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Abstract

This thesis studies three different large-scale phenomena in statistical mechanics. The first
phenomenon studied is superdiffusivity in two different models, a diffusion in a random envir-
onment, and a critical stochastic partial differential equation in Chapters 2 and 3 respectively.
Both models are diffusive systems, which are perturbed by some external forcing. The effect
of this forcing can be measured using the so-called Diffusion coefficient D(t). In this part

of the Thesis it is proven that D(t) diverges like (log t)
1
2 and (log t)

2
3 , respectively, up to

Tauberian inversions. These results prove conjectures made for the corresponding models.
The proofs use tools from Gaussian Analysis and an iterative estimation scheme to study the
resolvent of the generator of the process.

The second phenomenon is a near-critical limit of a conformally invariant model, namely
the dimer model in Chapter 4. The fluctuations of the planar dimer model in two dimensions
are one of the few models from statistical mechanics where conformal invariance has been
rigorously proven. This conformal invariance holds for certain critical weights and certain
boundary conditions. In this chapter, we study the dimer model near criticality. We execute
part of the program initiated in [N. Makarov and S. Smirnov, Off-critical lattice models
and massive SLEs, 2009, Proceedings of ICMP 2009], by finding a scaling limit for the
corresponding height functions, and connecting this scaling limit to massive SLE2. As is
typical for near-critical models, this limit is no longer conformally invariant but conformally
covariant. The proof uses a connection to loop-erased random walks via Temperley’s bijection
and Wilson’s algorithm. We also prove an exact discrete Girsanov identity for the triangular
lattice, which might be of independent interest.

The third phenomenon is the almost sure convergence of the asymptotic speed of a second-
class particle in an interacting particle system started from specific non-stationary initial
conditions. In particular, we study the stochastic six-vertex model on the quadrant Z≥0×Z≥0

with step initial conditions, i.e. every incoming edge from the left is occupied by a particle
and every incoming edge from the bottom is unoccupied. We then add a single second-class
particle coming in from below. The main theorem of Chapter 5 states that the speed XT

T of
this second-class particle converges almost surely to a random limit. This allows one to define
the stochastic six-vertex speed process. We use tools from integrable probability to obtain
precise bounds on the fluctuations of the height functions around its limit shape together with
a novel result that allows us to control the behavior of an individual second-class particle by
controlling the behavior of a larger number of third-class particles.
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Zusammenfassung

In dieser Doktorarbeit werden drei verschiedene Phänomene aus der statistischen Mechanik.
Das erste dieser Phänomene ist das Phänomen der ‘superdiffusivity’, das in zwei verschiede-
nen Modellen gezeigt wird. Die Modelle sind eine Diffusion in einer zufälligen Umgebung in
Kapitel 2 und eine kritische stochastische partielle Differentialgleichung in Kapitel 3. Beide
Modelle können als diffusive Systeme beschrieben werden, die durch eine externe Kraftein-
wirkung gestört werden. Der Effekt dieser Krafteinwirkung kann durch den sogenannten Dif-
fusionskoeffizient D(t) gemessen werden. In diesem Teil der Doktorarbeit wird bewiesen, dass

D(t) jeweils wie (log t)
1
2 und (log t)

2
3 divergieren (im Sinne einer tauberianischen Umkehr).

Diese Ergebnisse beweisen Vermutungen für die jeweiligen Modelle. Die Beweise verwenden
Werkzeuge der Gaußschen Analysis und ein iteratives Abschätzungsschema um die Resolven-
ten der Generatoren von assoziierten Markovprozessen zu untersuchen.

Das zweite Phänomen ist das Phänomen fast-kritischer Skalierungsgrenzwerte. Insbeson-
dere wird in Kapitel 4 ein fast-krtischer Grenzwert eines Dimer-Modells untersucht. Die
Schwankungen des planaren Dimer-Modells in zwei Dimensionen sind eine der wenigen Mo-
delle der statistischen Mechanik, für die konforme Invarianz rigoros gezeigt werden konnte.
Diese konforme Invarianz gilt für gewisse kritische Gewichte und gewisse Randbedingungen.
In Kapitel 4 wird das Dimer-Modell mit fast-kritischen Gewichten untersucht. Wir führen
Teil des in [N. Makarov and S. Smirnov, Off-critical lattice models and massive SLEs, 2009,
Proceedings of ICMP 2009] initiierten Programms aus, in dem wir einen Grenzwert der ent-
sprechenden Höhenfunktion finden, und diesen Grenzwert mit massiver SLE2 verbinden. Wie
es für fast-kritische Modelle typisch ist, ist dieser Grenzwert nicht mehr konform-invariant,
sondern konform-kovariant. Der Beweis verwendet Verknüpfungen mit dem ‘loop-erased ran-
dom walk’ via Temperleys Bijektion und Wilsons Algorithmus. Wir beweisen dabei auch
eine exakte Girsanov Identität für den Simple Random Walk auf dem Dreiecksgitter, die
unabhängig vom Hauptresultat von Interesse sein könnte.

Das dritte Phänomen ist die fast-sichere Konvergenz der asymptotischen Geschwindig-
keit eines Teilchens zweiter Klasse in einem Vielteilchensystem ausgehend von spezifischen
nicht-stationären Startbedingungen. Spezifischer untersuchen wir das ‘stochastic six-vertex
model’ auf dem Quadranten Z≥0×Z≥0 mit ‘step initial conditions’, das heißt jede Kante am
linken Rand ist besetzt, während jede Kante am unteren Rand leer ist. Wir fügen dann ein
Teilchen zweiter Klasse am Ursprung, von unten kommend, hinzu. Das Haupttheorem von Ka-
pitel 5 besagt, dass die asymptotische Geschwindigkeit dises Teilchens fast sicher gegen einen
zufälligen Grenzwert konvergiert. Dies erlaubt es den ‘stochastic six-vertex speed process’
zu definieren. Um diesen Satz zu beweisen, verwenden wir Methoden aus der integrierbare
Wahrscheinlichkeitstheorie, um präzise Abschätzungen der Verteilungsränder der assoziierten
Höhenfunktion zu finden. Zusätzlich zeigen wir ein neues Resultat, das uns ermöglicht, das
Verhalten eines einzelnen Teilchens zweiter Klasse mithilfe einer größeren Menge von Teilchen
dritter Klasse zu kontrollieren.
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Chapter 1

Introduction

At the heart of statistical mechanics is the concept of scales and many phenomena are tied
to them. One starts with a model on the microscopic scale and then tries to understand
the large scale or macroscopic behavior. If this is successful it involves a certain vanishing
of microscopic properties of the model. This gives rise to the phenomenon of universality.
Many different microscopic models exhibit the same large-scale behavior and can be put into
different universality classes according to their large-scale behavior. Another common
phenomenon is the vanishing of randomness altogether, with the large-scale behavior of a
system being deterministic. This is often called a law of large numbers, but in specific cases
might also be called a limit shape or a hydrodynamic limit, in the cases of random curves
or interacting particle systems respectively. In such cases, one can consider mesoscopic
scales, which are between the micro- and macroscopic scales, and capture the fluctuations
around the deterministic limit. All of these phenomena can occur in models in and out-of-
equlibrium.

These phenomena will appear in various places in this thesis, which is structured into the
following chapters.

• In Chapter 2 we study a two-dimensional Brownian particle in a divergence-free drift
field, that is the solution of the SDE

dXt = ω(Xt)dt+ dBt ,

where ω is the curl of a mollified Gaussian free field. We prove that the (annealed) mean-
square displacement of this particle at time t grows like t

√
log t, proving a conjecture

from [TV12]. This model is one of several where this type of
√
log t super-diffusive

behavior is expected. To the best of the authors’ knowledge, this is the first result that
establishes such precise asymptotics. The proof uses an associated environment process
from the theory of diffusions in random environment, as well as Gaussian analysis
together with an estimation scheme based on the seminal [LQSY04] to understand the
generator of this process.

Chapter 2 is based on the article [CHST22], which is joint work with Fabio Toninelli
and Giuseppe Cannizzaro.

• In Chapter 3 we study the stochastic Burgers equation, which was introduced in
[vBKS85] as a continuous approximation of the fluctuations of the asymmetric simple
exclusion process. Formally it is given by

∂tη =
1

2
∆η +w · ∇(η2) +∇ · ξ ,

1



2 CHAPTER 1. INTRODUCTION

where ξ is d-dimensional space time white noise and w is a fixed non-zero vector.
We consider this equation in dimension d = 2 and at stationarity. We prove that its
bulk diffusion coefficient behaves like (log t)

2
3 , which confirms a prediction made in

[vBKS85]. This complements the recent results in [CGT24] where this equation was
studied in dimensions 3 and higher and in dimension 2 in the weak-coupling regime. It
can be seen as a continuous analog to [Yau04], which proved (log t)

2
3 super-diffusivity

for the two-dimensional asymmetric simple exclusion process. The overall structure of
the proof is similar to Chapter 2, but the different types of models and the different
universality classes change many details.

Chapter 3 is based on the preprint [DGHS24], which is joint work with Damiano De
Gaspari.

• In Chapter 4 we study the dimer model on the square and hexagonal lattice with cer-
tain weights. For uniform weights, the dimer model has been shown to be conformally
invariant, see [Ken00]. This can be seen as a critical point for the dimer model. The
weights we consider make the model near-critical. The result is a non-trivial interpol-
ation between the critical and non-critical models. The limit is no longer conformally
invariant, but conformally covariant: it depends on a drift field α, which transforms
under conformal maps in a specific way. More specifically we

– connect this near-critical dimer model to massive SLE2 as constructed by [MS10].

– show convergence of the associated height function on arbitrary Temperleyan do-
mains of the square and hexagonal lattice.

– prove the conformal covariance of this limit.

A novel tool in the proof is an exact discrete Girsanov identity for the triangular lattice
which might be of independent interest.

Chapter 4 is based on the preprint [BHS22], which is joint work with Nathanaël
Berestycki.

This article grew out of the author’s master thesis, which causes there to be some overlap
with said thesis in Section 4.3. All other parts of Chapter 4 have been significantly
extended or are entirely new when compared to the Author’s master thesis.

• In Chapter 5 we study the stochastic six-vertex model with step initial conditions. In
particular, we study the model on the quadrant Z≥0×Z≥0 with all incoming positions
from the left occupied and all incoming positions from the bottom empty. Adding a
single second-class particle at the origin, entering from the bottom, we prove that the
speed of this second-class particle converges almost surely to a random limiting speed.
This allows us to construct the stochastic six-vertex speed process.

To obtain this result we prove an effective hydrodynamic limit estimate using tools from
integrable probability as well as a novel lemma, which allows us to control the position of
an individual second-class particle by controlling a larger number of third-class particles.
The “effective hydrodynamic limit estimate” is one that gives quantitative bounds on
the fluctuations around the hydrodynamic limit at finite time S, on intervals of size
sublinear in S.

Chapter 5 is based on ongoing work with Hindy Drillick.



1.1. SUPERDIFFUSIVITY 3

1.1 Superdiffusivity

In Chapters 2 and 3 we study two different models exhibiting a phenomenon known as
superdiffusivity. In simple words, the phenomenon of superdiffusivity is the following. One
starts with a system (usually described mathematically as a Markov process) that is in some
sense diffusive. In our case, it will be a tracer particle driven by Brownian motion or a scalar
fluctuation field driven by the heat equation with additive space-time white noise. Then one
adds an external (possibly random) forcing, that makes the evolution irreversible. In the case
of the tracer particle, the forcing typically consists of a random divergence-free vector field
(a drift term in the equation). For the fluctuation field, the forcing usually takes the form of
a non-linear term in the stochastic PDE. After this perturbation, it may happen (according
to the spatial dimension, the nature of the nonlinearity, etc.) that correlations spread faster
in space (as a function of time), or that the typical displacement of the tracer particle grows
faster with time, with respect to the diffusive case. In this case, we say that the driven system
behaves superdiffusively.

Concretely, the (super)diffusive behavior of our system is usually encoded in the so-called
Diffusion coefficient, defined as

D(t) =
1

t

1
R
|x|2S(x, t)dx

where S(x, t) is a suitable auto-correlation function. For instance, in the case of the tracer
particle S(x, t) is the probability density of finding the particle at position x at time t, given
that the initial position is at x = 0 so that D(t) is just the mean square displacement of
the particle, divided by t. For driven lattice gases (interacting particle systems on Zd, for
instance, the well-known Asymmetric Simple Exclusion Process), S usually has the form
S(x, t) = Cov[η(x, t), η(0, 0)], with η(x, t) the particle occupation variable at the lattice site
x and Cov denoting the covariance with respect to the law of the stationary process.

In the case of interacting particle systems, S(x, t) can be interpreted as the probability
that a second-class particle that starts at position x = 0 at time t = 0, is at x at time
t and the diffusion coefficient is 1

t times the mean square displacement of the particle.1

If the system “behaves diffusively”, the second-class particle or the tracer particle in the
divergence-free drift field should behave like a Brownian motion at large scales. Since the
typical displacement of a Brownian motion at time t grows linear in t, this means that diffusive
behavior corresponds to a D(t) that is uniformly of order 1 as t → ∞, while superdiffusive
behavior corresponds to D(t) growing to infinity.

As already mentioned, whether superdiffusivity occurs or not depends crucially on the
space dimension, as well as on the nature of the forcing. In many cases, for instance, for
interacting particle systems of exclusion type, self-interacting polymers, and tracer particles
in random divergence-free vector fields, the behavior of D(t) depending on the dimension d
is as follows (see [TV12, Yau04]):

D(t)
t→∞≈

		
t
1
3 , for d = 1

(log t)
1
2 or (log t)

2
3 , for d = 2

C, for d ≥ 3

These different cases can be seen as universality classes of superdiffusive systems. For d ≥
3, while the system still behaves diffusively, there is still some increase in the diffusivity,

1second-class particles also appear in Chapter 5, see Section 1.3.1 for a definition of the multi-class stochastic
six-vertex model.
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indicated here by the constant C, which is strictly larger than for the unperturbed diffusive
system. In this case, often one can prove a Gaussian scaling limit, for instance, an invariance
principle for the tracer particle, or convergence of the fluctuation field to a linear stochastic
heat equation. This limit does depend on the forcing introduced, in particular when the
forcing has an associated direction and strength, the limit will depend on these quantities,
see [CGT24, LOV04, HTV12].

As is apparent from the formula above, space dimension d = 2 is in a sense marginal,
in that it separates superdiffusive (d < 2) from diffusive (d > 2) behavior. For d = 2,
superdiffusive effects are only logarithmic, and the exponent γ of the logarithm, γ = 1/2
or γ = 2/3, depends on the symmetries of the model. The two cases in dimension d =
2 correspond to isotropic or anisotropic superdiffusivity. In anisotropic superdiffusivity
(γ = 2/3) there is a direction (e.g. the first coordinate axis) in which the forcing acts and
the system behaves diffusively in the other direction. The setting of [Yau04] gives an easy
example of this: It studies an exclusion process, in which particles move on Z2 and perform
jumps at the rate given by

p(x) =

		
1, if x = e1
1
2 , if x = ±e2

0, else.

One can see that in the vertical direction, the particles perform a simple symmetric exclusion
process, which is known to be diffusive. In the horizontal direction, they perform a totally
asymmetric exclusion process, known to be superdiffusive. The behavior in the two directions
is not independent, since it is one set of particles performing both horizontal and vertical
jumps. Another example of this class is the Stochastic PDE treated in Chapter 3, i.e., the
two-dimensional Stochastic Burgers equation. The nonlinearity is of transport type and only
transports in the direction w, see (1.6).

In the isotropic cases, corresponding to the exponent γ = 1/2, the forcing acts in every dir-
ection, often isotropically. The stochastic differential equation (1.1) in Chapter 2, describing
a tracer particle in two dimensions, subject to Brownian noise and to a quenched divergence-
free driving field, is easily seen to be of this type since its (annealed) law is rotationally
invariant. Another example of a system belonging to the isotropic (γ = 1/2) universality
class is the stochastic PDE given formally by

∂tH = ∆H + (∂x1H)2 − (∂x2H)2 + ξ

with ξ a space-time white noise, H = H(x, t) a scalar field and x = (x1, x2) ∈ R2. Somewhat
confusingly, this equation is known as the ”Anisotropic KPZ equation” (AKPZ), in contrast
to the usual two-dimensional KPZ equation whose non-linearity is |∇H|2. While the AKPZ
equation does indeed have two distinguished directions (distinguished by the minus sign in
the non-linearity), the non-linearity (that is responsible for the super-diffusive behavior) acts
in a sense symmetrically in the two directions, as can be seen by remarking the following
symmetry: if

H̃(x1, x2) = −H(x2, x1)

then the process H̃ has the same law as H.

Here is a quick overview of results establishing (log t)
2
3 or (log t)

1
2 superdiffusivity in

two-dimensional models:

• The first proof of (log t)
2
3 superdiffusivity was given in [Yau04] for the 2-dimensional

asymmetric exclusion process mentioned above.
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• In [CHST22], which corresponds to Chapter 2 of this thesis, (log t)
1
2 superdiffusivity

is proved for the first time for a model in the γ = 1/2 universality class, confirming
a conjecture made in [TV12]. The studied model is a Brownian tracer particle in a
turbulent fluid and will be introduced in section 1.1.1 below. It is worth mentioning
that the isotropic case requires, in some sense, finer estimates than the anisotropic case,
see the discussion in Section 1.1.6 and in Chapter 2.

• In [dLFW24] an extended version of the above result was proved, where the drift field
evolves in time as the solution of an independent (fractional) stochastic heat equation.
If the environment evolves too quickly, corresponding to a fractional heat equation
with Laplacian term (−∆)s with 0 ≤ s < 1, the system becomes diffusive, while for
s ≥ 1 the behavior is essentially unchanged. The authors also manage to interpolate
between the two regimes with a somewhat artificial “logarithmically fractional” heat
equation resulting in (log t)θ superdiffusivity for θ ∈ (0, 12), which falls outside of the
two universality classes mentioned above.

• In [CMOW22] a different proof of the result from [CHST22] using methods from the
homogenization theory of PDEs was given. A particular upside of these methods is that
they were able to prove superdiffusivity ”in real time”, rather than just in a Tauberian
(Laplace transform) sense, see also the discussion in Section 1.1.1.

• In the recent preprint [ABRK24] homogenization results were used to obtain a quenched
central limit theorem for the model in [CHST22]. To do this the diffusion is rescaled
not diffusively but like

(| log ε|)− 1
4 εXt/ε2 ,

to remove the exploding variance as ε → 0. This result achieves two previously un-
accomplished goals. It proves superdiffusivity in a quenched sense, which the results
in [CHST22, dLFW24, CMOW22] were not able to do, and it deals with the ”strong
coupling limit”, see the discussion in section 1.1.8.

• In [CET23a] (log t)
1
2 superdiffusivity was shown for the 2-dimensional AKPZ equation.

This result was written more or less in parallel to [CHST22].

• In [DGHS24], which corresponds to Chapter 3 of this thesis, (log t)
2
3 superdiffusivity

is proven for the 2d stochastic Burgers equation. Compared to the result [Yau04] by
Yau, this uses more modern techniques, which leads to much better estimates on the
sub-dominant corrections to the (log t)

2
3 , and a more approachable presentation. In par-

ticular, it avoids splitting estimates into good and bad regions, which has been a major
obstacle in replicating the success of [Yau04]. It is also the first (log t)

2
3 superdiffusivity

result for a continuous model and in particular for a critical SPDE.

It should be mentioned that before these results established D(t) ≈ (log t)γ with the
precise exponent γ, there were several works giving rougher lower and upper bounds for
D(t), typically of order log log t and log t respectively for isotropically superdiffusive models

and of order (log t)
1
2 and log t for anisotropically superdiffusive models. These results use a

variational approach which we sketch in Section 1.1.4. Let us mention some results of this
type here:

• Before establishing (log t)
2
3 in [Yau04], Yau together with Landim, Quastel, and Salm-

hofer established sub-optimal superdiffusive bounds for the asymmetric exclusion pro-
cess in dimension 1 and 2 in [LQSY04].
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• In [TV12] super diffusive bounds were established for the model treated in Chapter 2
and for a self-interacting Brownian polymer. This self-interacting Brownian polymer is
also conjectured to be (log t)

1
2 superdiffusive, but this is still open. However, in [CG24]

an annealed central limit theorem was shown for this model in the weak coupling limit.
See Section 1.1.8 for a definition of the weak coupling regime and a discussion of such
results.

• In [LRY05] suboptimal superdiffusive bounds were shown for a lattice gas, which con-
sists of multiple interacting copies of the 2d ASEP model studied in [Yau04]. The way
these multiple 2d ASEP models interact makes the model belong to the isotropic su-
perdiffusivity class, and therefore the conjectured superdiffusivity is (log t)

1
2 . However,

this is still open.

As we see, there are several cases where these suboptimal bounds can be obtained, but the
full program of establishing D(t) ≈ (log t)γ with the correct exponent γ has not been carried
out. It would be very interesting to see if there is some more fundamental obstacle in these
cases preventing the method first used in [Yau04] from being applied.

