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Abstract

In the field of antenna measurements, obtaining reliable full-sphere radiation patterns of
an antenna under test (AUT) from a single measurement is often impossible, especially in
the case of omnidirectional antennas. Since the feeding cable and the support structure
interact with the AUT, their presence inevitably distorts the measured fields. In many
cases, they also limit the area of the sphere that can be measured.
This work proposes a novel method for full-sphere characterization of antennas called
pattern stitching. It is implemented for the case of two truncated patterns, measured in
two different AUT orientations, which together cover the entire measurement sphere. Since
measurements in different orientations require physically rotating the AUT, the antenna´s
orientation with regard to the coordinate system of the test range changes as well. To be
able to stitch such patterns together, they must be aligned to the same coordinate system,
which requires coordinate system translation and rotation.
Translation and rotation operations can be done on spherical wave coefficients (SWCs),
which are typically obtained from a full-sphere field pattern via spherical wave expan-
sion. If only a truncated pattern is available, truncated SWCs are computed instead,
introducing a truncation error in the reconstructed pattern. Three approaches for re-
ducing the truncation error were investigated in this work, the iterative algorithm, the
least squares (LS) matrix method, and the fast Fourier transform (FFT)/Matrix method,
where high sensitivity of both matrix methods to noise was observed. By truncating small
singular values (SVs), this sensitivity could be contained.
A comparison between the methods has identified the FFT/Matrix method as the fastest
and most accurate method to compute truncated SWCs. Using this method, truncated
SWCs of several test patterns were tested over a range of translations and rotations, con-
firming that they can be translated and rotated without introducing large errors and,
hence, used for pattern stitching. Keeping one truncated pattern fixed, the alignment
procedure of the stitching method manipulates truncated SWCs of the other truncated
pattern via translation and rotation operations to minimize the weighted scaled mean
square error (wSMSE) in the overlapping range between them. After alignment, the pat-
terns are stitched together using the hemisphere split approach. This involves taking the
upper hemisphere of the fixed measurement and combining it with the lower hemisphere of
the now aligned measurement, which was found to perform better than blending patterns
in the overlapping region.
The stitching method has been validated using synthetic patterns, electromagnetic (EM)
simulations, and measurement data. Results of the first two types of test patterns have
illustrated the theoretical limits of the pattern stitching method, with scaled mean square
error (SMSE) values reaching -50 dB for the former and -40 dB for the latter. An increase
in SMSE was observed during tests with measured patterns, where errors between -25 dB
and -40 dB were obtained. Using EM simulations, the assumption that the error increase
stems from the interaction of the AUT with the feeding cable and the support structure
could be confirmed.
Lastly, by comparing simulated full-sphere patterns with those of an antenna model in free
space, it was demonstrated that the stitching method has the potential to outperform full-
sphere measurements for omnidirectional antennas. This is possible because the method
discards parts of the measurement surface most affected by the cable and the support
structure from the final stitched patterns.
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Kzrzfasszng

In der Antennenmesstechnik ist es oft unm ̈oglich, die Strahlungscharakteristik einer Tes-
tantenne (engl. antenna under test (AUT)) in allen Raumrichtungen, sogenannte "Full-
Sphere" Messungen, mit einer einzigen Messung zuverl ̈assig zu erhalten. Insbesondere gilt
dies f ̈ur omnidirektionale Antennen. Da das Antennenkabel und die Montagehalterung mit
der AUT interagieren, verzerren sie unvermeidlich die gemessenen Felder. In vielen F ̈allen
begrenzen sie auch den Bereich der messbaren Raumrichtungen.
Diese Arbeit schl ̈agt eine neuartige Methode zur Full-Sphere Charakterisierung von An-
tennen vor, die als "Pattern Stitching" bezeichnet wird. Die Methode wird dabei f ̈ur den
Fall zweier raumwinkelbeschr ̈ankter ("truncated") Strahlungscharakteristiken implemen-
tiert, die in zwei verschiedenen AUT-Ausrichtungen gemessen werden und gemeinsam
alle Raumwinkel abdecken. Da Messungen in verschiedenen Ausrichtungen eine physische
Drehung der AUT voraussetzen,  ̈andert sich auch die Orientierung der Antenne in Bezug
auf das Koordinatensystem der Messung. Um derartige Antennencharakteristiken zusam-
menzuf ̈ugen, m ̈ussen sie an dasselbe Koordinatensystem ausgerichtet werden, was eine
Translation und Rotation erfordert.
Translationen und Rotationen k ̈onnen an sph ̈arischen Wellenkoeffizienten (engl. spherical
wave coefficients (SWCs)) durchgef ̈uhrt werden, die typischerweise aus einer Full-Sphere
Strahlungscharakteristik mittels sph ̈arischer Modenzerlegung gewonnen werden. Falls die
Stahlungscharakteristik nur raumwinkelbeschr ̈ankt bekannt ist, werden stattdessen trun-
cated SWCs berechnet, was zu einen Abschneidefehler in der rekonstruierten Antennen-
charakteristik f ̈uhrt. In dieser Arbeit wurden drei Ans ̈atze zur Reduktion des Abschneide-
fehlers untersucht; ein iterativer Algorithmus, die Matrixmethode der kleinsten Quadrate
(engl. least squares (LS) matrix method) und die FFT/Matrix-Methode, wobei eine hohe
Empfindlichkeit beider Matrixmethoden gegen ̈uber Rauschen beobachtet wurde. Durch
das Abschneiden kleiner Singul ̈arwerte konnte ihre Empfindlichkeit gegen ̈uber Rauschen
reduziert werden.
Ein Vergleich der Methoden hat die FFT/Matrix-Methode als die schnellstes und ge-
nauestes Verfahren zur Berechnung von truncated SWCs identifiziert. Mit dieser Methode
wurden truncated SWCs mehrerer Strahlungscharakteristiken  ̈uber einen Bereich verschie-
dener Translationen und Rotationen getestet, was best ̈atigte, dass sie ohne große Fehler
verschoben und rotiert werden k ̈onnen und daher f ̈ur das Pattern Stitching verwendet wer-
den k ̈onnen. Indem eine der raumwinkelbeschr ̈ankten Strahlungscharakteristiken fixiert
wird, manipuliert das Ausrichtungsverfahren der Stitching-Methode die truncated SWCs
der anderen Charakteristik mittels Verschiebungs- und Rotationsoperationen, um den ge-
wichteten skalierten mittleren quadratischen Fehler (engl. weighted scaled mean square
error (wSMSE)) im  ̈Uberlappungsbereich zu minimieren. Nach der Ausrichtung werden
die Strahlungscharakteristiken mittels der Hemisph ̈aren-Split-Methode zusammengef ̈ugt,
d.h. durch  ̈Ubernahme der oberen Hemisph ̈are der fixierten Charakteristik und der unte-
ren Hemisph ̈are der nun ausgerichteten Messung. Dieser Ansatz erwies sich besser als das
 ̈Uberblenden beider Charakteristiken im  ̈Uberlappungsbereich.
Die Pattern Stitching Methode wurde anhand von synthetischen Strahlungscharakteristi-
ken, elektromagnetischen (engl. electromagnetic (EM)) Simulationen und Antennenmes-
sungen validiert. Die Ergebnisse der ersten beiden Arten von Strahlungscharakteristiken
haben die theoretischen Grenzen der Pattern-Stitching-Methode aufgezeigt, wobei die ska-
lierten mittleren quadratischen Fehler (engl. scaled mean square error (SMSE) values) f ̈ur
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die analytischen gewonnen Strahlungsdiagramme -50 dB und f ̈ur die EM-Simulationen
-40 dB erreichten. Beim Stichting der gemessenen Antennencharakteristiken wurde ein
Anstieg des SMSE beobachtet, wobei Fehler zwischen -25 dB und -40 dB erzielt wurden.
Mithilfe von EM-Simulationen konnte die Annahme best ̈atigt werden, dass der Fehler-
anstieg auf die Interaktion der AUT mit dem Antennenkabel und der Montagehalterung
zur ̈uckzuf ̈uhren ist.
Schließlich wurde durch den Vergleich von simulierten Full-Sphere Charakteristiken mit
jenen eines Antennenmodells im freien Raum gezeigt, dass die Stitching-Methode das
Potenzial hat, Full-Sphere Messungen zu  ̈ubertreffen. Dies ist m ̈oglich, weil die Methode
Teile der Messfl ̈ache, die am st ̈arksten durch das Antennenkabel und die Montagehalterung
beeinflusst werden, aus den endg ̈ultigen zusammengesetzten Mustern entfernt.
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at last it is done
thanks to all for their support

antennas are fun
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1 Introdzction

The history of antennas dates back to the late 1800s. In 1865, Maxwell´s work titled "A
Dynamical Theory of the Electromagnetic Field" was published [1], in which he predicted
the existence of propagating electromagnetic waves. Not long after that, Hertz succeeded
in proving the existence of such propagating electromagnetic waves [2] and built the first
dipole antennas in the process. While building the first antennas has been attributed to
Hertz, it was Marconi that recognized the potential of transmitting electromagnetic signals
wirelessly over long distances and pioneered the field of wireless telegraphy, for which he
was awarded the Nobel prize in 1909 [3]. These discoveries have revolutionized the field
of long-distance communications and wireless telegraphy was soon followed by successful
broadcasting of audio signals and, later on, also video signals. World War II played a major
role in the advancements of antenna technology, when new elements, such as waveguides,
horn antennas, and reflectors, were introduced to satisfy the needs of military applica-
tions [4]. Throughout the second half of the 20th century, new wireless technologies have
continued to emerge, among them, e.g., global navigation satellite systems (GNSSs) [5],
radio-frequency identification (RFID) [6], and ultra-wideband (UWB) systems [7]. Over
the last couple of decades, a general tendency toward transition from wired to wireless
systems can be observed (internet of things (IoT) [8], on-body communication systems [9],
etc.), which, along with numerous new emerging wireless applications, requires develop-
ment of new antennas with various application-specific properties. Validation of antenna
performance in terms of its parameters, such as radiation pattern, gain, and polariza-
tion [10], is thus inevitable in order to assure correct operation of these systems. To do
so, accurate antenna measurements are of utter importance.

1,1 Antenna Measzrements

The primary goal of any antenna measurement is the characterization of an antenna under
test (AUT) independent of its operational environment. Since the field distribution of an
antenna inherently depends on the distance from the antenna, the space surrounding the
antenna can be divided into three regions with distinct properties [4];

❼ Reactive near-field region: The region immediately surrounding the antenna,
where the electric and magnetic field components are nearly 90° out of phase, which
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1.1 Antenna Measurements

means that reactive fields are predominant in this region. The angular field distri-
bution is nearly uniform and depends strongly on the distance from the antenna.
Reactive fields cannot propagate in free space and rapidly decay with increasing
distance.

❼ Radiative near-field (Fresnel) region: The region where radiating fields are
predominant, meaning that the electric field and the magnetic field are already close
to being in phase. The angular field distribution still depends on the distance from
the antenna.

❼ Far-field (Fraunhofer) region: The region where the angular field distribution is
considered independent of the distance from the antenna and the field components
are in phase and orthogonal.

Antennas are usually characterized in terms of their behavior in the far field (FF) where
angular field distribution becomes distance-independent. Depending on the size of the
antenna, the boundaries between the three regions can be determined by one of the two
pairs of expressions shown in Figure 1.1. For electrically small antennas, the boundaries
are determined by the bottom pair of expressions. Here, the radiative near-field region,
the width of which decreases with decreasing antenna dimension D, begins to vanish [11].

Figure 1.1: Field zones of an antenna

When electrically large antennas are considered, the upper pair of expressions is typically
used instead. Due to their size, such antennas cannot be assumed a point source without
introducing substantial errors into analytical expressions describing their radiating fields.
The changing distance between different positions on the antenna and the observation
point can be approximated in order to facilitate analytical descriptions of its radiating
fields. The two inequalities represent minimum distances between the observation point
and the antenna at which the maximum phase error when using two such approximations
is π/8. These have been derived on the example of a small z-oriented electrical dipole and,
for detailed information, the interested reader is referred to [4, Chapter 4]. It should be
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1.1 Antenna Measurements

noted that the boundaries between these regions are not hard boundaries and, depending
on the acceptable error level, many different expressions are used in practice to define
them [12].

The measurements are typically done in a well-known environment, called an antenna
(test) range. These antenna ranges can be divided into outdoor ranges and indoor
ranges. While outdoor ranges have historically played an important role in antenna
testing, they are less common nowadays due to their sensitivity to external influences, such
as environmental variations and radio frequency (RF) interference, and strict radiation
regulations. For that reason, electromagnetically shielded indoor ranges are the prevailing
type of antenna ranges used today. To measure the far-field radiation pattern of an
antenna, which is distance-independent, uniform electromagnetic (EM) plane waves should
ideally be used. Such plane waves can only be approximated in practice and, based on the
approach used, antenna ranges can further be divided into three categories [11];

❼ Free-space ranges: Designed in a way so that all effects of the surroundings are
suppressed to acceptable levels. These include elevated ranges, compact ranges, and
far-field anechoic chambers.

❼ Ground reflection ranges: Exploit reflections to produce an approximated plane
wave or some predictable combination of waves.

❼ Near-field ranges: Use mathematical transforms to simulate plane waves from
measurement samples obtained in the near field (NF).

With the exemption of near-field ranges, measurements are typically done in the far field.
Observing the field zone criteria in Figure 1.1, it becomes obvious that near-field ranges
allow for field measurements at the shortest distances away from the AUT. This advantage
comes at a cost of increased computational complexity. With the high processing power
in modern computers, the measurement time supersedes the computation time by far,
thus rendering the increased complexity of near-field ranges negligible. In practice, the
choice of an antenna range involves trade-offs and the decision requires consideration of
various characteristics of the AUT, such as its electrical size, directivity, frequency range,
etc. [13]. When a general antenna range capable of covering large frequency spans and
measuring antennas of various sizes is sought, near-field ranges have a clear advantage over
far-field ranges since they can be substantially more compact and can also be used as a far-
field range whenever measuring small antennas which fulfill the far-field condition at the
range´s measurement distance. In a near-field measurement setup, a separation distance
of only a few wavelengths is required between the probe antenna and the AUT in order to
avoid coupling effects between them. The exact distance depends on the antennas used,
but, as a rule of thumb, a distance of 3λ is commonly used in various types of near-field
ranges [14,15]. It should be noted that, aside from near-field ranges, alternative approaches
to reducing the measurement distance also exist, for example, the compact antenna test
range (CATR), which uses reflectors to approximate plane waves at distances shorter
than the FF distance [14]. These tend to be more complex to construct and, thus, more
expensive [13]. Moreover, near-field ranges offer the possibility of computing field patterns
anywhere in space, which will be exploited throughout this work.

Having shown the advantage of near-field ranges, focus will now be given to the types of
near-field ranges and their comparison. In all such ranges, the behavior of the antenna

3



1.2 Problem Statement

is characterized on some surface near the antenna and mathematically transformed to far
field. The vector wave (Helmholtz) equation, shown in (2.3), serves as the basis of this
transformation and it can be solved in various coordinate systems. Typically, one of the
following coordinate systems is used, for which the variables in the wave equation are
separable and which offer mechanically convenient scanning surfaces with simple orthog-
onal functions; Cartesian, cylindrical, or spherical coordinate system [16]. Depending on
the coordinate system in which the wave equation is solved, the solutions of the equation
represent either plane waves, cylindrical waves, or spherical waves. Any field pattern can
then be expressed by a combination of solutions in the chosen coordinate system. In ac-
cordance with the type of sought solutions, the surface at which the fields are sampled is
chosen to be either planar, cylindrical, or spherical to facilitate the computation. Hence,
we talk about planar [17], cylindrical [18], and spherical near-field ranges [19]. Some work
has also been done on ranges for arbitrary measurement surfaces [15,20], but such ranges
have received little attention due to the challenges in their construction and the compu-
tational complexity of transforming the measured data to far field. Each near-field range
type comes with its advantages and drawbacks. Among them, the planar near-field ranges
have the lowest complexity and cost but can only be used for highly directive AUTs. As
a rule of thumb, only AUTs with a directivity greater than 15 dBi should be measured
to ensure that all significant radiated energy can be contained within the measurement
plane. When antennas with a wide main beam in one plane (but narrow in the other) or a
strong back lobe need to be measured, a cylindrical near-field range can be used instead.
The most complex among the three standard near-field ranges, the spherical near-field
range, can be used even when low-gain omnidirectional AUTs are measured [13]. Here,
the measurement samples are obtained on a sphere and all the radiated energy is captured
in the measurement. As such, all types of antennas can be measured, regardless of their di-
rectivity and radiation pattern. Spherical near-field ranges combine three advantages that
no other antenna measurement technique jointly possesses; First, a measurement in an
anechoic chamber with electromagnetic (EM) shielding suppresses external interferers and
reduces scattered fields. Second, the sphere encloses the AUT and, thus, all radiated en-
ergy can be captured during the measurement. And third, the mathematical processing of
the near-field data to obtain a far-field radiation pattern, called spherical wave expansion,
can reduce the influence of noise errors and scattered fields by truncating higher-order,
non-physical solutions of the wave equation. As such, the method is generally considered
the state of the art for accurate antenna measurements [21].

1,2 Problem Statement

With the high versatility and comparatively compact size of spherical near-field ranges, it
should be easy to understand why this is the range type used at TU Wien. A multitude
of configurations for sampling fields over a sphere exist, where either the probe, the AUT,
or both have to be moved in space. Spherical near-field ranges can be subdivided into
different range types based on the chosen configuration [19]. At TU Wien, the antenna
range is realized as a swing arm-over-azimuth range [22]. It can be seen portrayed in
Figure 1.2. By simply observing the photograph, it should be evident that it is impossible
to cover the whole measurement sphere in a single measurement in this configuration.
Since the AUT is mounted on a rotary stage covering rotations in Φ-axis, the range of
θ-angles that can be reached with the swing arm is less than full 180° and we have to deal
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with what is termed pattern truncation. The swing arm-over-azimuth range can thus only
measure less-than-full-sphere field patterns, commonly called truncated patterns.

Figure 1.2: Spherical near-field range at TU Wien

Within the Microwave Engineering Group at TU Wien, seminars, theses, and research
projects are carried out, requiring measurements of all sorts of antennas with very di-
verse radiation patterns, both with high and with low directivity. As long as an AUT is
oriented in such a way that the amount of energy in the truncated region, i.e., the part
of the sphere which cannot be measured, is negligible, truncated patterns obtained at
TU Wien´s antenna range can be transformed to far-field patterns accurately. While this
can be done with high-directivity AUTs, capturing the majority of radiated energy when
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1.2 Problem Statement

measuring low-directivity, omnidirectional antennas becomes impossible. This results in
transformation errors when computing the far-field radiation patterns, overestimation of
directivity, and underestimation of the total radiated power (TRP).

One method that has been suggested in order to deal with radiation pattern truncation is
the reconstruction of full-sphere patterns from truncated measurement data. In [23], the
authors have demonstrated a successful reconstruction of the radiation pattern of a sleeve
dipole by using an iterative transformation procedure and spatially filtering the computed
spherical wave coefficients (SWCs) based on the knowledge of the antenna´s maximum
radial extent (MRE). Another approach to reconstruct patterns is based on determining a
set of equivalent currents with the same radiation pattern as the truncated measurement
and extrapolating them to the truncated area. In [24], this approach has been compared
to the one mentioned earlier. From the reported results, it becomes apparent that, while
these methods are advantageous in terms of determining the directivity, neither of them
can accurately describe the radiated fields of an arbitrary antenna in the truncated region.
A least-squares-based approach was also proposed for reconstructing full-sphere patterns
from truncated data [25, 26], but just like the previous two approaches, the truncated
region of an arbitrary antenna could not be reconstructed accurately.

In order to obtain reliable full-sphere radiation patterns, this work pursues the idea of
stitching multiple truncated patterns, measured in different orientations of the AUT. Aside
from some work on full-sphere characterization by combining multiple planar measure-
ments [27, 28], no work on stitching multiple truncated patterns obtained from near-field
antenna ranges has been found. Therefore, to the best of my knowledge, this work in-
troduces a novel method for full-sphere antenna measurements by means of truncated
pattern stitching. The stitching method, its performance in terms of accuracy, and the
limits thereof will be presented throughout the following chapters.
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2 Spherical Near-Field Measzrements

As discussed in Chapter 1, measuring antenna radiation patterns in the near field (NF)
can substantially reduce the measurement range´s size compared to far-field measurement
techniques and becomes inevitable when characterizing antennas with physical dimensions
much larger than their wavelength. In practice, however, antennas are most commonly
used at larger distances, operating in their far field (FF). Moreover, antenna parameters
are always defined using FF patterns, where angular distribution becomes independent of
the distance. Thus, a transformation to far field is needed when characterizing an antenna
in its near field.

The implementation of the near- to far-field transformation algorithm presented in this
chapter closely follows the algorithm presented by Hansen [19]. However, there is one major
difference between the two; the sign convention of the imaginary unit i =

√-1, which is
typically represented by j in the electrical engineering community. While Hansen follows
the -iωt time- and ikr distance dependence, the presented algorithm was implemented
assuming jωt time- and -jkr distance dependence, which is in accordance with the IEEE
Std 145-2013 [10]. The latter is the convention typically used in electrical engineering and
modern measurement equipment, such as vector network analyzers (VNAs). The simplest
solution to ensure interoperability between systems following opposing conventions is phase
negation [29].

The algorithm described by Hansen has been defined both for outward and inward traveling
waves, which represent a complex conjugated pair of waves. Therefore, most parts of the
algorithm could readily be used by interchanging the definitions of the outward and the
inward traveling waves. The adapted algorithm will be presented in the following sections,
highlighting all the differences between the two conventions.

2,1 Spherical Wave Expansion

Assuming a linear, homogeneous, isotropic medium, an electromagnetic field with jωt time
dependence satisfies the following two Maxwell´s equations, Faraday´s law of induction
(2.1) and Ampére´s circuital law (2.2) [14, 19,30];

∇xH = jωϵE + J (2.1)

∇xE = -jωμH (2.2)
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2.1 Spherical Wave Expansion

The electric and magnetic field vectors are represented by E and H, respectively, the
variable ω stands for the angular frequency, ϵ and μ represent the permittivity and the
permeability of the medium, while J represents the electric current. Regardless of the
aforementioned sign convention, in a source-free region where J = 0, both fields
satisfy the same vector wave equation,

∇x (∇xC)- k2C = 0, (2.3)

where k is the wavenumber, related to the wavelength in the medium by k = 2π/λ.

Figure 2.1: Spherical coordinate system (r, θ, Φ), as related to the Cartesian coordinate system
(x, y, z), and its unit vectors r̂, θ̂, Φ̂.

To avoid confusion due to different existing definitions of a spherical coordinate system
(r, θ, Φ), the definition used throughout this dissertation and its relation to the Cartesian
coordinate system (x, y, z) are shown in Figure 2.1. The spherical coordinate variables
can take the following range of values; the radial distance 0 ≤ r < ∞, the polar angle
0 ≤ θ ≤ 2π, and the azimuthal angle 0 ≤ Φ < 2π. In this coordinate system, two
independent solutions of the vector wave equation are used to describe an electromagnetic
(EM) field;

m = ∇f x r =
1

k
∇x n (2.4)

n =
1

k
∇xm (2.5)
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2.1 Spherical Wave Expansion

By definition, the two vector functions represent solenoidal vector fields (∇.m = ∇.n = 0)
related by curl operations, well suited to represent an electromagnetic field in a source-free
homogeneous medium [19]. Function f = f(r, θ, Φ) is the generating function obtained by
solving the scalar wave equation;

∇2f + k2f = 0 (2.6)

Stratton [31] gives the even and odd generating functions,

f (c)
e,mn(r, θ, Φ) = z(c)n (kr)Pm

n (cos θ) cosmΦ (2.7)

and

f (c)
o,mn(r, θ, Φ) = z(c)n (kr)Pm

n (cos θ) sinmΦ, (2.8)

where n = 1, 2, 3, . . . and m = 0, 1, 2, . . . , n to generate m- and n-functions. The letters e
and o in the equation, respectively, signify the even (cos) and odd (sin) trigonometric func-
tion in the Φ-dependence. The θ-dependence of f is described in the associated Legendre
function of nth degree and mth order, Pm

n (cos θ). One should note that two differ-
ent definitions of the associated Legendre functions exist! Here, the definition by
Belousov [32] is used,

Pm
n (cos θ) = (sin θ)m

dmPn(cos θ)

d(cos θ)m
, (2.9)

where Pn(cos θ) is the Legendre polynomial,

Pn(cos θ) =
1

2nn!

dn

d(cos θ)n
(cos2 θ - 1)n, (2.10)

while an alternative definition including an additional term, (-1)m, called the Condon-
Shortley phase [33,34], has become the most widely used definition nowadays. The radial
dependence is confined to the radial function z

(c)
n (kr), which, depending on the upper

index c, is one of the following functions;

z(1)n = jn(kr) spherical Bessel function (2.11)

z(2)n = nn(kr) spherical Neumann function (2.12)

z(3)n = h(1)n (kr) = jn(kr) + jnn(kr) spherical Hankel function of the 1st kind (2.13)

z(4)n = h(2)n (kr) = jn(kr)- jnn(kr) spherical Hankel function of the 2nd kind (2.14)

The functions with c = 1 and c = 2 represent standing waves, while c = 3 and c = 4 corre-
spond to an inward and an outward traveling wave. For the two traveling waves, the
sign convention of the distance dependence determines which Hankel function
represents which wave. Following the -jkr distance dependence (as in [30], in contrast
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2.1 Spherical Wave Expansion

to [19] and [31]), c = 4 will represent the outward traveling wave throughout this disser-
tation. For the sake of brevity, the derivation of vector wave equation solutions was not
included here. The interested reader is referred to Stratton [31] for detailed information.

In his dissertation, Jensen, cited by Hansen in [19], introduced one symbol f
(c)
smn to desig-

nate both the m-function (s = 1) and the n-function (s = 2). Additionally, he proposed
a modified generating function,

g(c)mn(r, θ, Φ) = z(c)n (kr)P |m|
n (cos θ)e jmΦ, (2.15)

where the range of n remains the same as in (2.7) and (2.8), while m now takes the values
m = -n,-n + 1, . . . , 0, . . . , n - 1, n. Using the exponential factor was found to be more
convenient for use with mathematical operations required in connection with his proposed
near- to far-field transformation algorithm.

Hansen [19], following the notation proposed by Jensen, finally introduced the power-
normalized generating function, normalized in such a way that each single spherical wave
with amplitude 1 would radiate a power of 0.5 W. This gives the following generating
function;

F (c)
mn(r, θ, Φ) =

1√
2π

1√
n(n+ 1)

(
- m

|m|
)m

z(c)n (kr)P
|m|
n (cos θ)e jmΦ (2.16)

Aside from normalization factors, an additional factor (-m/|m|)m was added to the func-
tion to allow for simplified coordinate rotation operations. This factor is defined to take
the value of 1 for m = 0. Furthermore, the associated Legendre functions are now replaced
with the normalized associated Legendre functions, related by;

P
|m|
n (cos θ) =

√
2n+ 1

2

(n- |m|)!
(n+ |m|)!P

|m|
n (cos θ) (2.17)

Using the one-symbol convention and the normalized generating function from (2.16) in
(2.4) and (2.5), we obtain the following set of functions, called power-normalized spherical
harmonic wave functions;

F
(c)
1mn(r, θ, Φ) = ∇F (c)

mn(r, θ, Φ)x r

=
1√
2π

1√
n(n+ 1)

(
- m

|m|
)m

[
z(c)n (kr)

jmP
|m|
n (cos θ)

sin θ
e jmΦθ̂

-z(c)n (kr)
dP

|m|
n (cos θ)

dθ
e jmΦΦ̂

] (2.18)
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2.1 Spherical Wave Expansion

F
(c)
2mn(r, θ, Φ) =

1

k
∇x F

(c)
1mn(r, θ, Φ)

=
1√
2π

1√
n(n+ 1)

(
- m

|m|
)m

[
n(n+ 1)

kr
z(c)n (kr)P

|m|
n (cos θ)e jmΦr̂

+
1

kr

d

d(kr)
{krz(c)n (kr)}dP

|m|
n (cos θ)

dθ
e jmΦθ̂

+
1

kr

d

d(kr)
{krz(c)n (kr)} jmP

|m|
n (cos θ)

sin θ
e jmΦΦ̂

]
(2.19)

The electric field in a source-free region of space can be written as a weighted sum of
functions in (2.18) and (2.19) [19] as

E(r, θ, Φ) = k
√

ZW

∑
csmn

Q(c)
smnF

(c)
smn(r, θ, Φ), (2.20)

where ZW is the wave impedance of the medium, k the wavenumber, and Q
(c)
smn are the

spherical wave coefficients (SWCs), which have the unit of square root of watt (
√
W).

Inserting (2.20) into (2.2), we obtain the relation for the magnetic field;

H(r, θ, Φ) =
j

ωμ
∇xE(r, θ, Φ) =

jk√
ZW

∑
csmn

Q(c)
smnF

(c)
(3-s)mn(r, θ, Φ) (2.21)

Having normalized the spherical functions in terms of power, the total power radiated by
outward traveling waves can be expressed as a simple summation [19];

P =
1

2

∑
smn

|Q(4)
smn|2 (2.22)

The summation over c, s, m, and n in (2.20) and (2.21) can be understood in the following
manner;

∑
csmn

=
4∑

c=3

2∑
s=1

∞∑
n=1

n∑
m=-n

(2.23)

The sum over c represents summation over both inward (c = 3) and outward (c = 4)
traveling waves and sum over s runs over both vector wave functions (s = 1 and s = 2).
Summation over m is limited by the vanishing nature of the associated Legendre function
for |m| > n, while n runs from 1 to ∞. Although n can theoretically extend to infinity,
in practice, n is found to be limited. The cause for this limitation will be discussed in the
following paragraph.

Spherical wave functions may be thought of as spherical modes, similar to cylindrical
modes in a cylindrical waveguide. Thus, spherical wave radiation may be considered as
radiation taking place in a spherical waveguide, where counterparts exist for many con-
cepts known from cylindrical waveguides, such as orthogonal modes, cut-off, propagation,
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2.2 Rotation and Translation Operators on Spherical Waves

and evanescence [19]. The cross-section of such a spherical waveguide increases with in-
creasing r, allowing a larger number of spherical modes to propagate. From the properties
of spherical Hankel functions, the transition between evanescence and propagation of a
spherical mode is found to occur at a radial distance rt = n/k. For distances smaller than
rt, the corresponding function decays rapidly, transitions around rt, and begins to propa-
gate with a comparatively slow decay with a rate of r-1 when r > rt. Let us now consider
a radiating source, i.e., an antenna, placed (not necessarily, but typically) in the center of
the spherical coordinate system. The smallest possible spherical surface centered at the
origin of the coordinate system and circumscribing antenna´s radiating parts is called the
maximum radial extent (MRE) of the antenna, denoted by r0. Assuming that all outward
propagating spherical modes have the same order of magnitude at r0, those modes with
n > kr0 will still be in the rapidly decaying evanescence region and will become negligible
at some distance r > r0 where a near- or far-field measurement might take place. Thus,
only spherical modes with n < kr0 contribute significantly to the measurement, allowing
for a truncation of the polar index at some n = N . In practice, the maximum polar index
is given by the empirical rule

N = [kr0]+ n1, (2.24)

where, typically, n1 = 10. For a more detailed discussion of the topic, supported with
graphical examples, the reader is referred to Hansen [19].

2,2 Rotation and Translation Operators on Spherical Waves

Transformations of the coordinate system are of utter importance in near-field spherical
measurements, as will be shown later on when talking about transmission between a pair
of antennas. Mathematical operators exist, capable of describing a set of spherical waves in
one coordinate system as a combination of spherical waves in another coordinate system
that is rotated and/or translated. These operators have been studied and documented
extensively in existing literature [35-39] and summarized in [19]. An overview of the
operators relevant to this work will be presented in the following two subsections.

2,2,1 Coordinate System Rotation

Considering a coordinate system (x, y, z), any arbitrary orientation (x,, y,, z,) with regard
to this fixed coordinate system (where the origin (0, 0, 0) of both coordinate systems lies
on the same point in space) can be achieved by a succession of three rotations around its
own axes [19]. These rotations by the so-called Euler angles (χ0, θ0, Φ0) are done in the
following sequence;

i) A rotation of (x, y, z) by an angle Φ0 around the z-axis to (x1, y1, z1)

ii) A rotation of (x1, y1, z1) by an angle θ0 around the y1-axis to (x2, y2, z2)

iii) A rotation of (x2, y2, z2) by an angle χ0 around the z2-axis to (x,, y,, z,)
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2.2 Rotation and Translation Operators on Spherical Waves

Each of these Cartesian coordinate systems has a unique spherical coordinate system, as
defined in Figure 2.1. Spherical waves defined in the unprimed coordinate system may be
expressed as a combination of waves in the primed system as

F (c)
smn(r, θ, Φ) =

n∑
μ=-n

e jmΦ0dnμm(θ0)e
jμΧ0F (c)

sμn(r
,, θ,, Φ,), (2.25)

where rotations in Φ0 and χ0 represent simple phase shifts, while rotation by θ0 is described
with the more complex rotation coefficient dnμm(θ0) [19]. To simplify computation, this
coefficient can be expanded into a finite Fourier series

dnμm(θ) = jm-μ
n∑

m,=-n

Δn
m,μΔ

n
m,me jm,θ = jμ-m

n∑
m,=-n

Δn
m,μΔ

n
m,me-jm,θ, (2.26)

where delta factors Δn
m,μ and Δn

m,m represent the rotation coefficients evaluated at π/2,
dnm,μ(π/2) and dnm,m(π/2) [40]. These delta factors can be computed by using recursion.

First, the starting value1 is computed by

Δn
nm =

1

2n

√(
2n

n-m

)
=

1

2n

√
2n . (2n- 1) . . . (n+m+ 2) . (n+m+ 1)

(n-m)!
. (2.27)

Then, the recursion formula is used to obtain values for all m,m, ≥ 0;

√
(n+m, + 1)(n-m,)Δn

m,+1,m +
√
(n+m,)(n-m, + 1)Δn

m,-1,m = -2mΔn
m,,m (2.28)

For computing delta factors of negative modes m or m,, the following identities can be
utilized;

Δn
m,m = (-1)n+mΔn

-m,,m = (-1)n+m,
Δn

m,,-m = (-1)m,+mΔn
-m,,-m (2.29)

These equations suffice for the computation of any required rotation coefficient. An ex-
tensive list of properties, recurrence relations, and identities of delta factors is presented
in [19, Appendix A2].

