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Abstract
The determination of the so-called design block is one of the central elements of the Aus-
trian guideline for rockfall protection ONR 24810. It is specified as a certain percentile 
(P95–P98, depending on the event frequency) of a recorded block size distribution. Block 
size distributions may be determined from the detachment area (in situ block size distribu-
tion) and/or from the deposition area (rockfall block size distribution). Deposition areas, 
if present, are generally accessible and measurable without technical aids. However, most 
measuring methods are subjective, uncertain, not verifiable, or inaccurate. Also, rockfall 
blocks are often fragmented due to the preceding fall process. The in situ block size distri-
bution is (also) required for meaningful rockfall modelling. The statistical method seems to 
be the most efficient and cost-effective method to determine in situ block size distributions 
with many blocks within the whole range of block sizes. In the current literature, joint 
properties are often described by the lognormal and exponential distribution functions. 
Today, we can model synthetic rock masses on the basis of discrete fracture networks. They 
statistically describe the geometric properties of the joint sets. This way, we can carry out 
exact rock mass block surveys and determine in situ block size distributions. We wanted 
to know whether the in situ block size distributions derived from the synthetic rock mass 
models can be described by probability distribution functions, and if so, how well. We 
fitted various distribution functions to three determined in situ block size distributions of 
different lithologies. We compared their correlations using the Kolmogorov–Smirnov test 
and the mean-squared error method. We show that the generalized exponential distribution 
function best describes the in situ block size distributions across various lithologies com-
pared to 78 other distribution functions. This could lead to more certain, accurate, verifi-
able, holistic, and objective results. Further investigations are required.
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1  Introduction

The Austrian Guideline ONR 24810 (On 2021) regulates the design of rockfall protection 
nets, embankments, and galleries. The design is based on the kinetic energy and bounce 
height of a so-called design block. The design block is specified as a percentile (P95-P98) 
of a recorded block size distribution (BSD), depending on the event frequency. BSDs may 
be determined from the detachment area (in the following referred to as in situ block size 
distribution—IBSD) and/or from the deposition area (in the following referred to as rock-
fall block size distribution—RBSD). The ONR 24810 proposes various methods to deter-
mine BSDs. In the detachment area, these include estimation by visual assessment, statisti-
cal IBSD and discrete explicit block measurement. In the deposition area, these include 
estimation, random axis measurements, the line-counting method, the area method, sieve 
analysis or photosieving by software (Gaich and Pötsch 2022).

Deposition areas, if available, are generally accessible and measurable without techni-
cal aids. However, most measuring methods are subjective, uncertain, not verifiable, or 
inaccurate. Blocks smaller than a fist are usually not measured. Often, (very) small block 
volumes are underrepresented, unnoticed or considered minor events and not included in 
rockfall inventories (De Biagi et al. 2017; Laimer 2019). This affects the percentiles of the 
BSD. Neglecting many small blocks in a BSD results in bigger P95–P98 blocks. In hazard 
analyses, smaller blocks may play an important role, depending on the protection target. 
For most realistic distributions of kinetic energy, bounce height and runout, the entire BSD 
should be considered in rockfall models (Illeditsch and Preh 2020). Also, rockfall blocks 
are often fragmented due to the preceding fall process. RBSDs determined from a few 
dozen blocks (or defined design blocks thereof) do not seem to be sufficient for meaningful 
rockfall modelling. If possible, IBSDs should (also) be considered. Visual assessment of 
rock faces seems subjective and not verifiable. Discrete explicit block measurements with 
rope access require intensive resources and time and are often unfeasible. The statistical 
method seems the most efficient and cost-effective method to determine IBSDs with many 
blocks within the full range of block sizes.

The distribution of in situ block sizes (IBSDs) is based on the knowledge that bedding, 
foliation and joints are commonly closely spaced and have low persistence. Wide spac-
ing and high persistence joints are less common. Consequently, for rock blocks formed by 
joints, small blocks are more common than large blocks (Wyllie 2014). In a case study, 
Wyllie (2014), Chapter 8.3.1, estimates the means and standard deviations of lognormal 
distributions for the rockfall diameter [m] and thickness [m] of discoid-shaped blocks. 
Based on these distributions, he determines an IBSD [m3]. Priest and Hudson (1981) show 
a histogram of measured joint sizes [m] (i.e., persistence) in a Cambrian sandstone. They 
fit both exponential and lognormal curves to this data, for which the correlation coefficients 
r are 0.69 and 0.89, respectively. While the lognormal curve has a higher correlation coef-
ficient, the exponential curve has a better fit at longer joint sizes. Hudson and Harrison 
(1997), Chapter 7.2.1, show that, when a sufficient large sample of individual joint spac-
ings [m] (more than 200) is plotted in histogram form, a negative exponential distribution 
is often evident. Palmström (2000) measures the orientation and spacing of three joint sets 
on a horizontal and vertical surface. He cuts a cube of 10 m edge length by these joint 
sets and plots the distribution curve of the resulting blocks [m3] in logarithmic scale. The 
s-shaped curve reminds of a sieve curve. He suggests characterizing the curve with rep-
resentative volumes, e.g., with the minimum, 25th, 50th and 75th and maximum percen-
tile. Moos et al. (2021) sample eight RBSDs [m3] of different rockfall sites and fit them 
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to a power law distribution of the form f(x, a, b) = ax−b. Generally, the calculated block 
volumes of certain return periods are significantly larger than the expert-based maximum 
block volumes. The fitted power law only corresponds well to the empirical data for block 
volumes ≥ 0.05 m3. There is a strong influence of parameter b on the modelled frequency.

Today, Palmström’s method of creating an IBSD by cutting a cube by joint sets can 
be applied in a more advanced way using synthetic rock mass (SRM) models. We asked 
whether IBSDs derived from SRM models can be described by probability distribution 
functions and if yes, how well. Because IBSDs are depending on the joint properties and 
they are often described by the lognormal and exponential distribution functions, we asked 
how well those functions describe IBSDs. Describing IBSDs by probability distribution 
functions could allow for more certain, accurate, verifiable, holistic, and objective results. 
For this purpose, we calculate different synthetic rock mass (SRM) models based on pho-
togrammetric surveys by UAV (unmanned aerial vehicle). We carry out exact rock mass 
block surveys with the help of these models and determine IBSDs. We fit the lognormal, 
exponential, and various other distribution functions to the determined IBSDs. Finally, we 
compare the correlations between the IBSDs and the distribution functions using the KS 
test and the MSE method.