In the rest of this section, we will introduce the two models from Chapters 2 and 3 and the
main results obtained in this thesis about them and then give a joint outline of the respective
proof found in those chapters, remarking on differences as we go along. We will make brief
detours to discuss the variational method used to obtain the first diffusive bounds mentioned
above. We will end this section by comparing with other types of results in this field, namely
strong and weak coupling limits.

1.1.1 Brownian particle in the curl of the Gaussian Free Field

In Chapter 2 we study the following SDE

dX(t) = ω(X(t))dt+ dBt , X(0) = 0 , (1.1)

where B(t) is a standard two-dimensional Brownian motion ω is defined as

x (→ ω(x) = (ω1(x), ω2(x)) = (∂x2ξ(x),−∂x1ξ(x)), (1.2)

with ξ being the 2d Gaussian Free Field (GFF) about which, at this stage, we recall just
that it is a centered Gaussian distribution, whose covariance function is proportional to
the logarithm of the distance. This can be seen as a Brownian tracer particle moving in
a turbulent incompressible fluid: it moves on its own as a Brownian motion (dBt), but
is also pushed by the fluid (ω(X(t))dt). The fact that ω is by definition divergence-free
(∇ · ω = 0) can be interpreted as the incompressibility of the fluid, but is also essential for
the analysis, see Proposition 1.1.2. The turbulence is reflected in the randomness of the drift.
One can interpret the drift not changing in time as the particle moving much faster than the
surrounding fluid. However, letting the drift evolve in the most natural way, namely by a
stochastic heat equation, does not change the behavior of the system, see [dLFW24].

Equation (1.1) is formal, since the regularity of ω is too low for the classical solution
theory of SDEs, or even for more modern techniques, e.g. [CC18, DD16]. We will regularize
it by convolving ω with a smooth, radially symmetric bump function U , which satisfies2
R2 U(x)dx = 1. Call this regularized drift field ωU . As opposed to what one might expect
we will not let this regularization go to 0, but rather we will look at large times t. This is
actually equivalent, since the diffusively rescaled diffusion

Xε
t = εXt/ε2 (1.3)
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satisfies
dXε

t = dB̃t + ωUε
(Xε

t ) ,

where the law of B̃t is still standard 2d Brownian motion, and U ε is given by

U ε(x) = ε−2U(ε−1x) .

Note that
2
R2 U

ε(x)dx = 1 under this rescaling and the bump function becomes more and
more concentrated around the origin as ϵ → 0, thus converging to a Dirac δ. This is closely
connected to the fact that this equation is formally invariant under diffusive scaling. Consid-
ering a fixed time horizon and taking the regularization to 0 is equivalent to considering large
times and fixing the regularization parameter; thus, we will restrict ourselves to the latter
point of view.

As mentioned in the beginning, to prove superdiffusivity of a system, one first defines a
diffusion coefficient D(t). In this case, it will be simply the mean-squared displacement, i.e.,
tD(t) = E(|X(t)|2) Our main theorem concerns the Laplace transform of this quantity (the
reason we work in Laplace transform is explained at the end of this section):

D(λ)
def
=

1 ∞

0
e−λtE(|X(t)|2)dt, for λ > 0 .

Here, E denotes the double average (annealed average) with respect to the Brownian noise
and the realization of the drift field. The main result of Chapter 2 is

Theorem 1.1.1 (informal version of Theorem 2.2.2 in Chapter 2). Up to multiplicative
(log log λ)1+ errors

D(λ)
λ→0+≈ λ2

√
log λ

. (1.4)

This result is meaningful because, as usual, the small-λ behavior of the Laplace transform
of a function is related to the large-time behavior of the function itself. While there exists
a whole set of tools (Abelian/Tauberian theorems, see [BGT89]) that address this corres-
pondence under suitable assumptions, there exists no general theorem turning the bound on
D(λ) for λ small into pointwise upper/lower bounds on D(t). In our concrete case, however,
a simple adaptation to our setting of an argument in [QV08] allows us to deduce from (1.4)

the pointwise upper bound D(t) ≤ (1 + log(1 + t))
1
2
+o(1). For the lower bound, the same

argument does not work but the general theory of Tauberian inversion [BGT89, Theorem
1.7.1]) gives the following:

lim sup
t→∞

D(t)√
log t (log log t)−1− > 0 .

Also, if we had an asymptotic equivalence of the form D(λ)
λ→0+∼ C λ2√

log λ
would imply

1

T

1 T

0
tD(t)dt ∼ CT 2

2

E
log t ,

by general Tauberian inversion theorems, see [Fel91, Chapter XIII.5].
To adapt the general strategy of [Yau04] we first must change perspective on our process

to see it as a stationary Markov process. This is done by looking at the Environment as
seen from the particle ωt defined as

ωt = ωt(x)
def
= ω(X(t) + x), x ∈ R2 .

The following is a well-known fact from the theory of diffusions in random environments, see
[KLO12, Chapter 11], in particular Proposition 11.10.
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Proposition 1.1.2. Consider a diffusion in a divergence-free drift field, whose law is trans-
lation invariant and ergodic. Then the environment process, as defined above, is a stationary
ergodic Markov process.

Let us give some intuition for this result: Given a general random drift field F : R2 → R2

it can be decomposed into a part that is divergence-free and a part that is of gradient type:

F (x) = ∇̃ψ +∇ϕ

where ∇̃ is the rotated gradient as in (1.2) and ϕ, ψ : R2 → R are potentials. Given a
realization of F the potentials ϕ and ψ are defined uniquely up to constants. Considering
the SDE

dX(t) = F (X(t))dt+ dB(t), X(0) = 0 ,

for a standard Brownian motion the two potentials have the following effect: The term ∇̃ψ
pushes X(t) along the level lines of ψ, while the term ∇ϕ pushes X(t) in the direction of
steepest ascent with respect to ϕ. Thus the expected value of ϕ(X(t)) − ϕ(0) will generally
be positive (at least in the case where only the ϕ term is present.) This is immediately an

obstacle to the stationarity of the environment process F (x, t)
def
= F (Xt + x). However, when

only the ψ term is present, no such obstacle exists. For example, if there is no diffusion
term (i.e. one considers instead of the SDE the associated ODE) then the equation with no
∇ϕ will simply trace the level lines of ψ. Then ψ(X(t)) − ψ(0) will just be 0 for all t since
the process does not leave the value it started at. In our case, the drift field is ∇̃ξ with ξ
being a mollified Gaussian free field, so the assumptions are easily satisfied and ωt is indeed
a stationary Markov process.

Writing the first component of the solution X(t) of (1.1) in integral form, we obtain

X1(t) = B1(t) +

1 t

0
ω1(Xs)ds = B1(t) +

1 t

0
ϕ(ωs)ds ,

where ϕ is the functional defined by

ϕ(ω) = ω1(0) ,

i.e., the evaluation of the first component of the field at 0. Since the process is isotropic it
suffices to study E[|X1(t)|2] and since E[|Bt|2] = t, any superdiffusivity must come from the
term involving the integral of ϕ. The rewriting above has the advantage that the second term
is an additive functional of the stationary Markov process ωt. This implies as in [CES21,
Lemma 5.1] that

D̃(λ)
def
=

1 ∞

0
e−λtE

�
|
1 t

0
ϕ(ωs)ds|2

$
dt =

2

λ2
E[ϕ(ω)(λ− G)−1ϕ(ω)], (1.5)

where G is the generator of the Markov process ω and E (as opposed to the double average E)
denotes the expectation with respect to the stationary measure of the environment process,
i.e., the law of the GFF. Note that this allows us to rewrite a quantity associated with an
expectation with respect to the process ωs as an expectation with respect to just the stationary
law. This is the main reason for performing the Laplace transform and the starting point for
the method. Before we see how to deal with the resolvent (λ− G)−1 we will now see how to
get to this point for the model from Chapter 3.
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1.1.2 The stochastic Burgers equation

In Chapter 3 we study the stochastic Burgers

∂tη =
1

2
∆η +w · ∇(η2) +∇ · ξ , (1.6)

where η is a scaler field depending on space and time, w ∈ R2 ̸= 0 is a fixed vector controlling
the strength and direction of the non-linearity, and ξ is d-dimensional space-time white noise.
Van Beijeren, Kutner, and Spohn introduced this equation in [vBKS85] as a toy example of a
driven diffusive system with one conserved quantity. They already conjectured superdiffusive
behavior in dimensions 1 and 2 with Diffusion coefficients t

1
3 and (log t)

2
3 respectively, based

on a mode-coupling heuristic.
We will restrict to dimension d = 2, and just briefly mention that the equation d = 1 is

(at least formally) the gradient of the KPZ equation, and the case d ≥ 3 was recently treated
in [CGT24] where large-scale Gaussian fluctuations were shown. Dimension d = 2 is again
scaling critical, in the sense that the equation above is formally invariant under the diffusive
rescaling

ηN (t, x) = Nη(N2t,Nx) . (1.7)

Since any potential solution of equation (1.6) is too rough for the square in the non-linearity
to be defined, we again need to regularize. One could try to mollify the noise ξ, but we found
it more convenient to regularize the non-linearity with a Fourier cutoff Πa acting in Fourier
as 0Πaη(k)

def
= .η(k)1|k|≤a.

To avoid integrability issues we will also work on a large torus T2
N of side length 2πN , instead

of the whole plane. This leads to the following equation

∂tη =
1

2
∆η +w ·Π1∇(Π1η)

2 +∇ · ξ . (1.8)

Related to the formal scale invariance of the model, there is again an equivalence between
looking at large scales and removing the regularization. By defining the rescaled solution ηN

as in (1.7) one obtains a solution to the following equation on the fixed size torus T2 def
= T2

1:

∂tη
N =

1

2
∆ηN +w ·ΠN∇ 6

ΠNηN
=2

+∇ · ξ . (1.9)

The diffusion coefficient will now depend on N and we will take a limit N → ∞ in the main
statement. Compared to the previous section, the definition of the diffusion coefficient is less
obvious. We adopt the following definition of bulk diffusion coefficient:

DN (t) = 1 +N2 2|w|2
t

1 t
N2

0

1 s

0

1
T2
1

E
6
ΠN :(ΠNηN )2:(r, x)ΠN :(ΠNηN )2:(0, 0)

=
dxdrds .

(1.10)
The reader should feel free to skip this exact expression for now. The formula has a similar
structure to the bulk diffusion coefficients for particle systems, e.g. in [Yau04]. For a heuristic
derivation of this formula, see Section 3.B.

Remark 1.1.3. It might seem that we are removing the regularization of the non-linearity
twice, once by letting N tend to ∞ and once by considering large times t. However, the first
limit is letting the volume go to infinity. We make no claims of convergence of ηN (x, t) as
N → ∞, and such a convergence would fail to hold. Working on the rescaled torus of size 1
is for notational convenience, and not necessary mathematically.
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The main theorem of Chapter 3 again regards the Laplace transform of tD(t),

DN (λ) =

1 ∞

0
e−λttDN (t)dt.

Given this definition, we can now formulate that main Theorem

Theorem 1.1.4 (informal version of Theorem 3.1.1). For w ̸= 0 and λ > 0 small

DN (λ) ≈ 1

λ2
| log λ| 23 ,

uniformly in N , up to multiplicative errors that are polynomial in log log | log λ|.
Again the same comments about Tauberian inversions as made after 1.1.1 apply. It is

also worth noting that the errors are smaller than the ones obtained in the corresponding
result in [Yau04], which are of order exp((log log | log λ|)2).

The expectation E in (1.10) is with respect to the stationary process. It can easily be
checked (at least formally) that spatial white noise is stationary for the stochastic Burgers
equation, and regularization by a cut-off in Fourier does not change the invariant measure in
this case. This process is however not ergodic, since the equation is conservative, and, thus,

the 0 mode /ηNt (0)
2
T η

N
t (x)dx is constant in time. Because of this, we use stationary white

noise conditioned to have average 0 instead, which is still invariant, since the Fourier modes
of white noise are independent. See also the discussion at the beginning of Section 3.2.2.

The Markov process describing the evolution of the stochastic Burgers equation has a
generator LN and the Laplace transformed bulk diffusivity DN (λ) can again be expressed as
an inner product using the resolvent:

Proposition 1.1.5 (Informal version of Proposition 3.3.1). For any N and λ > 0 the Laplace
transform of the bulk diffusivity satisfies

DN (λ) =
1

λ2
+

C

λ2
E
�
NN [ηN ](λN2 − LN )−1NN [η]

!
where C is an explicit constant depending on w, and NN [ηN ] is an explicit quadratic observ-
able.

Here, E denotes expectation with respect to the law of the spatial white noise. Using this,
as in (1.5) for the diffusion in the curl of the Gaussian free field above, the proof of the main
theorems has been reduced to estimating a term of the shape ⟨ϕ, (λ − L)−1ϕ⟩ and the next
section will be dedicated to developing the tools to do so.

1.1.3 Generators and Gaussian Chaos Decomposition

The task at hand for both models is understanding a resolvent acting on observables of a
Gaussian field. Denote by L2(P) the space of square-integrable random variables with respect
to the stationary law P which is the law either of the environment ω in the case of Chapter 2
or of white noise in the case of Chapter 3. We want to understand better how the generators
G and L act on this space. Since in both cases P is Gaussian there is a powerful tool for this
task at hand: the Wiener chaos decomposition. By [Nua06, Theorem 1.1.1] L2(P) admits
and orthogonal Hilbert space decomposition given by

L2(P) =
∞'
n≥0

Hn ,
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where Hn is the n-th chaos, which is intuitively given by observables of degree n. It can be
defined as the closure of observables of the type1

(R2)n
f(x1:n):η(x1) . . . η(xn):dx1:n , (1.11)

where f is in some class of test functions and :X: denotes the Wick product associated with
P, which is essential for making the different chaoses orthogonal. We also used the convenient
shorthand notation x1:n for x1, . . . , xn, which we will use throughout this introduction. For
the white noise, (1.11) is slightly formal since we cannot evaluate η at points. However,
it can be made rigorous in various ways, since the above expression can be interpreted as
testing η against test functions, for example by using the polarization identity and Hermite
polynomials, see Section 3.2.2 or the first Chapter of [Nua06] for more detail. While ω has
been mollified, it is vector-valued, so the above expression needs to be modified by adding
indices to the test functions and the field, see (2.17).

In both cases, there is an isomorphism from the n-th chaos to Fock-space, which is the
space ΓL2

n of symmetric mean-zero kernels in n variables, with an inner product specified by
the specific structure of P. In the case of white noise on the torus, this is just n! times the
standard L2 inner product on (T2)n, while for the mollified Gaussian free field it takes the
form (in Fourier)

⟨ψn, ϕn⟩ def
= n!

1
R2n

nB
j=1

.V (pj)

|pj |2 ψ̂n(p1:n) ϕ̂n(p1:n) dp1:n , (1.12)

where .V = U ∗ U is the effect of the mollification and decays for large arguments, and the
denominator is from the Gaussian free field. This is the space where all of our calculations
will take place, and we freely identify operators acting on L2(P), on the chaoses, on ΓL2, and
the Fourier transformed kernels.

The generators of the two Markov processes have a structure that is particularly compat-
ible with the Wiener chaos decomposition.

Proposition 1.1.6 (part of Lemma 3.2.3). The generator L can be written as

L = L0 +A+ +A−

where −L0 is symmetric, positive definite and leaves the chaos invariant, i.e. L0(Hn) = Hn,
while A+ and A− are minus the adjoint of one another and increase and decrease the chaos
respectively, i.e. A+(Hn) ⊂ Hn+1.

The same decompositions hold for G, whose symmetric part is called −∆ in Chapter 2.
The way these operators act on kernels is completely explicit, here is the example for the
stochastic Burgers equation (see (2.22)):

F (L0φ) (k1:n) = −1
2 |k1:n|2φ̂(k1:n)

F 6AN
+φ

=
(k1:n+1) = − ι

π(n+ 1)

G
1≤i<j≤n+1

JNki,kj [w · (ki + kj)] φ̂
6
ki + kj , k{1:n+1}\{i,j}

=
F 6AN

−φ
=
(k1:n−1) = − ι n

π

n−1G
j=1

(w · kj)
G

ℓ+m=kj

JNℓ,m φ̂
6
ℓ,m, k{1:n−1}\{j}

=
,

where the indicator function J is given by

Jℓ,m
def
= 1{0<|ℓ|≤N,0<|m|≤N,0<|ℓ+m|≤N} .
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The exact expressions are not important for the sake of this introduction. We point out some
relevant features (that are also shared among the two models):

• The operator L0 is not only diagonal in chaos but also in Fourier: If the kernel φ is
concentrated on a single Fourier mode k1:n, then so is L0φ. We say such an operator is
acting via a Fourier multiplier, in this case σ(k1:n) = −1

2 |k1:n|2. Such operators are
much easier to deal with than other operators, and the aim of the estimates below is
often to estimate other operators with operators that act via a Fourier multiplier. In
particular, such operators are easy to invert, since their inverses simply act with the
Fourier multiplier 1/σ.

• The operator A+ can be seen as a combination of a “creation” and a gradient operator.
The term w · (ki+ kj) corresponds to a derivative in direction w. The increase in chaos
can be seen as splitting apart a particle with momentum m into all possible ways to
write m = ki + kj .

• In this case (i.e., the case of the stochastic Burgers equation), the operators A+ and
A− preserve total momentum, in the sense that a kernel concentrated on momenta
satisfying

H
ki = k for some fixed k will again be mapped to such kernel. While

this property will be used to simplify a step, see Lemma 3.3.5 and in particular (3.18)
below, this property is not satisfied by the corresponding operators for the diffusion in
Chapter 2 and does not seem to be essential for this analysis.

• Both the symmetric part of this generator and the one of Chapter 2 can be seen as a
generalized Laplacian. Indeed, in the first chaos, they act on kernels like a Laplacian.
However, on higher chaoses they act quite differently: one acts via Fourier multiplier
given by

Hn
i=1 |ki|2, while the other acts by multiplication with |Hn

i=1 ki|2. This can be
traced back to the randomness being injected into the system coming from white noise
in the case of the Burgers equation, while it comes from a single Brownian motion in
the case of the diffusion in the curl of the Gaussian free field. In general, the Laplacian
coming from the diffusion is more difficult to handle, since it can vanish even for large
momenta.

We are now ready to use this structure to estimate ⟨ϕ, (λ − L)−1ϕ⟩. Before we develop
the full setup using the truncated resolvent equation in Section 1.1.5, we will see in the next
section how this setup can already be used to find the first superdiffusive lower and upper
bounds.

1.1.4 Variational approach

One possible approach to estimating the term ⟨ϕ, (λ− L)−1ϕ⟩ is via a variational formula.

Lemma 1.1.7. For a selfadjoint A it holds that

⟨ϕ,Aϕ⟩ = sup
∥ρ∥<∞

{2⟨ϕ, ρ⟩ − ⟨ρ,A−1ρ⟩} (1.13)

To apply this to ⟨ϕ, (λ−L)−1ϕ⟩ we need to find the inverse of the symmetric part of (λ−L)−1,
which (by general linear algebra) is given by (λ− L)∗(λ− L0)

−1(λ− L). Plugging this into
(1.13) yields

⟨ϕ, (λ− L)−1ϕ⟩ = sup
∥ρ∥<∞

{2⟨ϕ, ρ⟩ − ⟨ρ, (λ− L)∗(λ− L0)
−1(λ− L)ρ⟩}
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= sup
∥ρ∥<∞

{2⟨ϕ, ρ⟩ − ⟨ρ, (λ− L0)ρ⟩ − ⟨(A+ +A−)ρ, (λ− L0)
−1(A+ +A−)ρ⟩} ,(1.14)

where the second equality is obtained by expanding the product on the right and canceling
a ⟨ρ, (A+ +A−)ρ⟩ with ⟨ρ, (A+ +A−)∗ρ⟩. To obtain a first upper bound from this one can
drop the second term to obtain

⟨ϕ, (λ− L)−1ϕ⟩ ≤ sup
∥ρ∥<∞

{2⟨ϕ, ρ⟩ − ⟨ρ, (λ− L0)ρ⟩} = ⟨ϕ, (λ− L0)
−1ϕ⟩ .

Recalling that ϕ is an explicit element of either H1 in Chapter 2 or of H2 in Chapter 3 and
that λ − L0 is easy to invert since it acts via a Fourier multiplier, this quantity is easily
calculated. In both cases, one ends up with a quantity that behaves like the integral1

R2

1|p|≤1

λ+ |p|2 = | log(λ)|+O(1)

for λ → 0, which yields the first upper bound.
In principle, to obtain a lower bound from the variational formula, one needs to choose

a function ρ, and any such choice will lead to a lower bound. A priori, it is unclear how to
choose such a test function in dependence on λ to obtain a good lower bound. As a first
attempt, at least for the diffusion (i.e. Chapter 2) one can look for a test function ρ in the
first chaos H1. Using the fact that A−ρ = 0 for any ρ in the first chaos, one ends up having
to upper bound the quantity

⟨A+ρ, (λ− L0)
−1A+ρ⟩ . (1.15)

This can be done (and indeed will be the first step in our iterative estimation scheme, see
Section 1.1.6). The upper bound one obtains is of the type

⟨ρ,Sρ⟩ (1.16)

where S is an operator acting via Fourier multiplier σ(k) = |k|2 log(1+ 1
λ+|k|2 ) in the isotropic

case (i.e., the diffusion in the curl of the GFF) and σ(k) = |w · k|2 log(1 + 1
λ+|k|2 ) in the

anisotropic case (i.e., the stochastic Burgers equation)2. Either way, thanks to this estimate
one can solve the modified variational problem (that is, where (1.15) is replaced by (1.16)
and ρ is restricted to the lowest chaos, as mentioned above) to obtain an estimate of the type

⟨ϕ, (λ−L)−1ϕ⟩ ≥
1
R2

1|p|≤1

λ+ |p|2 + σ(p)
dp ≳

�
log | log(λ)|, in the isotropic case and

| log λ| 12 , in the anisotropic case.
(1.17)

See [TV12] for these calculations carried out for the diffusion in the curl of the GFF and a
related anisotropic model. One can already see the difference between the anisotropic and
isotropic universality classes, which will become even more apparent in Section 1.1.6 below.

