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Kurzfassung

Die Aufnahme von medizinischen Bilddaten ist ein notwendiger Schritt im Rahmen von
Vorsorgeuntersuchungen, für die Diagnose von Krankheiten, Planung von Operationen
oder Therapien sowie für die Überwachung von Krankheitsverläufen. In der klinischen
Praxis werden die Daten von medizinischen Experten analysiert und befundet. Dies kann
eine sehr zeitaufwändige Aufgabe sein. Daher wird seit Jahrzehnten intensiv an der auto-
matisierten Analyse medizinischer Bilddaten geforscht und an der Frage, wie die zuvor
genannten Aufgaben durch computergestützte Detektions- und Diagnosealgorithmen un-
terstützt werden können. Eine der größten Herausforderung in diesem Zusammenhang ist
die hohe Heterogenität medizinischer Bilddaten. Die Aufnahme von Daten mit verschiede-
nen bildgebenden Verfahren, wie z.B. Röntgen oder Magnetresonanztomographie (MRT),
die Änderung von Aufnahmeparametern und der Einsatz verschiedener Scanner führen
zu einem diversen Set an Daten. Die unterschiedliche räumliche Auflösung sowie die hohe
Dimensionalität der Daten stellen zusätzliche Herausforderungen bei der Entwicklung
automatisierter Lösungen dar.

In dieser Dissertation untersuchen wir Machine Learning-basierte Methoden für die
Analyse heterogener medizinischer Bilddaten, wie z.B. multi-parametrische Daten, multi-
modale Daten, Daten aus unterschiedlichen Aufnahmerichtungen oder aus verschiedenen
Krankenhäusern. Wir stellen drei verschiedene Analyse-Pipelines vor, die generalisierende
und auf Fusion basierende Ansätze anwenden, und demonstrieren ihre Anwendbarkeit
auf unterschiedlichen öffentlichen Datensätzen. Unsere Methoden adressieren zwei ausge-
wählte Anwendungsfälle in der Radiologie: die semantische Annotation der Wirbelsäule
in MRT Daten und die Analyse von Mammografie-Bildern.

Ein Problem bei der semi- und vollautomatischen Annotation der Wirbelsäule in MRT-
Daten ist die Tatsache, dass MRT-Bilder keine standardisierte Intensitätsskala aufweisen.
Dies führt zu einer großen Vielfalt an unterschiedlichen Bildkontrasten. Wir schlagen
deshalb eine iterative Lösung vor, die Entropy-Optimized Texture Models (ETMs) ver-
wendet. Die Anwendung von ETMs ermöglicht uns, die trainierten Modelle auf eine
große Bandbreite unterschiedlicher MRT-Daten anzuwenden. Dieser Ansatz steht im
Gegensatz zu verschiedenen Lösungen aus der Literatur, die Methoden für spezifische
MRT-Sequenzen und -Protokolle entwickeln.

Im Rahmen von Mammografie-Vorsorgeuntersuchungen werden pro Patientin bzw. Patient
nicht nur einzelne Röntgenbilder aufgenommen, sondern vier Bilder aus unterschiedlichen
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Aufnahmerichtungen. Diese werden zu einer Studie zusammengefasst, die für eine bildge-
stützte Analyse zur Verfügung stehen. Zusätzlich zu diesen Bildern sind Informationen
auf verschiedenen Ebenen vorhanden, z.B. auf Patienten-, Bild- oder Läsionsebene. Um
diese Informationen effizient zu nutzen und zu kombinieren, entwickeln wir mehrere Deep
Learning-basierte Modelle. Diese behandeln bestimmte Aufgaben, die bei der Befundung
von Mammogrammen wichtig sind, wie z.B. die Lokalisierung von Abnormalitäten. Für
eine verbesserte Vorhersage auf Patientenebene fusionieren wir Ergebnisse und extrahierte
Merkmale der einzelnen Modelle, um die Performanz zu erhöhen. Dieser Ansatz steht im
Gegensatz zu Methoden, die einfache Kombinationsansätze verwenden.

Die in dieser Dissertation präsentierten Ergebnisse zeigen, dass die Berücksichtigung der
verschiedenen Aspekte heterogener medizinischer Bilddaten unumgänglich ist, um sowohl
die Generalisierungs- als auch die Vorhersagefähigkeit computergestützter Detektions-
und Diagnosemethoden zu verbessern.



Abstract

The acquisition of medical imaging data is inevitable for screening, diagnosis, planning
of surgery or therapy, or monitoring of diseases. In clinical practice, the data is assessed
by medical experts, which can be a very time-consuming task. Hence, for decades a lot
of research effort has been dedicated to the automated analysis of medical imaging data
and to the question of how Computer-Aided Detection and Diagnosis algorithms can
assist the tasks mentioned above. However, one of the biggest challenges in this regard is
the highly heterogeneous nature of medical imaging data. The acquisition of data from
different imaging modalities, like X-ray or Magnetic Resonance Imaging (MRI), changes
of acquisition parameters, and the use of different scanners results in diverse data. The
varying spatial resolution as well as the high dimensionality of the data pose additional
challenges to the development of automated solutions.

In this thesis, we investigate different machine learning-based methods to address the
analysis of heterogeneous medical imaging data, such as multi-parametric, multi-modal,
multi-center, or multi-view data. We present three different pipeline approaches that
follow generalization- and fusion-based approaches and demonstrate their applicability
on diverse public datasets. Our contributions target two selected use cases in radiology:
the semantic labeling of the spine in MRI data and the analysis of mammograms.

In semi- and fully-automated spine labeling in MRI data, we are confronted with the
problem that MRI data does not exhibit a standardized intensity scale, which results
in a large variety of different image contrasts. To overcome this problem for semantic
spine labeling, we propose an iterative labeling pipeline that employs Entropy-Optimized
Texture Models (ETMs). The application of trained ETMs allows us to apply our models
to a wide range of different MRI data. This is in contrast to various related works that
develop methods for specific MRI image sequences and protocols.

For the analysis of mammography screening data, not only one but four X-ray images
from different fields of view are available that form a study of a patient. In addition to this
multi-view data, we deal with multi-scale information at various levels, e.g., on a patient,
image, or lesion level. To utilize and combine this information efficiently, we develop
several deep learning-based models that aim for a specific task important in examining
mammograms, such as the localization of abnormalities. For a comprehensive prediction
on a patient level, we propose to fuse predictions and features from the individual models
to increase performance, which is in contrast to standard ensembling techniques.
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The results in this thesis demonstrate that considering the different aspects of heteroge-
neous medical imaging data is inevitable to improve both generalization and predictive
capabilities of Computer-Aided Detection and Diagnosis methods.



Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Clinical Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Aim of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6 Contributions of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Semi-Automatic Spine Labeling in Multi-Sequence MRI Data 25
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Methods and Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Towards Fully Automatic Labeling of the Spine in 3D Imaging Data 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Fully Automatic Labeling of an Unseen Scan . . . . . . . . . . . . . . 49
3.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Improving Mammography Screening Data Classification 69
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

xiii



5 Concluding Remarks 107
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2 Advances in Spine Labeling . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3 Recent Developments in Deep Learning-Based Analysis of Mammograms 113
5.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

List of Figures 121

List of Tables 127

Acronyms 129

Bibliography 131

Appendix: Detailed Mammography Meta-Model Results 161



“If it weren’t for the last minute, nothing would get done.”

Rita Mae Brown, Writer and Activist





CHAPTER 1
Introduction

1.1 Clinical Motivation
In every person’s life, there may come a time when there is a need to acquire medical
imaging data to obtain insights into a specific medical condition. Depending on the
indication and clinical question, different types of imaging data will be acquired, e.g.,
X-ray, Computed Tomography (CT), Magnetic Resonance Imaging (MRI), or Positron
Emission Tomography (PET) scans. In clinical practice, image acquisition is part of
the diagnostic imaging workflow, which comprises different stages. It includes all steps
ranging from the initial image ordering from the referring physician to the scheduling of
the exam and image acquisition itself, continues with the image reading and interpretation
by the radiologists, and is concluded by reporting and communication of results to the
referring physician and patient [105, 180]. Figure 1.1 illustrates the steps.

Over the last decade, the number of referrals to a medical image acquisition procedure
and, thus, the amount of acquired imaging data increased steadily, as shown in Table 1.1.
This development has driven the effort to increase the efficiency along the whole workflow,
especially through machine learning-based approaches. Numerous methods have been
presented that optimize the scheduling of exams, accelerate image acquisition, increase

Image
Ordering

Reporting & Result
Communication

Image 
Acquisition

Scheduling &
Preparation

Image Reading &
Interpretation

Figure 1.1: Main stages of the diagnostic imaging workflow, adapted from
Preim & Botha [180]. Icons made by Smashicons from www.flaticon.com.
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1. Introduction

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
CT AUT 175.2 172.6 173.4 183.6 196.2 182.0

GER 120.6 127.5 131.2 135.3 143.8 143.1* 148.5* 139.9* 144.7* 151.2* 150.0*
US 264.8 273.8 256.8 240.5 255.0 245.4 253.8 256.2 271.4 278.4 220.2

MRI AUT 117.4 120.2 130.7 141.4 148.0 140.5
GER 105.5 110.5 115.3 124.2 131.3 138.6* 143.4* 140.8* 145.1* 149.8* 149.9*
US 97.6 102.7 104.8 106.9 109.6 117.9 120.7 111.0 119.3 127.9 82.7

PET AUT 2.1 2.4 2.4 4.8 4.9 4.6
GER 1.4 1.6 1.6 1.6 1.6 1.6 1.7 1.7 1.8 1.9 1.8
US 5.6 5.9 5.5 5.0 5.1 5.4 5.8 6.0 6.4 6.7 6.7

Table 1.1: Number of CT, MRI, and PET exams per 1.000 population in Austria (AUT),
Germany (GER) and United States (US) from 2010 to 2020. Numbers marked with *
indicate estimates. Data from OECD [166].

image quality, or create reports automatically [105, 189]. One of the largest fields of
research along the workflow is the automated analysis of medical imaging data, like
radiology or oncology data [84, 183]. The development of (semi-)automated Computer-
Aided Detection (CADe) and Computer-Aided Diagnosis (CADx) methods in radiology
already have a long history dating back to the 1950s and early 1960s [55]. Due to the
increasing amount of imaging data and, thus, increasing workload for radiologists, this
development continues unabated.

1.2 Problem Statement
1.2.1 Heterogeneous Medical Imaging Data
Not only the number of acquired scans is rapidly growing, but also the complexity
of medical data is increasing, which is one of the main challenges in medical image
analysis [148]. One influencing factor is, for example, the advances in medical imaging
techniques that result in higher-resolution data [182]. In the literature, the complexity of
medical (imaging) data is further explained by the heterogeneous nature of the data [109,
148, 182]. Kehrer & Hauser [109] and Raidou [182] describe the different aspects of
heterogeneous scientific data in general and medical data specifically as multi-faceted.
Thereby, they refer to the heterogeneity characteristics of the data, e.g., the multi-modal
or spatio-temporal nature.

For medical imaging data, we can identify various heterogeneity characteristics of the
data, which we will refer to as categories of heterogeneous data in this thesis. We can
group them into the following categories ci, i = 1, . . . , m, where each comprises various
types tj , j = 1, . . . , n:
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a cb

Figure 1.2: Sample images from the same patient showing the spinal column acquired
with two different imaging modalities (multi-modal) and varying scanning parameters
(multi-parametric): (a) CT scan, (b) T1w FLAIR MRI scan, (c) T2w CUBE MRI scan.
Images provided by Cai et al. [28], downloaded from Spineweb [215].

Multi-modal data. Multi-modal data refers to data from various acquisition modal-
ities, i.e., types tj , such as CT, MRI, or X-ray [109]. One essential property of
multi-modal data is their complementarity, as described by Lehat et al. [117]. They
state that “each modality brings to the whole some type of added value that cannot
be deduced or obtained from any of the other modalities in the setup”.

Multi-parametric data. Changes in the image acquisition parameters, e.g., in MRI,
result in medical images of the same modality that exhibit different image contrasts.
In MRI, this is also often referred to as multi-sequence data. Different types are
for example T1-weighted (T1w) or T2-weighted (T2w) data. Figure 1.2 shows
multi-modal, multi-parametric sample images of the spinal column from the same
patient.

Multi-dimensional data. The dimensionality of the data usually depends on the
acquisition modality, e.g., 2D X-ray data or 3D data from MRI, CT, or PET
scanners [148, 179].

Multi-resolution data. Depending on the region of interest and the image acquisition
process and devices, we are concerned with limited and varying resolution of the
data. A related issue are highly anisotropic voxel sizes, i.e., where the pixel size
within a slice can be several times smaller than the slice distance [179].

Multi-scale data. By multi-scale data, we refer to the different levels of the data,
e.g., at the molecular level or cellular/tissue level [177]. On an image level, we
also refer to multi-scale data if we speak, for example, about a Region of Interest
(ROI) within an image vs. the full image or data on a patient level. Further, also
annotations can occur at multiple scales.

3



1. Introduction

a cb d
Figure 1.3: Sample X-ray images showing the chest and breast from different types of
views: (a) anterior-posterior and (b) lateral chest X-ray, (c) Mediolateral oblique (MLO)
and (d) Craniocaudal (CC) mammogram. Chest images from PadChest dataset [24],
Mammography images from the Curated Breast Imaging Subset of Digital Database for
Screening Mammography (CBIS-DDSM) dataset [121, 122].

Multi-view data. By multi-view data, we refer to data that comprises different fields
of view of the same anatomical structure or region of interest in one patient. The
acquisition of multi-view data is for example common clinical practice in breast
imaging for X-ray mammography and 3D digital breast tomosynthesis. In addition,
3D imaging modalities allow physicians to inspect the same region from different
viewpoints intrinsically. With MRI, data can even be acquired in arbitrary fields of
view. Figure 1.3 shows sample multi-view X-ray images of the chest and breast.

Multi-temporal data. This category refers to data from one subject at multiple time
steps, e.g., in follow-up studies. Another aspect of temporal data is spatio-temporal
data where for given spatial locations temporal data is recorded, e.g., electroen-
cephalography or functional MRI data in spatio-temporal brain imaging [107].

Multi-subject data. Multi-subject data refers to data that has been acquired from
different individuals.

Multi-vendor and Multi-center data. Finally, multi-vendor data refers to imaging
data acquired with scanners from different vendors, e.g., Siemens, Philips, while
multi-center data relates to data from different hospitals or imaging facilities.

Aside from the different categories of data heterogeneity, one factor that influences
the heterogeneity of the data and the regions and objects of interest in the data, is the
acquisition process itself – and its limitations. Examples are limited data resolution, noise,
or the presence of imaging artifacts. They can originate from the image reconstruction
algorithms, or from foreign objects such as implants, from low X-ray doses or due to
motion artifacts caused by patient movement [68, 148]. Finally, not all imaging modalities
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are standardized. While CT data is normalized to Hounsfield Units, MRI data does not
follow a standardized intensity scale. Hence, the intensity ranges of the same tissues vary
within a scan and across scans [179]. These issues are further amplified if different medical
scanners are used or the data is acquired in different hospitals, i.e., in multi-center data
scenarios.

1.2.2 Medical Problem Statement
In clinical practice, a radiologist views, analyzes, and interprets heterogeneous imaging
data as part of the diagnostic imaging workflow, as illustrated in Section 1.1 and Figure 1.1.
The outcome of this process is a single result, that is, a medical diagnosis. The amount
of image data the radiologist must examine when reading a patient varies. In some cases,
only a single 2D or 3D image is available for analysis. However, more commonly, the
doctor has to examine a set of image data with different heterogeneity characteristics. For
example, the set may include data from different views and modalities or one or multiple
prior studies. There are two different ways how the data can be treated: Radiologists can
look at the data (a) separately or (b) fuse it prior to the image reading. In the first case,
the data is viewed separately or side-by-side. Common radiology software enables the
doctor to view different images simultaneously side-by-side or register the data and link
the different views accordingly. In this case, the radiologist fuses the data and/or result
“mentally” to obtain a single result. In the second case, the heterogeneous data is fused
with dedicated methods [80]. For example, anatomical and functional imaging modalities
like MRI and PET, respectively, may be combined, or prior and current studies. The
fused data is then examined by the radiologist to derive the single result.

1.3 Scope of the Thesis
In this thesis, we target the heterogeneous nature of medical imaging data from a technical
point of view in the development of CADe and CADx methods and propose different
ways to approach it. While some categories, like, for example, multi-subject data, are
usually not explicitly addressed, others, like the multi-dimensionality aspect, require
more attention as they bring various challenges with them.

Given we want to develop a learning-based method M for a heterogeneous medical image
dataset D that comprises data of different types tj , e.g., a multi-modal dataset with
CT and MRI data. We denote the subsets of D with a given type tj , j = 1, . . . , n and
category ci, i = 1, . . . , m as Dj

i , with Dj
i ∈ D. We can identify three general approaches

how to treat the different subsets Dj
i in the development of method M to obtain a result

R. They are illustrated in Figure 1.4 and listed in the following:

(a) Standard approach: We can develop n methods Mj for each type of data Dj
i ,

j = 1, . . . , n that are only applicable to the specific type tj where they have been
trained on and predict n type-specific results Rj .

5
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Figure 1.4: Three general approaches to deal with a heterogeneous dataset comprising
different types tj : (a) Standard approach, (b) Generalization approach, (c) Fusion
approach.
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(b) Generalization approach: One method M is developed that operates indepen-
dently / separately on data Dj

i , j = 1, . . . , n and predicts one result Rj per type tj

separately. This enables independent processing of the data even if not all types tj

are available.

(c) Fusion approach: For this approach, we derive two general settings: (1) we can
have multiple methods Mj for each type tj that operate on the specific type of
data Dj

i , j = 1, . . . , n where they have been trained on but in the end predict only
one combined result R. Depending on where the data is combined, we refer to
this setting as intermediate or late fusion. (2) One method M that processes the
heterogeneous data Dj

i simultaneously and predicts one general result R. In this
case, early fusion is performed.

We note that combinations of these general approaches are possible and very common in
practice, especially for (b) and (c). One example is the development of fusion techniques
for different types of multi-modal data, while generalization-based approaches alleviate
the need to deal, e.g., explicitly with multi-vendor characteristics.

In this thesis, we specifically focus on (b) and (c) and develop fusion- and generalization-
based methods that target the following categories of heterogeneous medical imaging data:
multi-modal, multi-parametric, multi-vendor, multi-subject, multi-center, multi-scale,
and multi-view data.

1.4 Related Work

In the following, we give a brief overview of the main concepts of how data heterogeneity
can be addressed in the context of medical image analysis. We will focus on learning-based
methods for CADe and CADx and provide different examples from the literature.

In general, we can split the methods into those based on a specific model, i.e., model-based
approaches, and those applicable independently of the underlying model, i.e., model-
agnostic approaches. While both types will be part of the following review, we structure
it as follows: Section 1.4.1 discusses methods following the generalization-based approach
in category (b) that deal with heterogeneous data individually with a single method.
In Section 1.4.2, we review fusion-based concepts that fall in category (c) and discuss
how we can treat the data jointly with single or multiple methods. We note that we will
not discuss specific approaches for variant (a) in this section. It is the most common
variant to develop type-specific approaches for a specific medical question. We refer to
Section 2.1.1, Section 3.1.1, and Section 4.1.1 for an in-depth review of related works
that focus on specific categories of heterogeneous data for the two selected CADe and
CADx application parts of this thesis.
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1.4.1 Generalization-Based Approach
Approaches that aim to tackle the data heterogeneity with a single method M are
usually concerned with increasing the generalization capability of the method. In medical
image analysis, this is of high interest, especially for the multi-modal, multi-parametric,
multi-sequence, multi-vendor, multi-center categories of heterogeneous data.

One way to achieve generalization capabilities is through data preprocessing strategies
that normalize or standardize intensity values before the actual CADe or CADx task.
Due to the heterogeneous nature of MRI data, a lot of methods have been proposed
for this purpose [190, 210, 244]. Another approach presented before the current era of
deep learning by Zambal et al. [260] combines data normalization and segmentation of
anatomical structures in 2D data in a single model. They propose a model-based approach
called Entropy-Optimized Texture Models (ETMs) that extend Active Appearance Models
(AAMs) with a texture normalization method based on entropy. It allows building models
that are robust against texture variations, e.g., brightness or low contrast, and even
different imaging modalities. This enables the usage of ETMs for multi-parametric or
multi-modal data.

In the current deep learning era, a lot of research effort is put into methods independent
of a specific model, i.e., model-agnostic approaches. On the one hand, the learning
and generalization capabilities of deep learning models have increased, due to sophis-
ticated learning strategies, data preprocessing and augmentation, loss functions, and
regularization techniques. These developments and strategies – to name a few – already
alleviate to a certain extent the need to treat some of the heterogeneity aspects explicitly
during model development. Approaches such as the No New-Net [92, 93] show that
elaborate data preprocessing, like standardizing MRI data, as well as extensive data
augmentation, and choice of training regime, can be more effective in training a standard
U-Net compared to complex architectural modifications. Another factor is data diversity,
as it is the case with clinical routine data, which is considered more important than the
choice of the underlying deep learning model in a recent study [82].

On the other hand, research fields dedicated to increasing the generalization capability
have gained momentum in the medical domain, for example, continuous learning or
domain adaptation [72, 178]. In both fields – among others – we are concerned with the
problem of domain shifts between one or multiple domains. The term “domain shift”
refers to changes in the data that result in a shift from the initial data distribution, e.g.,
due to changes in the image acquisition or data from another modality.

Continuous Learning. In continuous learning, we train a model sequentially on data
from new domains, i.e., where the data distribution changes or new tasks or classes
become available over time [230]. While in domain adaptation, the main goal is to
maximize performance on the target domain(s), in the field of continuous learning, the
performance on all previously seen data distributions or tasks should be maintained. This
is in contrast to naive sequential learning, which suffers from the problem of catastrophic
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Figure 1.5: Axial T1w and T2w MRI images acquired with different scanners (top row)
and corresponding histograms (bottom row). The first and third image (top row) are
skull-stripped MRI images. Image from Karani et al. [106].

inference or catastrophic forgetting, that is, the performance degradation of a model on
“old” data and tasks [153].

Li et al. [130] propose a so-called style-oriented replay module to improve heart segmen-
tation in MRI data. The module generates imaging data from the base data and all
previously seen data domains instead of storing the original data. During continuous
training, style parameters corresponding to the new dataset are learned in addition to the
optimization of their multi-class segmentation model. Additionally, they perform feature
whitening to reduce the sensitivity to changes in the data domain and to increase the gen-
eralization capability to unseen data. The method by Karani et al. [106] learns variations
in multi-center, multi-vendor, multi-parametric MRI brain data with domain-specific
parameters in the batch-norm layers of their model for brain segmentation. A “domain”
refers to a certain Magnetic Resonance (MR) protocol in this context. Figure 1.5 shows
a sample of their data. In the continuous training steps, only the domain-specific batch
normalization layers are updated while the learned convolutional filters stay fixed. Unlike
the work by Karani et al. [106], other methods do not require knowledge about the
current domain in a continuous training setting [81, 130, 176, 218]. This is much closer
to a real-world clinical setting. Another important factor in clinical applications is data
privacy, which is why methods that do not store any kind of data are preferred [106, 130]
over those that store full images or – as a trade-off – feature representations in their
memory [81, 176, 218]. Hofmanninger et al. [81] propose a method that dynamically
maintains a sample memory. The memory is updated after each training step by cal-
culating the stylistic differences of new and already-seen images based on the Gram
matrix. Their method can deal with a continuous shift between different CT acquisition
protocols and also in the appearance of the classification target related to the class
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of interest. In a more recent work, they extend their method with a pseudo-domain
detection module that further increases the diversity of the memory [176]. Srivastava
et al. [218] utilize a replay-based method that replays compressed, intermediate feature
representations instead of full images. They evaluate their method for a domain shift
scenario in multi-label chest X-ray pathology classification between three public datasets.

Domain Adaptation and Generalization. In domain adaptation – a special variant
of transfer learning – a model trained for a fixed task, e.g., organ segmentation, on
a dataset from a source domain is applied at test time on a set of data from another
domain – the target domain. One example is the application of the model on data from
a different medical scanner or another modality [72]. This is the simplest scenario in
domain adaptation, whereby various other directions, such as multiple adaption steps,
or generalization from various source domains to one or many target domains are also
investigated. The most general variant is domain generalization where neither labeled nor
unlabeled data from the target domain is available. We review a selection of approaches
in the following and refer to the literature for a comprehensive overview [72].

The lack of annotated training data is a common issue in medical image analysis that
fosters the development of unsupervised domain adaptation methods, i.e., where the data
of the target domain is unlabeled. Various methods have been proposed, for example, for
unsupervised segmentation tasks in cross-modality or cross-center/cross-vendor settings
[58, 104, 128, 209, 264]. Kamnitsas et al. [104] present a 3D approach for brain lesion
segmentation in multi-sequence MRI scans. They jointly train the segmentation network
as well as a domain discriminator that classifies the domain of the current training
data. In their adversarial training strategy, they aim to align the feature spaces of the
source and target domain. Dou et al. [58] follow a similar approach for multi-modal
data. They train a multi-class segmentation network on MR data of the heart as a first
step. In the subsequent adversarial training, the lower-level features of the segmentation
network adapt to the target domain comprising CT scans, while the higher-level features
are frozen and shared between both domains. Their proposed model comprises two
discriminators, one that discriminates features from the source and target domain, while
the second one constrains the segmentation masks to fulfill shape requirements. While
the previous works employ a feature alignment strategy, Shin et al. [209] investigate
a domain translation-based approach for adaptation from T1-weighted (T1w) to T2-
weighted (T2w) MRI data. First, they generate pseudo-T2w images, constrained by
the segmented structures in the T1w source domain image data. Then, in an iterative
training, they employ the pseudo T2w data and real labels, segment the real T2w data,
infer pseudo labels and iterate training with both, real and pseudo T2w data and labels.
For the actual segmentation, they adopt the nnU-Net approach [92].

One drawback of the presented domain adaptation methods is that source and target
domain data must be available for the adversarial training strategies [58, 104, 209]. This
is counteracted in the work of Zhang et al. [264], who investigate a domain generalization
approach for 3D segmentation. Inspired by the common use of data augmentations, they
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apply a sequence of stacked image transformations during training. They adapt the
quality, appearance, as well as spatial configuration of the training data that stems only
from a single source domain. The authors validate their method on data that exhibits
multi-vendor, multi-parametric, and multi-center characteristics whereby an adaptation
between modalities is not tested. Inspired by the work on stacked image transformations,
Li et al. [128] argue that linear dependencies between features from multiple source
domains exist. They try to model these dependencies in the feature space while also
learning a shared representation, i.e., aligning the distributions from the different source
domains. The authors validate their domain generalization approach for classification
and segmentation of multi-center, multi-vendor data for skin lesion classification as well
as gray matter segmentation in the spinal cord.

Other Related Approaches. We also mention the related field of disentangled
representation learning, which aims to “separate out the main factors of variation that are
present in our data distribution”, as described by Liu et al. [138]. Chartsias et al. [33, 34]
present several works in this field that aim to decouple spatial information from style
information, i.e., anatomical from modality-related information. They demonstrate their
semi-supervised approaches for different multi-class segmentation tasks in multi-modal
and multi-parametric data. Overall, their method follows an autoencoder design, with
several networks for the different tasks [33], i.e., separate encoders for modality and
anatomy information, a decoder that reconstructs the input, and a decoder that performs
the actual segmentation task.

1.4.2 Fusion-Based Approach
When it comes to the simultaneous/combined handling of heterogeneous data with single
or multiple methods, we are concerned with methods and approaches that perform some
form of fusion of heterogeneous image information. Baltrusaitis et al. [20] propose to
classify multi-modal fusion approaches in general into model-agnostic and model-based
approaches. By model-based approaches, they refer to kernel-based methods, graphical
models, and neural networks. The model-agnostic fusion approaches are commonly
coarsely divided into the level where the fusion happens: early, intermediate, and late
fusion. These levels are also often referred to as input-level, layer-level, and decision-level
fusion in the context of deep learning-based fusion strategies [270]. We will use the
following terminology in this thesis, based on Stahlschmidt et al. [219] and Zhou et
al. [270] (see Figure 1.6):

• Early, input-, or image-level fusion: In this variant, the raw input data Dj
i

of the different types tj is concatenated, and no representations of the data are
learned before.