Having established the relationship between spherical harmonic wave functions in two
coordinate systems, which are related by (Φ0, θ0, χ0) rotations, the last missing information
is how SWCs of the rotated coordinate system are related to those of the initial coordinate
system. Inserting (2.25) into (2.20), we get the relationship

1There is an error in the numerator of equation (4.95) in [19], where m is mistakenly subtracted instead
of being added. This has been corrected in (2.27) presented here.
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2.2 Rotation and Translation Operators on Spherical Waves

E(r, θ, Φ) = k
√

ZW

∑
csmn

Q(c)
smnF

(c)
smn(r, θ, Φ)

= k
√
ZW

∑
csmn

Q(c)
smn

n∑
μ=-n

e jmΦ0dnμm(θ0)e
jμΧ0F (c)

sμn(r
,, θ,, Φ,).

(2.30)

Considering the fact that indices c, s, and n are independent of the rotation operator, this
can be reduced to

∑
m

Q(c)
smnF

(c)
smn(r, θ, Φ) =

∑
m

Q(c)
smn

n∑
μ=-n

e jmΦ0dnμm(θ0)e
jμΧ0F (c)

sμn(r
,, θ,, Φ,)

=
∑
μ

Q(c)
sμnF

(c)
sμn(r

,, θ,, Φ,),
(2.31)

which leads to the final expression for SWCs of the rotated coordinate system;

Q(c)
sμn = e jμΧ0

∑
m

Q(c)
smne

jmΦ0dnμm(θ0) (2.32)

2,2,2 Coordinate System Translation

To be able to describe spherical waves in any arbitrary coordinate system, regardless of its
origin, in terms of a combination of waves in another system, the final missing operation is
the translation of spherical waves. Translation operators have been developed in [35-38],
capable of describing translations in an arbitrary direction. Hansen [19] proposes the use
of positive z-axis translation, which allows for a simplified computation with preserved
Φ-dependence of spherical waves. To achieve translation in an arbitrary direction, not
aligned with the +z-axis, he suggests a succession of three operations; a rotation, a
translation, and an inverse rotation. For the +z-axis translation, the spherical waves in
both coordinate systems are, depending on the translation distance A, related by one of
the following two expressions;

F (c)
sμn(r, θ, Φ) =

{.......{.......{

2∑
σ=1

∞∑
ν=|μ|
ν /=0

Csn(c)
σμν (kA)F (1)

σμν(r
,, θ,, Φ,), when r, < |A|

2∑
σ=1

∞∑
ν=|μ|
ν /=0

Csn(1)
σμν (kA)F (c)

σμν(r
,, θ,, Φ,), when r, > |A|

(2.33)

A translation with r, = |A| is excluded from the equation because such a translation would
require an evaluation of spherical waves at the origin of the coordinate system, where they

14



2.2 Rotation and Translation Operators on Spherical Waves

are not defined. Dependence on the translation distance A is confined in translation
coefficients C

sn(c)
σμν (kA), which are defined as

Csn(c)
σμν (kA) =

1

2

√
(2n+ 1)(2ν + 1)

n(n+ 1)ν(ν + 1)

√
(ν + μ)!(n- μ)!

(ν - μ)!(n+ μ)!
(-1)μjn-ν

n+ν∑
p=|n-ν|

[
j-p(δsσ{n(n+ 1) + ν(ν + 1)- p(p+ 1)}

+ δ(3-s)σ{2jμkA})a(μ, n,-μ, ν, p)z(c)p (kA)
]
,

(2.34)

where a(μ, n,-μ, ν, p) is the linearization coefficient [19, Appendix A3] and z
(c)
p (kA) the

corresponding radial function (see (2.11)-(2.14)). The coefficients δsσ and δ(3-s)σ are
Kronecker deltas, defined by;

δsσ =

{
1, if s = σ

0, if s /= σ
(2.35)

δ(3-s)σ =

{
1, if (3- s) = σ

0, if (3- s) /= σ
(2.36)

Symmetry relations listed in equations A3.8-A3.16 in [19, Appendix A3] can be used to
reduce the number of computationally very complex translation coefficients that need to
be computed.

As for the case of coordinate system rotation, a relation between the SWCs of the original
coordinate system´s spherical wave coefficients and those of the translated coordinate
system can be determined by inserting (2.33) into (2.20). By doing so we obtain;

E(r, θ, Φ) =

{..{..{
k
√
ZW

∑
csμn

Q(c)
sμnF

(c)
sμn(r, θ, Φ), when r, < |A|

k
√

ZW

∑
csμn

Q(c)
sμnF

(c)
sμn(r, θ, Φ), when r, > |A| (2.37)

=

{.......{.......{

k
√
ZW

∑
csμn

Q(c)
sμn

2∑
σ=1

∞∑
ν=|μ|
ν /=0

Csn(c)
σμν (kA)F (1)

σμν(r
,, θ,, Φ,), when r, < |A|

k
√
ZW

∑
csμn

Q(c)
sμn

2∑
σ=1

∞∑
ν=|μ|
ν /=0

Csn(1)
σμν (kA)F (c)

σμν(r
,, θ,, Φ,), when r, > |A|

(2.38)

As before, the relation is independent of index c. In the case of a translation in +z
direction, index μ also remains unchanged by translation, which brings us to the following
relations between waves in the original and the translated coordinate system;
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2.3 Scattering Matrix of an Antenna

∑
sn

Q(c)
sμnF

(c)
sμn(r, θ, Φ) =

{.......{.......{

∑
sn

Q(c)
sμn

2∑
σ=1

∞∑
ν=|μ|
ν /=0

Csn(c)
σμν (kA)F (1)

σμν(r
,, θ,, Φ,), when r, < |A|

∑
sn

Q(c)
sμn

2∑
σ=1

∞∑
ν=|μ|
ν /=0

Csn(1)
σμν (kA)F (c)

σμν(r
,, θ,, Φ,), when r, > |A|

(2.39)

=

{.{.{
∑
σν

Q(c)
σμνF

(1)
σμν(r

,, θ,, Φ,), when r, < |A|∑
σν

Q(c)
σμνF

(c)
σμν(r

,, θ,, Φ,), when r, > |A| (2.40)

Individual SWCs of the translated coordinate system can therefore be expressed as;

Q(c)
σμν =

{.......{.......{

2∑
s=1

∞∑
n=|μ|
n /=0

Q(c)
sμnC

sn(c)
σμν (kA), when r, < |A|

2∑
s=1

∞∑
n=|μ|
n /=0

Q(c)
sμnC

sn(1)
σμν (kA), when r, > |A|

(2.41)

It can be seen that the maximum polar order N is theoretically unlimited and infinite
spherical harmonic wave functions contribute to the overall field in the translated coordi-
nate system. However, depending on the translation distance A, there is a limited number

of translation coefficients C
sn(c/1)
σμν (kA) that are nonzero. The maximum polar order N can

be obtained from (2.24), when the increase of MRE caused by the translation distance A
is considered. A straightforward method to verify if a sufficient number of coefficients has
been considered is to compare the total power of both systems, obtained by (2.22), which
has to remain unchanged to fulfill the law of conservation of energy.

2,3 Scattering Matrix of an Antenna

Having shown how propagating EM fields may be expanded into a summation of contri-
butions of individual spherical waves and described in an arbitrary spherical coordinate
system, it is now time to describe an antenna in terms of these spherical waves. This can
be done with the help of scattering matrix theory, which provides the link between quan-
tities measurable in transmission lines and external fields. An antenna can be thought
of as a waveguide junction with several ports [19]. One port is the actual physical port,
connecting the antenna to a source or a load. Let v and w denote the incoming and
outgoing waves on this port, respectively. All remaining ports are radiation ports and can
be thought of as modal transmission lines for each individual spherical mode propagating
outside the antenna´s maximum radial extent (MRE), r0. To simplify the notation, the
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2.3 Scattering Matrix of an Antenna

three indices, s, m, and n, representing individual spherical modes, can be replaced by a
single index j by the relation

j = 2(n(n+ 1) +m- 1) + s, (2.42)

which, considering the maximum polar index n = N from (2.24), gives the maximum
single index j = J as

J = 2N(N + 2). (2.43)

For each radiation port, we have an incoming wave Q
(3)
smn = Q

(3)
j , which can also be rep-

resented by aj , as is common in scattering matrices, and an outgoing wave Q
(4)
smn = Q

(4)
j ,

which is commonly represented by bj in scattering matrices2. By separating the antenna´s
radiation into modal waves, the whole antenna can be understood as a (J + 1)-port net-
work. Such a network is illustrated in Figure 2.2.

Figure 2.2: Antenna as a (J + 1)-port network

This leads to the linear relationship between the incoming and the outgoing waves

[||]Γ R

T S

]||]
[||]v
a

]||] =

[||]w
b

]||] , (2.44)

where Γ is the reflection coefficient of the antenna, R a row vector of size 1xJ containing
the antenna receiving coefficients Rj , T a column vector of size J x 1 containing the
antenna transmitting coefficients Ti, and S the square matrix of size J x J containing
the scattering coefficients of the antenna. The column vectors a and b contain as their
elements the incoming and outgoing wave coefficients a1, a2, . . . , aJ and b1, b2, . . . , bJ . The
matrix equation in (2.44) can be rewritten as a set of J + 1 equations,

2Note that, compared to [19], the role of the coefficients is swapped here, as discussed in Section 2.1.
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2.4 Transmission Formula

w =Γv +
J∑

j=1

Rjaj and (2.45)

bi =Tiv +

J∑
j=1

Sijaj , i = 1, 2, . . . , J. (2.46)

With this set of equations, the behavior of the antenna can be described completely in
terms of incoming and outgoing waves on all its ports. When the antenna is used to
transmit in a reflectionless environment, no incoming inward traveling waves aj exist and
(2.45) and (2.46) reduce to

Γv = w and (2.47)

Tiv = bi = Q
(4)
i , i = 1, 2, . . . , J. (2.48)

2,4 Transmission Formzla

Having established how an antenna can be described in terms of its scattering matrix (in
an arbitrary coordinate system), the last remaining information required for developing a
transmission formula capable of describing a measurement between a pair of antennas is
the coupling between them. Consider the situation shown in Figure 2.3 where we have a
pair of antennas; the antenna under test (AUT) and the probe antenna. Here, the AUT is
fixed in its coordinate system (x, y, z), while the probe antenna, along with its coordinate
system (x,, y,, z,), is moved on a sphere of radius A and the origin of (x,, y,, z,) lies in
(A, θ, Φ) in the coordinate system of the AUT. Regardless of θ and Φ, the probe is always
pointing towards the origin of the unprimed coordinate system. Additionally, rotation
of the probe antenna around the z,-axis by an angle χ is typically required in antenna
measurements to cover both field polarizations.

When the AUT is used as a transmitting antenna, the radiated electric field can be ex-
pressed by (2.20) in a free-space environment under the condition that r is outside of
the AUT´s MRE, r > r0. The equations for rotation (2.30) and translation (2.37) can
be utilized to express this electric field in the coordinate system of the probe antenna,
(r,, θ,, Φ,). This gives the expression

E(r,, θ,, Φ,) = k
√
ZW

∑
smn
σμν

Q(4)
smne

jmΦ0dnμm(θ0)e
jμΧ0Csn(4)

σμν (kA)F (1)
σμν(r

,, θ,, Φ,), (2.49)

where standing waves, corresponding to spherical Bessel functions, are used in accordance
with the condition in (2.37). Per definition, these waves may be replaced by a sum of an
inward and an outward traveling wave of amplitude 1

2 [19] and (2.49) may be rewritten as
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2.4 Transmission Formula

Figure 2.3: Probe antenna and AUT, each with their corresponding coordinate system.

E = k
√

ZW

∑
smn
σμν

vTsmne
jmΦ0dnμm(θ0)e

jμΧ0Csn(4)
σμν (kA)

1

2
(F (3)

σμν + F (4)
σμν), (2.50)

where the (r,, θ,, Φ,) dependence of E, F
(3)
σμν , and F

(4)
σμν has been omitted for compactness

and the identity in (2.48) has been used. With this expression, the electric field at the
position of the probe can be described and the question that remains to be answered is
how the probe antenna interacts with this field. Assuming that the influence of probe
insertion on the spherical waves incident onto the probe antenna is negligible3 and that
the probe antenna is connected to a perfectly matched receiver4, the signal received at the

3The assumption that the influence of scattering due to probe insertion is negligible is common in near-
field spherical measurements and will be used hereafter. Nevertheless, consideration of scattering effects is
possible and the interested reader is referred to [19] for detailed information.

4A receiver mismatch would influence the absolute signal level and the reflection coefficients would need
to be measured to correct for it. However, a VNA is typically used for antenna measurements and the
absolute signal levels are obtained by an additional standard gain horn (SGH) measurement, thus allowing
us to neglect this mismatch.
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2.5 Computation of Spherical Wave Coefficients

probe antenna can be expressed from (2.44) and (2.45) using the three-index notation as

w = Rpa =
∑
σμν

Rp
σμνaσμν . (2.51)

The incoming wave coefficients, aσμν , are the coefficients of the modes traveling towards

the probe antenna, i.e., F
(3)
σμν

aσμν =
1

2

∑
smn

vTsmne
jmΦ0dnμm(θ0)e

jμΧ0Csn(4)
σμν (kA), (2.52)

while Rp
σμν represent the probe receiving coefficients. Inserting (2.52) into (2.51) and

omitting the subscript 0 of the probe angles relative to AUT position, the transmission
equation can be written as

w(A,χ, θ, Φ) =
1

2

∑
smn
σμν

vTsmne
jmΦdnμm(θ)e jμΧCsn(4)

σμν (kA)Rp
σμν . (2.53)

Note that, in contrast to Hansen [19], translation coefficients for spherical
Hankel functions of the second order (c = 4) are used here. A similar transmission
formula can be derived for the inverse case where the probe antenna is used to transmit a
signal and the AUT is used to receive it, where the rotation by Euler angles and translation
by translation distance A are done in the opposite direction. For the case where both
antennas are reciprocal, their receiving and transmitting coefficients are related by [19]

Rsmn = (-1)mTs,-m,n. (2.54)

In this (very common) case, the received signal w is identical regardless of the mode of
operation as long as the transmit signal v remains unchanged.

2,5 Compztation of Spherical Wave Coefficients

The transmission formula presented in (2.53) can be used to compute the transmitting co-
efficients Tsmn of an AUT if the received signal w is measured at sufficient positions of the
probe antenna (A,χ, θ, Φ) and its receiving coefficients Rp

σμν are known. At least J (2.43)
measurement positions are required for an antenna with maximum polar order N (2.24).
This results in a system of linear equations, the solution of which has been addressed by
various approaches, including matrix-based methods [43], a Fourier transform (FT)-based
approach [39], and an iterative method [41]. In 1976, a comparison of these approaches
has been done for electrically large antennas in terms of computation time and required
resources, demonstrating the superiority of the FT-based approach [42]. Due to low com-
putational power and computer storage at that time, the FT-based transformation algo-
rithm has become the de facto standard used in most, if not all, available commercial
applications. This approach requires equidistant sampling in χ, θ, and Φ and measured
data over the whole measurement sphere with radius A.
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2.5 Computation of Spherical Wave Coefficients

It is important to note that matrix-based approaches do not require equidistant sam-
pling nor measurement points covering the whole sphere. For that reason and due to
rapid advancements in computer technology, which reduced computation times signifi-
cantly, matrix-based methods have been receiving more attention in the last few decades.
Different matrix-based approaches for solving the system of linear equations have been
investigated in [43] and their solving times compared to a FT-based solution presented
by Hansen [19]. It can be seen that even the simplest matrix-inversion computation for
a practical measurement with a relatively low maximum polar order N = 30 takes more
than 23 times longer than the FT-based approach. For this reason, the FT-based approach
will be presented in detail in the following but the topic will be revisited later in Chapter 3
when talking about truncated (non-full-sphere) measurements.

2,5,1 Analytical Solztion

The analytical solution of the transmission formula, described in detail in [19], is presented
in the following. By introducing probe response constants,

Psμn(kA) =
1

2

∑
σν

Csn(4)
σμν (kA)Rp

σμν , (2.55)

and separating the summations over the four remaining variables, the transmission formula
in (2.53) can be rewritten as

w(A,χ, θ, Φ) = v

νmax∑
μ=-νmax

N∑
m=-N

N∑
n=|m|
n /=0

2∑
s=1

Tsmne
jmΦdnμm(θ)e jμΧPsμn(kA). (2.56)

The number of both the probe receiving coefficients, Rσμν , and the AUT transmitting coef-
ficients, Tsmn, is limited by their maximum polar orders, νmax and N , obtained from (2.24)
for their corresponding MRE. To solve the transmission equation, the FT-based approach
exploits the orthogonality of the exponential function,

∫ 2π

0
ej(m-m,)ΨdΨ = 2πδmm, , (2.57)

and the orthogonality of the rotation coefficient [40],

∫ π

0
dnμm(θ)dn

,
μm(θ) sin θ dθ =

2

2n+ 1
δnn, . (2.58)

Here, δmm, and δnn, represent Kronecker deltas. The solution can then be obtained by
sequentially solving for each of the variables in (2.56). In the first step, (2.56) is rewritten
as a summation dependent solely on μ,

w(A,χ, θ, Φ) =

νmax∑
μ=-νmax

wμ(A, θ, Φ)e
jμΧ, (2.59)
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2.5 Computation of Spherical Wave Coefficients

with all other summations contained in wμ(A, θ, Φ). This corresponds to an expansion of w
into a finite Fourier series in χ and the coefficients wμ(A, θ, Φ) are obtained by multiplying
both sides of the equation by e-jμΧ and integrating from 0 to 2π with respect to χ, which
allows to express coefficients wμ(A, θ, Φ) in terms of a Fourier transform,

wμ(A, θ, Φ) =
1

2π

∫ 2π

Χ=0
w(A,χ, θ, Φ)e-jμΧdχ. (2.60)

In the second step, the same procedure can be repeated for summation over m, expressing
wμ(A, θ, Φ) as

wμ(A, θ, Φ) =
N∑

m=-N

wμm(A, θ)e jmΦ, (2.61)

which leads to the FT expression for wμm(A, θ),

wμm(A, θ) =
1

2π

∫ 2π

Φ=0
wμ(A, θ, Φ)e

-jmΦdΦ. (2.62)

In the third step, the twice transformed transmission formula is expressed as a summation
over n as

wμm(A, θ) =

N∑
n=|m|
n /=0

wn
μm(A)dnμm(θ), (2.63)

and the orthogonality of the rotation coefficient (2.58) is exploited to obtain

wn
μm(A) =

2n+ 1

2

∫ π

θ=0
wμm(A, θ)dnμm(θ) sin θ dθ. (2.64)

The remaining summation of the three-times transformed wn
μm(A) over s is then

wn
μm(A) = v

2∑
s=1

TsmnPsμn(kA) = vT1mnP1μn(kA) + vT2mnP2μn(kA). (2.65)

In contrast to directly solving the linear system of equations from the transmission for-
mula (2.56), which has a large number of unknowns, exploitation of orthogonality in (2.57)
and (2.58) leads to a linear system of equations with only two unknowns, T1mn and T2mn,
for each (μ,m, n) combination. To further reduce the number of equations and measure-
ments, Wacker [39] proposed using circularly symmetric probes, such as a small dipole
or a circular waveguide, where only μ = ±1 spherical modes exist. In this case, (2.59)
reduces to a system of two equations with two unknowns and only two measurements in
χ are required to compute wμ. If the field is measured in χ = 0 and χ = π

2 , the Fourier
transform for obtaining wμ(A, θ, Φ) reduces to the simple relation
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2.5 Computation of Spherical Wave Coefficients

wμ=±1(A, θ, Φ) =
1

2

[
w(A,χ = 0, θ, Φ)± jw(A,χ =

π

2
, θ, Φ)

]
. (2.66)

Hansen [19] suggests that, even for antennas which are not perfectly rotationally symmet-
ric, such as rectangular horn antennas, the μ = ±1 modes are dominating at a sufficient
distance from the AUT. This approximation has become common practice in commercial
solutions.

2,5,2 Discrete Solztion

The presented analytical solution requires triple (or double, for the special case where
only μ = ±1 modes exist) integration of w to compute the transmission coefficients of the
AUT, which requires continuous data over χ, Φ, and θ. In practice, this information is
not available, and we have to make use of discrete sampling over all three variables and
numerically integrate over them. The discrete Fourier transform (DFT) and its inverse,
the inverse discrete Fourier transform (IDFT), can be used for evaluating Fourier integrals
of bandlimited, periodic functions. For DFT, the definition that will be used throughout
this work is

X[l] =

K-1∑
k=0

x[k]e-j 2πkl
K , (2.67)

while its inverse, IDFT, will be defined as

x[k] =
1

K

K-1∑
l=0

X[l]e j 2πkl
K . (2.68)

In both equations, K represents the total number of samples both in x and in X. These
definitions are the most common definitions in engineering and are also the ones used in
Matlab [44]. A different definition is used by Hansen [19], where the sign of the
exponential functions in both equations is interchanged.

The first integral in the analytical solution of the transmission formula, (2.60), is periodic
with a period of 2π and bandlimited, where, in accordance with (2.59), μ takes the values
μ = -νmax, . . . , 0, . . . , νmax. By obtaining sufficient equidistant samples of the function w
in χ, the integral can be solved by applying a DFT. A sufficient number of samples, KΧ,
in this context means that the number has to fulfill the condition KΧ ≥ 2νmax + 1. The
maximum sample spacing still fulfilling this condition is then Δχ = 2π/KΧ, for which the
transformation over μ can be computed as

wμ(A, θ, Φ)[μ] =
1

KΧ

KΧ-1∑
k=0

w(A, kΔχ, θ, Φ)e-jkΔΧμ. (2.69)

Due to the different sign convention used by Hansen [19], his use of an IDFT is replaced
by a DFT that additionally needs to be scaled by 1/KΧ. The first integration is thus
computed by
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2.5 Computation of Spherical Wave Coefficients

wμ(A, θ, Φ) =
1

KΧ
DFT{w(A, kΔχ, θ, Φ)}. (2.70)

As mentioned earlier, the computation of this integral can be reduced to a simple summa-
tion, (2.66), when a circularly symmetric probe containing only μ = ±1 modes is used.

A similar approach can be used for computing the second integral in (2.62). For each
probe mode μ, a Fourier transform of a periodic, bandlimited function with KΦ ≥ 2N +1
samples, where m = -N, . . . , 0, . . . , N , and a measurement step ΔΦ = 2π/KΦ, can be
computed via DFT;

wμm(A, θ) =
1

KΦ
DFT{wμ(A, θ, kΔΦ)} (2.71)

Having computed wμm(A, θ) for all μ and m, it is now time to solve the θ-integral in (2.64).
While the function to be integrated is again bandlimited with n ≤ N , integration over
θ is only done in the range 0 ≤ θ ≤ π and the integrand cannot be assumed a periodic
function. However, per definition, rotation coefficients dnμm(θ) are periodic with a period
of 2π and are either even or odd functions about π depending on the parity of (μ -m).
This allows wμm(A, θ) to be extended to the whole 2π range with the same parity as the
corresponding rotation coefficients [19], resulting in;

~wμm(A, θ) =

{.{.{
wμm(A, θ), 0 ≤ θ ≤ π

wμm(A, 2π- θ), π ≤ θ < 2π for (μ-m) even

-wμm(A, 2π- θ), π ≤ θ < 2π for (μ-m) odd

(2.72)

This extended sequence may then be expanded into a finite Fourier series

~wμm(A, θ) =
N∑

l=-N

bμml e jlθ. (2.73)

By expanding the rotation coefficient into a finite Fourier series, as was shown in (2.26),
and inserting the finite Fourier series (2.73) of the extended twice-transformed sequence
~wμm(A, θ), (2.64) can be rewritten as

wn
μm(A) =

2n+ 1

2
jμ-m

N∑
l=-N

bμml

n∑
m,=-n

Δn
m,μΔ

n
m,m

∫ π

θ=0
e j(l-m,)θ sin θ dθ. (2.74)

The integral takes the values

∫ π

θ=0
e j(l-m,)θ sin θ dθ =

{...{...{
±jπ

2
, (l -m,) = ±1

0, |l -m,| = 3, 5, 7, . . .
2

1- (l -m,)2
, |l -m,| = 0, 2, 4, . . .

(2.75)
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2.5 Computation of Spherical Wave Coefficients

and the only remaining unknowns in (2.78) are the coefficients bμml , which can be computed
from the extended sequence ~wμm(A, θ) utilizing a DFT as

bμml (A) =
1

Kθ
DFT{ ~wμm(A, kΔθ)}. (2.76)

In this equation, Kθ represents the number of measurement samples in the extended range,
Kθ = 2N + 1. This integral can be further reduced to obtain an efficient algorithm for
its evaluation by considering steps presented in the following, described in detail in [19].
First, from the definition of the extended function ~wμm(A, θ), it can be shown that

bμml = (-1)μ+mbμm-l . (2.77)

From this property of the sequence bμml , the identities in (2.29), and the values of the
integral (2.75), it can be shown that the terms for (l -m,) = ±1 cancel out. Equation
(2.78) may thus be rewritten as

wn
μm(A) =

2n+ 1

2
jμ-m

n∑
m,=-n

Δn
m,μΔ

n
m,m

N∑
l=-N

Λ(l -m,)bμml , (2.78)

where

Λ(l -m,) =

{{{0, (l -m,) odd,
2

1- (l -m,)2
, (l -m,) even.

(2.79)

Then, the summation over l first has to be done for each m, in order to compute wn
μm(A);

G(m,) =
N∑

l=-N

Λ(m, - l)bμml (2.80)

Here, Λ(l -m,) was replaced by Λ(m, - l) to indicate the resemblance to a convolution.
A fast computation of G(m,) coefficients is possible by taking the following steps. First,
a periodic sequence ~Λ(k) is obtained by truncating the infinite sequence Λ(m, - l = k) to
the range between -2N < k ≤ 2N and defining it to be periodic with a period of 4N .
The sequence bμml , defined in the range between -N ≤ l ≤ N , can also be extended to
the range between -2N < k ≤ 2N by assigning the missing values to be zero and defining
it to be periodic with a period of 4N , thus obtaining the sequence ~bμml . The sequences
in (2.80) can then be replaced by their periodic counterparts,

G(m,) =
4N-1∑
l=0

~Λ(m, - l)~bμml , (2.81)

without changing the results of the summation over l for m, in the interval -N ≤ m, ≤ N .
This summation of a product of two periodic sequences represents a cyclic convolution,
which can be computed as a DFT of an elementwise product,  , of two IDFTs as
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2.6 Transformation Algorithm

G(m,) =
1

4N
DFT{4N IDFT{~Λ(k)}  4N IDFT{~bμml }}, (2.82)

where additional multiplications of both IDFTs with 4N and DFT with 1/4N are done to
correct for the different definitions of these two transforms in comparison to the definitions
used by Hansen [19]. It is possible to reduce the number of computations further by
exploiting the fact that the function in (2.79) is an even function and the extended ~bμml
retains the property of bμml shown in (2.77). These properties are retained under DFT
and IDFT operations, leading to the conclusion that

G(m,) = (-1)μ+mG(-m,). (2.83)

From this property and the identities in (2.29), it can be seen that

Δn
m,μΔ

n
m,mG(m,) = Δn

-m,μΔ
n
-m,mG(-m,). (2.84)

Due to this identity, the summation over m, in (2.78) can be reduced further to

wn
μm(A) =

2n+ 1

2
jμ-m

(
Δn

0μΔ
n
0mG(0) +

n∑
m,=1

2Δn
m,μΔ

n
m,mG(m,)

)
. (2.85)

This step concludes the triple integration of the transmission formula and the linear system
of equations in (2.65) can be solved to compute the SWCs of the antenna under test (AUT).

2,6 Transformation Algorithm

Once the spherical wave coefficients (Qsmn = vTsmn) are obtained, the radiation pattern
can be evaluated anywhere in space outside of the AUT´s MRE. A straightforward ap-
proach to computing the electric field pattern would be to compute the spherical wave
functions in (2.18) and (2.19) and then compute the sum of these spherical wave functions
with their corresponding SWCs (2.20). An alternative approach to this tedious compu-
tation procedure is to reuse the transmission formula and compute the received signal
w,(A,, χ, θ, Φ) on a sphere with radius A,, which circumscribes the AUT, from

w,(A,, χ, θ, Φ) =
νmax∑

μ=-νmax

e jμΧ
N∑

m=-N

e jmΦ
N∑

m,=-N

e jm,θ

N∑
n=max(|m,|,|m|,1)

jm-μΔn
m,μΔ

n
m,m

2∑
s=1

vTsmnP
,
sμn(kA

,).

(2.86)

The computation can be done by first computing the summations in the second line of
(2.86) for each μ,m,,m combination,
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2.6 Transformation Algorithm

b,μmm, =
N∑

n=max(|m,|,|m|,1)
jm-μΔn

m,μΔ
n
m,m

2∑
s=1

vTsmnP
,
sμn(kA

,), (2.87)

succeeded by a series of IDFTs;

~w,
μm(A,, kΔθ) = Kθ IDFT{b,μmm, } (2.88)

w,
μ(A

,, kΔθ, kΔΦ) = KΦ IDFT{w,
μm(A, kΔθ)} (2.89)

w,(A,, kΔχ, kΔθ, kΔΦ) = Kμ IDFT{w,
μ(A

,, kΔθ, kΔΦ)} (2.90)

The sequence in (2.88) is the extended sequence from (2.72) which has to be truncated
to the range of 0 ≤ θ ≤ π before computing the IDFT in (2.89). For all three angles,
θ, Φ, and χ, an arbitrary number of samples (and the corresponding sampling step) can
be achieved by zero padding the sequences before transformation. The probe response
constants P ,

sμn(kA
,) can be defined to evaluate the signal that a chosen probe antenna

would receive from the transmitting AUT. Typically, an x-directed electric dipole is used
as the transformation probe antenna, which has two nonzero probe receiving coefficients,
Rp

211 = -Rp
2,-1,1 = -

√
2/2, since the signals received by such a probe are directly propor-

tional to the incident electric field parallel to the dipole [19]. From signals received by a
dipole probe, the electric field can be expressed by

E,
θ(A

,, θ, Φ) =
√
Zw

2k√
6π

w,(A,, 0, θ, Φ), (2.91)

E,
Φ(A

,, θ, Φ) =
√
Zw

2k√
6π

w,(A,,
π

2
, θ, Φ). (2.92)

The presented discrete solution of the transmission formula and the computation of a
radiation pattern on an arbitrary sphere, whether in the near field or far field, have
been implemented in Matlab [44] and named spherical near-to-far-field transformation
(SN2FFT). The collection of scripts and functions used by SN2FFT has been documented
in Appendix A with commentary.
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3 Trzncated Pattern Stitching

In Chapter 2, the theoretical background of spherical near-field measurements and the
subsequent transformation of such measured antenna near-field patterns into far-field pat-
terns has been discussed in detail. Assuming perfect field-pattern measurements, this
transformation is considered exact and its accuracy is limited only by the numerical preci-
sion of the discrete transformation algorithm and the maximum considered polar order N .
At this point, it is necessary to transition from theoretical concepts to practical applica-
tions. Thus, it is important to consider the practical methods for measuring near-field
(NF) patterns.

As discussed in the previous chapter, aside from the antenna under test (AUT) itself,
a second (probe) antenna is required, capable of measuring electric fields at all points
on a sphere which circumscribes the AUT. The interaction between both antennas is
described by the transmission formula, which relates the received signal at one antenna to
the signal transmitted by the other one. To measure the transmission between them, one
antenna must be connected to a signal generator, while the other must be connected to a
vector signal receiver. Alternatively, a single two-port vector network analyzer (VNA) is
commonly used in place of these two devices. Since measured fields have to be unaffected
both by external interfering signal sources and reflections, the measurements are normally
carried out in an electromagnetically shielded anechoic chamber. As already stated in
Chapter 1, different approaches to measuring fields on the whole measurement sphere
exist and measurement ranges can be divided into different range types depending on the
implementation [15,19]. Since the antenna range installed at TU Wien, which was shown
in Figure 1.2, is a swing arm-over-azimuth range, this work mainly focuses on this type of
ranges.

A simple schematic of a swing arm-over-azimuth range can be seen in Figure 3.1, where
all the rotation axes have been marked. The probe antenna is mounted onto the swing
arm and covers the θ-axis of the sphere, while the AUT is mounted onto a rotary stage
which covers the Φ-axis. Additionally, the probe antenna is also mounted on a rotary
stage which covers the χ-axis, i.e., the two orthogonal polarizations. As mentioned in
Chapter 1, a glance at either Figure 1.2 or Figure 3.1 suffices to see that covering the
whole sphere in a single measurement with this range type is impossible. The rotary
stage on which the AUT is mounted limits the range of θ-angles to less than full 180°,
necessitating the use of truncated field patterns. Just like the transformation algorithm
presented in Chapter 2, the majority of commercially available near-to-far-field transfor-
mation algorithms are Fourier-transform (FT)-based. They require equidistant sampling
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CHAPTER 3. TRUNCATED PATTERN STITCHING

over the whole sphere, so missing points have to be assigned some value, typically zero. If
directive antennas are used, errors caused by truncation can be kept low by orienting the
antenna in such a way that radiated fields in the range not covered by the measurement
are small. With omnidirectional antennas, however, this is not possible and truncation
results in nonzero higher-order spherical wave coefficients (SWCs) or ripple effects in the
transformed patterns.1

Figure 3.1: Schematic of a swing arm-over-azimuth range

Many approaches capable of reducing the truncation error exist. A least-squares (LS)
approach was proposed in [26], which only uses measurements of the forward hemisphere,
with the number of samples doubled compared to the sampling theorem. An energy con-
straint is specified for the backward hemisphere to prevent the method from overestimating
the radiation in the backward hemisphere. In [23], the authors proposed an iterative pro-
cedure for the spherical near-to-far-field transformation (SN2FFT) algorithm, where the
values in the truncated region are set to zero, and the algorithm is used to obtain the
SWCs. After filtering the SWCs above maximal polar order N , the field is reconstructed
and the newly computed field values are used in the truncated region, while the values in
the measured region are replaced with the actual measured values. This is done iteratively
until the reconstructed fields match the measured fields up to a defined maximal error.
This approach was further simplified in [45] by strictly limiting SWCs to N , thus avoid-
ing the need for SWC-filtering. This method computes a possible combination of SWCs

1It should be noted at this point that some spherical near-field ranges are constructed in a way which
allows for full-sphere measurements. However, the presence of a support structure on which the AUT is
mounted is inevitable. This support structure directly interacts with the radiating antenna, thus causing
errors in the field pattern.
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3.1 Pattern Stitching Concept

capable of describing the pattern in the measured range, but the solution does not pro-
vide reliable information on the behavior in the range above truncation angle θtrunc. With
the constantly increasing available computing power, matrix-solver-based approaches have
also been gaining popularity [43]. These approaches are not constrained by equidistant
sampling or the full-sphere requirement. However, they are slower than the FT-based
algorithms and the processing time increases rapidly for higher maximum polar order
problems. Caution has to be taken to define a well-conditioned matrix of linear equations.