This is how the superdiffusive upper and lower bounds are obtained in [LQSY04, LRY05,
TV12]. In principle, there is no obstacle to improving at least the lower bound by taking
ρ with values in larger and larger chaoses. However, from the analysis below it becomes
clear, that the expressions for ρ would become increasingly complex, to the point where such
calculations would become very hard to carry out. We did not proceed by immediately taking
a specific test function and evaluating it inside 1.13, but instead first found the bound (1.16).
This already indicates the general strategy. If such a bound was not available, but instead
one only had a specific ρ which obtains the first lower bound (1.17) it would not be possible
to proceed like below. Indeed, this is the case for the self-repelling Brownian polymer model
first introduced in [TV12] and recently revisited by [CG24].

2In the anisotropic case we are dropping (for the sake of this informal discussion) some terms which need
to be dealt with separately, namely the “off-diagonal” terms, see Lemma 3.4.7 for their definition and the
iterative estimates in Section 1.1.6 to see how they are estimated.
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1.1.5 Truncated resolvent equation

As we have seen in the previous section, we need more sophisticated tools to estimate ⟨ϕ, (λ−
L)−1ϕ⟩. The difficulty lies in inverting the operator (λ− L). While ϕ is purely either in the
first or second chaos, the solution to the generator equation (λ−L)ψ = ϕ has components in
every chaos and is notoriously hard to find explicitly. To avoid this problem, we will truncate
this equation. Let I≤n be the projection onto the first n chaoses, i.e. ontoH≤n =

(
0≤k≤nHk.

Let ψ(n) be the solution to the truncated generator equation, that is,

I≤n(λ− L)I≤nψ
(n) = ϕ. (1.18)

This is useful due to the following Lemma, which was first proved in [LQSY04, Lemma 2.1].

Lemma 1.1.8. For every n ≥ 1, one has

⟨ϕ, ψ(2n)⟩ ≤ ⟨ϕ, (λ− L)−1ϕ⟩ = ⟨ϕ, ψ⟩ ≤ ⟨ϕ, ψ(2n+1)⟩.

Furthermore, the upper and lower bounds both converge to ⟨ϕ, ψ⟩.
The proof of this is not specific to the model, but rather only needs the basic properties

of the decomposition L = L0 +A+ +A− and its interaction with the chaos decomposition:

• The operator L0 is symmetric and leaves the chaos invariant.

• The operator A+ and A− satisfy (A+)
∗ = −A−, A+ increases the chaos by 1, while

A− decreases it by one.

• The observable ϕ is in finitely many chaoses.

The reason this is useful is that the truncated equation (1.18) is a finite triangular system:												

6
λ− L0

=
ψ
(n)
n −A+ψ

(n)
n−1 = 0,6

λ− L0

=
ψ
(n)
n−1 −A+ψ

(n)
n−2 +A∗

+ψ
(n)
n = 0,

. . .6
λ− L0

=
ψ
(n)
2 −A+ψ

(n)
1 +A∗

+ψ
(n)
3 = ϕ2,6

λ− L0

=
ψ
(n)
1 +A∗

+ψ
(n)
2 = ϕ1 ,

where in Chapter 3 ϕ1 is zero, while in Chapter 2 ϕ2 is zero. This system can be solved

recursively starting from the top by expressing ψ
(n)
n in terms of ψ

(n)
n−1 and then ψ

(n)
n−1 in terms

of ψ
(n)
n−2 and so on. Doing so leads to the recursively defined operators

H1
def
= 0 ,

Hj+1 = A∗
+(λ− L0 +Hj)

−1A+ , for j ≥ 1 . (1.19)

Note that the definition of the operators Hk in Chapters 2 and 3 differs by a shift in the index
k by 1. This is a matter of convention and stems from the observable ϕ being in the first or
the second chaos. For this introduction, we will pretend the operators start from index j = 1
in both cases for simplicity. Since ϕ is only in the first or second chaos, we only need to find

ψ
(n)
1 or ψ

(n)
2 . Using the operators Hj we can express this solution by

⟨ϕ, ψ(n)⟩ = ⟨ϕ, ψ(n)
1 ⟩ = ⟨ϕ, (λ−∆+Hn)

−1ϕ⟩ (1.20)
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in the case of ϕ = ϕ1, i.e. the diffusion in Chapter 2. In the case ϕ = ϕ2 there is an additional
term:

⟨ϕ, ψ(n)⟩ = ⟨ϕ, ψ(n)
2 ⟩ = ⟨ϕ, (6(λ− L0) +HN

k −AN
+ (λ− L0)

−1AN
−
=−1

)−1ϕ⟩ .

In this case the operator −AN
+ (λ − L0)

−1AN− does not actually give a contribution, see
Lemma 3.3.5. This is however due to a special property of the bulk-diffusivity. For a general
observable in the second chaos, one would have to estimate this term separately. This is
possible and not fundamentally different from the estimates carried out here, see [CET23a,
Section 3.2].

Thus, we have further reduced the task to understanding the operators Hk. By induction,
one can see that the Hk are self-adjoint, positive operators that leave the chaos invariant.
However, their structure is still quite complicated. Unpacking the definition one can see
that to write down Hkϕ for some specific ϕ ∈ H1 one encounters expressions in all chaoses
up to Hk and has to repeatedly invert operators on these spaces. Since the only operators
that we can easily invert are those that act by a Fourier multiplier (see the discussion after
Proposition 1.1.6), the aim will be to use the recursive structure of the Hk to find such
estimates. These recursive estimates will be outlined in the next section.

1.1.6 Iterative estimates

The goal of the iterative estimates is to bound the operators Hk with operators Zk that act
via a Fourier multiplier. We use the following partial operators

Definition 1.1.9. Given two selfadjoint operators A and B on ΓL2,

A ≤ B if and only if ∀n ∀φ ∈ ΓL2
n ⟨Aφ,φ⟩ ≤ ⟨Bφ,φ⟩ ⇔ B −A ≥ 0 ,

where the last statement is taken to mean that B −A is a positive operator.

For this partial ordering, the following well-known lemma holds

Lemma 1.1.10. For any two operators A and B on ΓL2 it holds that

0 < A ≤ B ⇔ 0 < B−1 ≤ A−1 .

This means that, given a bound of the form

Hk ≤ Zk ,

by using the definition (1.19) this immediately implies the bound

Hk+1 ≥ (A+)
∗(λ− L0 + Zk)

−1A+ . (1.21)

Since the first upper bound in (1.16) is already of this type, we have a starting point. However,
finding a good form of the Zk is far from trivial. If one tries to make all estimates as sharp as
possible, the complexity of the expressions grows with each iteration, and it is unclear how
to write down or prove a general upper or lower bound. On the other hand, if one loses too
much at each iteration, the bounds one obtains will fail to determine the behavior of D(λ).

Let us look at the upper and lower bounds in Section 2.4.1. Recall that for this model L0

is written as (−∆).
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Upper and lower bounds for Chapter 2

For k ∈ N, x > 0 and z ≥ 0 we define L, LBk and UBk as follows

L(x, z) = z + log(1 + x−1),

LBk(x, z) =
G

0≤j≤k

(12 log L(x, z))
j

j!
and UBk(x, z) =

L(x, z)

LBk(x, z)

and for k ≥ 1, σk, as

σk(x, z) =

UB k−2
2
(x, z), if k is even,

LB k−1
2
(x, z), if k is odd.

Note that σ1 ≡ 1. All the properties we need on the functions UBk,LBk are summarized in
Lemma 2.A.1. Further, let

zk(n) = K1(n+ k)2+2ε and fk(n) = K2

E
zk(n),

where K1, K2 are absolute constants and ε is the small positive constant that appears in the
statement of Theorem 2.2.2.

Finally, for k ≥ 1 let Sk be the operator whose multiplier is σk, i.e.

Sk =

�
fk(N )σk(λ−∆, zk(N )) if k is even,

1
fk(N )

6
σk(λ−∆, zk(N ))− fk(N )

=
if k is odd,

whereN is the number operator acting on the n-th chaos as multiplication by n, i.e., (Nϕn) =
nϕn for ϕn ∈ Hn. We are now ready to state the following theorem.

Theorem 1.1.11 (Theorem 2.4.2 from Chapter 2). For any ε > 0, the constants K1,K2

can be chosen such that the following holds. For 0 < λ ≤ 1 and k ≥ 1, one has the operator
bounds

H2k−1 ≥ c2k−1 (−∆)S2k−1

and
H2k ≤ c2k (−∆)S2k

where c1 = 1 and

c2k =
π

c2k−1

7
1 +

1

k1+ε

>
, c2k+1 =

π

c2k

7
1− 1

(k + 1)1+ε

>
. (1.22)

There is quite a bit to take in here, so let us notice several things about these bounds.

• Forgetting about the constants ck and setting fk = zk = 0, the upper and lower bounds
both converge to (−∆) log(λ − ∆)

1
2 , which is coherent with the expected behaviour.

It is interesting whether or not the operators Hk converge to a fixed point of (1.19)
as k → ∞. In [CGT24] an approximate version of such a fixed point is found in the
weak-coupling regime.

• The terms zk and fk give polynomial additive and multiplicative terms in the upper
and lower bounds. These are not problematic since we will apply Lemma 1.1.8 for k
being of order log | log λ|. Thus these polynomial terms are of lower order, and indeed
give the subdominant terms in the main statement.
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• The general strategy is to split (1.21) into a “main” and several ”error“ terms. The
main term is then shown to be close to the next diagonal estimate, while the error
terms are absorbed into this main term by paying a multiplicative cost given by (1.22).
The terms zk and fk are needed to make this cost smaller and smaller as the iteration
progresses, resulting in the convergence of c2k and c2k+1. Otherwise, we would have
multiplicative error terms of the form Ck, which would be of the same order as the
main term and thus problematic.

• The polynomial terms fk and zk are applied to the number operator N , and so they
grow with both the iteration and the chaos. This is necessary to absorb the error terms
since as we will see, they grow in number as the chaos increases.

• Note that the lower bounds are not actually positive, since their Fourier multipliers
become negative for very large momenta. This is however not an issue, since the
prefactor 1

fk
ensures that the λ−L0+Hk is positive. This is an instance of a suboptimal

bound, which reduces the complexity of the expression since the fact that the lower
bound becomes negative is simply an effect of the integral in (2.67) as being interpreted
as negative when λ + |p|2 is larger than 1, however, the statement would also be true
if we took it to be 0 in that case. But in the proof, it would not only introduce a case
distinction in this case, but also have iterate less well in the next steps.

Before we compare Theorem 1.1.11 fore the diffusion in the curl of the GFF to the bounds
obtained in Chapter 3 for the stochastic Burgers equation, we need to introduce a specific type
of “error” term that appears in (1.21). Namely, we split into diagonal and off-diagonal
terms in the following way. For any diagonal operator Z acting on ΓL2 via the Fourier
multiplier ζ = (ζn)n∈N and φ ∈ ΓL2

n we can write

�6AN
+

=∗ZAN
+φ,φ

�
=

n!n

2π2

G
k1:n+1

ζ(k1:n+1)

KKKKKK
G

1≤i<j≤n+1

(w · (ki + kj))φ̂(ki + kj , k1:n+1\i,j)

KKKKKK
2

.

(1.23)
Expanding the square as the product of two sums (one of them conjugated), the diagonal
terms will be the sum of squares, i.e., of terms of the form

(w · (k1 + k2))
2|φ̂(k1 + k2, k3:n+1)|2 ,

while the off-diagonal terms are all the others. These are the ones one would obtain as an
upper bound if one would apply the Cauchy inequality to the inner sum in (1.23). While that
is too rough, since one picks up a factor depending on n that grows too quickly, these diagonal
terms will still be the dominant ones. While the precise terms in Chapter 2 are of course
different, the same type of decomposition with the same properties holds, see Lemma 2.4.4.

Let us look at the form the bounds take in Chapter 3.

Upper and lower bounds for Chapter 3

First, we need a few definitions. The skew Laplacian Lw
0 is the linear operator whose action

on Fock space is given, for every φ ∈ ΓL2
n, by

F (Lw
0 φ) (k1:n)

def
= −1

2(w · k)21:nφ̂(k1:n) , where (w · k)21:n def
=

nG
i=1

(w · ki)2 .
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The sequence of the exponents of the logarithm in the upper and lower bounds is defined
recursively by

θ2
def
= 0 and θk+1 = 1− θk

2
for every k ≥ 3 ,

which can be seen to converge to 2
3 exponentially fast. Let k,N, n ∈ N and δ ∈ (0, 1). For

k ≥ 2, x ∈ (0,∞) and z ∈ (1,∞), we set

L(x, z)
def
= log(1 + x−1) + z , Lk(x, z)

def
= (L(x, z))θk , LN

k (x, z)
def
= Lk

4 x

N2
, z
;
.

For k ≥ 1, let

zk(n)
def
= K(n+ k)

9
2
+ 3

2
δ and fk(n)

def
= 3(zk(n))

2
3 ,

where K is a sufficiently large positive constant depending on |w|.

Definition 1.1.12. For λ > 0 and k ≥ 2

SN
k

def
=

�
fk(N )LN

k (λ− L0, zk(N )) if k is odd,
1

fk(N )

�
LN
k (λ− L0, zk(N ))− fk(N )

#
if k is even,

where N is the number operator, acting on φ ∈ ΓLn by Nφ = nφ for each n ∈ N and λ is
the Laplace variable.

We can now state the bounds on the operators Hk.

Theorem 1.1.13 (Theorem 3.4.5). For every δ ∈ (0, 1) and for every k ∈ Z, k ≥ 0 we have

H2k+3 ≤ c2k+3 ((−Lw
0 )S2k+3 + f2k+3(N )(−L0)) , (1.24)

H2k+2 ≥ c2k+2

7
(−Lw

0 )S2k+2 − 1

(N + k)1+δ
(−L0)

>
, (1.25)

where the constants c2k+1 and c2k+2 are defined recursively by setting, for k ≥ 1,

c2
def
=

1

π(|w|2 ∨ 1)
, c2k+1 =

3

2π|w|

6
1 + 1

2k1+δ

=
c2k

> 1 , c2k+2 =
3

2π|w|

6
1− 1

2k1+δ

=6
1 + 1

2k1+δ

=
c2k+1

< 1 .

Comparing the lower and upper bounds for Chapter 2 one can notice several things

• Again the lower and upper bound, if one ignores all multiplicative and additive errors,

converge to the expected log
2
3 behavior. Compared to the ones for the isotropic case,

they do so much faster (because the convergence θk → 2/3 is exponentially fast. This
will in particular mean that in the proof of the main theorem, k will be of order
log log | log λ|, which is the reason for the smaller multiplicative errors in Theorem 3.1.1
as compared to Theorem 2.2.2.

• The main terms of the upper and lower bounds are not multiplied by a full generator
(−L0) but by (−Lw

0 ), which only acts in direction w.

• There are however error terms that are multiplied by the full (−L0) and thus cannot
easily be absorbed into the main term. They are small enough not to hinder the
iteration, since in the expression (λ−L0+Hk)

−1, they can, in some sense, be absorbed
into the L0.
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1.1.7 Replacement Lemmas

The proof of the iterative estimates laid out in the previous section is quite technical. Here
is a short guide to the structure of these estimates, for simplicity only given for Chapter 2.

• As already mentioned, the terms are split into a diagonal and an off-diagonal part.
By relabeling variables, both of these can be reduced to estimating a certain type of
two-dimensional integral, see Lemma 2.4.5 and Lemma 2.4.6 respectively. Lemma 2.4.6
uses a reweighted Cauchy inequality (see (2.39)), which seems to be somewhat model-
independent, since it has also been used in [CET23a] and Chapter 3.

• For the off-diagonal terms, this integral is treated in Lemma 2.A.3. Since the off-
diagonal terms are considered error terms, they are only estimated from above (and
this estimate is subtracted from the main term in the lower bound.) The proof proceeds
by splitting the integral into various regions and is not particularly illuminating. An
essential part is using the sin(·) in the denominator to deal with regions where q1 and
q3 are anti-parallel. The fact that there does not appear to be a general method to
deal with the off-diagonal terms seems to be one of the major obstacles for the models
in which only the first lower and upper bounds have been achieved (e.g. the models in
[LRY05, CG24]).

• For the diagonal parts, instead of immediately doing upper and lower bounds, one first
proves a “replacement lemma”. The idea is to show that the difference between the
diagonal term and a term already amenable to the iteration is small (compared to the
main term), see Lemma 3.A.2. This ensures that one does not lose any multiplicat-
ive constants in the estimate, which would prevent the prefactors ck from converging.
Typically, this proceeds in several steps of successively replacing an expression with
the next. These are subtly different for the various models, even though there are also
similarities.

These include:

– Replacing terms of the form |p+ q| with terms of the form |p|+ |q|.
– Re-bracketing terms such that the Fourier multiplier of the previous iterations

multiplies the whole denominator (only for isotropic models).

– Approximating a sum by an integral in a Riemann-type approximation for models
that have been regularized in the infra-red by moving to the torus. This still
involves ad-hoc arguments, see for example Step 5 in the proof of Lemma 3.A.2,
where parts of the sum are excluded and treated by hand.

After such a replacement step has been proven, typically the final term will be such that
it either has an explicit anti-derivative or can at least be easily estimated by something
that does.

• So far, we have accrued several additive errors from the replacement steps and the off-
diagonal terms. In the proof of the iterative estimates (see Section 2.4.3 and the end of
Section 3.4) these errors are collected and absorbed into the main term by introducing
a small multiplicative constant, which then defines the recursion for the prefactors ck.

• To finally use these estimates to prove the main theorem one plugs in the bounds
obtained into (1.20), and needs to estimate a sum of the type already studied one last
time. One obtains a bound dependent on k, and, after optimizing for the value of k,
one obtains the main theorem.
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1.1.8 Weak and strong coupling results

If one is so inclined, one could call the results of Chapter 2 and 3 negative results, in the
following sense. They show that even though both models are formally invariant under
diffusive scaling, after regularizing them and applying this scaling, the resulting models do
not converge, as one might have hoped, as is the case in higher dimensions, see, e.g., [CGT24,
CLO01, HTV12].

However, there are two possible ways to overcome this problem and obtain a scaling limit.
One is to consider the weak coupling limit, where the strength of the non-linearity (or the
drift in the case of diffusions) is tuned down. Typically, there is a certain scaling window
for such a coupling constant such that a scaling limit exists, but is not identical to the
linear equation obtained by just setting the non-linearity to zero. This has been successfully
implemented for the 2d Burgers equation in [CGT24], for the AKPZ equation in [CET23b]
and for the self-repellent Brownian polymer in [CG24]. In all of these cases, the limits are
Gaussian, but with a covariance structure that depends on the strength and the form of
the linearity. If one considers the linear system as “critical” (it is after all the one with the
most symmetries) one can see this as a near-critical scaling limit in the sense discussed in
Section 2.1.

The other option is changing the diffusive space-time scaling to compensate for the di-
vergence. For the diffusion in the curl of the Gaussian free field, this would be done by
considering instead of the diffusive rescaled process (1.3) the following rescaling:

Xε
t = | log ε|− 1

4 εXt/ε2 .

or, equivalently,
Xε

t = εX t

| log ε|
1
2 ε2

.

For a logarithmically superdiffusive SPDE, the correct rescaling to get a scaling limit should
be

ηε(x, t) = η
4x
ε
,

t

| log ε|γε2
;
.

This type of rescaling is called strong coupling limit, in contrast with the weak coupling
limit mentioned above. The expected strong coupling limits are still Gaussian and invariant
under diffusive scaling. This means one expects convergence to a limit process, under a
scaling that does not leave this limit process invariant, which is certainly unusual. It is
however consistent with the formal scaling invariance that these models have. There are only
very few strong coupling results that have been proven in this context, see [ABRK24] and
[MT16].



1.2. THE NEAR-CRITICAL DIMER MODEL AND MASSIVE SLE 21

Figure 1.1: From left to right: a dimer configuration on a portion of the hexagonal lattice;
the same dimer configuration overlayed with the corresponding lozenge tiling; the lozenge
tiling, which can be viewed as a discrete surface.