• Intermediate, layer-, or feature-level fusion: For each type tj of the data,
representations are learned before the fusion. In the case of neural networks,
intermediate fusion can occur at one layer or gradually at different layers.
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• Late or decision-level fusion: This is defined as the fusion or combination of
decisions that are obtained by sub-methods.

There is also the possibility to mix the different variants and fuse at different levels.
We will refer to this as hybrid fusion [20]. In general, there is no universal recipe
on how and where the fusion should be performed to achieve the best results. Thus,
oftentimes various combinations and fusion levels are explored in the literature to boost
the performance. While early fusion is commonly used for its simplicity, the relationship
between different modalities – in the case of multi-modal data – can be utilized only in a
limited way. Intermediate fusion, on the other hand, exploits the connections between
the learned representations from different branches or models, which usually benefits
model performance. Further, it is very flexible in terms of where the fusion happens.
Decision-level fusion usually leads to good feature representations per type of data but
at the cost that connections between the different types cannot be utilized. Moreover,
training different models is computationally expensive [219, 270].

The fusion of heterogeneous medical imaging data is commonly applied where multi-
modal, multi-view, or multi-parametric data is present. Popular examples are organ
segmentation [57, 108], tumor segmentation [162, 269], or mammography [101]. Especially
for multi-modal and multi-parametric data, the complementarity property of this kind of
data can be exploited efficiently with fusion approaches, according to Lahat et al. [117]. In
the context of multi-view learning, there are also approaches that leverage Implicit Neural
Representations (INRs) [155, 173, 213], as for example the popular Neural Radiance
Fields (NeRFs) [157]. INRs and NeRFs found a wide adoption also in the medical
domain, e.g., for synthesis of missing information, super-resolution tasks, reconstruction,
registration, or novel view synthesis [159].

We note that within this thesis, we limit the discussion to approaches that perform
the fusion with the primary goal of increasing the model performance of a higher-level
task, e.g., segmentation or classification of certain anatomical structures or medical
conditions. We refer to the literature for methods that focus solely on generating a fused
image/volume from one or multiple modalities, e.g., to enhance or enrich image quality
and content for subsequent image interpretation [17, 80, 97, 265].

Early and Intermediate Fusion. Dolz et al. [57] propose the HyperDense-Net for
multi-sequence brain tissue segmentation, inspired by DenseNet [87]. Their network
encodes features separately for each MRI sequence, namely T1w MRI and T2w MRI.
Figure 1.7 illustrates a part of their architecture. Each image type has its own encoding
path. The dense connections within each path and multiple connections across the two
paths ensure multi-sequence feature learning and reduce the risk of overfitting. Hence,
the fusion is performed at several stages in intermediate layers. They also extend this
method for the segmentation of intervertebral discs in Dixon MRI data [56]. In the Dixon
MRI sequence [62], four different image channels are acquired in the course of one image
acquisition step [62]. Das et al. [50] and Li et al. [132] also segment discs in Dixon data
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Figure 1.6: Schematic illustration of the three main fusion levels: (a) early fusion, (b)
intermediate fusion, (c) late fusion. The gray boxes indicate where the fusion is performed.
Figure inspired by Stahlschmidt et al. [219] and Zhou et al. [270].
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Figure 1.7: Illustration of the proposed fusion scheme in the HyperDense-Net architecture
presented by Dolz et al. [57]. Image from Dolz et al. [57].

and perform early fusion, i.e., they combine all four image channels already in the input
to the network. Both employ a random modality dropout strategy to reduce dependencies
among modalities. Li et al. [132] use a 3D multi-scale Fully Convolutional Network (FCN)
that extracts features at three different scales to better learn contextual features. They
are fused at an intermediate stage later in the network for the final prediction. Das et
al. [50], on the other hand, train their model on 2D images and perform simultaneous
segmentation and disc identification with a region-to-image matching strategy.

There are also special cases, for example, co-segmentation where for the different types
tj of data, n type-specific results are obtained, i.e., Rj , j = 1, . . . , n, instead of only
one result R. This is, for example, used in multi-modal tumor segmentation, where
anatomical and functional modalities can be combined to improve the segmentation for
each of the modalities. Zhong et al. [269] utilize a 3D U-Net [43] to segment tumors in
PET and CT data. In addition to the standard skip connections used in U-Net, they
also introduce cross-modality connections to fuse the features from both modalities,
which improves the modality-specific segmentations. In our research group, Neubauer
et al. [162] propose an improved co-segmentation approach that combines early and
intermediate fusion for soft-tissue tumor segmentation in combined MRI and PET/CT
data. Inspired by the DenseNet architecture, they replace the standard U-Net blocks
with dense blocks. This improves feature learning and reduces the number of parameters
dramatically compared to Zhong et al. [269].

For multi-view data such as, for example, mammography images, the usage of multi-view
Convolutional Neural Networks (CNNs) is actively explored in the literature. In the most
general form, each view image is encoded in a separate path, also referred to as branch,
and the extracted features are combined at an intermediate stage, followed by a classifier.
A general multi-view architecture is illustrated in Figure 1.8.
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Figure 1.8: Illustration of a general deep learning-based multi-view fusion architecture.

This fusion strategy is actively employed in the field of mammography, for example,
for breast density classification [102, 251] or to classify images according to their
BI-RADS score [66, 30] – a standardized reporting scheme for breast imaging [212].
Carneiro et al. [30] investigate different levels of intermediate fusion and also use seg-
mentation maps from mammographic lesions as input. Additionally, they investigate
3D inputs where they perform early fusion and treat images and corresponding seg-
mentation masks as combined input. In all these works, different CNN architectures
are being explored and used for the feature extraction part. A multi-view architecture
with intermediate fusion that comprises two input branches can also be employed to
detect changes between two view images/ROIs or temporal changes within one ROI [111].
Other applications of multi-view fusion are recently explored in the field of chest imaging.
Hashir et al. [76] investigate the combination of posterior-anterior and lateral chest X-rays
at input level as well as different intermediate levels. Further, they compare two different
ways to combine the features during the fusion, namely standard feature concatenation
as well as combining pixelwise statistics.

We can extract and fuse multiple views also from 3D data like chest CT scans. Setio
et al. [204] propose for example false-positive reduction in pulmonary nodule detection
and also utilize a multi-view CNN model for this task. They extract patches from nine
different planes centered at the nodule candidate position, as shown in Figure 1.9. Each
path in the multi-view CNN processes a specific view. Subsequently, multiple fusion
strategies are explored by the authors. Depending on the fusion scenario, the CNN
parameters may be shared or not.

Finally, we summarize a few recent methods that use an INR for representation learning
from multiple views. The strength of INRs lies in how they represent features or signal
values. While traditional methods discretize the input space into, e.g., voxel grids,
an implicit representation is continuously defined as a “generator function that maps
input coordinates to their corresponding value within the input space”, as summarized
by Molaei et al. [159]. NeRFs combine INRs with volume rendering by adding the
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Figure 1.9: Extraction of multiple planes at a lung nodule center for false-positive
reduction with a 2D multi-view CNN in the work of Setio et al. [204]. Image extracted
from Figure 2 from Setio et al. [204].

viewing direction as additional input to a Multilayer Perceptron (MLP), which represents
a scene or an object [157, 159]. Wu et al. [254] address the topic of high-resolution
image reconstruction from low-resolution, thick-slice MR images. They model the high-
resolution image as an INR, which predicts the intensity value at a given voxel position. In
the reconstruction phase, the model is applied for every voxel on a dense grid, resulting in
the desired high-resolution image. In a more recent work [253], they extend their method
towards an arbitrary-scale super-resolution model. The authors encode voxel-specific
latent representations from the low-resolution images and use them, together with the
voxel positions, as input to the implicit representation network. Wu et al. [253] evaluate
their method on various brain MRI datasets and also demonstrate improved segmentation
performance on the superresolved data compared to other methods. For reconstruction
of shapes, one method [197] uses an INR to represent the surface of the left ventricle in a
cross-modality learning setup. First, they learn a shape prior from high-resolution meshes
obtained from ground truth segmentation masks in cardiac CT data. Then, they apply
their model to anisotropic, low-resolution left ventricle segmentations in cardiac MRI
data and superresolve and complete the ventricle shape. MedNeRF [47] was proposed for
reconstruction of 3D-aware CT projections from a few or just a single X-ray image. The
method combines NeRFs and Generative Adversarial Networks (GANs), and additionally
utilizes a self-supervised learning approach. The model captures multiple representations
in a single model instead of having a separate model for different anatomical regions.
The results demonstrate that MedNeRF effectively disentangles anatomy and attenuation
response. A recent method [40] addresses the arbitrary-scale super-resolution problem
with a NeRF-based approach. Contrary to the work by Wu et al. [253], this method
does not require high-resolution data in the training, but instead learns the volumetric
representation solely from a low-resolution medical volume. Instead of sampling rays,
the authors propose to sample cubes at the given position, and, for the refinement of
results, they apply a cube-based hierarchical rendering. The authors apply their method
to slice synthesis from any viewpoint as well as to arbitrary-scale super-resolution tasks
for CT and MRI data.

Late Fusion. Late fusion, i.e., decision fusion, strategies are also commonly applied
for different categories of heterogeneous medical imaging data. The standard ensembling
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of predictions from different models, e.g., via averaging or majority voting, often also
combined with data augmentation at model application time, is the simplest form
of decision fusion. This is, for example, also applied in mammography in different
ways [110, 154, 188]. Late fusion can be also performed with a model on top of the
predictions from individual models. In the field of mammography, Kyono et al. [115]
predict several radiological features (e.g., breast density, diagnosis, age) with a multi-task
CNN separately for each view. In a second stage, they fuse the multi-task predictions
from the four views and train a model on the predictions to obtain a benign/malignant
classification for a patient.

1.5 Aim of the Work
In this thesis, we aim for methods that, on the one hand, have the potential to accelerate
the image reading and diagnosis of radiologists and, on the other hand, can deal with
the highly heterogeneous and complex nature of medical imaging data. Specifically, we
aim for methods that fulfill the following goals:

G.1 methods that deal with changes in MRI image acquisition, i.e., with multi-parametric
data, as well as with scans from different scanners, vendors or centers, i.e., with
multi-vendor and multi-center data,

G.2 methods that are applicable without retraining to data from different sequences,
scanners, vendors or centers, i.e., to multi-parametric, multi-vendor, and multi-center
data,

G.3 methods that are applicable without retraining to data from different modalities,
i.e., multi-modal data,

G.4 methods that combine image information from different views, i.e., multi-view data,

G.5 methods that combine information at different levels, e.g., patient-level, image-level,
i.e., multi-scale data.

We addressed these goals in different research projects with our project partner and radi-
ology software provider Agfa HealthCare [7]. Together, we identified two highly relevant
use cases in clinical practice where we targeted the aforementioned data heterogeneity
categories: automated semantic spine labeling in MRI data and analysis of mammography
imaging data. During the course of this thesis, we developed several methods in the two
clinical domains, while always following the higher-level goal of supporting and assisting
radiologists in their image reading and diagnosis process.
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1.6 Contributions of this Thesis
The research efforts in the respective projects resulted in three main publications this
thesis is based on. Chapters 2, 3, and 4 are each dedicated to the research papers
that have been published at one international conference [247] and in two international
journals [248, 249]. While the author of this dissertation is the first author of the
presented publications, we note that they are the result of a joint effort of all involved
co-authors. An overview of the papers as well as the individual contributions of all
co-authors is given in the following. The three included publications are:

L4/L5

init position Paper 1 [247]: Maria Wimmer, David Major, Alexey
A. Novikov, and Katja Bühler. “Local entropy-optimized
texture models for semi-automatic spine labeling in various
MRI protocols” in IEEE 13th International Symposium on
Biomedical Imaging (ISBI), pp. 155–159, IEEE, 2016.

L4/L5

L5/S1

L2/L3

L1/L2

L3/L4

L2

L3

L4

L5

T12/L1

T11/T12

L1

T12

L4/L5

L5/S1

L2/L3

L1/L2

L3/L4

L2

L3

L4

L5

Paper 2 [248]: Maria Wimmer, David Major, Alexey
A. Novikov, and Katja Bühler. “Fully automatic cross-
modality localization and labeling of vertebral bodies and
intervertebral discs in 3D spinal images” in International
Journal of Computer Assisted Radiology and Surgery, 13(10),
pp. 1591–1603, 2018.

mass mal. Paper 3 [249]: Maria Wimmer, Gert Sluiter, David Ma-
jor, Dimitrios Lenis, Astrid Berg, Theresa Neubauer, and
Katja Bühler. “Multi-task fusion for improving mammogra-
phy screening data classification” in IEEE Transactions on
Medical Imaging, 41(4), pp. 937–950, IEEE, 2022.

We note that the respective research projects, which resulted in the three mentioned
publications, were conducted from mid-2014 until 2018 (semantic spine labeling) and from
2018 until mid-2021 (analysis of mammograms). Hence, the state-of-the-art presented in
Chapters 2, 3, and 4 is aligned with these periods. As this thesis was written at a later
point in time, i.e., from mid-2022 until early 2023, we discuss more recent related works
for both application domains in Chapter 5 of the thesis.

1.6.1 Paper 1: Local Entropy-Optimized Texture Models for
Semi-Automatic Spine Labeling in Various MRI Protocols

Summary. In clinical practice, the labeled spine serves as reference for, e.g., the
diagnosis of spine-related pathologies. Thus, semi- and fully automated solutions that
assist the process are being actively developed. In Chapter 2, we present a novel semi-
automatic pipeline for acquisition protocol independent spine labeling in volumetric MRI
data of the lumbar spine from different scanners and hospitals. We specifically target the
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multi-parametric nature of MRI data and propose a method related to thesis goal G.1.
Our learning-based system uses local three-disc ETMs, based on AAMs, for reducing
the intensity scale in clinical data to only a few gray levels. The task of intervertebral
disc localization is then performed on the normalized data. The benefit of this method
is that we can deal with various MRI protocols, such as T1w and T2w scans, with a
single model. Using the entropy objective allows us furthermore to apply the algorithm
to acquisition protocols that are not covered by the training set, thus, also addressing
goal G.2. We demonstrate this in an extensive evaluation on two public datasets.

Individual Contributions. The author of this thesis, Maria Wimmer, designed and
implemented the semi-automatic labeling pipeline and the refinement method. She
prepared the data and trained the three-disc models. Maria Wimmer conducted all
experiments and performed the evaluation. She wrote the full manuscript and created
all figures. David Major provided his expertise in spine labeling and engaged in regular
technical discussions with the author of this thesis throughout the whole project. Further,
he reviewed the manuscript multiple times and provided valuable feedback. Alexey A.
Novikov participated in regular discussions and provided feedback. Further, he reviewed
the manuscript several times. Katja Bühler proposed the initial idea of using ETMs
for spine labeling in MR data. The idea to use three-disc models for spine labeling was
inspired by David Major and Katja Bühler [149]. Katja Bühler supervised the project
and the writing of the paper. She participated in regular discussions that guided the
direction of the paper. Further, she provided valuable feedback and several extensive
reviews of the manuscript.

Delimitation from Previous Work. The author of this dissertation conducted an
initial proof-of-concept study for using ETMs [260] for spine labeling in her master’s
thesis [246]. One major focus of this preliminary study was to assess the mapping quality
of ETMs and to find the best mapping that can be used reliably for subsequent spine
labeling. The work presented in the publication “Local entropy-optimized texture models
for semi-automatic spine labeling in various MRI protocols” [247] that is part of this
dissertation focuses solely on spine labeling and introduces a new labeling pipeline. The
two works differ in the following aspects:

• Data: In the initial study [246], one dataset comprising T1w and T2w was used,
which was provided by our project partner Agfa HealthCare [7]. The work included
in this thesis [247] uses two additional public datasets for training and evaluation.
The new datasets are composed of T2w and MR Dixon scans from different scanners.

• Models: In the initial study, one single, global ETM was trained that covers a fixed
region of the spine, i.e., T9/T10 - L5/S1. In the work by Wimmer et al. [247],
several local three-disc ETMs are used. At test time, they are applied iteratively,
which allows for more flexibility.
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• Position refinement: In Wimmer et al. [247], a template-, non-learning-based
method for refinement is presented, while in the previous study [246], probabilistic
boosting trees as proposed by Schulze et al. [200] were trained and applied.

• Labeling pipeline: The usage of three-disc models and adaptive position refinement
in the work by Wimmer et al. [247] required the implementation of an iterative
pipeline where three-disc model matching and position refinement are performed.
In the previous work [246], no labeling pipeline was used.

• Experiments: The majority of experiments in the initial study was related to
finding the best mapping from source to target gray levels with ETMs. Therefore,
a grid search on various ETM parameters was performed. With the best models, a
position refinement method was trained and the labeling was evaluated. In contrast,
the focus of Wimmer et al. [247] is solely on iterative spine labeling. Three different
setups of training/testing data, including cross validation, have been evaluated.

1.6.2 Paper 2: Fully Automatic Cross-Modality Localization and
Labeling of Vertebral Bodies and Intervertebral Discs in 3D
Spinal Images

Summary. In Paper 2, we extend our previously presented semi-automatic ETM-
based approach for anatomical labeling of the spine [247] towards a fully automatic
solution. Chapter 3 introduces a cross-modality and fully automatic pipeline for labeling
of intervertebral discs and vertebrae in volumetric data of the lumbar and thoracolumbar
spine. The main goal of Paper 2 complies to goal G.3 of this thesis: to provide an
algorithm that is applicable not only to a wide range of multi-parametric MRI data, like
T1w- and T2w MR scans, and MR Dixon data, but to multi-modal data, including also CT
scans. This requires that the learned models generalize without retraining to modalities
and scans with unseen image contrasts. We address this challenge by automatically
localizing the sacral region combining local ETMs with CNNs. For subsequent labeling,
local three-disc entropy models are matched iteratively to the spinal column, as proposed
in Chapter 2. Every model-matched position is further refined by an intensity-based
template-matching approach, based solely on the reduced intensity scale provided by the
entropy models. We evaluate our method on a highly heterogeneous set of 161 publicly
available scans, acquired on various scanners. We show that our method can deal with a
wide range of different MR acquisition protocols, as well as with CT data. To the best of
our knowledge, an algorithm able to deal with such a diverse set of MR and CT scans
has not yet been presented in the literature by the time of this publication.

Individual Contributions. Maria Wimmer collected and prepared the public datasets.
She designed and implemented the classifier for sacrum localization and performed the
training. Maria Wimmer revised the labeling pipeline and implemented the template-
based refinement method. Further, she conducted all experiments. This includes the
seed point localization and the final labeling on MRI and CT data. She wrote the full
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manuscript and created all figures. David Major provided his expertise in spine labeling
and engaged in regular technical and scientific discussions with the author of this thesis.
He reviewed the manuscript several times and provided valuable feedback throughout
the whole publication process. Alexey A. Novikov participated in regular discussions,
provided feedback, and reviewed the manuscript multiple times. Katja Bühler supervised
the project and the writing of the paper. She participated in regular discussions and
provided valuable feedback that guided the direction of the paper. Furthermore, she
provided multiple extensive reviews, which helped to shape the paper’s story.

1.6.3 Paper 3: Multi-task Fusion for Improving Mammography
Screening Data Classification

Summary. Machine learning and deep learning methods have become essential for
computer-assisted prediction in medicine, with a growing number of applications also
in the field of mammography. These algorithms process either one or all four views of
the multi-view mammography data at once. Typically, they are trained for a specific
task, e.g., the classification of lesions or the prediction of a mammogram’s pathology
status. To obtain a comprehensive view of a patient, models all trained for the same
task(s) are subsequently ensembled or combined. In Chapter 4, we target thesis goals
G.4 and G.5 and propose a pipeline approach where we first train a set of individual,
task-specific models at different scales and subsequently investigate the fusion thereof,
which is in contrast to standard model ensembling. Along the pipeline, we investigate
different strategies to deal with the multi-view nature of mammography data. We fuse
model predictions and high-level features from deep learning models with hybrid patient
meta-models to build stronger predictors on patient level. To this end, we propose a
multi-branch deep learning model that efficiently fuses features across different tasks and
mammograms to obtain a comprehensive patient-level prediction. We train and evaluate
our full pipeline on public mammography data, i.e., the Digital Database for Screening
Mammography (DDSM) [77, 78] and its curated version, the Curated Breast Imaging
Subset of Digital Database for Screening Mammography (CBIS-DDSM) [121, 122]. Our
experiments show that our proposed fusion approaches improve Area Under Curve (AUC)
scores significantly compared to standard model ensembling. By providing not only global
patient-level predictions but also task-specific model results that are related to radiological
features, our pipeline aims to closely support the reading workflow of radiologists.

Individual Contributions. Maria Wimmer and Katja Bühler had the original idea
of fusing the various models at different levels. Maria Wimmer implemented the findings
classifier and the related patch-based classifier. She developed and implemented the fusion
strategies and compiled the final mammography pipeline. Maria Wimmer and Gert
Sluiter prepared the mammography data, and Gert Sluiter performed the matching of
the DDSM data and prepared the data split. He implemented the view- and patient-level
breast density classifier and trained the lesion localization classifier. Maria Wimmer
and Gert Sluiter implemented the technical framework for the pipeline. Maria Wimmer
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conducted all experiments for the paper, i.e., she evaluated all task-specific models as
well as all fusion approaches. Further, she conducted all ablation studies, i.e., retrained
and evaluated the findings and breast density classifiers as well as the fusion models.
Maria Wimmer wrote the full manuscript and created all figures. David Major, Dimitrios
Lenis, and Astrid Berg provided technical input regarding the fusion strategies. David
Major engaged in regular technical discussions and gave feedback. He reviewed the
manuscript in detail several times throughout the whole publication process. Dimitrios
Lenis participated in regular technical discussions and contributed his expertise in
statistical testing. Dimitrios Lenis, Astrid Berg, and Theresa Neubauer thoroughly
reviewed the manuscript. All co-authors participated in regular discussions and gave
feedback. Katja Bühler supervised and coordinated the project and the writing of the
paper. She provided regular input and feedback and reviewed the manuscript multiple
times, which helped to shape the paper’s story and focus.

1.6.4 Related Co-Authored Publications
During the course of this thesis, the author was involved in different projects related
to the topic and selected application domains of this thesis. These projects resulted in
various scientific publications that (a) aim to assist and improve radiologists’ image inter-
pretation and diagnosis tasks and (b) propose methods that address different categories
of heterogeneous data with standard, generalization- and fusion-based approaches.

A list of the selected publications is given below. In three papers [164, 165, 267], we follow
the standard approach and propose methods tailored to a specific type (and body region).
In Zheng et al. [267], we introduce a spine labeling and segmentation method specific
to T2w data for a computational challenge at MICCAI 2015. Novikov et al. [164, 165]
present two deep learning-based segmentation approaches: one is a 2D segmentation
method for lung X-rays [164], the second one a sequential segmentation approach trained
and evaluated on liver and vertebrae CT data [165]. The paper by Neubauer et al. [162]
proposes a fusion method for multi-modal co-segmentation of soft-tissue sarcomas in
combined MRI and PET/CT data, as already described in Section 1.4.2. Finally, the
works by Major and Lenis are concerned with domain awareness in medical image classifier
interpretation [125, 150, 151]. Their approaches aim for more precise and faithful classifier
decision visualization as compared to currently used methodology. Their methods are
evaluated on mammography and chest X-ray data. In the most recent work [150], they
use an image classifier introduced in Wimmer et al. [249] (see Chapter 4) that generalizes
across the different mammography views.

The following mentioned co-authored publications are not part of this thesis:

• David Major, Dimitrios Lenis, Maria Wimmer, Astrid Berg, Theresa Neubauer,
Katja Bühler. “On the importance of domain awareness in classifier interpretations
in medical imaging” in IEEE Transactions on Medical Imaging, 42(8), pp. 2286–
2298, IEEE, 2023.
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• Theresa Neubauer, Maria Wimmer, Astrid Berg, David Major, Dimitrios Lenis,
Thomas Beyer, Jelena Saponjski, and Katja Bühler. “Soft Tissue Sarcoma Co-
segmentation in Combined MRI and PET/CT Data” in Multimodal Learning for
Clinical Decision Support and Clinical Image-Based Procedures (ML-CDS/CLIP
2020), vol. 12445 of Lecture Notes in Computer Science, pp. 97–105, 2020.

• Dimitrios Lenis, David Major, Maria Wimmer, Astrid Berg, Gert Sluiter, and
Katja Bühler. “Domain aware medical image classifier interpretation by coun-
terfactual impact analysis” in Medical Image Computing and Computer Assisted
Intervention – MICCAI 2020, vol. 12261 of Lecture Notes in Computer Science,
pp. 315–325, 2020.

• David Major∗, Dimitrios Lenis∗, Maria Wimmer, Gert Sluiter, Astrid Berg, and
Katja Bühler. “Interpreting Medical Image Classifiers by Optimization Based Coun-
terfactual Impact Analysis” in IEEE 17th International Symposium on Biomedical
Imaging (ISBI), pp. 1096–1100, IEEE, 2020. ∗ equal contribution.

• Alexey A. Novikov, David Major, Maria Wimmer, Dimitrios Lenis, and Katja
Bühler. “Deep Sequential Segmentation of Organs in Volumetric Medical Scans” in
IEEE Transactions on Medical Imaging, 38(5), pp. 1207–1215, IEEE, 2019.

• Alexey A. Novikov, Dimitrios Lenis, David Major, Jiří Hladůvka, Maria Wimmer,
and Katja Bühler. “Fully Convolutional Architectures for Multiclass Segmentation
in Chest Radiographs” in IEEE Transactions on Medical Imaging, 37(8), pp. 1865–
1876, IEEE, 2018.

• Guoyan Zheng, Chengwen Chu, Daniel L. Belavý, Bulat Ibragimov, Robert Korez,
Tomaẑ Vrtovec, Hugo Hutt, Richard Everson, Judith Meakin, Isabel Lôpez Andrade,
Ben Glocker, Hao Chen, Qi Dou, Pheng-Ann Heng, Chunliang Wang, Daniel
Forsberg, Aleŝ Neubert, Jürgen Fripp, Martin Urschler, Darko Stern, Maria
Wimmer, Alexey A. Novikov, Hui Cheng, Gabriele Armbrecht, Dieter Felsenberg,
Shuo Li. “Evaluation and Comparison of 3D Intervertebral Disc Localization and
Segmentation Methods for 3D T2 MRI Data: A Grand Challenge” in Medical Image
Analysis, vol. 35, pp. 327–344, 2017.
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CHAPTER 2
Semi-Automatic Spine Labeling in

Multi-Sequence MRI Data

This chapter is based on the following publications:

• Maria Wimmer, David Major, Alexey A. Novikov, and Katja Bühler. “Local
entropy-optimized texture models for semi-automatic spine labeling in various MRI
protocols” in IEEE 13th International Symposium on Biomedical Imaging (ISBI),
pp. 155–159, IEEE, 2016. DOI: 10.1109/ISBI.2016.7493233

• Maria Wimmer, David Major, Alexey A. Novikov, and Katja Bühler. “Fully auto-
matic cross-modality localization and labeling of vertebral bodies and intervertebral
discs in 3D spinal images” in International Journal of Computer Assisted Radiology
and Surgery, 13(10), pp. 1591–1603, 2018. DOI: 10.1007/s11548-018-1818-3

2.1 Introduction
Labeling of the spinal column is a time-consuming, yet necessary task for clinicians as it
serves as anatomical reference system to describe the location of organs and diagnostic
findings. In spinal imaging, it serves in both diagnosis and preoperative planning of
spine-related injuries and pathologies. The term “labeling” refers in this context to the
assignment of an anatomical label to a landmark position within spinal tissue. In the
context of this work, the landmark position corresponds to the center of a vertebra or
intervertebral disc, while the label denotes the anatomical name of the corresponding
tissue. The human vertebral column comprises 7 cervical, 12 thoracic, and 5 lumbar
vertebrae that are separated by intervertebral discs, as depicted in Figure 2.1. The spine
consists of 23 intervertebral discs in total, with no disc between the two topmost cervical
vertebrae. Below the lumbar spine are two bony structures of fused vertebrae, the sacrum,
comprising 5 fused vertebrae, and the coccyx.
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2. Semi-Automatic Spine Labeling in Multi-Sequence MRI Data

Figure 2.1: Anatomical illustration of the human vertebral column.
Adapted from image designed by Macrovector - Freepik.com (Accessed: November 12,
2022).
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2.1. Introduction

In clinical practice, MRI and CT imaging data is widely used to analyze the spine [184].
The growing number of scans that are being acquired has necessitated semi- and fully
automated solutions to accelerate the respective radiological workflows. However, devel-
oping computer-aided tools for spine labeling is challenging, especially for applicability to
MR data. MR scans lack a generalized intensity scale like Hounsfield Units in CT [184].
Changing the scan parameters results in different image contrasts, and a wide range of
MR sequences and acquisition protocols that are nowadays available. Tissue intensi-
ties are further influenced by imaging artifacts and the use of scanners from different
vendors. Hence, the same tissue, e.g., vertebrae, can have varying appearances even
within a single scan. Physiological and pathological changes in the body further affect
the appearance [241].