While these methods tackle truncation errors in the covered range, they all share one
limiting factor. They represent a possible combination of SWCs capable of describing the
pattern in the measured range up to the angle of truncation (0° ≤ θ ≤ θtrunc), but above
truncation angle (θ > θtrunc) no reliable information is given. To obtain reliable full-
sphere radiation patterns, the idea of stitching multiple truncated patterns is proposed,
the details of which will be discussed in this chapter.

3,1 Pattern Stitching Concept

As already stated, it is generally impossible to compute full-sphere radiation patterns
from a single truncated measurement and samples over the whole sphere are required for
an accurate near-to-far-field transformation. In order to overcome limitations stemming
from pattern truncation, which is inevitable in most antenna ranges, our proposed method
exploits the fact that an antenna can readily be measured in multiple orientations. By
doing so, measurement points over the whole sphere are obtained, extending the range
of the measurement system to full 180° in θ. Throughout this work, two measurement
orientations are considered, which suffice for stitching measurement data obtained in the
spherical near-field range at TU Wien. However, there is no indication that it would be
impossible to generalize the approach to include more than two measurement orientations
if necessary. With two measurements, the intuitive approach is to rotate the antenna by
180° in one measurement, thus obtaining measurements of two hemispheres. It has to be
taken into account that, in practice, the measured antenna is unlikely to be placed exactly
in the origin of the measurement system. Moreover, any additional physical manipulation
of the antenna will likely result in some relative offset between the measurements. In order
to stitch the measured patterns together, the coordinate systems of both measurements
have to be aligned by comparing measured field values, for which an overlapping region is
needed. In Figure 3.2, the concept of the pattern stitching procedure is illustrated. Two
antenna measurements are done, where the antenna has been rotated by 180° around the
x- or y-axis for measurement 2. The measurement points of both measurements are shown
along with the truncated region marked in green (top). When measurement 2 is rotated
by 180°, the points from the two measurements are most likely misaligned and need to be
adjusted (upper middle). After the coordinate systems have been successfully aligned, the
measurement points from the two datasets coincide (lower middle) and can be stitched
together to generate a full-sphere pattern (bottom).

3,2 Spherical Wave Coefficients of Trzncated Patterns

As mentioned in the previous section, the partial truncated measurements need to be
aligned to the same coordinate system before they can be stitched together. To do so, the
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3.2 Spherical Wave Coefficients of Truncated Patterns

Figure 3.2: Pattern stitching concept
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3.2 Spherical Wave Coefficients of Truncated Patterns

coordinate system of one measurement needs to be rotated and translated to match the
coordinate system of the second measurement. These manipulations of the coordinate sys-
tem can be done by using the mathematical operators presented in Section 2.2. Equations
for rotation, (2.32), and translation, (2.41), can be used to rotate and translate the coor-
dinate system to any arbitrary point and orientation in space. However, these equations
require the knowledge of SWCs. When processing truncated patterns with the SN2FFT
algorithm presented in Chapter 2, truncation causes errors in the computed SWCs and,
especially in the case of omnidirectional antennas, large errors in the transformed field
pattern. Therefore, an approach for computing SWCs which can accurately describe the
measured field pattern is required. Hereinafter, such SWCs will be called truncated SWCs
and three different approaches for their computation have been investigated; the iterative
algorithm [45], the least squares (LS) method [43], and the FFT/Matrix method [42,46].

3,2,1 Iterative Algorithm

An iterative algorithm similar to the one presented in [45] was the first of the three
methods to be implemented. As its input, the algorithm takes the truncated field pattern
in two orthogonal linear polarizations, maximum polar and azimuthal orders N and M ,
a maximum-error goal, and a limit on the number of iterations. The field points in the
truncated region are set to their respective last measured point in θ, which was found to
allow for faster convergence of the algorithm than when setting them to zero. In each
iteration, a same-distance near-to-near-field transformation is done on the field pattern
using SN2FFT, computing a combination of SWCs and their corresponding field pattern.
This pattern is compared to the original measured data in terms of a scaled mean square
error (SMSE), which is defined as

SMSE =
1

K

∑
Χ,θ,Φ |w(χ, θ, Φ)- ŵ(χ, θ, Φ)|2

maxΧ,θ,Φ |w(χ, θ, Φ)|2 , (3.1)

where K = KΧ .Kθ .KΦ is the total number of points, w the array containing the mea-
sured field pattern, and ŵ the array containing the estimated field pattern obtained from
expansion of computed SWCs. Error normalization in relation to the maximum field value
is done in order to prioritize measurement points with large fields as they are less sensitive
to both measurement and numerical noise. The algorithm then constructs a new field
pattern from the original truncated pattern by substituting the values in the truncated
region with those from the current iteration pattern. Previous steps are repeated using
this updated pattern, includign the computation of new SWCs and their corresponding
pattern, and the evaluation of the SMSE once more. This iterative procedure is continued
until the SMSE goal is achieved or the maximum number of iterations is reached.

3,2,2 LS Method

Using the iterative algorithm to obtain SWCs, the time efficiency of the FT-based transfor-
mation algorithm is significantly impaired since hundreds or even thousands of iterations
are required to reach the desired SMSE goal. For that reason, a least squares (LS) matrix
method had also been implemented and tested. While this method underperforms the
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3.2 Spherical Wave Coefficients of Truncated Patterns

Fourier-transform-based method in terms of computational efficiency when a full-sphere
pattern is available, as demonstrated, e.g., in [43], it does not require equidistant sampling
in θ and Φ. This means that, in contrast to the iterative algorithm presented earlier, trun-
cated SWCs accurately describing the field pattern in the measured range can be obtained
directly from a single computation step.

For the LS method, the transmission formula (2.53) can be rewritten in matrix form as

w = Ψq, (3.2)

where w is the vector containing measured fields in all measurement points, q the vector
containing all sought SWCs, qj = Qsmn = vTsmn, and Ψ the matrix containing all re-
maining elements of (2.53), computed for each (A,χ, θ, Φ) and (s,m, n) combination. The
LS objective is then to minimize the square difference between measured and estimated
fields,

argmin
q
||w -Ψq||2. (3.3)

In general, the number of measurement points is not equal to the number of SWCs and the
matrix Ψ is a nonsquare matrix, therefore an inverse matrix Ψ-1 cannot exist. In [43], the
authors suggest solving this system of linear equations by computing the Moore-Penrose
pseudoinverse [47] of Ψ, represented here by Ξ.2 Using singular value decomposition
(SVD) of Ψ = U ΣV *, the expression for the pseudoinverse is Ξ = V Σ-1U* [44, 48].
The vector containing all the SWCs can then be expressed as

q = Ξw. (3.4)

For the general case where M = N , this gives a linear system with J = 2N(N + 2)
unknowns in accordance with (2.43). To solve this system, K ≥ J measurement points
are needed, resulting in a J xK matrix Ξ.

3,2,3 FFT/Matrix Method

In an attempt to combine the benefits of the FT-based algorithm with those of the matrix-
based approach, a third approach was implemented, discussed already in [42] and, more
recently, in [46]. Exploiting the fact that the variables are separable due to the orthog-
onality of the exponential coefficients, integrations in χ and Φ can be computed with a
two-dimensional fast Fourier transform (FFT), since full angular range is measured for
both variables. This is done by using (2.70) first and then (2.71), which gives us the
twice-transformed transmission formula [42],

wμm(A, θ) =
2∑

s=1

N∑
n=|m|
n /=0

Qsmnd
n
μm(θ)Psμn(kA). (3.5)

2A large number of alternative methods for solving the least squares system exist, e.g., QR decom-
position, modified Gram-Schmidt, or normal equations [48], and SVD is used here mainly because of its
robustness and ease of singular value (SV) truncation when dealing with rank-deficient coefficient matrices.
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3.2 Spherical Wave Coefficients of Truncated Patterns

At this point, the FT-based SN2FFT algorithm presented in Chapter 2 would exploit
the orthogonality of the rotation coefficient dnμm(θ), (2.58), to integrate over θ by using
another DFT. However, when dealing with truncated patterns, the pattern is not periodic
in θ and using a DFT is not possible without introducing a truncation error. Therefore, a
system of linear equations is constructed from the twice-transformed transmission formula
instead. Similar to the least squares method presented in the previous section, this system
of equations can be written in matrix form as

wμm = Ψmqm, (3.6)

and solved independently for each polar index m by computing the pseudoinverse of the
coefficient matrix Ψm, Ξm and inverting (3.6) to express qm;

qm = Ξmwμm (3.7)

By doing so, the number of unknowns is reduced from J to the m-dependent Jm = 2(N +
1-|m|) with the special case, valid for |m| = 0, where Jm = 2N . This substantially reduces
the complexity of the pseudoinverse computation, as well as high memory requirements
connected with the large system of linear equations from (3.4).

3,2,4 Singzlar Valze Trzncation for Compzting Psezdoinverses

During preliminary testing, it was observed that coefficient matrices (either Ψ or Ψm,
depending on the method) describing the linear system of equations in the least squares
(LS) method and the FFT/Matrix method are rank deficient3 when field patterns are
sampled with the minimum number of samples required by a full-sphere SN2FFT4 and the
range of measured θ-angles is less than 180°. As a consequence of rank deficiency, an infinite
number of solutions to the transmission equation exists. In [49], authors claimed that this
issue can be solved by increasing the number of sampling points in the allowable range
of scan angles, thus obtaining a full-rank coefficient matrix which would allow computing
a unique solution of the transmission formula. This would mean that radiation patterns
over the whole sphere could be reconstructed from a small subsurface of the sphere as
long as sufficient independent samples were obtained. Tests on coefficient matrices Ψ
from the LS method5 have demonstrated that increasing the number of samples in θ-
such that the number of samples in the truncated region, Kθtrunc , equals the minimum
number of samples in the full θ-range in Chapter 2, Kθ = N + 1-can indeed contribute
to achieving full rank when the maximum polar order N is low. This can be seen on an
example shown in Figure 3.3, where N = 20 and the measurement distance A = N/k.

3Due to limited numerical precision and roundoff error, none of the singular values are actually zero
and numerical rank is evaluated based on a chosen tolerance related to machine precision [48]. By default,
Matlab [44] uses max(size(Ψ))*eps(norm(Ψ)) as a tolerance for computing the rank of matrix Ψ.

4The minimum required number of samples, discussed already in Chapter 2, is KΧ . Kθ . KΦ, where
KΧ = 2, Kθ = N + 1, and KΦ = 2M + 1. With no knowledge of the AUT, M has to be assumed equal to
N , i.e., M = N .

5Due to lower complexity of the LS method (only one coefficient matrix instead of 2N + 1 smaller
coefficient matrices), the findings in this chapter are presented only with examples using the LS method.
The same behavior could be observed when using the FFT/Matrix method and all presented findings can
be applied to the FFT/Matrix method as well.
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3.2 Spherical Wave Coefficients of Truncated Patterns

This measurement distance was chosen since it is the shortest distance for which the
transmission formula is valid and, as such, represents the worst-case scenario. In the
graph, singular values (SVs) σj , sorted from largest to smallest, are plotted for three
distinct sampling cases; (a) pattern samples over the full 180°-range of θ available, (b)
pattern truncated at θtrunc = 135° with the minimum number of samples required by
SN2FFT, and (c) pattern truncated at θtrunc = 135° with the increased number of samples
Kθtrunc = N+1. One can observe that the tail of small singular values in (b) around 10-15,
which is in the range of numerical precision, disappears with increased sampling in (c),
thus resulting in a matrix with full numerical rank. However, the large variation between

Figure 3.3: Comparison of singular values σj
6 for different sampling cases; Polar order N = 20,

evaluation distance A = N/k, θtrunc = 135°

SVs indicates that this linear system of equations is highly sensitive to small variations
in the data, e.g., simulation or measurement noise. This can best be demonstrated by
computing the condition number of the matrix Ψ, which is expressed as the ratio between
the largest and the smallest singular value [50],

κ(Ψ) =
σmax(Ψ)

σmin(Ψ)
. (3.8)

The condition number κ(Ψ) for each of the sampling cases is listed in Table 3.1. It can
be seen that the condition number in the case of full theta range (a) is substantially lower
than those of the two truncated-pattern cases, (b) and (c). While the distinction between
small and large condition numbers is rarely quantified in the literature, in [50] the author
states that κ > 30 implies severe multicollinearity and, thus, an ill-conditioned system.

For this reason, further oversampling in θ was investigated, where the number of samples
was multiplied by a factor, a, such that Kθtrunc = a . (N + 1). The results are shown in
Figure 3.4. One can see that doubling the number of samples by using the factor a = 2
decreases the condition number κ and using the factor a = 5 decreases it even further.

6For the purpose of readability, only every 10th singular value is displayed in the plot.
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3.2 Spherical Wave Coefficients of Truncated Patterns

Table 3.1: Comparison of condition numbers κ(Ψ) for different sampling cases; Polar order
N = 20, evaluation distance A = N/k, θtrunc = 135°

sampling case condition number κ(Ψ)

(a) full theta range 10.72

(b) truncated, minimum sampling (Kθ = N + 1) 9.84x 1015

(c) truncated, increased sampling (Kθtrunc = N + 1) 3.5x 1010

Observing the results for a = 10 and a = 20, it becomes clear that this reduction is limited
and κ converges to some value, which is still very large. Moreover, for maximum polar
order N = 50, increasing the number of samples by multiplication with a = 20 results
in a problem so large that the used personal computer (PC) with 32GB RAM runs out
of available memory. This leads to the conclusion that increasing the number of samples
in θ is an unfeasible approach for reducing the condition number κ(Ψ). For the sake
of thoroughness, increasing the number of samples in both θ and Φ simultaneously has
also been tested. As predicted, no evident improvement in comparison to increasing the
number of samples solely in θ has been identified since a sufficient number of independent
samples in the nontruncated Φ-axis is obtained already with the usual SN2FFT sampling
scheme. As such, increasing the number of samples in Φ can be considered superfluous.

Figure 3.4: Relation between the condition number κ and the oversampling factor a

In this work, only equidistant sampling in χ, Φ, and θ has been considered. Existence
of an alternative sampling scheme capable of forming a well-conditioned linear system of
equations therefore cannot be disproved with absolute certainty. However, no written work
suggesting that such a scheme exists has been found. Based on the findings presented
in [51] for various sampling schemes with samples obtained over the full sphere, there
is no indication that an alternative sampling scheme could give a sufficient number of
independent samples and, with it, assure full-rankness in the general case and bring the
reduction of the condition number required for a well-conditioned system of equations.
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3.2 Spherical Wave Coefficients of Truncated Patterns

The question at hand thus becomes whether or not, and to what extent, matrix methods
can be used to solve the transmission formula if only a truncated field pattern is available.
Since the coefficient matrices are, in general, rank deficient, an infinite number of solu-
tions to the problem exists. Singular value decomposition (SVD) can be used to obtain
the minimum norm solution to this problem by computing the Moore-Penrose pseudoin-
verse. By default, SVs smaller than the numerical precision tolerance7 are excluded from
the computation of the pseudoinverse in Matlab [44]. When an ideal, noise-free radiation
pattern is known, a (possible) set of SWCs can be computed from either (3.4) or (3.7),
capable of describing the field pattern in the measured points over the truncated range
with high accuracy even for systems of equations with a large condition number κ. How-
ever, when computing SWCs from noisy data, this can cause the method to return an
unrealistic set of SWCs which cannot be used neither for estimating a far-field pattern nor
for further use with the pattern stitching algorithm presented in this chapter. To illus-
trate the problem, a random set of SWCs with N = 20 was used to compute a radiation
pattern at a distance A = N/k with the minimum number of samples required to assure
full-rankness when truncated at θtrunc = 135° (example (c) in Figure 3.3). SWCs were
computed using the LS method, first from a noiseless truncated pattern, then Gaussian
white noise with 100 dB signal-to-noise ratio (SNR) was added to the initial pattern and
SWCs were computed again. The results can be seen in Figure 3.5, where the magnitudes

Figure 3.5: Influence of noise on the LS solution; (a) and (b) original SWCs, (c) and (d) SWCs
obtained from a noiseless pattern, and (e) and (f) SWCs obtained from a noisy
pattern with SNR = 100 dB

7See footnote 3.

37



3.2 Spherical Wave Coefficients of Truncated Patterns

of original spherical wave coefficients, |Qsmn|, divided into two two-dimensional plots for
s = 1 and s = 2, respectively, are shown on the left. Plots of the noiseless solution, limited
only by numerical precision, are shown in the middle, while the two plots on the right
represent the solution when noisy data are used. Sensitivity of the least squares method
to noise results in an overestimation of many SWCs. This issue is far more severe than
Figure 3.5 might reveal at first sight, since all SWCs larger than the largest SWC in the
original set of coefficients have been colored with the same red color. In fact, they are
much larger than the original SWCs, which can be shown by evaluating the total power of
the system per (2.22). The total power of the original SWCs and the total power of those
obtained from a noiseless truncated pattern (at N = 20 this system has full rank as shown
in Figure 3.3) is approximately equal, P ≈ 866.4W. The total power of SWCs obtained
from noisy data is more than 10 000 000 times larger than that, Pnoisy ≈ 1010W. While
this solution best describes the field pattern in the provided sampling points in the LS
sense, it yields extremely large, physically infeasible field strengths in the truncated range
(θ > θtrunc) and fails entirely when operations such as translation or rotation are applied.
Similar behavior was observed in all tests, where radiation patterns of random sets of
SWCs with varying order N were used. In any realistic measurement setup, measurement
data will be distorted by measurement noise. As demonstrated in Figure 3.5, this results
in failure of the LS method even for a very high signal-to-noise ratio (SNR). The method
thus cannot be used with noisy data without modifications, which will be discussed in the
following paragraph.

The pseudoinverse Ξ of the coefficient matrix Ψ can be expressed by the three matrices
obtained by SVD as Ξ = V Σ-1U*. This product can be expressed as a summation over
SVs,

Ξ =
J∑

j=1

vjσ
-1
j u*

j , (3.9)

where vj and uj are vectors extracted from the matrices V and U , corresponding to the
singular value σj from the diagonal matrix Σ. Taking limited numerical precision into
account, the numerical rank r̂ can be determined and SVs smaller than some tolerance
δ > 0 are discarded from the computation of Ξ, giving an approximation

Ξ ≈
r̂∑

j=1

vjσ
-1
j u*

j , r̂ ≤ J. (3.10)

As mentioned earlier, this tolerance is related to the numerical precision of the used PC and
software when noise-free data are available. When dealing with noisy coefficient matrix
data, the following example for adapting the tolerance δ is given in [48]. If entries in Ψ
are correct to two digits, the authors suggest using the tolerance δ = 10-2‖Ψ‖∞ as the
criterium for discarding small SVs, where ‖Ψ‖∞ is the infinity norm of the coefficient
matrix Ψ. It is unclear why the authors in [48] use the maximum norm in their example,
presumably because of its ease of computation in comparison to the Euclidean norm.
However, using the Euclidean norm is by far more intuitive, since the resulting value
directly corresponds to the maximum SV of the coefficient matrix, Ψ, and limits the
minimum SV with regard to σmax. The Euclidean norm is also the norm used in the
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default tolerance computation in Matlab´s pinv function [44]. In our specific case, the
coefficient matrix Ψ is considered noise-free and thus limited solely by numerical precision.
Nevertheless, this does not hold true for measured data points, which are contained in the
observation vector w. Following the assumption that increasing the tolerance factor δ can
be used analogously when noisy measurement data are available, δ is defined as

δ = 10-
SNR
20 . ‖Ψ‖2 = 10-

SNR
20 . σmax(Ψ), (3.11)

which requires the knowledge of measurement SNR for its computation. Instead of using
the maximum norm, as suggested in [48], Euclidean norm was used in (3.11).8 The noisy
radiation pattern with SNR = 100 dB, the SWCs of which were shown in Figure 3.5,
have now been processed with the LS method again, using the tolerance factor δ ob-
tained by (3.11). To demonstrate the improvement of the LS method when small singular
values are truncated, a comparison of computed SWCs between the actual coefficients
on the left, the nonoptimized SV solution in the middle, and the solution obtained us-
ing the modified tolerance factor δ according to (3.11) is shown in Figure 3.6. It can
be seen that the overestimated coefficients in Figures 3.6c and 3.6d are dealt with by
truncating small SVs. Of course, some difference between the original SWCs and the

Figure 3.6: Influence of SV truncation on the LS solution; (a) and (b) original SWCs, (c) and
(d) SWCs obtained from a noisy pattern (SNR = 100 dB) without SV truncation,
and (e) and (f) SWCs obtained from a noisy pattern with SV truncation

8A series of evaluations of the SMSE was done using both norms to determine the tolerance factor δ.
These tests have confirmed the advantage of using the Euclidean norm over using the maximum norm.
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SWCs obtained from the LS method with modified tolerance factor is expected since
noisy (and truncated) data have been used for its computation. The total power con-
tained in these coefficients is Pδ ≈ 830.2W, showing a decrease of approximately 4%
compared to the original SWCs, P ≈ 866.4W. The field patterns corresponding to
these sets of spherical wave coefficients are shown in Figure 3.7. Both polarizations of
the original noiseless radiation pattern are depicted in Figures 3.7a and 3.7b, followed
in Figures 3.7c and 3.7d by the pattern obtained from the non-SV-truncated solution
of the LS method, and finally, in Figures 3.7e and 3.7f, pattern obtained by the LS
method when SVs smaller than the tolerance factor δ are discarded from the computation.

Figure 3.7: Influence of SV truncation on radiation patterns; (a) and (b) original pattern, (c)
and (d) pattern from SWCs computed without SV truncation, (e) and (f) pattern
obtained from SWCs computed with SV truncation
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The results clearly demonstrate the extreme increase of field strengths for θ-angles larger
than the truncation angle θtrunc when small SVs are not truncated. When SVs smaller
than δ are truncated, these overestimated fields are suppressed while the field pattern up
to θtrunc still bears a close resemblance to the original pattern. A quantification of how
well the patterns match will follow in the next section, where results of an SMSE analysis
will be given.

3,2,5 Comparison

All three presented methods for computing SWCs from truncated patterns have been
implemented in Matlab [44] and tested extensively. Three parameters were used for eval-
uating their performance; their respective computation time, the error in calculated near
field (NF) patterns, determined by computing the NF SMSE, and the error in calculated
far field (FF) patterns, computed via FF SMSE. It should be noted that the computa-
tion time was defined as the time needed to both compute the SWCs and expand them
into a field pattern at the desired distance, which was done by the same procedure as in
SN2FFT, using the three IDFTs listed in (2.88), (2.89), and (2.90). Results of all methods
have been compared to each other, as well as to the FT-based SN2FFT, where missing
data points were assigned to be zero, which represents results without truncation error
correction. Results of this comparison have partially been reported already in [52].

Radiation Patterns for Testing

For testing purposes, three types of test objects were used to obtain radiation patterns;
sets of random SWCs, EM simulation models, and a real measured antenna. Detailed
information on all test patterns is given in the following list;

❼ Synthetic radiation patterns, computed from sets of random SWCs with different
maximum polar orders N , ranging from 5 to 200, at f = 2.4GHz. In an attempt
to make a fair comparison, the measurement distance was varied along with N to
match the theoretical minimum measurement distance, A = N/k, which equals the
MRE. Patterns were truncated at θtrunc = 135° and sampled equidistantly. In Φ,
the smallest number of samples required by SN2FFT was used, KΦ = 2N +1, while
an increased number of samples, discussed in Section 3.2.4, was used in θ, such that
Kθtrunc = N+1. The patterns were first processed with all three methods to compute
SWCs and their respective near- and far-field patterns. Then, white Gaussian noise
with an SNR of 100 dB was added to the patterns and all three methods were retested
with noisy truncated data.

❼ Simulated radiation patterns of two antennas, a planar inverted-F antenna (PIFA)
and a bowtie antenna, designed for operation at f = 2.4GHz, obtained by elec-
tromagnetic (EM) simulations in HFSS [53]. Simulation models of both antennas
can be seen in Figures 3.8 and 3.9. Evaluating electric fields at the minimum dis-
tance, i.e., MRE, as in the case of random SWC patterns, was not possible due to
simulation constraints. Specifically, the field evaluation sphere overlapped with the
simulation domain boundaries in that case, resulting in errors in the evaluated fields.
Therefore, the patterns were computed at a measurement distance of A = 1.31m
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instead, which corresponds to the measurement distance at the near-field range at
TU (already in far field as per Figure 1.1), and in normalized far field, as defined by
HFSS. The maximum polar order N was determined by (2.24) with n1 = 10 based
on their MRE, which gave N = 14 for PIFA and N = 12 for the bowtie antenna.
Simulated patterns were stored with equidistant sampling steps of 2°, out of which
the minimum number of steps required to fulfill the conditions KΦ ≥ 2N + 1 and
Kθtrunc ≥ N +1 were extracted for testing. Just as the random SWCs patterns, they
were truncated at θtrunc = 135°.

Figure 3.8: PIFA model

❼ Measured radiation pattern of an ultra-wideband (UWB) conical monopole (CMP)
antenna manufactured according to [54], with a simplified ground plane. The an-
tenna is shown in Figure 3.10. It was measured in a single measurement in the
near-field range at TU Wien, spanning the range from 4GHz to 16GHz in 250MHz
steps (frequencies below 4GHz would require a different probe antenna). Due to
the large frequency range, the maximum polar order N varied from 16 to 35 and
sampling was chosen based on the largest among them, which, including some over-
sampling to assure the sampling step to be a rational number, resulted in a sampling
step of 4° in both θ and Φ. Using additional absorbers at the Φ-axis rotary stage,
the maximum θ-angle that could be measured was θtrunc = 140°.

Comparison Results

The first series of tests was carried out on radiation patterns obtained from random sets
of SWCs. For comparison purposes, the iterative approach was limited by the maximum
number of iterations, which was set to 500. For noise-free radiation patterns of random
SWCs, the computation time, the NF SMSE, and the FF SMSE are shown in Figures 3.11
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Figure 3.9: Bowtie antenna model

Figure 3.10: Measured UWB CMP antenna

to 3.14. The least squares (LS) method could only be used up to N = 80 due to mem-
ory limits of the PC, which, as stated earlier, had 32GB RAM available. Observing the
computation times in Figure 3.11, it can be seen that the computation time of the LS
method increases rapidly with increasing order N and already exceeds the computation
time of the iterative algorithm at N = 80. The computation time of the iterative algo-
rithm rises proportionally to the computation time of SN2FFT and can be estimated by
titerative ≈ Niterations . tSN2FFT = 500 . tSN2FFT. As can be seen, compared to SN2FFT, the
FFT/Matrix method demonstrates the best performance in terms of computation time.
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This was expected since the method makes use of the fast Fourier transform to break
down the coefficient matrix Ψ of the LS method into smaller submatrices, while still al-
lowing for a single-step solution in contrast to the iterative algorithm. At N = 200, the
FFT/Matrix method needed approximately 1.6min to compute the spherical wave coeffi-
cients (SWCs) and the corresponding pattern, while the computation time of the SN2FFT
was approximately 0.9min.

Figure 3.11: Algorithm comparison; computation time (noise-free, random SWCs)

The results in Figure 3.12 show how well the truncated near-field patterns are matched
by the same-distance patterns computed from SWCs obtained by each of the methods.
It can be seen that, after 500 iterations, the iterative algorithm achieves an improvement
of about 30 dB compared to SN2FFT. The error is reduced even further when using

Figure 3.12: Algorithm comparison; NF SMSE (noise-free, random SWCs)
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matrix methods, with the least squares method showing an NF SMSE below -110 dB
over the whole range and the FFT/Matrix method showing a maximum NF SMSE just
above -100 dB. Also here, the fact that the LS-based methods outperform the iterative
algorithm does not come as a surprise since they represent the least squares fit and SMSE
evaluates the error in terms of weighted squared differences. Furthermore, the LS method
outperforms the FFT/Matrix method since it represents the pure LS fit. Nevertheless,
due to computational limits of the LS method, the FFT/Matrix method can be identified
as the best method in terms of NF SMSE.

In Figure 3.13, the FF SMSE was evaluated over the whole range of θ-angles up to θtrunc.
All three methods result in an SMSE reduction compared to SN2FFT, with both matrix
methods outperforming the iterative algorithm, just as was observed already in the NF
SMSE case. This confirms that the LS solutions provide reliable sets of SWCs which, even
after transformation to far field, give more accurate results than the iterative algorithm.
Even though a general improvement in comparison to SN2FFT can be observed, the over-
all FF SMSE values are substantially larger than those of the same-distance NF SMSE and
cannot be considered an accurate representation of the corresponding far field radiation
pattern. Since truncation effects are generally most severe near the angle of truncation,

Figure 3.13: Algorithm comparison; FF SMSE up to θtrunc (noise-free, random SWCs)

evaluating the FF SMSE over the entire range yields very pessimistic results. To gain a bet-
ter insight into the distribution of SMSE, the FF SMSE was evaluated for a reduced range
of θ-angles as well. This reduced range was defined up to θvalid = θtrunc-arcsin (r0/A) [19],
where r0 represents the MRE of the AUT and A the distance for which the radiation pat-
terns were computed. As stated earlier, the patterns were evaluated at the minimum
possible distance, A = r0. For a truncation angle θtrunc = 135°, this gives the maxi-
mum valid angle θvalid = 45°. From the results in Figure 3.14, it can be seen that, for
all methods, the error in this range is substantially smaller than that of the full range
up to θtrunc. A large jump in error between N = 100 and N = 125 is observed for the
FFT/Matrix method. Comparing the results to those of the full range up to θtrunc, it can
be seen that this error increase must stem from a change in error distribution with regard
to the θ-angle. Indeed, by investigating the computed truncated patterns, this could be
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Figure 3.14: Algorithm comparison; FF SMSE up to θvalid (noise-free, random SWCs)

confirmed and a larger error was observed for θ-angles near θ = 0°. The reason for this
behavior could not be identified based on the results of these tests. Since this work focuses
on pattern stitching in the near field, where such behavior was not observed, an in-depth
analysis was not included at this stage.

Next, these tests were repeated for the case of noisy radiation patterns with an SNR
of 100 dB. For the two matrix methods using SVD, SV truncation was done according
to (3.11). Since adding noise to radiation patterns does not influence the computation
time of the algorithms, similar computation times as in Figure 3.11 were observed. It
does, however, influence the SMSE results. Compared to Figure 3.12, the NF SMSE
results of SN2FFT and the iterative algorithm in Figure 3.15 show no change in error.

Figure 3.15: Algorithm comparison; NF SMSE (100 dB SNR, random SWCs)

46



3.2 Spherical Wave Coefficients of Truncated Patterns

This indicates that truncation error dominates the overall error and the influence of high-
SNR noise is negligible. The two matrix methods, on the other hand, show identical
NF SMSE values just below 100 dB and are clearly limited by noise. The FF SMSE
results for noisy patterns in the two considered ranges are shown in Figures 3.16 and 3.17.

Figure 3.16: Algorithm comparison; FF SMSE up to θtrunc (100 dB SNR, random SWCs)

Figure 3.17: Algorithm comparison; FF SMSE up to θvalid (100 dB SNR, random SWCs)

Comparing these results to the noise-free case in Figures 3.13 and 3.14, it can be seen that,
just as in the case of NF SMSE, the FF SMSE values for the two FT-based algorithms
remain unchanged and noise plays a negligible role in their overall error. This does not
hold true for the LS method and the FFT/Matrix method, where the overall error has
become larger. One can see that SV truncation causes the two matrix methods to yield
results that are more consistent with each other compared to the case where noiseless

47



3.2 Spherical Wave Coefficients of Truncated Patterns

data with standard, numerical-precision-based SV truncation are used. Even with the
increase in error compared to the noiseless case, the FFT/Matrix method delivers the
lowest SMSE values in both ranges and shows an error reduction of more than 30 dB
compared to SN2FFT in the range up to θvalid.

After comparing results obtained from theoretical data sets, where the field distributions
were completely random, the methods had to be tested on test objects with somewhat
more realistic radiation patterns. Results of EM simulations were used for this purpose.
Since every EM simulation tool introduces some error to the resulting patterns-caused
by discrete meshing as well as numerical precision-an estimate of added noise was needed
for the two matrix methods. This was computed by using a same-distance SN2FFT and
evaluating the SMSE between the original data, obtained by HFSS [53], and the radiation
pattern obtained by the transformation. The resulting value, which was around 80 dB in
both examples, was then used as the SNR estimate for computing the tolerance factor δ.
In Table 3.2, the computation time, NF SMSE, and FF SMSE values for the two EM
simulation antenna patterns are listed. The results demonstrate a large advantage of all

Table 3.2: Algorithm comparison; EM simulation patterns

algorithm
PIFA bowtie

time NF SMSE FF SMSE time NF SMSE FF SMSE

SN2FFT 0.03 s -31.27 dB -27.50 dB 0.02 s -30.15 dB -27.44 dB
iterative 15.79 s -70.25 dB -49.06 dB 10.04 s -78.81 dB -52.55 dB
LS 0.18 s -84.93 dB -57.92 dB 0.10 s -83.83 dB -55.75 dB
FFT/Matrix 0.03 s -85.01 dB -59.89 dB 0.02 s -83.84 dB -55.54 dB

three methods compared to SN2FFT, with the two matrix methods outperforming the
iterative method both in terms of computation time and resulting field pattern errors.
The FF SMSE in this case was evaluated for the whole range up to θtrunc.

