’s ability to simulate subgrain size
evolution from different initial average subgrain sizes (50 µm) demonstrates its applicability
under various initial subgrain sizes.
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To further evaluate the performance of the substructure-based model in the present
study, the correlation coefficient (R) and root mean square error (RMSE) [50] were evaluated
as follows:

R =
∑N

i=1
(
δei − δe

)(
δci − δc

)√
∑N

i=1
(
δei − δe

)2
∑N

i=1
(
δci − δc

)2
(10)

RMSE =

√
1
N ∑N

i=1 (δ ci − δei)
2·100% (11)

where δci represents the calculated subgrain size, δei represents the experimental subgrain
size, δc is the average calculated subgrain size, δe is the average experimental subgrain size,
and N is the total number of data points used in this study.

The corresponding error analysis for different deformation conditions is illustrated in
Figure 6. The values of R and RMSE are 0.98 and 5.68%, respectively, indicating a good
agreement between the experiment and the model.
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In the substructure-based model, the material coefficients fr and fc directly affect
the subgrain refinement and coarsening, as illustrated in Figure 7. By accounting for
the coarsening term, the refinement of the initial subgrain size is clearly observed, as
demonstrated in the microstructures shown in Figures 2 and 3. The subgrain size decreased
and gradually reached a steady-state value at larger strains, in agreement with studies
from Sellars et al. [22] and Furu et al. [23]. In contrast, when subgrain coarsening was
not considered (with the coefficient fc set to 0), a steady state trend was not achieved,
and the subgrain size continued to decrease until it reached zero. Correspondingly, the
continuous generation of new subgrain boundaries through dislocation accumulations and
rearrangements was observed, in agreement with the results of subgrain/grain boundary
migration from Gourdet and Montheillet [30]. In addition, the comparison between the
simulated average subgrain size δsub and experimental δsub of the traditional empirical
model is also shown in Figure 8.

4.3. Discussion

The analysis of the deformation structure from the EBSD results confirms that hot de-
formation leads to the formation of a substructure, where the density of low-angle subgrain
boundaries continuously increases (see Figures 2 and 3). Figure 9 represents a detailed grain
boundary maps to facilitate a better understanding of substructure generation and develop-
ment. The formation of cell boundaries, characterized by a high density of dislocations, is
constituted by geometrically necessary dislocations (GNDs) that serve to divide the parent
grains into subgrains and to maintain the deformation gradients inside the grain as well as
the rotation of subgrains. In the deformed microstructure at the interrupted strain of 0.3
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(Figure 9a), a high fraction of incomplete sub-boundaries (2◦ < misorientation < 15◦) indi-
cates the formation of a dislocation cell structure. Due to DRV, these incomplete low-angle
subgrains (cell walls) continue to form fine and polygonized substructures with ongoing de-
formation. This mechanism is observed in Al alloys [4,8,19,51], 304-type austenitic stainless
steel [52], Ti alloy [53], etc.
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and 0.9 and (d–f) corresponding distribution histograms of misorientation angle.

In addition, some researchers [8,12,13] have introduced other mechanisms for subgrain
boundary formation, including micro-shear band assistance and progressive lattice rotation
near grain boundaries. At elevated deformation temperatures (see Figure 3), a homoge-
neous microstructure generally forms, and deformation/micro-shear bands become less
prominent compared to their presence at lower temperatures or cold deformation. The
formation of subgrain boundaries facilitated by micro-shear bands is typically observed
during the SPD process [13].

Figure 9d–f display the misorientation angle histograms with different strains at
300 ◦C/0.1 s−1, which indicate a relatively random distribution of misorientation angle.
Notably, the average misorientation angle of the specimens increases progressively with
strain. This increase is attributed to the transformation of low-angle subgrain boundaries
into HAGBs with absorbing mobile dislocations. Such transformations are a feature of the
CDRX mechanism, in accordance with the conclusions of other researchers [1,7–14].