2.1.1 Related Work

The following literature review addresses related spine labeling papers published prior to
the work by Wimmer et al. [247], on which this chapter is based. We refer to Section 5.2
for a discussion of more recent works in that field.

Various recent works target spine labeling in specific MR sequences, e.g., on T1w [156],
T2w [36, 48], Dixon [35] or SPIR [12] data. All these methods are specific to a certain
protocol. Thus, approaches which are able to localize the spinal parts without retraining
for the different imaging parameters are of high interest. Lootus et al. [141] apply
Deformable Part Models using the Histogram of Oriented Gradients descriptor combined
with a graphical model to localize vertebrae in a set of T2w MRI scans. The authors claim
that their method is applicable without retraining also on CT data, although no extensive
evaluation is provided. In a more recent work [142], they introduce a normalization
based on the median vertebral intensities. This makes their algorithm more robust to
parameter changes and different vendors in T2w MRI scans as compared to their previous
approach [141]. Zukić et al. [272] introduce an automated detection and segmentation
framework for vertebrae using a boosted cascade of simple features for detection and the
watershed method for segmentation. Their method is able to handle T1w, Turbo Inversion
Recovery Magnitude (TIRM), and T2w MRI data at once, although the extension to
other sequence types requires a retraining of their detectors. Cai et al. [28] address
the problem of labeling and segmenting the spine in a modality independent way. A
combination of standard and convolutional restricted Boltzmann machine layers is used
for landmark detection, followed by a global spine model matching algorithm. Finally,
vertebrae are registered and segmented via local models. Their framework is evaluated
on MR and CT data. It is applicable without retraining to different modalities whereby
the modality information of the unseen scan is required at model test time. However, it
is much more complex than our proposed method.
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2.1.2 Contribution

We present a novel semi-automatic pipeline for labeling of the spinal column, that can
process 3D MR scans with a high intensity variability, like T1w and T2w scans, acquired
on different scanners with varying scan parameters. These properties relate directly
to goal G.1 of this thesis. We propose a learning-based system, where we train local
Entropy-Optimized Texture Models (ETMs) [260] for reducing the intensity scale in the
clinical data. We build general models that normalize data across different MR protocols
with the goal of finding rather homogeneous mappings for intervertebral discs, vertebrae,
and the spinal cord. Thus, no separate models for different acquisition setups are required.
Moreover, our method is applicable to sequences and protocols which are not covered by
the training set, thus, also addressing thesis goal G.2 in this chapter. When labeling an
unseen scan, the learned models are applied and intervertebral disc centers are localized
in an iterative labeling pipeline. The disc centers are further refined with an adaptive
position refinement to increase the disc center accuracy. This method does not require
any training and is based solely on the normalized data.

2.2 Methods and Materials

The following section first revisits the general concept of ETMs as proposed by Zambal
et al. [260] in Section 2.2.1. We then present our proposed application of ETMs within
the scope of spine labeling in Section 2.2.2. Section 2.2.3 describes the final labeling
pipeline, including the suggested position refinement.

Notation: We define a volume V ⊂ R3 as the sagittal 3D reconstruction of a scan, i.e.,
a stack of 2D slices, where the xy-plane is the sagittal plane, and z the medial-lateral
depth. Further, we define a set of volumes Dtr with Vk ∈ Dtr, k = 1, . . . |Dtr| for training
of models and an unseen test set Dtest, with Vj ∈ Dtest, j = 1, . . . |Dtest|. A position
within V is denoted by p = (x, y, z). Further, we define a set of anatomical labels Λ,
including labels for vertebrae and intervertebral discs, following a standard anatomical
atlas of the human spine [8] as: Λ = (S1, L5/S1, L5, L4/L5, L4, . . . , C3, C2/C3), where
λl corresponds to the label at the l-th position in the ordered labelset Λ, l = 1, . . . , |Λ|.
Here, S1 refers to the first vertebra of the sacrum, L denotes lumbar, T thoracic, and
C cervical vertebrae (see Figure 2.1). Consequently, an intervertebral disc between two
vertebrae, e.g., between L4 and L5, is called L4/L5. C2/C3 is the topmost intervertebral
disc, as no disc exists between C1 and C2. In this thesis we do not consider the remaining
four vertebrae of the sacrum and the coccyx. Therefore, they are excluded from Λ. We
refer to a position labeled with a certain anatomical label λl ∈ Λ as pλl ∈ V . p̃ denotes a
model-matched position, i.e., the position of a model landmark in a scan after matching
a model to the scan. Further, we refer to a position after applying a refinement method
with p̂. Finally, the annotated center of an intervertebral disc or vertebra in a scan, i.e.,
the ground truth position, is denoted with dλl .
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2.2.1 Entropy Texture Models in General
Zambal et al. [260] introduced Entropy-Optimized Texture Models (ETMs) for segmen-
tation from dense landmarks at object boundaries in 2D medical imaging data. They
propose a novel texture model, that extends Active Appearance Models (AAMs) with a
texture normalization approach, as already briefly mentioned in Section 1.4.1. Instead of
texture modeling based on Principal Component Analysis, the model texture is described
by probability density functions of a reduced set of target gray values. The related
mappings of the input gray levels to the target levels are optimized in terms of entropy,
hence, minimizing the uncertainty of mappings while maximizing information content.
The idea of using entropy is borrowed from multi-modal image registration, where the
entropy-based mutual information criterion is used. The novel texture representation as
well as using the entropy objective are powerful features of ETMs that allow building of
robust models against texture variations, like brightness variations, and even different
imaging modalities.

Training. To train an entropy model M , we first require a set of corresponding
landmarks in each Vk, k = 1, . . . , |Dtr| where Dtr refers to the training set. Training
textures Tk ⊂ Vk are extracted from every volume Vk in the following way. According
to Zambal et al. [260], the 3D convex hull defined by the landmarks is consistently
tetrahedralized and the texture Tk is extracted and resampled by N texels, similar to
AAMs. The term texel formally refers to a pixel in a texture. All Tk are initially quantized
to r source gray levels; hence, every texture is in the same intensity range. The task is to
find optimal mappings fk for every texture Tk, that map the r source levels to a reduced
number of t target gray levels. The mappings are found with iterative optimization of two
entropy-based objectives Hmodel and Htex [260]. The model entropy Hmodel describes
the uncertainty of all mappings and is minimized:

Hmodel = 1
N

N�
j=1

H(pj) → min (2.1)

where pj denotes the Probability Density Function (PDF) of observed target gray levels
across all mapped training textures at the j-th texel, and H(pj) the entropy of the PDF.
The minimization of Hmodel ensures that each texel maps to a certain target gray value.
However, Hmodel yields a minimum when all texels map to the same target gray value.

The image entropy Htex compensates for that and prevents the degeneration of mappings
fk, i.e., so that not all mappings map to the same target value:

Htex = 1
|Dtr|

|Dtr|�
k=1

H(fk(Tk)) → max (2.2)

This term drives the mappings to maximal information content. Simulated annealing is
used to find optimal mappings fk in the training, subject to maximizing (Htex − Hmodel).
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In summary, Hmodel ensures, that the same tissues are normalized to the same target
level, while Htex guarantees that the contrast between different tissues is preserved. This
enables us to apply such a model to images that exhibit similar intra-tissue homogeneity
and inter-tissue contrast as those images captured by the model during training. The
output of the ETM training phase is the local model M , which captures the variation of
the shape and texture of the underlying anatomy.

Model Matching. Matching M to an unseen scan, we iteratively change its shape
and texture mapping and assess the matching quality. This is done based on the model
PDFs and texture U currently overlapped by the model in the following way. In every
iteration, we change the shape within the valid shape space defined by the mean shape
and a linear combination of the shape eigenvectors [46]. Next, we extract texture U
currently overlapped by the model as described in the model training phase. Further, we
obtain an intensity mapping fu for U by assigning the target values for every texel j,
j = 1, . . . , N , that lead to the maximum likelihood according to the texture model PDFs
pj . We assess the matching quality in every iteration via Bayesian reasoning using the
naive Bayesian assumption by maximizing the posterior probability of the current shape
given the normalized texture U � [260]. Finally, the obtained mapping fu is applied. This
results in the desired intensity-reduced scan with only t target gray levels.

2.2.2 ETMs for Spine Labeling

For spine labeling, we utilize the capabilities of ETMs for data normalization and propose
to build local three-disc models M λl from a mixed set of T1w and T2w MR volumes (see
Figure 2.2). The use of three-disc models for spine labeling has been already successfully
applied in the literature, for example, by Major et al. [149].

We build the models M λl from sparse landmarks around an annotated middle disc dλl

including also its adjacent upper disc dλl+2 and lower disc dλl−2 . Figure 2.3 illustrates the
extracted landmarks. Around each intervertebral disc center, we include sampled positions
along the surface of a cylinder, which approximates the size of the disc. Furthermore, we
add the center positions dλl+1 and dλl−1 with labels λl+1 and λl−1, respectively, of the
two vertebrae that lie between the upper disc dλl+2 and lower disc dλl−2 . The vertebrae
centers dλl+1 and dλl−1 indicate the centers of the respective vertebral bodies. Finally,
we also add landmarks in the spinal canal that correspond to the disc and vertebrae
centers (see Figure 2.3).

We extract this set of landmarks from different T1w and T2w MR volumes Vk in the
training set Dtr and train model M λl according to the steps described in Section 2.2.1
(see Figure 2.2). We repeat this process for various middle discs dλl , resulting in a set of
different three-disc models M λl which we combine for labeling an unseen scan.
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Figure 2.2: Overview of the training of a three-disc ETM M λl for data normalization:
(a) From an annotated set of MR data with: intervertebral disc and vertebrae centers
(blue), spinal canal landmarks (blue), cylinders that approximate the intervertebral discs
(yellow), (b) corresponding model landmarks are extracted (yellow), (c) and a shape
model is built. (d) Training textures are extracted and the texture transformations are
then optimized iteratively [260]. (e) The results are normalized training textures and the
trained three-disc model M λl .

Figure 2.3: Schematic illustration of landmarks extracted for three-disc models M λl

for labeling. Intervertebral disc and vertebrae center positions are depicted in blue,
remaining model landmark positions in yellow.
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2.2.3 Labeling of an Unseen Volumetric Scan
The proposed labeling pipeline is illustrated in Figure 2.4. Our semi-automatic method
requires minimal input from a user for labeling an unseen scan: an initial click position
p in volume V inside an intervertebral disc or vertebra and its corresponding label
λl, i.e., we require position pλl . This position serves as initialization for the iterative
labeling, which repeats the following steps: ETM matching, adaptive disc center position
refinement, and propagation.

ETM Matching. We initialize the learned three-disc model M λl that corresponds to
the anatomical label λl at position pλl and match it in an iterative manner, as described in
Section 2.2.1. We retrieve the normalized scan V � as well as the model-matched positions,
denoted as p̃. Specifically, we consider the intervertebral disc candidate positions, i.e., the
set of model-matched labeled disc positions {p̃λl+2 , p̃λl , p̃λl−2} for the upper disc, middle
disc, and lower disc, respectively (see Figure 2.4 (c)). These positions should lie already
in the vicinity of the respective ground truth centers dλl+2 , dλl , and dλl−2 . However,
to account for imperfections in the model matching, we apply a refinement step for the
candidate disc center position of the middle disc p̃λl .

Adaptive Disc Center Position Refinement. The main objective of this step is to
further increase the disc center position accuracy of p̃λl . Instead of training a learning-
based method, we propose an adaptive approach inspired by Haar-like features [233]
which solely uses the normalized data V � and model-matched positions p̃. We span a
bounding box around the model-matched disc position p̃λl , defining our search region R
for refinement (see Figure 2.5 in orange). The size of R is based on the ground truth,
from which we calculate the average dimension of discs in sagittal, axial, and coronal
direction. For every voxel inside R we decide if it belongs to the disc by applying a filter
inspired by Haar-like features [233]. We construct the filter with three regions: upper
region RU , middle region RM , and lower region RL, and place them in following way:
RM is centered at the current voxel position p� in R. RU and RL are displaced based
on the intervertebral disc orientation vector n and the average disc thickness estimated
from the ground truth. Vector n is calculated based on the model-matched landmark
positions. For every region RU , RM and RL, we calculate its most frequent intensity
value, i.e., the intensity mode: mL, mM and mU . We consider the voxel p� as potential
disc position if:

Mask(x, y, z) =
�

1 if mU �= mM ∧ mL �= mM

0 otherwise
(2.3)

From the obtained binary mask, we calculate the centroid as the refined center position
p̂λl for the disc with label λl.

Propagation. The labeling is performed in an iterative manner. From the model
matched at initial click position pλl we also obtain candidate positions for the upper and
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Figure 2.4: Basic steps when labeling a 3D MR scan: (a) Based on the initial position
pλl with corresponding label λl provided by a user, (b) the model M λl is placed in the
scan and matched. (c) The results are the normalized scan V � and the model-matched
positions p̃, which serve as input to (d) the adaptive refinement method. By applying
a filter within a search region (orange) around position p̃λl , we obtain a binary mask
(blue). (e) The refined center position p̂λl with label λl is the centroid of the mask. (f)
We place the next three-disc model at position p̃λl−2 or p̃λl+2 , depending on the search
direction, and continue from (b).
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Figure 2.5: Illustration of our proposed refinement method. We construct a filter
comprising the regions RU , RM , and RL (green), which are displaced according to
the intervertebral disc orientation. Displacement vectors are shown in red and the
intervertebral disc orientation vectors in blue. We match the filter at each voxel in the
search region R (orange) and decide if the voxel belongs to the disc or not.

lower disc p̃λl+2 and p̃λl−2 , respectively (see Figure 2.4 (e)). We continue the search first
towards L5/S1 and place the next three-disc model M λl−2 at p̃λl−2 . We repeat model
matching, adaptive refinement, and retrieval of the next intervertebral disc position p̃λl−2

until we reach L5/S1. Then, we continue the search upwards to the topmost disc C2/C3,
starting from the initial click position pλl respectively the model-matched position p̃λl+2 .

2.3 Evaluation and Results
The following section provides an elaborate evaluation of our novel pipeline on lumbar
MR volumes.

2.3.1 Data and Experimental Setup
Four datasets Di of sagittally acquired lumbar MR scans from five different scanners are
used for evaluation. The voxel sizes are highly anisotropic, with an in-plane resolution
ranging from 0.59 mm2 to 1.25 mm2 and slice thickness from 2 to 6 mm. We reconstruct
62 volumes from the scans and consider a subset of seven intervertebral discs covering
the region from L5/S1 to T 11/T 12, which results in 434 discs in total. The four datasets
Di comprise the following scans:

• Dataset D1: Our private dataset with 13 T1w MR scans.

• Dataset D2: Our private dataset with 10 T2w MR scans.
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• Dataset D3: Challenge dataset [36], comprising T2w MR scans from 15 different
subjects.

• Dataset D4: MR Dixon data [35]. Scans from eight subjects, where we use the
following three image channels: opposed-phase, fat, and water saturated image.
We treat every channel separately, hence we obtain 24 volumes for testing.

In our private datasets D1 and D2, magnetic field inhomogeneities are present and half
of the scans exhibit at least one of the following pathologies: fractures, disc herniation,
scoliosis, and lumbar hyperlordosis. No details about present pathologies are provided
for datasets D3 and D4.

We evaluate three different setups as summarized in Table 2.1. For the first setup #1, we
split D1 and D2 into two subsets and perform two-fold-cross validation. We refer to the
cross-validation subsets of D1 with D1,1 and D1,2, and analogously also for D2. Setups #2
and #3 demonstrate the generality of our method by evaluation on unseen MR sequences
and image contrasts, which are not included in the training set. All experiments are
conducted on an Intel Xeon E5 PC.

Setup Training Data Dtr Test Data Dtest

#1 D1,1 D2,1 D1,2 D2,2
D1,2 D2,2 D1,1 D2,1

#2 D1 D2 D3 D4

#3 D3 D1 D2 D4

Table 2.1: Evaluation setups.

2.3.2 ETM Model Training
We train three-disc models M λl for each middle disc from L4/L5 up to T12/L1. This
introduces an overlap in the region that is covered by the models and increases robustness.
Choosing parameters for ETMs, the goal is to find rather homogeneous intensity map-
pings for intervertebral discs, vertebrae, and the spinal cord, without losing anatomical
information. Best mapping results are obtained with r = 110 source and s = 3 target
levels using leave-one-out cross-validation on our training data. This provides a good
initial quantization where we do not miss relevant intensity changes and at the same time
remove image noise. The time for model training depends on the number of training
textures. We report 4.6 ± 1.5 min for setups #1 and #3 and 13 ± 2.3 min for setup #2
on average.

It is important to note, that we do not obtain the same mapping for one tissue in all
sequences, e.g., for the mapping of disc intensities. The tissues are in a different range,
but still homogeneous mappings are obtained. Sample images are depicted in Figure 2.6.
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a

c

b

Figure 2.6: Various mid-sagittal slices of MR scans from our datasets Di (left) and
corresponding sample normalization results (right): (a) T1w, (b) T2w, and (c) Dixon
opposed-phase image channel.
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2.3.3 Labeling Results
We start a full semi-automatic data normalization and labeling run inside every inter-
vertebral disc. Initial seed positions are sampled within 10 mm to the ground truth
center for our experiments. This allows the models to converge towards the disc centers
while matching. The overall processing time for labeling an unseen MR scan is 12.6 ±
3.7 seconds, which results in 1.8 ± 0.5 seconds per intervertebral disc.

To measure the performance of our method, we calculate the following two evaluation
metrics that have been introduced at the intervertebral disc localization challenge at
MICCAI 2015 [267]:

• p� – intervertebral disc localization accuracy: p� explains, how many detected
positions p̂λl lie within � millimeter to the corresponding annotated disc center dλl ,
with � ∈ {2, 4, 6, 10}.

• ē ± sd – intervertebral disc center accuracy: The Euclidean distance from the
localized position p̂λl to the ground truth dλl describes the mean position error ē
and standard deviation sd.

Labeling results are shown in Figure 2.7. The highest intervertebral disc center position
accuracy is achieved with setup #2 (see Figure 2.7 (a)), where we reach a mean error
of 3.82 ± 2.47 mm with p10 = 97.64% (see Table 2.2). A high localization rate is also
achieved for setup #3 with p10 = 92.06% and an average distance of 4.45 ± 3.44 mm from
the ground truth. The overall better performance of setup #2 compared to setup #3 can
be explained by the higher diversity of the training data and the larger training set in
setup #2. Setups #2 and #3 are trained on only a subset of all available MR sequences
and protocols in D and demonstrate the generalization capabilities of our method. Thus,
we show that our pipeline generalizes to acquisition protocols that are not included in the
training, but exhibit similar contrast characteristics as captured by our learned ETMs.
This is reflected in the results on D4, which was never included in the training process.
In general, we observe higher p� for T2w scans as compared to T1w scans, because of a
better tissue contrast. Localization performance is lower for setup #1 due to pathologies
and imaging artifacts in the data. On disc level, we obtain the best result for L2/L3
with 2.63 ± 1.52 mm (setup #2), because no severe abnormalities are present in this
region in the data. Highest error rates are observed for setup #1. Due to pathologies like
herniation and lumbar hyperlordosis, we reach a lower accuracy for L5/S1 (9.53 ± 3.67
mm) as well as for T 11/T 12 (5.64 ± 3.24 mm), where magnetic field inhomogeneities are
present. Figure 2.7 (b) depicts such a case.

2.4 Discussion and Conclusion
In this chapter, we presented a novel, learning-based pipeline for semi-automatic labeling
of lumbar MR scans in 3D. The main contribution lies in the generality of our method: We
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Figure 2.7: Labeling results shown on two mid-sagittal images: Our detected intervertebral
disc positions (orange) and corresponding ground truth centers (green): (a) successful
labeling of a healthy patient (D3), (b) higher position errors for L5/S1 and T11/T12 in
a pathological scan with imaging artifacts (D1).
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p2 [%] p4 [%] p6 [%] p10 [%] ē ± sd [mm]
#1 14.29 40.00 60.71 84.39 5.78 ± 3.76
D1 13.88 37.96 57.14 77.76 6.27 ± 4.18
D2 14.69 42.04 64.29 91.02 5.29 ± 3.22

#2 22.51 64.53 84.99 97.64 3.82 ± 2.47
D3 27.76 64.49 80.14 94.97 4.04 ± 3.14
D4 19.21 64.56 88.04 99.32 3.68 ± 1.94

#3 21.32 59.00 78.46 92.06 4.45 ± 3.44
D1 6.31 40.45 60.11 80.52 6.24 ± 4.12
D2 11.84 43.06 71.63 94.49 4.93 ± 2.67
D4 32.14 74.15 89.71 96.34 3.44 ± 2.99

Table 2.2: Overall performance measures per evaluated setup (bold) and corresponding
dataset-specific results.

can process various imaging protocols and apply our approach also to unseen protocols,
which are not covered by the training set. Furthermore, our method is significantly faster
to train than recent deep learning approaches [28]. We successfully localize 84.99 %
intervertebral disc centers within 6 mm and 97.64 % within 10 mm to the ground
truth center, which is competitive to localization measures of state-of-the-art methods.
Zukić et al. [272] report a false negative rate of 7.1 % for automatic vertebrae detection.
This method is closest to ours in terms of the variability of MR data as they included
T1w, T2w, and TIRM MR scans in their evaluation. Chen et al. [35] reach a position
error of only 1.3 ± 0.6 mm for all intervertebral discs on Dixon data, whereby all image
channels are used for training and testing. We report 3.68 ± 1.94 mm (setup #2) and
3.44 ± 2.99 mm (setup #3), whereby we did not include Dixon data in the training. On
an extended set of the challenge dataset D3 [36], they achieve position errors between
1.8 ± 1.1 mm and 2.8 ± 6.5 mm for different cross-validation setups. We obtain disc
center positions with a mean distance of 4.04 ± 3.14 mm to the expert-annotated ground
truth position (p10 = 94.97%). Overall, a higher deviation is present for L5/S1 and
T11/T12, which we believe to decrease with a more enhanced refinement method. In
summary, we report higher position errors with our general pipeline and evaluation setup
than related works. In future work, the accuracy of disc center positions can be increased,
e.g., with an improved refinement strategy and training of three-disc models on a larger,
more diverse dataset. One limitation of our presented framework is its semi-automatic
nature. In a follow-up work [248], we extend our method to a fully automatic system
and evaluate it on a larger field of view of the spine. We introduce this approach in the
next chapter. Finally, we refer to Section 5.2 for a discussion of the presented method in
the context of more recent related work.
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CHAPTER 3
Towards Fully Automatic Labeling

of the Spine in 3D Imaging Data

This chapter is based on the following publication:

Maria Wimmer, David Major, Alexey A. Novikov, and Katja Bühler. “Fully auto-
matic cross-modality localization and labeling of vertebral bodies and intervertebral
discs in 3D spinal images” in International Journal of Computer Assisted Radiology
and Surgery, 13(10), pp. 1591–1603, 2018. DOI: 10.1007/s11548-018-1818-3

3.1 Introduction
With the growing number of MR and CT scans acquired to analyze the spine, the demand
for semi- and fully-automated solutions that accelerate the time-consuming, manual spine
labeling task has increased. As reviewed in Chapter 2, a common practice is to learn a
dedicated method for every modality or image contrast. However, the algorithms are
oftentimes not applicable to images from a different vendor or if being acquired with
changed MR scan parameters [184]. Therefore, the algorithms would require retraining –
a process not feasible in clinical practice and for radiology software providers. In addition,
often only a few samples per imaging sequence are available to train a learning-based
algorithm. This can lead to overfitting and a reduced generalization capability.

Our main vision in this work is to further develop our method presented in Chapter 2
towards a cross-modality spine localization and labeling solution that is applicable in
daily clinical practice. As in the previous chapter, we aim for an algorithm with good
generalization capability that does not require retraining of learned models, but can deal
with the variability of scans with just a single model. More than that, our algorithm
should be applicable to imaging sequences not covered by training. Our fully automatic
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spine labeling pipeline should be able to deal with a highly heterogeneous set of MR and
CT scans, including:

• various MR image contrasts, including T1w, T2w, Proton Density weighted (PDw)
scans,

• various MR sequence types, including Spine Echo, Fast Spin Echo (FSE), SPACE,
TIRM, Dixon,

• and scans from different modalities, including MRI and CT.

We address thesis goals G.1 and G.2, as in Chapter 2, and also goal G.3 due to the
inclusion of multi-modal data.

3.1.1 Related Work
The following literature review addresses related papers published prior to the work
by Wimmer et al. [248], on which this chapter is based. We refer to Section 5.2 for a
discussion of more recent works in the field of spine labeling.

Most fully and semi-automatic disc and vertebra localization and semantic labeling
methods are trained on a specific modality, image sequence, or parameter setting [13, 184],
as briefly reviewed in Section 2.1. Many CT-specific works have been presented during the
past years for both healthy and highly pathological scans [38, 69, 70, 149, 221]. For MR
data, contrast and sequence specific methods are proposed, for example on T1w [156, 199]
or T2w data [12, 36, 49, 141] or methods that fuse various contrast information [167].
Protocol-specific algorithms, for example on Dixon data using one image channel [79] or
fusing multiple channels [35, 98, 131], also exist. Most algorithms require retraining to
be applicable to data acquired with different parameters or other modalities, as shown
by Kelm et al. [156]. Another method requires modality-specific parameters to deal with
CT and T2w MR data [42].

Algorithms dealing with a wider range of imaging contrasts and modalities have also been
presented. Štern et al. [220] facilitate edge and gradient information for fully automated
spinal centerline detection in T1w, T2w MR, and CT scans. The centerline refers to
the “curve in 3D that passes through the centre of each vertebral body”, according to
Štern et al. [220]. Intensity profile analysis along the centerline of the spine provides disc
and vertebrae center positions, but an automated assignment of corresponding anatomical
labels is not performed. Zhan et al. [262] employ a hierarchical detection strategy and
model the spatial relation between discs and vertebrae with articulated models on CT and
T2w MR scout scans. A semi-automatic localization and labeling approach [83] recently
applied to T1w and T2w MR builds a subject-specific density model from a click position
in a predefined vertebra and performs distribution-matching for candidate detection
without external training. Wang et al. [241] address disc and vertebrae segmentation as a
boundary regression problem for CT and T1w and T2w MR scans. However, anatomical
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labeling of segmented vertebrae has not been performed. Recently, algorithms employing
deep learning in the medical field [136] and also specifically for spine labeling have been
presented. Fully Convolutional Networks (FCNs) for disc localization and segmentation
on T2w MR [37] and neural networks combined with graphical models on 2D T1w and
T2w MR scans are introduced [60]. Cai et al. [27, 28] go in the direction of a multi-modal
solution for T1w, T2w MR, and CT scans using restricted Boltzmann machines and
feature fusion. However, the imaging modality is deduced from Digital Imaging and
Communications in Medicine (DICOM) tags for labeling an unseen scan.