Finally, the methods had to be tested with actual measurement data as well. As mentioned
earlier, the ultra-wideband (UWB) conical monopole (CMP) antenna was measured over a
wide frequency range from 4GHz to 16GHz. The measurement software of the near-field
range, NSI2000 [55], provides an estimate for measured SNR values which can readily be
used for determining the tolerance factor δ (3.11). Alternatively, the signal-to-noise ratio
can be estimated by first using the matrix method without SV truncation and evaluating
the NF SMSE compared to measurement data. This value indicates the theoretical lower
bound of how well the measured radiation pattern can be described by a spherical wave ex-
pansion and can be used as an SNR estimate. It should be noted that this overall estimate
includes not only random errors but also unwanted reflections and other measurement in-
accuracies. For the used measured pattern, noise values over the whole frequency range
were between -40 dB and -45 dB and an SNR of 45 dB was set for further processing. In
Figure 3.18, the computation time over the frequency range is shown for SN2FFT and the
three presented methods. Similar to previous examples, one can see that the FFT/Matrix
method closely follows the computation time of the FT-based SN2FFT regardless of the
frequency, while the computation times of the iterative method and the LS method are
longer by a factor of 100 or more.
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Figure 3.18: Algorithm comparison; computation time over frequency (UWB CMP)

Shown in Figure 3.19 are the same-distance NF SMSE values. An advantage of methods
for reducing truncation error over the classical SN2FFT can be seen, however, this im-
provement is small due to measurement errors in the measured pattern. Moreover, a ripple
in error over frequency can be observed from the figure, as well as a clear decrease of the
SMSE with increasing frequency. It should be noted that this behavior has no theoretical
background in the computation of truncated SWCs and presumably stems from measure-
ment errors. At this stage, no further attention was given to observed errors. An analysis
of sources of errors and the potential for their minimization will follow later in Chapter 5.

Figure 3.19: Algorithm comparison; NF SMSE over frequency (UWB CMP)

Marginal differences between the three methods were observed, which can best be seen
by the maximum, minimum, and mean NF SMSE values over all frequencies, listed in
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Table 3.3. Overall, the mixed FFT/Matrix method exhibits superior performance even
with practical measurement results, offering computation times comparable to those of
SN2FFT and an error reduction of approximately 6 dB.

Table 3.3: Algorithm comparison; UWB CMP antenna

algorithm
NF SMSE

max min mean

SN2FFT -30.56 dB -37.19 dB -33.87 dB
iterative -37.77 dB -45.45 dB -42.73 dB
LS -37.82 dB -45.40 dB -42.71 dB
FFT/Matrix -37.86 dB -45.53 dB -42.85 dB

This comparison has shown that all three truncation error reduction methods offer a signif-
icant error reduction compared to the commonly used zero-padded SN2FFT. In terms of
computation time, the FFT/Matrix method is the fastest among them, with computation
time increasing by less than a factor of 2 even for very high polar orders N . Conse-
quently, this method was identified as the most effective of the three presented methods
and is utilized in subsequent steps of the pattern stitching method proposed in this work.

3,3 Measzrement Alignment

Looking back at the pattern stitching procedure shown in Figure 3.2, one of the key steps of
the procedure is the alignment of coordinate systems of both partial measurements. Only
once this is done can the truncated patterns be stitched together to describe the whole
sphere. In the previous section, the best algorithm for computing truncated spherical
wave coefficients (SWCs) was identified, which can accurately describe the AUT´s field
pattern in the truncated range covered by the measurement. Using this algorithm on
truncated field patterns obtained by measuring the AUT in two different orientations,
a distinct set of truncated SWCs can be obtained for each measurement. In order to
align them, the goal was to implement an error minimization procedure which searches for
the optimum misalignment in a defined range of misalignments, resulting in the smallest
mismatch in the overlapping region between both measurements. To do so, rotation and
translation operations presented in Section 2.2 must be used on these truncated SWCs.

3,3,1 Rotation and Translation of Trzncated SWCs

While translation and rotation operations have been well-defined for spherical waves and
their corresponding SWCs, no published research has been found on how accurately a set
of truncated SWCs, capable of describing an arbitrary antenna in its truncated range,
can represent that same antenna in some translated and rotated coordinate system. We
have done a series of tests to determine whether such truncated SWCs can arbitrarily be
rotated and translated accurately using the operations in (2.32) and (2.41) and the results
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were presented in [56].9 These tests have been conducted using the iterative algorithm
for obtaining patterns from truncated SWCs. In accordance with findings presented in
the previous section, which showed that the FFT/Matrix method outperforms the itera-
tive algorithm, the analysis had to be repeated for the case where truncated SWCs are
computed using the FFT/Matrix method.

Test Objects

For comparability, the same test objects as in [56] have also been used for testing the
FFT/Matrix method. Four synthetic test objects were generated using different combi-
nations of SWCs. From their respective set of SWCs, radiation patterns for a frequency
of 2.4GHz were then computed using the SN2FFT algorithm at a distance of 1.31m,
matching the measurement distance of the NF test range at TU Wien. For the first test
object, SWCs representing an x-oriented dipole were used. For remaining objects, matri-
ces of random SWCs with maximum polar orders Nset ϵ {4, 19, 34} were generated, where
coefficients were weighted by 1/n to imitate the decay of SWCs with increasing order n,
as is common for realistic antennas. The orders Nset represent the product of MRE and
the wavenumber k. In [56], following the typically used empirical formula for maximum
polar order, N = [k .MRE] + 10 (2.24), the matrices were assigned to be of the order
Nset + 10 with other SWCs set to 0. In this work, the extension of the order N by 10
with zero-valued spherical wave coefficients was omitted because it is redundant when the
actual order is known. Finally, radiation patterns, computed from these sets of SWCs
using SN2FFT, were truncated at θtrunc = 120°.

In addition to the test objects used in [56], a test object with a random set of SWCs of
the order Nset = 40 was also considered here, generated earlier for tests in Section 3.2.5.
This was the highest order N which could be translated 0.5m away from the origin of
the coordinate system and still have a theoretical MRE smaller than the radius of the
measurement sphere, A = 1.31m, assuming that the theoretical MRE is determined by
r0 = Nset/k + 0.5m. It should be noted that, in contrast to other used test objects with
random SWCs, the coefficients were not weighted by 1/n in this example. As such, the ex-
ample represents the absolute worst case for the given parameters. Since the FFT/Matrix
method can find the exact solution for very low orders of N , as was shown in Figure 3.12,
also the translation and rotation operations on such truncated SWCs will be identical to
those of their full-range counterparts. For this reason, random Gaussian noise with an
SNR of 80 dB was added to radiation patterns for comparability with the results in [56].
Initial SWCs and their truncated counterparts, obtained from noisy radiation patterns by
the FFT/Matrix method, were then used for translation and rotation sweeps. For each
sweep step, radiation patterns were computed both from the translated/rotated SWCs and
translated/rotated truncated SWCs. By comparing the two, the SMSE could be evaluated
for each translation/rotation step.

9In [56], normalized mean square error (NMSE) was used to represent 1
N

Σ
Χ,θ,Φ |x - xest|2/max

Χ,θ,Φ
|x|2,

which is not the standard definition. To avoid using conflicting definitions, this same metric has been
called scaled mean square error (SMSE) in this work, but results reported as NMSE in [56] can be directly
compared to SMSE values listed here.
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Effects of Translation

A sweep over translations in each of the directions, x, y, and z, was done in the range
from -0.5m to 0.5m or, expressed in wavelengths, in the range between -4λ and 4λ. It is
important to note that the maximum radial extent (MRE) of the antenna will increase with
translation away from the origin of the coordinate system and care has to be taken to keep
N large enough to contain all nonzero SWCs after translation. According to (2.41), the
order N of translated SWCs extends to infinity and any translation theoretically results
in an infinite set of coefficients. However, the coefficients tend to zero with increasing
polar index n and can be truncated at a certain finite N . As mentioned earlier, the
MRE of translated coefficients was determined by r0 = Nset/k+ dtrans, where dtrans is the
translation distance. According to the empirical formula in (2.24), the maximum polar
order N of the translated coefficients is then given by

N = [r0 . k]+ n1 = Nset + [dtrans . k]+ n1, (3.12)

where n1 = 10 was chosen for the computation, as is common practice. During evaluation,
a bug was discovered in the evaluation procedure script used in [56]. The script discarded
some of the higher-order SWCs and caused an increased error and ripple effects in Fig. 1
of [56]. This bug was fixed for the reevaluation stage presented here, and the SMSE results
of translation sweeps over x, y, and z are shown in Figures 3.20 to 3.22. For all three trans-
lation directions, the SMSE has been computed in two different ranges of θ-angles. Results
over the whole range up to θtrunc are shown in Figures 3.20a to 3.22a, where it can be seen
that, for larger orders ofNset, SMSE increases rapidly when moving away from the origin of
the coordinate system. However, it was found that this error increase is mainly contained
in the region near the angle of truncation and SMSE was evaluated once more, now for a
reduced θ-range up to θreduced = 90°. These results are shown in Figures 3.20b to 3.22b.

Figure 3.20: SMSE sweep over translations in x; (a) whole θ ≤ θtrunc = 120° range and (b)
reduced θ ≤ θreduced = 90° range
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Figure 3.21: SMSE sweep over translations in y; (a) whole θ ≤ θtrunc = 120° range and (b)
reduced θ ≤ θreduced = 90° range

Figure 3.22: SMSE sweep over translations in z; (a) whole θ ≤ θtrunc = 120° range and (b)
reduced θ ≤ θreduced = 90° range

For the x-oriented dipole and the random set of SWCs with Nset = 4, both ranges show
almost identical results. This indicates that the FFT/Matrix solution is distorted only by
the added noise and no additional error is introduced by translation of their respective
SWCs. The reduced θ-range was chosen to see how well translated truncated SWCs can
describe the radiation patterns of the upper hemisphere. One can observe that the SMSE
in this reduced range of θ-angles remains appreciably low over all translation distances with
a negligible increase of error compared to nontranslated SWCs. The one exemption to this
observation is the example with random coefficients of Nset = 40, where an error increase
of approximately 5 dB can be seen for translations of ±0.5m away from the origin of the
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coordinate system. An investigation has shown that this can directly be related to the
large MRE relative to the measurement distance A and translation error could be reduced
by increasing the measurement distance. Since it is common practice to keep the distance
between the probe antenna and the AUT at 3λ or more to avoid coupling effects between
them [14,15], this extreme result has no impact on practical measurements. The example
with random coefficients of Nset = 34 represents the largest order N where the minimum
distance between the AUT and the probe antenna after translation is larger than 1λ.
This example shows no increase of error, suggesting that already this distance is sufficient
from the theoretical point of view. These results imply that, for a frequency of 2.4GHz,
translated fields are accurate up to a reduced angle θ = 90° and can therefore be used for
accurate pattern stitching. Since the increase of the order N depends on the wavenumber
k, which in turn depends on the frequency, the question that remained unanswered was
whether higher frequencies demonstrate the same behavior. For that reason, the same sets
of SWCs were also tested at a frequency of 4.8GHz. Compared to tests at 2.4GHz, the
results, shown in Figures 3.23 to 3.25 for the x-oriented dipole and patterns of random
sets of SWCs with Nset = 34 and Nset = 40, show minor differences in computed SMSE
values. For the reduced θ-range, SMSE over the whole translation sweep range remains at
the noise level, which suggests that the translation of truncated SWCs delivers accurate
results regardless of the frequency. Due to the rapidly increasing computation times with
increasing maximum polar order N , higher frequencies were not considered at this stage.

Figure 3.23: SMSE sweep over translations in x; (a) frequency comparison over the whole θ ≤
θtrunc = 120° range and (b) reduced θ ≤ θreduced = 90° range

Effects of Rotation

After investigating the effects of translation, the same test objects were used for testing
the effects of rotation. As discussed in Section 2.2, an arbitrary rotation in (2.32) can be
represented by a sequence of Euler angles, φ0, ϑ0, and χ0, where the rotations are done
around the z-, y-, and z,-axis, respectively. If ϑ0 = 0, the axes z and z, are aligned and φ0

and χ0 are interchangeable. The rotation is then obtained by multiplying the coefficients

54



3.3 Measurement Alignment

Figure 3.24: SMSE sweep over translations in y; (a) frequency comparison over the whole θ ≤
θtrunc = 120° range and (b) reduced θ ≤ θreduced = 90° range

Figure 3.25: SMSE sweep over translations in z; (a) frequency comparison over the whole θ ≤
θtrunc = 120° range and (b) reduced θ ≤ θreduced = 90° range

with a complex exponential term

Q
(4)
smn,rotated = e jm(Χ0+φ0)Q(4)

smn, (3.13)

which represents a simple pattern shift in Φ. Ideally, rotation in Φ or χ should have no
impact on the accuracy. Nevertheless, a minor ripple has been observed in the SMSE
results, demonstrating a periodic behavior over the range of rotation angles with a period
that is equal to the sampling step ΔΦ. This suggests that truncated SWCs describe the
radiation patterns with a variable accuracy depending on the chosen sampling points.
However, the observed ripple was below 0.5 dB for all tested examples and can thus be
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3.3 Measurement Alignment

considered negligible compared to the errors introduced by translations, as well as by
rotation in θ. Since ϑ0 represents a rotation in θ, where the patterns are truncated at θtrunc,
larger errors can be observed in the sweep in Figure 3.26a. The sweep over ϑ0 was only
done in the range -90° ≤ ϑ0 ≤ 90°. Analyzing this range was found to be sufficient because
rotation in θ is symmetric about ϑ0 = ±90° and the results for angles below -90° and above
90° are the mirrored versions of the results between -90° and 90°. Limiting the range to

Figure 3.26: SMSE over rotations in θ; (a) whole θ ≤ θtrunc = 120° range and (b) reduced
θ ≤ θreduced = 90° range

θ = 90° again, a range of rotation angles ϑ0 = ±30° has been found, marked in light blue in
Figure 3.26b, where accurate results can be obtained from rotated truncated SWCs. It can
be seen that this resulting range directly relates to the difference between the truncation
angle and accurate-region angle as ϑ0 = ±(θtrunc - θaccurate) = ±(120° - 90°). While
rotation in θ is found to be the limiting factor for accurate representation of truncated
fields, it should be noted that misalignment errors larger than a few degrees in θ are
unlikely in practice.

This leads to the conclusion that, regardless of the chosen order Nset, SWCs obtained
from truncated field patterns using the FFT/Matrix method can be both translated and
rotated to a different coordinate system with negligible loss of accuracy in a reduced range
of θ-angles for which θ ≤ θaccurate. This maximum θ-angle depends on the translation and
rotation at hand, and, for all tested translations and θ-rotations up to ϑ0 = ±30°, accurate
results could be obtained in the range of the upper hemisphere, i.e., 0° ≤ θ ≤ θaccurate =
90°. It was thus confirmed that translation and rotation operations on such truncated
SWCs can be used as a basis for stitching multiple truncated field patterns together.

3,3,2 Alignment Algorithm

Having confirmed that truncated fields can indeed be translated and rotated accurately
up to an angle smaller than θtrunc, the next task is to align the partial patterns to the
same coordinate system. The intuitive approach for aligning multiple patterns is to fix one
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3.3 Measurement Alignment

pattern and consider this pattern aligned. This measurement orientation will hereafter be
referred to as the top measurement. To avoid having a nonphysical field distribution in the
top measurement pattern, which is caused by pattern inaccuracies due to noise and other
measurement uncertainties, the pattern is processed once with the FFT/Matrix method to
obtain a field pattern that can be described by SWCs of the given order N . The coordinate
system of the other partial radiation pattern, referred to as the bottom measurement
in the remainder of this work (assuming two measurement orientations), must then be
transformed to match the coordinate system of the processed top measurement. First,
the SWCs of the bottom measurement must be rotated by 180° in θ, as indicated in
Figure 3.2. Then, the misalignment in translation and rotation between the two patterns
must be found. To do so, an alignment algorithm has been devised, first presented in [57].10

For the alignment algorithm to work, there must be an overlap between the two measure-
ments, i.e., each measurement needs to cover more than a hemisphere. The goal is then to
minimize the error in the overlapping region, which can be evaluated using (3.1) for this
reduced region of θ-angles,

SMSE =
1

Koverlap

∑
Χ,θoverlap,Φ

|w(χ, θ, Φ)- ŵ(χ, θ, Φ)|2
maxΧ,θoverlap,Φ |w(χ, θ, Φ)|2

. (3.14)

Due to the distribution of the sample points over the sphere-the density of sample points
in Φ increases when approaching the z-axis (the pole of the coordinate system)-the SMSE
in the overlapping region can further be weighted by sin2 θ to account for the surface area
covered by each point, leading to the expression for the weighted scaled mean square error;

wSMSE =
1

Koverlap

∑
Χ,θoverlap,Φ

sin2 θ|w(χ, θ, Φ)- ŵ(χ, θ, Φ)|2
maxΧ,θoverlap,Φ |w(χ, θ, Φ)|2

(3.15)

This assures a fair comparison of the error between all points in the overlapping region.
Additionally, knowing that the misalignment error is largest near the angle of truncation,
θtrunc, and becomes negligible at angles sufficiently distant from θtrunc, the region in which
the SMSE is evaluated can be reduced to discard erroneous data. The extent of θ-angles at
which data are erroneous directly depends on the translation and rotation misalignment.
The worst-case scenario can be estimated using the misalignment bounds of the alignment
algorithm. This, of course, is measurement-specific and a single value cannot be applied
as a universal rule.

The algorithm takes six variables, the three Euler rotation angles, (φ0, ϑ0, χ0), and the
three translation components, (x, y, z). Lower and upper bounds are defined for each
variable and a bounded error minimization technique is then used to find the combination
of rotation and translation parameters for which the error in the overlapping region is the
smallest. The function fmincon, which is part of Matlab´s Optimization Toolbox [44],
is used for error minimization. Various parameters of the fmincon function were tested
during validation, more information on this topic will follow in Chapter 4. At this stage,
the alignment procedure served as a proof of concept and the potential of using alternative
error minimization techniques to assure either faster or more reliable performance of the
stitching method has not been investigated.

10Footnote 9 also applies to results presented in [57].
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3.4 Aligned Pattern Stitching

3,4 Aligned Pattern Stitching

Once the misalignment error minimization procedure converges, SWCs representing the
bottom measurement, i.e., the measurement which was rotated and translated during
the alignment procedure, are aligned with those of the fixed top measurement using
the obtained optimal translation vector, (xopt, yopt, zopt), and optimal rotation vector,
(ϑopt, φopt, χopt). Then, radiation patterns of these aligned SWCs, computed using a
same-distance SN2FFT, need to be stitched together.

This brings the method to the final stage, i.e., the pattern stitching stage. Looking back
at the third stage in Figure 3.2, which follows after the coordinate system alignment, it
should be evident that only data from measurement 1 are available for θ-angles up to
π - θtrunc, and only data from measurement 2 are available for θ-angles larger than
θtrunc. Therefore, data in these ranges can be used in the final stitched pattern without
modifications. The last question that needs to be answered is how to use the data in the
overlapping region between π- θtrunc and θtrunc, where data from both measurements are
available. Two different approaches were considered;

❼ Pattern blending: Radiation patterns of both measurements are blended together
in the overlapping region. The mean value of both patterns is computed for each
data point, i.e., wstitched = (w1 + w2)/2 and the resulting value is used to represent
this data point in the stitched field pattern.

❼ Hemisphere split: The range representing the bottom hemisphere (θ > 90°) is
extracted from the aligned patterns and appended to the upper hemisphere radiation
pattern of the top measurement (θ < 90°). If data at the equator, i.e., at the center
of the θ-range (θ = 90°), have been obtained during measurements, the mean value
of both measurements is used to represent the data in the stitched field pattern.

To determine which of these approaches returns more accurate results, sets of random
SWCs with different maximum polar orders from N = 5 to N = 200, which were intro-
duced in Section 3.2.5, were used to generate field patterns in two different coordinate
systems. For the pattern representing the measurement of the top hemisphere, the initial
SWCs were used, while the bottom hemisphere patterns were obtained by misaligning the
SWCs by a translation of (10 cm, 10 cm, 10 cm), a rotation of (10°, 5°, 10°), and a consec-
utive rotation of 180° around the y-axis. The patterns representing both measurements
were evaluated at a distance of 3λ away from the MRE of the misaligned bottom hemi-
sphere. Patterns of both measurements were truncated at 135° and then truncated SWCs
were computed for each. Next, the truncated SWCs of the bottom hemisphere were trans-
formed back to the coordinate system of the top hemisphere (the alignment procedure was
skipped for this evaluation), which led to the final stage of the stitching algorithm. Both
stitching methods listed above, i.e., pattern blending and hemisphere split, were used in
this stage to obtain stitched patterns for all test objects. The stitched patterns were then
processed with the FT-based SN2FFT using a same-distance near-to-near-field transfor-
mation to obtain the final stitched patterns. These patterns were then compared to the
aligned untruncated patterns of the respective test object and the SMSE was computed
for both methods. From the SMSE results, shown in Figure 3.27, it can be seen that both
methods perform almost identically for lower polar orders up to N = 30. Increasing the
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3.4 Aligned Pattern Stitching

order further, the SMSE values begin to drift apart. The results using the hemisphere
split approach remain stable at error levels around -100 dB, showing even a slight error
decrease. On the other hand, the SMSE values using the pattern blending approach
increase rapidly and reach -50 dB at N = 200. Looking back at the results from the
analysis of translation and rotation effects in Section 3.3.1, a logical explanation for the
increased error when using pattern blending becomes apparent. While exact SWCs can
accurately be determined from a noiseless truncated pattern for low orders N without an
increase in error due to translation and rotation, it was shown that translating and rotat-
ing truncated SWCs with higher orders N results in increased error contained primarily
in the vicinity of the truncation angle θtrunc. When the two patterns in the overlapping
region are blended together, these errors find their way into the final pattern. Using the
hemisphere split approach, both patterns are cut at 90°, discarding the range of θ-
angles near θtrunc, where these errors are contained. Therefore, it is the better-performing
stitching approach and will be used hereafter.

Figure 3.27: Stitching approach comparison; SMSE comparison between pattern blending and
the hemisphere split approach

By stitching the patterns together using the hemisphere split approach, a full-sphere
near-field radiation pattern of the AUT is obtained. However, truncation errors, noise, and
other potential differences between both partial measurements might result in nonphysical
discontinuities in the resulting pattern. To obtain a physically plausible radiation pattern
that can be described by a combination of spherical wave coefficients, a same-distance near-
to-near-field transformation using the FT-based SN2FFT is done on the stitched pattern,
as was briefly mentioned when stitching approaches were compared. This gives us the final
stitched NF pattern, as well as a set of SWCs that can describe the AUT anywhere in
space. Once the pattern stitching procedure is done, the stitched full-sphere pattern can
be processed with the SN2FFT to obtain the AUT´s full-sphere far-field radiation pattern.
The pattern stitching method was implemented in Matlab [44] and the used functions are
documented in Appendix B along with a demonstration of their application. The complete
method along with its validation and practical limitations, which will be presented in the
following chapters, has been summarized in [58].
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4 Validation of the Stitching Method

In the previous chapter, the proposed truncated pattern stitching method was presented
in detail. It was shown that spherical wave coefficients (SWCs) can be obtained from
truncated measurements, patterns of which can be rotated and translated with a tolerable
increase in error in an attempt to align partial measurements. The stitching method was
implemented in Matlab [44] and, now, it had to be validated. The validation procedure
was done in three steps. First, the method was tested with noiseless synthetic data and
the results of this validation step will be presented in Section 4.1. This was followed by
validation with data obtained from electromagnetic (EM) simulations using HFSS [53],
the results of which will be shown in Section 4.2. Lastly, the stitching method needed
to be validated with actual measurement data, as will be demonstrated in Section 4.3.
In each of the validation steps, attention was given to the resulting scaled mean square
error (SMSE) as a measure of how well the stitching method can describe the field pattern
of the antenna under test (AUT).

4,1 Validation with Synthetic Data

In the first validation step, synthetic spherical wave coefficients (SWCs) were used to com-
pute noiseless field patterns. Specifically, coefficients representing an x-oriented dipole with
Nset = 1 and sets of random complex coefficients with the order Nset in the range between
5 and 35. Two combinations representing an AUT placement misalignment between the
two partial measurements were chosen, defined by a translation vector (x, y, z) and a ro-
tation vector (φ0, ϑ0, χ0). They are listed in Table 4.1. The smaller of the two, denoted
as misalignment 1, represents a realistic positioning precision achievable without ex-
pensive equipment, such as laser positioners. In contrast, the larger misalignment 2 is
considered to be within the range of positioning precision that can be achieved with the

Table 4.1: Misalignments used for validation

translation rotation

x y z φ0 ϑ0 χ0

misalignment 1 2 cm -2 cm 4 cm 10° -2° 0°

misalignment 2 10 cm 10 cm 10 cm 10° 5° 10°
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4.1 Validation with Synthetic Data

naked eye. For all examples, the unrotated SWCs were chosen to represent the measure-
ment of the upper hemisphere, while the misaligned SWCs, offset using the rotation and
translation combination from either misalignment 1 or misalignment 2 and rotated
by 180° around the y-axis, were used to represent the measurement of the bottom hemi-
sphere. During the initial analysis, a frequency of 2.4GHz was chosen for validation and,
for each misalignment, the maximum radial extent (MRE) of the AUT was obtained by
computing the MRE of the aligned AUT, r0, as discussed in Section 3.3, and adding the
total translation distance of the respective misalignment,

MRE = r0 +
√

x2 + y2 + z2 = Nset/k +
√
x2 + y2 + z2. (4.1)

Knowing the MRE, the maximum polar order N follows from (2.24);

N = [(r0 +
√

x2 + y2 + z2) . k]+ 10 = Nset + [
√
x2 + y2 + z2 . k]+ 10 (4.2)

For each example, the number of samples in Φ was set such that KΦ = 2N + 1 and the
number of samples in θ was set such that Kθtrunc ≥ N + 1 while simultaneously fulfilling
the requirement that the measurement points of both truncated measurements used for
stitching must coincide. The measurement radius A was defined to change along with
r0 in order to maintain a constant distance of 3λ away from the AUT´s MRE, A =
r0 + 3λ. Radiation patterns representing the sets of SWCs were then computed using the
spherical near-to-far-field transformation (SN2FFT) algorithm, which generates noiseless
radiation patterns limited only by the numerical precision of Matlab [44]. The patterns
were truncated at θtrunc = 140°, corresponding to the maximum θ-angle that can be covered
in a single measurement in the near field (NF) range at TUWien when additional absorbers
are used, designed for reflection suppression when measuring omnidirectional antennas. It
should be noted that other truncation angles were not tested in the validation process.
Assuming a sufficient overlap between the measurements to be stitched, varying truncation
angle is not expected to play a significant role on the performance of the stitching method.

These truncated radiation patterns were then provided to the pattern stitching algorithm
in an attempt to obtain full-sphere radiation patterns. As discussed in Section 3.3.2, the
alignment was done using a bounded SMSE-minimization procedure, for which the bounds
were chosen slightly larger than the estimated naked-eye alignment precision, i.e., ±11°
for all Euler rotations and ±11 cm for all translation directions.

4,1,1 Convergence Isszes

Unfortunately, initial tests have shown poor performance of the pattern alignment proce-
dure since the misalignment vector was often not converging towards the optimum solution,
instead getting stuck in local minima of the SMSE objective function. The convergence
was found to deteriorate with increasing misalignment between the two patterns. Count-
less attempts have been made in order to improve the performance of the method, such
as swapping the underlying minimization algorithm used by Matlab´s fmincon [44] from
the default ,interior-point, to ,active-set,, increasing or decreasing the bounds,
and changing the starting misalignment vector for the algorithm. These attempts were
found to be beneficial for solving specific examples, but none of them could be used as a
universal solution with which convergence could be achieved for all test examples. A brute
force approach using multiple start points was considered as a possible solution, but the
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computational complexity and duration of such an approach even for relatively low orders
N would limit the method to the point of uselessness. Investigating the observed poor
convergence of the problem further, the realization was made that its source must lie in
the periodic nature of the complex-valued field patterns-an offset Δr from the coordinate
system´s origin causes a wavelength-dependent phase change (2πΔr/λ)-which results in
countless local minima of the SMSE function. It was found that this local minima vanish
when the SMSE is evaluated using only the magnitude of the field patterns. This led to
the implementation of the two-step alignment procedure.

4,1,2 Two-Step Alignment Procedzre

Due to stitching method convergence issues when the SMSE in the overlapping range
is computed from complex-valued radiation patterns, the alignment procedure was split
into two consecutive steps. Only the magnitude of the radiation patterns is used in the
first step of the procedure, using large bounds of ±11° for all Euler rotations and ±11 cm
for all translation directions. The constrained minimization function, fmincon, is set to
use the ,active-set, algorithm, which can take large steps and was thus found to work
more efficiently within this large range of rotation angles and translation distances than
the default option, the ,interior-point, algorithm. By minimizing the SMSE based
solely on the magnitude, a good starting point for the second step can be found. In the
second step, SMSE minimization of complex-valued patterns is then carried out in order
to also match the phase between both measurements. The starting point for the second
step of the minimization procedure, i.e., the vector of rotation angles and translation
distances representing the misalignment, is already expected to be near the optimum
solution because the field magnitude distributions of both measurements already closely
resemble each other in the overlapping range. Therefore, the ,interior-point, algorithm
is utilized instead of the ,active-set, algorithm. A smaller range of misalignment vectors
could thus theoretically be defined, but (at this stage) it was found that the stitching
method was converging to the correct solution even if large bounds were used.

The pattern stitching algorithm following this two-step alignment procedure was tested
on all synthetic test objects presented earlier and the results are shown in Table 4.2. For

Table 4.2: SWC validation; results

Nset
misalignment 1 misalignment 2

NF SMSE FF SMSE NF SMSE FF SMSE

dipole 1 -106.7 dB -106.7 dB -114.0 dB -114.5 dB

random
SWCs

5 -122.7 dB -122.7 dB -124.1 dB -124.3 dB
10 -122.5 dB -122.7 dB -118.5 dB -119.4 dB
15 -118.3 dB -119.0 dB -102.9 dB -103.6 dB
20 -121.4 dB -121.7 dB -113.9 dB -113.8 dB
25 -120.5 dB -120.7 dB -8.6 dB -9.4 dB
30 -106.3 dB -106.9 dB -9.6 dB -10.4 dB
35 -9.2 dB -9.7 dB -10.2 dB -10.4 dB
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all, both the near field (NF) SMSE and the far field (FF) SMSE were evaluated to confirm
that the results are valid also after transformation to far field. Marked in red, one can
observe that the stitching method has failed to find the solution for the largest tested
orders of N . Although this might appear concerning at first sight, an investigation of the
results has shown that it is in fact irrelevant when measuring actual antennas. Concretely,
the reason that the method fails with higher orders N of random SWCs is the fact that the
radiation pattern has an increasing resemblance to noise with increasing N , which in turn
increases the probability that already the first, magnitude-based minimization step of the
alignment procedure will get stuck in a local minimum. Of course, the radiation pattern
of any practical antenna will not resemble noise, and failure in the first alignment step
is not anticipated in realistic scenarios. This will be confirmed in subsequent validation
steps.

To verify that the two-step alignment procedure does not only converge for the two specific
misalignment combinations from Table 4.2, a set of one hundred random misalignment
combinations with translations in the range between -10 cm and 10 cm and rotations in
the range between -10° and 10° has been generated. These were used to further test the
stitching method using SWCs representing an x-oriented dipole and random SWCs with
N = 5 and N = 10. The mean and the maximum SMSE were evaluated using both NF
and FF patterns and the results, shown in Table 4.3, confirm the general validity of the
stitching method within this range of misalignments for low-order field patterns.

Table 4.3: SWC validation; results for random misalignments

Nset
NF SMSE FF SMSE

mean max mean max

dipole 1 -115.8 dB -99.6 dB -115.8 dB -99.6 dB
random
SWCs

5 -122.4 dB -87.8 dB -122.3 dB -87.8 dB
10 -123.2 dB -83.7 dB -123.5 dB -84.1 dB

4,1,3 Freqzency Dependency

So far, all validation has been performed at a frequency of 2.4GHz, showing promising
results for low-order SWCs for misalignments up to ±10° and ±10 cm where the maximum
misalignment values were defined under the assumption that they represent the worst-case
scenario when aligning an AUT with the naked eye. To test how the stitching method
performs at other frequencies, the SWCs of the x-oriented dipole were used to compute
radiation patterns at various frequencies following the same procedure as was described at
the beginning of this chapter, i.e., always at a measurement range A defined by A = r0+3λ
and offset using the misalignments from Table 4.1. The results of this analysis can be seen
in Table 4.4, where a deterioration of the method´s performance with increasing frequency
can be observed. This deterioration was unexpected and thus thoroughly investigated,
which led to the conclusion that the increased error does not stem from a failure of the
alignment procedure. Surprisingly, contrary to the findings presented in Section 3.3.1,
the source of error could be traced back to the translation of truncated SWCs. While
translations in Section 3.3.1 were carried out starting with SWCs aligned with the origin of
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Table 4.4: SWC validation; frequency variation results

frequency
misalignment 1 misalignment 2

NF SMSE FF SMSE NF SMSE FF SMSE

dipole

1.2GHz -112.1 dB -112.1 dB -116.0 dB -116.0 dB
2.4GHz -106.7 dB -106.7 dB -114.0 dB -114.5 dB
4.8GHz -106.2 dB -106.2 dB -97.7 dB -97.3 dB
9.6GHz -102.4 dB -102.2 dB -56.4 dB -57.1 dB
19.2GHz -90.7 dB -91.2 dB -51.2 dB -51.3 dB
38.4GHz -56.9 dB -57.1 dB -43.2 dB -43.2 dB

the coordinate system and translating in all directions away from it, the inverse procedure
is done here. The coordinate system is translated in order to align itself with the initially
severely offset SWCs, which, in turn, should minimize the number of nonzero SWCs. Using
truncated SWCs results in artifacts in translated SWCs, which are the cause for errors in
the radiation pattern. As can be seen in (4.2), the order N of the translated SWCs depends
on the wavenumber k, which itself is inversely proportional to the wavelength λ (and
proportional to the frequency f). Moreover, the computation of translation coefficients, as
defined in (2.34), depends solely on the product of the wavenumber k and the translation
distance A. This indicates that the observed translation error can be related to the
translation distance in terms of wavelengths. Using the x-oriented dipole example, the
SMSE between its actual pattern and the pattern obtained from truncated misaligned
SWCs after coordinate-system alignment was computed for different initial misalignments
in terms of λ, considering translations in x, y, z, and a combined xyz-translation, where the
translation distance in each direction is A/

√
3. The results, shown in Figure 4.1, indicate

that the SMSE in the θ-range representing the truncated bottom hemisphere measurement
increases rapidly with increasing translation distance. Already at a distance of 5λ, an

Figure 4.1: SMSE for 40° ≤ θ ≤ 180° over translation in wavelengths
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SMSE between -50 dB to -70 dB can be observed for all tested translation directions,
approaching -10 dB at 25λ in the worst case. These SMSE values are much larger than the
overall error of stitched patterns reported in Table 4.4, since only the bottom hemisphere
range above θ = 90° is used for pattern stitching. Thus, it is informative to evaluate the
SMSE also in this reduced range of θ-angles.1 The SMSE results, which can be seen in
Figure 4.2, show a significant error reduction for large translation distances when compared
to Figure 4.1.