1.2 The near-critical dimer model and massive SLE

The dimer model is a classical model from statistical mechanics. Given a finite graph G =
(V,E) with edge weights w : E → R+, let a dimer configuration ω be a collection of edges
such that each vertex in G is incident to exactly one edge in ω. Define the weight of such a
configuration to be

w(ω) =
B
e∈ω

w(e)

and, if there is at least one dimer configuration on this graph, define the dimer measure to
be the measure on dimer configurations proportional to their weights:

P(ω) =
w(ω)

Z
,

where the normalizing constant Z is known as the partition function. On embedded planar
bipartite graphs this model can be interpreted as a discrete random surface model, see Fig-
ure 1.1

The planar dimer model was found to be “exactly solvable” by Kasteleyn and Fisher
in the ’60s, see [Kas61, Kas63, Fis61]. This exact solvability is based on a determinantal
representation of the partition function of the model, via the Kasteleyn matrix. There has
recently been renewed interest in the dimer model. On a bounded domain, the model can
exhibit different phases (frozen, liquid, and gaseous) and limit shape phenomena separating
the various phases, see [CEP00, KO06, BCJ18]. The model has an associated height function
which converges to the minimizer of a certain variational problem, see [CKP00]. In the liquid
(or massless) region the fluctuations of the height function around this limit shape converge
to the Gaussian free field (after a certain change of coordinates), see [Ken01, Las21, CLR22].
This makes it one of the few statistical mechanics models for which conformal invariance has
been shown at criticality, first by Kenyon in [Ken00].

We study a near-critical version of this model. Near-critical models have been considered
for several models from statistical mechanics including spanning forests [BDW20], percolation
[GPS18, NW09] and FK-Percolation[DCGP14]. We connect this near-critical dimer model
to massive SLE, which was first constructed by Makarov and Smirnov in [MS10], where
they initiate a programme to describe a wide variaty of near-critical scaling limits of planar
statistical mechanics models in terms of massive SLE. A common feature of near-critical
planar models is the loss of conformal invariance. From a theoretical physics perspective,
this is because they are associated with massive Field theories and such theories can not be
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scale invariant (and therefore not conformally invariant). However, they are still conformally
covariant, when the mass is seen as a variable covariant density. We prove such a conformal
covariance for the scaling limit of the height function associated with this near-critical dimer
model. We also conjecture a connection to the Sine-Gordon model, see Conjecture 4.1.9
below.

Instead of Kasteleyn theory, we use another approach to studying the dimer model via
Temperley’s bijection. For uniform (i.e. constant 1) weights Temperley’s bijection maps the
dimer model to the uniform spanning tree. The uniform spanning tree is further connected to
the loop-erased random walk by Wilson’s algorithm [Wil96]. For uniform weights, this loop-
erased random walk has a conformally invariant scaling limit, given by SLE2 [LSW01]. The
height function can be connected to the winding of the loop-erased random walk, and this
connection (with some additional work) carries through to the continuum, giving another
proof of conformal invariance of the height fluctuations, and extending it to more general
geometries, see [BLR20, BLR19, BLR22]. The starting point of Chapter 4 is that these
connections do not only hold for uniform weights. They also hold for a set of weights (see
Figure 1.2), where certain edges have weights different from one. They will depend on the
mesh size δ, in a way that is analogous to the near-critical weights studied in [Chh12]. Our
results can be summarized as follows

• Using Temperley’s bijection and Wilson’s algorithm we connect the near-critical dimer
model on Temperleyan domains of the square and hexagonal lattice to the loop-erasure
for a random walk with drift.

• Using a discrete Girsanov-Itô formula, we connect this loop-erased random walk to a
loop-erased random walk with inhomogeneous mass.

• Using both the methods of Yadin and Yehudayoff from [YY11] and of [CW19] we show
that this loop-erased random walk has a scaling limit, which is given by a massive SLE2

as constructed in Makarov and Smirnov [MS10].

• Using this convergence together with results from [BLR20] gives the convergence of
the uniform spanning tree as well as the convergence of the fluctuations of the height
function.

• Finally we show a conformal covariance property of massive SLE2 which implies a
conformal covariance for the scaling limit of the height fluctuations.

Let us now define the key objects necessary to state our results. Some of our results we
also prove for the square lattice, see Section 4.2.4. For the sake of brevity, this introduction
focuses on the hexagonal lattice (and the corresponding directed triangular lattice), for which
the full results are shown.

Near critical dimer model

The weights we consider on the hexagonal lattice are given in Figure 1.2. These weights
can be described as follows. For a Temperleyan piece of the hexagonal lattice (see 4.1.2
for a full definition) there is a set of vertices V arranged in a periodic pattern, called the
primary vertices. In Figure 1.2 these vertices are in bold. In Temperley’s bijection, these
vertices correspond to vertices of the directed triangular lattice T and we identify them with
the vertices of T. The three edges around a primary vertex v are assigned the weights
a0(v), a1(v), a2(v). All edges not incident to a primary vertex are assigned weight 1. We
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Figure 1.2: A piece of the hexagonal lattice and a corresponding piece of the directed trian-
gular lattice T. Unlabeled edges on the left have weight 1. The weights depend on the vertex.

parameterize these weights in the following way. Given weights a0(v), . . . , a2(v) for each
primal vertex v, let α0(v), . . . , α2(v) ∈ R and the drift vector α(v) ∈ R2 be defined by

exp(αi(v)) = ai(v), and α(v) =

H2
s=0 αs(v)τ

s

3
,

where τ = exp(2πi/3) and we identify C with R2. Given a drift vector α(v), we can always
find corresponding a1(v), . . . , a2(v), but they are not defined uniquely, since 1 + τ + τ2 = 0.
However, two sets of weights corresponding to the same drift vector will always be related
by multiplication with a positive constant. Therefore, the corresponding dimer models are
equivalent by a gauge transformation. We thus will take the model to be parameterized by
α(v).

The drifted random walk

Via Temperley’s bijection and Wilson’s algorithm the above dimer model is connected to
the random walk on the directed triangular lattice taking steps according to the following
transition matrix

Q(α)(v, v + τk) =
ak(v)

a(v)
, k = 0, . . . , 2, with a(v) = a0(v) + · · ·+ a2(v) .

where the random walk takes values in T, the directed triangular lattice, which can be
seen on the right hand side of Figure 1.2. We will often consider this random walk until
it leaves a domain Ωδ ⊂ δT, started from a vertex o, conditioned to leave Ωδ through a

boundary edge a and denote this law with Q(α)

o→a,Ωδ .

The (inhomogeneous) massive random walk

Given a mass profile m2 : Ωδ → [0, 1], the massive random walk on T is the random walk
with transition probabilities

Q(m)(v, v + τk) =
1−m2(v)

3
, k = 0, . . . , 2 ,
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i.e. with probability 1−m2(v) the random walk take a simple random walk step (respecting
the orientation of the edges) and with probability m2(v) it “dies”. This can be interpreted
as going to an absorbing “cemetery” vertex, or as Q(m) being a measure with total mass less
than 1. Either way, if we again consider the random walk in a discrete domain Ωδ, started
from o, conditioned to leave through an edge a, we obtain a probability measure on such

paths and denote it with Q(m)

o→a,Ωδ

The loop-erased random walk

For the drifted random walk above (or indeed any path (x0, . . . , xn)) one defines the loop-
erasure by chronologically deleting loops as they appear, see Section 1.2.1 below. Wilson’s
algorithm states that the branches of the random spanning tree on a weighted graph are
given by the results of such loop-erasures.

The following is a consequence of the discrete Girsanov-Itô formula in Corollary 4.1.4,
which is discussed in Section 1.2.2.

Proposition 1.2.1. If α is given by a discrete gradient, as in (1.36) and the m2(v) satisfies

(1.38), then the law of the loop erasure of the walk with law Q(α)

o→a,Ωδ coincides with the law

of the loop-erasure of the walk with law Q(m)

o→a,Ωδ .

Using this result, finding the scaling limit of the loop-erasure of the drifted random walk
Q(α) has been reduced to finding the scaling limit of the loop-erasure of the massive random
walk Q(m). Together with results from [BLR20] this then implies convergence of the height
function of the associated dimer model.

Massive Brownian motion

The massive random walk without the loop-erasure has the following scaling limit, if the mass

m2(v) : δT → [0, 1] is scaled like m2(v) = δ2ρ(v)
2 + o(δ2) for some ρ : R2 → [0,∞).

Definition 1.2.2. Brownian motion with mass profile ρ is a Brownian motion, which dies
at rate ρ(Xs) when at position Xs, i.e. it is a process which is absolutely continuous with
respect to Brownian motion and has Radon Nikodym-derivative

dP(ρ)
x

dPx

KKKKK
Ft

= exp(−
1 t

0
ρ(Xs)ds). (1.26)

Note that the total mass of P(ρ)
x is less than one, so it is not a probability measure but a

(finite) measure on paths.

Massive radial SLE

The following is the definition of massive SLE2 as first given by Makarov and Smirnov in
[MS10] as part of a general programme of using massive SLEκ to describe near-critical scaling
limits.

Definition 1.2.3 (inhomogeneous massive radial SLE). For a given domain Ω ⊂ C and
a bounded continuous mass profile ρ : Ω → [0,∞], inhomogeneous radial massive SLE2

with mass profile ρ is defined to be the Loewner evolution associated to the driving function
satsifying the SDE

dξt =
√
2dBt + 2λtdt, λt =

∂

∂gt(at)
log

P
(ρ)
Ωt

(o, at)

PΩt(o, at)
(1.27)
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where P
(ρ)
Ωt

is the massive Poisson kernel in Ωt with mass profile ρ, which is defined in
Section 4.4.1.

The definition of a Loewner evolution is given by (1.30) below.

Main results

The following is the main theorem about convergence of the massive random walk to massive
SLE2.

Theorem 1.2.4 (Informal version of Theorem 4.4.1). Given a random walk on a planar em-
bedded graph, dying at each step with a specified vertex- (and scaling-) dependent probability,
such that this random walk converges to massive Brownian motion with mass profile ρ up
to a time change, then the loop-erasure of this random walk converges to massive SLE2 with
mass profile ρ if additionally it satisfies the following assumptions:

• There exists a constant C such that for each discrete domain Ωδ with diameter at most
R, each interior point o ∈ Ωδ and each boundary edge a it holds that

Eo→a;Ωδ(σδ) ≤ Cδ−2|ρ|∞ ,

where σδ is the number of steps until leaving the domain and the expectation is with
respect to the law of the random walk started at o and conditioned to leave Ωδ through
a.

• The random walk satisfies some uniform crossing assumption.

See Theorem 4.4.1 for the precise assumptions. This result generalizes the main theorem
of Chelkak and Wan in [CW19] both to non-constant mass and more general graphs. Defining
and showing the existence of the limiting objects is non-trivial and part of the result.

Using the discrete Girsanov-Itô formula discussed below in Section 1.2.2 this gives the
following theorem for the drifted random walk on the triangular lattice.

Theorem 1.2.5 (Informal version of Theorem 4.1.6). Given a simply connected domain
Ω and a drift field α : Ω → R2, let Ωδ ⊂ T approximate Ω and oδ ∈ Ωδ → o ∈ Ω and
aδ ∈ ∂Ωδ → a ∈ ∂Ω. Suppose that there is a smooth potential φ such that ∇φ = α and
further that

ρ(x)
def
=

∆φ+ ∥∇φ∥2
2

≥ 0, for x ∈ Ω. (1.28)

Then the loop erasure of the random walk P
(φ)

oδ→aδ
with transition rates given by (1.32) and

αδ given by the discrete gradient ∇δφ converges to massive SLE2 with mass profile ρ.

The authors believe that the drift field α being of gradient-type is necessary for the limit
to be described by massive SLE2. However, the restriction that ρ is positive could be removed,
if one is able to define massive SLE2 for (some) negative masses.

Finally, for the dimer model, we prove the following theorem:

Theorem 1.2.6 (Informal version of Theorem 4.1.8). Consider the dimer model on domains
Ωδ of the hexagonal lattice with weights (a0(v), . . . , a2(v)) deriving from a drift field α as
above, which in turn is given by ∇φ, satisfying (1.28). Then the fluctuations of the height
function on this domain converge to a scaling limit denoted by h(α);Ω, satisfying the following
identity in law

h(α);Ω ◦ T−1 = h(α̃);Ω̃,

if T is a conformal map from Ω to Ω̃ with |T−1′| bounded and α̃ = ∇φ ◦ T−1.
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Requiring that |(T−1)′| is bounded should not be necessary, but simplifies the proofs,
since it guarantees that the mass associated to the right hand side is bounded.

In summary we achieve the following goals

• We build on the programme initiated by [MS10] by building a further connection
between massive SLE and another near-critical model and conjecturing a connection to
a massive field theory.

• We answer a question asked in [Chh12] by giving a rigorous connection between the
near-critical dimer model and an object associated with massive field theory.

• We find a discrete exact version of Girsanov’s formula for the random walk on the
directed triangular lattice, see Theorem 4.1.4, which might be of independent interest.
The fact that this identity is exact is a convenient property specific to the triangular
lattice. We find another such discrete Girsanov formula for the square lattice which
only approximately connects the random walk with drift and the one with mass, see
Lemma 4.2.9.

• We extend the result from [CW19] to a much more general setting, see Theorem 4.4.1,
showing that the convergence of the massive loop-erased random walk to massive SLE2

is universal and further implementing the programme set out by [MS10].

• We find a conformally invariant limiting object for the fluctuations of the height field,
reminiscent of other near-critical scaling limits like [DCGP14, GPS18]. We conjecture
it to be given by a variant of the Sine-Gordon model at the free fermionic point:

Conjecture 1.2.7. Let P(φ);Ω denote the law of the field h(φ);Ω in Theorem 4.1.8. Then

P(φ);Ω(dh) ∝ exp

7
z

1
Ω

�
eih(x)/χ, α(x)

�
dx

>
PGFF(dh) ,

where the inner product is taken by identifying C with R2.

Here α = ∇φ, and χ = 1/
√
2 is the imaginary geometry constant associated to κ = 2.

This expression is formal, since the Gaussian free field h cannot be point-evaluated, for
more details on this see the discussion after in Section 4.1.9. In particular it is consistent
with the recent results by [Mas22], in which the two-point correlation function of the
near-critical dimer model on the square lattice in the full plane is shown to coincide
with the two-point function for the Sine-Gordon model.

The remainder of this introduction is structured as follows. In Section 1.2.1 the connection
between the critical dimer model and SLE2 is recalled. In the following sections some ingredi-
ents to the main theorem are introduced, i.e. the discrete Girsanov-Itô in Section 1.2.2, the
resolvent identities in Section 1.2.3 and finally the identification of the limit in Section 1.2.4.

1.2.1 The critical dimer model and SLE2

In this section we will establish the connection represented in the diagram in Figure 1.3, in
particular along the top and right edge, i.e. going from the dimer model to SLE2.
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Figure 1.3: The connections discussed in Section 1.2.1. Vertical arrows are scaling limits,
while horizontal arrows show connections, which are (at least in some sense) bidirectional.

Temperleys bijection

Temperley’s bijection was found by Temperley in 1972. Reference surprisingly difficult to
find It is a bijection between the dimer model on a rectangular region of the square lattice
and a uniform spanning tree on an associated graph (in this case, a larger region of the square
lattice). This bijection was then generalized by Kenyon, Propp and Wilson in [KPW00] to
more general weighted graphs. Considering a finite, connected and directed graph G = (V,E)
together with edge weights w : E → R+, define a directed spanning tree rooted at v ∈ V to
be a connected sub-graph T , such that each vertex except v has exactly one outgoing edge
in T . Let the weight of a tree T be

w(T ) =
B
e∈T

w(e) , (1.29)

where we identify the sub-graph T with its edges.

Theorem 1.2.8 (Theorem 1 in [KPW00]). Given a weighted graph G as above, as well
as vertex v, there is a weight preserving bijection between spanning trees on G, and dimer
configurations on a related weighted graph H.

The graph H is obtained from the graph G by a specific procedure, involving superimpos-
ing the graph G with its dual, and then removing two vertices.3 We will sometimes refer to
H as the dimer graph and to G as the tree graph. If one wants to study the dimer model
using this bijection, one can only do so on graphs H that can be obtained this way. Two
specific examples that are already mentioned are regions of the square and of the hexagonal
lattice, which come from taking G to be either a region of the square lattice, or a region of
the directed triangular lattice T, which is obtained from the triangular lattice by orienting

3The choice of graph H in this theorem is not unique, since it depends on a choice of embedding, and a
face f incident to v.
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each of the three types of edges in the directions 1, e2πi/3 and e4πi/3 respectively, see the
right hand-side of Figure 1.2. In these cases, the graph for the dimer model is not quite
general. It is necessary for these graphs to have so called Temperleyan boundary conditions,
see Section 4.1.2 below for a definition. In particular, these force the height function on the
boundary to be of order 1. When all weights on the graph G are one, then the same is true
for H and Temperley’s bijection connects the uniform spanning tree on G with a uniformly
chosen dimer configuration.

Wilson’s algorithm

Now that we have connected the dimer model to a random (uniform) spanning tree, we need
tools to study the uniform spanning tree. The uniform spanning tree is an interesting object
in its own right, see, e.g., [Ald90, BLPS01, vEH23].

A very powerful (and beautiful) tool to study uniform spanning trees is the algorithm
found by Wilson in [Wil96]. Given a directed graph G = (V,E) with edge weights w as
above, as well as a distinguished vertex, r the algorithm generates a directed spanning tree
(or arborescence) with probability proportional to its weight as defined in (1.29). It does
so using loop-erased random walks, so let us first define a random walk with respect to the
weights w. This is the random walk which takes steps proportional to the weights w, i.e., its
transition probabilities are given by

p(x, y) =
w(x, y)H
z∼xw(x, z)

,

where the sum is over all vertices such that (x, z) ∈ E. Note that the graph is directed and
in particular w is not assumed to be symmetric.

Given the trajectory γ = (x0, . . . , xl) of a random walk the loop erasure LE(γ) is obtained

by deleting cycles in γ chronologically, i.e. as they appear. More precisely, let u0
def
= x0. Then

find the last time i that the trajectory visits u0, and set u1 = Xi+1. Continue in this way
by setting uk+1 always to the first vertex visited after the last visit to uk as long as this is

possible. Necessarily, this procedure gives a simple path LE(γ)
def
= (u0, . . . , ul′) from u0 = x0

to ul′ = xl.
Wilson’s algorithm proceeds as follows: Let G be as above, i.e. a directed graph with

positive weights w. Let r be a distinguished vertex of the graph, which will be the root of the
weighted spanning trees. We will generate a growing sequence of trees Ti. To do this we first
fix an arbitrary ordering of the vertices of G with the root r as the first vertex. Let T1 := r.
Then repeat the following for i ≥ 1:

• If Ti is a spanning tree, we are done.

• Otherwise, find the earliest vertex x in our ordering which is not contained in Ti.

• Run a random walk on G starting at x until it hits Ti, independent of the walks in
previous steps.

• Create Ti+1 from Ti by adding the vertices and the directed edges of the loop erasure
of this walk.

The main result of [Wil96] states that this algorithm indeed generates trees with the desired
probabilities

Theorem 1.2.9. Given any directed graph G with positive weights ω, Wilson’s algorithm
produces a directed spanning tree T with probability proportional to

C
e∈T ω(e).
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A remarkable feature of the algorithm is that the arbitrary ordering of the vertices does
not affect the law of the tree. This gives us the following corollary by choosing v2 = x:

Corollary 1.2.10. Let G be a directed weighted graph, x a vertex of G and T be a spanning
tree associated to w. The law of the unique path γx from x to the root in T is given by the
law of the loop-erased random walk started at x and run until it hits r.

Schramm Loewner Evolution

The graphs that we will apply Wilson’s algorithm to are of a special type. To obtain a
piece of the hexagonal or square lattice for the dimer graph in Temperley’s bijection in
Theorem 1.2.8, the tree graph G must be wired, i.e. it will consist of a piece of either Z2 or
T, with the complement of the respective lattice all identified into one boundary vertex,
see e.g. [KPW00, Figure 1]. This vertex will always be chosen as the root vertex in Wilson’s
algorithm. Doing so, the algorithm takes the form of repeatedly running a random walk
until it leaves a (discrete) domain, and then removing the loop-erasure of this walk from
the domain, after which one starts again, with a new starting point. Performing the loop-
erasure never changes the endpoint of the trajectory. Therefore, one can condition the walk
on leaving the domain through a. Since the exit distribution is given by the random walk, it
is not difficult to remove this conditioning. This leads us to study the following object:

Definition 1.2.11. Let Ω be a discrete simply connected domain, either in Z2 or T and o
a vertex in Ω and a a boundary edge of Ω, i.e., an oriented edge (x, y) such that x ∈ Ω and
y ̸∈ Ω. The loop-erased random walk from o to a in Ω is the loop-erasure of the random walk
started at o, conditioned to leave Ω through a.

In the seminal paper [LSW01] Lawler, Schramm and Werner proved the following

Theorem 1.2.12 (Informal version of Theorem 1 in [LSW01]). For the simple random walk
on δZ2, loop-erased random walk from oδ → o to aδ → a in a sequence of domains Ωδ → Ω ⊂
C converges to radial SLE2 from a to o as δ → 0.