In many MR sequences the ribs cannot be reliably detected due to low image contrast or
a restricted field of view focusing on the spine only. To unambiguously distinguish discs
and vertebrae, all reviewed MR labeling algorithms rely on the presence of an anchor
point. In CT data this is typically achieved by searching for vertebrae connected to ribs,
the sacrum and/or cervical vertebrae [149].

3.1.2 Scope and Contribution
The method presented in this chapter significantly extends the previous work [247]
summarized in Chapter 2. There we addressed thesis goals G.1 and G.2, and presented
a semi-automatic spine labeling approach on T1w, T2w, and Dixon MR scans. The
suggested algorithm requires an initial click position and its corresponding anatomical
label as user input. To overcome this limitation, we propose:

• An entropy-based sacrum model and a CNN for the task of fully automatic localiza-
tion of the sacral region in sagittally reconstructed 3D scans. The algorithm works
on various MR image contrasts and sequences without retraining the algorithm,
including completely unseen image contrasts and sequences, as well as CT scans not
covered by training. Thus, we additionally address thesis goal G.3 in this chapter.
For successful labeling, we require the sacrum to be on a scan as reliable anchor
position.

• Subsequent, fully automatic labeling of vertebrae and intervertebral discs in this
highly heterogeneous set of spine scans. We extend our three-disc model labeling
approach [247] presented in Chapter 2 by an improved position-refinement method
that utilizes a 3D vertebral canal template.

• Extensive evaluation of our pipeline on highly heterogeneous public datasets show-
ing the lumbar and thoracolumbar spine. Compared to our previous work [247]
introduced in Chapter 2, our algorithm is evaluated on more than 100 additional
scans, including several new MR image contrasts and CT scans.
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3.2 Methods
To achieve a cross-modality solution, we again employ ETMs, as introduced by Zambal
et al. [260] (see Section 2.2.1 for details). We build local models covering vertebrae
sequences that can capture local intensity variations within scans, e.g., due to pathologies
or acquisition from different scanners. We employ ETMs for seed point localization
and iterative labeling, which enables using a single learning-based pipeline without
parameterizing it to different imaging modalities.

Our proposed pipeline comprises three main parts: (a) seed point localization, (b) labeling,
and (c) refinement. First, we introduce an ETM-based sacral region classifier for seed
point localization in Section 3.2.1, which we require to initialize the labeling. Next, we
recapture local three-disc models for iterative labeling in Section 3.2.2. To increase the
center position accuracy of localized positions, we introduce a vertebral canal template for
position refinement in Section 3.2.3. The combination of the three parts to the complete,
fully automatic labeling pipeline is presented in Section 3.3. Figure 3.1 gives an overview
of the system.

Notation: We use the same mathematical notation as introduced in the previous
chapter (see Section 2.2). We denote a volume V ⊂ R3 as the 3D reconstruction of
a stack of 2D sagittal slices and p = (x, y, z) as a position within V . The labelset
Λ = (S1, L5/S1, L5, . . . , C3, C2/C3) denotes the ordered set of anatomical labels of
vertebrae and intervertebral discs in the human spine, from the sacrum S1 to the topmost
cervical disc C2/C3. Consequently, a position labeled with a certain anatomical label
is given by pλl ∈ V , with λl ∈ Λ, l = 1, . . . , |Λ|. Again, we denote a model-matched
position with p̃, a refined position with p̂, and the annotated ground truth center of an
intervertebral disc or vertebra in a scan with dλl . Finally, we define a classifier Φ, which
classifies 2D patches into “sacrum” / “non-sacrum”.

3.2.1 ETM-Based Sacral Region Classifier for Seed Point Localization
To overcome the problem of seed point localization in highly heterogeneous MR and CT
data, we propose the following steps: First, we build a 3D ETM M S covering the sacral
region, which can normalize the data to the reduced number of t target gray levels. Then,
we introduce a modality-independent sacral region classifier Φ that classifies a normalized
2D patch Q into “sacrum” / “non-sacrum”, i.e., a patch showing the sacrum or another
region of a scan. The output of this stage is the learned classifier Φ that maps a patch Q
to a classification score, i.e., Φ(Q) : R2 �→ [0, 1]. Φ(Q) refers to the probability of Q
being a sacrum patch.

3D Sacrum ETM M S. We build a modality-independent local 3D sacrum entropy
model M S from sparse landmarks covering the lower lumbar and sacral region L4/L5 to
S1. Figure 3.2 (a) shows the extracted landmarks, projected onto the mid-sagittal slice.
M S is built around the four annotated tissue centers dλS1 , dλL5/S1 , dλL5 , and dλL4/L5 .
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Figure 3.1: Schematic illustration of fully automatic spine labeling of a 3D scan V with our proposed pipeline.
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Figure 3.2: Schematic illustration of landmarks extracted for building (a) sacrum model
M S, and (b) sample three-disc model M λl , λl = L3/L4 for labeling. Intervertebral disc
and vertebrae center positions are depicted in blue, sacrum corner positions in white,
remaining model landmark positions in yellow.

Further, four landmarks at the corners of the S1 vertebra as well as positions at the
left and right boundaries of discs are extracted from the topmost and bottommost slices
in the sagitally reconstructed volume V where the sacrum is visible. In Figure 3.2 (a),
tissue centers are shown in blue, sacrum corner positions in white, and the remaining
landmarks corresponding to discs in yellow. From this set of landmarks, we train the
sacrum ETM M S following Section 2.2.1.

Sacral Region Classifier Φ. Next, we employ the sacrum ETM M S to normalize 2D
patches used as input to train a modality-independent sacral region classifier Φ. To train
such a classifier, we require a set of positive patches, i.e., patches that show the sacrum,
and a set of negative ones, which show other regions in a scan. We will denote a positive
and negative patch with Q+ and Q−, respectively.

We extract patches in the following way: For every volume Vk ∈ Dtr, we sample n+

positions p+
i , i = 1, . . . , n+ that lie within a certain distance d+ of the annotated sacrum

center dλS1 , formally: |p+
i − dλS1 | ≤ d+, and n− positions p−

j , j = 1, . . . , n− anywhere
in the volume with a minimum distance d− to the ground truth position dλS1 , formally:
|p−

j − dλS1 | ≥ d−. We place an instance of the learned sacrum model M S at every
position p ∈ {p+

i , p−
j } and match M S locally. The matching is performed as described

earlier in Section 2.2.1. Then, we extract positive and negative 2D patches Q+
i and Q−

j

of size ms × ms at the model-matched position p̃L5/S1 and apply the corresponding
obtained intensity mapping fu to t target values. We choose 2D over 3D patches to
keep the complexity and computational cost of the classifier low. Samples of normalized
patches are given in Figure 3.3.

We utilize a CNN for patch classification on the extracted 2D ETM patches and denote
the trained model with ΦC

E . ΦC
E follows a basic LeNet-5 [119] architecture with different

numbers of convolutional layers, followed by pooling and dropout layers to prevent the
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a

b

Figure 3.3: Sagittal slices from raw data showing model-matched landmark positions
p̃S1, p̃L5/S1, p̃L5, p̃L4/L5 in blue (left) and corresponding extracted patch at p̃L5/S1 from
the normalized scan V � (right): (a) Sample of a positive patch Q+

i where M S is matched
in the sacral region. (b) Matching M S at a position outside of the sacral region results in
a negative sample Q−

j .

model from overfitting [217]. Apart from ΦC
E , we train other classifiers with different

patch normalization schemes for comparison, following the same patch extraction scheme
as described in this section. CNN parameter search and training details for the other
classifiers are explained in detail in Section 3.4.2.

3.2.2 Three-Disc Models M λl for Labeling

For modality-independent labeling of the spine, we build local three-disc ETMs M λl ,
from sparse landmarks around a middle disc with label λl, including its adjacent upper
and lower discs. We follow the same scheme for building the models as presented in the
previous chapter (see Section 2.2.2 and Figure 2.3). Figure 3.2 (b) gives an example of
the landmarks extracted for the L3/L4 model. Again, we apply the three-disc models in
an iterative labeling pipeline where we match one model after the other to the spine, as
described in Section 3.3.
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a b

Figure 3.4: Template matching: (a) Schematic illustration of template T for refinement,
comprising the vertebral body (gray) and spinal canal region (green). (b) Positions
involved in the matching and refinement: model-matched positions of tissue centers
p̃λl−2 , p̃λl−1 , p̃λl , p̃λl+1 , and p̃λl+2 (blue), remaining model-matched positions p̃ (yellow),
candidates for refinement (red), and refined vertebra center p̂λl−1 (orange). The search
region R is illustrated by the red rectangle.

3.2.3 Vertebral Canal Template for Vertebra Position Refinement

We propose an intensity-based template matching approach based purely on the normal-
ized data V � to account for tissue center position errors due to model mismatches of the
sparse three-disc ETMs M λl . To increase the robustness of the refinement, we apply our
method to the model-matched lower vertebra position p̃λl−1 in this chapter instead of
the middle disc position p̃λl , as in Chapter 2.

3D Vertebral Canal Template T. First, we construct a template T for the refinement
of the lower vertebra with label λl−1. It comprises two neighboring box-shaped regions,
where one approximates the size of the vertebral body of vertebra λl−1 and the other
one the spinal canal adjacent to the vertebral body (see Figure 3.4 (a)). The sizes of
both regions depend on vertebra λl−1 and are based on spine morphometry measures
combined from several studies [67, 171, 172]. We denote the size of the vertebral body
region in T with bv

x ×bv
y ×bv

z . It ranges from 34 × 25 × 34 mm for L5 to 22 × 17 × 22 mm
for T2. Corresponding canal widths are 15 mm and 12 mm for L5 and T2, respectively,
which we denote with bsp

x . Both template regions are initialized with intensity values
corresponding to the t target gray levels in the normalized volume V �. We determine the
vertebra intensity mode, i.e., the most frequent gray value, in a local 3 × 3 × 3 window
at the model-matched lower vertebra position p̃λl−1 obtained after matching M λl to the
spine and assign it to the vertebra region in T. All remaining target gray levels are
considered for the canal region. In this way, we build the template in a “one-versus-rest“
manner, as the intensity mapping in a vertebra is rather homogeneous compared to the
spinal canal, which can exhibit different intensities due to the presence of the spinal cord.
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Template matching. In search region R (see Figure 3.4 (b), red rectangle), constrained
by the convex hull of the matched three-disc model M λl , we place T at every voxel position
pi in R. We calculate the template overlap ΘT

i with the current underlying normalized
volume V � at every voxel pi:

ΘT
i = Θv

i

Θv
+ Θsp

i

Θsp
(3.1)

Θv
i and Θsp

i are the number of overlapping intensity values of the vertebral body and spinal
canal template region, respectively, with the underlying normalized volume V �. Θv and
Θsp are the sizes in voxels of the vertebral body and the spinal canal region, respectively.
The best candidate p∗ in R is selected as the one having maximal overlap ΘT

i :

p∗ = argmax
pi∈R

(ΘT
i ) (3.2)

3.3 Fully Automatic Labeling of an Unseen Scan
This section combines the models and methods introduced in Section 3.2 to the full
pipeline for labeling a scan V . Figure 3.1 gives an overview of the complete system.

3.3.1 Seed Point Localization
First, we sample positions pi = (xi, yi, zi), i = 1, . . . , n uniformly in V , as shown in
Figure 3.1 (a). We initialize an instance of the learned sacrum ETM M S at every position
pi, match M S locally to the unseen scan, and extract a patch Qi at the model-matched
position p̃

L5/S1
i . Next, we apply the obtained intensity mapping fu and classify Qi into

“sacrum” / “non-sacrum” with classifier Φ. We consider Qi a sacrum patch if Φ(Qi) ≥ 0.5
and select position p̃i corresponding to the patch with highest probability as candidate:

p̃i = argmax
i∈{1,...,n}

{Φ(Qi)} (3.3)

Finally, we select the corresponding position p̃L4/L5 that indicates the center of disc
L4/L5 from the matched sacrum model and use it as seed point for the subsequent
iterative labeling and refinement steps.

3.3.2 Iterative Labeling and Refinement
The obtained L4/L5 position is used as anchor for anatomical labeling of the rest of the
spine. This includes detecting vertebrae and disc center positions, as well as assigning
their corresponding anatomical labels λl.

As in Chapter 2, we iteratively match three-disc models M λl to the spine. For position
refinement, we apply the proposed vertebrae template matching. We start iterative model
matching at p̃λl and repeat the following steps:
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1. Initialize the three-disc model M λl for current disc λl: We place M λl at the
position obtained from the previous model-matching step and match it (see Fig-
ure 3.1 (b)). Next, we apply the obtained intensity mapping fu which results in the
normalized scan. Further, we retrieve the set of model-matched labeled positions
{p̃λl−2 , p̃λl−1 , p̃λl , p̃λl+1 , p̃λl+2} (see positions in Figure 3.4 (b) in blue color).

2. Refine the lower vertebra position p̃λl−1 as given by the model matching according to
the approach presented in Section 3.2.3: We build the 3D vertebral canal template
T with the size depending on the current vertebra λl−1. Next, we match T within
the search region R. To increase the robustness of the refinement, we select the set
of n positions {p∗

i }, i = 1, . . . , n with the n highest template overlaps according
to Equation 3.2 as the candidate set.

3. Select the best candidate from the set: We assume that the positions obtained
from model matching are reliable, i.e., that the model-matched position p̃λl−1 lies
inside the corresponding vertebra. Hence, the final refined position p̂λl−1 should lie
in proximity to the model-matched position p̃λl−1 . We check for every candidate
position p∗

i , i = 1, . . . , n, starting with the best candidate, i.e., the one with the
highest template overlap, the condition | p̃λl−1 − p∗

i | ≤ µ; that is, we check
whether the candidate position lies within distance µ. The distance µ is based on
spine morphometry measures [67, 171, 172] and varies between 25 mm for L5 to
16 mm for T 2. The first candidate meeting this criterion is selected as refined lower
vertebra position p̂λl−1 . In case none of the candidates {p∗

i } fulfills the criterion,
we set p̂λl−1 := p̃λl−1 , i.e., we select the model-matched position as the refined
vertebra center.

4. Correct p̃λl : To reduce landmark position errors that may have occurred in the
z-axis of the sagittally reconstructed scan after matching M λl , we correct the
model-matched position of the middle disc p̃λl . We calculate the distance between
the refined lower vertebra position p̂λl−1 and the corresponding model-matched
position p̃λl−1 in z and correct p̃λl in z by that distance. The obtained position is
the refined middle disc position p̂λl .

5. Propagation: Place the next three-disc model at the next unlabeled disc position
λl+2: λl = λl+2, and start from (1).

We stop if no more discs are found. This is the case if either the border of a scan or the
topmost disc C2/C3 is detected. The final result of the algorithm is the set of labeled,
refined positions {p̂λi}, i = 1, . . . , K where K corresponds to the number of tissues in V .
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3.4 Experimental Setup
3.4.1 Datasets
We evaluate our pipeline on eight different datasets Di, i = 1, . . . , 8, comprising 184
sagittally reconstructed scans V with 1659 annotated vertebra and disc centers. Table 3.1
gives a detailed overview of the data characteristics. The datasets represent various MR
sequences and image contrasts that had been acquired on different scanners exhibiting
highly anisotropic voxel sizes, as well as CT scans. D1 and D2 are private collections.
The remaining datasets had been released with recent works [28, 35, 36, 42, 272] and/or
made publicly available through the SpineWeb [215] initiative.

Pathologies: The following pathologies are present in at least half of the scans in D1
and D2: fractures, disc herniation, scoliosis, lordosis, and combinations of those. D8 [272]
includes two scans without pathologies and 14 scans with pathologies: stenosis (one
scan), scoliosis (one scan), spondylolisthesis (two scans), vertebral fracture (one scan),
vertebral fracture and spondylolisthesis (one scan), other pathologies not diagnosable
from the provided vertebra segmentation (seven scans), and vertebral fracture and other
pathologies (one scan). The multi-modality datasets D6 and D7 by Cai et al. [28] comprise
healthy cases and patients with minor spondylosis/fractures. No details about present
pathologies are provided for datasets D3, D4, and D5

3.4.2 Evaluation Setup
Our evaluation setup demonstrates the applicability of our method to unseen sequences
and contrasts that are not covered by the training set Dtr. We conduct the training of all
models on set Dtr = D1 ∪ D2 where only T1w and T2w MR scans are present. The full
labeling pipeline is evaluated on Dtest = D3 ∪D4 ∪D5 ∪D6 ∪D7 ∪D8. This set comprises
scans at various spatial resolutions and unseen sequences and image contrasts.

To further validate the generalization capability of our approach, we provide additional
results when training on the set of CT scans D6, and evaluating the full pipeline on the
remaining MR datasets D1, D2, D3, D4, D5, D7, and D8. We summarize and discuss
these results in Section 3.5.4.

ETM Training

This section describes ETM parameter selection [260] for the sacrum model M S and
three-disc models M λl . For the target levels t, we focus on t ∈ {2, 3} target levels, because
we aim for homogeneous intensity mappings for discs, vertebrae, and the spinal cord.
With only t = 2 target values, we encounter the problem that the intensity reduction is
too strong in regions exhibiting low contrast, e.g., at the border of the volume, or with
scans in a high intensity range. This results in a degeneration of mappings and hence a
loss of information about the underlying anatomy. This is not the case for t = 3, where
desirable mappings for vertebrae and discs are obtained. For the source levels r, we vary
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Annotations)

Description

D1 MR T1w TSE 324 × 324 -
512 × 1436

11 - 16 0.586 -
1.173

4.4 - 6 13 (291) Our T1w Dataset: scans from 12 different patients,
including 3 full spine scans, acquired on Philipps
Achieva and Panorama scanners. Annotation: disc
and vertebrae centers, C2/C3 - L5/S1 (by medical
expert)

D2 MR T2w TSE 320 × 320 -
512 × 1436

13 - 14 0.586 -
1.187

4.4 - 6 10 (244) Our T2w Dataset: scans from 10 different patients,
including 3 full spine scans, acquired on Philipps
Achieva and Panorama scanners. Annotation: disc
and vertebrae centers, C2/C3 - L5/S1 (by medical
expert)

D3 MR T2w 304 × 304,
305 × 305

48, 39 1.25 2.0 15 (105) MICCAI Challenge 2015 Training Dataset [36]: 15
different patients, acquired on one scanner.
Annotation: disc centers, T11/T12 - L5/S1

D4 MR T2w TSE 305 × 305 39 1.25 2.0 23 (161) Chu Dataset [42]: public data, acquired on 1.5 T
Siemens scanner. Annotation: vertebrae centers,
T11 - L5

D5 MR Dixon 256 × 256 36 1.25 2.0 32 (280) Dixon Dataset [35]: 8 different patients, whereby 4
image channels are acquired per patient: fat
saturated, water saturated, inn-phase and
opposed-phase. Annotation: disc centers,
T11/T12 - L5/S1

D6 CT 512 × 512 28 - 86 0.25 -
0.408

1.5 - 3.0 19 (63) Cai Dataset [28]: 20 different patients, whereby
only sagittally reconstructed CT images are used
in this work. One scan shows the cervical spine,
but is kept for seed point localization evaluation.
Annotation (lumbar): 3-6 vertebrae centers,
L4 - S1 resp. L1 - S1

D7 MR T1w TSE,
T1w FLAIR,
T2w CUBE,
PDw TSE

320 × 320 -
640 × 640

12 - 160 0.406 -
0.859

0.5 - 5.0 56 (355) Cai Dataset [28]: 20 different patients, whereby
only sagittal MR scans are considered in this work;
four scans show the cervical spine, but are kept for
seed point localization evaluation. Annotation
(lumbar): 6-9 vertebrae centers, L1 - S1 resp.
T10 - S1

D8 MR T1w FSE,
T1w TSE,
T2w FSE,
T2w TSE, TIRM

320 × 320 -
768 × 768

12 - 31 0.47 -
1.188

3.0 - 4.4 16 (160) Zukić Dataset [272]: public dataset, acquired on
several scanners in different hospitals, whereby
only the 16 sagittal scans are included in this work
(one coronal scan excluded). Annotation: 7-17
vertebrae centers per scan, T12 - S1 resp. T2 - S1

Table 3.1: Detailed dataset overview.
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r ∈ {70, 75, . . . , 130}. For t = 3, the best results are obtained with r = 110 source levels
using leave-one-out cross-validation on Dtr. This combination provides a good initial
quantization of intensities, where relevant intensity changes are preserved and image
noise is removed. We do not obtain the same intensity mapping for one tissue in all
sequences. The intensity ranges in the original scans vary, but homogeneous mappings
within the tissues are obtained with the learned models M λl and M S.

Sacral Region Classifier Training

From every volume Vk ∈ Dtr, n+ = 100 patches Q+
i are sampled within d+ ≤ 10 mm

from the annotated sacrum center and n− = 500 negative patches Q−
j with d− ≥ 50 mm.

The patch size is empirically set to ms = 60 pixels. This ensures that the L4/L5 − S1
region is well covered by a patch. We split {Q+

i , Q−
i } into 90 % of patches belonging to

the training set and the remaining 10 % to the validation set. To increase robustness, we
perform data augmentation and additionally added 15 patches per class and per scan in
Dtr to the validation set. We perform random cropping to a size between 50 × 50 and
70 × 70 pixels and rescaling to 60 × 60 pixels.

Training: The CNN ΦC
E is trained on ETM patches, as proposed in Section 3.2.1. To

justify our choice, we compare its performance to Support Vector Machines (SVMs) on
the same data and denote this model with ΦS

E . Further, we train two additional CNNs
on raw data with different preprocessing strategies. One CNN ΦC

S uses standard scaling
and another one ΦC

W applies whitening [113]. We optimize the parametrization of CNN
classifiers ΦC

E , ΦC
S , and ΦC

W via grid search by varying the following parameters:

• dropout: {0.1, 0.2, 0.3, 0.4, 0.5}

• number of consecutive convolutional layers before pooling layer: {1, 2, 3}

• size of filter in convolutional layers: {3, 5}

• number of filters in convolutional layers: {32, 64}

• number of dense layer units as percentage of its previous layer units:
{10%, 20%, 25%, 30%, 50%}

We train the CNNs by optimizing the cross-entropy loss using stochastic gradient descent
with Nesterov momentum [91] of 0.9 and a learning rate lr of 0.01 for 100 epochs. Rectified
linear units are used as non-linear functions, except for the last layer where we apply the
softmax activation function. For the SVM ΦS

E with Radial Basis Function (RBF) kernel,
we perform grid search for parameters C and γ with {C, γ} ∈ {0.0001, 0.001, . . . , 10000}.
We use the same predefined training/validation split for training SVMs and CNNs and
select the best classifiers based on the performance on the validation set:
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• ΦC
E : ETM data, dropout = 0.1 (input layer) and 0.5 (dense layers), two convolutional

layers, filter size = 5, number of filters = 64, number of dense layer units as
percentage of its previous layer units = 20 %

• ΦS
E : RBF kernel with γ = 0.0001, C = 10

3.4.3 Metrics
We evaluate the seed point localization and labeling performance based on two measures
defined in Section 2.3.3: the intervertebral disc localization performance p� and the disc
center accuracy ē. However, in the previous chapter we focused only on intervertebral
discs while now we are concerned with vertebrae positions as well. Hence, we reformulate
the metrics more general on a tissue level as follows:

• p� – Tissue localization accuracy: p� explains how many detected posi-
tions p̂λl lie within � mm to the respective annotated tissue center dλl , with
� ∈ {2, 4, 6, 10, 15}.

• ē ± sd – Tissue center accuracy: The distance from the localized position
p̂λl to the ground truth dλl is given by the mean position error ē and standard
deviation sd.

3.4.4 Implementation Details
Our framework is implemented in Python, using the Lasagne deep learning library [54].
Training and testing of CNNs is conducted on an Nvidia GeForce GTX 970 GPU.

3.5 Results and Discussion
The following section summarizes the results of fully automatic seed point detection and
labeling on Dtest.

3.5.1 Seed Point Localization Performance
The performance of the learned classifiers on Dtest is compared in Figure 3.5, where the
distance from the annotated ground truth center to the localized seed is shown. From
the total number of 161 scans in Dtest, 156 show the lower spine including the sacrum,
while the remaining five are pure cervical scans. We correctly detect seeds in 146/156
scans with our proposed classifier ΦC

E , representing a detection rate of 93.6 %. Seeds are
completely missed in only two scans in D7, i.e., in 1.3 % of all scans. We detect a few
outliers, which are summarized in Table 3.2 and visualized in Figure 3.6. No sacrum
seeds are detected in the five cervical scans in D6 and D7, which reflects the desired
behavior. Hence, no false positive predictions are made. Only a few shifts occur where
S1/S2 or L4/L5 are confused with L5/S1 (D3, D4, D7, D8) or due to a pathological scan
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CNN ETM

SVM ETM

CNN Whitening

CNN Standard
Scaling

distance [mm]

Figure 3.5: Comparison of classifier performances for seed point detection on Dtest. The
distances indicate the distance from the ground truth center to the detected seed.

D3 D4 D5 D6 D7 D8 Total
shift by 1 disc label 1 ↑ 1 ↑ - 1 ↑ 2 ↓ 1 ↑ 6
shift by 2 disc labels - - - 1 ↑ - - 1
shift by > 2 disc labels - - - - 1 ↑ - 1
missing - - - - 2 - 2
sacrum seeds in cervical scans - - - 0/1 0/4 - 0/5

Table 3.2: Number of scans with shifts and missing seeds in seed point localization using
ΦC

E . Arrows indicate a shift towards the cervical spine (↑) or towards the sacrum (↓).

and a screw that confuses ETM matching in CT data (D6). One major shift is observed
due to misclassifying parts of the thoracolumbar spine at the scan border as the sacral
region in D7 (see Figure 3.6 (d)).

Our proposed CNN ΦC
E outperforms the classic SVM and both CNNs with standard

preprocessing as they tend to confuse patches with other parts of the spine. From
the results in Figure 3.5, we conclude that CNNs in general grasp the basic structure
of sacrum patches better than the SVM. Moreover, ETM processing further improves
the classification. To further reduce the number of misclassifications, the patch size
could be increased to capture a larger part of the spine. Moreover, the classifier could
be improved by adding more context, for example, through the use of auxiliar 2D
projections as additional input. Training a 3D patch classifier would be another option,
yet, computationally more expensive compared to a 2D or 2.5D model.
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a cb d

Figure 3.6: Visual examples of misclassified sacrum patches obtained with our model ΦC
E

for different datasets (top row: original patch, bottom row: corresponding normalized
patch): (a) shift by one disc label ↑, (b) shift by two disc labels ↑ in pathological CT
scan, (c) shift by one disc label ↓, (d) misclassification of thoracolumbar region as sacral
region (shift by > 2 labels ↑).

D3 D4 D5 D6 D7 D8

p2 20.4 40.9 11.7 14.0 7.4 15.8
p4 74.5 90.3 48.4 55.8 31.6 34.2
p6 92.9 97.4 75.4 76.7 57.3 55.0
p10 95.9 100.0 94.9 95.3 78.4 75.0
p15 99.0 100.0 98.9 100.0 94.1 90.8

Table 3.3: p� measures [%] for every dataset Di ∈ Dtest.

3.5.2 Labeling and Localization Accuracy
We initialize the labeling of a scan at the corresponding detected seed. From the scans
with shifted seed positions, we can label all five cases with one or two shifts towards the
cervical spine, in the sense that the center positions are detected correctly, but manual
correction of the labels by a radiologist is necessary. The three scans from D7 cannot be
labeled successfully, because model matching diverges. Therefore, we exclude the cervical
scans and scans with missing and shifted seeds in the following analysis, resulting in a
total of 130 MR and 16 CT scans.