Figure 4.2: SMSE for 90° ≤ θ ≤ 180° over translation in wavelengths

Up to approximately 3λ, the SMSE due to translation errors stays below -90 dB and
stabilizes at around -50 dB when increasing translation distance further, except for the
xyz-translation, where it reaches -42 dB at -25λ. To relate the results of Table 4.4 with
the results from Figure 4.2, the combined xyz-translation distances of both misalignments,
expressed for each respective frequency in terms of wavelengths, are shown in Table 4.5.
The required alignment precision in terms of wavelengths can thus be estimated based on
the chosen maximum acceptable noise level goal.

Table 4.5: SWC validation; translation in wavelengths

dipole

frequency 1.2GHz 2.4GHz 4.8GHz 9.6GHz 19.2GHz 38.4GHz

misalignment 1 0.2λ 0.4λ 0.8λ 1.6λ 3.1λ 6.3λ

misalignment 2 0.7λ 1.4λ 2.8λ 5.5λ 11.1λ 22.2λ

Aside from the error itself, it should also be noted that the computation time of the
pattern stitching method rises rapidly with increasing order of N . For every 4λ increase

1While the stitching method successfully aligned both truncated patterns in all examples presented in
Table 4.4, it is important to note that the large errors observed in Figure 4.1 could cause severe differences
between the two truncated patterns in the overlapping region (40° ≤ θ ≤ 140°), which might result in
failure of the stitching method.

65



4.2 Validation with EM Simulation Data

in translation distance, the order N increases by approximately 25. In Figure 4.3, the
computation times for the x-oriented dipole examples at different frequencies were related
to their respective translation distances expressed in wavelengths, listed above in Table 4.5.
One can see that even for the simplest antenna with the lowest order N = 1, large
misalignments result in long computation times of the stitching method. For the largest
translation, 22.2λ away from the center of the coordinate system, the stitching procedure
took more than 2 days. From these results, the strict placement precision requirements,
especially when dealing with higher frequencies, should become evident.

Figure 4.3: Stitching method computation time over translation in wavelengths

4,2 Validation with EM Simzlation Data

In the second validation step, antenna radiation pattern examples obtained via electro-
magnetic (EM) simulation were used. Four different antennas were modeled in Ansys
HFSS [53]. The planar log-spiral antenna can be seen in Figure 4.4, where the orienta-

Figure 4.4: Planar log-spiral antenna model
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tion of the aligned coordinate system is drawn in the bottom left corner. This antenna
was modeled to operate in a very wide frequency range between 16GHz and 40GHz.

The second test object was a Vivaldi antenna, shown in Figure 4.5. It was designed for op-
eration in the frequency range from 8GHz to 21GHz. In contrast to other test objects, this
antenna is directional with a gain between 7.8 dBi and 9.8 dBi, depending on the frequency.
It was used to verify how the stitching method performs in the case of directional antennas.

Figure 4.5: Vivaldi antenna model

The remaining two test objects were a planar inverted-F antenna (PIFA) and a bowtie
antenna, both designed to operate at the frequency of 2.4GHz. These antennas were
already used in Chapter 3 as test objects for comparisons between different methods for
computation of truncated SWCs, where their models were shown in Figures 3.8 and 3.9.

EM simulation results of all four test objects were used to obtain their radiation patterns
both at A = 1.31m, corresponding to the measurement distance in the NF test range at
TU Wien, and in far field. The patterns of all antennas were computed in the software´s
global coordinate system, which is marked in Figures 3.8, 3.9, 4.5, and 4.4 for each re-
spective antenna. This was considered to represent the orientation of the top hemisphere
measurement. Two additional coordinate systems were defined in HFSS, representing the
two misalignments in Table 4.1, and antennas´ radiation patterns were computed in both
to represent the two misaligned orientations of the bottom hemisphere measurement. The
number of samples in θ and Φ for each of the antennas was determined in a similar fashion
as in Section 4.1, using the largest order N , computed at the highest frequency and for
the larger of the two misalignments, i.e., misalignment 2.

Since simulation noise is an inherent part of any numerical simulation, the accuracy of
the EM simulation data was briefly investigated before using the stitching method to es-
tablish what the theoretical best accuracy of the stitching method would be. First, a
same distance transformation was done on all patterns using spherical near-to-far-field
transformation (SN2FFT) with the order N , determined based on the dimensions of the
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AUT and misalignment of each respective pattern. These maximum polar orders of the
aligned patterns (N0), the patterns offset by misalignment 1 (N1), and the patterns
offset by misalignment 2 (N2) are listed in Table 4.6 for all test objects. The SMSE
between the original patterns and their transforms was then computed to see how well
SWCs can describe each pattern. It was found that all except the log-spiral antenna at
misalignment 2 match up to an error of around -80 dB, whereas the SMSE in that case
showed increased values of about -65 dB. Then, differences between patterns expressed
in different coordinate systems were analyzed. This discrepancy can be quantified by
computing the SWCs of the untruncated pattern of the bottom hemisphere measurement,
rotating it to match the coordinate system of the upper hemisphere, and then evaluat-
ing the SMSE between the so obtained pattern and the pattern representing the upper
hemisphere extracted from HFSS. This was done for all test objects and the results are
shown in Table 4.6. These results can be interpreted as an approximate lower bound for
the error obtained when stitching patterns together. While a somewhat larger error can
be observed for the Vivaldi antenna at 21GHz, it should be noted that no effort was made
to further reduce the error levels since robustness against noise itself is also an important
factor for a reliable stitching method.

Table 4.6: Discrepancy between HFSS patterns

frequency
misalignment 1 misalignment 2

N0 discrepancy N1 discrepancy N2

PIFA 2.4GHz 14 -76.8 dB 17 -69.8 dB 23

bowtie 2.4GHz 12 -70.1 dB 14 -61.3 dB 21

Vivaldi

8.0GHz 17 -74.8 dB 25 -65.7 dB 46

14.5GHz 23 -71.1 dB 38 -61.4 dB 76

21.0GHz 29 -64.0 dB 51 -53.4 dB 106

planar
log-spiral

16.0GHz 11 -76.9 dB 28 -66.1 dB 69

28.0GHz 13 -73.3 dB 41 -63.1 dB 114

40.0GHz 14 -69.9 dB 55 -61.8 dB 159

All near-field patterns were then truncated at θtrunc = 140°, discarding the data points
where θ > θtrunc, and processed using the pattern stitching method with the two-step
alignment procedure presented in the previous section. When computing truncated SWCs
from noisy data, singular value (SV) truncation is required to assure correct operation
of the FFT/Matrix method. In order to determine the tolerance factor δ from (3.11), a
signal-to-noise ratio (SNR) estimate is thus needed. The SNR can be estimated by first
computing the truncated SWCs without SV truncation and then evaluating the SMSE
between the original pattern and the FFT/Matrix result, which represents the optimum
fit in the least squares (LS) sense for the given order N . This SMSE value can then be
used as the SNR level for SV truncation.

After stitching, the NF SMSE and the FF SMSE were evaluated for all tested antennas
at all simulated frequencies. Obtained values for all AUTs are listed in Table 4.7. One
can observe that the results of all test objects for misalignment 1 and those test objects
for misalignment 2 with a frequency of 14.5GHz or less are below -50 dB while the
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Table 4.7: HFSS validation results

frequency
misalignment 1 misalignment 2

NF SMSE FF SMSE NF SMSE FF SMSE

PIFA 2.4GHz -78.5 dB -75.6 dB -65.5 dB -65.0 dB
bowtie 2.4GHz -72.6 dB -66.3 dB -56.5 dB -56.1 dB

Vivaldi

8.0GHz -67.7 dB -67.5 dB -60.3 dB -60.2 dB
14.5GHz -64.4 dB -64.0 dB -52.4 dB -52.3 dB
21.0GHz -58.0 dB -57.4 dB -49.5 dB -49.4 dB

planar
log-spiral

16.0GHz -54.3 dB -54.4 dB -44.0 dB -44.0 dB
28.0GHz -55.9 dB -56.0 dB -38.1 dB* -38.2 dB*

40.0GHz -57.5 dB -57.5 dB -38.2 dB* -38.3 dB*

* Patterns were aligned using the optimum misalignment vector obtained from the results at 16GHz.

Vivaldi antenna at 21GHz is just barely above it. The worst results were observed for
the planar log-spiral antenna, where misalignment 2 resulted in an SMSE of -44 dB for
the 16GHz pattern. Due to the long computation time, already observed when stitching
the Vivaldi antenna at 21GHz (more than 16 h), an alternative approach was chosen
for stitching patterns of the planar log-spiral antenna at 28GHz and 40GHz. Here, the
wideband nature of the antenna was exploited and the optimized alignment vector found
when stitching the 16GHz patterns was reused to align and stitch the patterns at 28GHz
and at 40GHz. By doing so, the NF SMSE and the FF SMSE, marked with a "*" in
Table 4.7, were obtained. To determine the cause for this worsened performance when
stitching patterns of the planar log-spiral antenna, the patterns at 16GHz, misaligned by
misalignment 2, were aligned again with the known misalignment vector and stitched
together. The obtained SMSE values were -58.5 dB for the NF and -58.6 dB for the FF,
an improvement of more than 14 dB, which indicates that the increased error is caused by
the alignment procedure. The cause for poor alignment could be traced back to the nature
of the AUT. Looking at the radiation pattern shown in Figure 4.6, one can see that the
field distribution in the overlapping range between θ = 40° and θ = 140° remains rather

Figure 4.6: Planar log-spiral antenna field pattern at 16GHz
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constant over θ. As such, the elevational alignment becomes difficult and prone to errors
in the radiation patterns, which cause the procedure to get stuck in a local minimum.
An alternative measurement orientation would thus be beneficial for the planar log-spiral
antenna; however, this possibility was not explored at this stage.

4,3 Validation with Measzrement Data

In the final step, the method had to be validated using measurement data. In addition to
validation with data from measurements of conventional connectorized antennas, where
the antenna under test (AUT) is equipped with a coaxial connector that can be accessed
during the measurement, validation using measurement data of connectorless devices was
also carried out in order to gain more insight about the error introduced by the coaxial
cable. Here, the antenna is integrated onto a device under test (DUT) and cannot be
accessed via a coaxial connector. A measurement setup was devised for this purpose and
the pattern stitching method had to be adapted accordingly. This procedure, which we
first presented in [59], is documented in Appendix C. Measurement data for test objects of
both types were obtained in the test range at TU Wien and processed with the proposed
pattern stitching method.

4,3,1 Connectorized AUTs

Two low-directivity test antennas with coaxial connectors were measured in the NF test
range, a folded dipole antenna and an ultra-wideband (UWB) conical monopole (CMP)
antenna, similar to the one presented in [54] but with a simplified ground plane structure.
The folded dipole antenna was measured in 100MHz steps in the range between 1.8GHz
and 2GHz. The AUT was first measured in the orientation shown in Figure 4.7a, which
represents the upper hemisphere measurement. Then, it was rotated by 180° around the y-
axis and measured again to obtain the truncated pattern covering the bottom hemisphere.
This measurement orientation is shown in Figure 4.7b.

(a) (b)

Figure 4.7: Folded dipole in (a) top and (b) bottom measurement orientation
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Similarly, the UWB CMP was measured in the two measurement orientations seen in
Figures 4.8a and 4.8b, where it was rotated by 180° around the x-axis for the second
measurement. It was measured in 250MHz steps in the range from 4GHz to 20GHz.

(a) (b)

Figure 4.8: UWB CMP in (a) top and (b) bottom measurement orientation

Just as for the EM simulation examples, the noise level in both measurement orientations
was estimated by computing an FFT/Matrix transform without SV truncation before
proceeding with the pattern stitching method. Besides giving an SNR estimate for SV
truncation, these SMSE values also give a good indication of the theoretically achievable
accuracy of the full-sphere pattern. For that reason, the mean and maximum estimated
SNR values over frequency for each antenna/orientation combination have been listed
in Table 4.8 along with the range of computed maximum polar orders N over all fre-
quencies. These results already suggest that the introduced measurement noise and mea-
surement uncertainties limit the potential accuracy of the radiation pattern more than
the error levels introduced by the stitching method reported in previous validation steps.

Table 4.8: Measured data validation; estimated measurement SNR for connectorized AUTs

frequency range N
SNR (top) SNR (bottom)

mean min mean min

folded dipole 1.8GHz - 2.0GHz 13 - 14 46 dB 43 dB 45 dB 42 dB

UWB CMP 4GHz - 20GHz 16 - 41 42 dB 37 dB 43 dB 37 dB

The patterns were then processed with the pattern stitching method. At this point, it was
found that the alignment procedure does not always converge to the global minimum.2

2Whether the resulting misalignment vector represents the global minimum or just a local one can easily
be determined by comparing the phase information of the final aligned bottom hemisphere pattern to that
of the upper hemisphere. In the global minimum, patterns in the overlapping range will show a strong
resemblance, whereas the differences between them directly relate to measurement and processing errors.
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However, since a common misalignment vector should ideally be obtained for all frequen-
cies, a single measured frequency where the alignment procedure converges was found to be
sufficient for the pattern stitching method. It should be noted that, due to measurement
noise, this converged solution will generally not minimize the SMSE at other measured
frequencies. Nevertheless, it provides a good starting point for the alignment procedure
at all remaining measured frequencies. The alignment procedure can then be repeated
with this starting misalignment vector. Following this procedure, truncated patterns of
both tested AUTs were successfully stitched. An SMSE analysis was then carried out to
evaluate how well the stitched full-sphere patterns match the measurement data. Since
radiation patterns obtained with a single full-sphere measurement were not available for
our AUTs, the following approach was used for the analysis;

❼ top (hemisphere): These patterns were fixed (neither translated nor rotated)
during the stitching procedure and stitched patterns up to θtrunc could be compared
with the measured truncated patterns of the top hemisphere directly to compute the
SMSE.

❼ bottom (hemisphere): These patterns were translated and rotated during the
stitching procedure. The SWCs representing the stitched patterns thus had to be
reversed back to the initial coordinate system of the bottom hemisphere measurement
before computing the SMSE up to θtrunc.

The so-obtained mean and maximum SMSE values over all measured frequencies are shown
in Table 4.9, where it can be seen that the error levels are 20 dB and more larger than those
reported in the first two validation steps. Aside from measurement noise and other mea-
surement uncertainties common with NF testing, the extent of which was already implied
by the SNR values in Table 4.8, two sources of error which inevitably cause differences in
field patterns measured in different orientations could be identified; The interaction of the
support structure with the AUT and the coaxial cable routing-the change in position of
the support structure and the coaxial cable relative to the antenna is inevitable between
measurements in different AUT orientations. To gain better understanding of the reported

Table 4.9: Validation results for measurements of connectorized AUTs

frequency range
SMSE (top) SMSE (bottom)

mean max mean max

folded dipole 1.8GHz - 2.0GHz -29.6 dB -25.4 dB -28.5 dB -25.2 dB
UWB CMP 4GHz - 20GHz -31.2 dB -24.8 dB -31.2 dB -25.0 dB

increased SMSE levels, it is insightful to look at Figure 4.9, where the achieved error levels
are plotted over the whole measured frequency range for both partial measurements of the
UWB CMP antenna. Firstly, the figure reveals a ripple in SMSE levels which might give
the impression that the method performs better at some frequencies than at others. When
investigating this behavior, the ripple over frequency was compared to SNR estimates of
the respective measurements, which showed that those frequencies where the SMSE is
larger correspond to the frequencies where the SNR estimates were lower. This lead to the
conclusion that the worsened performance stems from measurement inaccuracies and not
from the pattern stitching method. Whether this is caused by interaction of the AUT with
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Figure 4.9: UWB CMP; SMSE over frequency

the coaxial cable, interaction with the support structure, or other sources of error, e.g.,
effects of rotary joints, cable mismatches, chamber reflections, etc., was not investigated
at this point, but the topic will be revisited later. In addition to the discussed ripple,
a general decrease of SMSE values with increasing frequency can be seen in Figure 4.9.
Investigating the radiation patterns of the antenna over frequency, it was found that the
back lobe of the antenna decreases in gain with increasing frequency, in turn increasing the
antenna´s directivity. Looking back at measurement orientations of the UWB CMP an-
tenna in Figure 4.8, the reason for better performance at higher frequencies should become
clear. Since the UWB CMP antenna radiates chiefly in the +x-direction, the influence of
both the cable and the support structure on the radiation patterns is reduced. In order
to confirm that this is indeed the source of the observed performance improvement, a
high-directivity dual-ridge horn antenna (DRHA) was also measured and processed with
the pattern stitching method. In the two orientations shown in Figure 4.10, the DRHA
was measured in steps of 100MHz in the frequency range from 4GHz to 10GHz. The
SMSE results, shown in Table 4.10, which were obtained in the same way as for the other
two antennas, confirmed the expected improvement. Concretely, a mean SMSE reduction
of about 6 dB was observed compared to the measurement results of the folded dipole an-
tenna. Compared to the UWB CMP antenna, the average improvement was around 4 dB,
and this lower observed improvement is mainly due to the impact of measurement results
at higher frequencies, where the UWB CMP has higher directivity. Since the SMSE values

Table 4.10: Validation results for a directive AUT

frequency range
SMSE (top) SMSE (bottom)

mean max mean max

DRHA 4GHz - 10GHz -35.0 dB -29.5 dB -34.9 dB -29.6 dB

of the DRHA were still relatively large compared to previous validation steps, the distribu-
tion of error over the measurement sphere was investigated to gain further insight. It was
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(a) (b)

Figure 4.10: DRHA in (a) top and (b) bottom measurement orientation

found that larger errors are concentrated predominantly in the measurement range above
θ = 90°, the range which is discarded in the final stitched patterns. An exemplary plot
can be seen in Figure 4.11, where the scaled square error (ϵ) distribution (normalized by
the largest measured field value as in the case of SMSE) for the upper measurement of the
DRHA at 7GHz is shown for both measurement polarizations. This finding implies that
the final SWCs can describe the measured patterns in the upper measurement hemisphere
rather well, but a mismatch between the top and bottom AUT orientation measurements
exists, which deteriorates the performance of the pattern stitching method. Having in
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Figure 4.11: Scaled square error distribution; top measurement of the DRHA at 7GHz

mind that the bottom part of the measurement is the part where the coaxial cable and
the support structure are located, it is reasonable to expect that the largest distortions in
the measured pattern due to their presence will also be located in the lower measurement
hemisphere. For this reason, an additional SMSE evaluation approach was implemented,
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following the same procedure as before but considering only measurement data from the
upper measurement hemisphere (up to θ = 90°) for each respective measurement. The
SMSE values obtained using this approach are listed in Table 4.11 for all three tested
antennas, along with the approximate error reduction compared to SMSE values obtained
for the whole measured θ-range, listed in Tables 4.9 and 4.10. Looking at the results, it
can be seen that the SMSE values in this reduced range are 9 dB or more below those re-
ported for the full measurement range. Overall, the stitched patterns match the measured
hemisphere patterns up to SMSE values between -35 dB and -44 dB. It should be noted

Table 4.11: SMSE results in a reduced θ-range up to θ = 90°

mean error reduc-
tion (top/bottom)

SMSE (top) SMSE (bottom)

mean max mean max

folded dipole 9 dB/9 dB -38.7 dB -36.3 dB -37.4 dB -35.2 dB
UWB CMP 10 dB/12 dB -41.6 dB -36.0 dB -43.0 dB -37.1 dB
DRHA 13 dB/11 dB -48.1 dB -43.9 dB -46.0 dB -42.1 dB

that the directive dual-ridge horn antenna was measured in different configurations using
different support structures, the detailed results of which were omitted from this disser-
tation for the sake of conciseness. In an attempt to minimize the effects of the support
structure, it was also measured using a block of low-permittivity material instead of the
wood structure shown in Figure 4.10. However, regardless of the configuration, especially
at frequencies where the SMSE was the largest, the changes in SMSE values were found
to be negligible. This lead to the conclusion that the impact of the support structure
was not a dominant source of error, which must thus come either from the effects of the
coaxial cable or general inaccuracies of the NF test range. While further investigation of
these sources of error and the potential approaches for their mitigation will be discussed
in Chapter 5, a reduction of error can intuitively be expected by simply excluding the
coaxial cable from the measurement setup. This is possible when measuring connectorless
active devices, which will be discussed in the remainder of this chapter.

4,3,2 Connectorless Devices

As already mentioned earlier, a measurement procedure was devised, capable of character-
izing battery-powered connectorless devices under test (DUTs). The procedure requires
the DUTs to transmit a CW signal at the frequency of interest, includes an additional refer-
ence antenna which maintains a constant orientation with regard to the DUT, and necessi-
tates a calibrated received power measurement at the probe antenna. The pattern stitching
method also had to be extended to work with measurement results of connectorless devices,
which was achieved by including two additional parameters into the alignment procedure
for compensation of the magnitude and phase offset between partial measurements stem-
ming from the modified measurement procedure. Both the measurement procedure and
the extension of the pattern stitching method are discussed in detail in Appendix C. By
using such devices, the influence of the coaxial cable on the radiation pattern can be omit-
ted and, therefore, an error reduction compared to connectorized AUTs was expected in
this validation step. Five connectorless test devices were used for validation of the stitch-
ing method. The first four were electronic shelf labels (ESLs) of different sizes, shown in
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Figure 4.12. They are equipped with a planar inverted-F antenna (PIFA), designed for op-
eration in the industrial, scientific, and medical (ISM) band between 2.4GHz and 2.5GHz.
All four were programmed to transmit a sequence of CW signals at the frequencies of in-
terest after receiving a wake-up pulse, as described in Appendix C. Due to an unknown

(a) (b) (c) (d)

Figure 4.12: ESLs used for validation of the stitching method; (a) ESL 1, (b) ESL 2, (c) ESL 3,
and (d) ESL 4

misalignment, which was inevitable when placing the antenna onto the support structure,
the maximum radial extents (MREs) used for computing the maximum polar order N were
larger than the theoretical MREs obtained when considering only their dimensions. Their
actual dimensions as well as the MREs used for computing N are listed in Table 4.12.

Table 4.12: ESL dimensions

length width height MRE

ESL 1 48mm 36mm 11mm 50mm

ESL 2 67mm 34mm 12mm 100mm

ESL 3 104mm 82mm 13mm 125mm

ESL 4 175mm 123mm 14mm 150mm

Before being stitched with the extended stitching algorithm from Appendix C, the DUTs
were measured in two different orientations, similar to the case of connectorized AUTs. The
first orientation, shown on the example of ESL 3 in Figure 4.13a, was used to represent
the top hemisphere measurement. Then, the DUTs were rotated by 180° around the
x-axis to obtain the second orientation for the bottom hemisphere, shown in Figure 4.13b.

(a) (b)

Figure 4.13: ESL 3 measurement in (a) top and (b) bottom orientation
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The fifth test object was a commercial hearing aid equipped with a custom-designed
antenna, also operating in the 2.4GHz ISM band. This DUT, measured in the two orien-
tations shown in Figures 4.14a and 4.14b, has a length of 52mm, a width of 40mm, and
a height of 9.5mm. For processing purposes, a slightly larger MRE of r0 = 50mm was
selected.

(a) (b)

Figure 4.14: Hearing aid in (a) top and (b) bottom orientation

As with connectorized AUTs, SNR estimates were first computed for all test objects. For
each of the DUTs, the SNR values are documented in Table 4.13, along with the order
N used for computing them. Large differences between the two partial measurements
could be observed especially for ESL 4, where this difference was more than 10 dB. These
variations could be traced back to differences in the received signal strength at the refer-
ence antenna in different measurement orientations (see Appendix C), where lower signal
strength resulted in increased noise in the pattern of the bottom measurement orientation.

Table 4.13: Measured data validation; estimated measurement SNR for connectorless DUTs

frequency range N
SNR (top) SNR (bottom)

mean min mean min

ESL 1 2.404GHz - 2.479GHz 12 38 dB 38 dB 38 dB 37 dB

ESL 2 2.404GHz - 2.479GHz 15 50 dB 47 dB 46 dB 43 dB

ESL 3 2.404GHz - 2.479GHz 16 47 dB 45 dB 43 dB 41 dB

ESL 4 2.404GHz - 2.479GHz 17 50 dB 47 dB 38 dB 36 dB

hearing aid 2.402GHz - 2.480GHz 12 40 dB 38 dB 41 dB 40 dB

The truncated patterns were then stitched together. As already observed with measure-
ment results of connectorized AUTs, the alignment procedure did not always converge to
the global minimum due to the high measurement noise levels and other measurement
inaccuracies. Nevertheless, by using all available information on the measured antenna´s
position and exploiting the advantage of using multiple measurement frequencies, a good
starting point could be found for all DUTs, which in turn led to successful convergence
of the stitching method. Since full-sphere radiation patterns were not known for connec-
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torless DUTs either, the same procedure as in the case of connectorized AUTs was used
to evaluate the error of the final stitched results, observing errors in the top hemisphere
measurement and errors in the bottom hemisphere measurement separately. With con-
nectorless DUTs, the bottom hemisphere measurement correction includes an additional
phase and magnitude correction according to (C.3) during the stitching procedure. Along
with the translation and rotation to the bottom hemisphere measurement´s coordinate
system, these changes had to be reverted for SMSE evaluation on data from the bottom
hemisphere measurement. The mean and maximum SMSE values over frequency were
then found for both partial measurements, shown in Table 4.14. Compared to the re-

Table 4.14: Validation results of connectorless DUTs

frequency range
SMSE (top) SMSE (bottom)

mean max mean max

ESL 1 2.404GHz - 2.479GHz -30.1 dB -29.3 dB -30.4 dB -30.2 dB
ESL 2 2.404GHz - 2.479GHz -30.9 dB -30.0 dB -31.4 dB -31.0 dB
ESL 3 2.404GHz - 2.479GHz -27.3 dB -26.3 dB -27.4 dB -26.6 dB
ESL 4 2.404GHz - 2.479GHz -26.9 dB -25.6 dB -27.2 dB -26.7 dB
hearing aid 2.402GHz - 2.480GHz -29.4 dB -28.9 dB -29.2 dB -29.0 dB

sults of connectorized AUTs from Table 4.9, ESL 1, ESL 2, and the hearing aid show
marginally better SMSE results, while results of ESL 3 and ESL 4 are slightly worse than
those of the tested low-directivity connectorized AUTs. As was done during validation
with connectorized antennas, the errors were also evaluated in a reduced θ-range up to
θ = 90°. The results are listed in Table 4.15, where it can be seen that a lesser improve-
ment was typically achieved compared to the results of connectorized antennas shown in
Table 4.11. Further, the results show that the differences in SNR between the top and

Table 4.15: Validation results of connectorless DUTs in a reduced θ-range up to θ = 90°

mean error reduc-
tion (top/bottom)

SMSE (top) SMSE (bottom)

mean max mean max

ESL 1 5 dB/4 dB -35.1 dB -34.7 dB -34.2 dB -33.6 dB
ESL 2 9 dB/5 dB -39.4 dB -38.2 dB -36.8 dB -35.9 dB
ESL 3 10 dB/7 dB -37.2 dB -35.6 dB -34.6 dB -34.4 dB
ESL 4 9 dB/5 dB -36.2 dB -34.7 dB -32.4 dB -31.6 dB
hearing aid 6 dB/5 dB -35.8 dB -35.1 dB -34.5 dB -34.3 dB

bottom measurement orientation translate to differences in the error reduction achieved
by observation in the reduced range of θ-angles. This could be expected since the weak
signal received at the reference antenna, which was the identified source of lower SNR
values for bottom hemisphere measurements for some DUTs, uniformly distorts measured
ratioed field readings over the whole measurement surface. In turn, this causes larger
mismatch between measured patterns and the physically permissible patterns which can
be described by a set of SWCs of the given maximum polar order N .
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In conclusion, the SMSE results from Tables 4.14 and 4.15 show similar values as the
results of the omnidirectional folded dipole antenna from Tables 4.9 and 4.11, while results
of the UWB CMP showed lower mean SMSE values due to the increased directivity at
higher frequencies. The expected improvement of results due to exclusion of the coaxial
cable from the measurement environment could thus not be confirmed. However, caution
should be taken when directly comparing the reported results of connectorized AUTs
and connectorless DUTs since the test objects are of different sizes and operating at
different frequencies. Moreover, replacing a dedicated measurement device, i.e., vector
network analyzer (VNA), with an active device´s consumer electronics RF transmitter chip
inevitably deteriorates the accuracy of the measured patterns in terms of both magnitude
and phase errors. Overall, validation results using measurement data have shown a large
performance deterioration compared to the validation results using synthetic data and
EM simulation data, which required further analysis of the various error sources present
in practical measurements. This analysis deserves special attention and will be presented
in the following chapter, dedicated to the practical limitations of accuracy in pattern
stitching.
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In Chapter 4, large differences between the error levels for tests on synthetic data, elec-
tromagnetic (EM) simulation data, and measurement data could be observed during the
validation process. By stitching noiseless synthetic radiation patterns, the error intro-
duced by the stitching method itself could be quantified, which remained below -80 dB
for all realistic test cases with misalignments up to 3λ, reaching -43 dB in the extreme case
where a misalignment distance of more than 20λ was used. The introduction of simulation
noise, inherent to any field pattern obtained via numerical EM simulation, resulted in an
increase of error levels for test objects at higher frequencies, however, the largest observed
error levels were still in the range of -38 dB. Up to this point, an ideal measurement
environment was considered, where the antenna under test (AUT) is located in free space
and can be enclosed by a sphere with a radius of r0, which represents the maximum radial
extent (MRE) of the antenna.

Considering a realistic measurement environment, such as the near-field test range at
TU Wien shown earlier in Figure 1.2, it is impossible to meet these conditions in practice.
Various sources of uncertainties, stemming predominantly from mechanical, electrical, and
computational inaccuracies, are inherent to any spherical near-field antenna measurement.
These inevitably distort measured radiation patterns and result in deviations from a theo-
retical solution of the wave equation which can be represented as a series of spherical wave
coefficients (SWCs). Among these sources of error, there are two that have an especially
significant impact on the proposed pattern stitching method. Firstly, the support struc-
ture onto which the antenna to be measured is mounted, which is the reason for having to
work with truncated field patterns in the first place, also directly interacts with the AUT´s
radiated fields, inevitably changing their spatial distribution. Secondly, cable-connected
AUT measurements require a connection between the vector network analyzer (VNA) and
the AUT by means of a coaxial cable, which again interacts with the radiated fields and
distorts the measured field pattern. When the AUT is measured in multiple orientations
in an attempt to characterize its behavior on the whole sphere surface, the relative posi-
tion of the support structure and the coaxial cable with regard to the antenna is changed
between these measurements. These issues cause disagreements between partial truncated
measurements to be stitched, ultimately resulting in an increased error in the stitched
pattern and, in extreme cases, its failure.

Due to these imperfections compared to a perfect free-space environment, much larger
mismatches between measured patterns and the final stitched patterns have been observed
during the validation step in which actual measurement data were used. Here, the errors
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were found to be in the range between -35 dB and -25 dB. This chapter is dedicated
to the analysis of these practical limitations and the possibilities for their mitigation.

5,1 Sozrces of Error in Spherical Near-Field Measzrements

As mentioned above, a variety of sources of error common to all spherical near-field mea-
surements exist, originating from either mechanical, electrical, or computational inaccu-
racies. They will be discussed here briefly for the sake of completeness, while an in-depth
analysis of these sources of error was out of scope of this work. Generally, the sources
of error involved in a spherical near-field antenna measurement can be divided into six
distinct categories; mechanical errors, electrical errors, probe-related errors, stray signal
errors, acquisition errors, and processing errors. According to [60, Chapter 9], there are 21
individual sources of error within these six categories, as listed in Table 5.1. Error source
18, scan area truncation, of course, has been the main motivation for the research done in
this dissertation. The influence of the support structure, which has been mentioned earlier
in this chapter and plays a significant role in pattern stitching, is listed under 17. Errors
due to the coaxial cable have not been included in this extensive list of errors, presumably
due to its negligible effect when measuring directive antennas and because the cable is of-
ten considered part of the AUT. It belongs in the same category of error sources as AUT
support scattering, i.e., stray signal errors. One should note that not all listed sources
of error are applicable in all measurement systems and configurations. The probe-related
errors 12 and 13, for example, are only applicable when using dual polarized probe anten-
nas, which are not used in the NF range at TU Wien. Furthermore, the sampling point
offset under 19 can be excluded from measurements by stopping at each measurement
point to measure the signals, coming at the cost of increased measurement times. Lastly,
the total radiated power computation, listed in processing errors under 21, is a specific
computation not generally required when gain calibration is done by substitution with a
standard gain horn (SGH) antenna.