This result was later strengthened in [YY11] to require only minimal assumptions on the
random walk and the graph G. Essentially it suffices that the random walk (after reparamet-
rization) converges to Brownian motion and that the graph is planar.

To understand this result, we will now give a definition of radial SLEκ. There are two
versions of SLE: radial and chordal. One describes a random curve from a point on the
boundary of a simply connected domain to a point inside the domain, and the other describes
a random curve between two boundary points. We will focus on the radial case since it is
more natural for the problem at hand. Note however that chordal SLE is also a very common
scaling limit and in many cases easier to work with.

Let D ⊂ C with 0 ∈ D be a simply connected domain. By the Riemann mapping
theorem, there exists a unique conformal homeomorphism ψD from D onto the unit disk
D := {z ∈ C : |z| < 1} such that ψD(0) = 0 and ψ′

D(0) ∈ R+. Consider a continuous simple
curve η : [0,∞] → D such that η(0) ∈ ∂D, η(t) ∈ D for t > 0 and η(∞) = 0. For each t let
Kt := η[0, t], Dt := D \ Kt and gt := ψDt . By the Schwarz lemma (see e.g. [BN23, Lemma
2.8]) and because Dt ⊂ D the derivative g′t(0) ≥ 1. Then log(gt

′(0)) is called the capacity of
Kt from 0. Furthermore, again by the Schwarz lemma t (→ g′t(0) is increasing and thus η can
be reparametrized such that the capacity of Kt is t. Then, we say that ηt is parametrized by
capacity. By [Pom92, Proposition 2.5] the limit

W (t) := lim
z→η(t)

gt(z)
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exists for each t ∈ [0,∞], when z approaches η(t) from inside Dt. It is true under these
assumptions that W : [0,∞) → ∂D is continuous. Now, we can state Loewner’s theorem:

Theorem 1.2.13. Let η : [0,∞] → D be as above and parametrized by capacity. Then the
maps gt : Dt → D satisfy Loewner’s differential equation:

∂tgt(z) = −gt(z)
gt(z) +W (t)

gt(z)−W (t)
; for 0 ≤ t < τz (1.30)

with the initial value g0(z) = z, where τz
def
= sup{t ≥ 0 : z ∈ Dt ∈}.

We call (W (t))t≥0 the driving function or Loewner transform of the curve η. Conversely
the driving function W (t) fully determines η. For every z ∈ D the Loewner equation has a
unique solution up to the maximal time τz ∈ (0,∞]. If τz = ∞ the ODE has a solution at z for
all times and therefore z ∈ Dt for all t ∈ [0,∞). If however τz < ∞ then limt↑τz W (t)−gt(z) =
0 as this is the only singularity in (1.30). If W is obtained from a simple path as above then
obtain η from W by setting η(t) = g−1

t (W (t)). For an arbitrary continuous function W this
might not work. One can still define Kt = {z ∈ D : τz ≤ t}, but this might not be a simple
path.

Radial Schramm Loewner evolution with parameter κ is the process obtained from setting
the driving function toW (t) := exp(iBκt), where B : [0,∞) → R is standard Brownian motion
started most commonly at 0 or at a uniform point in [0, 2π]. In [RS05] it was shown that for
κ ≤ 4 almost surely Kt is a simple path, while for κ > 4 there is always a path η(t) such that
Dt is the connected component of D \ η[0, t] containing 0. To obtain radial SLEκ in a domain
D from o ∈ D to a ∈ ∂D, let ψD be the unique map from D to D with ψD(o) = 0 and apply
ψ−1
D to radial SLEκ on D.
They are a large number of scaling limit results proving convergence to SLEκ:

• the loop-erased random walk converges to SLE2,[Sch99, LSW01],

• the Peano curve associated to a uniform spanning tree converges to SLE8, [Sch99,
LSW01],

• boundaries of critical percolation clusters converge to SLE6,[Smi01],

• Critical Ising interfaces converge to SLE3, [CDCH+14],

• contour lines of the 2d discrete Gaussian free field converge to SLE4[SS06].

For lecture notes and a monograph on SLE see e.g. [Wer04, BN23, Law05].

Returning to Theorem 1.2.12, an essential part of the proof is played by the martingale
observables. A key observation from [LSW01] is the following

Proposition 1.2.14. Let Ω be a discrete domain and γ be the reversal of a loop-erased

random walk from o ∈ Ω to a ∈ ∂Ω (and therefore a simple path from a to o). Let Ωn
def
=

Ω\γ[0, n], and v a vertex in Ω and further ZΩn(v, γ[n]) be the probability that a random walk
started from v exits Ωn via γ[n]. Then

Mn(v) =
ZΩn(v, γ[n])

ZΩn(o, γ[n])

is a martingale (as long as v ∈ Ωn) with respect to the filtration generated by γ[0, n].
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To prove this proposition, one first notices that the reverse chronological loop-erasure
(i.e., the reversal of the loop-erasure of the reversed path) of a random walk has the same
law as the chronological loop-erasure defined above. Then the statement follows by simply
summing over the possible values of γ[n + 1], see [LSW01, Remark 3.6]. These martingale
observables converge to the Poisson kernel ratio, which is conformally invariant. This suffices
to show that, at least if the limit is given by some SLEκ, then κ must be 2, see e.g. [BN23,
Proposition 7.7]

1.2.2 Discrete Girsanov-Itô

Let us recall the random walk we consider has transition probabilities given by

Q(α)(v, v + τk) =
ak(v)

a(v)
, k = 0, . . . , 2, with a(v) = a0(v) + · · ·+ a2(v) . (1.31)

Since we want to find a scaling limit we need to introduce a scaling parameter δ. We will do
so by setting

ak(v) = 1 + ck(v)δ (k = 0, . . . , 2)

and now the random walk takes values on δT, i.e.

Q(α)(v, v + δτk) =
ak(v)

a(v)
, k = 0, . . . , 2, with a(v) = a0(v) . (1.32)

A first sign that this type of scaling is reasonable is the fact that with this scaling, if c0, c1
and c2 are continuous functions evaluated at the vertices of δT , this random walk converges
to the solution of the SDE

dXt = α(Xt)dt+ dBt , (1.33)

where

α(x) =
2

3
(c0(x) + c1(x)τ + c2(x)τ

2)

and Bt is standard 2d Brownian motion.
To understand the random walk defined at the end of the previous section via (1.32), we

will consider its Radon-Nikodym derivative with respect to the simple random walk. Since
this will be an exact statement for the simple random walk, we will write it for the unscaled
lattice T, i.e., with transition probabilities (1.31). Let αi be such that exp(αi) = ai, define
α(v) by

α(v) =
2

3
(α0(v) + α1(v)τ + α2(v)τ

2)

and define β(v) by

exp(−β(v)2) = (a(v)/3)−3
2B

k=0

eαk(v), (1.34)

Note that while α does not determine α0, . . . , α2, it does determine the law Q(α), since adding
a constant to α0, . . . α2 is equivalent to multiplying a and a0, . . . , a2 with a constant.

Using these, we can conveniently state our discrete Girsanov theorem.

Theorem 1.2.15. Let Po be the law of the simple random walk and Q(α)
o be the law of the

random walk with transition probabilities given by (1.31) both started at o and taking n steps.
Then for any path γ = (x0, . . . , xn) (with x0 = o) the following identity holds:

Q(α)
o (γ)

Po(γ)
= exp(Mn − 1

2Vn),
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where

Mn =
n−1G
s=0

⟨α(xs), dxs⟩ and Vn =
2

3

n−1G
s=0

β2(xs) ,

where dxs = xs+1 − xs.

This can be seen as a discrete analogue of the fact that a solution to the SDE (1.33)
satisfies, by Girsanov,

dQ(α)

dP

KKKKK
t

= exp

71 t

0
α(Xs) · dXs − 1

2

1 t

0
|α(Xs)|2ds

>
. (1.35)

We further assume that α is of gradient type, i.e., given by ∇φ for some bounded C2

potential φ. Under this assumption, in the continuum analogue (1.35),we can use Itô’s
formula to rewrite the stochastic integral above as:1 t

0
α(Xs) · dXs = φ(Xt)− φ(X0)− 1

2

1 t

0
∆φ(Xs)ds,

giving the Radon-Nikodym derivative

dQo

dPo

KKKK
t

= exp

7
φ(Xt)− φ(X0)− 1

2

1 t

0
∆φ(Xs) + |∇φ|2ds

>
.

This fact has a discrete analogue. To formulate this, we need some notation: we say that the
drift vector α = α(v), v ∈ Ωδ derives from a potential function Φ : T → R, when

α(v) = ∇TΦ(v) :=
2

3

2G
i=0

(Φ(v + τ i)− Φ(v))τ i; (1.36)

in other words, αi+1(v) = Φ(v + τ i) − Φ(v) for 0 ≤ i ≤ 2. If α is of this form, the Radon-
Nikodym derivative in Theorem 1.2.15 takes a particularly nice form:

Corollary 1.2.16. Suppose α derives from a potential function Φ as above. Then

Q(α)
o (γ)

Po(γ)
= exp (Φ(xn)− Φ(x0)−An) , (1.37)

where

An =
n−1G
s=0

∆TΦ(xs) +
1

3
β2(xs).

Here ∆TΦ(x) = 1
3

H2
i=0Φ(x+τ i)−Φ(x) is the usual graph Laplacian on the directed triangular

lattice T.

One can check that, introducing δ in all the right places makes under appropriate scaling
(1.37) converges to (1.35). The important feature of (1.37) is that the exponent splits into
two parts: one that depends only on the endpoint, and one that is simply a sum along the
path γ. This second part can be interpreted as a mass term, in the following sense. Consider
a simple random walk on T, which at each step dies with probability m2(v) ∈ [0, 1). This
gives a measure Q(m) on paths with Radon-Nikodym derivative

Q(ρ)
o (γ)

Po(γ)
=

nB
s=0

(1−m2(v)) .
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Note that this is not a probability measure since its total mass is less than one. Choosing
m2(v) such that

1−m2(v) = exp(−(∆TΦ(v) +
1

3
β2(v)) (1.38)

one sees this term agrees with the second part of (1.37).

Denote by Po→a;Ωδ ,Q(α)

o→a;ΩΩδ and Q(m)

o→a;ΩΩδ the random walks with laws P, Q(α), and Q(m)

started from o and conditioned to leave Ωδ via a. These are the laws of the simple, drifted
or massive random walk in Ω started from o, conditioned to exit at a. A direct consequence
of the formulas above is the following

Corollary 1.2.17. If α derives from a potential Φ as in (1.36) and (1.38) holds for every v

in Ω, then Q(α)
o→a;Ω and Q(m)

o→a;Ω are identical.

It is only possible to apply this corollary when there exists an m2 such that (1.38) holds.
This is the case iff ∆TΦ(v) + 1

3β
2(v) > 0, which leads to condition (1.28) in Theorem 1.2.5.

As opposed to the assumption that α is a gradient, we believe that this condition is not
necessary for the existence of a Poisson kernel P ρ, an associated massive SLE2 with profile ρ

and the statement of Theorem 1.2.5. While there is no random walk that produces Q(m)
o→a;Ω for

negative m, for certain m it might be seen as a measure connected to a branching random
walk, and many of the steps below might still be possible in this setting.

In view of Corollary 1.2.17, the problem is reduced to finding a scaling limit for Q(m).
This proceeds in roughly three steps.

• Absolute continuity: The discrete Radon-Nikodym derivative of the loop-erasure is
bounded, which follows from the assumption in Theorem 1.2.4 that the random walk
under consideration leaves the domain after a number of steps of order δ−2. This
implies that the laws of the loop-erased random walks are tight, and any limit point is
absolutely continuous with respect to SLE2, see Section 4.4.3. It further implies that
any limit point is given by a Loewner evolution, with driving function ξt satisfying the
SDE

dξt =
√
2dBt + 2λtdt .

The task at hand is thus to show that λt is given by (1.27) (and hence the same for any
limit point).

• Convergence of discrete Poisson kernels: As in the critical case, there are martingale
observables given by discrete massive Poisson kernel ratios. To use this to identify
the laws of limit points, one needs to show that they converge to continuous Poisson
kernel ratios. This is done by adapting arguments for the critical case in [YY11], see
Section 4.4.2.

• Identification of the limit. Given the convergence of the massive martingale observables,
one needs to show that these indeed identify the limit. To do so one needs to show that

the involved massive kernels P
(ρ)
t and Q

(ρ)
t are semimartingales, and one needs to find

their decomposition in martingale and finite variation part. In particular, this is done
by relating the massive quantities to their non-massive counterparts via resolvent
identites, see Proposition 4.4.7 and (4.4.10), and by proving a massive version of
Hadamard’s formula using these identities.

The next two sections expand on the third point.
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1.2.3 Resolvent identities

As in the case with uniform weights (recalled in Proposition 1.2.14), the ratio

M (ρ)
n (v) =

Z
(ρ)
Ωn

(v, γ[n])

Z
(ρ)
Ωn

(o, γ[n])

is a martingale, where Z
(ρ)
Ωn

(v, γ[n]) is the probability that the massive random walk started

from v exits the domain Ωn = Ωδ \ γ[0, n] through γ[n]. By the arguments in Section 4.4.2
this converges, after using a Skorohod embedding to assume γ converges almost surely, and
using n = n(t) such that the limiting curve is parameterized by capacity, to the ratio

P
(ρ)
Ωt

(x, at)

P
(ρ)
Ωt

(o, at)

where P
(ρ)
Ω is the massive Poisson kernel, which we define in Section 4.4.1 to be given by

P
(ρ)
Ω (x, a) = P

(0)
Ω (x, a)Ex→a

�
exp

7
−
1 σ

0
ρ(Xs)ds

>$
, (1.39)

where P
(0)
Ω (x, a) is the non-massive Poisson kernel normalized to be 1 at o. In this section

the domain Ω and the target point a will be fixed, so we suppress them from the notation,

i.e., P (ρ)(x) = P
(ρ)
Ω (x, a) and likewise for P (0).

In Section 4.4.4 we prove that P ρ satisfies a resolvent identity. As was noted in [MS10],
massive analogues of critical quantities solve certain boundary value problems of the type

(
1

2
∆− ρ)h = 0, in Ω

h = h0 on ∂Ω

with the critical counterparts solving the same boundary value problem with the operator
(12∆ − ρ) being replaced with 1

2∆, but with the same boundary data. Here ρ is identified
with the operator acting by pointwise multiplication with ρ, i.e

(ρh)(x) = ρ(x)h(x)

Considering h = P (ρ) we can write

(
1

2
∆− ρ)(P

(ρ)
Ω − P

(0)
Ω ) = ρP

(0)
Ω

and using the fact that as an operator on Ω with Dirichlet boundary conditions (12∆− ρ) is
invertible, with the inverse given by convolution with (the negative of) the massive Green’s
function we obtain:

P
(ρ)
Ω (x, a) = P

(0)
Ω (x, a)−

1
Ω
G

(ρ)
Ω (x, y)ρ(y)P

(0)
Ω (y, a)dy , (1.40)

which is the content of Proposition 4.4.7 and a similar derivation can be given by for Pro-
position 4.4.10.
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1.2.4 Identification of the limit

The strategy to identify the limit is as follows. To make use of the fact that
P

(ρ)
t (z)

P
(ρ)
t (o)

is a

martingale for each z, we need to use Itô’s formula, for which we have to find dP
(ρ)
t using

the resolvent identity. We will need the following additional ingredients

• From the critical case we know

dP
(0)
t (x) = Q

(0)
t (x)dξt

and by absolute continuity this is also true under the massive law.

• A massive Hadamard’s formula (Lemma 4.4.12): G
(ρ)
t is differentiable in t and satisfies

∂

∂t
G

(ρ)
t (x, y) = −2πP

(ρ)
t (x)P

(ρ)
t (y) .

• A stochastic Fubini theorem (Lemma 4.4.15) based on estimates in Lemma 4.4.14 and
Proposition 4.4.13.

Using this one can determine λt, see Section 4.4.6, where we show that

λt =
Q

(ρ)
t (o, at)

P
(ρ)
t (o, at)

.

This expression is used as the definition for the formal expression (1.27), see the discussion in
Section 4.1.4. This means that the law of every limit point is given by a Loewner evolution
with driving function satisfying the SDE

dξt =
√
2dBt + 2λt, where λt =

Q
(ρ)
t (o, at)

P
(ρ)
t (o, at)

.

By checking Novikov’s condition, one can see that this SDE has a unique strong solution, see
Lemma 4.4.16. In particular, this means all limit points agree.
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1.3 The stochastic six-vertex speed process

In Chapter 5 we study the stochastic six-vertex model, which is a specialization of the
six-vertex model to specific weights This specialization allows one to view the model as a
one-dimensional interacting particle system instead of a two-dimensional equilibrium lattice
model.

The main result of Theorem 1.3.2 is that the speed of a single second-class particle placed
at the origin, with all positions filled to the left of it and all positions to the right of it
empty, will almost surely converge. The limiting speed is random and can be read from the
hydrodynamic limit of this system. This convergence then allows one to define the stochastic
six-vertex speed process, which is a translation invariant, ergodic probability measure
assigning real-valued labels, (which we call classes) to each particle, which is stationary
under the dynamics of the multi-class stochastic six-vertex model.

The proof of the main theorem uses a variety of tools. From the theory of particle systems
it uses various couplings, in particular, the attractive coupling which defines the multi-class
model and the approximate monotonicity recently shown in [ACH24]. To control the position
of the second-class particle by the behavior of a larger number of third-class particles, we
prove Proposition 5.1.7. Finally, to prove that the system is already close to its hydrodynamic
limit at a large but finite time we use methods from integrable probability to obtain effective
hydrodynamics in Theorem 5.4.1 via precise tail bounds on an associated point process. Using
these methods we obtain a bound on the fluctuations around the eventual limiting speed, see
Theorem 1.3.3.

Speed processes have been introduced and studied for some other interacting particle
models, starting with TASEP in [AAV08] and since then for the ASEP and TAZRP (Totally
Asymmetric Zero Range Process) in [ABGM21, ACG23]. The stochastic six-vertex models
posed us with some particular issues. Its basic coupling has less convenient properties com-
pared to other models (in particular it is not monotone). Additionally, there is no straight-
forward analogue for the stochastic six-vertex model of Rezakhanlou’s coupling from [Rez95],
which was used to control the position of an individual second-class particle by the behavior
of a larger number of third-class particle for ASEP. Our result in Proposition 5.1.7 is not a
coupling. However, it is significantly stronger than the bound obtained by using the coup-
ling from [Rez95] and could be used to simplify the arguments of [ACG23], since it can be
extended to ASEP.

In the rest of this introduction, the model in its simple and multi-class form will be defined
and heuristics for the hydrodynamic limit and the main theorem based on an assumption of
local equilibrium will be given. However, we do not use such an assumption, nor does the
proof of Theorem 1.3.2 proceed via proving local equilibrium. After that, a sketch of the
proof of our main Theorem 1.3.2 will be followed by a brief discussion of the different tools
we use. Finally, the speed process and some of its basic properties will be introduced.

1.3.1 The model

The study of the six-vertex model goes back all the way to [Pau35], where it was proposed
as a model for the residual entropy in water ice.

The six-vertex model is defined on a region D of Z2. A configuration consists of orienting
each edge in one of the two possible directions, with the requirement that the number of edges
oriented towards each vertex equals the number of edges oriented away from that vertex. This
is sometimes called the ice rule. There are six different possible configurations around each
vertex (hence the name of the model); we label the six possible arrow configurations at a
vertex with a letter from a to f , see Figure 1.4. Given a region D of Z2 we call the edges with
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a b c d e f

Figure 1.4: The six different configurations of the six-vertex, before and after moving to the
up-right path version, and their weights.

one end point in D and one point outside D the boundary of D. A boundary condition
is a given orientation on some or all edges of the boundary. If the domain D is finite, then
there are finitely many configurations satisfying a given boundary condition. We call a, ..., f
the weight corresponding to the six possible vertex configurations a, ..., f) and defining the
weight of a configuration ω to be

w(ω) =
B
v∈D

w(v) = a#a-verticesb#b-verticesc#c-verticesd#d-verticese#e-verticesf#f-vertices ,

i.e., the product over all the vertex weights of the vertices in D, we can define a probability
measure on configurations by setting

P(ω) =
w(ω)

Z
,

where Z is the partition function of the model, i.e. the normalizing constant that makes P(ω)
into a probability measure.

This is a classical model from equilibrium statistical mechanics. It is exactly solvable
using a transfer matrix approach and the Bethe ansatz, see e.g. [Bax89, DCGH+16a]. It
exhibits many interesting phenomena including multiple phase transitions, limit shapes, a
connection to the dimer model, FK percolation and alternating sign matrices and much
more, see [CP10, DCKK+22, DCKMO24, DCGH+16b, Bre99] and the references therein.