Overall we reach a labeling accuracy of 92.5 % (135/146 scans), and good localization
accuracies p� for all datasets as summarized in Table 3.3. Figure 3.7 shows the effect of
position refinement w.r.t. the center accuracies ē. We reduce the localization errors for
all datasets except D7, where a few outliers are introduced with the proposed refinement.
In those cases the ETM normalization and consequently the template matching failed.
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Figure 3.7: Tissue center accuracies ē per dataset Di ∈ Dtest with and without template-
based position refinement.

a b

Figure 3.8: Failed refinement of vertebra L2 in a scan from D7: (a) model-matched
position for vertebra L2 (blue), (b) candidate positions obtained from template matching
(red) and the selected, refined L2 position (orange). Sagittal (left) and coronal (right)
projections are shown for (a) and (b).

Figure 3.8 shows such a case from D7 where our refinement method results in a worse
position for L2 compared to the model-matched position. The highest template overlap
occurs at a position in the spinal canal due to a non-optimal normalization obtained
from model matching.
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a

a

c

b

d

Figure 3.9: Model mismatches in a scan from D7 (a, b) and a pathological case from
D8 (c, d): (a) and (c) correctly localized L5/S1 position. (b) Model-matching diverges
into the spinal canal when matching the three-disc model for L4/L5. (d) Incorrect
model-matching results in a label shift by one label. For (b) and (d), model-matched
positions of tissue centers (blue) and remaining model-matched positions (yellow) are
shown. Normalized data obtained from model matching is shown to the right.

Visual samples of successful and failed labeling cases from different datasets are provided
in Figure 3.10, Figure 3.11, Figure 3.12, Figure 3.13, and Figure 3.14. Labeling fails
partially in 11 scans because of model mismatches due to very low image contrast in
D5 and D7, pathologies (D8), or initialization at the tissue border (D6, D7). Figure 3.9
shows a case from D7 and a patient with pathologies from D8 where model matching
fails. In both cases, the correctly localized L5/S1 position is closer to the border of the
spine. This may be a reason why the three-disc model M λl , λl = L4/L5 does not match
to the correct position. In addition, the scan from D8 (bottom row) is a spondylolisthesis
case, i.e., where one vertebra is displaced compared to another one, as visible between
L5 and S1.

In general, we observe the lowest position errors for D3 and D4 and the highest errors for
D7 and D8 (see Figure 3.7, Table 3.3, as well as the discussion in Section 3.5.3). While
for D3 and D4 no pathologies were reported and all scans exhibit the same voxel size, D7
and D8 are more challenging. Both datasets have a high variation in terms of MR image
contrasts, sequences and voxel sizes. Especially D7 has a very low in-plane pixel size and
exhibits the largest variation in slice thickness among all datasets. In addition, D8 from
Zukić et al. [272] comprises mainly pathological cases. Overall, the variation in those
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Figure 3.10: Successful labeling of T1w MRI scan from D8. Sagittal (left) and coronal
(right) projections are shown.

two datasets is higher compared to our training sets D1 and D2. Increasing the diversity
in the training set and adding more (severe) pathological cases could potentially reduce
the errors in tissue center positions for more challenging scans.
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Figure 3.11: Successful labeling of MRI Dixon opposed-phase image channel from a scan
from D5. Sagittal (left) and coronal (right) projections are shown.
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Figure 3.12: Successful labeling of a patient with scoliosis in a T2w MRI scan from D8.
Sagittal (left) and coronal (right) projections are shown.
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Figure 3.13: Example of a case where labeling failed in a low contrast MRI Dixon inn-
phase image channel from a scan from D5. Sagittal (left) and coronal (right) projections
are shown.
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Figure 3.14: Sagittal (left) and coronal (right) projections of spine labeling results on CT
scans from D6: (a) successful, (b) failed labeling.

63



3. Towards Fully Automatic Labeling of the Spine in 3D Imaging Data

Method Distances [mm] Tissue Dataset
MICCAI CSI Workshop & [0.9 ± 0.5, disc D3
Challenge 2015 [1] 3.9 ± 1.6]
Jamaludin et al. [96] 1.1 ± 0.6 disc D3

Chu et al. [42] 1.6 ± 0.9 vertebra D4

Chen et al. [35] 1.3 ± 0.6 disc D5

Heinrich and Oktay [79] 3.87 (mean) disc D5

Cai et al. [28] 3.4 ± 2.9 vertebra D6
3.1 ± 2.7 30 scans from D7

Cai et al. [27] 2.7 to 6.1 vertebra D6 (only 2D image)
2.3 to 5.1 D7 (only 2D image)

Štern et al. [220] 2.7 ± 1.9 disc and vertebra CT scans
2.9 ± 1.7 T1w and T2w MR scans

Forsberg et al. [60] 2.4 ± 1.5 vertebra T1w mid-sagittal MR images
2.6 ± 1.6 T2w mid-sagittal MR images

Hojjat et al. [83] 4.54 ± 2.69 disc T2w MR
4.62 ± 3.19 vertebra
4.94 ± 2.88 disc T1w MR
5.12 ± 3.09 vertebra

Wimmer et al. [247] 4.0 ± 3.1 disc D3
(semi-automatic) 3.7 ± 1.9 D5 (without inn-phase images)
Our method 3.4 ± 2.4 disc D3

2.5 ± 1.5 vertebra D4
4.8 ± 2.9 disc D5
4.4 ± 2.5 vertebra D6
5.7 ± 3.8 vertebra D7
7.0 ± 5.3 vertebra D8

Table 3.4: Spine labeling results reported in the literature compared to our results.

3.5.3 Comparison to Related Work

Table 3.4 summarizes mean position errors of our proposed approach and related methods
on the same or similar datasets. Comparing the performance of our method for all
datasets in Dtest, we report the highest localization accuracies for D3 and D4. Both sets
include only T2w data, all scans exhibit the same voxel size, and no pathologies are
reported [36, 42]. Therefore, Chu et al. [42] and the works presented at the MICCAI CSI
Workshop & Challenge 2015 [1] report also very low distances to the annotated centers
on D3 and D4, often below sub-voxel accuracy. The MICCAI CSI challenge results [1]
range from 0.9 ± 0.5 mm to 3.9 ± 1.6 mm on D3. Jamaludin et al. [96] reach similar
results on D3, but train their method on a different set of T1w and T2w scans. This
indicates good robustness of their algorithm. The algorithms evaluated on the Dixon
dataset D5, either fuse features from all image channels [35], i.e., fat saturated, water
saturated, inn-phase, and opposed-phase, or use only one image channel [79]. In contrast,
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our method can be applied independently on each channel. This also applies to our
previous work [247] presented in Chapter 2, whereby inn-phase images were not included
back then. Li et al. [131] train a multi-scale FCN on D5 by using a modality dropout
strategy, whereby all four image channels are used to label an unseen scan. With this
approach, they won the MICCAI CSI Challenge 2016 and report a mean localization error
of 0.62 mm on unseen Dixon scans. On the released subset of D8 by Zukić et al. [272],
we obtain correct labeling in 12/14 pathological cases, and in 14/16 cases overall, i.e., in
87.5 % of scans. Figure 3.12 shows a patient with scoliosis, which is labeled successfully.
The lower accuracy compared to other datasets is explained by the more challenging
nature of the scans. They show high variability in terms of resolution and MR sequences
and – except for two scans – comprise of pathological cases only. Zukić et al. [272] perform
fully automated vertebrae detection, but the labeling is done in a semi-automatic manner.
We note that the authors [272] do not report vertebrae or disc center accuracies, hence,
we could not include their results in Table 3.4. Štern et al. [220] also reach high center
accuracies similar to other methods in Table 3.4 without re-training of their algorithm,
whereby no anatomical labeling is performed. Cai et al. [27, 28] report their results on a
subset of D6 and D7. Their algorithm requires modality information at test time, which
is inferred from DICOM tags. In contrast, our method works completely independent
without prior knowledge about the underlying modality. Further, we include the PDw
scans in D7 in our evaluation which are left out by Cai et al. [27, 28]. Excluding those
scans, increases our localization accuracy from p10 = 78.4 % to p10 = 87.4 % for T1w
and T2w scans only. The 2D approach by Forsberg et al. [60] shows good performance
on mid-sagittal images but could potentially lead to unsatisfying results, especially in the
presence of pathologies like scoliosis. The work by Hojjat et al. [83] also aims at being
applicable to various modalities. It does not require previous model training, but user
input in a predefined vertebra center.

Comparing again the performance of our spine labeling pipeline to the related works
in Table 3.4, we observe lower tissue center accuracies for our method than the state-
of-the-art on the same datasets. The higher position errors can be explained by the
more general nature of our approach and evaluation setup, as compared to dedicated,
data-specific methods.

3.5.4 Generalizability
To further demonstrate the generalization capability of our method, we report additional
results by training our models just on CT data D6 and evaluating them on the remaining
MR datasets D1, D2, D3, D4, D5, D7, and D8.

From the total number of 165 MR scans, 161 show the lumbar spine (see Table 3.1).
Seed points are detected correctly in 147/161 scans, i.e., 91.3 % of the cases. This is
comparable to the results in Section 3.5.1 where we report a detection rate of 93.6 %. In
eleven scans, we observe shifts by one label either towards the sacrum or the cervical spine.
In three scans, no seed position could be detected. In general, the mean seed position
error is slightly increased by 4 mm on average, compared to our previously reported
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D1 D2 D3 D4 D5 D7 D8

p2 6.5 7.7 30.8 30.5 12.1 11.5 11.0
p4 30.6 25.3 51.3 59.0 30.1 29.5 31.5
p6 49.1 48.4 73.1 74.7 50.5 49.6 56.2
p10 71.8 78.0 92.3 85.3 83.9 71.7 83.6
p15 89.5 93.4 98.7 94.7 93.5 86.9 91.8

Table 3.5: p� measures [%] when training on CT dataset D6.

seed detection results. Seed points are oftentimes localized closer to the tissue border,
which also influences the subsequent labeling. Due to initialization of the three-disc
models M λl closer to the tissue border, the center accuracies p� (see Table 3.5) are slightly
lower compared to the reported results with MR training data (see Table 3.3). The
overall labeling accuracy of 91.8 % (135/147 scans), however, is in line with our findings.
Labeling fails for 12 scans where the model matching diverges into the spinal canal or
the abdomen.

The lower performance of this evaluation setup is due to the following reasons. First,
less training samples are available for the seed localization as well as for ETM model
building. Second, the variability within the CT data regarding shape and intensity is
significantly lower. While our T1w and T2w MR scans in D1 and D2 include several
different pathologies (fractures, scoliosis, disc herniation, lordosis, and combinations),
the CT data features only cases with minor spondylosis. Thus, we believe increasing the
training data and its variability will improve the performance of each building block of
the framework.

3.6 Discussion and Conclusion
In this chapter, we presented a novel, fully automatic approach for spine labeling on
multiple image modalities using local ETMs. The main advantage and contribution of
our method is its generality in terms of imaging variations: First, we can label a wide
range of different MR sequences and contrasts, as well as CT scans, without retraining
our models. Second, the entropy-objective allows us to apply our pipeline to completely
unseen image contrasts and CT scans not covered by training. While many recent works
on MR spine labeling do not address the applicability to changing imaging sequences and
settings [184], we show that we can apply our method successfully to datasets where just
a few scans are available. Dedicated learning methods would overfit on small datasets if
retraining is necessary while our cross-modality solution can be applied directly in a fully
automatic fashion. This is also an important advantage compared to data-hungry deep
learning methods which might not be trainable on datasets comprising only a few scans.

We report promising results on a wide range of publicly available scans for automatic sacral
region detection, as well as localization and labeling of intervertebral discs and vertebrae.
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Related methods mostly lack proper evaluation on public data. Our results align with
recent work. We consider them to compare favorably because we successfully evaluate
our algorithm on completely unseen image contrasts not covered by training. Moreover,
we report standardized evaluation metrics [267] which we believe is an important step
towards comparability of results. We successfully label various pathological scans in D8
including scoliosis (see Figure 3.12), vertebral fractures, and others. This suggests, that
our AAM-based learned entropy models capture shape and intensity variations. They are
applicable to the many scans with pathologies resulting in reasonable labeling performance.
However, in terms of tissue center accuracies, our proposed general pipeline results in
higher position errors compared to the state-of-the-art, as mentioned in Section 3.5.3.

Limitations and Future Work. A limitation of our current method is that the sacrum
is required as starting point for the iterative labeling. To the best of our knowledge, the
presence of a reliable anchor point, e.g., the sacrum or C1 and C2 for cervical scans, is a
precondition for all labeling algorithms handling MR data, as discussed in Section 3.1.1.
We consider the training of additional anchor detectors as future work. In addition,
improving the sacrum region classifier to reduce misclassifications is an important topic.
This may be achieved, for example, by increasing the patch size or by adding more
context from auxiliar projections, as discussed in Section 3.5.1. Moreover, we aim at
increasing the center accuracy with, e.g., an improved refinement strategy, or recovery
mechanisms in case the labeling fails. Finally, we refer to Section 5.2 for a discussion of
the presented method in the context of more recent related work.
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CHAPTER 4
Improving Mammography

Screening Data Classification

This chapter is based on the following publication:

Maria Wimmer, Gert Sluiter, David Major, Dimitrios Lenis, Astrid Berg, Theresa
Neubauer, and Katja Bühler. “Multi-task fusion for improving mammography
screening data classification” in IEEE Transactions on Medical Imaging, 41(4),
pp. 937–950, IEEE, 2022. DOI: 10.1109/TMI.2021.3129068

4.1 Introduction
Breast cancer is the most common cancer type in women and also the leading cause of
death by cancer in women worldwide [245]. Fortunately, the mortality rate declined in
recent years, one reason being the higher rate of early diagnosis due to the establishment
of screening programs. Important cancer risk factors, such as breast density, can be
detected and monitored early with such programs [51, 245].

Due to the increasing amount of imaging data, machine learning, especially deep learning
algorithms are being developed to automatically process mammography data. Such
models perform, for example, localization and classification of lesions [112, 188], breast
density classification [102, 123], or cancer risk prediction [154, 255]. These automated
methods can be used to accelerate reading workflows [116, 169], or ideally, to support
radiologists in image interpretation and diagnosis [21]. Several recent studies report
higher accuracies by combining Artificial Intelligence (AI) algorithms with the assessment
of a single radiologist [198] or improved performance of radiologists if aided by an AI
system [110, 191]. Besides the obtained performance gains, the assistance of radiologists
as well as human-computer collaboration are becoming increasingly important aspects
and challenges for future application in clinical practice [65, 169]. To increase trust in
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AI support tools, not only the interpretability of black box models is being intensively
studied [22, 187, 208] but also the potential of providing intermediate model results
that are linked to radiological features [21, 116]. Recent user studies in cancer screening
and diagnosis show that clinicians profit more from models that provide detailed results
compared to solutions delivering solely a benign/malignant assessment [25, 228].

4.1.1 Related Work

A standard mammography study is given in Figure 4.1. It comprises four X-ray images
that correspond to two different imaging views from each breast: L-CC, R-CC, L-
MLO, and R-MLO. Thereby, CC corresponds to the Craniocaudal (CC) view, MLO
to the Mediolateral oblique (MLO) view, and L and R indicate the left or right breast,
respectively. Radiologists analyze each of the four view images in detail and compare
them to obtain a comprehensive view of a patient and render a diagnostic decision [201].
Suspicious lesions, for example, can be visible in one view of a breast but may be
obscured in the other view. Therefore, a thorough analysis is necessary. Various deep
learning-based methods have been presented in the past years that analyze single- or
multiple-view images at a time. However, this is strongly dependent on their task and
related clinical question.

The following literature review summarizes related publications published prior to the
work [249] on which this chapter is based on. We refer to Section 5.3 for a discussion of
more recent works.

Breast Density Scoring

Breast density is an important risk factor as dense breast tissue is related to the develop-
ment of cancer. Furthermore, Microcalcifications (MCs) and masses are harder to see
on the mammograms, causing misdiagnoses [51]. The BI-RADS standard [212] defines
density in four categories (a-d) as a measure of the breast tissue composition: “almost
entirely fatty” (a), “scattered areas of fibroglandular density” (b), “heterogeneously
dense” (c), and “extremely dense” (d). Assessment by radiologists usually has a high
inter-observer variability [216] due to the qualitative description of the four categories.
Therefore, automated density classification models often focus on the two superclasses
“not dense” or “fatty” (a+b) and “dense” (c+d) [102].

Recent works utilize all four mammography views and classify them with multi-view
CNNs, following the typical scheme illustrated in Figure 1.8. They are used to classify
breast density into the four density categories [251] or in both superclasses [102, 251]. In
contrast, Lehman et al. [123] train a ResNet-18 model to classify single mammograms and
assign the consensus density across all views for the patient. Another method uses a refined
AlexNet to classify the two middle density classes (b+c) [158]. Kallenberg et al. [103]
perform unsupervised feature learning from multi-scale patches to segment dense tissue
and derive a density scoring per image [103].

70



4.1. Introduction

a

c

b

d
Figure 4.1: Standard mammography study of a patient showing the four standard views:
(a) R-CC, (b) L-CC, (c) R-MLO, and (d) L-MLO. The patient has a malignant mass in
the right breast, highlighted in orange in (a) and (c).
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a cb d

Figure 4.2: Patches showing (a) a benign calcification, (b) malignant MC cluster, (c)
benign mass, and (d) a malignant mass.

Lesion Localization and Classification

Exact localization and classification of lesions, i.e., masses, calcifications, and clusters of
MCs, in mammograms are crucial as they are important risk factors or already indicators
of cancer [201]. Figure 4.2 shows examples for benign and malignant lesions. While many
works perform lesion localization, quantification, classification, or all together [9, 30, 111,
112, 188], others solely classify already extracted lesions on patches [15, 21, 52, 160, 194].
The use of classical feature extraction and machine learning methods, or the combination
thereof with CNNs, has been intensively investigated in the literature [4, 15, 59, 111, 112].
Mordang et al. [160] were the first to use CNNs for MC localization and utilized a
VGG-like architecture for this task. Various studies focus on the classification of MCs and
MC clusters [52, 205, 237], e.g., with a combination of a Difference-of-Gaussians detector
and two-stream CNNs [237]. Dhungel et al. [53], among many others [4, 11, 15, 21, 194],
perform localization and analysis of masses. They combine deep belief networks, Gaussian
mixture models, and CNNs for mass detection. A recent work by Barnett et al. [21]
proposes an interpretable mass classification framework with the goal of following the
reasoning process of radiologists. Finally, state-of-the-art object detection approaches
like Faster R-CNN [185] or YOLO [100] have been applied for lesion localization and
classification [5, 9, 11, 143, 188]. Ribli et al. [188] utilize a Faster R-CNN with a VGG16
backbone to detect and classify lesions into malignant and benign classes individually.
Others extend a Faster R-CNN model by a cascaded classification step to reduce false-
positively detected lesions [9].

Malignancy Scoring

Several studies classify single or multiple mammograms directly to obtain a score assessing
whether a view image is cancerous [143, 144, 154, 206, 208] or contains a (specific)
malignant or benign finding [211, 225, 252, 271]. Recent works utilize, e.g., an all-
convolutional design combined with curriculum learning [206], multi-instance learning [143,
207, 208, 271], self-supervised methods [225], or a multi-view-multi-task approach [116].
Wu et al. [252] concatenate heatmaps obtained from sliding window patch classification
to classify full images. Other works derive a malignancy score per view image, breast,
or patient by averaging or considering the maximum score, e.g., obtained from a Faster
R-CNN [188] or a map of pixelwise abnormality scores [110].
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Feature or Information Fusion

The fusion of features or, more generally, of (extracted) information is inspired by how
radiologists assess and compare ROIs and mammograms to obtain a comprehensive view of
a patient. The term feature can refer to “classical, handcrafted” features, e.g., Gabor filters,
curvelets, entropy, etc., CNN-features extracted by a CNN, or non-imaging features like
patient age. The extraction and fusion is performed at different scales, for example, locally
from/within a single-view image, patches, or across ROIs [52, 112, 143, 144, 207, 208, 271].
Kooi et al. [112] fuse CNN and classical features extracted from patches within a
single mammogram. Lotter et al. [144] and Shen et al. [208] fuse local CNN patch
features, whereas the former extract them with a sliding window approach, and the
latter extract only CNN features from salient regions obtained with a global image
classifier. Another common approach is to utilize multiple views for localization and
classification of lesions and full images, as summarized by Jouirou et al. [101]. Shachor
et al. [205] dynamically combine classical features from local patches from MLO and
CC views for calcification classification. Kooi et al. [111] fuse CNN features from ROIs
across views for malignant mass detection. The usage of multi-view CNNs that follow
the basic multi-view architecture, as introduced in Section 1.4.2 (see Figure 1.8), also
has been studied [30, 66, 115]. Each view image is processed with a CNN, followed by
feature fusion at a given layer. Such models have been trained for different purposes, e.g.,
BI-RADS scoring [66] or breast density classification [102, 251]. Carneiro et al. [30] use
only the CC and MLO views of one breast simultaneously and also include mass and
calcification masks as additional input obtained, e.g., via an object detection approach.
McKinney et al. [154] propose several models, which use different fusion and combination
strategies, e.g., concatenation of CNN patch features across all views, fusion of CNN
image-level features per breast and/or patient, or concatenation of non-imaging features
like patient age with CNN features.

The last stage is decision-level fusion, i.e., fusion of predictions, which has been investi-
gated by Kyono et al. [115], for example. They predict several radiological features, e.g.,
breast density, diagnosis, age, with a multi-task CNN separately for each view. Next,
they fuse the features from all four views, and obtain a benign/malignant classification
on a patient level. Finally, the naive ensembling of predictions from different models,
e.g., via averaging, can also be interpreted as decision fusion [110, 154, 188].

Summary

While many recent works directly classify ROIs or view images with, e.g., CNNs, a
significant part utilizes some form of information fusion to process mammography data.
Table 4.1 provides a detailed overview.
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Table 4.1: Overview of related works. Type of data (author column): P = Full-Field Digital Mammography (FFDM)
processed, R = FFDM raw, U = FFDM unclear, SF = scanned film; Task: C = cancer risk, D = breast density classification,
L = lesion localization and/or classification, M = prediction of BI-RADS, benign/malignant, cancer yes/no, etc., on
image/patient level; Data: name of image dataset; Fusion: �= some form of fusion involved; Intermediate / Sub-results:
type of intermediate/additional results provided apart from final scores; Method: brief summary (RF = Random Forests,
DBN = deep belief network, GMM = Gaussian mixture model, DoG = Difference of Gaussian).

Author Task Data Fusion Intermediate /
Sub-results

Method

[102] (P),
[251] (R)

D private � no multi-view CNN

[123] (P),
[158] (P)

D private no single-view CNN

[103] (R) D private � dense tissue
segmentation

multi-scale unsupervised segmentation +
texture scoring

[53] (U) L INbreast no DBN + GMM (localization), CNN + RF
(classification)

[15] (SF) L BCDR-FM no CNN + SVM for classification
[59] (U) L private no SVM for classification
[4] (SF,U),
[194] (SF,R)

L CBIS-DDSM ([4]),
INbreast [4],
DDSM [194],
private [194]

no CNN for classification

[160] (R) L private no CNN for localization + classification
[237] (U) L private � no DoG + multi-scale two-stream CNN
[205] (SF) L DDSM � no multi-view CNN
[52] (SF) L DDSM � no classical features + feed forward network
[112] (R) L private � no candidate localization (RF) + classification

(CNN features + classical texture features)
[111] (R) L private � no dual-stream CNN for lesion ROI

classification
[21] (U) L private � class activation map,

mass margin class score
case-based reasoning, compares parts of
new images to learned prototypes
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Table 4.1 – continued from previous page
[5] (U),
[9] (U),
[11] (SF),
[188] (SF,U)

L DDSM ([11, 188]),
private ([9, 188]),
INbreast ([5, 9, 188]),
OPTIMAM ([5])

no Faster R-CNN-/YOLO-based lesion
localization + classification

[143] (SF,U) L, M DDSM,
OPTIMAM,
private

� benign + malignant
lesions (bounding
boxes)

RetinaNet-based approach + multi-stage
training (fully + weakly supervised,
multi-instance learning)

[225] (U) L, M INbreast, private � malignancy
probability map

self- and weakly supervised reconstruction
for lesion localization/segmentation,
image-level classification

[30] (SF,U) M INbreast, DDSM � no multi-view CNN
[206] (SF,U) M CBIS-DDSM, INbreast salient regions all-convolutional CNN (two-stage)
[271] (U) M INbreast � no multi-instance approach
[66] (R),
[252] (R)

M private � heatmaps of malignant /
benign + malignant
regions

multi-view CNN(s), fusion at different
stages

[211] (SF,U) M INbreast, CBIS-DDSM malignant regions CNN + region-based/global group-max
pooling

[110] (U) M OPTIMAM, private pixel-wise abnormality
score

semi-supervised CNN (two-stage)

[144] (SF) M DDSM � no multi-scale CNN + curriculum learning
[208] (R) M private � saliency maps

(malignant findings)
weakly supervised approach, global (weak
localization) + local CNN

[115] (P),
[116] (P)

M private � radiological features
per view, heatmaps

multi-view, multi-task CNN

[154] (SF,P) C OPTIMAM,
CBIS-DDSM,
private

� malignant regions
(bounding boxes)

patch-level, image-level and CNN +
non-imaging feature fusion (various
models)

Our method
(SF)

D, L,
M

DDSM,
CBIS-DDSM

� breast density, lesions
(bounding box + label),
findings classification

task-specific CNNs (multiple scales),
feature and prediction fusion with CNNs +
MLPs
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The reasons for fusion are manifold: it is performed to

(a) incorporate different aspects at different levels (ROI, image, patient),

(b) thus, increase robustness and performance of classification models [52, 111, 112,
143, 144, 205, 207, 208, 271],

(c) and increase explainability and interpretability of model predictions [21, 22, 115,
116, 208].

Methods that fuse predictions across one or more ROIs or mammograms usually build
upon models that predict the same scores for the same task or perform standard model
ensembling strategies [115, 116, 123, 154]. On the other hand, methods that perform a
fusion of features within or across images mostly do not provide intermediate results, e.g.,
assessment of suspicious regions, but only final classification results. Although recent user
studies highlight the potential of providing detailed classification results or pinpointing
to suspicious regions [25, 228], only a few proof-of-concept studies explore fusion and the
potential of providing intermediate results similar to the assessment of radiologists in the
field of mammography [21, 115, 116]. These methods operate only on lesion level [21]
or fuse models that predict the same multi-task scores [115, 116]. To the best of our
knowledge, the fusion of models trained for different tasks is not being studied in the
context of mammography.

4.1.2 Contribution
This chapter investigates information fusion for multi-view mammography data from
another perspective. We focus on the fusion of features and predictions from individual,
task-specific models that operate at different scales to obtain a comprehensive assessment
on a patient level. We address thesis goals G.4 and G.5 in this chapter, which relate to
the development of methods for multi-view and multi-scale data and information. We
propose a pipeline approach comprising

• the development of three task-specific models, namely (i) a breast density classifica-
tion model, (ii) a lesion localization model, (iii) and a findings classifier, as a basis
for fusion, and

• the investigation of two fusion strategies: (i) the fusion of high-dimensional, task-
specific CNN features with a multi-input embedding CNN and (ii) prediction score
fusion of model predictions with MLPs.

By building upon task-specific features and decisions, we obtain hybrid patient meta-
models, which access the intermediate results in their prediction. Due to the two-stage
nature of our method, we report not only a global score on a patient level but make the
sub-results that reflect radiological features also accessible to the clinician.
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We train both fusion approaches for two different classification targets, which we will
refer to as patient predictions, i.e., the prediction of the respective model. We predict

• the presence of any lesion (lesion prediction),

• and whether the patient has any malignant lesion (malignancy prediction).

At each stage in our pipeline, we aim for resource-efficient models, and therefore, utilize
lightweight architectures like MobileNets [86] for image classification-related tasks. The
full pipeline is trained and evaluated on the well-known and publicly available Digital
Database for Screening Mammography (DDSM) [77, 78] and its curated version, the
Curated Breast Imaging Subset of Digital Database for Screening Mammography (CBIS-
DDSM) [121, 122]. In a comprehensive technical analysis, we show that our task fusion
strategy improves patient-level classification over standard model ensembling. A detailed
analysis of results and discussion thereof, as well as future clinical perspectives, are
provided in Section 4.4.