All remaining error sources listed in Table 5.1 contribute to the overall measurement
error in the NF range at TU Wien and also affect the accuracy of the pattern stitching
method. To determine the level of inaccuracy that each of these terms can cause, an
uncertainty analysis would be required, which is not a trivial task in practice. Since
the far-field pattern is obtained by transformation from sampled near-field data, a direct
evaluation of uncertainties based on observed errors, as can be done in the case of far-
field measurements, is not possible. In [19], the authors therefore suggest the use of EM
simulations for their assessment. They emphasize the dependency of such an analysis on
the nature of the AUT, indicating that it should be done for the given antenna under
test of interest. This procedure could also be extended to test the impact of these error
sources on final stitched patterns, which was not done at this point due to time constraints.
Instead, the signal-to-noise ratio (SNR) level estimates reported in Tables 4.8 and 4.13
for validation measurements were used to obtain an estimate for the overall measurement
error containing all individual contributions from Table 5.1. These estimates, ranging from
36 dB to 50 dB, give an indication that the overall measurement error is lower than the
error levels of final stitched patterns reported in Chapter 4. This suggests that the errors
attributed to the coaxial cable and the support structure are indeed the limiting factors
of accuracy of the pattern stitching method and thus deserve further attention.
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5.1 Sources of Error in Spherical Near-Field Measurements

Table 5.1: Sources of error in spherical near-field antenna measurements [60, Chapter 9]

error source description

mechanical
errors

1 axes intersection
lateral displacement between the horizontal
and vertical axes

2 axes orthogonality
horizontal and vertical axes not perfectly
orthogonal

3 horizontal pointing
the horizontal axis not pointing to the probe
antenna at θ = 0°

4 probe vertical position
vertical displacement of the probe from the
horizontal axis

5
probe horizontal and
vertical pointing

horizontal and vertical mispointing of the
probe,s z-axis

6 measurement distance
inaccurate distance between the AUT and
the probe

electrical
errors

7
amplitude and phase
drift

systematic amplitude and phase change at
still AUT

8
amplitude and phase
noise

random amplitude and phase change at still
AUT

9 leakage and crosstalk
interfering extraneous signals on channel
paths

10 amplitude nonlinearity
nonlinear relationship between measured
values and input signal level

11
amplitude and phase
shift in rotary joints

systematic amplitude and phase change in
rotary joints at different angles

probe-related
errors

12
amplitude and phase
channel balance

amplitude and phase imbalance when using
two polarization channels

13
polarization amplitude
and phase

amplitude and phase differences when using
dual-polarized probes

14 pattern knowledge
deviations from the known/assumed probe
pattern

stray signal
errors

15 multiple reflections
changes in the received signal due to
interactions between the AUT and the probe

16 room scattering
changes in the received signal due to finite
reflectivity of the anechoic chamber

17
AUT support
scattering

changes in the received signal due to
scattering from the support structure

acquisition
errors

18 scan area truncation
errors due to acquisition only on a partial
sphere surface

19 sampling point offset
position offset when the positioner
continuously rotates during measurement

processing
errors

20
spherical mode
truncation

changes in patterns due to SWC truncation
at the calculated maximum polar order N

21 total radiated power
total radiated power (TRP) numerical
integration errors
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5.2 Influence of a Coaxial Cable

5,2 Inflzence of a Coaxial Cable

Following the conclusions drawn in the previous section, the first limiting source of in-
accuracy when using the pattern stitching method to be investigated was the influence
of a coaxial cable on stitched patterns, where major differences between measured field
patterns of different antenna orientations can be expected. In order to analyze the severity
of its impact, comparative EM simulations and measurements have been done, the results
of which will be presented in the following two subsections.

5,2,1 EM Simzlations

In the first step, analysis using EM simulations was done by including a simplified cable
model to a model of an antenna standing in free space. Under the assumption that radiat-
ing fields interact only with the outer conductor of a cable, a simple rod with a diameter
of 5mm and a length of 20 cm was modeled to represent the coaxial cable. Here, it should
be noted that an imbalance between current flowing on the inner conductor and current
flowing on the outer conductor of a coaxial cable can lead to sheath currents and cable ra-
diation in practice. The analysis on the influence of a coaxial cable on radiation patterns
considered in this section has been reduced to scattering effects under the assumption
that potential sheath currents can be suppressed using common countermeasures, such as
a balun, ferrite beads, or similar.

The metal rod representing the simplified cable model was added to the antenna model
of a planar inverted-F antenna (PIFA) shown earlier in Figure 3.8, designed for operation
at 2.4GHz, which was already used for tests in previous chapters of this work. The cable
was routed such that it points downwards from the antenna, in the negative z-direction,
as would be the case during a measurement in the near-field test range at TU Wien.
This orientation is shown in Figure 5.1a. For the second antenna orientation, shown in
Figure 5.1b, the antenna was rotated by 180° around the y-axis while the cable remained
fixed in its position. To avoid meshing changes between the two configurations, both
coaxial cable models were included in both configurations and the material of the one

(a) (b)

Figure 5.1: Influence of a coaxial cable; (a) simulation of the top hemisphere measurement and
(b) bottom hemisphere measurement when the antenna is oriented horizontally

83



5.2 Influence of a Coaxial Cable

unused in the given configuration was assigned to be vacuum. To allow for a comparison
with a free-space cableless configuration, an additional simulation was carried out where
both cable models were set to vacuum.

In the above example, the antenna was oriented horizontally with its ground plane lying
in the xy-plane. Considering the dimensions of the PIFA and the coordinate system of
the antenna range in Figure 3.1, this is the natural orientation where the AUT is laid on
the support structure. As an alternative orientation, the PIFA was rotated by 90° around
the y-axis into a vertical orientation with regard to the coordinate system, resulting in
the two simulation configurations shown in Figure 5.2. This way, the cable is aligned with
the current flow in the main part of the antenna as well as with the strongest radiation
null. As for the horizontal case, three simulations were carried out, two with the presence

(a) (b)

Figure 5.2: Influence of a coaxial cable; (a) simulation of the top hemisphere measurement and
(b) bottom hemisphere measurement when the antenna is oriented vertically

of a coaxial cable and one where both cables were excluded. To determine to what extent
the presence of a coaxial cable in the measurement environment influences stitched pat-
terns, simulated patterns of the antenna with a cable in both considered configurations,
shown in Figure 5.1 for the horizontal antenna orientation and in Figure 5.2 for the ver-
tical orientation, were first processed with the pattern stitching method. Then, these
stitched patterns were compared to the free-space patterns and the scaled mean square
error (SMSE) values were computed both for near-field patterns and for far-field patterns.
The results are listed in Table 5.2, where it can be seen that results of both test cases
show large discrepancies compared to the free-space pattern. For the horizontal antenna
orientation, the errors are of the same order as the largest measurement errors reported
in Table 4.9, where SMSE levels for validation measurements of connectorized AUTs were

Table 5.2: Influence of a coaxial cable; simulation results

pattern stitching method full-sphere measurement

NF SMSE FF SMSE NF SMSE FF SMSE

horizontal -25.7 dB -25.5 dB -20.5 dB -20.5 dB
vertical -18.5 dB -18.3 dB -14.1 dB -14.1 dB
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5.2 Influence of a Coaxial Cable

shown. Results for the vertical antenna orientation show even higher error levels that
are about 7 dB larger than those of the horizontal orientation. Investigating this large
difference in error levels between the two orientations, its origin could be traced back to
the larger coupling between the antenna and the cable model in the vertical case, inducing
stronger currents on the ungrounded cable model, which, in turn, resulted in stronger
pattern distortions. Inspecting the radiation pattern, it became clear that neither of these
cable routings is located within the radiation nulls of the antenna and significant inter-
action of the antenna´s radiated fields with the cable model could be observed. In an
attempt to reduce this interaction as much as possible, an alternative cable routing was
chosen where the cable models were aligned with the radiation nulls. The chosen two
simulation orientations along with the radiation pattern of the antenna in free space are
shown in Figure 5.3. Simulation patterns of these two null-aligned cable routing models

(a) (b)

Figure 5.3: Influence of a coaxial cable; (a) simulation of the top hemisphere measurement and
(b) bottom hemisphere measurement when the cable is aligned with the radiation
null

were then processed in the same way as previous models and the results are shown in
Table 5.3. An improvement of about 11.5 dB compared to the results of the vertical orien-
tation model and about 4.5 dB compared to the results of the horizontal orientation model,
reported in Table 5.2, could be observed. These findings demonstrate the importance of
cable routing for error reduction in pattern stitching and care should be taken to route
the measurement cable in such a way that its interaction with the antenna is minimal,
which is a task that needs to be done individually for each AUT.

Table 5.3: Influence of a coaxial cable; simulation results

pattern stitching method full-sphere measurement

NF SMSE FF SMSE NF SMSE FF SMSE

null-aligned -30.3 dB -29.9 dB -26.2 dB -26.3 dB

In order to put results of the pattern stitching method into perspective, untruncated
simulation patterns from configurations in Figures 5.1a and 5.3a were also compared to
those of the antenna in free space. Here, the untruncated simulated pattern in the presence
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5.2 Influence of a Coaxial Cable

of a cable was used to represent a simplified measurement environment with a measurement
cable but without a support structure. NF and FF SMSE were evaluated to estimate how
well such a full-sphere measurement can represent the antenna´s radiation pattern in
free space. The results have also been listed in Tables 5.2 and 5.3, where one can observe
an error increase of 4 dB - 5 dB compared to the pattern stitching method for both
antenna orientation pairs. This indicates that, when using the pattern stitching method,
antenna radiation patterns can be obtained which resemble free-space radiation patterns
of an antenna more closely than those of a classical full-sphere measurement. Considering
the nature of the stitching procedure, this does not come as a surprise. Since only the
upper hemisphere data of both truncated measurements are used, the part of the radiation
pattern most influenced by the coaxial cable is discarded in the stitched patterns. This
can best be demonstrated by comparing the stitched pattern SMSE of the horizontally
oriented antenna from Figure 5.1 to the SMSE of the stitched pattern using the same
simulation data where, instead of stitching the hemispheres opposite from the cable model
(stitched tops), hemispheres containing the cable model (stitched bottoms) were used
for pattern stitching. The results of this comparison, presented in Table 5.4, demonstrate
an error increase of approximately 7 dB when stitching bottom hemispheres instead of top
hemispheres. Further, a full-sphere measurement simulation in this case outperforms the
pattern stitching method, which is not surprising considering that stitching the bottom
hemispheres can be interpreted as stitching those parts of both radiation patterns which
are most distorted by their respective coaxial cables.

Table 5.4: Influence of a coaxial cable; advantage of pattern stitching over full-sphere measure-
ments

pattern stitching method full-sphere measurement

NF SMSE FF SMSE NF SMSE FF SMSE

stitched tops -25.7 dB -25.5 dB -20.5 dB -20.5 dB
stitched bottoms -18.4 dB -18.4 dB -20.5 dB -20.5 dB

Regardless of the measurement orientation, relatively high errors were observed both for
pattern stitching and conventional full-sphere measurements. These error levels can be
considered an approximate level of achievable accuracy when omnidirectional antennas
are measured. In practice, error levels will depend both on the type of the AUT and the
routing of the coaxial cable. To minimize the impact of the cable, optimal routing thus
has to be considered separately for each case.

5,2,2 Measzrements

In Section 4.3, two connectorized AUTs were measured and processed with the stitching
method along with several active connectorless DUTs which were measured and processed
with an adapted approach (presented in Appendix C) devised specifically for connector-
less DUTs. Contrary to expectations, the observed scaled mean square error (SMSE)
levels of connectorless DUTs were in the same order as those reported for connectorized
AUTs, which could give the misleading impression that the influence of a coaxial cable
is negligible in the overall error of the pattern stitching method. However, as already
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5.2 Influence of a Coaxial Cable

demonstrated with the help of EM simulations, large variations in error levels can be
observed between simulations with different cable routings. This directly relates to the
electric field distribution of a given AUT, which is a unique property of the antenna at
hand. As such, the measurement data results in Appendix C are not directly comparable.
To be able to quantify the influence of a coaxial cable on the measurement accuracy, a
direct comparison of results of the same AUT measured with and without a cable was
needed. For this purpose, the same device had to be measured and stitched both with
the classical connectorized pattern stitching method and with the adapted method for
connectorless DUTs. To do so, a coaxial connector was soldered onto the printed circuit
board (PCB) of ESL 4, which was previously measured as a connectorless device. The
connector was placed directly at the feed of the PIFA, as shown in Figure 5.4a. A short
cable was attached to the connector and routed out of the housing through a small cutout,
after which the complete DUT including batteries was reassembled. The connectorized
ESL 4, which can be seen in Figure 5.4b, was then measured at the same frequencies as
in Section 4.3 and in the same two measurement orientations as shown on the example
of ESL 3 in Figure 4.13, this time as a connectorized device. The measured patterns

(a) (b)

Figure 5.4: Connectorized ESL 4; (a) PCB and (b) assembled device

were then processed with the stitching method and SMSE values of partial measurements
were computed in the same way as in Section 4.3. In Table 5.5, the SMSE values of this
remeasured connectorized ESL 4 are listed along with SMSE values of the connectorless
ESL 4, which were presented already in Table 4.14. These results clearly demonstrate the

Table 5.5: Comparison; connectorless and connectorized measurement of ESL 4

SMSE (top) SMSE (bottom)

mean max mean max

ESL 4 connectorless -26.9 dB -25.6 dB -27.2 dB -26.7 dB
ESL 4 connectorized -19.9 dB -19.7 dB -20.3 dB -20.1 dB

severity of the influence of the coaxial cable, which was found to cause an error increase of
approximately 6 dB to 7 dB, and the results are within the range of EM simulation results
in Tables 5.2 and 5.3. Measurements of active connectorless DUTs therefore have a clear
advantage in terms of accuracy when compared to measurements of connectorized AUTs
and should therefore be the preferred measurement method for pattern stitching whenever
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5.3 Influence of the Support Structure

the DUT permits it. At this stage, it should also be noted that, in contrast to the EM
simulations, the results in Table 5.5 also include potential cable radiation due to sheath
currents, which was not investigated in this work, as well as the influence of the support
structure, which will be discussed in the remainder of this chapter.

5,3 Inflzence of the Szpport Strzctzre

The second source of error to be investigated was the influence of the support structure.
Depending on the nature of the AUT, different materials can be used for the support
structure. If high-gain antennas are measured, oriented away from the support struc-
ture with their main radiation beam, the material used for the support structure plays
a lesser role, allowing for materials with arbitrary electromagnetic properties, i.e., arbi-
trary electric permittivity ϵ and magnetic permeability μ. If, on the other hand, low-gain,
omnidirectional antennas are measured, the interaction between the radiated fields and
the support structure becomes important. In order to mimic free-space conditions, the
obvious choice thus become materials with EM properties closely resembling those of air.

5,3,1 Szpport Strzctzres

To the best of my knowledge, the best choice for materials with EM properties closely
imitating air are foams from the ROHACELL family [61]. During measurements used for
pattern stitching method validation (Chapter 4), a support structure made from discon-
tinued ROHACELL 31 IG foam was used, shown in Figure 5.5a. The supplier reported
measured values of ϵr = 1.05 and tan δ = 0.0006 at 2.8GHz [62]. This structure had an
unnecessarily large surface and, furthermore, its performance was influenced by impurities,
such as layers of glue and carbon dust from the absorbers used in the anechoic chamber.
A new, more compact support structure was thus built using ROHACELL 31 HF, which
offers the best dielectric performance, with reported dielectric constant of ϵ,r = 1.05 and
a loss tangent of tan δ < 0.0002 at 2.5GHz [61]. This structure is shown in Figure 5.5b
and was constructed specifically for use with connectorless DUTs, where no coaxial cable
is attached to the device under test.

The hearing aid connectorless DUT, which was shown earlier in Figure 4.14, was remea-
sured in the same two measurement orientations using the new support structure and
processed with the stitching method. Just as in Section 4.3, the final stitched patterns for
all frequencies were compared to measurement data to determine how well they match.
Mean and maximum SMSE values over frequency are listed in Table 5.6 for both the old
ROHACELL 31 IG support structure and the new ROHACELL 31 HF support structure.
As can be seen, an improvement of approximately 3 dB could be achieved by using the new
support structure. This comparison should not be interpreted as a direct comparison be-
tween the two materials used since impurities of the old support structure and the differing
dimensions also have an impact on the reported error values. Instead, it is a comparison be-
tween the existing support structure that was generally used for measurements at TUWien
and the optimized support structure, designed to minimize its impact on the overall error
of the pattern stitching method. Even with the observed improvement, the reported error
levels are relatively high considering that ROHACELL 31 HF is the material that resembles
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(a) (b)

Figure 5.5: Support structure comparison; (a) the old structure made from ROHACELL 31 IG
and (b) the new ROHACELL 31 HF structure

Table 5.6: Support structure comparison; hearing aid

frequency range
SMSE (top) SMSE (bottom)

mean max mean max

31 IG 2.402GHz - 2.48GHz -29.4 dB -29.0 dB -29.2 dB -29.0 dB
31 HF 2.402GHz - 2.48GHz -32.7 dB -32.4 dB -31.4 dB -31.2 dB

air the closest in terms of its EM properties and, as such, is the most suitable material for
constructing a support structure. To verify whether these are indeed the practical limits
due to the support structure when measuring omnidirectional antennas, further measure-
ment and EM simulation tests have been carried out, presented in the following sections.

5,3,2 SGH Measzrements

While the overall stitching errors reported in Table 5.6 gave an indication of the achievable
SMSE levels, it is impossible to confirm whether these stem from the support structure,
other measurement uncertainties, or the stitching method itself. To analyze the influence
of ROHACELL on measured field patterns while excluding potential errors introduced by
the stitching method, further measurements were done using a standard gain horn (SGH)
antenna, SGH430, operating in the frequency range between 1.7GHz and 2.6GHz. Two
disks of ROHACELL 31 HF [61] with a diameter of 47 cm, which just covers the physical
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5.3 Influence of the Support Structure

aperture of the antenna, were used for testing. One disk had a thickness of 2 cm and the
other was 10 cm thick. The antenna was measured in the near-field test range at TU Wien
three consecutive times, once without ROHACELL, once covered with the thinner of the
two disks and once with the thicker disk, as shown in Figures 5.6a to 5.6c. To estimate the

(a) (b) (c)

Figure 5.6: Influence of ROHACELL 31 HF; (a) antenna measurement without ROHACELL,
(b) with a 2 cm thick disk, and (c) with a 10 cm thick disk

level of error that these two disks introduce, the patterns of both cases where the AUT
was covered with a ROHACELL 31 HF disk were then compared to those of the uncovered
antenna. In both cases, the scaled mean square error (SMSE) between measured patterns
of the uncovered antenna and measured patterns with the respective ROHACELL 31 HF
disk were computed for all measured frequencies, once using only magnitude information
of the measured patterns and once using measured complex field values. The results are
listed in Table 5.7, where the mean SMSE over all frequencies and the maximum observed
deviation from the mean value are given for both cases.1 Considering only magnitude

Table 5.7: Influence of ROHACELL 31 HF; SGH measurement results

magnitude SMSE total SMSE

ROHACELL disk: 2 cm -54.2 dB±4.3% -45.3 dB±2.5%
ROHACELL disk: 10 cm -51.6 dB±6.9% -31.9 dB±3.1%

information, one can see that the SMSE values remain below -50 dB for both disks, while
the total SMSE values are significantly larger. This suggests that the observed errors
caused by the inclusion of ROHACELL 31 HF disks mainly stem from phase distortion of
measured patterns and less from dielectric losses. Furthermore, the total SMSE of the 2 cm

1It is important to note that the only changing parameter between the three measurements shown in
Figure 5.6 was the introduction of the ROHACELL 31 HF disks. Thus, all systematic errors remained
unchanged between consecutive measurements and cancel out during comparison. Random errors, on
the other hand, which originate from positioning repeatability, thermal noise, etc., could not be excluded
from the measurement and inevitably influence the results. However, it was found that their influence is
negligible compared to the large increase of error between results of the two test disks reported in Table 5.7.
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thick disk is more than 13 dB lower than that of the 10 cm disk, demonstrating the expected
relation of the phase distortion with the thickness of the dielectric material. The severity
of the influence of a support structure, even when using the low-loss, low-permittivity
ROHACELL 31 HF, could therefore be confirmed, limiting the accuracy of measured
radiation patterns of omnidirectional antennas. Since propagation in a dielectric medium
causes a phase delay compared to propagation in free space, and this phase delay increases
proportionally to the frequency, the impact of the support structure on the SMSE will also
increase at higher frequencies. Even larger errors must therefore be expected at higher
frequencies, which will limit the achievable accuracy of the pattern stitching method.

5,3,3 EM Simzlations

In an attempt to mimic the influence of the manufactured ROHACELL 31 HF support
structure on stitched truncated patterns and compare it to measured full-sphere patterns
with that same support structure, two cubes with a 10 cm edge length were added to the
simulation model of the planar inverted-F antenna (PIFA) from Figure 3.8, covering its
top and bottom surface, to obtain the model shown in Figure 5.7. To avoid errors due to

Figure 5.7: Influence of ROHACELL 31 HF; simulation model

differences in meshing, this structure was simulated thrice while maintaining a constant
mesh. First, it was simulated with vacuum assigned to both cubes to represent the AUT
in free space. Then, the bottom cube was assigned to have the electromagnetic properties
of ROHACELL 31 HF, representing the top hemisphere measurement. Lastly, the bottom
cube was changed back to vacuum and the top cube was assigned to be ROHACELL 31
HF, representing the bottom hemisphere measurement. Field patterns of all were exported
and processed in the following manner;

❼ truncated pattern stitching: For pattern stitching, the top and bottom hemi-
sphere simulated patterns were first truncated at θtrunc = 140° and then stitched
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together, thus giving the stitched NF and FF patterns.

❼ full-sphere simulation: Even in NF ranges capable of full-sphere measurements,
the support structure is an inevitable part of any practical measurement. The sim-
ulated pattern with the bottom cube made from ROHACELL 31 HF was used to
compute the NF and FF patterns using SN2FFT.

These patterns were then compared to the free-space patterns obtained with the same mesh
by computing the NF SMSE and the FF SMSE. Results are shown in Table 5.8, where it
can be seen that error levels when using the truncated pattern stitching method are at
approximately -26.5 dB. These are somewhat larger than the results for the hearing aid
presented in Table 5.6, but are in the same range with errors reported for larger electronic
shelf labels (ESLs) in Table 4.14, leading to the conclusion that, also here, the type and
orientation of the AUT have a significant impact on the results. Looking at FF SMSEs
obtained from full-sphere simulations in the presence of a support structure, the results
for the stitched patterns show a marginal error increase of 0.4 dB to 0.6 dB. This confirms
that the limitations of the support structure when measuring omnidirectional antennas are
inherent to any antenna measurement and are not an issue specific to pattern stitching.

Table 5.8: Influence of ROHACELL 31 HF; simulation results

NF SMSE FF SMSE

truncated pattern stitching -26.6 dB -26.4 dB
full-sphere measurement -27.0 dB -27.0 dB

5,4 Szmmary

The analysis of practical limitations of accuracy of the proposed pattern stitching method
confirmed that, especially for omnidirectional antennas, the coaxial cable and support
structure play a dominant role in the accuracy of the final stitched pattern. They were
shown to limit the accuracy of stitched patterns to an SMSE range between-20 dB and-30 dB.
Other sources of error commonly present in spherical near-field measurements were also
briefly discussed, but their impact was estimated to be well below the aforementioned
SMSE levels and an extensive analysis of each source was not done at this stage.

While large variations in SMSE were observed between different coaxial cable routing
schemes, the simulation results were generally found to match well with the results ob-
tained during method validation with measurement data, presented in Section 4.3. For the
chosen test antenna, the best cable routing practice was demonstrated, where the cable
was aligned with the radiation nulls of the antenna. By doing so, scaled mean square
error (SMSE) levels of approximately -30 dB could be achieved. Moreover, comparing
simulation data containing a coaxial cable model to those of an antenna in free-space, it
was shown that the stitching method can outperform the classical full-sphere measurement
due to the fact that the partial patterns stitched together represent areas of the measure-
ment sphere that are least influenced by the coaxial cable. When comparing measurement
results of the same AUT, first measured as an active connectorless DUT and then with
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a coaxial connector attached to the DUT´s antenna, an SMSE increase of 6 dB was ob-
served in the connectorized measurement results. This highlights the benefit of avoiding
cable-connected measurements whenever permissible by the DUT at hand.

By measuring connectorless DUTs, the coaxial cable can be omitted, allowing to evalu-
ate the influence of the support structure on accuracy. A connectorless DUT was first
measured using a support structure made from the discontinued ROHACELL 31 IF foam
(assembled with glue of unknown electrical properties and covered with carbon dust from
the absorbers), which is typically used in the NF range at TUWien. To minimize the influ-
ence of the support structure, a new structure was constructed using the high-performing
ROHACELL 31 HF foam, which was the material found to resemble air the closest in
terms of its electromagnetic properties. Using this material can be considered best prac-
tice when measuring omnidirectional antennas. Comparing the results to those of the
old support structure, this has brought an improvement of 3 dB, leading to SMSE values
around -32 dB. Further tests have confirmed that these SMSE values are indeed realistic,
even with an antenna support made from ROHACELL 31 HF. They reflect the accuracy
limitations imposed by the support structure. As with the coaxial cable, test simulations
were also done to compare the accuracy of the pattern stitching method to the accuracy of
a classical full-sphere measurement. These tests have shown negligible differences between
the two approaches.

Lastly, it should be noted that all values reported in this chapter were example-specific
and can only serve as a rough estimation of the general achievable accuracy. As such, best
cable routing and measurement orientations should be determined separately for each
AUT/DUT of interest.
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6 Conclzsion and Oztlook

This dissertation addressed the conceptualization and implementation of field pattern
stitching as a potential approach for tackling a common issue in the field of spherical
antenna measurements, pattern truncation, which arises from the physical impossibility
of placing an antenna independently and unobstructed in free space during measurement.
The antenna under test (AUT) is inevitably mounted on some support structure, which
limits the validity of the measurement data and often prevents measurements in certain
areas of the measurement sphere. This issue is particularly problematic when measuring
omnidirectional antennas, where it is impossible to orient the AUT such that the energy
radiated in the area not covered by the measurement is negligible. Besides missing infor-
mation, truncation also causes errors in the area of the sphere covered by the measurement
when the AUT is measured in near field (NF) and transformed to far field (FF) by the
commonly used Fourier transform (FT)-based near-to-far-field transformation technique.
While some research on truncation error reduction has been done in [23-26], none of these
approaches can accurately extrapolate field patterns to the missing, truncated area of the
measurement sphere in the general case.

The proposed pattern stitching method makes use of two measurements of the AUT in
different measurement orientations, which must then be aligned to the same coordinate
system. To do so, the method uses spherical wave coefficients (SWCs) and the underlying
theory of spherical wave expansion, commonly used in spherical near-field measurements,
which requires both magnitude and phase information of measured fields. The theoretical
foundation of spherical near-field measurements was thus introduced in Chapter 2, with
particular emphasis on the sign convention for the time/space dependency of electromag-
netic waves. A transformation algorithm following the sign convention commonly used in
electrical engineering was implemented in Matlab [44], named spherical near-to-far-field
transformation (SN2FFT), which uses exp(jωt) for time dependency and exp(-jkr) for
space dependency.

Building on the theory of spherical waves, the concept of pattern stitching was then
presented in Chapter 3, where the implementation of all three fundamental steps in the
stitching procedure was discussed in detail for the case of truncated patterns obtained from
two measurement orientations. The first step focuses on the computation of SWCs from
truncated measurements, named truncated SWCs, which must accurately represent the
measured truncated fields. Since the common, Fourier transform (FT)-based technique
for computing SWCs requires full-sphere patterns and leads to truncation error when full-
sphere information is not available, truncation error reduction techniques must be used.
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Three approaches capable of reducing truncation errors were implemented and evaluated
extensively, the iterative algorithm [23], the least squares (LS) matrix method [43], and
the FFT/Matrix method [42,46]. It was found that the coefficient matrices of both matrix
methods, which are used to compute the LS solution, are in general ill-conditioned when
using truncated patterns, which leads to high noise sensitivity. By introducing a tolerance
factor δ for singular value (SV) truncation, computed using either known or estimated
signal-to-noise ratio (SNR), this sensitivity was managed, enabling the methods to be
effectively applied to noisy data. While an expansion of computed truncated SWCs to
far field results in large errors in radiation patterns for all methods, they can accurately
describe field patterns in the initial measurement range at the measurement distance,
fulfilling the requirements for the pattern stitching method. A comparison of computation
times and scaled mean square errors (SMSEs) has shown that the FFT/Matrix method
outperforms other methods in terms of both time and error levels and, thus, was the
preferred method chosen for pattern stitching. In the second step, truncated SWCs need
to be aligned. To achieve this, the performance of mathematical operations for translations
and rotations of SWCs [19] when using truncated SWCs needed to be investigated first.
Analysis in a wide range of translations and rotations has shown that these introduce
increased errors in truncated patterns, which, however, are contained mainly near the
truncation angle θtrunc. In a reduced range of θ-angles, accurate pattern representation
was observed, confirming the possibility of aligning truncated SWCs for pattern stitching.
Relying on the existence of an overlap between the two truncated patterns to be stitched, a
pattern alignment procedure was then implemented, which aims to minimize the weighted
scaled mean square error (wSMSE) in the overlapping region within a plausible bounded
range of translation and rotation combinations. Once the alignment procedure finishes, the
final, third step of the stitching method is needed in order to obtain full-sphere radiation
patterns. Two approaches were investigated to determine how to obtain the most accurate
radiation patterns from aligned patterns with an overlapping region; pattern blending
and hemisphere split. Due to the increased error in truncated patterns observed near the
truncation angle θtrunc, the hemisphere split was identified as the more accurate approach,
where only the upper hemisphere of each measurement is used for stitching. Once stitched,
the patterns are processed using the classical SN2FFT to obtain a single set of SWCs and
to compute the far-field radiation patterns of the AUT.

The pattern stitching method was implemented in Matlab [44] and thoroughly validated
in Chapter 4 using three different types of test patterns; patterns generated from syn-
thetic SWCs, patterns obtained from electromagnetic (EM) simulations, and patterns
obtained from measurements in the near-field test range at TU Wien. During validation
with synthetic data, poor convergence of the alignment procedure was observed due to the
numerous local SMSE minima caused by the periodic nature of propagating EM waves.
A two-step alignment procedure was therefore implemented to assure convergence. In the
first alignment step, only magnitudes of both patterns in the overlapping range are used
to obtain a good starting point for the alignment procedure using complex data in the sec-
ond step. For translation misalignments larger than 5λ, an increase of error was observed,
indicating higher placement precision requirements especially when measuring antennas
operating at higher frequencies. Nevertheless, SMSE values below -50 dB were observed
for all translations below 20λ when comparing stitched patterns of synthetic patterns to
their original nontruncated counterparts. Validation results obtained using patterns from
EM simulations have shown a slight increase of error in the stitched patterns, which can
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be attributed to the introduction of simulation noise into the pattern stitching method.
The worst observed SMSE values in this case reached -40 dB. Lastly, the pattern stitch-
ing method was tested on real measurement data. In addition to connectorized AUTs,
equipped with a coaxial connector, the method has also been tested on measurements of
connectorless devices under test (DUTs), for which a special acquisition procedure was
devised, presented in Appendix A. Results have shown a substantial error increase com-
pared to other types of test patterns, with reported SMSE values between -25 dB and
-40 dB, where better results could be obtained for antennas with higher directivity.

In Chapter 5, the sources of error in practical measurements and the extent of their impact
on stitched full-sphere patterns were discussed. By comparing stitched patterns to free-
space patterns excluding the investigated sources of error, it was shown that both the
coaxial cable attached to the AUT and the support structure holding it play a dominant
role in the overall error, limiting the accuracy of stitched patterns of omnidirectional
antennas, resulting in scaled mean square errors of approximately -25 dB to -30 dB.
These estimates coincide with the errors reported during the validation procedure to a
great extent. Additionally, a comparison was made between the radiation patterns of
an antenna simulated in free-space and full-sphere patterns of that same antenna in the
presence of a coaxial cable/support structure. It was shown that the impact of the coaxial
cable is even more severe in that case, suggesting that the stitching method can provide
results more closely resembling a free-space environment than a full-sphere measurement
when measuring omnidirectional antennas.

Future work should include a detailed uncertainty analysis of the stitching method in terms
of all error sources, as well as an investigation of possibilities to further reduce their im-
pact. One approach to potentially reduce the influence of both the support structure and
the coaxial cable, for example, would be to use support structures made from absorbing
materials. While this would certainly decrease the overall accuracy of the measurement
sphere covered in a single measurement, the absorbing properties of the support structure
might be beneficial for the accuracy of measured patterns in some reduced range. By mea-
suring the AUT in more than two measurement orientations and extending the algorithm
to align all of them to a common coordinate system based on their respective overlap-
ping junctions, such patches of the measurement sphere could then be stitched together
into a full-sphere pattern with increased accuracy. Furthermore, the focus should be put
on reducing the computation time required by the stitching method, especially the time
required to align the truncated patterns. This includes the optimization of translation
coefficients´ computation, as well as investigating alternative alignment procedures.
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A SN2FFT Doczmentation

The Matlab [44] implementation of the Fourier transform based spherical near-to-far-field
transformation (SN2FFT) algorithm, the theory of which has been discussed in Chapter 2,
will be presented in this appendix. First, an example of usage will be introduced, giving
detailed information on the required input data of the main function of the algorithm.
This will be followed by an overview of all the implemented supporting functions that are
used for the transformation of an input field pattern into the desired output field pattern,
which may generally be either a near- or a far-field pattern.

It should be noted at this point that the implementation of the spherical near-to-far-field
transformation (SN2FFT) algorithm and of all the supporting functions was done under
the following assumptions;

A1 The probe antenna was assumed to be rotationally symmetric, possessing only spher-
ical wave modes with azimuthal indices μ = ±1. Using this assumption, sampling
in χ can be reduced to two orthogonal probe orientations; χ = 0° and χ = 90°. The
extension to circularly asymmetric probe antennas, which contain also SWC modes
for μ /= ±1, was not done at this stage due to the increased computational com-
plexity that such a generalization brings. As discussed at the end of Section 2.5.1,
this assumption is commonly applied in practice even when probe antennas which
are not perfectly rotationally symmetric are used, such as dual-ridge horn anten-
nas (DRHAs). The reasoning behind it is that, at a sufficient distance from the AUT,
the probe antenna can be approximated well using only coefficients with μ = ±1.
This approximation is also used by the NSI software [55] which is employed in the
NF test range at TU Wien. The software does not permit defining more than two
measurement steps in χ.

A2 The maximum azimuthal order M is always set to be equal to the maximum polar
order N . In practice, M could sometimes be reduced below N to reduce compu-
tational complexity, for example, when the antenna can be enclosed in a cylinder
with a base diameter smaller than its height or rotational symmetries in the pattern
exist [19]. Since the implemented SN2FFT algorithm can solve problems even for
very high orders N in the matter of seconds, the benefit of reducing the azimuthal
order further was found to be negligible.