We will consider the six-vertex model with specific weights, which were first introduced
in [GS92]. Before introducing these weights we will make a combinatorial reformulation of
the space of configurations. Since every edge has to be oriented in one of two ways it suffices
to keep track of which edges are oriented up and right, see Figure 1.4. By doing so, one
can see a configuration as a collection of up and right paths. The ice rule becomes a rule
of local conservation: the number of incoming arrows must equal the number of outgoing
arrows. This change allows us to think of the arrows as particles. If one thinks of two
arrows meeting as bouncing off one another, each particle moves on its unique path, and
these paths are non-crossing. The stochastic weights are now obtained by thinking of the two
edges on the bottom and left of a specific vertex as the input and the two edges on the top
and right as the output of this vertex. Given a specific input, we want to choose one of the
possible outputs a random. Hence, we must choose weights such that the possible outputs
sum up to 1. If the input consists of either two incoming or no incoming arrows, there is only
one possible choice and the weight of these vertices must be one. If however there is only one
incoming vertical arrow, there are two possible outputs, and therefore we assign one of them
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1 1 b1 b2 1− b1 1− b2

Figure 1.5: The stochastic weights for the six-vertex model

Figure 1.6: A finite domain with given boundary condition and a possible configuration on
this domain.

weight b1 and one of them weight 1− b1, and the same for an incoming horizontal arrow. See
Figure 1.5 for the weights of the corresponding configurations. Let us define

q
def
=

b1
b2

κ
def
=

1− b1
1− b2

, (1.41)

since these quantities appear quite often. For q ∈ (0, 1) and κ ∈ (1,∞) these two offer an
alternative parameterization of the (b1, b2) satisfying 0 < b1 < b2 < 1, which is the regime we
are interested in.

Since we now think of arrows coming from the bottom and the left as “incoming” and
arrows going to the right and the top as outgoing, it is natural to consider boundary conditions
where only the incoming arrows along the boundary are specified, and the outgoing arrows
are left free, see Figure 1.6. With this kind of boundary condition, one can see inductively
that the partition function Z always equals 1 and that the configuration can be sampled
vertex by vertex. This is done by choosing a vertex all of whose incoming vertices have
been determined, and, if necessary, generating a random Bernoulli with parameter b1 or b2
to decide which type of vertex it is supposed to be. This stochastic sampling process can
be used to define the stochastic six-vertex model on some infinite domains. Of particular
interest to us will be the corner Z≥0 × Z≥0 with so-called step initial conditions, that is,
every incoming edge from the left has an arrow, while no incoming edge from the bottom
has an arrow. The model one obtains is equivalent to taking the limit of Gibbs measures on
rectangular domains, see [BCG16].

1.3.2 Shocks, rarefaction fans and 2nd class particles

We now want to study the behaviour of the model on the step initial conditions defined in the
previous section. For reasons that will become clear later, we will associate the first axis with
space and the variable x and the second axis with time and the variable t. The behaviour
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b1 > b2 b1 < b2

Figure 1.7: Two simulations of the stochastic six-vertex model on the corner with step initial
conditions, one for b1 > b2 exhibiting a shock, the other for b1 < b2 exhibiting a rarefaction
fan

1 b1 b2 1− b1 1− b2

Figure 1.8: The vertex weights of the multi-class stochastic six-vertex model, where the colors
blue and red correspond to classes i and j respectively with i < j.

of the model on step initial conditions depends strongly on which between b1 or b2 is bigger.
See Figure 1.7 for two simulations of either type. If b1 is bigger, particles on their own will
want to move up, and therefore any particle that finds itself to the right of the line x = t
will quickly move back to it, and similarly any hole above the line will quickly be filled. This
phenomenon is called a shock. On the other hand, for b1 < b2 the particles will quickly spread
out and form a continuous decrease from density 1 to density 0. This is called a rarefaction
fan. Both of these phenomena will become clearer once we look at the hydrodynamic limit
of this model.

Chapter 5 studies the rarefaction fan phenomenon. To do so, we use the multi-class
version of the stochastic six-vertex model. In this model, every edge (which we still call
particle/arrow) has a label in Z∪{−∞,∞}, which we call its class. The classes are preserved
at each vertex, so there are two possible outcomes if the classes of the incoming particles are
distinct, and only one if the classes of the incoming particles are equal. In the case where
there is a choice to be made, the probability of the two possible outcomes are determined by
the classes: If the incoming classes are i and j and i < j, then the weight of the vertex is
chosen as if j was a hole and i was a particle in the standard stochastic six-vertex model, see
Figure 1.8.

The standard six-vertex model can be obtained as a special case of the multi-class
stochastic six-vertex model where only two classes are present. In particular we will often
identify the two models by assigning particles class 1 and holes class ∞.

What makes the multi-class model a useful tool to studying the single-class model is the
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t

x

Figure 1.9: On the left: the initial condition with a single second-class particle. Black arrows
denote first class particles, while the gray arrow denotes the second-class particles. Dashed
lines denote holes. On the right: a simulation of this process on a 200 by 200 square with
b1 = 0.3 and b2 = 0.6, with the second-class particle in red.

merging property.

Lemma 1.3.1. If ω is a configuration of the multi-class stochastic six-vertex model, then for
any monotone map ϕ : Z∪{−∞,∞} → Z∪{−∞,∞}, the configuration ϕ◦ω is a realization
of the multi-class model, with boundary conditions changed by ϕ.

A particular case is the following: Considering a multi-class stochastic six-vertex model
with particles only of class 1, 2 and ∞, i.e. first-class particles, second-class particles and
holes. This can be mapped to the single-class stochastic six-vertex model in two (non-trivial)
ways:

ϕ1(x) =

�
1, if x = 1 or x = 2 and

∞, if x = ∞ and ϕ2(x) =

�
1, if x = 1 and

∞, if x = 2 or x = ∞.

I.e., one can treat the second-class particles either as particles or holes, and in either way
obtains a single-class stochastic six-vertex model. By doing so one obtains a coupling of two
stochastic six-vertex models, such that the occupied edges of one of the models is a superset
of the occupied edges of the other model. This coupling has been used to study the model,
see e.g. [BB19, Agg20a, ACH24].

We are now ready to state our main results, which we do in the next section.

1.3.3 Main results

Consider the following boundary conditions on Z≥0 × Z≥0.

• On all incoming edges from the left there is a particle of class 1.

• On the incoming edge from the bottom at (0, 0) there is a particle of class 2.

• On all other incoming edges, there is no incoming particle (i.e., class ∞).

We call these boundary conditions step initial conditions with a vertical second-class
particle at the origin, see Figure 1.3.3 for a diagram showing these initial conditions and
a simulation. The local conservation of particles guarantees that for each horizontal row of
edges, almost surely exactly one of them is occupied by a second-class particle. Denote by
Xt the position of that edge for the row of edges {(x, t)− (x, t+1) : x ∈ Z≥0} and call it the
position of the second-class particle at time t.
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Theorem 1.3.2. Let b1 < b2. Under step initial conditions with a vertical second-class
particle at the origin, the speed of the second-class particle almost surely converges:

Xt

t
→ U ,

where U is an explicit continuous random variable on [ 1κ , κ], where κ is as defined in (1.41).

The law of U can be derived from the hydrodynamic limit, see Section 1.3.6 below. We
also derive a bound on the fluctuations around the limit:

Theorem 1.3.3. Let Xt be the position of the second-class particle at time t as above and
U its almost sure limit speed. Then for any δ > 0, almost surely we have that

lim
t→∞ |Xt − tU |t−( 7

9
+δ) = 0 .

As mentioned in Remark 5.1.3, the exponent 7
9 is not optimal, and rather an exponent 2

3
is expected.

As a direct consequence of Theorem 1.3.2 we obtain the stochastic six-vertex speed pro-
cess. We state this result for a version of the stochastic six-vertex model on Z × Z≥0, with
so-called packed initial conditions, meaning that at each vertex (x, 0) there is an incoming
particle from below with class x, see Section 1.3.4 for how this is defined.

Theorem 1.3.4. Under packed initial conditions, denote by Xt(x) the position of the particle
with class x at time t. Then

lim
t→∞

7
Ut(x)

t

>
x∈Z

= U(x)

exists. Its law is translation invariant and ergodic, and the law of −U(−x) is stationary
under the multi-class stochastic six-vertex dynamics.

The only part of the above theorem that is not a direct consequence of Theorem 1.3.2 is
the stationarity of this measure. This is proven using the recently developed color-position
symmetry from [BB19].

To prove Theorems 1.3.2 and 1.3.3 we prove an the effective hydrodynamic limit estimate
for the (single-class) stochastic six-vertex model with step initial conditions, which might be
of independent interest. To state it, we need to first define the height function for step initial
conditions. For a given configuration ω on Z≥0 × Z≥0 define the height function H(x, t;ω)
for x, t ∈ R≥0 by setting H(x, 0;ω) = 0 for all x and increasing H whenever you cross a path
in the vertical direction. There is a law of large numbers of this height function H. With
probability one it holds that

lim
n→∞

H(⌊nx⌋, ⌊ny⌋)
n

= g(x, y), ∀x, y ∈ R≥0.

where for b1 ≤ b2, we have

g(x, y) =

				
y − x x

y ≤ 1
κ6√

x−√
κy
=2

κ−1
1
κ ≤ x

y ≤ κ,

0 x
y ≥ κ .

This was proven at the level of weak convergence in [BCG16] and [Agg20b], and we strengthen
to almost sure convergence in [DL23].

Using tools from integrable probability we prove bounds on how much the height function
H fluctuates around its limit shape g. Note that the exponent T

1
3 in this theorem is optimal,

since at this scale Tracy-Widom fluctuations have been shown in [BCG16, Theorem 1.2].
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Theorem 1.3.5. Let H(x, t) be the height function associated with step initial conditions.
For any ε > 0, there exists c = c(ε) > 0 such that the following holds. For any x, y such that
κ−1 + ε ≤ x, y ≤ κ− ε, and for any T > 1, s ∈ [0, T ],

P
�
|H(Tx, T )−H(Ty, T )− (g(x)− g(y))T | ≥ sT 1/3

!
≤ c−1e−cs , (1.42)

and the constant c can be chosen to decrease weakly in ε.

Now that we have stated the main results, in the remainder of this introduction we
will describe some basic properties of the process in Sections 1.3.4 and 1.3.5, provide some
heuristics in Section 1.3.6, give the ideas of the proof in Section 1.3.7 and finally mention
some of the tools we use in Section 1.3.8. We then conclude with a definition of the speed
process and mention some of its basic properties in Section 1.3.9.

1.3.4 The particle process

Until this point, we have treated the stochastic six-vertex model as a measure on configur-
ations consisting of oriented edges. However, it is also natural to consider it as a particle
system, as has already been quite noticeable in the language we have been using, and was
already observed in [GS92]. Let us now introduce a notation that emphasises this connection.
For a given configuration ω of the 6-vertex model, define ηt(x) for x ∈ Z≥0 by

ηt(x) =

�
1, if the incoming vertex at (x, t) from below in ω is occupied and

0, else.

Defined like this, (ηt)t∈Z≥0
is a Markov process with values in {0, 1}Z≥0 . The boundary

conditions on the bottom give the initial condition η0 and the boundary conditions on the
left inject particles at specific times. The transition probabilities of this process can be
described by particles staying in place with probability b1 and performing jumps given by
geometric random variables with parameter b2 if they start moving. If they would jump
across another particle, instead they stop and the other particle starts moving. See [BCG16,
Section 2.2.] for these transition weights written out. To reflect this change of perspective
denote the height function ht(x; η) satisfying the property

ht(x; η)− ht(x+ 1; η) = ηt(x) and

ht+1(0; η)− ht(0; η) =

�
1, if there is an incoming arrow from the left at (0, t)

0, else.
(1.43)

Given a configuration (ηt)t≥0 these equations determine (ht)t≥0 up to a global shift. Unless
otherwise specified, the height function is made unique by setting h0(0) = 0, but in some
places it might be convenient to choose some other initial condition h0. One quickly recovers
the definition of H(x, t) above, since by (1.43) for step initial conditions h0(x) = 0 for all x.
By taking the discrete gradient of ht one recovers the occupation variable ηt. In particular,
ht is a Markov process. The same change of perspective can also be applied to the multi-class
model. Then ηt : Z → Z ∪ {−∞,∞} maps the position x to the class of the particle at
position x at time t, i.e. of the incoming arrow from below.

So far, all we did in this subsection is changing notation. However, for the definition of
the speed process it is convenient to go one step further and to consider the particle system on
the line, i.e., started from initial conditions η0 : Z → [0, 1] and evolve it in a way that agrees
with the description of the stochastic six-vertex model above in terms of Bernoulli random
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variables and geometric jumps. This is done for general initial conditions in [Agg20a]. For
step initial conditions the two models are easily identified. Indeed for (ηt(x))t∈Z≥0,x∈Z a
stochastic six-vertex process on the line started from the initial condition η0(x) = 1x<0, the
law of the restriction (ηt(x))t∈Z≥0,x∈Z≥0

is exactly the stochastic six-vertex process on the
quadrant Z≥0 × Z≥0 started from step inital data as described above.

One benefit of changing domain to Z is that the dynamics are now translation invariant.
If one initial condition is obtained from translating another, then the corresponding processes
can be coupled to be related by the same translation. Another advantage, that we however
do not use, is that the dynamics are monotone, see [Agg20a, Proposition 2.6], which means
that given two initial conditions with corresponding height functions, such that one is above
the other, the two processes can be coupled such that this property is maintained. However,
as opposed to the corresponding property of ASEP, one cannot (to the best of the author’s
knowledge) couple two height functions h1 and h2 such that the maxx∈Z |h1t (x)−h2t (x)| is non-
increasing. Because of this, we have to use an approximate version of this property proven in
[ACH24, Lemma D.3], which states that given two initial conditions with at most N particles,
then under the “basic coupling”, if at time 0 the height functions satisfy maxx∈Z |h10(x) −
h20(x)| = K, then at any later time maxx∈Z |h1t (x) − h2t (x)| is at most K + C(logN)2, with
high probability, see Proposition 5.2.6 for a precise statement.

1.3.5 Stationary measures

A first step in understanding the model is taking a look at the translation invariant measures.
For any b1, b2 ∈ (0, 1) and ρ1, ρ2 ∈ [0, 1] denote by P (b1, b2, ρ1, ρ2) the measure on configura-
tions obtained by choosing the following random boundary conditions on the quadrant: Inde-
pendently every edge coming in from the left is occupied with probability ρ1 and every edge
coming in from the bottom is occupied with probability ρ2. Call these the Bernoulli−(ρ1, ρ2)
initial conditions.

As was conjectured in [GS92] and proven in [Agg16] under the condition

ρ1
1− ρ1

= κ
ρ2

1− ρ2
(1.44)

if (ηt(x))t,x∈Z≥0
is the process sampled according to P (b1, b2, ρ1, ρ2) then for any s, y ∈ Z≥0

(ηt+s(x + y))t,x∈Z≥0
and (ηt(x))t,x∈Z≥0

have the same law. Using this translation invariance
one can obtain a translation invariant Gibbs measure in the full plane with densities ρ1, ρ2.
Moving to the line as discussed in the previous section, the analogous statement is that the
law of iid Bernoulli(ρ) random variables is stationary and translation invariant. These are
the only extremal translation invariant stationary measures on the line, as was proven in
[Agg20a, Theorem 3.6].

Recently, stationary measures for the multi-class stochastic six-vertex model were con-
structed in [ANP23] using the Yang-Baxter relation for higher spin vertex models.

1.3.6 Local equilibrium and the hydrodynamic limit: a heuristic

In this section, we will give a formal argument to show that the hydrodynamic limit of the
stochastic six-vertex model is given by a Burgers equation, by assuming that the system
satisfies a local equilibrium assumption.

Given a sequence of initial conditions ηδ0 : Z → {0, 1} such that

δ

δ−1bG
x=δ−1a

ηδ0(x) ≈
1 b

a
ρ0(x)dx
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for some continuous initial density profile ρ0 : R → [0, 1], what do we expect when we let this
process run for some time of the order δ−1t? A reasonable assumption is that the system is
in local equilibrium, which would mean that

η̃δ,x,ts (y)
def
= ηδδ−1t+s(xδ

−1 + y) (1.45)

is close to a stationary stochastic six-vertex process with some density ρt(x). This ρt(x)
describes the density of vertical arrows. By solving (1.44), one can see that the density of
vertical and the density of horizontal arrows are connected via the function

ϕ(ρ)
def
=

κρ

(κ− 1)ρ+ 1
.

As a quick sanity check one can see that this function is monotone and maps [0, 1] to itself.
The local equilibrium assumption can now be stated as

Law([η̃δ,x,ts (y)]y∈Z,s∈Z≥0
) ≈ P (b1, b2, ρt(x), ϕ(ρt(x))) , (1.46)

for δ → 0 and we recall that the object on the right-hand side is the process at stationarity
from the previous section. Consider now a mesoscopic box around δ−1x, δ−1t of side-length
2εδ−1. By the local conservation property of the stochastic six-vertex process, the number
of arrows entering the box from the bottom and the left must equal the number of arrows
leaving through the top and the right. By the assumption, the density of particles entering
from the bottom is approximately ρt−ε(x), while the density of particles entering from the left
is approximately ϕ ◦ ρt(x− ε) and similarly for the other two edges. The local conservation
property then takes the form

ρt−ε(x) + ϕ ◦ ρt(x− ε) = ρt+ε(x) + ϕ ◦ ρt(x+ ε) ⇐⇒
0 =

ρt+ε(x)− ρt−ε(x)

2ε
+

ϕ ◦ ρt(x+ ε)− ϕ ◦ ρt(x+ ε)

2ε
.

Taking the limit ε → 0 we obtain that ρ satisfies the PDE

∂

∂x
ρ+

∂

∂x
ϕ ◦ ρ = 0 . (1.47)

Weak convergence of ηδ to a solution of this equation is rigorously proven in [Agg20a, Theorem
1.1]. This PDE can develop singularities at finite times, which causes there to be multiple
weak solutions. Among these there is a specific one called “entropy solution”, satisfying a
certain inequality, which corresponds to the thermodynamic fact that the entropy increases
in time. It is this entropy solution that ηδ converges to (in a weak sense).

For step initial conditions ρ0(x) = 1x<0, the solution of this equation is given by

ρt(x) =

				
1 if x

t ≤ κ−1

(ϕ′)−1(xt ) =

√
κt/x−1

κ−1 if κ−1 ≤ x
t ≤ κ

0 if x
t ≥ κ .

(1.48)

From this, one can already guess the limiting law of the asymptotic speed U of the second-
class particle Xt

t . By the merging property discussed at the end of Section 1.3.1, the second-
class particle tracks the difference between two stochastic six-vertex processes started from
the initial conditions η0(x) = 1x<0 and ξ0(x) = 1x≤0. This implies that

P(Xt = x) = E[ξt(x)]− E[ηt(x)]
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Since the initial condition of ξ is the initial condition of η shifted by 1, for large t the right-
hand side is close to

ρ1(
x− 1

t
)− ρt(

x

t
) ≈ −1

t
ρ′1(

x

t
).

Therefore, the distribution of U has the density

√
κ

2(κ− 1)
x−

3
21κ−1≤x≤κ . (1.49)

This argument can be made rigorous to show that Xt
t converges to U in distribution, see

Section 5.A.

The local equilibrium assumption also supplies a heuristic argument for Theorem 1.3.2.
Consider the process run at equilibrium with density ρ, i.e., with initial conditions given by
a sequence of i.i.d. Bernoulli(ρ) random variables. Adding a second-class particle, this will

move with speed x/t = ϕ′(ρ), with fluctuations around this trajectory being of order t
2
3 (see

[Agg16]).

Considering now again the process started from step initial conditions with a single second-
class particle at the origin. After running this process for some long initial time S, the
second-class particle is at some position XS . By the hydrodynamic limit, the density of
particles around XS is approximately ρS(XS) = (ϕ′)−1(XS

S ) Then by the local equilibrium
assumption, the law of the first class particles around position XS is close to the law of iid
Bernoulli variables with this parameter. Therefore

XS+t ≈ XS + tϕ′(ρS(XS)) +O(t
2
3 ) = XS + t

XS

S
+O(t

2
3 ) = (S + t)

XS

S
+O(t

2
3 ) .

However, one cannot expect this to hold arbitrarily large t. After some time the fluctuations of
the second-class particle are big enough, to cause the density observed around the particle to
be noticeably different from the density observed at time S. How long such an approximation
is reasonable depends on how close the environment around XS at time S is to equilibrium
and therefore it depends on the initial time S. However, if one can show that such an
approximation holds for a long enough time, dependent on S, one can use this iteratively
to show almost sure convergence. Proposition 5.5.2 shows that this holds up to t = Sβ for
β < 1.

Local equilibrium in the sense of convergence of the left hand side of (1.46) to the right
handside on finite boxes was shown in [Agg20a, Theorem 1.3]. However to imply our result
one would need not just convergence. Rather one would need a result showing e.g. that
[η̃δ,x,ts (y)]y∈[−N,N ],s∈[0,N ] can be coupled to the stationary process with high probability. We
emphasize that the actual proof does not proceed via showing such a result. It is possible
that such a proof would improve the exponent in Theorem 1.3.3.