4.2 Materials and Methods

We start this section by introducing the mammography data we use to train and evaluate
our pipeline in Section 4.2.1. Next, Section 4.2.2 explains the three aforementioned task-
specific mammography models. They are the basis for our proposed patient meta-models,
which we present in Section 4.2.3. We investigate two variants of combining information
from task-specific models in a patient meta-model: the fusion of features and the fusion
of prediction scores.

Notation: We define a set of four mammography images Ii = {Iv
i } for patient i and

mammography image view v ∈ {L-CC, L-MLO, R-CC, R-MLO}. We will refer to this set
Ii as an exam or case of patient i and to a single mammography image of view v as Iv

i .
Further, we define the set of task-specific models M = {B, F , L}, where B refers to the
breast density model, F is the findings model, and L the localization model. We denote
features extracted from an intermediate layer of a task-specific model with h and the
final prediction scores of a model with p. Finally, we refer to patient meta-models that
fuse information from task-specific models with P. Consequently, a model that performs
feature fusion is denoted with Pfeat, and one that combines prediction scores with Pscore.

4.2.1 Data

We utilize two publicly available mammography datasets for our experiments: the DDSM
dataset [77, 78] and its curated version CBIS-DDSM [121, 122].

77



4. Improving Mammography Screening Data Classification

DDSM and CBIS-DDSM Dataset

The original DDSM dataset [77, 78] comprises 2620 mammography screening exams Ii,
collected from four different sites acquired with four different scanners. The data is
grouped in four categories:

• “normal” (695 cases): normal exams with no suspicious abnormalities and proven
normal exams four years later,

• “benign without callback” (141 cases): cases with benign abnormality but without
need for callback,

• “benign” (870 cases): including suspicious findings which were identified as benign
findings after callback, and

• “cancer” (914 cases): cancer was proven via histology.

An expert radiologist labeled the breast density per patient and provided pixel-level
annotation for abnormalities. Each abnormality is described following the BI-RADS
standard [212], including lesion type, i.e., mass or calcification, and further details like
shape, lesion margin, and calcification type.

The CBIS-DDSM dataset [121, 122] is published at The Cancer Imaging Archive [44]
as curated version of the original DDSM set, whereby only images showing one or more
lesions have been transferred. Annotated masses were re-checked by a radiologist, and
pixel-wise annotations have been refined with an automated segmentation algorithm.
However, annotations of calcifications remain unchanged. The authors also provide
a predefined split into train and test sets to ensure comparability between methods
evaluated on this dataset. Overall, the CBIS-DDSM dataset comprises 3568 annotated
lesions (1696 masses, 1872 calcifications) in a total of 3032 mammography view images.
For further details on the data, we refer to the original publications [121, 122].

Data Harmonization and Preparation

While providing enhanced annotation quality, the CBIS-DDSM dataset has two short-
comings: first, the absence of normal images without lesions, and second, the lack of full
patient mammography exams including all four views. To utilize both resources without
losing their individual benefits, we prepare the data as follows:

• First, we preprocess the DDSM set in the same way as it was done for the CBIS-
DDSM data, including optical density normalization and remapping the data to
the full 16-bit range [2].

• Next, we match, i.e., compare the CBIS-DDSM images to the preprocessed DDSM
data to identify corresponding cases and obtain a total of 2590 full mammography
exams. We assign the malignancy status of a lesion according to the curated
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Train Validation Test Total
Density a 207 40 50 297

b 567 108 176 851
c 448 86 134 668
d 289 56 93 438

Pathology normal 481 107 105 693
benign 522 98 199 819
malignant 508 85 149 742

Lesion normal 481 107 105 693
mass 545 87 198 830
calcification 447 90 147 684
mass & calcification 38 6 3 47

Table 4.2: Number of cases per breast density class, pathology status, and lesion type in
train, validation, and test set. 47 scans contain masses and calcifications.

annotation from CBIS-DDSM, whereby “benign without callback” will be treated
as a “benign” case.

• Finally, we identify potential ambiguous cases which are originally in the “cancer”,
“benign”, or “benign without callback” subset in DDSM but have not been trans-
ferred to CBIS-DDSM. Since the status of the lesions for these 329 cases remains
unclear, we exclude them. Further, we exclude seven additional exams, which
are either incomplete, i.e., not all four views are present, or appear with different
imaging data and annotations in different subsets of DDSM and CBIS-DDSM. This
leads to our final set comprising 2254 cases.

Train, Validation, Test Split

We split the dataset into train, validation, and test data on a case level and, thus,
ensure that images from one case are not distributed across different sets. We preserve
the train/test split of the data provided with the CBIS-DDSM set. The remaining
normal cases are randomly distributed in the same ratio (∼ 80 % training images) to the
train/test set in a way that the distribution of breast density is similar in the three sets.
From the obtained train set, we randomly select ∼ 12 % of cases for the validation set
in a way that the ratio of different breast density classes, lesion types, and pathologies
is similar across the three sets (see Table 4.2). Overall, the train, validation, and test
set comprise 1511, 290, and 453 cases, respectively. Out of the 2254 cases, 47 cases
contain masses and calcifications. In total, 174 cases have more than one lesion, with the
maximum number of lesions per case being 24.
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4.2.2 Task-Specific Mammography Models
The first stage in our pipeline is the development of a set M of three resource-efficient,
task-specific models M = {B, F , L}, which are the base for our patient meta-models P:

• B performs breast density classification on a patient level,

• F predicts the presence/absence of lesions in an image, and

• L delivers bounding boxes around localized lesions and their respective class label
in an image.

From each task-specific model, we obtain one or more prediction scores p as output, if
applied to an input image or exam. Further, we can extract features, also referred to
as feature representations, h at intermediate layers from a model. Both the scores p
and features h are used as input to our patient meta-models, which we introduce in
Section 4.2.3.

Breast Density Model B

Radiologists include all four view images, i.e., the exam Ii, in the assessment of a
patient’s breast density. Recent deep learning based density classification models follow
this standard and utilize all views as input [102, 251], whereas the usage of only one
view has also been studied [123]. We propose a two-stage approach where we employ
both ideas in the design of density model B to increase robustness and classification
performance.

We build a view model D first that uses a mammography image Iv
i as input to predict

one of the two density superclasses, i.e., “fatty” or “dense”. The model is built upon a
MobileNet classifier [86] with global average pooling, followed by a 1 × 1 convolutional
layer. The architecture is illustrated in Figure 4.3. Our final density model B takes
the exam Ii comprising all four mammography view images Iv

i as input. Each Iv
i is

passed to a separate branch, as visualized in Figure 4.4. Each branch consists of the
view model D without the last layer, whereby the dropout rate is increased from 0.001
in model D to 0.5 in B. After the following flattening operation, the four 1D feature
vectors are concatenated. As we utilize the original MobileNet [86] architecture as feature
extractor, each 1D vector has a length of 1024, i.e., the concatenated representation is
4096-dimensional and is denoted as hB in the following. The final dense layer predicts
the density superclass. Applying density model B to an exam Ii results in the predicted
scores for the classes “fatty” and “dense” at the patient level. We refer to the prediction
corresponding to the class “dense” as density score, which we denote with pB.

Findings Model F

The objective of the findings model is to classify a single view images Iv
i into “normal”

or “image containing any findings”, i.e., lesions. Such a model could, for example, be
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Figure 4.3: The architecture of the density view model D is based on a MobileNet [86]
classifier. D takes a view image Iv

i as input and predicts whether the breast tissue is
“fatty” or “dense”.
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Figure 4.4: Breast density model B takes the four mammography view images Iv
i as

input in separate branches, each consisting of a view model D without the last layer.
The model’s output is the density score pB, i.e., the prediction score corresponding to
the “dense” class. hB is the concatenated 4096-dimensional feature vector.
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Figure 4.5: The findings model F utilizes a MobileNet[86] feature extractor, followed
by alternating dropout and dense layers. F uses a view image Iv

i as input and predicts
the score pv

F which denotes if there is a lesion in Iv
i . hv

F is the 1024-dimensional feature
vector extracted after global average pooling.

integrated into a reporting system, where images with lesions are examined first by a
medical expert. Again, we aim for a resource-efficient model to solve this task. We extend
on our previous work [125, 151], where we already successfully apply MobileNet [86] in this
context. Figure 4.5 illustrates our findings model F with a MobileNet feature extractor
and a modified classifier on top as compared to the original MobileNet architecture.
Adding an additional dense and dropout layer increases the classification accuracy and
the generalization capability of the model. Additionally, we use an increased dropout
rate of 0.5 to stronger regularize the network. The output of F for a view image Iv

i is
the score pv

F , which determines whether there is a lesion in Iv
i . Further, we extract the

features after the global average pooling layer and flatten them. Again, this results in
the 1024-dimensional feature vector denoted as hv

F .

Localization Model L

Similar to radiologists, we aim to detect the exact location of lesions within an image
Iv

i and classify them into their correct type and malignancy status. The localization
and characterization of lesions are important tasks, as they can be risk factors or
already indicators of cancer [201]. Therefore, we develop model L to localize lesions and
classify them in either “benign calcification”, “malignant calcification”, “benign mass”,
or “malignant mass”. Inspired by recent works on lesion localization [5, 9, 188], we utilize
the well-known Faster R-CNN [185] architecture. InceptionV2 [222] serves as feature
extractor, which is already successfully applied in the context of mammography lesion
localization [5]. Figure 4.6 illustrates the architecture. We propose to use a larger input
size for the view image Iv

i as compared to models B and F to not miss tiny structures
such as calcifications. Our localization model L classifies localized lesions into the four
mentioned types and assigns a score pv,k

L , k ∈ [1, n] to each of the n detected lesions in
Iv

i . Further, we obtain a corresponding 1024-dimensional representation hv,k
L after ROI

pooling in the network.
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Figure 4.6: The localization model L has a Faster R-CNN [185] architecture with an
InceptionV2 [222] feature extractor. The model uses a view image Iv

i as input and
predicts a bounding box and the corresponding class label and prediction score pv,k

L for
every localized region. Further, we extract corresponding features hv,k

L after ROI pooling.

4.2.3 Patient Meta-Models P
We develop hybrid patient meta-models P as a second step in our pipeline. The meta-
models aim to efficiently combine, i.e., fuse, the set of task-specific models M to obtain a
comprehensive patient-level assessment while preserving the individual model predictions
related to radiological features and risk factors.

The fusion of models can be performed at various stages, as already summarized in
Section 1.4.2. Again, our goal is to develop resource-efficient variants. For this, we
compare two different fusion strategies:

• late fusion, i.e., the fusion of prediction scores p from task-specific models M, and

• intermediate fusion, i.e., the fusion of features h extracted from intermediate layers
of the individual models.

We denote a model that performs prediction score fusion with Pscore and one that fuses
features with Pfeat. The models Pscore and Pfeat are trained for two different classification
targets, which we refer to as patient prediction. The obtained patient-level prediction
score is indicated with pP . We consider the following two patient predictions:

• lesion prediction: whether the patient has any lesion, regardless of pathology, and

• malignancy prediction: whether the patient has any malignant lesion.

Fusion of Predictions with Pscore

The three task-specific models in M deliver different prediction scores p at various levels,
i.e., at the patient, image, or ROI level. In Pscore, we concatenate these predictions of
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the models introduced in Section 4.2.2 to form the vector w, formally:

w = pB ∪ pv
F ∪ pv,k

L (4.1)

with k ∈ [1, n] and n being the number of considered detected lesions per view. In
case of no detected lesions by model L or less lesions than specified by n are found, a
probability of 0 is assigned, i.e., pv,k

L = 0. For the malignancy prediction, only scores
pv,k

L corresponding to malignant masses and calcifications are considered in the combined
scores vector w. In case no malignant lesions or less malignant lesions than specified by
n are found, we set pv,k

L = 0.

Fusion of Features with Pfeat

Apart from the fusion of prediction scores p, we also propose the fusion of feature vectors
h extracted from the three different task-specific models in M with patient meta-model
Pfeat. Therefore, we extract features at the following stages in the networks:

• hB is the 4096-dimensional, flattened, concatenated representation of view features
from B, i.e., the concatenation of features extracted from each view branch after
the respective global average pooling layers,

• hv
F is the 1024-dimensional representation for view image Iv

i , obtained after global
average pooling in F ,

• hv,k
L is the 1024-dimensional representation for a detected lesion k in Iv

i after ROI
pooling in L.

We propose an embedding network that takes the extracted, high-dimensional feature
representations h as input in separate branches. Each branch corresponds to one task-
specific model. The architecture is illustrated in Figure 4.7. Each channel, i.e., the last
dimension in each input branch, corresponds to the respective features of a view image Iv

i .
The density and findings branches consist of two convolution blocks, followed by pooling
operations. The localization branch utilizes an additional convolution and pooling block
for better feature learning. Before and after concatenation of all feature representations,
we perform ReLU activations. The final classification part of the network consists of two
dense layers with an intermediate dropout layer with a dropout rate of 0.1, followed by a
final softmax activation.

Again, we vary the number of lesions considered per view n ∈ {1, 2, 3, 4, 5}. In case no
lesions are detected with model L, or less lesions than specified by n, background features
are pooled from the feature map and used as input. For the malignancy prediction,
only features hv,k

L corresponding to malignant masses and calcifications according to the
localization model L are considered for the feature fusion. In case of no malignant lesions
or less than specified by n, again background features are considered as model input, as
we require n lesions per view.
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Figure 4.7: Architecture of patient meta-model Pfeat: It takes the extracted features from
the set of task-specific models in M as input in three separate branches. Each channel in
the respective inputs (last dimension) corresponds to the features of a view image. The
output pP of Pfeat denotes the patient-level prediction score and represents either the
lesion or malignancy prediction.
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4.3 Experimental Setup
Our framework is implemented in Python, utilizing Keras [41] with the Tensorflow
backend [3] for training the task-specific models B, D, F , L, and patient meta-model
Pfeat. Additionally, we use the Tensorflow Object Detection API [88] to train localization
model L and scikit-learn [175] for training patient meta-model Pscore. Model training and
experiments are conducted on an NVIDIA Titan X GPU with 12 GB RAM. The storage
requirements of trained models range from less than 1 MB for Pscore to 7 MB for Pfeat,
47 MB for findings model F , 50 MB for localization model L, up to 75 MB for the breast
density model B. Inference for a patient, i.e., for exam Ii, is done within seconds for the
complete pipeline, as the inference time for each individual model is less than 1 second.

4.3.1 Training Details
For the training of every task-specific model, we first segment the breast with a basic,
non-learning-based segmentation approach according to Shen et al. [206]. Segmentation
of the breast has been frequently used by related works as first preprocessing step, e.g.,
to clean/remove the image background, i.e., the non-breast area in a view image, or
for subsequent cropping to the breast area [206, 211, 225, 271]. Similarly, we use the
obtained binary mask indicating the breast area to clean the image background and
for the sampling of patches inside the breast for pre-training the findings model F (see
below). The following set of random data augmentations is executed in each model
training:

• horizontal flips,

• rotations in the range [−15, +15] degrees,

• and random sized crops in the range [85%, 100%] of the image size.

All image resizing operations are performed using bicubic resampling.

Breast Density Model B

All images are resized to 336 × 224 × 1 with rescaled intensities to the range [0, 255]
in floating-point precision to preserve the bit depth. Since the complete breast tissue is
of interest for breast density classification, we use a smaller input image size for B as
compared to F and L, as the two superclasses are separable also in the smaller resolution.
Model training is performed in a two-stage approach with the Adam optimizer and
cross-entropy loss: First, imagewise pre-training of the view model D (see Figure 4.3)
is performed for 25 epochs and an initial learning rate lr of 1e-3. Further, we employ
Stochastic Weight Averaging (SWA) [94] with an initial epoch of 10 to increase the
generalization capability of the model. In addition to the standard set of augmentations,
random shears are applied. Second, we train the patient-wise model as shown in Figure 4.4.
Each view branch is initialized with the SWA-weights from Stage 1, and the complete
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Figure 4.8: The architecture of the patch model used for pre-training the findings model
F follows a standard MobileNet [86].

model is trained for 25 epochs (lr = 1e-4). SWA is used with an initial epoch of 5.
Horizontal flipping is not performed to preserve the original position of the breast in
each view, but instead blurring and grid distortion are additionally carried out to further
regularize the model training. We reduce the learning rate by a factor of 0.2 with a
patience of 5 epochs on the validation loss in both training stages.

Findings Model F

We perform two-stage training of the findings model F , a strategy already successfully
applied by recent works [110, 143, 206]. In both stages, the models are optimized using
the Adam optimizer with cross-entropy loss. First, we train a MobileNet-based patch
classifier (see Figure 4.8) from scratch with patches of size 224 × 224 × 1, inspired by
Shen et al. [206]. We extract an initial set by sampling 5 patches per lesion with an
overlap > 90 % with the lesion, and 5 patches from normal images with an overlap > 90 %
with the breast. The patch model is trained with a batch size of 64, lr = 1e-4, and early
stopping on the validation loss (patience = 10 epochs, tolerance = 0.001). We perform the
following additional augmentations to further increase the diversity of patches: vertical
flips, transposes, and shifts/scales/rotations. The model is fine-tuned in a second training
iteration with a reduced learning rate of 1e-5.

In the second stage, we initialize the feature extractor of the findings model F illustrated in
Figure 4.5 with the obtained patch weights. The full images are resized to 1152 × 896 × 1,
following Shen et al. [206], rescaled to [0, 1] and z-score normalized. F is trained using a
batch size of 6 with lr = 1e-4. As opposed to the patch model, the validation AUC score
is monitored as the criterion for early stopping (patience = 10 epochs, tolerance = 0.001).
To further improve the generalization capability, we use SWA with an initial epoch of 5.
The model is fine-tuned in a second training round with lr = 1e-5. In both training
iterations of model F , we additionally augment the data by vertical flips. Further, we
perform stratified sampling utilizing the imbalanced-learn library [124] to balance batches
between images showing lesions and normal images.
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Localization Model L

The InceptionV2 [222] backend is initialized with COCO-weights and then fine-tuned
for the mammography lesion localization task for the four classes. The ground truth
bounding boxes required to train the Faster R-CNN model are derived from the pixelwise
annotated lesions. We consider the axis-aligned minimum bounding box which encloses
the lesion. Only images with at least one lesion are included in the training. We resize
the view images to 2700 × 1200 to preserve the small structures of interest and train L
with stochastic gradient descent (momentum = 0.9, lr = 1e-4) for 100k iterations and a
batch size of 2. In addition to the default data augmentation strategies, bounding boxes
are randomly jittered with a ratio of 0.005.

Patient Meta-Models P

We perform a parameter search over the number of considered lesions n ∈ {1, 2, 3, 4, 5}
for Pscore and Pfeat and train all models according to the predefined data split for the
lesion and malignancy prediction. Best models are selected based on validation AUC
score and recall.

Fusion of Predictions. Prediction scores are concatenated according to Equation 4.1
to obtain one feature vector w per patient. We vary the number of detected lesions
n ∈ {1, 2, 3, 4, 5} considered per view and include only their scores. For comparison, we
train a classic SVM with RBF kernel, an MLP, and a Random Forest classifier. We
perform a parameter search over the following parameters of the individual models and
select those with highest validation AUC:

• SVM RBF: C = {0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 500, 1000},

• Random Forest: number of trees = {3, 5, 7, 10, 15, 20},

• MLP: layer configuration = {[|w|, 2] , [|w|, |w|, 2] , [|w|, |w|/2, 2]}.

Fusion of Features. Before feeding the feature representations to Pfeat, they are
normalized with ψ, where ψ : Rn �→ [−1, 1], resulting in normalized representations
ψ(hB), ψ(hv

F), and ψ(hv,k
L ). We optimize Pfeat with the Adam optimizer using cross-

entropy loss and a batch size of 8 and lr = 5e-4. Early stopping is used with a patience
of 10 epochs on the validation loss (tolerance = 0.001). Again, we balance batches to
ensure equal distribution of classes.

4.3.2 Evaluation Metrics
We compare the performance of classification-related tasks B and F by calculating widely
used metrics in the field: the True Positive Rate (TPR), also referred to as sensitivity
or recall, the True Negative Rate (TNR), also referred to as specificity, accuracy, and
F1-score (F1), i.e., the harmonic mean of precision and recall. Further, we calculate the
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Area Under Curve (AUC), i.e., the area under the Receiver Operating Characteristic
(ROC) curve, which shows the TPR against the false-positive rate (1 - TNR). Additionally,
we provide the Area Under the Precision-Recall Curve (AUPRC) for comparisons with
recent studies [115, 205, 208]. For the localization model L, we show FROC curves to
measure its detection performance and calculate the number of False Positives per Image
(FPI). We report the TPRs for a given number of FPI and refer to this as TPR @ FPI.

4.4 Results and Discussion
This section summarizes intermediate results obtained with task-specific models in Sec-
tion 4.4.1 and final predictions from score and feature fusion in Section 4.4.2. Section 4.4.3
summarizes ablation study results, and finally, Section 4.4.4 provides an in-depth discus-
sion and analysis of the presented results.

We performed Wilcoxon signed-rank tests on the predictions for task-specific models,
fusion models, as well as for ablation studies. Similar to recent studies [191, 211, 225],
we set the significance level to α = 0.05.

4.4.1 Performance on Individual Tasks
Breast Density Classification

We report an AUC score of 0.948 for density model B on the test set with TPR = 0.882
and TNR = 0.832 (F1 = 0.861). As depicted in Figure 4.9, the final breast density
classification model B on the patient level (blue) shows a minor improvement in terms of
AUC compared to the aggregated predictions mean(D) of the view model D on patient
level with AUC = 0.943 (p < 0.001). mean(D) reaches a TPR of 0.833 and TNR of 0.889
(F1 = 0.858). Further, we observe a significantly higher sensitivity with D compared
to mean(D) (p < 0.001) at similar accuracies as summarized in Table 4.3. On image
level, we report an AUC of 0.924 with D (TPR = 0.815, TNR = 0.894, F1 = 0.849,
accuracy = 0.854).

Table 4.3 also summarizes density classification results reported in the literature. We
achieve higher accuracy scores on the DDSM dataset compared to Oliver et al. [168],
who test their approach only on a subset of 831 R-MLO images, while our method is
evaluated on 453 patients, i.e., 1812 view images. While our model performs slightly
beneath published works, these methods are trained utilizing significantly larger datasets.
For example, the NYU dataset by Wu et al. [251] comprises 200k exams with 80 %
belonging to the training and 20 % to the test subset.

Findings Classification

For the task of classifying images into those with lesions and those without, model
F reaches an AUC score of 0.921 on test data with TPR = 0.881 and TNR = 0.802
(F1 = 0.878).
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Figure 4.9: ROC curves comparing the breast density classification performance of the
patient-level density model B, view model D, and mean(D).

Method Data Accuracy Accuracy
(4 classes) (2 classes)

Wu et al. [251] private (NYU) 0.767 0.865 (derived)
Lehman et al. [123]* private 0.770 0.870 (derived)
Kaiser et al. [102] private – 0.881
Oliver et al. [168]* DDSM (R-MLO) 0.772 0.842
Ours* (D) DDSM – 0.854
Ours (mean(D)) DDSM – 0.861
Ours (B) DDSM – 0.857

Table 4.3: Overview of reported density classification accuracies in related works and
obtained with our model B. Methods indicated with * use one image as input, those
without utilize all four view images.
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Method Train / Test Data Lesion TPR @ FPI
Agarwal et al. [5] OMI-H / OMI-H mass 0.93 @ 0.78

OMI-H / INbreast malignant mass 0.99 @ 1.17
benign mass 0.85 @ 1.00

Ribli et al. [188] DDSM, private / INbreast malignant lesion 0.90 @ 0.30
Akselrod-B. et al. [9] private / INBreast, private mass 0.90 @ 0.30
Anitha et al. [14] – / DDSM* mass 0.925 @ 1.06
Ours (L) DDSM / DDSM malignant mass 0.84 @ 1.00

malignant calcification 0.93 @ 1.09
benign mass 0.70 @ 1.06
benign calcification 0.68 @ 1.06

Table 4.4: Overview of lesion localization results reported in related works and results
obtained with our model L (OMI-H = subset of images from OPTIMAM dataset acquired
with a Hologic scanner, * = subset of 300 images used). The localization performance is
given by TPR @ FPI.

To the best of our knowledge, there is only the work by Lotter et al. [144], who uses the
presence/absence of lesions as classification target for pre-training their model on patch
level. Thus, they do not report performance measures on image level.

Lesion Localization

We report TPR rates of 0.84 for malignant masses, 0.93 for malignant calcifications, 0.70
for benign masses, and 0.68 for benign calcifications by our localization model L on test
images with lesions, as summarized in Table 4.4. Figure 4.10 shows the corresponding
FROC curves. A lesion is considered detected if the intersection over union of the
detected bounding box with the ground truth bounding box is ≥ 0.2, or, if the center of
the detected bounding box lies within the ground truth bounding box [188]. On normal
images in the test set (105 patients, i.e., 420 view images), we detect 386 false-positive
lesions in 188/420 images. On the 348 abnormal cases, we detect 2478 false-positive
lesions.

Figure 4.11 shows visual samples of correctly and falsely detected lesions. Overall,
we report lower detection rates for benign lesions compared to malignant lesions, a
phenomenon also observed in the literature [5]. As visible in Figure 4.11, one reason
for the lower performance of model L is the detection of small calcifications that are
highlighted in blue. They appear very similar to benign calcifications but are not
annotated as such in the ground truth. Another aspect is the misclassification of denser
breast tissue with masses as well as overlaps of benign and malignant masses that can
occur due to non-maxima suppression performed on the class level.
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Figure 4.10: FROC curves comparing the performance of lesion localization model L for
the four different classes.

Figure 4.12 shows another sample result for the right breast of a patient. This is a special
case where the patient has a malignant calcification cluster but – according to the ground
truth – it is visible in the MLO view only (ground truth = green). We investigate the
performance of the lesion localization model L and the findings classifier F for this case.
L detects benign and malignant calcifications in both breasts at the correct location,
whereby the benign calcifications are incorrectly given a higher confidence compared to
the malignant calcifications. According to the ground truth, nothing should be detected
in R-CC. The findings model F wrongly classifies the R-CC view as image with a lesion,
however, with a borderline score of pv

F = 0.503, v = R-CC (decision threshold = 0.5).
Various patients are present in the dataset where lesions are annotated in only one view
of a breast. To increase the reliability of lesion localization and image-wise classification
models for such cases, symmetry aspects of the breasts could be considered, i.e., taking
into account that the right and left CC view should have a similar appearance in case no
lesions are present. However, precise ground truth data is necessary – especially in these
special cases – to ensure correct predictions.

Table 4.4 provides an overview of localization results reported in the literature. We
note that the localization performances of the different methods cannot be compared
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a b
Figure 4.11: (a) R-CC image with correctly localized malignant mass (green = ground
truth, orange = detected) and additional detected benign calcifications (blue) not present
in the ground truth, (b) R-MLO image with false-positive benign mass (yellow).

directly due to the large differences in the datasets and varying criteria for correctly
detected lesions. The method by Agarwal et al. [5], for example, utilizes the much larger
OPTIMAM dataset, while the work by Anitha et al. [14], on the other hand, uses only a
subset of the DDSM set rather than the full dataset. Despite these factors, we observe
that overall our model L has a lower detection rate compared to the literature. Especially
for benign lesions, our method falls behind the state-of-the-art.
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a b
Figure 4.12: Localization result for the right breast of a patient where a malignant
calcification in the form of a cluster (green = ground truth) is visible in the R-MLO view
only. (a) R-CC image with false-positive localized benign calcification (blue) with high
confidence of pv,1

L = 0.473 and malignant calcification (dark red) with a lower confidence of
pv,2

L = 0.148, v = R-CC, (b) R-MLO image with correctly localized malignant calcification
(green = ground truth, dark red = detected) and additional false localization of benign
calcification (blue). The benign calcification receives a higher confidence of pv,1

L = 0.261
compared to the malignant prediction with pv,2

L = 0.180, v = R-MLO.
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Target Fusion Model AUC F1 TPR TNR
lesion score Pscore 0.942 0.932 0.933 0.771

Pscore* 0.941 0.928 0.919 0.800
max(pv

F ) 0.922 0.938 0.974 0.667
feature Pfeat 0.962 0.948 0.956 0.800

Pfeat* 0.959 0.943 0.939 0.829
max(pv

F ) 0.922 0.938 0.974 0.667
malignancy score Pscore 0.778 0.601 0.591 0.813

Pscore* 0.774 0.523 0.578 0.857
max(pv

L) 0.762 0.578 0.570 0.800
feature Pfeat 0.791 0.603 0.638 0.763

Pfeat* 0.789 0.581 0.577 0.797
max(pv

L) 0.762 0.578 0.570 0.800

Table 4.5: Performance metrics of patient fusion models Pscore (MLPs) and Pfeat on
test data. Models marked with * indicate exclusion of breast density information.
max(pv

F) and max(pv
L) denote the maximum of predictions scores of findings model F

and localization model L for lesion prediction and malignancy prediction, respectively.