A3 It was assumed that measurements will always take place in free space, not in some
dielectric media. Following this assumption, the wavelength λ and the wavenumber
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k are derived directly from the measurement frequency f and the speed of light in
vacuum, c0; λ = c0/f and k = 2π/λ.

A,1 Example of Usage

In order to accurately determine the far-field (FF) radiation pattern1 of an arbitrary
antenna under test (AUT) at a given frequency f from full-sphere field data obtained
in the near field (NF), sufficient samples of the NF data must first be acquired. These
samples must be taken in equidistant steps over the whole measurement sphere with radius
Ain, which corresponds to the distance between the AUT and the probe. The meaning of
sufficient in this context was discussed in Section 2.5.2 and follows from the electrical size of
the AUT and the probe antenna, as well as their radiation characteristics. To summarize,
the minimum number of required samples in χ depends on the maximum azimuthal order
of the probe antenna. Taking into account the assumption of rotational symmetry of the
probe antenna (A1), only two sampling points are required in χ, χ = 0° and χ = 90°. In Φ,
the minimum number of equidistant samples in the range 0° ≤ Φ < 360° can be determined
by the maximum azimuthal order M as KΦ = 2M +1. Since the general case is assumed,
where M = N (A2), this can be rewritten as KΦ = 2N + 1. Lastly, in θ, the minimum
number of required samples in the range 0° ≤ θ ≤ 180° is governed by the maximum
polar order N , where Kθ = N +1.2 One can see that the minimum number of samples in
both θ and Φ depends on the maximum polar order N , which can be determined from the
wavenumber k and the size of the AUT-described by the radius r0 of the smallest sphere
circumscribing the AUT-using (2.24). Considering the free-space assumption (A3), the
wavenumber k is given as k = 2π/λ = 2πf/c0. With this knowledge, the field pattern
w(Ain, χ, θ, Φ) can be measured (or otherwise obtained) at all sampling positions necessary
for successful transformation into FF.3 It should be noted that the algorithm was designed
to handle radiation patterns that are truncated in θ as well. Truncation at some angle
θtrunc ≤ 180° is inevitable when measuring patterns in a swing arm-over-azimuth range,
such as the test range at TU Wien. In case of truncated patterns, the missing θ-samples
are assigned to be zero during the transformation to allow for a transformation in θ using
a fast Fourier transform (FFT). This comes at the cost of introducing truncation errors.

Aside from the sampled field pattern w(Ain, χ, θ, Φ), information on the probe antenna is
also required for an accurate transformation into far field since probe correction must be
done when the AUT is measured in near field. Concretely, the transformation algorithm
requires the probe receiving coefficients Rp

σμν . These have been precomputed for all probe
antennas used at the NF range at TU Wien from radiation patterns provided by the
supplier and are stored together with the scripts used by the algorithm. They are loaded
by providing the name of the probe antenna, as will be shown in the description of the main
function of the transformation algorithm. In addition to the available probe antennas,
the receiving coefficients of an x-directed dipole have also been defined since a dipole is

1Typically, the far field (FF) is sought, but the algorithm allows for transformations into any measure-
ment distance outside of the minimum sphere circumscribing the complete AUT.

2The field pattern is extended to the whole 360°-range during transformation. Measuring the field
exactly at θ = 180° is not necessary as long as the number of samples in the extended θ-range is greater
or equal to 2N + 1.

3The algorithm is, of course, capable of performing the transformation also in the case where the number
of samples exceeds the minimum sampling requirements.
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typically used as the receiving probe of the output transformed FF radiation pattern.
As explained in Section 2.6, the x-directed dipole is used due to the simple relations
between the resulting transmission coefficients w,(A,, χ, θ, Φ) and the electric field values
E,

θ(A
,, θ, Φ) and E,

Φ(A
,, θ, Φ), defined by (2.91) and (2.92).

With information about the probe and all the necessary NF pattern samples w(Ain, χ, θ, Φ)
measured, the transformation into far field can be done by calling the main function of the
algorithm, SN2FFT. This function will be discussed in the remainder of this section, where
its syntax, required input variables, and resulting output variables will be explained.

SN2FFT

Description:

The main function of the spherical near-to-far-field transformation (SN2FFT) algorithm.
It takes the input field pattern, w(Ain, χ, θ, Φ), obtained in sampling points in χ, θ, and
Φ, at a distance Ain between the probe and the antenna under test (AUT), and computes
the spherical wave coefficients (SWCs) of the AUT, Qsmn. Within the function, the range
of θ-values is checked and, if samples in the range 0° ≤ θ ≤ 180° are missing, extended to
the whole range by assigning missing field pattern samples to be zero. This must be done
to ensure equidistant sampling over the whole range, which is needed when using FFT
transformations. In order to compensate for the influence of a realistic probe antenna,
which measures a field average over its aperture rather than the exact field in the specified
measurement point, probe correction is done during transformation. The name of the
used probe antenna must be input for this purpose, while the precomputed probe receive
coefficients Rp

σμν for the chosen probe antenna at the given frequency are loaded within
a supporting function, which will be described at a later stage. These SWCs are then
used to compute the output field pattern, wT (Aout, χ, θT , ΦT ), as it would be received by
a chosen output probe antenna at a chosen distance Aout (which must be larger than the
AUT´s MRE) and for an arbitrary number of equidistant samples in θ and Φ.

Syntax:

[wT, thetaT, phiT, Q, d m, d mu] = SN2FFT(w, f, theta, phi, NthT, NphT,

inpr, A in, outpr, A out, N)

Inputs:

❼ w(chi,theta,phi) → 3D array containing the input field pattern w(χ, θ, Φ), ob-
tained at a constant distance Ain, ordered in an array using indices of vectors chi
(1st dimension), theta (2nd dimension), and phi (3rd dimension) as array indices

❼ f → frequency in Hz

❼ theta → θ-steps for the corresponding pattern, ordered in a vector of length Kθ; it
must start with θ = 0° but can be truncated at some θtrunc < 180°

❼ phi → Φ-steps for the corresponding pattern, ordered in a vector of length KΦ; it
must contain equidistant samples over the whole range

❼ NthT → desired number of θ-steps in [0,π] after transformation

104



❼ NphT → desired number of Φ-steps in [0, 2π) after transformation

❼ inpr → input probe name (the following probe antennas have been implemented);
,dipole, (ideal x-oriented dipole) or ,RGP10 187 (RGP10 with 187 mm mast) or
,RGP10 527 (RGP10 with 527 mm mast) or ,RGP40, (RGP40 dual ridge horn probe
antenna)

❼ A in → input AUT-to-probe distance Ain in meters

❼ outpr → output probe name, where the same probes are available as for the input
probe name

❼ A out → output AUT-to-probe distance Aout in meters, for far field (FF) Inf must
be set

❼ N → maximum polar order N

Outputs:

❼ wT(chi,theta,phi) → output field pattern, ordered in an array using indices of
vectors chi (1st dimension), theta (2nd dimension), and phi (3rd dimension) as
array indices

❼ thetaT → θ-steps for the output pattern, ordered in a vector of length NthT

❼ phiT → Φ-steps for the output pattern, ordered in a vector of length NphT

❼ Q(s,m,n) → spherical wave coefficients (SWCs), ordered in an array with SWC-
indices s = (1, 2) (1st dimension), m = (0, 1, . . . , N - 1, N,-N,-N + 1, . . . ,-1)
(2nd dimension), and n = (1, 2, . . . , N) (3rd dimension) as array indices; all array
elements with |m| > n are assigned a value of zero

A,2 List of Szpporting Fznctions

The function SN2FFT discussed above is the main function of the transformation algorithm
and the only function that must be called by the user in order to obtain the SWCs and the
transformed pattern. Within this function, other (supporting) functions are then called
automatically during the transformation process. All functions are listed in the annotated
call graph shown in Figure A.1, which illustrates the relationships between functions of
the spherical near-to-far-field transformation (SN2FFT) algorithm. Functions of each call
chain level in the call graph are marked with a different shade of gray from top-level main
function (brightest) to third-level functions (darkest). The call order of the main function
is indicated with Roman numerals (i. to iv.), while call orders of first-level functions are
indicated with Latin letters (a. to d.). Each function in the graph has an inward-pointing
arrow and an outward-pointing arrow together with sets of variable names. The variables
next to the inward-pointing arrow indicate the input variables provided to this function
by the calling function, while the variables next to the outward-pointing arrow indicate
its response, i.e., the output variables. One should note that the first function in the call
graph, get probe response constants, is called twice. This is done in order to compute
both the input and the output probe response constants for the given input/output probe
antenna and the given input/output AUT-to-probe distance.
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SN2FFT

x2get probe response constants

get probe receiving coefficients

probe response constants

translation coefficients

pattern2coefficients

chi integration

phi integration

delta factors

delta

theta integration

coefficients2pattern

w, f, theta, phi, NthT, NphT, inpr, A in, outpr, A out, N

wT, thetaT, phiT, Q , D m, D mu

i. & ii. inpr/outpr, A in/A out, N, jk, f →
P in/P out ←

iii. w, theta, P in, N →
Q, d mu, d m ←

iv. Q, theta, P out, d mu, d m, N, NthT, NphT →
wT, thetaT, phiT ←

a.← Tp, N

→ Rp, sig, mu, nu

b.← Rp, Nu, N, jk, A

→ P

N, Nu, jk, A →
C ←

a.← w

→ w mu

b.← w mu, N

→ w mu m

c.← mu, m, n, m st

→ d m, d mu

d.← w mu m, theta, d m, d mu, mu, m, n

→ w mu m n

n, m →
delta start ←

Figure A.1: SN2FFT annotated call graph

These supporting functions will be presented in this section in their respective call order,
discussing their functionality, syntax, required inputs, and their outputs.

get probe response constants

Description:

The function loads the precomputed probe receiving coefficients for the selected probe
(data for three measurement probes available at the NF range at TUWien have been stored
in a subdirectory of the folder containing all functions of the SN2FFT implementation) or,
if an x-oriented dipole is chosen as the probe, calls get probe receiving coefficients

to compute the probe receiving coefficients from its transmission coefficients. It then calls
the function probe response constants to compute the probe response constants for
this probe at the input measurement distance between the probe and the AUT and the
maximum polar order N of the AUT, determined according to (2.24).
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Syntax:

P = get probe response constants(pr, A, N, k, f)

Inputs:

❼ pr → probe name; ,dipole, (ideal x-oriented dipole) or ,RGP10 187 (RGP10 with
a 187 mm mast) or ,RGP10 527 (RGP10 with a 527 mm mast) or ,RGP40, (RGP40
dual ridge horn probe antenna)

❼ A → distance between the probe and the AUT

❼ N → maximum polar order of the AUT

❼ k → wavenumber

❼ f → frequency in Hz

Outputs:

❼ P(s,mu,n) → probe response constants, ordered in an array with SWC-indices
s = (1, 2) (1st dimension), μ = (1,-1) (2nd dimension), and n = (1, 2, . . . , N)
(3rd dimension) as array indices

get probe receiving coefficients

Description:

Subfunction of the get probe response constants function that computes probe receiv-
ing coefficients Rp

σμν for μ = ±1 (A1) from transmitting coefficients T p
σμν according to

(2.54). Along with the probe receiving coefficients, it returns the vectors sig representing
the indices σ, mu representing the indices μ, and nu representing the indices ν for further
processing. This function can be used for the computation of receiving coefficients of an
arbitrary probe from its SWCs by assuming v = 1 in the relation vT p

smn = Qp
smn (2.48).

Syntax:

[Rp, sig, mu, nu] = get probe receiving coefficients(Tp, N)

Inputs:

❼ Tp(sig,mu,nu) → probe transmitting coefficients T p
σμν , ordered in an array with

spherical wave coefficient (SWC)-indices σ = (1, 2) (1st dimension), μ = (1,-1) (2nd
dimension), and ν = (1, 2, . . . , νmax) (3

rd dimension) as array indices

❼ N → maximum polar order N

Outputs:

❼ Rp(sig,mu,nu) → probe receiving coefficients Rp
σμν , which are ordered in an array

with SWC-indices σ = (1, 2) (1st dimension), μ = (1,-1) (2nd dimension), and
ν = (1, 2, . . . , νmax) (3

rd dimension) as array indices

❼ sig→ denotes the probe´s generating function indices σ, ordered in a vector; sig = 1
(m-function), sig = 2 (n-function)
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❼ mu → vector of probe azimuthal indices μ = (1,-1) (probe antenna´s equivalent of
index m)

❼ nu → vector of probe polar indices ν = (1, 2, . . . , νmax) (probe antenna´s equivalent
of index n)

probe response constants

Description:

This function computes the probe response constants Psμn(kA) for the corresponding
probe receiving coefficients Rp

σμν of the selected input/output probe with the maximum
polar order νmax for an AUT with the maximum polar order N according to (2.55).

Syntax:

P = probe response constants(Rp, Nu, N, k, A)

Inputs:

❼ Rp(sig,mu,nu) → probe receiving coefficients Rp
σμν , which are ordered in an array

with SWC-indices σ = (1, 2) (1st dimension), μ = (1,-1) (2nd dimension), and
ν = (1, 2, . . . , νmax) (3

rd dimension) as array indices

❼ Nu → probe´s maximum polar order νmax

❼ N → AUT´s maximum polar order N

❼ k → wavenumber

❼ A → distance between the probe and the AUT

Outputs:

❼ P(s,mu,n) → probe response constants, ordered in an array with SWC-indices s =
(1, 2) (1st dimension), m = (1,-1) (2nd dimension), and n = (1, 2, . . . , N) (3rd

dimension) as array indices

translation coefficients

Description:

The function computes translation coefficients C
sn(c)
σμν (kA) for outward traveling waves

(c = 4) for probe´s azimuthal indices μ = ±1 in accordance with (2.34).

Syntax:

C = translation coefficients(N, Nu, k, A)

Inputs:

❼ N → AUT´s maximum polar order N

❼ Nu → probe´s maximum polar order νmax
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❼ k → wavenumber

❼ A → distance between the probe and AUT

Outputs:

❼ C(sig,mu,nu,s,n) → probe response constants, ordered in a five-dimensional ar-
ray using the probe´s SWC-indices σ = (1, 2) (1st dimension), μ = (1,-1) (2nd

dimension), and ν = (1, 2, . . . νmax) (3rd dimension), and the AUT´s SWC-indices,
s = (1, 2) (4th dimension) and n = (1, 2, . . . N) (5th dimension) as dimensions, where
mu represents the azimuthal index μ, which is common to both the probe and the
AUT

pattern2coefficients

Description:

This function computes the spherical wave coefficients (SWCs) for the provided field
pattern w(χ, θ, Φ) by calling the subfunctions chi integration, phi integration, and
theta integration to transform the field pattern thrice-in χ, Φ, and θ-and then solv-
ing the linear system of equations in (2.65). Additionally, it returns the delta factors Δn

m,μ
and Δn

m,m, computed within the subfunction delta factors according to (2.27), (2.28),
and (2.29), which are reused later when computing an output (near- or far-field) pat-
tern. Reusing these coefficients helps reduce the overall computation time of the SN2FFT
algorithm.

Syntax:

[Q, d m, d mu] = pattern2coefficients(w, theta, P in, N)

Inputs:

❼ w(chi,theta,phi)→ input field pattern w(χ, θ, Φ), ordered in an array using indices
of vectors chi (1st dimension), theta (2nd dimension), and phi (3rd dimension) as
array indices

❼ theta → θ-steps for the corresponding pattern, ordered in a vector of length Kθ

❼ P in(s,mu,n) → input probe response constants Psμn, ordered in an array using
SWC-indices s = (1, 2) (1st dimension), μ = (1,-1) (2nd dimension), and n =
(1, 2, . . . , N) (3rd dimension) as array indices

❼ N → AUT´s maximum polar order N

Outputs:

❼ Q(s,m,n) → spherical wave coefficients, ordered in an array with indices s = (1, 2)
(1st dimension), m = (0, 1, . . . , N - 1, N,-N,-N +1, . . . ,-1) (2nd dimension), and
n = (1, 2, . . . , N) (3rd dimension) as array indices; all array elements with |m| > n
are assigned a value of zero

❼ d m(n,m st,m)→ delta factors Δn
m,m, saved in an array with indices n = (1, 2, . . . , N)

(1st dimension), m, = (0, 1, . . . , N) (2nd dimension), and m = (0, 1, . . . , N - 1, N,
-N,-N+1, . . . ,-1) (3rd dimension) as array indices; all array elements with |m| > n
or |m,| > n are assigned a value of zero
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❼ d mu(n,m st,mu) → delta factors Δn
m,m, ordered in an array with indices n =

(1, 2, . . . , N) (1st dimension), m, = (0, 1, . . . , N) (2nd dimension), and μ = (1,-1)
(3rd dimension) as array indices; all array elements with |m,| > n are assigned a
value of zero

chi integration

Description:

The function is responsible for the first transformation of the sampled input pattern
w(χ, θ, Φ) over χ. It extends the pattern measured in two orthogonal probe orientations
(corresponding to the angles χ = 0° and χ = 90°) to the full [0°, 360°) range by exploiting
symmetries, computes the discrete Fourier transform (DFT) over χ in (2.70) using a fast
Fourier transform (FFT), and returns the once transformed field pattern for μ = ±1,
wμ=±1(θ, Φ).

Syntax:

w mu = chi integration(w)

Inputs:

❼ w(chi,theta,phi)→ input field pattern w(χ, θ, Φ), ordered in an array using indices
of vectors chi (1st dimension), theta (2nd dimension), and phi (3rd dimension) as
array indices

Outputs:

❼ w mu(mu,theta,phi)→ once transformed field pattern wμ(θ, Φ) (over χ), ordered in
an array using indices of vectors μ = (1,-1) (1st dimension), theta (2nd dimension),
and phi (3rd dimension) as array indices

phi integration

Description:

The function is in charge of the second transformation, computing the DFT over Φ, as
described in (2.71), using an FFT. It returns the twice transformed field pattern for μ =
(1,-1) and m = (0, 1, . . . , N,-N, . . . ,-1), wμm(θ), discarding any values with |m| > N ,
which are obtained if the pattern is oversampled in Φ. Note that M = N is assumed
according to A2.

Syntax:

w mu m = phi integration(w mu, N)

Inputs:

❼ w mu(mu,theta,phi)→ once transformed field pattern wμ(θ, Φ) (over χ), ordered in
an array using indices of vectors μ = (1,-1) (1st dimension), theta (2nd dimension),
and phi (3rd dimension) as array indices

❼ N → maximum polar order N , since M = N according to A2
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Outputs:

❼ w mu m(mu,theta,m) → twice transformed field pattern wμm(θ) (over χ and Φ),
ordered in an array using indices of vectors μ = (1,-1) (1st dimension), theta (2nd

dimension), and m = (0, 1, . . . , N,-N, . . . ,-1) (3rd dimension) as array indices

delta factors

Description:

The function computes the delta factors Δn
m,μ and Δn

m,m for all n, m, μ, and m,. For
each n and m/μ pair, the starting delta factor Δn

nm/Δn
nμ is first computed by calling

the function delta. With the help of recursion formula (2.28) and symmetry properties
(2.29), all remaining factors are then computed within the function and stored into two
three-dimensional arrays. The required function input vectors are generated in the calling
function pattern2coefficients and are directly related to the given maximum polar
order N .

Syntax:

[d m, d mu] = delta factors(mu, m, n, m st)

Inputs:

❼ mu → vector containing all μ indices, μ = (1,-1)
❼ m → vector containing all m indices, m = (0, 1, . . . , N,-N, . . . ,-1)
❼ n → vector containing all n indices, n = (1, 2, . . . , N)

❼ m st → vector containing all m, indices, m, = (0, 1, . . . , N)

Outputs:

❼ d m(n,m st,m)→ an array containing the delta factors Δn
m,m for all indices of vectors

n (1st dimension), m st (2nd dimension), and m (3rd dimension); all array elements
with |m| > n or |m,| > n are assigned a value of zero

❼ d mu(n,m st,mu) → an array containing the delta factors Δn
m,μ for all indices of

vectors n (1st dimension), m st (2nd dimension), and mu (3rd dimension); all array
elements with |m,| > n are assigned a value of zero

delta

Description:

This function uses (2.27) to compute the starting delta factors Δn
nm (or Δn

nμ) for the given
index pair n and m (or μ), which are needed for computing all remaining delta factors
Δn

m, /=n,m or Δn
m, /=n,μ with the help of the recursion formula (2.28).

Syntax:

[delta start] = delta(n, m)
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Inputs:

❼ n → current polar index n

❼ m → current azimuthal index m (or μ)

Outputs:

❼ delta start → starting delta factor Δn
nm (or Δn

nμ)

theta integration

Description:

This function is in charge of the final, third transformation of the input pattern w(χ, θ, Φ).
It takes the twice transformed pattern wμm(θ), extends it to the full θ-range using (2.72),
and computes the Fourier coefficients bμml from (2.76) and (2.77). It then follows the
procedure documented in (2.78) - (2.84) to obtain the thrice transformed radiation pattern,
wn
μm, which is also the output of the function.

Syntax:

w mu m n = theta integration(w mu m, theta, d m, d mu, mu, m, n)

Inputs:

❼ w mu m(mu,theta,m) → twice transformed field pattern wμm(θ) (over χ and Φ),
ordered in an array using indices of vectors μ = (1,-1) (1st dimension), theta (2nd

dimension), and m = (0, 1, . . . , N,-N, . . . ,-1) (3rd dimension) as array indices

❼ theta → θ-steps for the corresponding pattern, ordered in a vector of length Kθ; if
the vector is truncated, the function extends the range of θ-values to [0°, 180°]

❼ d m(n,m st,m)→ an array containing the delta factors Δn
m,m for all indices of vectors

n (1st dimension), m st (2nd dimension), and m (3rd dimension); all array elements
with |m| > n or |m,| > n are assigned a value of zero

❼ d mu(n,m st,mu) → an array containing the delta factors Δn
m,μ for all indices of

vectors n (1st dimension), m st (2nd dimension), and mu (3rd dimension); all array
elements with |m,| > n are assigned a value of zero

❼ mu → vector containing all μ indices, μ = (1,-1)
❼ m → vector containing all m indices, m = (0, 1, . . . , N,-N, . . . ,-1)
❼ n → vector containing all n indices, n = (1, 2, . . . , N)

Outputs:

❼ w mu m n(mu,n,m)→ thrice transformed field pattern wn
μm, ordered in an array using

indices of vectors μ = (1,-1) (1st dimension), m = (0, 1, . . . , N,-N, . . . ,-1) (2nd

dimension), and n = (1, 2, . . . , N) (3rd dimension) as array indices
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coefficients2pattern

Description:

The function computes a radiation pattern, wT (χ, θT , ΦT ), from the spherical wave co-
efficients Qsmn as it would be received by an output probe with coefficients Pout at a
distance AT (which can be defined either in near or far field). As additional input, the
function requires the θ-vector, the maximum polar order N , desired number of points in
the transformed data both in θ (Nθ,T ) and in Φ (NΦ,T ), and the delta factors Δn

m,μ and
Δn

m,m.

Syntax:

[wT, thetaT, phiT] = coefficients2pattern(Q, theta , P out, d mu, d m, N,

NthT, NphT)

Inputs:

❼ Q(s,m,n) → spherical wave coefficients, ordered in an array with indices s = (1, 2)
(1st dimension), m = (0, 1, . . . , N - 1, N,-N,-N +1, . . . ,-1) (2nd dimension), and
n = (1, 2, . . . , N) (3rd dimension) as array indices; all array elements with |m| > n
are assigned a value of zero

❼ theta → θ-steps for the corresponding pattern, ordered in a vector of length Kθ

❼ P out(s,m,n) → probe response constants, ordered in an array with SWC-indices
s = (1, 2) (1st dimension), m = (0, 1, . . . , N-1, N,-N,-N+1, . . . ,-1) (2nd dimen-
sion), and n = (1, 2, . . . , N) (3rd dimension) as array indices

❼ d m(n,m st,m)→ an array containing the delta factors Δn
m,m for all indices of vectors

n (1st dimension), m st (2nd dimension), and m (3rd dimension); all array elements
with |m| > n or |m,| > n are assigned a value of zero

❼ d mu(n,m st,mu) → an array containing the delta factors Δn
m,μ for all indices of

vectors n (1st dimension), m st (2nd dimension), and mu (3rd dimension); all array
elements with |m,| > n are assigned a value of zero

❼ N → AUT´s maximum polar order N

❼ NthT → desired number of equidistant θ-steps in [0,π] after transformation

❼ NphT → desired number of equidistant Φ-steps in [0, 2π) after transformation

Outputs:

❼ wT(chi,thetaT,phiT) → output field pattern wT (χ, θT , ΦT ), ordered in an array
using indices of vectors chi (1st dimension), thetaT (2nd dimension), and phiT (3rd

dimension) as array indices

❼ thetaT→ vector of equidistant θ-angles in [0,π] of the transformed patterns, derived
from the desired number of samples NthT

❼ phiT→ vector of equidistant Φ-angles in [0, 2π) of the transformed patterns, derived
from the desired number of samples NphT
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B Pattern Stitching Method
Doczmentation

This appendix presents the Matlab [44] implementation of the pattern stitching method,
the underlying theory of which has been introduced in Chapter 3. With a similar structure
as Appendix A, an example of usage will first be presented, giving detailed information on
the required input data of the main function governing the pattern stitching procedure.
This will be followed by an overview of all the implemented supporting functions required
to successfully stitch together truncated field patterns of an antenna under test (AUT).

At this stage, it is important to note that assumptions A1 to A3, made in Appendix A for
the implementation of the spherical near-to-far-field transformation (SN2FFT) algorithm,
have also been made when implementing the pattern stitching method. In addition to
that, the following assumptions were also made;

A4 The method presupposes equidistant sampling in both θ and Φ, with the assump-
tion that the samples in Φ have been obtained over the whole measurement sphere,
whereas samples in θ may be truncated at some θtrunc < 180°.

A5 Both truncated measurements are assumed to have been measured covering the
same part of the measurement sphere (same truncation angle θtrunc), using the same
maximum polar order N , and identical sampling in χ, θ, and Φ. This is necessary for
the definition of the overlapping range which is required for the alignment procedure.

B,1 Example of Usage

As explained in Chapter 3, the pattern stitching method has (currently) been implemented
for stitching together two truncated field patterns which, when combined, must cover the
entire sphere surrounding the AUT. The choice of antenna orientation for the first mea-
surement is arbitrary, while the second measurement must be conducted with the antenna
turned over (rotated by 180° in either x- or y-axis) to cover the opposite hemisphere of its
radiation sphere. These measurements will be referred to as the top (hemisphere) measure-
ment wtop(χ, θ, Φ) and the bottom (hemisphere) measurement wbottom(χ, θ, Φ) hereafter.
While the assignment of each measurement to a specific hemisphere is arbitrary, it should
be noted that the upper measurement remains fixed in its coordinate system while the
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bottom measurement is aligned to the coordinate system of the former during the align-
ment procedure; this is done using translation and rotation operations on the computed
truncated SWCs of the bottom measurement.

To be able to use the FFT/Matrix method for computing the spherical wave coefficients
(SWCs), two sample points, 0° and 90°, are required in χ (under the assumption A1).
Since the transformation in Φ is done using an FFT, the same number of equidistant
samples as for the SN2FFT is required in the range 0° ≤ Φ < 360°, KΦ = 2N + 1
(assuming A2). In θ, the minimum number of samples required by SN2FFT can also be
used, but it is recommended to use an increased number of samples, defined by Kθ,trunc ≥
N + 1. As demonstrated in Table 3.1, the increased number of samples helps reduce
the condition number κ(Ψ). Since a least squares (LS) matrix method is used for the
transformation in θ, the samples could theoretically be taken on an irregular, but an
equidistant sampling was assumed during implementation (A4). To have an overlapping
spherical belt between them, both wtop(χ, θ, Φ) and wbottom(χ, θ, Φ) must be acquired
following an identical sampling scheme (A5). For correct operation of the method, samples
can be acquired with either the minimum number of required samples or with any excessive
number of samples., i.e., oversampled. Just as with SN2FFT, the computation presupposes
the knowledge of the probe antenna in order to carry out probe correction with its receiving
coefficients Rp

σμν . For both measurements, the FFT/Matrix method is used twice. In the
first step, no singular value (SV) truncation is used and the resulting pattern is compared
to the measured pattern by computing the scaled mean square error, which is then used
as an signal-to-noise ratio estimate for SV truncation in the second run.

After truncated SWCs for both measurements are obtained, those of the bottom mea-
surement are aligned to those of the upper measurement using the alignment procedure.
The procedure attempts to minimize the weighted scaled mean square error (wSMSE)
in the overlapping region between measurements in a constrained range of misalign-
ment vectors vM = (χM, ϑM, φM, xM, yM, zM) containing the three Euler angles and the
three offset distances. It requires an initial vector v0 = (χ0, ϑ0, φ0, x0, y0, z0), an up-
per boundary vector vUB = (χUB, ϑUB, φUB, xUB, yUB, zUB), and a lower boundary vector
vLB = (χLB, ϑLB, φLB, xLB, yLB, zLB). The upper and lower boundaries must be chosen
by estimating the maximum offset and rotation from the origin of the coordinate system,
while the initial vector can be set to v0 = (0, 0, 0, 0, 0, 0) unless additional information on
the AUT´s position is known.

All steps of the pattern stitching method discussed above can be executed by calling the
main function of the pattern stitching algorithm, aptly named stitch patterns. A brief
description, the function´s syntax, and its input and output parameters will be described
in the remainder of this section.

stitch patterns

Description:

The main function of the pattern stitching method, which takes the measured truncated
patterns wtop(χ, θ, Φ) and wbottom(χ, θ, Φ), measured at frequency f . For computing trun-
cated SWCs of both measurements, the function requires information on Φ- and θ-samples,
the name of the used probe antenna, the measurement distance A, and the maximum polar
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order N . After computing truncated SWCs of both measurements, these can be aligned
and stitched together to obtain the stitched field pattern wfinal(χ, θ, Φ), its SWCs, and the
misalignment vector vopt = (χopt, ϑopt, φopt, xopt, yopt, zopt). To do so, the initial point,
upper bound, and lower bound vectors must be provided for the alignment procedure.
Before the alignment procedure starts, the bottom measurement is rotated by 180° about
the axis of rotation over which the bottom measurement was rotated before measurement.
This information must be provided in the input parameter rax. In accordance with Sec-
tion 4.1.2, the wSMSE minimization procedure can be done in two ways, using either
complex field patterns or only the magnitude field pattern information. An additional
input parameter ev allows for choosing between the two approaches, where assigning the
string ,abs, instructs the function to use only the magnitude information. Setting ev

to any other value or leaving it undefined will result in the default wSMSE computation
using complex field pattern data.

Syntax:

[wfin, Qfin, vopt] = stitch patterns(wttr, wbtr, f, thtr, phi, pr, A, N,

ev, rax, ub, lb, v0)

Inputs:

❼ wttr(chi,thtr,phi) → 3D array containing the truncated field pattern of the top
measurement wtop(χ, θ, Φ), ordered in an array using indices of vectors chi (1st

dimension), thtr (2nd dimension), and phi (3rd dimension) as array indices

❼ wbtr(chi,thtr,phi)→ 3D array containing the truncated field pattern of the bot-
tom measurement wbottom(χ, θ, Φ), ordered in an array using indices of vectors chi
(1st dimension), thtr (2nd dimension), and phi (3rd dimension) as array indices

❼ f → measurement frequency in Hz

❼ thtr → vector of measurement θ-steps for both patterns, in radians

❼ phi → vector of measurement Φ-steps for both patterns, in radians

❼ pr → measurement probe name (the following probe antennas have been imple-
mented); ,dipole, (ideal x-oriented dipole) or ,RGP10 187 (RGP10 with 187 mm
mast) or ,RGP10 527 (RGP10 with 527 mm mast) or ,RGP40, (RGP40 dual ridge
horn probe antenna)

❼ A → AUT-to-probe distance A in meters

❼ N → maximum polar order N of both truncated patterns

❼ ev → character string argument, if set to ,abs,, pattern alignment is done using
only magnitude information of both patterns, otherwise complex field patterns are
used

❼ rax → defines the rotation axis over which the AUT has been rotated by 180°
between the two partial measurements, either ,x, or ,y, must be set

❼ ub→ upper bound for the misalignment vector, contains the Euler angles and trans-
lation offsets in the following order; vUB = (χUB, ϑUB, φUB, xUB, yUB, zUB)
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❼ lb→ lower bound for the misalignment vector, contains the Euler angles and trans-
lation offsets in the following order; vLB = (χLB, ϑLB, φLB, xLB, yLB, zLB)

❼ v0→ initial estimate misalignment vector, contains the Euler angles and translation
offsets in the following order; v0 = (χ0, ϑ0, φ0, x0, y0, z0)

Outputs:

❼ wfin(chi,theta,phi) → stitched field pattern, ordered in an array using indices
of vectors chi (1st dimension), theta (2nd dimension), and phi (3rd dimension) as
array indices

❼ Qfin(s,m,n) → spherical wave coefficients (SWCs) of the stitched pattern, or-
dered in an array with SWC-indices s = (1, 2) (1st dimension), m = (0, 1, . . . , N -
1, N,-N,-N + 1, . . . ,-1) (2nd dimension), and n = (1, 2, . . . , N) (3rd dimension)
as array indices; all array elements with |m| > n are assigned a value of zero

❼ vopt → misalignment vector solution, contains the Euler angles and translation
offsets in the following order; vopt = (χopt, ϑopt, φopt, xopt, yopt, zopt)

B,2 List of Szpporting Fznctions

Within the main function, various supporting functions are called in order to compute
truncated SWCs of both measurements, align the patterns, and stitch them together. All
supporting functions will be documented in the remainder of this chapter, providing a brief
description, function syntax, and its input and output variables. For visual aid, first-level
functions called by stitch patterns have been illustrated in the annotated call graph
in Figure B.1 along with their input and output parameters. The calling order has been

stitch patterns

x2mixedtransform

x2compute smse

x2mixedtransform

find offset

wttr, wbtr, f, thtr, phi, pr, A, N, ev, rax, ub, lb, v0

wfin, Qfin , vopt

i. & iv. wttr/wbtr, f, Nth, Nph, pr, A, N →
wtmix1/wbmix1 ←

ii. & v. wttr/wbtr, wtmix1/wbmix1, theta, thmax →
smse t/smse b ←

iii. & vi. wttr/wbtr, f, Nth, Nph, pr, A, N, SNRt/SNRb →
wtmix/wbmix ←

vii. wtmix, Qbmix, rax, pr, A, N, f, Nth, Nph, imax, ub, lb, v0, ev →
wfin, Qfin, vopt ←

Figure B.1: Pattern stitching method annotated call graph

marked with Roman numerals i to vi., where two numerals were used where the function is
called twice to indicate sequences of the first three called functions. From the call graph,
one can see that these are called twice. They are used to compute the truncated field
patterns and truncated SWCs, which is done separately for the top measurement and
the bottom measurement. As explained at the beginning of this section, the truncated
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field patterns are first computed without SV truncation to obtain SNR estimates. In the
second computation round, these estimates are then used for SV truncation in order to
compute realistic SWCs for the transformation algorithm, which is called in the final step.
Lower-level functions were omitted from this graph for readability purposes and will be
introduced later on.

mixedtransform

Description:

This function covers the first conceptual block of the pattern stitching method, the
computation of truncated SWCs, as described in Section 3.2. It computes the trun-
cated SWCs from field patterns truncated in θ using the FFT/Matrix method. To do
so, the transmission equation is first constructed by computing the delta factors Δn

m,μ
and Δn

m,m and the probe response coefficients Psμn by calling the delta factors and
get probe response constants functions presented in Appendix A. The transmission
equation is transformed over χ and Φ using FFTs to obtain the twice-transformed trans-
mission equation (3.5). The remaining transformation in θ is then solved for each po-
lar index m separately. In accordance with findings reported in Section 3.2.4, singular
value (SV) truncation has been implemented, for which the function requires an input
signal-to-noise ratio (SNR) estimate. This estimate is used to discard very small SVs
when computing the pseudoinverse of the coefficient matrix Ξm and solving the inverted
transmission formula from (3.7). This procedure returns the truncated SWCs Qmix

smn are
computed. After these are obtained, a classical FT-based expansion to a same-distance
field pattern, wmix(χ, θ, Φ), is done using the function coefficients2pattern (also pre-
sented in Appendix A).