2 � Method

We determine block size distributions from detachment areas (IBSDs) using synthetic rock 
mass (SRM) models, fit them to various distribution functions and check their correlations.

In SRM models, a discrete joint network (DFN) is intersected with a volume model 
to simulate the rock mass  (Fig.  1). The central element here is the DFN. It statistically 
describes the geometric properties of the joint sets. For this purpose, we consider the dis-
tribution of the joint orientation, the joint density (e.g., number of joints per m; reciprocal 
of joint spacing) and the joint size distribution (persistence) for each individual joint set. 
A DFN results in a collection of disk-shaped joints whose geometric properties, such as 
location, orientation, density/intensity, and joint size distribution, are subject to a prob-
ability distribution. Thus, the joints created in this way do not represent the actual joints 
in the rock mass. Nevertheless, in this way it is possible to model the joint system very 
realistically.

In detail, the procedure starts with a survey of the rock face by unmanned aerial vehicle 
(UAV). We took several high-resolution photos of the rock face from different angles and 
distances with respect to the rock face. Thanks to integrated GPS within the UAV, we know 
the positions of where the photographs are taken. To create a 3D model by photogramme-
try, it is necessary to clearly assign each point of the rock face from at least three different 
perspectives. From the overlapping photos, the software Agisoft Metashape (Agisoft 2021) 
creates a point cloud and triangulates it into a mesh. This results in a 3D digital elevation 
model (DEM) of the rock face. We analysed the point cloud regarding the orientation and 
distance of the joint sets using the CloudCompare software (Cloudcompare 2020). Joint 
orientations can be measured at the visible outcrops of the rock face. To measure orienta-
tions, CloudCompare creates a flat surface for a certain area if the correspondence of its 
containing points is large enough. The orientation of the created surface is specified with 
dip angle and dip direction. We can group the measured joints into joint sets. It is not pos-
sible to measure the joint spacings in CloudCompare directly. These are defined as normal 
distances between two joints of the same joint set, which are generally neither parallel nor 
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at right angles to the rock face. However, by back-calculating to normal distances and aver-
aging the measurements, we can derive joint spacings. Joint size (persistence) is another 
very important rock mass parameter. It can have a significant influence on the strength and 
stability of the rock slope. Pahl (1981) has developed a method and equations to calculate 
the approximate average joint size of a joint set. His method requires a cut-off of small 
joint sizes and provides an exact solution, if the joint size distribution can be assumed to 
be exponential. There has been considerable discussion in the literature as to whether the 
distribution of joint sizes is a negative exponential or a lognormal distribution (Hudson and 
Harrison 1997). However, in this case we are interested in block sizes of future rockfall 
events. They require full detachment from the rock face. Thus, we assume that the blocks 
are completely cut free by the intersecting joint sets. In other words, we assume 100% per-
sistence for all joints.

Based on the above survey information, we can develop a discrete joint network (DFN). 
A DFN artificially reproduces the existing joint structure as realistically as possible. The 
joint orientations are created by the bootstrapping method. This method assumes that the 
available random sample is ‘representative’ of the population from which it is drawn. The 
bootstrap replaces the theoretical distribution function of a random variable by the empir-
ical distribution function of the sample. So, it is obvious that bootstrapping only works 
well if the empirical distribution function can approximate the actual distribution function 
sufficiently well. This requires a certain size of the original sample. Bootstrapping can be 

Fig. 1   Intersection of a volume model with a discrete fracture network (DFN) creates a synthetic rock mass 
(SRM) model
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understood as a Monte Carlo method, since it repeatedly draws random samples of a dis-
tribution. 3DEC offers the possibility to generate the joint spacings indirectly via the joint 
density or joint intensity. The joint density is defined as the area of joints per unit volume 
[m2/m3] (P32), or the length of joints per unit area [m/m2] (P21), or the number of joints 
per unit length [m−1] (P10). One square meter of joint in one cubic meter of the rock mass 
would correspond to a joint density of 1 [m2/m3]. The joint density depends only on the 
joint area per volume. So, several small joint areas can have the same density as a few large 
joint areas within the same volume. 3DEC models joint sizes as disks. The joint length, 
or generally the joint size, refers to the diameter of this disk. We can set the limits of the 
smallest and largest disk (lmin and lmax) in the software (Itasca 2020). In our case, we model 
disks that go through the entire model domain (100% persistence).

We simplified the determination of the joint density by counting the number of joints 
per length normal to the joints (P10), for each joint set. Assuming a persistence of 100%, 
the number of joints per unit length corresponds to the area of joints per unit volume, i.e., 
P10 = P21 = P32.

By intersecting the DEM with the DFN, we calculate the SRM model. We are not set-
ting any strength parameters for the rock mass. We are only interested in the volume of the 
blocks. So, we can rather speak of a synthetic rock block model than a synthetic rock mass 
model. With the help of this model, we perform an exact rock mass block survey and deter-
mine a holistic IBSD.

The derived IBSDs represent block volumes [m3]. We want to check their correla-
tions to various fitted continuous distributions by the Kolmogorov–Smirnov (KS) test 
and the mean-squared error (MSE) method. We are not interested in properties like den-
sity or porosity, which would be affected by cubic dimensions. In our case, it seems more 
appropriate to work with size distributions in linear dimensions [m] rather than in cubic 
dimensions [m3]. Furthermore, fitting distribution functions to linear dimensions can pro-
vide a more intuitive visual representation of the size distribution (e.g., grain sizes in a 
sieve curve). For these reasons, we are transferring the derived IBSDs from cubic meters to 
meters by taking the cube root.

We use Python to check our derived IBSDs against 791 distribution functions (Chris-
topher 2017). Among them are also the lognormal and exponential distribution functions.