4.4.2 Patient Meta-Model Results

ROC curves for feature fusion with Pfeat and score fusion with an MLP Pscore for
both patient predictions are shown in Figure 4.13. Table 4.5 summarizes quantitative
performance measures on test data. We additionally train our fusion models without
density information (indicated with * in Table 4.5) and compare all our fusion results
to standard ensembling, i.e., taking the maximum of prediction scores. We perform
paired statistical significance tests between all fusion models, including also standard
ensembling. Table 4.6 and Table 4.7 summarize p-values, with a value of p < 0.05
denoting a statistically significant difference between two models.

For Pscore, we obtain the best results in terms of AUC and TPR with MLPs for both
patient predictions, compared to SVMs and Random Forests (see Table 4.8). In terms
of the number of included lesions n in the meta-models, the best results reported in
Table 4.5 and Table 4.8 are obtained with n = 3 for the lesion prediction (Pscore and
Pfeat), and n = 3 (Pscore) and n = 1 (Pfeat) for the malignancy prediction. A detailed
overview of quantitative results for Pscore for SVM, Random Forest, and MLP, and Pfeat
for different numbers of included lesions n is provided in the Appendix.

Overall, we report an increase in terms of AUC between 0.02 and 0.04 for the lesion
prediction with score fusion and feature fusion, respectively, when comparing to the
score maximum across the four views max(pv

F) (p < 0.001 for both). A slightly smaller
increase is obtained for the malignancy prediction, ranging from 0.016 for Pscore to 0.029
for Pfeat, as compared to max(pv

L) (p < 0.001 for both). We report higher AUC scores
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Figure 4.13: ROC curves of patient meta-models Pfeat and Pscore for the (a) lesion
prediction, and (b) malignancy prediction. max(pv

F) is excluded in (b) as we cannot
derive malignancy information from F .
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4.4. Results and Discussion

Model Pscore Pscore* Pfeat Pfeat* max(pv
F ) max(pv

L)
Pscore < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Pscore* < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Pfeat < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Pfeat* < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
max(pv

F ) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
max(pv

L) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Table 4.6: Statistical significance analysis for the lesion prediction: A p-value of p < 0.05
denotes a statistically significant difference between two respective models (bold font).
Models marked with * indicate exclusion of breast density information. max(pv

F) and
max(pv

L) denote the score maximum of findings model F and localization model L for
the lesion prediction, respectively.

Model Pscore Pscore* Pfeat Pfeat* max(pv
L)

Pscore < 0.001 0.023 0.002 < 0.001
Pscore* < 0.001 < 0.001 0.237 0.999
Pfeat 0.023 < 0.001 < 0.001 < 0.001
Pfeat* 0.002 0.237 < 0.001 0.920
max(pv

L) < 0.001 0.999 < 0.001 0.920

Table 4.7: Statistical significance analysis for the malignancy prediction: A p-value of
p < 0.05 denotes a statistically significant difference between two respective models (bold
font). Models marked with * indicate exclusion of breast density information. max(pv

L)
denotes the score maximum of localization model L for the malignancy prediction.
max(pv

F ) is excluded in this analysis as we cannot derive malignancy information from F .

Target Model AUC F1 TPR TNR
lesion MLP 0.942 0.932 0.933 0.771

SVM 0.935 0.928 0.916 0.810
Random Forest 0.929 0.924 0.919 0.771

malignancy MLP 0.778 0.601 0.591 0.813
SVM 0.763 0.552 0.483 0.867
Random Forest 0.776 0.581 0.564 0.813

Table 4.8: Comparison of performance metrics of Pscore for MLP, SVM, and Random
Forests for both patient predictions.
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4. Improving Mammography Screening Data Classification

and increased sensitivity, i.e., TPR, with feature fusion models compared to score fusion
models for both patient predictions (p < 0.001). However, for the malignancy prediction,
we observe a reduced specificity, i.e., TNR, for feature fusion as compared to score fusion.

Figure 4.14 and Figure 4.15 show sample results obtained with our proposed mammogra-
phy pipeline. In the example in Figure 4.14, the localization model L is able to correctly
localize the malignant mass in the right breast, but also falsely detects a benign mass at
the same location. In the R-MLO view, the benign detection is given a higher confidence
than the malignant detection, which would lead to false patient-level results in case we
solely rely on L. However, the feature fusion models Pfeat are able to correctly classify
the patient in terms of the lesion and malignancy prediction, while Pscore fails for the
malignancy prediction (decision threshold = 0.5).

The second case (see Figure 4.15) shows a normal patient without lesions where our
models perform incorrect predictions at different levels. The localization model L detects
benign calcifications with a high confidence in the L-CC and L-MLO view, and a false-
positive, low-confidence malignant mass in R-MLO. The predictions of the findings model
F are in line with L, i.e., it falsely classifies the same three view images as images with
lesions. Model F is most confident in the L-CC and L-MLO view where the localization
model detects the high-confidence benign calcifications. This is probably the reason why
the fusion models Pfeat and Pscore result in high-confidence, false predictions as well. For
the malignancy prediction, Pfeat is less confident in its decision compared to the models
for the lesion prediction. With a pP of 0.607 it is still above the decision threshold of
0.5, resulting in an incorrect prediction at the patient level. Only the score fusion model
Pscore delivers a correct assessment for the patient (pP = 0.268).
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Figure 4.14: Sample result of our mammography pipeline: For an exam Ii, we obtain task-specific model results first, i.e., the
individual prediction scores p and the bounding boxes of localized lesions. Then, we feed prediction scores p and extracted
features h to the dedicated patient meta-models Pscore and Pfeat, respectively, which results in the final patient-level prediction
scores pP . The illustration shows the benefits of our mammography pipeline: The patient has a malignant mass (green =
ground truth) in the right breast. Model L is able to localize the malignant mass (orange), but with low confidence that is not
sufficient to be reliably counted as detection. Low confidence localizations are also found by L for an additional malignant
mass and a benign mass (yellow). Detection scores pv,k

L are colored according to their class label as detected by L. Results
show that both fusion models Pfeat are able to circumvent the low scores and correctly classify the patient (pP = 0.544 for the
malignancy prediction, pP = 0.999 for the lesion prediction).
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Figure 4.15: Sample result where our mammography pipeline delivers incorrect results on task and patient level for a normal
patient: While the density model B correctly predicts non-dense breast tissue (pB = 0.321), the localization model L falsely
detects high-confidence benign calcifications (blue) in L-CC and L-MLO and a malignant mass (orange) with low confidence
(pv,1

L = 0.119 in v = R-MLO). The detection scores pv,k
L are colored according to their class label. Further, the findings model

F delivers incorrect predictions for the same three view images. Only the fusion model Pscore for the malignancy prediction
correctly classifies the full patient (pP = 0.268) (decision threshold = 0.5).
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4.4.3 Ablation Studies
Complementary to the training setup described in Section 4.3.1, we perform additional
experiments to support our pre-training strategies for task-specific models B and F .
Further, we investigate the influence of breast density information in the fusion models.

Pre-training of B

We retrain the density model B without pre-training the view model D with the same
training parameters as summarized in Section 4.3.1, except for a lower learning rate of
1e-3. We obtain a significantly lower AUC score of 0.900 (p < 0.001) with this model,
compared to the AUC of 0.948 achieved with B. Further we report TPR = 0.934,
TNR = 0.690, F1 = 0.817, and a significantly lower accuracy of 0.797 as compared to B
(p < 0.001).

Pre-training of F

Further, we retrain the findings classifier F without patch-wise pre-training with the
same training parameters as described in Section 4.3.1. The model without pre-training
achieves a significantly lower AUC score of 0.895 (p < 0.001) and sensitivity of 0.816,
F1-score of 0.846, and specificity of 0.817.

Breast Density Ablation Study

As breast density is an essential risk factor for breast cancer [51], we investigate the effect
of excluding this information form Pfeat and Pscore. We retrain our patient meta-models
with the same training parameters, but exclude breast density features and scores for
Pfeat and Pscore, and denote the obtained models Pfeat* and Pscore*, respectively. Results
in Table 4.5 show higher AUC scores and a higher TPR for all fusion models Pscore and
Pfeat when including breast density information (p < 0.001, as summarized in Table 4.6
and Table 4.7). No statistically significant difference can be reported in comparing Pscore*
and Pfeat* with max(pv

L) for the malignancy prediction with p-values p = 0.999 and
p = 0.920, respectively. Further, no significant difference can be observed between Pscore*
and Pfeat* for the malignancy prediction (p = 0.237). These results indicate that the
inclusion of breast density can yield improved classification performance.

4.4.4 Discussion
Breast Density

We investigate the patient density model B and aggregated view model mean(D) in
depth and vary the decision threshold. The comparison of evaluation measures for
both models is provided in Table 4.9. The results show that model B yields more
reliable predictions with high confidence, and thus, higher sensitivities, accuracies, and
F1 scores at various thresholds compared to the aggregated view model (p < 0.001).
Such automated tools that deliver trustworthy, reproducible measures are of increasing
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4. Improving Mammography Screening Data Classification

Threshold Model TPR F1 TNR Accuracy (2 classes)
0.6 B 0.860 0.871 0.885 0.872

mean(D) 0.781 0.838 0.916 0.848
0.7 B 0.816 0.859 0.916 0.866

mean(D) 0.711 0.804 0.942 0.826
0.8 B 0.763 0.841 0.947 0.855

mean(D) 0.684 0.800 0.973 0.828

Table 4.9: Comparison of different measures obtained with B and mean(D) at various
decision thresholds.

importance in clinical practice, especially for breast density assessment where subjectivity
and high inter-observer variability are well-known issues [51, 102, 216]. As breast density
is considered an important risk factor for the development of breast cancer, reliability
and reproducibility are key aspects when it comes to standardized density reporting
which may trigger supplemental/personalized screening procedures [45, 51, 216].

Comparison to Related Work

Table 4.10 sets our method in context to related approaches in the literature. In general, a
direct comparison of reported evaluation measures of different methods is not possible as
datasets used for training and evaluation differ vastly, e.g., with respect to varying imaging
quality and modality (scanned film vs. Full-Field Digital Mammography (FFDM)), overall
number of images, or amount of training data. To counteract this issue at least to some
extent, we report train and test data in Table 4.10 and refer to the respective publications
for further details. In addition, we compare our results to those reported with a single
model or fusion model, and without test-time augmentation, i.e., results that are obtained
by ensembling multiple predictions of the same model on augmented test data.

Fusion-Based Methods. Overall, our multi-input CNNs improve AUC scores by 0.029
to 0.040 compared to standard model ensembling. Similar increases for fusion approaches
have also been reported in the literature. Kooi et al. [112] report an improved AUC
by 0.019 when adding handcrafted features, like contrast or texture, to CNN features for
the classification of single mammograms. The work by Kyono et al. [115] fuses multi-task
scores, like “diagnosis”, “suspicion”, “conspicuity”, “breast density”, across multiple
views, similar to our method. The difference is that their multi-task model predicts the
same scores per view image, while we fuse predictions obtained from different models.
Adding the multi-task output to their multi-view approach increases performance by 0.031
in terms of AUC. Shen et al. [208] fuse information on a single-image level in a weakly-
supervised fashion, i.e., by fusing salient image regions with a fusion module, and report a
single-model AUC score of 0.833 on CBIS-DDSM test data. A recent method by Lotter et
al. [143] combines fully and weakly (multi-instance) supervised learning and reports state-
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Method Train / Test Data Fusion Level Result Level Target AUC AUPRC
Shen et al. [206] CBIS-DDSM / CBIS-DDSM - image mal. 0.870 -

CBIS-DDSM + INbreast / INbreast - image mal. 0.950 -
Shu et al. [211] CBIS-DDSM / CBIS-DDSM - image mal. 0.838 -

INbreast / INbreast - image mal. 0.934 -
Ribli et al. [188] DDSM, private / INbreast - breast mal. 0.950 -

(max+avg)
Lotter et al. [143] DDSM, OPTIMAM, private / ROI patient mal. 0.963 ± -

OPTIMAM (max+avg) 0.003
Kooi et al. [112] private / private (NL screening) ROI image mal. mass 0.941 -
Shen et al. [208] CBIS-DDSM / CBIS-DDSM image breast (avg) mal. 0.833 -

private / private (NYU) image breast (avg) mal. 0.891 0.390
Shachor et al. [205] DDSM / DDSM ROIs breast ben./mal. 0.661 -

(CC+MLO) calc
Kyono et al. [115] private / private (Tommy trial) patient patient mal. 0.824 ± 0.580 ±

0.016 0.028
Ours (Pfeat) DDSM / DDSM patient patient mal. 0.791 0.660

patient patient lesion 0.962 0.987

Table 4.10: Results obtained with fusion models Pfeat compared to classification results reported in related works. Train and
test data utilized by the respective methods are separated with "/".
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of-the-art performance for mammogram classification (AUC = 0.963 ± 0.003, OPTIMAM
data). To obtain a score on a patient level, they perform standard ensembling (average +
maximum). Finally, McKinney et al. [154] average cancer risk scores that are predicted
by an ensemble of three large-scale deep learning models (AUC = 0.889, OPTIMAM
data). Each model fuses features at different stages and aggregates predictions in various
ways, e.g., by considering the maximum score or via MLPs. In summary, the results
in Table 4.10 show that our fusion model performs below related fusion-based methods
in terms of the reported AUC scores for the malignancy prediction. We believe that
improving the localization model will consequently result in a better performance on the
patient level.

In terms of lesion prediction, we observe that – to the best of our knowledge – our method
is the only one that specifically investigates this classification target. With an AUC score
of 0.962 and F1-score of 0.948, this model could be reliably used, e.g., within a reporting
system, where patients with lesions are examined first.

Non-Fusion-Based Methods. Apart from the summarized information fusion meth-
ods, there are numerous works that predict whether an image is malignant directly
from a view image [206, 211], or/and additionally apply simple ensembling strategies for
predictions on a breast or patient level [110, 188]. Shen et al. [206], for example, utilize
patch-based pre-training and compare variants of ResNet and VGG in their work. They
report an image-level AUC score of 0.87 on CBIS-DDSM and transfer-learned this model
on the INbreast data where they reach an AUC of 0.95. Shu et al. [211] propose two region-
based pooling strategies and achieve lower AUC scores on CBIS-DDSM (AUC = 0.838)
and INbreast (AUC = 0.934) data as compared to Shen et al. [206]. Ribli et al. [188]
localize suspicious lesions using Faster R-CNN and consider the maximum/average score
on the image/breast level (AUC = 0.95 on INbreast data).

Fusion- vs. Non-Fusion-Based Methods. The results summarized in Table 4.10
show competitive performance of fusion- and non-fusion-based methods. Although there is
no clear benefit of fusion-based approaches over non-fusion-based works in terms of AUC
scores, fusion approaches show different advantages. Recent methods focus, for example,
on the integration of radiological and clinical features or aim at increasing interpretability
of models, which is an important aspect in the medical domain [21, 115, 143, 208]. These
advantages, however, may come at the cost of more complex training procedures as
compared to standard deep learning models [208]. One limitation of recent fusion-based
approaches, including this work, is the requirement for detailed, high-quality expert-
annotations [21, 112, 116, 154]. However, this is not limited to fusion methods per se,
as the need for, e.g., bounding box annotations applies likewise to non-fusion-based,
R-CNN/YOLO-based localization approaches [5, 9, 11, 188]. Recent weakly supervised
works aim to tackle this issue and show already promising results [143, 208, 225].

104



4.4. Results and Discussion

Clinical Implications

In this chapter, we presented a technical proof-of-concept study for a mammography
pipeline comprising of three task-specific models and patient meta-models that fuse
task-specific features and predictions. While one goal is to obtain an improved assessment
on a patient level as compared to standard model ensembling, the second goal is to
develop a support tool for reading tasks of radiologists. Similar to recent technical proof-
of-concept studies by Kyono et al. [115, 116] and Barnett et al. [21], we aim to provide
intermediate results that are linked to radiological features and potential cancer risk
factors. This is in contrast to studies that highlight the potential of workload reduction by
excluding scans from reading that are very likely normal, i.e., do not have any suspicious
lesions [65, 116, 169, 193]. Our global lesion and malignancy predictions could be used
to prioritize images for reading instead of excluding them, and additional intermediate
results of task-specific models can be presented to the clinicians during exam reading and
diagnosis. Localizing suspicious lesions, for example, is an essential part when reading
mammograms where clinicians examine both views and breasts [205]. Showing localized
regions can aid radiologists in image interpretation [214], for example, by displaying
only the most important findings and raising attention for them [191, 192]. Recent user
studies in other domains, like prostate cancer diagnosis, confirm that prompting clinicians
to suspicious regions helps them in reading [25]. In addition to the localized regions,
our pipeline estimates the patient’s breast density, which is an important risk factor for
developing breast cancer [51], as mentioned earlier in this discussion.

Limitations

One limitation of this study is the relatively small DDSM dataset with only 2254 patients
(after curation), as compared to resources available in related works [5, 115, 154, 208, 251].
Further, as the DDSM data consists of scanned film mammograms only, the imaging
quality is significantly lower as compared to FFDM images. However, the usage of a
fully open dataset fosters the development and comparability of approaches, while, e.g.,
access to the OPTIMAM dataset [74] and high-quality, expert-annotated data in general
remains limited [169, 214]. A second factor may be the fixed number of detected lesions
n currently used in our fusion models, which could be targeted with a multi-instance
approach in the future. Finally, using a combined model that performs lesion and
malignancy prediction in a multi-task fashion would reduce the number of models and
could potentially also improve the performance of the malignancy prediction.

Future Perspectives

The transfer of the complete pipeline to a large FFDM dataset would be the logical
next step and could potentially boost performance if trained on a larger data resource.
To mitigate the requirement for expensive bounding box annotations for the lesion
localization model L, an interpretable, weak localization approach similar to our recent
works [125, 151] can be integrated in conjunction with the findings model F . Further,
the improvement of the localization performance of model L, especially for benign lesions,
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as well as the training of one combined model for lesion and malignancy prediction
are considered future work. The inclusion of additional radiological features, such as
non-image-based risk factors, e.g., patient age, patient/family history, would be of interest
and importance for clinical use [242]. Moreover, analyzing the temporal change of lesions
is considered an important biomarker in practice [111, 201]. Finally, the evaluation of our
proposed pipeline in a clinical reader study would help to evaluate further the potential
benefits and risks of having global and local, task-specific information available, e.g., in
terms of acceptance, increased interpretability, and potential bias [169].

4.5 Conclusion
In this chapter, we proposed the fusion of predictions and features from different task-
specific models for improving mammography screening data classification. We train and
evaluate the fusion models for two different classification targets relevant in the field of
mammogram analysis: the prediction of (i) the presence of lesions and (ii) the presence
of malignant lesions in a patient. Our experiments on public mammography data show
that the fusion of scores with MLPs as well as feature fusion with multi-input embedding
CNNs improves AUC scores compared to standard ensembling. Overall, we report an
AUC score of 0.962 for predicting the presence of lesions and 0.791 for classifying the
presence of malignant lesions on a patient level. By supporting our global predictions
per patient with the local sub-results obtained by the task-specific models, we aim to aid
clinicians in their reading and decision process. Finally, we perform an ablation study
with breast density scores and features and conclude that additional density information
can benefit the classification performance for both target scores.
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CHAPTER 5
Concluding Remarks

5.1 Summary
In this thesis, we target the data heterogeneity characteristics of medical imaging data in
image-based computer-aided detection and diagnosis applications with different machine
learning-based methods. Inspired by literature from visualization research as well as
from the medical image analysis domain [109, 148, 182], we first derived different data
heterogeneity categories for medical imaging data in Chapter 1: multi-modal, -parametric,
-dimensional, -resolution, -scale, -view, -temporal, -subject, -vendor or -center data [109,
148, 182]. We identified three general approaches how the different types of data from the
various categories can be treated in the context of medical image analysis: (a) standard,
(b) generalization-based, (c) and fusion-based approach. We discussed different concepts
that follow strategies (b) and (c) and provided examples from the literature in medical
image analysis, CADe, and CADx. In the core of this thesis, we presented different
generalization- and fusion-based approaches in Chapter 2, Chapter 3, and Chapter 4 for
two different application domains in the field of radiology: anatomical labeling of the
spine and mammography image analysis. In the three chapters, we addressed a subset
of the given data heterogeneity categories – specifically: multi-parametric, multi-modal,
multi-vendor, multi-subject, multi-center, multi-view, and multi-scale data.

We dedicated Chapter 2 to thesis goals G.1 and G.2 and presented a method for
anatomical spine labeling in multi-sequence, multi-vendor, multi-center MRI data. In
contrast to related works, we aimed for a general solution that is applicable without
retraining the method to various MR image contrasts – a problem that was not targeted
in spine labeling research at that time. To achieve goal G.2, we utilize a model-based
approach called ETMs. We propose to build local three-disc entropy models that are
matched iteratively to the spine, starting from an initial, user-provided position. The
intervertebral disc positions obtained from model matching are refined via an adaptive
refinement method that is inspired by Haar-like features [233]. Our cross-validation
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evaluation setup demonstrates our pipeline’s generalization capability and applicability
to various multi-parametric MRI sequences covered and not covered by model training.
One limitation of this solution is the semi-automated nature of the pipeline, as we require
an initial click position and the corresponding anatomical label from a user.

In Chapter 3, we addressed this shortcoming and extended our approach towards a fully
automatic solution. We utilize ETMs and CNNs to automatically detect the sacrum
region in a scan as starting position for the labeling. Similar to Chapter 2, we perform an
iterative matching of three-disc ETMs and a subsequent center position refinement step
with an improved template matching approach. We extend the experiments compared to
Chapter 2 and evaluate our pipeline approach on numerous public datasets. The data
collections comprise not only multi-parametric MRI data, but also include multi-modal
data, i.e., MRI and CT scans. Our results demonstrate the generalization capabilities
of the proposed pipeline to new types of multi-parametric MRI sequences as well as
to CT scans and vice versa. These results are directly related to thesis goal G.3, i.e.,
the applicability of methods to data from different modalities without retraining. One
unsolved limitation is the dependence on the sacrum as initial position for the labeling.
For a fully automated solution applicable to scans where the sacrum is absent, the
detection of additional, reliable anchor positions is required.

Finally, we presented different fusion-based approaches in the context of multi-view
screening mammography classification in Chapter 4, i.e., we address thesis goals G.4 and
G.5. The main objective is to improve patient-level classification by fusing information
from different deep learning-based models, each dedicated to a specific mammography-
related task and operating on a different scale of the data. This is in contrast to the
standard model ensembling that is often performed. First, we introduce three task-specific
models that classify breast density, the presence of lesions, and perform localization and
classification of suspicious regions in a mammogram. Based on these task-specific models,
we propose two fusion models that combine the individual model predictions and features
on a patient level, respectively. Our experiments show that the fusion strategies improve
AUC scores as compared to standard model ensembling.

5.2 Advances in Spine Labeling
In Chapter 2 and Chapter 3, we presented two methods for semi- and fully-automated
semantic labeling of the spine that date back to 2016 and 2018. Since then, numerous
articles have been published in this area. In the following, we review selected recent
papers in Section 5.2.1 that focus on anatomical spine labeling in MRI data and address
related challenges. For a comparison, we also mention methods presented for CT scans.
An overview is provided in Table 5.1. In addition, we add two methods to the discussion
that segment spinal structures and assign tissue class labels (last row in Table 5.1).
Section 5.2.2 concludes this review and summarizes potential future research topics in
spine labeling.

Finally, we refer the reader to recent surveys [23, 71, 90, 181], citing our work presented in
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Modality
Task MR CT
Localization & Labeling [10],[16]∗,[227],[250],[266] [39],[89],[95],[99],[134],[203]
Localization & Labeling & [56],[132],[170],[263] [174],[224]
Segmentation
Segmentation & Labeling [32],[50],[126],[127],[145], [126]

[231]
Segmentation & Tissue Class [75],[114]
Labeling

Table 5.1: Overview of selected spine labeling literature (rows 1–3) and methods that
segment spinal structures and assign tissue classes instead of anatomical labels (last row).
The work marked with ∗ cites our work presented in Chapter 3.

Chapter 3. They provide a broad overview of various topics in the field of spine imaging
and image analysis with machine learning-based methods. These surveys also address
related topics, such as the measurement of spine geometry and the grading of specific
spinal diseases, which is not part of this discussion. One survey [71] covers related works
from the complete musculoskeletal imaging workflow and discusses the potential impact
of AI on it.

5.2.1 Discussion

We compare the methods summarized in Table 5.1 in the following aspects: the addressed
task, applied learning-based method, targeted categories of heterogeneous data, approach
to address data heterogeneity, assumptions of the methods, and the addressed research
topics.

Task. According to a recent survey [23], the majority of recent methods in spine analysis
focuses on segmentation tasks, which is also in line with our observations in this literature
search. This development may be driven by recent vertebrae and disc segmentation and
labeling competitions for MRI and CT data [202, 261, 267] and the availability of the
respective annotated datasets. The benefit of semantic segmentation is that a labeled
center position of the spinal structure can be derived if required. However, this is more
resource-intensive as compared to pure localization approaches. Finally, the segmentation
of vertebrae and discs oftentimes serves as basis for subsequent disease classification
or grading, e.g., in the work of Lu et al. [145]. Regarding the tissue of interest, the
presented papers usually focus either on discs or vertebrae. Only a few target both
structures [127, 170] or segment multiple spinal tissues like discs, vertebrae, and spinal
canal, but do not assign an anatomical label [75, 114].
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Learning-Based Method. In the spine labeling methods presented in Chapter 2
and Chapter 3, we utilize a classical AAM-based approach and, in the latter, also
a deep learning-based method, i.e., a CNN, in our pipeline. In contrast, the vast
majority of recently developed algorithms for the analysis of the spine are purely deep
learning-based, a trend that is also visible in recent vertebrae and disc segmentation
and labeling competitions [202, 261]. From the methods summarized in Table 5.1,
one uses regression forests [99], others combine deep learning approaches with classical
methods, e.g., FCNs and Hidden Markov Models [39] or Faster R-CNNs with clustering
approaches [89]. The general deep learning approaches which are utilized are, for
example, region proposal networks [89, 231, 266], reinforcement learning [10, 263], graph
convolutional networks [32], recurrent neural networks [75, 134, 227], or adversarial
learning strategies [75, 203]. Further, FCNs are widely used, mainly for segmentation [50,
56, 114, 126, 127, 132, 145, 174, 227, 263], but have also been utilized for regression of,
e.g., tissue centers [16, 39, 134, 174, 203, 250, 263]. The majority of FCNs are 2D/3D
U-Net-based architectures. The method by Azad et al. [16], which cites our work, detects
intervertebral candidate positions with a U-Net-based architecture combined with a
shape-attention module. The authors use both the original image and the gradient image
as model input and in this way incorporate shape information. In a second stage, they
apply a false-positive reduction and labeling module inspired by YOLO [100]. Recently,
also Transformer-based approaches have found their way into spine labeling research [224].