In the substructure-based model, the objective is to correlate the subgrain size evolu-
tion with deformation thermo-mechanics, utilizing several internal state variables. Suitable
parameters are selected under different strain, strain rate, and temperature to reproduce
the observed evolution of average subgrain sizes across the spectrum of conditions (see
Section 4.1). The effect of deformation conditions (temperature and strain rate) on the
microstructure is shown in Figures 2–4. During deformation at high temperatures, coarse
subgrains become evident. Figure 10 shows the simulated average subgrain size predicted
by the substructure-based model under different temperatures at a strain rate of 0.1 s−1. An
increase in temperature promotes the generation of subgrain boundaries and their mobility,
thus promoting the formation of DRX grains [12,13]. A similar observation was reported
for the GM model in a 1200-grade aluminum alloy from Gourdet and Montheillet [30], with
the differences compared to our present results most likely being due to the differences in
the alloy composition. Qualitatively, the results are in reasonable agreement.
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Figure 10. Simulated average subgrain size (δsub) by substructure-based model with different
temperatures at a strain rate 0.1 s−1 and comparing the simulated value with the result from Gourdet
and Montheillet (GM model) [27].

The simulated results of average subgrain size at other deformation conditions are
shown in Figure 11. An increase in strain rate increases the dislocation density, promot-
ing the formation of subgrain boundaries [54,55]. Additionally, the deformation time is
elongated at a lower strain rate, facilitating the migration of subgrain boundaries, which in
turn increases the subgrain size [11–13]. The results from the experimental subgrain size
curves show that the refinement rate is initially high during the early stages of compression
but subsequently decelerates. This phenomenon is well simulated by the applied mod-
els after the incorporation of thermal subgrain coarsening, in agreement with the results
from Nes [25], Gourdet and Montheillet [30], Maizza et al. [10], Sun et al. [31], and Chen
et al. [32].
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The substantial generation of new subgrains significantly influences the mechanical
properties of the material. The correlation between mechanical properties and microstruc-
ture is discussed in the context of subgrain strengthening. Typically, subgrain boundary
strengthening is considered to be inversely proportional to the square of the average
subgrain size, as described by the Hall–Petch relationship (case 1) [56],

σsub = ksubδsub
−1/2, (12)
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where σsub is the strengthening contribution coming from subgrain boundaries, and ksub
is a material constant for subgrain boundary strengthening, set as 10 MPa·µm1/2. In this
work, the value of δsub was calculated using the substructure-based model.

Another subgrain strengthening model (case 2) was used to compare with the empirical
Hall–Petch relationship, as suggested by Marthinsen and Nes [29]. The formula can be
written as follows:

σsub = αsubMGb/
b

δsub
(13)

where αsub is a material constant and was selected to be 0.83 for Al alloy, as suggested by
Duan and Sheppard [27].

Figure 12 illustrates the subgrain strengthening calculations of the Hall–Petch rela-
tionship (case 1) and Marthinsen and Nes model (case 2) under different deformation
conditions. The refinement of subgrain results in strength improvements and their cor-
responding characteristics. During the initial stage of deformation, the subgrain size is
relatively large, leading to minimal subgrain boundary strengthening. As deformation
progresses, the generation of a significant number of fine subgrains contributes to an in-
crease in stress. Once the subgrain size exceeds the critical threshold for refinement, the
steady-state subgrain size results in a balanced rate of increase in subgrain strengthening,
in agreement with studies from Hansen [56] and Summers et al. [57].
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5. Conclusions

The paper reflects the substructure evolution of an AA1050 Al alloy under various
deformation conditions during high-temperature compression. Subsequently, two subgrain
size evolution models were applied based on EBSD experiments. The main conclusions are
as follows:

(1) A detailed substructure is provided with subgrain/grain boundary characteristics.
The results revealed the dependence of the average subgrain size on factors such as temper-
ature, strain rate, and strain, and their special roles on subgrain refinement and thermal
coarsening were captured;

(2) The mechanism and deformation variables, including subgrain formation and
refinement, were discussed in detail, considering the average subgrain size, misorientations
angles, and the distribution of subgrains. The coexistence of subgrain refinement and
thermal coarsening varies with changes in deformation conditions and the corresponding
average subgrain size was also measured directly from EBSD experiments;

(3) An empirical model and an advanced substructure-based model of average sub-
grain size were established with several internal state variables. In the established models,
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the process of subgrain evolution is described by introducing saturated average subgrain
size, dislocation density, misorientation angle, subgrain boundary energy, etc. The evolution
of average subgrain size can be effectively well reproduced across a range of temperatures
and strain rates;

(4) In the substructure-based model, various factors such as the material coefficients,
initial subgrain size, temperature, and strain rate were analyzed. The correlation coefficient
(R) and root mean square error (RMSE) of the substructure-based model were calculated to
be 0.98 and 5.7%, respectively, which indicate good agreement between the experiment and
the model;

(5) The mechanism of subgrain boundary formation and refinement were discussed in
detail, and subgrain strengthening was also studied with the Hall–Petch relationship.
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