The probability density function (pdf) for lognorm is:

for x > 0, s > 0 , where x is the random variable and s is the standard deviation. Lognorm 
takes s as a shape parameter. The probability density above is defined in the ‘standardized’ 
form. To shift and/or scale the distribution, the loc and scale parameters are used. Specifi-
cally, lognorm.pdf(x, s, loc, scale) is identically equivalent to lognorm.pdf(y,s)

scale
 with y = x−loc

scale
 . In 
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1
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1  Norm, alpha, anglit, arcsine, beta, betaprime, bradford, burr, cauchy, chi, chi2, cosine, dgamma, dweibull, 
erlang, expon, exponweib, exponpow, fatiguelife, foldcauchy, f, fisk, foldnorm, gamma, gausshyper, gen-
expon, genextreme, gengamma, genlogistic, genpareto, genhalflogistic, gilbrat, gompertz, gumbel_l, 
gumbel_r, halfcauchy, halflogistic, halfnorm, hypsecant, invgamma, invweibull, johnsonsb, johnsonsu, 
laplace, logistic, loggamma, loglaplace, lognorm, lomax, maxwell, mielke, nakagami, ncx2, ncf, nct, norm, 
pareto, powerlaw, powerlognorm, powernorm, rdist, reciprocal, rayleigh, rice, recipinvgauss, semicircular, 
t, triang, truncexpon, truncnorm, tukeylambda, uniform, vonmises, wald, weibull_min, weibull_max, wrap-
cauchy, ksone, kstwobign.
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case of a normally distributed random variable x with mean m and standard deviation s, 
y = exp(x) is normally distributed with standard deviation s and scale = exp(m).

The probability density function (pdf) for expon is:

for x ≥ 0 . The probability density above is defined in the ‘standardized’ form. To 
shift and/or scale the distribution, the loc and scale parameters are used. Specifically, 
expon.pdf(x, loc, scale) is identically equivalent to expon.pdf(y)

scale
 with y = x−loc

scale
 . A common par-

ametrization for expon is in terms of the rate parameter λ, such that pdf = � ⋅ exp (−� ⋅ x) . 
This parametrization corresponds to using scale = 1

�
.

The Kolmogorov–Smirnov test, also known as the KS test, is a nonparametric sta-
tistical test. It assesses whether a sample comes from a specific distribution. In other 
words, the test compares the observed data with the predicted data (also known as the 
one-sample KS test) under the null hypothesis that the two distributions are identical. 
It is sensitive to both location and shape differences between the sample and reference 
distributions. The KS test results in the test statistic (D) and the p value. These two 
components are essential in interpreting the outcome of the KS test. The test statistic 
(D) is a numerical value that compares the sum of vertical distances of all data points 
(supremum) of the cumulative distribution function (cdf) of the sample to the sum of 
vertical distances of all data points of the cdf of the reference distribution. The D value 
ranges between 0 and 1. A value of 0 means a perfect match between the sample and 
reference distribution. The p value is a probability that measures the strength of evi-
dence against the null hypothesis. It determines whether the observed difference (D) 
is meaningful and reliable or can be attributed to random chance. If the p value is 
smaller than the chosen significance level (e.g., p ≤ 0.05), we can consider the result 
statistically significant. We can reject the null hypothesis in favour of concluding that 
the sample does not follow the reference distribution. If the p value is greater than the 
significance level, the result is not statistically significant. We cannot reject the null 
hypothesis. There is no sufficient evidence to claim a difference between the sample 
and the reference distribution. We choose a confidence level of 95%; that is, we reject 
the null hypothesis in favour of the alternative if the p value is less than 0.05 (i.e., 5%).

The mean-squared error (MSE) is a statistical metric, also known as the mean-
squared deviation. It measures the average squared differences between the observed 
values and the predicted values in a dataset. It quantifies the accuracy of a prediction 
by assessing how well it fits the observed data points. For each data point, the squared 
difference between the observed value and the predicted value is calculated. Squaring 
the differences ensures that negative differences do not cancel out positive differences. 
All squared differences are summed up and divided by the total number of data points. 
This results in the average squared difference, which is the MSE. Lower MSE values 
indicate a better fit of the model to the data (Hedderich and Sachs 2020).

3 � Results

We applied the described method to three different rock faces in three different areas 
within Lower Austria: Tiefenbach, Spitz and Greifenstein, as shown in Fig. 2.

(2)f (x) = exp (−x)
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3.1 � Tiefenbach

The rock face in Tiefenbach is in the West of Lower Austria, along the state road Greiner 
Straße (B 119) next to and along the Danube, which represents the border to Upper Aus-
tria there. The rock face is about 25 m high. The geological unit (Fig. 3) is the so-called 
Weinsberger Granite (38): coarse-grained biotite granite with porphyritic large potassium 
feldspar (Mississipium) next to metablastic to dialectic paragneiss (53), relics of biotite-
rich paragneiss (‘pearl gneiss’) (Moser and Linner 2019).

The 3D photogrammetry model of the Tiefenbach rock face is shown in Fig. 4left. We 
limited the structural geological analysis of the Tiefenbach rock face to the marked area 

Fig. 2   Project areas (from West to East) Tiefenbach, Spitz and Greifenstein (black) within Lower Austria 
(Gba 2002)

Fig. 3   Geological map (1:50 000) of the project area Tiefenbach. The red star marks the location of the 
rock face. The geological unit is the so-called Weinsberger Granite (38): coarse-grained biotite granite with 
porphyritic large potassium feldspar (Mississipium). The pink Xs mark fine-grained granitic dikes (Moser 
and Linner 2019)
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in Red, because of the low vegetation outcrop. The investigated rock face has a length of 
about 38 m, a slope height of 20–25 m and an average inclination of 73°. Figure 4right 
shows the 3D point cloud model of the selected Tiefenbach rock face coloured according to 
the dip direction.