Multi-Modal, Multi-Parametric, Multi-Vendor, Multi-Center Data. In terms
of the imaging modality, spine labeling methods are still usually developed in a modality-
specific way. The applicability of models to the respective other modality was not
investigated for the methods in Table 5.1. Only the method by Lessmann et al. [126]
is trained and evaluated on CT and MR data, whereby modality-specific models are
trained. In general, we observed that more diverse CT and MR datasets have been
used more frequently in recent methods. While in 2016, Rak & Tönnies [184] criticized
that MRI-specific challenges like changing image sequences and acquisition parameters
are mostly not addressed explicitly, this has changed since then. Methods tailored to
a certain MRI sequence are still being developed, e.g., for Dixon data [50, 56, 132] or
for specific T2w datasets [126, 127, 170]. The use of multi-parametric, multi-vendor and
often multi-center T1w and T2w scans has been more common recently [10, 32, 75, 114,
145, 227, 231, 250, 263, 266]. Methods for CT widely use data from recent competitions,
like the MICCAI 2014 vertebrae localization [70] or the VerSe vertebra segmentation
challenge dataset [135]. The latter comprises scans from different fields of view, acquired
from multiple scanners, vendors, and centers.

Approach to Address Data Heterogeneity. In terms of generalization- and fusion-
based approaches, we observe that the fusion of spine imaging data is usually performed
for MR Dixon data, as demonstrated in several works [50, 56, 114, 132]. Recent disc
segmentation challenges on that type of MR data are further driving the development
of fusion approaches, as summarized, e.g., by Zeng et al. [261]. In Chapter 2 and
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Chapter 3, we approach MR Dixon data differently and treat the four different image
channels separately instead of fusing them. This allows us to use only 1/4 of the data
as input at test time, which in practice is more memory efficient than methods that
use all four channels as input to a multi-modal/multi-parametric CNN like the methods
by Li et al. [131, 132], Dolz et al. [56], and Das et al. [50]. Two other approaches
propose fusion-based methods for MR data. The works by Huang et al. [89] and
Sekuboyina et al. [203] fuse coronal and sagittal images, whereby the former perform late
fusion of detected vertebrae-center positions and the latter fuse features in intermediate
layers with a butterfly-like FCN architecture.

The remaining methods use different approaches to address the heterogeneous nature
of MRI data. Concepts like domain adaptation or continual learning that we discussed
in Chapter 1 have not (yet) been adapted for spine labeling. Many approaches utilize
data augmentation to increase the diversity of data samples [50, 126, 170, 227, 231, 250],
while others do not perform any augmentation [56, 75] or do not mention anything in
this regard in their work [10, 16, 32, 114, 132, 145, 263, 266]. Additional strategies to
increase the generalization capabilities are the following: Vania & Lee [231] replace batch
normalization layers in the ResNet-50 feature extractor with a group normalization and
a dropout layer to handle the T1w and T2w data, i.e., to increase the generalization
effect. Van Sonsbeek et al. [227] include gamma transforms in their data augmentation
and argue that this encourages the network to learn the anatomy rather than intensity
variations present in T1w and T2w data. Kuang et al. [114] utilize multi-scale feature
learning and a feature distribution loss that forces the model to extract similar features
for the same tissue in different MRI scans. Han et al. [75] use a modified autoencoder that
enables them to deal with the high variability in the appearance of spinal tissue in MR
data. Finally, in our works presented in Chapter 2 and Chapter 3, we also investigate the
applicability of trained models to unseen datasets/domains as compared to the training
data. This has been investigated only by two recent methods [114, 250].

Assumptions. The focus on a dedicated region of the spine is a common assumption
in recent works, e.g., on the cervical [16] or lumbar and (lower) thoracic spine [10, 50, 56,
75, 114, 126, 127, 132, 145, 170, 231, 263]. Other assumptions include fixed numbers of
present vertebrae or discs [16, 170, 263] or the presence of a certain vertebra like the
sacrum [263]. Lu et al. [145] also have one dedicated network for sacrum segmentation,
which is the basis for correct labeling of the spine. In the fully-automated work presented
in Chapter 3, we also require a scan where the sacrum is present, but we are not
restricted to lumbar scans. To counteract these limitations, more and more works are
developed for arbitrary fields of view, avoiding the need for any assumption on the body
region [32, 39, 89, 95, 99, 126, 134, 174, 203, 224, 227, 250, 266].

Research Topics. One central point of interest in recent spine labeling research is
the problem of varying fields of view or incomplete scans. For CT, this has been a
long-investigated problem that was also addressed in our research group in the work
of Major et al. [149]. Also, in the last years, this has been a focus of research for CT
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data [39, 95, 99, 126, 134, 174, 203, 224]. Recently, this topic also gained momentum for
spine labeling in MR scans [32, 250, 266], which was – to the best of our knowledge –
not investigated when we were working on MR spine labeling. Due to oftentimes limited
anatomical context, varying fields of view pose additional challenges. Chang et al. [32],
for example, utilize global and local graph convolutional networks and a label attention
network to reduce ambiguity of vertebrae. As mentioned before, the segmentation of
the spine was also intensively investigated, whereby the focus was on the lumbar region.
Baur et al. [23] conclude that lumbar spine segmentation was most prominent due to
the high clinical relevance. Finally, the use of more diverse datasets can be considered a
focus of recent MRI spine labeling publications.

5.2.2 Future Research Topics

The segmentation and anatomical labeling of spinal structures will remain an active
field of research as it is an essential first step for the classification of pathologies and
degenerative pathologies [23]. Furthermore, the reliable segmentation of all relevant
anatomical structures in MRI is a potentially important future topic. Current models
usually consider only discs or vertebrae, while models that segment and label multiple
anatomical structures simultaneously are needed, like the works by Pang et al. [170] and
Li et al. [127]. Additionally, the segmentation of multiple spinal structures, like spinal
canal, neural foramen, vertebrae, discs, etc., must be considered, also in combination
with anatomical labeling of intervertebral discs and vertebrae. The latter is missing in
recent works [75, 114]. Regarding the body region, most research so far focuses on the
lumbar and lower thoracic spine. This can be explained by the high clinical relevance
and availability of public data, however, more research on the thoracic and cervical spine
is definitely needed [23]. One open challenge also remains the correct anatomical labeling
of the spine in fully automated approaches. Especially the correct detection of anchor
vertebrae like L5 or S1 is subject to further research. One problem we encountered
in this regard is the shift by one label (see Section 3.5.1), which is also reported, e.g.,
by Windsor et al. [250]. To further increase the generalization capabilities and, as a
consequence, the tissue center localization and labeling accuracies, the use of highly
heterogeneous datasets will continue in the future. The extension from multi-parametric
data to multi-modal data could be further beneficial to increase labeling and localization
performance [181].

From a clinical perspective, the development of annotation-efficient methods is another
crucial factor. So far, the vast majority of approaches are fully supervised. From the
related works in Table 5.1, only one method is unsupervised [114] and one weakly super-
vised [227]. Due to the availability of large, public datasets, the need for unsupervised,
semi-, or weakly-supervised methods may be reduced. However, in clinical practice, strong
labels, e.g., voxel-level segmentation masks, may not be available. The full annotation
done by medical experts is time-consuming and very expensive. In case one wants to
adapt methods to data from clinical practice, the level of supervision in the training is
an important issue.
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Task Publications
Lesion Localization and/or Classification [18] (R), [31] (SF,R,U), [85] (U),

[129] (SF,U), [133] (U), [139] (SF,U),
[147] (SF,U), [186] (U), [195]∗ (SF,U),
[196]∗ (U), [257] (SF,U)

Cancer Detection and/or Classification [19] (SF,R,U), [29] (U), [137] (R),
(benign/malignant, BI-RADS, cancer [120] (R), [226] (U), [229] (SF),
yes/no, etc.) [234] (R,P,U), [236] (P,R), [238] (U),

[239] (SF,P), [240] (SF,U), [243] (SF),
[259] (U)

Lesion/Cancer Segmentation [137] (R), [129] (SF,U), [238] (U),
[268]∗ (SF,U)

Breast Density Classification/Estimation [73] (R), [226] (U)
Breast Cancer Risk [223] (U), [235] (U), [256] (P)

Table 5.2: Overview of selected, recent mammography literature. The type of data
which is used by the respective methods is provided in brackets: P = FFDM processed,
R = FFDM raw, U = FFDM unclear, SF = scanned film. Publications marked with ∗

cite our work presented in Chapter 4.

5.3 Recent Developments in Deep Learning-Based
Analysis of Mammograms

The deep learning-based analysis of mammograms has been an active field of research
since the publication of our work presented in Chapter 4. In Section 5.3.1, we give an
overview of recent developments and trends as observed in selected papers published
between 2021 – where the related work discussion in Section 4.1.1 stops – and 2023, when
this thesis has been finalized. Table 5.2 summarizes the selected papers and the tasks
they have been presented for. In Section 5.3.2, we discuss current and potential future
research directions in CADe and CADx for mammography.

Further, we refer the reader to recent surveys, which focus on machine learning and
deep learning-based methods in mammography in general [63], or on mammography and
related X-ray imaging techniques, i.e., Digital Breast Tomosynthesis and CT [201, 232].
The survey by Luo et al. [146] cites our work [249] and gives an overview about ten years
of research in breast cancer imaging. They focus not only on mammography but discuss
applications for a wide range of data, like ultrasound, MR, or digital pathology images.
Gastounioti et al. [64] review methods related to the topic of breast cancer risk. Finally,
the work by Lamb et al. [118] summarizes commercial lesion detection and diagnosis
applications for screening mammography.
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5.3.1 Discussion of Recent Related Work
We give an overview on the methods summarized in Table 5.2 and discuss the following
aspects: the learning-based methods and approaches the papers present, how data
heterogeneity aspects are addressed, and what data has been used.

Learning-Based Methods and Approaches. The vast majority of methods pre-
sented in Table 5.2 is purely deep learning-based. However, some works combine CNNs
or FCNs with classical methods. Like for example Maghsoudi et al. [73], who apply
random forests and SVMs to classify superpixels obtained from a U-Net into fatty vs.
dense for breast density estimation. Two papers that cite our work [195, 196] extract
features from lesion patches, with common CNN feature extractors, perform feature
selection/reduction, and then apply classical ML models, like SVMs, Naive Bayes, etc.
for lesion classification.

All methods apply some form of supervised training, except for the study by Tan et al. [223]
who investigate a weighting of scores obtained from already existing solutions in their study.
Liu et al. [137] propose a weakly-supervised lesion segmentation method, trained with
image-level labels, which builds on their recent work on weakly-supervised, interpretable
mammogram classification [208]. Further, contrastive pre-training strategies are leveraged
as well by some recent methods [29, 133, 259]. Various approaches adopt multi-task
learning strategies to improve learning capabilities of their methods and to solve multiple
tasks at once. Yang et al. [257], for example, incorporate biopsy information and BI-RADS
scores for malignancy classification. Tardy & Mateus [226] include several classification
tasks and reconstruct the input image to cope with poor and missing labels. You et al. [259]
combine different classification tasks with contrastive pre-training tasks. Multi-task
fusion models have been proposed as well, which combine segmentation and classification
tasks [129, 229, 238, 268]. The recently published method by Zhong et al. [268] cites
our work and is also similar to it. First, they train task-specific models for density
classification, mass segmentation, and lesion classification. Second, the models are
integrated in a multi-task fusion model to enhance the overall prediction.

Many different deep learning architectures and methods have been used for the different
mammography tasks. Faster-RCNN or YOLO-based approaches have been applied by
various works for lesion localization and classification [147, 186, 257]. Li et al. [133] utilize
a fully convolutional one-stage object detection approach. Liu et al. [139] combine Mask-
RCNNs and Graph Convolutional Networks for mass detection. GANs and adversarial
training strategies have been applied, for example, for unsupervised domain adapta-
tion [239] or to ensure consistent predictions across different vendors [256]. Li et al. [133]
use CycleGANs to generate images in the style of different vendors for pre-training.
Another method [120] uses conditional GANs to generate corresponding contralateral
images, i.e., images acquired from the same view but from the corresponding other
breast, to make use of differences in the breast tissue for cancer detection. Autoencoders
have been utilized to reliably generate images without lesions in an anomaly detection
setup [85] or in a multi-task learning scenario as image reconstruction component [225].
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Walsh & Tardy [234] use autoencoders for synthesizing abnormalities such as masses or
calcifications into benign images. Besides all different kinds of CNNs, like ResNet or
DenseNet, etc., prototype networks are used as well in combination with an Efficient-
Net CNN for interpretable cancer classification [236]. U-Nets are applied for different
segmentation tasks, e.g., for pectoral muscle segmentation [73] or mass or cancer segmen-
tation [229, 238]. Transformer-based architectures have found their way into the field
of mammogram analysis as well. They are applied, for example, as encoder modules
in segmentation tasks [268] or to aggregate image encodings extracted from all four
views [256], i.e., L-CC, R-CC, L-MLO, and R-MLO.

Approach to Address Data Heterogeneity. Both fusion- and generalization-based
approaches are widely used due to the multi-view nature of mammography data, whereby
strategies related to fusion are particularly popular. This was already the case when we
were working on the analysis of mammograms, as reviewed in Section 4.1.1. One popular
strategy is the intermediate fusion where different input branches relate to different views.
This is often performed for full exams [223, 235, 256, 259] or subsets of views, like the
fusion of CC and MLO view of one breast [133, 147, 186, 239]. Some recent methods also
fuse different views, e.g., a main view with one or more auxiliary views [29, 120, 139, 257].
This is done to integrate prior medical knowledge in a model, e.g., to exploit symmetry
properties. For example, the L-CC and R-CC view should have a similar appearance in
healthy patients. Yang et al. [257], for example, combine different strategies to improve
mass detection and malignancy classification. In one part of their network, they encode
CC-images separately and then fuse them, in the second part they encode images from
the same breast separately and fuse them, and finally, fuse both subnetworks.

Late fusion, i.e., score fusion, is performed for example for breast density estimation [73]
or cancer risk scoring [223]. The method by Tan et al. [223] fuses multi-modal data, i.e.,
3D ultrasound and mammography cases, for cancer risk scoring. Already existing systems
are applied and the scores from both systems are weighted. Similarly, Wanders et al. [235]
train a small MLP where they combine different scores, generated by a commercially
available and an open-access system. This is similar to our prediction score fusion model
presented in Chapter 4.

Other ways to fuse information are, e.g., for multi-temporal or multi-scale data. The
work by Bai et al. [19] addresses fusion of temporal data where one branch relates to a
view image of the current year and the second one to the corresponding image of the
previous year. Li et al. [129] feed two lesion patches at different scales to two different
branches, where one performs segmentation and the second one classification of masses.
Both branches are fused for prediction of the final diagnosis.

Methods that take only one image or a ROI patch as input often perform fusion as well,
for example, feature fusion at various levels in the network [226], or the fusion of features
from different stacked ensembles [18]. Some methods also fuse image information with
intermediately obtained segmentation information [229, 268] or with saliency maps [137].
Another way to utilize knowledge from different tasks without fusion is for example
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via knowledge distillation to learn an interpretable prototype network [236]. Further,
multi-task learning approaches can leverage information from different branches. The
multi-task learning approach by Wang et al. [238] performs simultaneous breast tumor
classification and segmentation, whereby the classification branch supports learning of
the tumor segmentation task at different locations in the network.

Generalization-based approaches have also been investigated recently. For models that
take only one mammogram as input, generalization across the four standard view images,
i.e., L-CC, R-CC, L-MLO, R-MLO, is obtained by training jointly on all views instead of
training a view-specific model. This is the standard approach, which is done by various
methods, e.g., Walsh & Tardy [234], Wang et al. [238], among many others.

To increase generalization capabilities, Bai et al. [19] perform a pre-training on a mix
of public datasets and execute the downstream task of breast cancer detection and
classification on a private in-house dataset. Castro et al. [31] investigate different types of
symmetry-based regularization, e.g., invariance in the loss function or equivariant model
architectures. A few works are concerned with domain adaptation and generalization
[133, 239, 256]. Li et al. [133], for example, utilize a multi-style contrastive learning
strategy where they use CycleGANs to generate different styles of a mammography view
image that represent images from different vendors. Finally, several works demonstrate
the applicability to data distributions unseen during training by testing the presented
methods on unseen mammography datasets [31, 85, 234, 236].

Data. We observed that public mammography image datasets like DDSM [77, 78],
CBIS-DDSM [121, 122], and INbreast [161] are still widely used in recent works, although
the number of exams and images is limited, compared to larger collections such as
OPTIMAM [74]. Another drawback of CBIS-DDSM and DDSM is the lower image
quality as they consist of scanned film mammograms. On the other hand, a license
agreement is required for OPTIMAM [140], thus, restricting and limiting the possibility
to use them for research purposes.

Fortunately, new multi-center, multi-vendor FFDM datasets have been published in the
last years [26, 61, 163], which aim to diversify the landscape of publicly available data.
The provided high-quality imaging data and annotations should foster the development
of a wide range of different applications. In 2022, the VinDr-Mammo dataset [163] has
been introduced. It comprises 5000 “for presentation”, i.e., processed for display, exams
that were acquired in Vietnam. Lesion-level annotations are available for non-benign
lesions, e.g., BI-RADS scores and bounding boxes, as well as breast-level assessments,
such as breast density. The CMMD dataset [26] – the Chinese Mammography Database –
comprises 3712 raw mammograms from 1775 patients and is split into two subsets. The
first subset includes biopsy-proven benign and malignant tumors along with other clinical
data. The second subset contains only malignant tumors along with molecular subtypes.
The ADMANI dataset [61] is a large-scale, longitudinal dataset, acquired in Australia.
It consists of more than 4.4M “for presentation” processed images from 629,863 patients
which are split into three subsets. Apart from the imaging data, detailed patient data
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like demographics as well as histopathology data are available. A major strength of this
dataset is the provided ground truth. Patients with indication of cancer were recalled
for further assessment where the cancer was histopathologically confirmed or falsified.
Patients with no signs of cancer were invited for routine rescreening after two years. This
protocol results in a strong ground truth as false positive or false negative assessments as
well as true positive and true negative cases can be identified. This enables the use of this
dataset for a diverse set of tasks, including interval cancer detection, or for retrospective
and prospective studies. The dataset is planned to be made publicly available, whereby
a subset has been used already in a recent breast cancer detection competition.

5.3.2 Current and Future Research Directions

As reviewed in Section 5.3.1, various recent methods focus on fusion-related research
topics, i.e., what to fuse and where to perform the fusion. Several methods investigate
how to incorporate medical domain knowledge, an area of research that has become
increasingly popular in the last years. One aspect is how to exploit symmetry that should
be present between the two CC or MLO views of the breast, another one is how to utilize
the complementarity between the CC and the MLO view. To achieve this, various ways
how to model the relation between different views are investigated [120, 139, 147, 186, 257].
Further, the integration of prior knowledge about lesions is a current and promising future
topic of interest. For example, the guided synthesis of lesions [234] or the integration
of boundary properties of lesions that are obtained, e.g., through segmentation, are
explored [129]. Recently, several methods [129, 229, 238, 268] incorporate segmentation
of lesions in their approaches. The reported results show promising directions, but
large-scale evaluations are needed to better understand the impact of these methods.

In terms of data, several efforts have been made to increase the size and diversity of
publicly available datasets, as reviewed in Section 5.3.1. The public availability of
validation datasets to compare different methods is another important future aspect
as well as evaluating the reliability of methods in case of out-of-distribution data or
adversarial attacks [232]. Further, the robustness of deep learning methods against
variations in mammographic images, e.g., due to different vendors and proprietary
processing, is essential [64]. Another topic to mention is the high-resolution characteristic
of mammograms and how to deal with it. A few methods address this topic [137, 234, 243,
257], e.g., one work investigates how to better exploit pre-trained features in the context of
high-resolution mammogram classification [243]. Since abnormalities in mammograms can
be very subtle, e.g., calcifications and clusters thereof, taking the high-resolution nature
of the data into account remains crucial. The importance of multi-modal approaches is
highlighted as well in recent works [6, 146]. Ultrasound is often used as a complementary
modality in diagnosis. Hence, the fusion of mammography and ultrasound data could be
a promising next step towards improving the performance of deep learning-based breast
cancer screening methods. Not only the fusion of imaging data, but also the combination
of imaging data with clinical information, reports, or biomarkers can potentially improve
the performance and should be considered in future research [146].
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All methods in Table 5.2 are retrospective studies. In terms of clinical adoption, prospec-
tive studies are needed to evaluate the efficacy of current CADe and CADx methods
in clinical practice [232]. In this regard, it is also important how AI-based systems are
integrated into the workflow. This is in general a non-trivial question as it can also
influence a reader. Yoon & Kim. [258] summarize various methods how the integration
could be performed for different scenarios, e.g., single reading, double reading, and
stand-alone reading, i.e., workload triage.

5.4 Outlook

In the field of computer-aided detection and diagnosis, the possibilities to advance existing
methods and develop new approaches specific to a certain anatomy, bodypart, or disease
are almost endless. In the following, we summarize a few potential future research
directions we identify based on the publications presented in this thesis.

Clinical Applications. In Section 2.4, Section 3.6, and Section 4.4.4, we discussed
potential future directions for the two clinical applications we targeted. For spine
labeling, we already addressed one issue in Chapter 3, namely the advance from semi-
automatic labeling towards a fully automated approach. One unsolved limitation is
the dependence on the sacrum as initial object for the labeling. For a fully automated
solution, the detection of additional, reliable anchor positions is required. Various open
questions in spine labeling remain, especially in MRI, like the labeling of arbitrary field
of view scans, as briefly discussed in Section 5.2. In mammography image analysis,
the transition/generalization of our proposed method to full-field digital mammography,
which exhibits better image quality and contrast, would be the logical next step. Further,
the investigation of automated methods for 3D Digital Breast Tomosynthesis data is
of high interest, also from a clinical perspective. Recent studies show that combining
breast tomosynthesis and full-field digital mammography data reduces the recall rate for
follow-up exams and can improve cancer detection rates [152].

Data Heterogeneity. Regarding the data heterogeneity and approaches how to address
it, we will focus future research on the robustness and generalization capabilities of
methods. In Chapter 2 and Chapter 3, we investigated the use of a model-based approach,
namely ETMs, to achieve generalization across multi-parametric and multi-modal data.
In the future, we plan to exploit deep learning-based, model-agnostic approaches such
as continuous learning to address the challenges these heterogeneity categories bring to
method development. We want to focus on the domain-shift problem in the data domain
that we are facing in clinical environments. There we are confronted with changing
acquisition protocols, varying scanning parameters, and scanners from different hospitals.
One vision in this regard is to develop strategies how a continuous update of already
trained models can be handled and integrated in a practical clinical environment.
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State-of-the-Art Reports. In Chapter 1, we described the heterogeneous nature
of medical imaging data and identified three general approaches to address it in the
context of medical image analysis. However, we only discussed the main concepts for
the generalization and fusion approach and selected studies from the literature. A more
in-depth analysis of the problem space and related literature based on the structure we
derived would be of interest. This could be potentially published as a state-of-the-art
report or book chapter. Further, we summarized and discussed recent trends in spine
labeling and the analysis of mammograms in Section 5.2 and Section 5.3, respectively.
Both systematic analyses could be extended to more comprehensive surveys.

Clinical Studies. In the work presented in this thesis, we focused on technical proof-
of-concept studies. The integration of our methods into the radiology image reading
workflow is pending, which would be required to perform clinical studies that test the
applicability of our methods in practice. This includes studies with radiologists and
clinicians using our methods in their daily work where potential clinical benefits can be
evaluated, like increased time efficiency or increased confidence in diagnosis. Apart from
that, studies from a human-computer interaction perspective are required that evaluate
how the approaches should be integrated to yield the best results. In the literature, two
general strategies are described how the integration can happen, namely “expert first”
and “computer first” [180]. In an “expert first” approach, the computer result becomes
available after the initial diagnosis by the clinician, who eventually refines the decision
afterwards. In contrast, in the “computer first” approach, the result of the CADe/CADx
system is already available at the time of diagnosis. However, this could influence the
reporting physician and potentially lead to biases that must be considered [180, 232].
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Appendix: Detailed
Mammography Meta-Model

Results

Table A.1 and Table A.2 provide a detailed overview of model fusion results for the lesion
and malignancy prediction, respectively. We report results for the different model types
for Pscore (Random Forest, SVM RBF, MLP) and Pfeat (CNN) and for varying numbers
of considered lesions n ∈ {1, 2, 3, 4, 5}. Overall, MLPs outperform random forests and
SVMs for prediction score fusion for the lesion as well as the malignancy prediction.
MLPs reach a higher AUC score on average (malignancy = 0.772 ± 0.005, lesion = 0.940
± 0.002) and higher F1 scores as compared to Random Forests and SVMs on test data.
When comparing the best Pscore models (MLPs) with Pfeat, we observe on average higher
measures when performing feature fusion.
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1 2 3 4 5 mean ± std
Pscore MLP AUC 0.944 0.940 0.942 0.939 0.937 0.940 ± 0.002

TPR 0.913 0.927 0.933 0.919 0.927 0.924 ± 0.007
F1 0.929 0.931 0.932 0.929 0.933 0.931 ± 0.001
TNR 0.829 0.790 0.771 0.810 0.800 0.800 ± 0.019

Pscore Random Forest AUC 0.928 0.935 0.929 0.928 0.923 0.928 ± 0.004
TPR 0.904 0.913 0.919 0.907 0.916 0.912 ± 0.005
F1 0.919 0.924 0.924 0.923 0.926 0.923 ± 0.002
TNR 0.790 0.790 0.771 0.810 0.800 0.792 ± 0.013

Pscore SVM RBF AUC 0.938 0.936 0.935 0.929 0.931 0.934 ± 0.003
TPR 0.922 0.910 0.916 0.910 0.913 0.914 ± 0.004
F1 0.930 0.925 0.928 0.919 0.921 0.924 ± 0.004
TNR 0.800 0.810 0.810 0.771 0.771 0.792 ± 0.017

Pfeat CNN AUC 0.959 0.950 0.962* 0.953 0.951 0.955 ± 0.004
TPR 0.916 0.895 0.956 0.959* 0.939 0.933 ± 0.024
F1 0.935 0.922 0.948 0.952* 0.942 0.940 ± 0.011
TNR 0.857* 0.848 0.800 0.819 0.819 0.829 ± 0.021

Table A.1: Detailed evaluation metrics for the lesion prediction for different model types and varying number of included
lesions n on test data. Bold values indicate the highest values per model and evaluation metric. Best overall values are
marked with *.
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1 2 3 4 5 mean ± std
Pscore MLP AUC 0.771 0.772 0.778 0.776 0.764 0.772 ± 0.005

TPR 0.570 0.530 0.591 0.544 0.537 0.554 ± 0.023
F1 0.601 0.575 0.601 0.574 0.565 0.583 ± 0.015
TNR 0.837 0.843 0.813 0.827 0.820 0.828 ± 0.011

Pscore Random Forest AUC 0.748 0.752 0.776 0.767 0.759 0.760 ± 0.010
TPR 0.577 0.550 0.564 0.584 0.550 0.565 ± 0.014
F1 0.591 0.560 0.581 0.582 0.564 0.576 ± 0.012
TNR 0.813 0.793 0.813 0.790 0.800 0.802 ± 0.010

Pscore SVM RBF AUC 0.764 0.767 0.763 0.767 0.768 0.766 ± 0.002
TPR 0.490 0.477 0.483 0.477 0.477 0.481 ± 0.005
F1 0.573 0.557 0.552 0.544 0.542 0.553 ± 0.011
TNR 0.890* 0.883 0.867 0.863 0.860 0.873 ± 0.012

Pfeat CNN AUC 0.791* 0.775 0.770 0.765 0.776 0.775 ± 0.009
TPR 0.638 0.436 0.725 0.698* 0.624 0.624 ± 0.101
F1 0.603* 0.518 0.600 0.599 0.565 0.577 ± 0.033
TNR 0.763 0.877 0.657 0.687 0.710 0.739 ± 0.077

Table A.2: Detailed evaluation metrics for the malignancy prediction for different model types and varying number of included
lesions n on test data. Bold values indicate the highest values per model and evaluation metric. Best overall values are
marked with *.
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