1.3.7 Proof sketch for Theorem 1.3.2

As discussed in the previous section, the idea is to show that after some initial time has
passed, the particle will stay close to the slope it has at the end of that initial time, with
high probability. This is made precise by the following proposition

Proposition 1.3.6 (Proposition 5.5.2 below). For any integer S > 2 and β ∈ (2/3, 1) let
T = Sβ. Also, define the following FS-measurable event, which depends on ε:

PS = {XS

S
∈ [κ−1 + ε, κ− ε]} (1.50)
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and the FS+T -measurable events

E≥
S = {XS+T −XS ≥ XS

S
T − S1−γ}

E≤
S = {XS+T −XS ≤ XS

S
T + S1−γ}

and let ES = E≥
S ∩E≤

S . For any positive α < β/2− 1/3 and for any ε ∈ (0, 14), there is a c =
c(ε, α) > 0 and a FS-measurable event HS such that for all S > 2 and for γ = 5/6− β/2−α
we have

P[HS ] ≥ 1− c−1e−cSα
P[ES |FS ] ≥ (1− c−1e−cTα

)1Ps∩Hs . (1.51)

Let us unpack the different parts of this proposition.

• The event PS states that the particle is not too close to the boundary of the rarefaction
fan. From a local equilibrium perspective it makes sense that this would be problematic,
since the law of Bernoulli(ρ) random variables becomes degenerate in for ρ close to 0 or
1. One can also see that the effective hydrodynamics in Theorem 1.3.5 are only stated
inside the rarefaction fan, bounded away from the boundary.

• The event ES is exactly the event that XS+T is not too far from the trajectory given
by the slope at time S. One can easily see that it implies thatKKKKXS

S
− XS+T

S + T

KKKK ≤ S−γ . (1.52)

• The event HS , which we call the hydrodynamic event, is that the particle process
at time S has not strayed to far from the hydrodynamic limit. This event allows us to
prove that ES has high probability, conditioned on the configuration at time S as long
as the events PS and HS take place.

Once we have shown this proposition, we prove Theorem 1.3.2 by considering the sequence
of times Sn defined by Sn+1 = Sn + Sβ

n and show that with probability converging to 1

as S0 → ∞ all events ESn occur. This implies by (1.52) that the sequence (
XSn
Sn

)n is a
Cauchy sequence. For times t between the Sn, one can use the monotonicity of Xt to show
convergence. This also gives Theorem 1.3.3 by bounding how fast this Cauchy sequence
converges as well as bounding the deviations between times Sn. A tradeoff between those
two effects gives the value β = 7

9 .
There are two key ingredients to obtaining Proposition 1.3.6.

• Theorem 1.3.5 gives very precise bounds on the fluctuations of the height function
started from step initial conditions.

• Proposition 5.1.7 concerns the multi-class stochastic six-vertex model started from ini-
tial conditions with

– Some first-class particles (potentially infinitely many),

– a single second-class particle and

– finitely many third-class particles, which are all initially to the left of the second-
class particle.

Given such an initial condition, Proposition 5.1.7 states that at any future time t, the
amount of third-class particles that have passed the second-class particle is dominated

by a geometric random variable with parameter q
def
= b1

b2
.
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t = 0 t = S t = S + T

0 1
κ
S XS κS XS

S+T
S

Figure 1.10: A sketch of the densities of the processes η1 in black at times 0, S and S + T
and ηstep at times S and S + T . At time S the process η1,2 is given exactly by the maximum
of the two processes η1 and ηstep, while at time S + T it is at least the maximum of η1 and
ηstep.

Let us explain how these two results can be used to show Proposition 1.3.6. Let us focus on
showing the event E≥

S . We want to control the behaviour of the second-class particle after
the initial time S. However, Theorem 1.3.5 only allows us to control the behaviour of a large
number of particles, not of an individual one. To use this, we fill up all positions to the left of
XS with third-class particles. Then, Proposition 5.1.7 will guarantee that only a very small
number of these third-class particles will be to the right of XS+T at time S+T . It therefore
suffices to prove that a large number of these particles are to the right of XS+

XS
S T −S1−γ at

time S+T . To do so denote by η1,2 the (single-class) stochastic six-vertex model containing all
first-, second- and third-class particles and with η1 the one with only the first-class particles.
Additionally, we introduce an auxiliary third process ηstep which is started at time S from
the initial condition ηstepS (x) = 1x≤XS

. At time S these three processes satisfy

η1,2S (x) = max(η1S(x), η
step
S (x)) .

The multi-class stochastic six-vertex process allows us to couple η1,2 and ηstep such that at
any later time S + T it holds that η1,2S+t(x) ≥ ηstepS+t(x). Since η1,2 and η1 are already coupled
in such a way, this implies for any t ≥ 0

η1,2S+t(x) ≥ max(η1S+t(x), η
step
S+t (x)) .

Note that this also couples η1 and ηstep in some non-trivial way. See Figure 1.10 for a
sketch of the particle densities. By using the hydrodynamic estimate together with a recent
approximate monotonicity result from [ACH24], we show that with high probability η1 is still
close to the hydrodynamic limit at time S + T . Since the process ηstep is started from step
initial conditions, it is also close to a hydrodynamic limit at time S+T , which is obtained by
translating the hydrodynamic limit from standard step initial conditions in time and space.
By the coupling above

η1,2S+T (x)− η1S+T (x) ≥ η
step
S+T (x)− η1S+T (x).

By using Theorem 1.3.5 twice for the two processes on the right hand side, this gives a lower
bound for the number of third-class particles to the right of XS

S (S + T )− S1−γ , as desired.

1.3.8 Tail bounds

To show Theorem 1.3.5 we prove the following two tail bounds for the height function.
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Proposition 1.3.7. Fix ε > 0. There exists a constant c = c(ε) > 0 such that the following
holds: For any µ ∈ [κ−1 + ε, κ−1 − ε] and for any T ≥ 1, s ≥ 0,

P
�
H(Tµ, T ) ≥ g(µ)T + sT 1/3

!
≤ c−1e−cs,

and c can be chosen to weakly decrease in ε.

Proposition 1.3.8. Fix ε > 0. There exists a constant c = c(ε) > 0 such that the following
holds: For any µ ∈ [κ−1 + ε, κ−1 − ε] and for any T ≥ 1, s ≥ 0,

P
�
H(Tµ, T ) ≤ g(µ)T − sT 1/3

!
≤ c−1(e−cs + e−cT ),

and c can be chosen to weakly decrease in ε.

Both of these are proved using methods from integral probability. For Proposition 1.3.8
we use the following result from [AB19], which gives a Fredholm-determinant formula for the
q-Laplace transform of H, that is the quantity on the left-hand side of the formula in the
next Proposition:

Proposition 1.3.9 (Part of Theorem 4.9. in [AB19]). Let H(X,T ) be the height function
associated to a stochastic six-vertex model, with parameters 0 ≤ b1 ≤ b2 and ζ ∈ C \R+, then

E

B
k≥0

1

1− ζqH(X,T )+k

 = det(1 +Kζ) ,

where Kζ is an explicit kernel given in (2.18) and q is defined in (1.41).

This kernel can then be analysed by standard tools, extending what was already done in
[AB19]. This is carried out in Sections 5.4.2 and 5.4.3.

For Proposition 1.3.7 we instead use a remarkable connection to Schur measures and the
Meixner ensemble from [BO17]. The Schur measure is a measure on integer partitions λ =
(λ1, λ2, . . . ), with finitely many non-zero λi, depending on two finite sequences (x1, x2, . . . )
and (y1, y2, . . . ) of non-negative parameters. The Meixner ensemble is a determinantal point
process with three parameters (N, β, ξ). It is a measure on N -point configurations in Z≥0,
which is associated to the classical orthogonal Meixner polynomials. See Section 5.4.1 for
definitions of these objects.

Proposition 1.3.10 (Proposition 8.4 in [BO17]). Take any 0 < q < 1 and κ > 0 and
consider the stochastic six-vertex model on the quadrant parameterized by q and κ as defined
in (1.41). Consider any integers M,N ≥ 1. Then for any ξ /∈ −qZ≤0 we have

E6v

B
i≥0

1

1 + ξqH(M,N)+i
= ESM

B
j≥0

1 + ξqλN−j+j

1 + ξqj
(1.53)

where in the right-hand side we assume that qλ−m = 0 for m ≥ 0, and the right-hand expect-
ation is with respect to the Schur measure SM((κq−1/2)−1, . . . , (κq−1/2)−1� �
 


N

; q−1/2, . . . , q−1/2� �
 

M−1

).

By [BO17, Proposition 8.2], the push-forward of the Schur measure

SM(κ−1q1/2, . . . , κ−1q1/2� �
 

N

; q−1/2, . . . , q−1/2� �
 

M−1

)
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under the map

λ (→ {min(N,M − 1) + λi − i)}min(N,M−1)
i=1

coincides with the point process Meixner(min(N,M−1), |N−M+1|+1, κ−1). Distinguishing
the cases M < N and M ≥ N this leads to the following proposition.

Proposition 1.3.11 (Corollary 8.5 of [BO17]). For any M,N ∈ Z≥1, 0 < q < 1, κ > 1 and
ξ ̸∈ −qZ≤0 We have

ESM

B
j≥0

1 + ξqλN−j+j

1 + ξqj
= EX

B
x∈X

1

1 + ξqx
. (1.54)

where the right-hand expectation is with respect to the point process

X ∼
�
Meixner◦(N,M −N, κ−1) if M > N

N − (M − 1) +Meixner◦(M − 1, N −M + 2, κ−1) if M ≤ N
,

where, for a point process X, n +X denotes the point process obtained by deterministically
shifting over each particle in X by n and X◦ denotes the complement of X.

One can use this identity together with standard tools for dealing with q-Laplace trans-
forms (see e.g. [ACG23, Lemma B.7]), to transfer estimates on the smallest hole of the
Meixner ensemble to estimates on the stochastic six-vertex model. What we need is an upper
bound on the probability that the smallest hole x1 is atypically large. We use a Fredholm
determinant formula from [Bor18, in the proof of Theorem 6.1.]

P (x1 −N > h) = det(1− IK)ℓ2(h,h−1,...) = det(1−Πh
IKΠh) , (1.55)

where Πh denotes the projection onto the functions supported on (h, h− 1, . . . ).
The smallest hole x1 of the Meixner ensemble being unusually large is a deviation into

the bulk. The holes of the Meixner ensemble have a certain limit shape, and the left edge
of this limit shape corresponds to the typical value for the height function H(M,N). The
height function being unusually large corresponds to x1 being inside the bulk. In both cases
“corresponds” refers the connection via (1.53) and (1.54), i.e. it does not mean there is
a bijection between the configurations, but rather that estimates on certain events can be
transfered from one model to the other. Since in the bulk, the kernel K will be generally
large, one cannot proceed as in the proof of Proposition 5.1.9. Instead we use the following
“trick”, first used by Widom in [Wid02, Lemma 1]. For a kernel K with eigenvalues in [0, 1]

det(1−K) ≤ exp(−Tr(K)). (1.56)

To show that the kernel in (1.55) indeed only has eigenvalues in [0, 1] we use the connection
with the Meixner ensemble.

The upper bound on the probability P (x1−N > h) is therefore reduced to a lower bound
on the Tr(Πh

IKΠh), which can be done using standard complex analysis techniques. This is
carried out in Section 5.4.1.

Combining Propositions 1.3.8 and 1.3.7 straightforwardly yields Theorem 1.3.5.

1.3.9 The speed process

As mentioned in Section 1.3.4 one can also consider the stochastic six-vertex model on the
line, i.e. as a process (ηt)t∈Z≥0

with ηt : Z → {0, 1}. The same extension also applies to the
multi-class stochastic six-vertex model.
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For the multi-class stochastic six-vertex model, consider the initial condition η0(x) = x,
i.e. every position on the boundary has an incoming arrow and every incoming arrow has
a distinct class in Z, which are in increasing order. These are known as packed initial
conditions4. With these initial conditions, we can now define the stochastic six-vertex
speed process.

Corollary 1.3.12 (Existence of the speed process). Consider packed initial conditions, i.e.
η0(x) = x, for x ∈ Z. Denote by the Xt(x) the position of the unique particle of class x at

time t. Then almost surely (Xt(x)
t )x∈Z converges as t → ∞. Denote the limit of this process

as (U(x)x∈/Z , the stochastic six-vertex speed process.

Proof. By the merging property, see Lemma 1.3.1, the law of Xt(x) is identical to the law of
the position of the second-class particle in the process started from initial condition

η0(y) =

		
1, if y < x,

2, if y = x,

∞, if y > x ,

i.e., there is a single second-class particle at x. All positions to the left of this particle are
occupied with first-class particles, and all to the right of it are empty (recall that for the
multi-class stochastic six-vertex process, holes are represented by class ∞). These are a
translation of the “step initial conditions with a single second-class particle” in the statement
of Theorem 1.3.2, and therefore Xt(x)

t converges almost surely. Since there are countably
many particles, almost surely all slopes converge and form the speed process.

This speed process has a number of properties that are immediate from its definition. It
is translation invariant, ergodic, and the one-dimensional marginals are given by (1.49). Less
immediate is the following property:

Proposition 1.3.13 (Proposition 5.8.4 below). Let U be a stochastic six-vertex speed pro-
cess. Then the stochstic six-vertex process started from initial conditions η0(x) = −U(−x) is
stationary.

This follows from a certain symmetry of the stochastic six-vertex process recently proven
in [BB19].

The speed process can also be defined on other domains, including the quadrant. To
do so one assigns each incoming arrow along the boundary a distinct class, increasing along
the boundary. See Figure 1.11 for a simulation of the stochastic six-vertex model with these
initial conditions. One also sees the formation of “convoys”, which has been shown for other
speed processes.

4at least in [ACH24]
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Figure 1.11: A simulation of the stochastic six-vertex model on the quadrant with packed
initial conditions, and the traces of the 25 particles starting closest to the origin, both on a
square of size 800×800. One can observe the phenomenon of “convoys”, i.e. several particles
traveling at the same asymptotic speed.
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Chapter 2

Diffusion in the curl of the
Gaussian free field

Abstract

The present work is devoted to the study of the large time behaviour of a critical Brownian
diffusion in two dimensions, whose drift is divergence-free, ergodic and given by the curl
of the 2-dimensional Gaussian Free Field. We prove the conjecture, made in [B. Tóth, B.
Valkó, J. Stat. Phys., 2012], according to which the diffusion coefficient D(t) diverges as√
log t for t → ∞. Starting from the fundamental work by Alder and Wainwright [B. Alder,

T. Wainwright, Phys. Rev. Lett. 1967], logarithmically superdiffusive behaviour has been
predicted to occur for a wide variety of out-of-equilibrium systems in the critical spatial
dimension d = 2. Examples include the diffusion of a tracer particle in a fluid, self-repelling
polymers and random walks, Brownian particles in divergence-free random environments,
and, more recently, the 2-dimensional critical Anisotropic KPZ equation. Even if in all of
these cases it is expected that D(t) ∼ √

log t, to the best of the authors’ knowledge, this is
the first instance in which such precise asymptotics is rigorously established.

2.1 Introduction

In the present work, we study the motion of a Brownian particle in R2, subject to a random,
time-independent drift ω given by the curl of the two-dimensional Gaussian Free Field (2d
GFF). Namely, we look at the SDE which is (formally) given by

dX(t) = ω(X(t))dt+ dB(t), X(0) = 0 (2.1)

where B(t) is a standard two-dimensional Brownian motion and

x (→ ω(x) = (ω1(x), ω2(x))

is defined as
x = (x1, x2) (→ ω(x) = (∂x2ξ(x),−∂x1ξ(x)) , (2.2)

with ξ the 2d GFF. As written, (2.1) is ill-posed due to the singularity of the drift ω. In fact,
not only classical stochastic analytical tools would fail in characterising (even) its law but it
would also be critical for the recent techniques established in [CC18, DD16] as its spatial
regularity is way below the threshold identified therein1. Nevertheless, we are interested in

1Formally, the 2d GFF is in Cα, α < 0, the latter being the space of Hölder distributions with regularity
α (see [CC18] for the definition), so that ω ∈ Cα−1. In the aforementioned works, the threshold regularity is
−2/3 so that (2.1) falls indeed out of their scope.
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its large time behaviour and hence we regularise ξ by convolving it with a C∞ bump function
(see Section 2.2 for details), so that ω is well-defined pointwise and smooth. Note that the
vector field ω is everywhere orthogonal to the gradient of the field ξ, and therefore parallel
to its level lines. As a consequence, the particle is subject to two very different mechanisms:
the drift tends to push the motion along the level lines of the GFF, while the Brownian noise
tends to make it diffuse isotropically. Our main theorem is a sharp superdiffusivity result:
the mean square displacement E[|X(t)|2] (under the joint law of the Brownian noise and of
the random drift) is of order t

√
log t for t → ∞, up to multiplicative loglog corrections. This

proves a conjecture of B. Tóth and B. Valkó [TV12] and, in a broader perspective, it is the
first proof of the

√
log t- superdiffusivity phenomenon conjectured to occur in a large class of

(self-)interacting diffusive systems in dimension d = 2 (see the discussion below).
To put the model and the result into context, let us observe first that the vector field ω is

divergence-free and that its law is translation-invariant and ergodic. Brownian diffusions in
ergodic, divergence-free vector fields have been introduced in the physics and mathematics
literature as a (toy) model for a tracer particle evolving in an incompressible turbulent flow.
If the energy spectrum of the vector field (i.e. the Fourier transform e(p) of the trace of the
covariance matrix R(x−y) = {E(ωa(x)ωb(y))}a,b≤d, with d the space dimension) satisfies the
integrability condition2 1

Rd

e(p)

|p|2 dp < ∞, (2.3)

the behaviour of the particle is known to be diffusive on large scales [KO01, KLO12] (see also
[KT17, Tó18] for analogous results obtained, via different methods, in the discrete setting of
random walks in divergence-free random environments). In the robustly superdiffusive case,
where the integral in (2.3) has a power-law divergence for small p, it turns out that E[|X(t)|2]
grows like tν for some ν > 1 [KO02]. The case under consideration in this work instead, where
d = 2 and ω is the curl of the GFF, is precisely at the boundary between the diffusive and
the super-diffusive case: e(p) is essentially constant for p small, the integral (2.3) diverges
logarithmically at small momenta and logarithmic corrections to diffusivity are expected.

Logarithmic corrections to diffusivity in two-dimensional out-of-equilibrium systems have
a long history. The seminal works [AW67, WAG71] of Alder and Wainwright lead the way,
in that they predicted that the velocity auto-correlation of a tracer particle diffusing in a
fluid behaves like t−d/2 in dimension d ≥ 3 and like 1/(t

√
log t) in the critical dimension

d = 2. This translates into the fact that, in two dimensions, the mean square displacement
E[|X(t)|2] of the particle should grow like tD(t) with

D(t) ≈
E

log t as t → ∞. (2.4)

The quantity D(t) takes the name of (bulk) diffusion coefficient. The same prediction was
obtained by Forster, Nelson and Stephen [FNS77] via Renormalization Group methods. Sub-
sequently, anomalous logarithmic corrections as in (2.4) were conjectured to occur for several
other two-dimensional (self-)interacting diffusions, including self-repelling random walks and
Brownian polymers3 [APP83, OP83, PP87, TV12], lattice gas models [LRY05], the diffusion
(2.1) in the curl of the 2d GFF [TV12] and, more recently, the two-dimensional Anisotropic
KPZ equation (2d AKPZ) [CET20]. We emphasize that in all of these cases, it is known or
conjectured that the analogous models behave diffusively (D(t) ∼ 1) in dimension d ≥ 3 (see
for instance [HTV12] for the self-interacting random walks and Brownian polymers).

2The integral in the l.h.s. is known as “Péclet number” [KLO12].
3There has been some controversy in the physics literature as to the value of the exponent ζ of the

logarithm in (2.4) for self-repelling random walks. The values ζ = 0.4 and ζ = 1 have been proposed
[APP83, OP83, PP87], in addition to the ζ = 1/2 prediction [TV12] based on the Alder-Wainwright argument.
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From a rigorous viewpoint, results available so far fall short of the conjecture (2.4). Until
recently, the best estimates obtained can be summarised into bounds of the form

log log t ≲ D(t) ≲ log t (2.5)

(see [TV12] for 2d self-repelling Brownian polymers and for the SDE (2.1), and [LRY05] for
two-dimensional lattice fluids). More recently, two of the authors together with D. Erhard
proved in [CET20] that, for the 2d AKPZ equation, one has

(log t)a ≲ D(t) ≲ (log t)1−a (2.6)

for some sufficiently small a > 0; after the present work was completed, in a second version
of [CET20] the result for the 2d AKPZ equation has been also improved to a = 1/2. (All the
above cited results have been shown in the sense of Laplace transform.)

For the SDE (2.1) under consideration in the present work, we establish for the first time
the conjectured behaviour (2.4), up to corrections that are polynomial in log log t (see The-
orem 2.2.2 below). The result holds again in the sense of Laplace transform - see, however,
Remark 2.2.3 for its implications in real time.