The analysis via CloudCompare resulted in 102 joint orientations (Helm 2023). We 
grouped them into three joint sets: k1 (red), k2 (blue and yellow) and k3 (green) with 30, 58 
and 14 measured orientations, respectively (Fig. 5). We used all measured joint orientation 
to generate the DFN. They provide a sufficiently large sample for bootstrapping. Table 1 
lists the mean dip direction and dip, and the determined joint densities for each joint set.

The dimensions (x y z) of the model domain are approx. 230 × 500 × 100  m. We cut 
the model domain by two planes parallel to the slope (289/73) with a 50-m distance. The 
resulting 3D volume model of the slope is approx. 500 m long, 50 m deep (into the rock 
mass) and 100 m high. Figure 6 shows the joint sets of the rock mass slope in Tiefenbach, 
with the y axis pointing north. Figure 7 compares the equal-area lower hemisphere density 

Fig. 4   Left: 3D photogrammetry model (Agisoft 2021) of the Tiefenbach rock face. The structural geologi-
cal analysis was limited to the marked area (red); Right: 3D point cloud model (Cloudcompare 2020) of the 
selected Tiefenbach rock face, coloured according to the dip direction (degrees): k1 (red), k2 (blue/yellow), 
k3 (green)

Fig. 5   Equal-area lower hemisphere plot of the 102 measured joints (great circles) and the slope (black) in 
Tiefenbach, using OpenStereo (Grohmann and Companha 2017); for the density plot, refer to Fig. 7(left)
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plots of the 102 measured joint poles [left; using OpenStereo (Grohmann and Companha 
2017)] and the 94 created joint poles in the SRM model (right) for Tiefenbach.

We derived 60,503 block volumes from the Tiefenbach SRM model. Assuming the 
block shape cuboid, we calculated their edge lengths by taking the cube root. The IBSD 

Table 1   Tiefenbach DFN data: 
joint directions and joint density

Joint set Dip dir. (mean) Dip (mean) Joint density

k1 337 76 0.20
k2 069 87 0.42
k3 162 77 0.30

Fig. 6   3DEC SRM model of Tiefenbach showing the block joint sets (y axis = north)

Fig. 7   Equal-area lower hemisphere density plots of the 102 measured joint poles (left; using OpenSte-
reo; max ~ 337/76 and ~ 069/87) and the 407 created joint poles in the SRM model (right; using 3DEC; 
max. ~ 162/77) for Tiefenbach
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[m] of the Tiefenbach slope is plotted in Fig. 8. Our check against 79 different distribution 
functions with Python found that neither the exponential nor the lognormal distribution fits 
well. Rather, the generalized exponential distribution function fits best. We show this both 
graphically in Fig. 9 and numerically using the KS test and the mean-squared error (MSE) 
method (as described above).

The fitted parameters of the three tested continuous distribution functions and the KS 
test and MSE results are listed in Table  2. With a p value near 0.00, we reject the null 
hypothesis in favour of concluding that the sample does not follow the reference distribu-
tions. This is the case for the exponential (expon) and the lognormal (lognorm) distribution. 

Fig. 8   IBSD of the Tiefenbach slope with 60,503 blocks (edge length a in [m])

Fig. 9   IBSD of the Tiefenbach slope [m] (blue bars) with the fitted exponential (maroon), lognormal (blue) 
and generalized exponential (green) probability density functions (left: pdfs, right: cdfs)

Table 2   Fitting parameters of the 
fitted distribution functions and 
computational test results of the 
KS tests and MSE method; SRM 
Tiefenbach

Fitting parameters Expon Lognorm Genexpon

Loc 1.51e−04 − 3.19e−01 1.51e−04
Scale 1.86 1.68 2.48
shape par. 1 – s = 0.74 a = 0.96
shape par. 2 – – b = 1.14
shape par. 3 – – c = 0.73
KS: p 7.14e−159 1.39e−72 0.58
KS: D 5.49e−02 3.70e−02 3.16e−03
MSE 26.36 51.30 11.92
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With a p value of 0.58 (> 0.05), we cannot reject the null hypothesis. This indicates that 
there is no sufficient evidence to claim a difference between the sample and the generalized 
exponential (genexpon) reference distribution. Comparing the MSE values for the expon, 
lognorm and genexpon distribution functions, the genexpon distribution function has the 
lowest MSE value, indicating its best fit. A comparison of the quantiles is listed in Table 3.

3.2 � Spitz

The rock face in Spitz (Fig. 10) is a former marble quarry in the middle of Lower Aus-
tria, West of the state road Donau Straße (B 3) next to and along the Danube. The geo-
logical unit (Fig.  10) is marble, ribbon marble and silicate marble (46) (Fuchs et  al. 
1983). The 3D photogrammetry model of the Spitz rock face is shown in Fig.  11top. 

Table 3   Comparison of quantiles for the SRM Tiefenbach

The percentiles printed in bold are those selected in accordance with the ONR 24810 guideline, depending 
on the event frequency

Quantile DFN [m3] DFN [m] Expon [m] Lognorm [m] Genexpon [m]

0 3.46e−12 1.51e−04 1.51e−04 − 3.19e−01 1.51e−04
25 2.95e−01 0.67 0.53 0.70 0.67
50 3.19 1.47 1.29 1.36 1.46
75 18.13 2.63 2.58 2.46 2.63
95 119.53 4.93 5.57 5.40 4.94
96 144.90 5.25 5.98 5.87 5.24
97 179.02 5.64 6.52 6.50 5.62
98 228.30 6.11 7.27 7.44 6.15
99 340.97 6.99 8.56 9.18 7.04
100 5973.04 18.14 Inf Inf Inf

Fig. 10   Geological map (1:50 000) of the project area Spitz. The red star marks the location of the rock 
face. The geological unit is marble, ribbon marble and silicate marble (46) (Fuchs et al. 1983)
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The investigated rock face has a length of about 70 m, a slope height of up to 30 m and 
an average inclination of 84°. Figure 11bottom shows the 3D point cloud model of the 
selected Spitz rock face coloured according to the dip direction.

The analysis via CloudCompare resulted in three main joint sets forming the rock 
face: SE, N and NW with 132, 55 and 21 (total 208) measured orientations, respectively 
(Fig.  12). To generate the DFN, all measured joint orientations are used to provide a 
sufficient large sample for bootstrapping. Table 4 lists the mean dip direction and dip, as 
well as the determined mass densities and joint size for each joint set.