The call order of the subfunctions within the mixedtransform function is shown in the
call graph in Figure B.2, where Roman numerals and lowercase Latin letters indicate the
call order when multiple functions are called within a function. The graph highlights
all called functions and their input and output parameters. As can be seen, all called
functions are reused functions (marked with a "*" in the graph), implemented for the
SN2FFT algorithm presented in Appendix A. They could be reused by the FFT/Matrix
method since the only difference between the two computations is the transformation in
θ, which is executed directly in the function mixedtransform.

Syntax:

[wmix,Qmix] = mixedtransform(w, f, theta, NthT, NphT, pr, A, N, SNR)

Inputs:

❼ w(chi,theta,phi) → 3D array of the field pattern w(χ, θ, Φ), ordered in an array
using indices of vectors chi (1st dimension), theta (2nd dimension), and phi (3rd

dimension) as array indices

❼ f → measurement frequency in Hz

❼ theta → vector of measurement θ-steps in radians

❼ NthT → desired number of θ-steps in [0,π] after transformation
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mixedtransform

delta factors*

delta*

get probe response constants*

get probe receiving coefficients*

probe response constants*

translation coefficients*

chi integration*

phi integration*

coefficients2pattern*

w, f, theta, phi, NthT, NphT, pr, A, N, SNR

wmix, Qmix

i. mu, m, n, m st →
d m, d mu ←

ii. pr, A, N, jk, f →
P ←

iii. w →
w mu ←

iv. w mu, N →
w mu m ←

v. Q, theta full, P, d mu, d m, N, NthT, NphT →
wmix ←

← n, m

→ delta start

a.← Tp, N

→ Rp, sig, mu, nu

b.← Rp, Nu, N, jk, A

→ P

N, Nu, jk, A →
C ←

Figure B.2: Mixed transform annotated call graph

❼ NphT → desired number of Φ-steps in [0, 2π) after transformation

❼ pr → measurement probe name (the following probe antennas have been imple-
mented); ,dipole, (ideal x-oriented dipole) or ,RGP10 187 (RGP10 with 187 mm
mast) or ,RGP10 527 (RGP10 with 527 mm mast) or ,RGP40, (RGP40 dual ridge
horn probe antenna)

❼ A → AUT-to-probe distance A in meters

❼ N → maximum polar order N of both truncated patterns

❼ SNR→ signal-to-noise ratio (SNR) estimate needed for singular value (SV) truncation

Outputs:

❼ wmix(chi,theta,phi) → 3D array of the resulting field pattern wmix(χ, θ, Φ), or-
dered in an array using indices of vectors chi (1st dimension), theta (2nd dimension),
and phi (3rd dimension) as array indices

❼ Qmix(s,m,n) → resulting SWCs Qmix
smn, ordered in an array with SWC-indices s =

(1, 2) (1st dimension), m = (0, 1, . . . , N-1, N,-N,-N+1, . . . ,-1) (2nd dimension),
and n = (1, 2, . . . , N) (3rd dimension) as array indices; all array elements with |m| >
n are assigned a value of zero
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compute smse

Description:

The function computes the scaled mean square error (SMSE) (3.14) between two input
patterns, w1(χ, θ, Φ) and w2(χ, θ, Φ), in the overlapping range of θ-angles between θmin and
θmax. For indexing purposes, it requires that both patterns are defined starting at θ = 0°
and extend at least up to θmax. Since only the part between θmin and θmax is considered
in the computation, any θ-value outside this range can be set to 0 in case of missing data.

Syntax:

smse = compute smse(w1, w2, theta, thmax, thmin)

Inputs:

❼ w1(chi,theta,phi), w2(chi,theta,phi) → 3D arrays containing field patterns
w1(χ, θ, Φ) and w2(χ, θ, Φ), ordered in an array using indices of vectors chi (1st

dimension), full-range theta (2nd dimension), and phi (3rd dimension) as array
indices

❼ theta → full-range θ-vector (0° ≤ θ ≤ 180°)

❼ thmax → largest θ-angle to be considered in the computation

❼ thmin → smallest θ-angle to be considered in the computation

Outputs:

❼ smse → computed SMSE in the overlapping range between both input patterns as
defined by the minimum and the maximum θ-angle

find offset

Description:

This function, along with all the subfunctions that it calls, covers the second and third
conceptual blocks of the stitching algorithm, which were presented in Sections 3.3 and 3.4.
It takes the field pattern of the top measurement wtop,mix(χ, θ, Φ), preprocessed with the
FFT/Mixed method, the truncated SWCs of the bottom measurement QB

smn, and all rele-
vant parameters for the alignment procedure, i.e., rotation axis parameter rax, probe name
pr, measurement distance A, maximum polar order N , frequency f , number of steps in θ
and Φ, information about the truncation angle θtrunc, initial misalignment vector, upper
and lower bounds, and the parameter defining whether wSMSE in the overlapping range
should be evaluated using complex data or only magnitude information. The function call
order within the find offset function is shown in Figure B.3, where input and output
parameters of each called function are shown. As in previous call graphs, the call order
of functions calling multiple subfunctions are marked with Roman numerals i. to vii. and
Latin letters a. and b. Functions called at positions iii., v., and vii. were annotated
with additional commentary to clarify exactly which part of the alignment and stitch-
ing procedure they cover. In iii., the rotation is done over the rotation axis used during
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find offset

delta factors*

delta*

get probe response constants*

get probe receiving coefficients*

probe response constants*

translation coefficients*

rotate origin

delta factors*

delta*

alignment procedure

offset origin

rotate origin

delta factors*

delta*

translate origin

general translation coefficient

coefficients2pattern*

SN2FFT*

wT, QB, rax, pr, A, N, f, Nth, Nph, imax, ub, lb, v0, ev

wfin, Qfin, vopt, fval

i. mu, m, n, m st →
d m, d mu ←

ii. Q, N, rotB →
QBrot ←

iii.

180° rotation of QB about rax

QB, N, rotB →
QBrot ←

iv.

v.

rotation and translation of QB by the vopt misalignment vector

QBrot, N, jk, rot opt, trans opt, ,rt, →
QBopt ←

vi. QBopt, theta, P, d mu, d m, N, Nth, Nph →
wBopt ←

vii.

final stitched pattern wfin and Qfin computation

wst, f, theta, phi, Nth, Nph, pr, A, pr, A, N →
wfin, Qfin ←

← n, m

→ delta start

a.← Tp, N

→ Rp, sig, mu, nu

b.← Rp, Nu, N, jk, A

→ P

N, Nu, jk, A →
C ←

← n, m

→ delta start

N, Nu, jk, A →
C ←

a.← QBrot, N, rot opt

→ Qmid

b.← Qmid, N, jk, At

→ QBopt

N, Nu, jk, A →
C ←

← n, m

→ delta start

sig, mu, nu, s, n, jk, At, c, astart →
C ←

Figure B.3: Pattern alignment annotated call graph
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measurement. In step v., the rotation and translation are done with the optimum mis-
alignment vector vopt, which was found during the alignment procedure called in iv. The
call of the spherical near-to-far-field transformation (SN2FFT) algorithm at the final stage
is done at the end of the pattern stitching method in order to obtain the final stitched
pattern wfin and its SWCs, which are stored in Qfin.

The alignment procedure marked in Figure B.3 with a dashed frame, whose details were
excluded in the graph, deserves some further attention. For that reason, its detailed oper-
ation has been drawn in Figure B.4. This iterative block contains the objective function,
offset function, and the optimizer function fmincon from Matlab´s Optimization Tool-
box [44]. The objective function is used to rotate and translate SWCs of the bottom
measurement, generate the field pattern wo

bottom(χ, θ, Φ) for the given input misalignment
vector, and compute the value of the minimization objective for this misalignment com-
bination, the weighted scaled mean square error (wSMSE). It is called iteratively by the
fmincon function during the alignment procedure with varying misalignment combinations
in order to find the misalignment between the coordinate systems of both measurements.
The fmincon function is a powerful minimization solver that allows the user to apply dif-
ferent types of inequalities to the problem, including nonlinear constraints [44]. Its general
definition is

min
x

f(x) such that

{......{......{

c(x) ≤ 0

ceq(x) = 0

A . x ≤ b

Aeq . x ≤ beq

lb ≤ x ≤ ub

,

where c(x) and ceq(x) represent nonlinear (in)equality constraints, A and Aeq represent
linear (in)equality constraints, and lb and ub represent the lower and upper bounds of
the variable matrix x. Since the minimization in the case of pattern stitching requires
only the upper and lower bound constraints, all other constraints were assigned an empty
array, as can be seen on the bottom of Figure B.4. Moreover, some optimizer settings
were also changed for the pattern stitching method, as seen on the bottom of the graph.
Any optimizer option not explicitly listed in the graph has been set to its default value.
The most important among the options were the choice of algorithm, which was set to
,interior-point,, and the use of parallel computing for faster results. For more infor-
mation on the minimization function, the reader is invited to read the supporting Matlab
documentation [44].

Syntax:

[wfin, Qfin, vopt, fval] = find offset(wT, QB, rax, pr, A, N, f, Nth, Nph,

imax, ub, lb, v0, flag)

Inputs:

❼ wT(chi,theta,phi) → 3D array containing the truncated field pattern of the top
measurement wtop(χ, θ, Φ), ordered in an array using indices of vectors chi (1st

dimension), theta (2nd dimension), and phi (3rd dimension) as array indices

❼ QB(s,m,n) → truncated spherical wave coefficients (SWCs) of the bottom mea-
surement, ordered in an array with SWC-indices s = (1, 2) (1st dimension), m =
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offset function

offset origin

rotate origin

delta factors*

delta*

translate origin

general translation coefficient

coefficients2pattern*

compute weighted smse

fmincon

fmincon unused constraints:

AC = [];

b = [];

Aeq = [];

beq = [];

nonlcon = [];

fmincon optimizer options:

optimoptions(@fmincon,,Algorithm,,,interior-point,,...

,OptimalityTolerance,,1e-9,...

,FunctionTolerance,,1e-9,...

,StepTolerance,,1e-9,...

,UseParallel,,true,...

,ObjectiveLimit,,1e-9,...

,MaxFunctionEvaluations,,500);

iv. alignment procedure

v, wT, p, d m, d mu, N, jk, Nth, Nph, QBrot, imax, ev →
wsmse ←

offset function, v0, AC, b, Aeq, beq, lb, ub, nonlcon, ops →
vopt, fval ←

a.← QB, N, jk, rot, trans, ,rt,

→ QBopt

b.← QBo, theta, P, d mu, d m, N, Nth, Nph

→ wbo

c.← wT, wBo, theta, thmax, thmin

→ wsmse

1. QB, N, rot →
Qr ←

2. Qr, N, jk, At →
QBo ←

← mu, m, n, m st

→ d m, d mu

n, m →
delta ←

← sig, mu, nu, s, n, jk, At, c, astart

→ C

Figure B.4: Alignment procedure annotated call graph

(0, 1, . . . , N - 1, N,-N,-N +1, . . . ,-1) (2nd dimension), and n = (1, 2, . . . , N) (3rd

dimension) as array indices; all array elements with |m| > n are assigned a value of
zero

❼ rax → defines the rotation axis over which the AUT has been rotated by 180°
between the two partial measurements, either ,x, or ,y, must be set

❼ pr → measurement probe name (the following probe antennas have been imple-
mented); ,dipole, (ideal x-oriented dipole) or ,RGP10 187 (RGP10 with 187 mm
mast) or ,RGP10 527 (RGP10 with 527 mm mast) or ,RGP40, (RGP40 dual ridge
horn probe antenna)

❼ A → AUT-to-probe distance A in meters

❼ N → maximum polar order N of both truncated patterns
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❼ f → measurement frequency in Hz

❼ Nth → number of θ-steps in [0,π]

❼ Nph → number of Φ-steps in [0, 2π)

❼ imax → theta index pointing to the truncation angle θtrunc

❼ ub→ upper bound for the misalignment vector, contains the Euler angles and trans-
lation offsets in the following order; (χUB, ϑUB, φUB, xUB, yUB, zUB)

❼ lb→ lower bound for the misalignment vector, contains the Euler angles and trans-
lation offsets in the following order; (χLB, ϑLB, φLB, xLB, yLB, zLB)

❼ v0→ initial estimate misalignment vector, contains the Euler angles and translation
offsets in the following order; (χ0, ϑ0, φ0, x0, y0, z0)

❼ ev → character string argument, if set to ,abs,, pattern alignment is done using
only magnitude information of both patterns, otherwise complex field patterns are
used

Outputs:

❼ wfin(chi,theta,phi) → stitched field pattern, ordered in an array using indices
of vectors chi (1st dimension), theta (2nd dimension), and phi (3rd dimension) as
array indices

❼ Qfin(s,m,n) → spherical wave coefficients (SWCs) of the stitched pattern, or-
dered in an array with SWC-indices s = (1, 2) (1st dimension), m = (0, 1, . . . , N -
1, N,-N,-N + 1, . . . ,-1) (2nd dimension), and n = (1, 2, . . . , N) (3rd dimension)
as array indices; all array elements with |m| > n are assigned a value of zero

❼ vopt → misalignment vector solution, contains the Euler angles and translation
offsets in the following order; (χopt, ϑopt, φopt, xopt, yopt, zopt)

❼ fval → minimum wSMSE result in the overlapping region, achieved during pattern
alignment

rotate origin

Description:

The function first computes all delta factors Δn
m,m for the given order N by calling the

function delta factors, which was presented in Appendix A. These factors are needed to
compute rotation coefficients dnμm(ϑ0) for rotation over θ from (2.26). Then, the original
SWCs Qsmn are rotated using (2.32) to obtain the rotated SWCs Qr

smn.

Syntax:

Qr = rotate origin(Q, N, rot)
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Inputs:

❼ Q(s,m,n) → SWCs Qsmn, ordered in an array with SWC-indices s = (1, 2) (1st

dimension), m = (0, 1, . . . , N - 1, N,-N,-N + 1, . . . ,-1) (2nd dimension), and
n = (1, 2, . . . , N) (3rd dimension) as array indices; all array elements with |m| > n
are assigned a value of zero

❼ N → maximum polar order N of the SWCs

❼ rot → vector (χ0, ϑ0, φ0) containing the Euler rotation angles

Outputs:

❼ Qr(s,m,n)→ rotated SWCs Qr
smn, ordered in an array with SWC-indices s = (1, 2)

(1st dimension), m = (0, 1, . . . , N - 1, N,-N,-N +1, . . . ,-1) (2nd dimension), and
n = (1, 2, . . . , N) (3rd dimension) as array indices; all array elements with |m| > n
are assigned a value of zero

offset origin

Description:

The function takes the input SWCs Qsmn and uses the provided coordinate system offset,
defined by the set of Euler angles (χ0, ϑ0, φ0) and the translation vector (x0, y0, z0), to
transform them into the desired offset SWCs Qo

smn. This is done by calling the functions
rotate origin and translate origin in the order defined by the parameter order. As
discussed in Section 2.2, an arbitrary translation direction (different than +z, for which
the function translate origin has been defined) is achieved by first rotating the SWCs
to align the direction of translation with the +z-axis, translating them, and then rotating
them back into the initial orientation.

Syntax:

Qo = offset origin(Q, N, k, rot, trans, order)

Inputs:

❼ Q(s,m,n) → SWCs Qsmn, ordered in an array with SWC-indices s = (1, 2) (1st

dimension), m = (0, 1, . . . , N - 1, N,-N,-N + 1, . . . ,-1) (2nd dimension), and
n = (1, 2, . . . , N) (3rd dimension) as array indices; all array elements with |m| > n
are assigned a value of zero

❼ N → maximum polar order N of the SWCs

❼ k → wavenumber

❼ rot → vector (χ0, ϑ0, φ0) containing the Euler rotation angles

❼ trans → vector (x0, y0, z0) containing the translation distances in all axes

❼ order → parameter defining the order of operations; ,rt, "first rotation and then
translation" and ,tr, "first translation and then rotation"
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Outputs:

❼ Qo(s,m,n) → offset (translated and rotated) SWCs Qo
smn, ordered in an array with

SWC-indices s = (1, 2) (1st dimension), m = (0, 1, . . . , N-1, N,-N,-N+1, . . . ,-1)
(2nd dimension), and n = (1, 2, . . . , N) (3rd dimension) as array indices; all array
elements with |m| > n are assigned a value of zero

translate origin

Description:

The function first computes the recursive formula starting linearization coefficients an+ν

for all n and ν according to [38, Eqs. (28)]. It then computes all translation coeffi-

cients C
sn(c)
σμν (kAt) for a translation distance At in +z direction by calling the function

general translation coefficient. Finally, the input SWC matrix Q is translated to
the new +z-translated origin using (2.41). giving the translated SWC matrix Qt. Addi-
tionally, the total power contained in the original and the translated SWCs is computed
using (2.22). A warning is returned if the power of the translated SWCs is more than
0.1% below that of original SWCs as this indicates that the considered maximum polar
order N is insufficient for such a translation.

Syntax:

Qt = translate origin(Q, N, k, At)

Inputs:

❼ Q(s,m,n) → SWCs Qsmn, ordered in an array with SWC-indices s = (1, 2) (1st

dimension), m = (0, 1, . . . , N - 1, N,-N,-N + 1, . . . ,-1) (2nd dimension), and
n = (1, 2, . . . , N) (3rd dimension) as array indices; all array elements with |m| > n
are assigned a value of zero

❼ N → maximum polar order N of the SWCs

❼ k → wavenumber

❼ At → translation distance in meters

Outputs:

❼ Qt(s,m,n) → translated SWCs Qt
smn, ordered in an array with SWC-indices s =

(1, 2) (1st dimension), m = (0, 1, . . . , N-1, N,-N,-N+1, . . . ,-1) (2nd dimension),
and n = (1, 2, . . . , N) (3rd dimension) as array indices; all array elements with |m| >
n are assigned a value of zero

general translation coefficient

Description:

The function computes a translation coefficient C
sn(c)
σμν (kAt) for a translation distance At

according to (2.34), for spherical wave functions of type (c), as discussed in Section 2.1.
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It uses the recursive formula given in [38, Eqs. (26)] to compute the required linearization
coefficients from the starting value astart.

Syntax:

C = general translation coefficient(sig, mu, nu, s, n, k, At, c, astart)

Inputs:

❼ sig→ denotes the probe´s generating function indices σ, ordered in a vector; sig = 1
(m-function), sig = 2 (n-function)

❼ mu → vector of probe azimuthal indices μ = (1,-1) (probe antenna´s equivalent of
index m)

❼ nu → vector of probe polar indices ν = (1, 2, . . . , νmax) (probe antenna´s equivalent
of index n)

❼ s → denotes the AUT´s generating function indices s, ordered in a vector; s = 1
(m-function), s = 2 (n-function)

❼ n → vector of AUT´s polar indices n = (1, 2, . . . , N)

❼ k → wavenumber

❼ At → translation distance in meters

❼ c → spherical function type; c = 1 standing wave, c = 3 inward traveling wave,
c = 4 outward traveling wave

❼ astart → starting linearization coefficient for the recursive formula

Outputs:

❼ C → computed translation coefficient C
sn(c)
σμν (kAt)

offset function

Description:

This is the error function used for the alignment procedure which is executed with varying
misalignment vectors during the error minimization process. It takes the current in-
put misalignment vector v = (χC, ϑC, φC, xC, yC, zC) containing the Euler angles and the
translation offsets, uses them to rotate and translate the truncated SWCs of the bottom
measurement QB

smn by calling the offset origin function and then expands these offset
SWCs into a field pattern by calling the coefficients2pattern function introduced in
Appendix A. Finally, the wSMSE in the overlapping range is computed between the result-
ing bottom pattern and the pattern of the top measurement, wT(χ, θ, Φ). Depending on
the set parameter ev, this can be done either using only the magnitudes of both patterns
or complex field patterns.

Syntax:

wsmse = offset function(v, wT, P, d m, d mu, N, k, Nth, Nph, QB, imax, ev)
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Inputs:

❼ v → current misalignment vector, contains the Euler angles and translation offsets
in the following order; (χC, ϑC, φC, xC, yC, zC)

❼ wT(chi,theta,phi) → 3D array containing the truncated field pattern of the top
measurement wtop(χ, θ, Φ), ordered in an array using indices of vectors chi (1st

dimension), theta (2nd dimension), and phi (3rd dimension) as array indices

❼ P(s,mu,n) → probe response constants, ordered in an array with SWC-indices
s = (1, 2) (1st dimension), μ = (1,-1) (2nd dimension), and n = (1, 2, . . . , N)
(3rd dimension) as array indices

❼ d m(n,m st,m)→ an array containing the delta factors Δn
m,m for all indices of vectors

n (1st dimension), m st (2nd dimension), and m (3rd dimension); all array elements
with |m| > n or |m,| > n are assigned a value of zero

❼ d mu(n,m st,mu) → an array containing the delta factors Δn
m,μ for all indices of

vectors n (1st dimension), m st (2nd dimension), and mu (3rd dimension); all array
elements with |m,| > n are assigned a value of zero

❼ N → maximum polar order N of both truncated patterns

❼ k → wavenumber

❼ Nth → number of θ-steps in [0,π]

❼ Nph → number of Φ-steps in [0, 2π)

❼ QB(s,m,n) → truncated spherical wave coefficients (SWCs) of the bottom mea-
surement, ordered in an array with SWC-indices s = (1, 2) (1st dimension), m =
(0, 1, . . . , N - 1, N,-N,-N +1, . . . ,-1) (2nd dimension), and n = (1, 2, . . . , N) (3rd

dimension) as array indices; all array elements with |m| > n are assigned a value of
zero

❼ imax → theta index pointing to the truncation angle θtrunc

❼ ev → character string argument, if set to ,abs,, pattern alignment is done using
only magnitude information of both patterns, otherwise complex field patterns are
used

Outputs:

❼ wsmse → computed wSMSE in the overlapping range between both input patterns
as defined by the minimum and the maximum θ-angle

compute weighted smse

Description:

The function computes the weighted scaled mean square error (wSMSE) (3.15) between
two input patterns, w1(χ, θ, Φ) and w2(χ, θ, Φ), in the overlapping range of θ-angles between
θmin and θmax. For indexing purposes, it requires that both patterns are defined starting
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at θ = 0° and at least up to θmax. Since only the part between θmin and θmax is considered
in the computation, any θ-value outside this range can be set to 0 in case of missing data.

Syntax:

wsmse = compute weighted smse(w1, w2, theta, thmax, thmin)

Inputs:

❼ w1(chi,theta,phi), w2(chi,theta,phi) → 3D arrays containing field patterns
w1(χ, θ, Φ) and w2(χ, θ, Φ), ordered in an array using indices of vectors chi (1st

dimension), full-range theta (2nd dimension), and phi (3rd dimension) as array
indices

❼ theta → full-range θ-vector (0° ≤ θ ≤ 180°)

❼ thmax → largest θ-angle to be considered in the computation

❼ thmin → smallest θ-angle to be considered in the computation

Outputs:

❼ wsmse → computed wSMSE in the overlapping range between both input patterns
as defined by the minimum and the maximum θ-angle

129



C Extension of the Stitching Method to
Connectorless Devices

The alignment algorithm presented in Section 3.3.2 was implemented for use with classical
antenna measurements, where the antennas under test (AUTs) are equipped with a coax-
ial connector and regular S-parameter measurements are possible. However, the antenna
to be measured is often integrated on a printed circuit board (PCB) and is not equipped
with a coaxial connector, e.g., when dealing with connectorless internet of things (IoT)
devices with an integrated radio frequency (RF) chip and power supply. To cater to con-
nectorless devices, the measurement procedure must therefore be modified. Furthermore,
adaptations of the alignment procedure are required in order to be able to process ra-
diation patterns of this type of devices. We first tackled these issues in [59], where the
extension of the pattern stitching method to connectorless devices was presented on the
example of battery-powered electronic shelf labels (ESLs) with an antenna integrated onto
the PCB. A measurement setup for measuring connectorless devices was devised for this
purpose and the pattern-stitching method was adapted accordingly. The procedure can
be generalized to all kinds of devices under test (DUTs) with integrated antennas, as long
as they can be triggered into transmitting mode where a continuous wave (CW) signal
is transmitted for a known time. The necessary modifications of the measurement pro-
cedure and the required adaptations to the stitching method for processing patterns of
connectorless devices measured in this manner are documented in the remainder of this
chapter.

C,1 Measzrement Setzp

Considering the standard measurement setup of a swing arm-over-azimuth test range,
which was shown in Figure 3.1, a vector network analyzer (VNA) measurement of the
incoming wave received by the probe antenna would suffice to obtain relative magnitude
patterns. This, however, does not give us coherent phase information, which is needed for
computing the SWCs, without which the pattern stitching method cannot work. In order
to obtain a reference signal for coherent phase information, an additional antenna must be
used. This reference antenna must always maintain the same distance and orientation with
regard to the device under test (DUT). This can be achieved by mounting the reference
antenna onto the Φ-axis rotary stage. The reference antenna is then covered with the
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support structure on which the DUT is mounted, as shown in Figure C.1. ROHACELL is
used for the support structure because its permittivity closely resembles the permittivity
of air and thus aids in minimizing interactions with the DUT and unwanted reflections.

Figure C.1: Placement of the reference antenna, the support structure, the DUT, and the probe
antenna when measuring connectorless devices.

Next, the DUT must be set to transmit a CW signal at all frequencies of interest. In order
to measure this transmitted signal, a synchronization between the measurement system
and the DUT is required. To allow for synchronization, the DUT is programmed such that
it waits to receive a wake-up pulse at a chosen frequency and then starts transmitting a CW
signal, progressing in a sequence of known durations over all frequencies to be measured.1

After the DUT is programmed, it is ready to be measured in the antenna test range. The
measurement setup schematic of the range containing all crucial measurement equipment
is shown in Figure C.2. Using this measurement setup, a synchronized measurement can
then be done in the following three steps, marked with 1. to 3. in the schematic;

1. By default, the DUT waits for a wake-up pulse before transmitting a sequence of CW
signals of known duration over all measurement frequencies. The position controller
(PosC) is connected to the swing arm (θ) and the two rotary stages (Φ, χ). For
every (χ, θ, Φ) measurement point, the PosC sends a trigger signal to both the signal
generator and the VNA once the axes are in position.

2. The signal generator then transmits a CW pulse to the reference antenna via a
directional coupler to set the DUT into transmitting mode. At the same time,
the VNA uses the trigger to time the start of the measurement sequence over all
frequencies.

1It is important to note that the reference frequency of the measurement equipment generally does not
match that of the DUT,s internal chip, so the exact frequencies either need to be measured in advance or
a sufficiently large VNA IF bandwidth must be used to assure that the signal is captured by the VNA.
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3. The VNA measures the received signals on two receivers; On receiver A, the signal
received by the probe antenna is measured, while receiver B is connected to the
reference antenna via the directional coupler. By measuring the ratio between the
signal received at receiver A and the signal received at receiver B (A/B), a phase-
coherent radiation pattern is obtained.

Figure C.2: Measurement setup for connectorless DUTs; antenna range

This measurement procedure gives coherent phase information, but only relative signal
levels. To determine parameters such as antenna gain, equivalent isotropic radiated power
(EIRP), or total radiated power (TRP), an additional magnitude-calibration measurement
is required.

C,2 Magnitzde Calibration

While classical two-port measurements allow for gain calibration by substituting the AUT
with a standard gain horn (SGH) antenna with a known gain, this is not possible in
the case of connectorless test objects. Instead, the absolute power received by the probe
antenna can be measured at an arbitrary measurement orientation, (χ0, θ0, Φ0). This
requires precise knowledge of the probe antenna gain, the measurement distance, as well
as cable attenuation between the probe antenna and the measurement port. Since the
DUT transmits short, pulsed CW signals, a synchronized spectrum analyzer (SA), which
was also included in the measurement setup schematic in Figure C.2, must be used instead
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of a power meter to measure the received power. The EIRP can then be derived from the
link budget equation;2

EIRPdB = PSA|dB +ATTdB -Gprobe|dB + FSPLdB (C.1)

In (C.1), PSA is the power measured with the SA, ATT represents both the cable losses on
the path from probe antenna to the SA and the SA power correction factor, Gprobe is the
probe gain and FSPL the free-space path loss between the DUT and the probe antenna.
Once the EIRP is known, the magnitude of the electric field at the measurement distance
d can be calculated;

|Ed(χ0, θ0, Φ0)| =
√

2Z0 . 10
EIRPdB

10

4πd2
(C.2)

Finally, the known value of |Ed| at (χ0, θ0, Φ0) can be compared to the relative magnitude
measured at that same position during the probe/reference relative measurement in order
to obtain a correction factor which can then be applied to all measurement points. Since
the coordinate systems of both measurements are not perfectly aligned, this of course has
to be done separately for each (truncated) measurement.

C,3 Alignment Procedzre Adaptation

As mentioned earlier, the magnitude of each measurement is calibrated by measuring
the signal power received by the probe antenna at a single measurement point. Ideally,
this would bring the two measurements to matching magnitude levels. However, it was
observed that this single-point calibration procedure can cause a significant increase of the
weighted scaled mean square error (wSMSE) in the overlapping region when inappropriate
calibration points are chosen, i.e., points where the antenna radiates poorly and the SNR
is low. Moreover, the magnitude calibration does not correct for the change in phase
between measurements which occurs because the path to the reference antenna changes
when the DUT is turned over.

To tackle these issues, the alignment procedure must be modified accordingly. Specifically,
the wSMSE minimization procedure has to be extended by two additional parameters. Pa-
rameter m represents the magnitude mismatch, while Ψ stands for the phase difference
between the two measurements. The radiation pattern of one measurement is then modi-
fied in the following simple manner;

Ecorrected(χ, θ, Φ) = m . E(χ, θ, Φ) . e-jΨ (C.3)

With these adjustments, the method is now capable of compensating for both the magni-
tude and the phase offset between two measurements during the alignment procedure. The
magnitude offset parameter m obtained by the alignment procedure favors the magnitude
of the fixed measurement over that of the aligned measurement. Alternatively, the two
measurements could also be scaled by

√
m and

√
m

-1
, respectively, which would result in

an averaged magnitude calibration.
2The link budget equation used for magnitude calibration requires the probe antenna,s gain, Gprobe,

and the free-space path loss, FSPL, for its computation, which are far-field parameters. The calibration
is thus valid only for measurements in the far field. While a near-field equivalent of the gain can easily
be obtained from the probe,s radiation patterns, estimation of the path loss at a given near-field distance
requires further analysis, which was not done at this stage.

133


	Titlepage
	Introduction
	Antenna Measurements
	Problem Statement

	Spherical Near-Field Measurements
	Spherical Wave Expansion
	Rotation and Translation Operators on Spherical Waves
	Coordinate System Rotation
	Coordinate System Translation

	Scattering Matrix of an Antenna
	Transmission Formula
	Computation of Spherical Wave Coefficients
	Analytical Solution
	Discrete Solution

	Transformation Algorithm

	Truncated Pattern Stitching
	Pattern Stitching Concept
	Spherical Wave Coefficients of Truncated Patterns
	Iterative Algorithm
	LS Method
	FFT/Matrix Method
	Singular Value Truncation for Computing Pseudoinverses
	Comparison

	Measurement Alignment
	Rotation and Translation of Truncated SWCs
	Alignment Algorithm

	Aligned Pattern Stitching

	Validation of the Stitching Method
	Validation with Synthetic Data
	Convergence Issues
	Two-Step Alignment Procedure
	Frequency Dependency

	Validation with EM Simulation Data
	Validation with Measurement Data
	Connectorized AUTs
	Connectorless Devices


	Practical Limitations of Accuracy
	Sources of Error in Spherical Near-Field Measurements
	Influence of a Coaxial Cable
	EM Simulations
	Measurements

	Influence of the Support Structure
	Support Structures
	SGH Measurements
	EM Simulations

	Summary

	Conclusion and Outlook
	References
	SN2FFT Documentation
	Example of Usage
	List of Supporting Functions

	Pattern Stitching Method Documentation
	Example of Usage
	List of Supporting Functions

	Extension of the Stitching Method to Connectorless Devices
	Measurement Setup
	Magnitude Calibration
	Alignment Procedure Adaptation