The dimensions (x y z) of the model domain are approx. 500 × 100 × 100 m. We cut 
the model domain by two planes parallel to the slope (356/84) with a 50-m distance. The 
resulting 3D volume model of the slope is approx. 500 m long, 50 m deep (into the rock 
mass) and 100 m high. Figure 13 shows the joint sets of the rock mass slope in Spitz, 
with the y axis pointing north. Figure  14 compares the equal-area lower hemisphere 

Fig. 11   Top: 3D photogrammetry model (Agisoft 2021) of the Spitz rock face; bottom: 3D point cloud 
model of the selected Spitz rock face, coloured according to the dip direction (degrees): SE (green), N/S 
(red/cyan), NW (purple)
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density plots of the 208 measured joint poles (left) and the 174 created joint poles in the 
SRM model (right) for Spitz.

We derived 26,253 block volumes from the Spitz SRM model. Assuming the block 
shape cuboid, we calculated their edge lengths by taking the cube root. The IBSD [m] of 
the Spitz slope is plotted in Fig. 15. Our check against 79 different distribution functions 

Fig. 12   Equal-area lower hemisphere plot of the 208 measured joints (great circles) and the slope (black) in 
Spitz, using OpenStereo; for the density plot, refer to Fig. 14 (left)

Table 4   Spitz DFN data: joint 
directions and joint density

Joint set Dip dir. (mean) Dip (mean) Joint density

SE 135 40 0.23
N 356 85 0.18
NW 303 80 0.28

Fig. 13   3DEC SRM model of Spitz showing the block joint sets (y axis = north)
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with Python found that neither the exponential nor the lognormal distribution fits well. 
Rather, the generalized exponential distribution function fits best. We show this both 
graphically in Fig. 16 and numerically using the KS test and the mean-squared error (MSE) 
method (as described above).

Fig. 14   Equal-area lower hemisphere density plots of the 208 measured joint poles (left; using OpenSte-
reo; max ~ 356/85 and ~ 135/40) and the 185 created joint poles in the SRM model (right; using 3DEC; 
max. ~ 303/80) for Spitz

Fig. 15   IBSD of the Spitz slope with 26,253 blocks (edge length a in [m])

Fig. 16   IBSD of the Spitz slope [m] (blue bars) with the fitted exponential (maroon), lognormal (blue) and 
generalized exponential (green) probability density functions (left: pdfs, right: cdfs)
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The fitted parameters of the three tested continuous distribution functions and the KS 
test and MSE results are listed in Table  5. With a p value near 0.00, we reject the null 
hypothesis in favour of concluding that the sample does not follow the reference distribu-
tions. This is the case for the exponential (expon) and the lognormal (lognorm) distribu-
tion. With a p value of 0.16 (> 0.05), we cannot reject the null hypothesis. This indicates 
that there is no sufficient evidence to claim a difference between the sample and the gen-
eralized exponential (genexpon) reference distribution. Comparing the MSE values for the 
expon, lognorm and genexpon distribution functions, the genexpon distribution function 
has the lowest MSE value, indicating its best fit. A comparison of the quantiles is listed in 
Table 6.

3.3 � Greifenstein

The rock face in Greifenstein is within a former quarry (until 1993) and landfill North 
of Vienna, also close to the Danube, located within the Rhenodanubian flysch zone 
(Figs. 17, 18). This zone extends from Vienna to Vorarlberg north of the northern Lime-
stone Alps. Basically, the flysch zone was formed by sedimentary depositional pro-
cesses of rivers in the sea of that time. Due to the different flow velocities, sedimentary 

Table 5   Fitting parameters of 
the fitted distribution functions 
and computational test results of 
the KS tests and MSE method; 
SRM Spitz

Fitting parameters Expon Lognorm Genexpon

loc 9.45e−05 − 4.07e−01 9.45e−05
scale 2.45 2.20 2.20
shape par. 1 – s = 0.75 a = 0.66
shape par. 2 – – b = 1.01
shape par. 3 – – c = 0.32
KS: p 1.33e−69 5.64e−33 0.16
KS: D 5.51e−02 3.78e−02 6.95e−03
MSE 45.80 89.08 18.60

Table 6   Comparison of quantiles for the SRM Spitz

The percentiles printed in bold are those selected in accordance with the ONR 24810 guideline, depending 
on the event frequency

Quantile DFN [m3] DFN [m] Expon [m] Lognorm [m] Genexpon [m]

0 8.45e−13 9.45e−05 9.45e−05 − 4.07e−01 9.45e−05
25 0.70 0.89 0.70 0.93 0.88
50 6.94 1.91 1.70 1.80 1.94
75 41.21 3.45 3.40 3.24 3.48
95 275.69 6.51 7.34 7.11 6.49
96 332.99 6.93 7.88 7.73 6.87
97 411.60 7.44 8.59 8.55 7.35
98 544.03 8.16 9.58 9.79 8.02
99 792.58 9.25 11.28 12.09 9.13
100 3776.36 15.57 Inf Inf Inf
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layers of different thickness were formed. About 42 million years ago, the ‘Eurasian 
Plate’ and the ‘Adriatic Plate’ collided and the flysch zone came to the surface (Egger 
and Coric 2017). The easternmost part of this Rhenodanubian flysch zone is called the 

Fig. 17   Top: 3D photogrammetry model (Agisoft 2021) of the Greifenstein rock face; Bottom: 3D point 
cloud model of the selected Greifenstein rock face, coloured according to the dip direction (degrees): bed-
ding (light blue), N (red), SW/NE (blue/yellow)

Fig. 18   Geological map (1:50 000) of the project area Greifenstein. The red star marks the location of 
the rock face. The geological unit is the so-called Greifenstein Formation (58): fine- to coarse-grained, 
medium- to thick-bedded, siliciclastic sandstone and clay shale (Ypresium) (Kreuss 2020)
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Greifenstein Formation (58): fine- to coarse-grained, medium- to thick-bedded, silici-
clastic sandstone and clay shale (Ypresium) (Kreuss 2020).

The 3D photogrammetry model of the Greifenstein rock face is shown in Fig. 17top. 
The investigated rock face has a length of about 80 m, a slope height of 20–27 m and an 
average inclination of 70° (Wiesinger 2023). Figure 17bottom shows the 3D point cloud 
model of the selected Greifenstein rock face coloured according to the dip direction.

The structural geological analysis of the Greifenstein 3D rock face model resulted in 
143 joint orientations, which could be grouped into three joint sets: the bedding, the North-
east-Southwest joint set and the North joint set (Fig. 19) (Wiesinger 2023). To generate 
the DFN, all measured joint orientations are used to provide a sufficient large sample for 
bootstrapping. Table 7 lists the mean dip direction and dip, as well as the determined mass 
densities and joint size for each joint set.

The dimensions (x y z) of the model domain are approx. 200 × 160 × 40 m. We cut the 
model domain by two planes parallel to the slope (011/70) with a 20-m distance. The 
resulting 3D volume model of the slope is approx. 200 m long, 20 m deep (into the rock 
mass) and 40 m high. Figure 20 shows the joint sets of the rock mass slope in Greifenstein, 
with the y axis pointing north. Figure 21 compares the equal-area lower hemisphere den-
sity plots of the 143 measured joint poles (left) and the 381 created joint poles in the SRM 
model (right) for Greifenstein.

We derived 143,029 block volumes from the Greifenstein SRM model. Assuming the 
block shape cuboid, we calculated their edge lengths by taking the cube root. The IBSD [m] 
of the Greifenstein slope is plotted in Fig. 22. Our check against 79 different distribution 

Fig. 19   Equal-area lower hemisphere plot of the measured joints (great circles) and the slope (black) in 
Greifenstein, using OpenStereo; for the density plot refer to Fig. 21 (left)

Table 7   Greifenstein DFN data: 
joint directions and joint density

Joint set Dip dir. (mean) Dip (mean) Joint density

Bedding 135 23 2.38
N 357 65 0.95
SW-NE 236 82 0.95
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Fig. 20   3DEC SRM model of Greifenstein showing the block joint sets (y axis = north)

Fig. 21   Equal-area lower hemisphere density plots for Greifenstein; of the 143 measured joint poles (left; 
using OpenStereo; max. ~ 357/65); and the 381 created joint poles in the SRM model (right; using 3DEC; 
max. ~ 135/23)

Fig. 22   IBSD of the Greifenstein slope with 143,029 blocks (edge length a in [m])
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functions with Python found that neither the exponential nor the lognormal distribution fits 
well. Rather, the generalized exponential distribution function fits best. We show this both 
graphically in Fig. 23 and numerically using the KS test and the mean-squared error (MSE) 
method (as described above).

The fitted parameters of the three tested continuous distribution functions and the KS test 
and MSE results are listed in Table 8. With a p value near 0.00, we reject the null hypothesis 
in favour of concluding that the sample does not follow the reference distributions. This is the 
case for the exponential (expon) and the lognormal (lognorm) distribution. With a p value of 
0.58 (> 0.71), we cannot reject the null hypothesis. This indicates that there is no sufficient 
evidence to claim a difference between the sample and the generalized exponential (genexpon) 
reference distribution. Comparing the MSE values for the expon, lognorm and genexpon dis-
tribution functions, the genexpon distribution function has the lowest MSE value, indicating 
its best fit. A comparison of the quantiles is listed in Table 9.

Additionally, we have examined whether there is a difference between the block size 
distribution derived from a rock slope and a block size distribution derived from the rock 
mass (i.e., a cube) in the example of Greifenstein. The dimensions (x y z) of the model 
domain are approx. 60 × 60 × 60 m. Figure 24 shows the joint sets of the rock mass cube in 
Greifenstein, with the y-axis pointing north. 134,711 block volumes were derived from the 
SRM model, and assuming the block shape cuboid, their edge lengths were calculated tak-
ing the cube root. The distributions of the block sizes are plotted in Fig. 25. Again, neither 
the exponential nor lognormal distributions fit well. Rather, the generalized exponential 

Fig. 23   IBSD of the Greifenstein slope [m] (blue bars) with the fitted exponential (maroon), lognormal 
(blue) and generalized exponential (green) probability density functions (left: pdfs, right: cdfs)

Table 8   Fitting parameters of the 
fitted distribution functions and 
computational test results of the 
KS tests and MSE method; SRM 
Greifenstein

Fitting parameters Expon Lognorm Genexpon

loc 1.34e−05 − 7.06e−02 1.34e−05
scale 0.56 0.46 0.71
shape par. 1 – s = 0.81 a = 0.87
shape par. 2 – – b = 0.58
shape par. 3 – – c = 2.97
KS: p 1.66e−239 6.13e−99 0.68
KS: D 4.39e−02 2.82e−02 1.90e−03
MSE 2.41 6.38 1.78
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distribution function fits best. We show this both graphically in Fig. 26 and numerically 
using the KS test and the mean-squared error (MSE) method (as described above).

The fitted parameters of the three tested continuous distribution functions and the KS test 
and MSE results are listed in Table 10. With a p value near 0.00, we reject the null hypothesis 

Table 9   Comparison of quantiles for the SRM Greifenstein

The percentiles printed in bold are those selected in accordance with the ONR 24810 guideline, depending 
on the event frequency

Quantile DFN [m3] DFN [m] Expon [m] Lognorm [m] Genexpon [m]

0 2.42e−15 1.34e−05 1.34e−05 − 0.07 1.34e−05
25 7.45e−03 0.20 0.16 0.20 0.19
50 7.45e−02 0.42 0.39 0.40 0.42
75 0.46 0.77 0.78 0.73 0.77
95 3.87 1.57 1.68 1.69 1.57
96 4.77 1.68 1.81 1.85 1.68
97 6.14 1.83 1.97 2.06 1.82
98 8.36 2.03 2.20 2.38 2.02
99 13.11 2.36 2.59 2.99 2.36
100 225.20 6.08 Inf Inf Inf

Fig. 24   3DEC SRM model of the Greifenstein 60 m cube showing the block joint sets (y axis = north)

Fig. 25   IBSD of Greifenstein 60 m cube with 134,711 blocks (edge length a in [m])
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in favour of concluding that the sample does not follow the reference distributions. This is the 
case for the exponential (expon) and the lognormal (lognorm) distribution. With a p value of 
0.09 (> 0.05) we cannot reject the null hypothesis. This indicates that there is no sufficient 
evidence to claim a difference between the sample and the generalized exponential (genexpon) 

Fig. 26   IBSD of the Greifenstein 60 m cube [m] (blue bars) with the fitted exponential (maroon), lognormal 
(blue) and generalized exponential (green) probability density functions (left: pdfs, right: cdfs)

Table 10   Fitting parameters of 
the fitted distribution functions 
and computational test results of 
the KS tests and MSE method; 
SRM Greifenstein 60 m cube

Fitting parameters Expon Lognorm Genexpon

Loc 8.55e−05 − 1.34e−01 8.55e−05
scale 0.71 0.66 0.96
shape par. 1 – s = 0.71 a = 0.92
shape par. 2 – – b = 1.48
shape par. 3 – – c = 0.66
KS: p 0.00 4.03e−133 0.09
KS: D 6.42e−02 3.37e−02 3.38e−03
MSE 3.82 6.15 1.48

Table 11   Comparison of quantiles for the SRM Greifenstein cube 60 m

The percentiles printed in bold are those selected in accordance with the ONR 24810 guideline, depending 
on the event frequency

Quantile DFN [m3] DFN [m] Expon [m] Lognorm [m] Genexpon [m]

0 6.25e−13 8.55e−05 8.55e−05 − 1.34e−01 8.55e−05
25 0.02 0.26 0.20 0.28 0.26
50 0.18 0.56 0.49 0.53 0.57
75 0.99 1.00 0.98 0.94 1.00
95 6.32 1.85 2.12 2.00 1.84
96 7.47 1.96 2.27 2.17 1.95
97 9.28 2.10 2.48 2.39 2.08
98 12.05 2.29 2.76 2.72 2.27
99 17.84 2.61 3.25 3.33 2.58
100 182.72 5.67 Inf Inf Inf
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reference distribution. Comparing the MSE values for the expon, lognorm and genexpon dis-
tribution functions, the genexpon distribution function has the lowest MSE value, indicating 
its best fit. A comparison of the quantiles is listed in Table 11.

4 � Discussion

The equal-area density plots proof that it is possible to represent joint systems using a 
DFN. The joint orientations of the left and right density plots correspond very well (see 
Figs. 7, 14, 21). The pole densities of the measured joint planes (left plots) represent joints 
exposed on the rock face. So, wall-building joints may be measured more frequently than 
other joints. This can lead to a situation where joint surfaces of lower joint density (with 
greater joint distances) are measured more frequently on the rock face, and vice versa. 
Thus, measurements from the rock face may be distorted. The SRM density plots (on the 
right) reflect the ‘true’ joint densities of the joint sets (relative to each other). For exam-
ple, in Greifenstein (Fig. 21, left) the joint set N (357/65, red) is dominating on the rock 
face and measured more frequently than the bedding (135/23, light blue). The surface areas 
(outcrops) of the bedding are very small. Yet, the bedding has a much higher joint density 
than the other two joint sets. This is reflected in the density plot in Fig. 21 on the right. We 
can conclude that the density plot of the SRM is more realistic and more meaningful than 
the density plot of the measured joints on the rock face.

We chose the slope and cube dimensions of the SRM models to create many blocks for 
our investigations. In Tiefenbach, a slope size of approximately 500 × 50 × 100 m generated 
60,503 block volumes. In Spitz, a similar slope size generated 26,253 block volumes. In 
Greifenstein, with a bedding of relatively high joint density, a slope size of approximately 
200 × 20 × 40 m generated 143,029 block volumes, and the Greifenstein 60 m cube gener-
ated 134,711 block volumes. The size of the model should correspond to the homogeneous 
area investigated.

We show that neither the lognormal nor the exponential distribution functions describe 
IBSDs [m] well. To fit best, the lognormal is shifted with a negative loc parameter. This 
results in negative block volumes. Both, the lognorm and expon have relatively long tails. 
This results in much larger blocks compared to the IBSDs. We also tried to fit Python’s 
power law distribution in the form f(x, a) = axa−1 to our derived IBSDs (both in [m3] and 
in [m]). No correlations could be found. The generalized exponential distribution function 
best describes block size distributions [m] across three various lithologies when compared 
to 78 other distribution functions via the one-sample KS test and the MSE method.

The probability density function (pdf) for genexpon is:

for x ≥ 0, a, b, c > 0 , where x is the random variable and a, b, and c are shape param-
eters. The probability density above is defined in the ‘standardized’ form. To shift 
and/or scale the distribution, the loc and scale parameters are used. Specifically, 
genexpon.pdf(x, a, b, c, loc, scale) is identically equivalent to genexpon.pdf(y,a,b,c)

scale
 with y = x−loc

scale
 . 

Above generalized exponential distribution is an extension of Marshall and Olkin’s bivari-
ate exponential distribution (Ryu 1993). The three shape parameters provide quite a bit of 
flexibility for analysing any skewed dataset. Table 12 lists the genexpon fitting parameters 

(3)f (x, a, b, c) = (a + b(1 − exp (−cx))) exp
(

−ax − bx +
b

c
(1 − exp (−cx))

)
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for the different investigated slope and cube sizes. The location parameters are essentially 
zero.

For the Greifenstein slope and the Greifenstein cube calculations, we used the same 
DFN data (Table  7). The models differ in their dimensions and orientation. We cut the 
slope model parallel to the mean rock face orientation. The cube model is north–south ori-
ented, independent of the observed rock face orientation. Comparing the results (Table 12), 
the genexpon fitting parameters, especially b and c, do vary. It is unclear how these differ-
ences affect rockfall modelling results. Modelling a cube, independent of the slope direc-
tion, would be much more practicable when investigating a quarry, for example. Further 
investigations on the sensitivity of the scale and shape parameters are required. Comparing 
the quantiles of the Greifenstein slope and the Greifenstein cube models (Table 13), the 
blocks of the cube model are generally slightly bigger. Due to the bigger dimensions of 
the cube in the y direction (20 m vs. 60 m), bigger blocks are built. The maximum block 
volumes depend on the size of the homogeneous area, as also recognized by Laimer (2019) 
and Moos et al. (2021).

The DFN- and genexpon-quantiles correspond very well (see Table 13). Comparing 
the P98 of the genexpon cdfs, the block sizes seem plausible, considering the different 

Table 12   Genexpon fitting parameters for the investigated locations Tiefenbach (slope size 500 × 50 × 100 
m), Spitz (slope size 500 × 50 × 100 m) and Greifenstein (slope size 200 × 20 × 40 m and 60 m cube)

Genexpon fitting 
parameters

SRM Tiefenbach SRM Spitz SRM Greifenstein

500 × 50 × 100 500 × 50 × 100 200 × 20 × 40 Cube 60 m

loc 1.51e−04 9.45e−05 1.34e−05 8.55e−05
scale 2.48 2.20 0.71 0.96
shape par. 1 a = 0.96 a = 0.66 a = 0.87 a = 0.92
shape par. 2 b = 1.14 b = 1.01 b = 0.58 b = 1.48
shape par. 3 c = 0.73 c = 0.32 c = 2.97 c = 0.66

Table 13   Comparison of quantiles [m] for different SRM models

The percentiles printed in bold are those selected in accordance with the ONR 24810 guideline, depending 
on the event frequency

Quantile Tiefenbach slope Spitz slope Greifenstein slope Greifenstein cube

DFN Genexpon DFN Genexpon DFN Genexpon DFN Genexpon

0 1.51e−04 1.51e−04 9.45e−05 9.45e−05 1.34e−05 1.34e−05 8.55e−05 8.55e−05
25 0.67 0.67 0.89 0.88 0.20 0.19 0.26 0.26
50 1.47 1.46 1.91 1.94 0.42 0.42 0.56 0.57
75 2.63 2.63 3.45 3.48 0.77 0.77 1.00 1.00
95 4.93 4.94 6.51 6.49 1.57 1.57 1.85 1.84
96 5.25 5.24 6.93 6.87 1.68 1.68 1.96 1.95
97 5.64 5.62 7.44 7.35 1.83 1.82 2.10 2.08
98 6.11 6.15 8.16 8.02 2.03 2.02 2.29 2.27
99 6.99 7.04 9.25 9.13 2.36 2.36 2.61 2.58
100 18.14 Inf 15.57 Inf 6.08 Inf 5.67 Inf
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lithologies and joint systems. In Spitz, where we could observe huge marble blocks in 
the deposition area (Fig. 27left), the P98 block edge length in the genexpon cdf is 8 m 
(512  m3). In Greifenstein, where we could observe a sandstone bedding of relatively 
high joint density (Fig.  27right), the P98 block edge length in the genexpon cdf is 
approximately 2 m (8 m3). The P98 block edge length in the genexpon cdf of the Tie-
fenbach granite lies in between, with approximately 6 m (216 m3).

As already criticized by Laimer (2019), the use of P95–P98 appears too high for 
rock formations, which form very large rockfall blocks (> 10  m3). He had sufficient 
data from the Dachstein Formation (limestones and dolomites) to show that the return 
periods of P95 to P96 blocks (0.15–2.25 m3) range from 23.5 to 56.5 years for this for-
mation. This corresponds to the service life of a conventional rockfall protection bar-
rier. P97 and P98 limestone blocks have return periods of more than 100 years.

In our holistic rock mass block investigations of relatively large rock masses (homo-
geneous areas), the problem of very large (P95–P98) blocks becomes even more appar-
ent. Our SRM approach does not consider whether blocks are kinematically capable 
of failure. IBSDs can include blocks with very high return periods. One approach to 
deal with this problem could be a kinematic analysis of the blocks using block theory 
(Goodman and Shi 1985). However, this approach does not consider return periods. 
In the design of rockfall protection measures and hazard analyses, rockfall frequen-
cies (magnitude to frequency relations M/F (Corominas et al. 2018)) and return peri-
ods play an important role. This requires knowledge of the events on the one hand 
and the definition of a worst-case scenario (depending on the protection target) on the 
other. Our IBSD provides knowledge of all possible events within a homogenous area, 
including their frequencies (i.e., magnitude to frequency relations). Based on a defined 
worst-case scenario, events/block sizes of higher return periods may be neglected (cut 
off). This could be achieved based on (limited) available information, such as silent 
witnesses with estimated ages, reports from residents or records of past events.

Fig. 27   Photographs of the deposition areas; left: Spitz with huge marble blocks versus right: Greifenstein 
with smaller sandstone blocks due to rather dense bedding
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5 � Conclusion and outlook

We were able to find a probability distribution function that describes in  situ block size 
distributions (IBSDs) very well. It could be generally applicable for block size distribu-
tions (BSDs). Further investigations on the sensitivity of the scale and shape parameters 
are required. We show that both the lognormal and the exponential distribution func-
tions do not describe IBSDs well enough. Describing IBSDs by probability distribution 
functions could provide more certain, accurate, verifiable, holistic, and objective results. 
With the presented method, it is possible to determine IBSDs based on photogrammetry 
and SRM models. The investigation of many more sites of different lithologies with this 
method could lead to a catalogue that recommends a range of scale and shape parameters 
for specific lithologies in the future. This requires locations of sufficiently large outcrops 
with low vegetation. The implications on rockfall modelling should be further investigated, 
for example, by comparing runout, kinetic energies, and bounce heights when modelling 
whole IBSDs versus genexpon pdfs and design blocks. The use of a distribution function 
together with a catalogue of suitable fitting parameters can offer the advantage that the 
determination of an IBSD, and thus, a meaningful evaluation of a design block is also pos-
sible with a limited number of block size measurements (silent witnesses).
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