Our argument is based on an iterative analysis of the resolvent of the generator of the
Markov process given by the environment seen from the particle (see (2.9) below). This
is inspired by the method employed by H.-T. Yau [Yau04] to prove (log t)2/3 corrections
to the diffusivity of the two-dimensional Asymmetric Simple Exclusion Process (2d ASEP)
and, more closely, by the techniques developed in [CET20] to determine (2.6) for the 2d
AKPZ equation. Note that the exponent 2/3 of the logarithmic corrections of 2d ASEP is
different from the exponent 1/2 in (2.4), reflecting the fact that the two models belong to
two different universality classes, as emphasized already in [LRY05, TV12]. From a technical
point of view, a crucial difference between the two models is that for 2d ASEP the iterative
method in [Yau04] provides, at each step k of the recursion, upper/lower bounds for D(t) of
the form (log t)νk , with νk converging exponentially fast to 2/3 as k → ∞. In our case, on
the other hand, at step k the method naturally provides lower (resp. upper) bounds of order
(log log t)k/k! (resp. k! log t/(log log t)k) and we have to run the iteration for a number of steps
of order k = k(t) ≈ log log t (instead of k(t) ≈ log log log t as in [Yau04]) to reach the final
result. As a consequence, in contrast with [Yau04], we cannot afford to lose a multiplicative
constant at each step of the iteration (such multiplicative constants are responsible for the
sub-optimal result (2.6) in the first version of [CET20]), and a much finer analysis of the
resolvent is needed. Further, we get a significantly sharper control of sub-leading corrections
to D(t) with respect to 2d ASEP, namely, a multiplicative correction that is polynomial in
log log t (see Remark 2.2.3), to be compared with the corrections of order exp((log log log t)2)
for 2d ASEP [Yau04].

Organization of the article

The rest of this work is organized as follows. In Section 2.2, we rigorously define the
model (2.1) and state the main result. In Section 2.3, we introduce the main tools: we
recall the generator of the environment seen from the particle process and we describe the
space on which it acts. Section 2.4 is devoted to the analysis of the generator and the de-
rivation of the crucial recursive bounds, while in Section 2.5, the proof of the main result is
given. At last, in Appendix 2.A, we collect some technical estimates needed in Sections 2.4
and 2.5.
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2.2 The model and main result

The Brownian diffusion in the curl of the 2-dimensional Gaussian Free Field is the stochastic
process t (→ X(t) ∈ R2 given by the solution of the SDE (2.1) where B(t) is a standard
two-dimensional Brownian motion and

x (→ ω(x) = (ω1(x), ω2(x))

is a smooth, divergence-free, random vector field on R2, given by the curl of (a smoothened
version of) the two-dimensional Gaussian free field. To be more precise, let us introduce the
following assumption which will be in place throughout the paper.

Assumption 2.2.1. Let V : R2 → R be a radially symmetric bump function, i.e. a function
such that there exists U : R2 → R which is a smooth function in C∞(R2), radially symmetric,
decaying sufficiently (say, exponentially) fast at infinity and such that

2
R2 U(x)dx = 1, for

which

V = U ∗ U . (2.7)

Let V satisfy Assumption 2.2.1 and U be such that (2.7) holds. Then, ω is a centred
Gaussian field whose law P (and corresponding expectation E), is defined as follows. Let
ξ : R2 → R be the two-dimensional Gaussian Free Field convoluted with U , i.e. the centred
Gaussian field with covariance

E(ξ(x)ξ(y)) = V ∗ g(x− y) , for all x, y ∈ R2

where g(x) = − log |x|. Then, we define ω as the curl of the scalar field ξ, i.e. as in (2.2),
which clearly satisfies for all x, y ∈ R2

E(ωℓ(x)) = 0, E(ωk(x)ωℓ(y)) = −∂̃k∂̃ℓV ∗ g(x− y), k, ℓ = 1, 2, (2.8)

for ∂̃1 := ∂x2 and ∂̃2 := −∂x1 . Note that, while convolving the full-plane Gaussian free field
with U is a somewhat formal operation (because the field is only defined up to a constant),
the derivatives of the convolved field and therefore ω are (pointwise) defined without any
ambiguity and are smooth with respect to x.

It is well known [KLO12, Chapter 11] that, since ω sampled from P is divergence-free,
translation invariant and ergodic, the law P is stationary for the Markov process of the
environment seen from the particle, i.e. the time-evolving field t (→ ω(t, ·) given by

ω(t, x)
def
= ω(X(t) + x) , x ∈ R2 . (2.9)

2.2.1 Main result

Our main result is a sharp estimate on the super-diffusivity of the process X. For t > 0,
let E(|X(t)|2) denote the mean square displacement of X at time t - the expectation being
taken with respect to the joint randomness of the vector field ω and of the Brownian noise B
in (2.1). Let us remark that E(X(t)) = 0 because the law of the environment is symmetric
and X(0) = 0.

Throughout the present article we will be working with its Laplace transform, given by

D(λ)
def
=

1 ∞

0
e−λtE(|X(t)|2)dt, λ > 0. (2.10)
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Note that if in (2.1) there were no drift, one would trivially have X(t) = B(t) so that
E(|X(t)|2) = 2t and D(λ) = 2λ−2. In [TV12], it was conjectured that

D(λ)
λ→0≈ λ−2

E
| log λ|, (2.11)

corresponding in real time to

E(|X(t)|2) t→∞≈ t
E
log t

(the diffusion coefficient mentioned in the abstract is D(t) = t−1E(|X(t)|2). From a rigorous
point of view, in the aforementioned work it was proved that

C1λ
−2 log | log λ| ≤ D(λ) ≤ C2λ

−2| log λ|
for some positive constants C1, C2, for sufficiently small λ. In this work, we establish the
conjecture (2.11) in full.

Theorem 2.2.2. For every ε > 0 there exists constants C±(ε) such that, for every 0 < λ < 1,

C−(ε)
6
log | log λ|=−1−ε ≤ λ2 D(λ)E| log λ| ≤ C+(ε)

6
log | log λ|=1+ε

. (2.12)

where D is defined according to (2.10).

The exponent 1+ε in the sub-dominant corrections can presumably be improved by some
additional technical work, but we do not pursue this here. The constants C±(ε) implicitly
depend also on the choice of bump function V .

Remark 2.2.3. By a well-established argument (see [QV08]) the upper bound in (2.12) implies
an upper bound for the diffusivity in real time of the form

E(|X(t)|2) ≤ O
4
t
E

log t (log log t)1+ε
;
.

Deducing a pointwise (in time) lower bound on E(|X(t)|2) from the behaviour for λ → 0 of
the Laplace transform is much more delicate. That said, one can easily get (applying for
instance [BGT89, Theorem 1.7.1]) the following

lim sup
t→∞

E(|X(t)|2)
t
√
log t (log log t)−1−ε

> 0 .

2.3 Preliminaries

By rotation invariance, one has E(|X(t)|2) = E(X1(t)
2+X2(t)

2) = 2E(X1(t)
2), and we write

X1(t) = B1(t) +

1 t

0
ϕ(ωs)ds =: B1(t) + F1(t) (2.13)

where t (→ ωt is the environment seen from the particle (recall (2.9)), and

ϕ(ω)
def
= ω1(0) . (2.14)

Recall that EX1(t) = 0. The first term on the r.h.s. of (2.13) has variance t, so to prove (2.12),
it is sufficient to show

C−(ε)6
log | log λ|=1+ε ≤ λ2E| log λ|

1 ∞

0
e−λtE[F1(t)

2]dt ≤ C+(ε)
6
log | log λ|=1+ε

. (2.15)
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The starting point in the study of E[F1(t)
2] is the understanding of the environment

process t (→ ωt. As argued in [TV12], this is a Markov process, whose generator will be
denoted by G, on the Fréchet space of C∞, divergence-free two-dimensional vector fields with
derivatives growing slower than any power at infinity. As the field is stationary, ergodic and
divergence-free, the probability measure P is stationary for the environment process [KLO12,
Chapter 11]. This ensures that, as in [CES21, Lemma 5.1], we have

D̃(λ)
def
=

1 ∞

0
e−λtE[F1(t)

2]dt =
2

λ2
E[ϕ(ω)(λ− G)−1ϕ(ω)], (2.16)

with ϕ defined in (2.14). Hence, our analysis will focus on the resolvent (λ − G)−1. Recall
that E is the expectation with respect to the stationary law of the environment.

A first necessary step is to describe how G acts on elements in L2(P), for which we need
a more accurate description of the latter space. Since P is Gaussian (and given by the law of
the curl of the smoothed Gaussian free field ω), L2(P) admits a Wiener chaos decomposition
which we now briefly describe.

Let H0 be the set containing constant random variables and Hn be the closure of the span
of ψ =

2G
j1,...,jn=1

1
R2n

fj(x1:n) :

nB
l=1

ωjl(xl) : dx1:n

 , (2.17)

where x1:n is a short-hand notation for (x1, . . . , xn), j
def
= (j1, . . . , jn), : · · · : denotes the Wick

product associated to the measure P and the symmetric functions fj’s are such that

ψ̂(p1:n)
def
=

2G
j1,...,jn=1

nB
k=1

p̃k,jk f̂j(p1:n) (2.18)

satisfies 1
R2n

nB
i=1

.V (pi)

|pi|2 |ψ̂(p1:n)|2dp1:n < ∞ . (2.19)

Above, f̂j is the Fourier transform of fj, p̃k,1 = (pk)2 and p̃k,2 = −(pk)1, with (pk)ℓ the ℓ-th

component, ℓ = 1, 2, of pk. Also, .V is the Fourier transform of the bump function V .

Remark 2.3.1. The intuition behind (2.19) becomes clear upon noting that the components
of ω are nothing but the derivatives of the smoothed Gaussian field ξ (see (2.2)). Indeed,
by performing an n-fold integration by parts in (2.17), using the fact that, in Fourier space,
∂(xj)ℓ corresponds to multiplication by ι(pj)ℓ (with ι =

√−1) and writing the covariance (2.8)

of the field ξ in Fourier variables, one sees that (2.19) is just the L2(P) norm squared of ψ in
(2.17).

Remark 2.3.2. It is easy to see that the random variable ϕ(ω) = ω1(0) belongs to H1 and has
kernel ϕ̂(p) = p2.

Then, by [Nua06, Theorem 1.1.1], L2(P) can be orthogonally decomposed as

L2(P) =
∞'
n=0

Hn (2.20)

and the expectation of the scalar product of F, G ∈ L2(P) satisfies

E[FG] =

∞G
n=1

⟨ψn, ϕn⟩ .
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Above, ψn and ϕn are the kernels of the projections of F and G onto Hn and the scalar
product appearing at the right hand side is given by

⟨ψn, ϕn⟩ def
= n!

1
R2n

nB
j=1

.V (pj)

|pj |2 ψ̂n(p1:n) ϕ̂n(p1:n) dp1:n . (2.21)

Remark 2.3.3. In what follows, we will implicitly identify a random variable F in Hn of
the form (2.17) with its kernel ψ̂n in Fourier space, since this mapping is an isometry from
Hn to the set L2

sym(R2n) of symmetric functions on R2n endowed with the scalar product
⟨·, ·⟩ in (2.21). In the same spirit, we will identify linear operators acting on L2(P) with the
corresponding linear operators acting on

(
n L

2
sym(R2n), and, with a slight abuse of notation,

we will denote them using the same symbol.

Remark 2.3.4. With respect to [TV12, HTV12] we are using different normalization conven-
tions in (2.17) and in the scalar product in (2.21). More specifically, in the conventions of
[TV12, HTV12] there would be a factor 1/

√
n! in front of the integral in (2.17) and no factor

n! in (2.21). In other words, our kernels ψn equal those of [TV12, HTV12] times 1/
√
n!. Our

conventions are consistent with those of [CET20] and of [Jan97, Nua06]; we refer to these
latter references for more details on Wiener chaos analysis.

We are now ready to move back to the analysis of the generator G of the environment
process. As noted in [TV12], G can be written as

G = −∆+A+ −A∗
+,

where −∆ and A def
= A+ − A∗

+ respectively denote the symmetric and anti-symmetric part
of G with respect to P, and A∗

+ is the adjoint of A+ in L2(P). The action of −∆ and A in
Fock space is explicit. First of all, ∆ maps the n-th chaos Hn into itself while A+ (resp.
A∗

+) maps Hn into Hn+1 (resp. Hn−1) and can therefore be interpreted as a “creation”
(resp. annihilation) operator. Moreover, ∆ is diagonal in Fourier space as it acts as a Fourier
multiplier on the kernels, while A+ is not. Adopting the convention in Remark 2.3.3, one has
(see also [TV12, Section 2.1])4


(−∆)ψn(p1:n) = |
nG

i=1

pi|2 .ψn(p1:n)


A+ψn(p1:n+1) = ι
1

n+ 1

n+1G
i=1

4
pi ×

n+1G
j=1

pj

;/ψn(p1:n+1\i) , (2.22)

ι =
√−1, for ψn ∈ Hn. Above and throughout, we denote by p1:n+1\i the collection p1:n =

(p1, . . . , pn+1) with pi removed. Also, for a, b two vectors in R2, by a× b we mean the scalar
given by the vertical component of the usual cross product a× b, with a, b viewed as vectors
in R3. Explicitly, a× b = |a||b| sin θ, where θ is the angle between a and b.

Remark 2.3.5. Observe that the “Laplacian” −∆ acting onHn with n ≥ 2 is different from the
one appearing in [CET20], which acts instead as multiplication by

Hn
i=1 |pi|2. This represents

a major technical difference which forces us to significantly modify the arguments therein.

4If we had adopted the normalization conventions analogous to those of [HTV12], the factor 1/(n + 1) in
(2.22) would be replaced by 1/

√
n+ 1. This is due to the different definition of the kernels, see Remark 2.3.4

above.
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At last, in light of the notations and conventions introduced above (see in particular
Remark 2.3.3) we rewrite (2.16) in Fock space as1 ∞

0
e−λtE[F1(t)

2]dt =
2

λ2
⟨ϕ, (λ− G)−1ϕ⟩, (2.23)

where ϕ is the random variable ϕ(ω) in (2.14) which lives in H1 (see Remark 2.3.2).

2.4 The generator equation and the diffusivity

In order to obtain suitable bounds on the right hand side of (2.23) one should in principle
solve the generator equation (λ− G)ψ = ϕ and then try to evaluate ⟨ϕ, ψ⟩. While ϕ belongs
to the first chaos, the operator G is not diagonal in the chaos decomposition and finding ψ
explicitly is a rather challenging task. A way out was first devised in [LQSY04]. The idea is

to truncate the generator G by defining Gn
def
= I≤nGI≤n, with I≤n the orthogonal projection

onto H≤n
def
= ⊕k≤nHk (the chaoses up to order n), and then consider the solution ψ(n) ∈ H≤n

of the truncated generator equation

(λ− Gn)ψ
(n) = ϕ. (2.24)

The advantage of this procedure is that it provides upper and lower bounds (depending on
the parity of n) on (2.23). Indeed, the following lemma, which was first proven in [LQSY04,
Lemma 2.1] (and whose proof straightforwardly carries out in the present case) holds.

Lemma 2.4.1. For every n ≥ 1, one has

⟨ϕ, ψ(2n)⟩ ≤ ⟨ϕ, (λ− G)−1ϕ⟩ = ⟨ϕ, ψ⟩ ≤ ⟨ϕ, ψ(2n+1)⟩. (2.25)

The equation (2.24) coincides with the following hierarchical system of n equations, one

for each component ψ
(n)
k of ψ(n),												

6
λ−∆

=
ψ
(n)
n −A+ψ

(n)
n−1 = 0,6

λ−∆
=
ψ
(n)
n−1 −A+ψ

(n)
n−2 +A∗

+ψ
(n)
n = 0,

. . .6
λ−∆

=
ψ
(n)
2 −A+ψ

(n)
1 +A∗

+ψ
(n)
3 = 0,6

λ−∆
=
ψ
(n)
1 +A∗

+ψ
(n)
2 = ϕ .

(2.26)

Since ϕ belongs to the first chaos and different chaoses are orthogonal, in order to estimate

the terms at the left and right hand side of (2.25) we only need to know ψ
(n)
1 . The latter in

turn can be obtained by solving the system (2.26) iteratively starting from k = n so that we
get

⟨ϕ, ψ(n)⟩ = ⟨ϕ, ψ(n)
1 ⟩ = ⟨ϕ, (λ−∆+Hn)

−1ϕ⟩ (2.27)

where the self-adjoint operators Hj are recursively defined as

H1
def
= 0 , (2.28)

Hj+1 = A∗
+(λ−∆+Hj)

−1A+ , for j ≥ 1 .

We remark that these operators are positive and leave each chaos invariant - that is HjHn ⊂
Hn, for all j, n ∈ N.
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2.4.1 Operator recursive estimates

In view of (2.25) and (2.27), the proof of Theorem 2.2.2 must entail a good understanding
of the operators Hj ’s in (2.28). In particular, we need to derive suitable (upper and lower)
bounds on them and this is the content of the main result of this section, Theorem 2.4.2. To
state it, we need a few preliminary definitions.

For k ∈ N, x > 0 and z ≥ 0 we define L, LBk and UBk as follows

L(x, z) = z + log(1 + x−1), (2.29)

LBk(x, z) =
G

0≤j≤k

(12 log L(x, z))
j

j!
and UBk(x, z) =

L(x, z)

LBk(x, z)
(2.30)

and for k ≥ 1, σk, as

σk(x, z) =

UB k−2
2
(x, z), if k is even,

LB k−1
2
(x, z), if k is odd.

Note that σ1 ≡ 1. All the properties we need on the functions UBk,LBk are summarized in
Lemma 2.A.1. Further let

zk(n) = K1(n+ k)2+2ε and fk(n) = K2

E
zk(n), (2.31)

whereK1,K2 are absolute constants (chosen sufficiently large, so that (2.43), (2.47) and (2.48)
below, hold) and ε is the small positive constant that appears in the statement of The-
orem 2.2.2.

Finally, for k ≥ 1 let Sk be the operator whose multiplier is σk, i.e.

Sk =

�
fk(N )σk(λ−∆, zk(N )) if k is even,

1
fk(N )

6
σk(λ−∆, zk(N ))− fk(N )

=
if k is odd,

where N is the number operator acting on the n-th chaos as multiplication by n, i.e. (Nϕn) =
nϕn for ϕn ∈ Hn. We are now ready to state the following theorem.

Theorem 2.4.2. For any ε > 0, the constants K1,K2 in (2.31) can be chosen in such a way
that the following holds. For 0 < λ ≤ 1 and k ≥ 1, one has the operator bounds

H2k−1 ≥ c2k−1 (−∆)S2k−1 (2.32)

and

H2k ≤ c2k (−∆)S2k (2.33)

where c1 = 1 and

c2k =
π

c2k−1

7
1 +

1

k1+ε

>
, c2k+1 =

π

c2k

7
1− 1

(k + 1)1+ε

>
. (2.34)

Remark 2.4.3. A crucial aspect we need to stress is that, as j → ∞, c2j tends to a finite
constants larger than 1, while c2j+1 tends to a strictly positive constant smaller than 1.
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2.4.2 Generalities about the operators

In this section we collect some preliminary facts and bounds concerning operators in Fock
space. In all the statements herein, S will be a diagonal operator, meaning that S commutes
with N (that is, it maps the n-th chaos Hn into itself) and is diagonal in the Fourier basis,
i.e. it acts in Fourier space as multiplication by a function of the momenta. The Fourier
multiplier of S will be denoted s, and actually s is the collection (sn)n≥1, with sn the Fourier
multiplier on Hn. It is understood that sn is a symmetric function of its n arguments.

Lemma 2.4.4. Let S be a positive diagonal operator and let s be its Fourier multiplier. For
any element ψ of Hn we can write

⟨ψ,A∗
+SA+ψ⟩ = ⟨ψ,A∗

+SA+ψ⟩Diag + ⟨ψ,A∗
+SA+ψ⟩Off

where the “diagonal part” is defined as

⟨ψ,A∗
+SA+ψ⟩Diag

def
= n!

1
R2(n+1)

n+1B
j=1

.V (pj)

|pj |2 |ψ̂(p1:n)|2sn+1(p1:n+1)

pn+1 ×
nG

j=1

pj

2

dp1:n+1

(2.35)

while the “off-diagonal part” is

⟨ψ,A∗
+SA+ψ⟩Off

def
= n!n

1
R2(n+1)

n+1B
j=1

.V (pj)

|pj |2 ψ̂(p1:n)ψ̂(p1:n+1\n)sn+1(p1:n+1)×

×
5
pn+1 ×

n+1G
i=1

pi

<5
pn ×

n+1G
i=1

pi

<
dp1:n+1.

(2.36)

Proof. Expanding the inner product using (2.22) we obtain:

⟨A+ψn, SA+ψn⟩ =

(n+ 1)!

(n+ 1)2

1
R2(n+1)

n+1B
i=1

.V (pi)

|pi|2 sn+1(p1:n+1)

KKKKKK
n+1G
i=1

ψ̂(p1:n+1\i)
4
pi ×

n+1G
j=1

pj

;KKKKKK
2

dp1:n+1.

The “diagonal” and “off-diagonal” refer to the squared sum. The former is the contribution
of the squared summands while the latter comes from all the cross terms. Hence, the diagonal
part is

n!

n+ 1

1
R2(n+1)

n+1B
i=1

.V (pi)

|pi|2 sn+1(p1:n+1)

n+1G
i=1

|ψ̂(p1:n+1\i)|2
4
pi ×

n+1G
j=1

pj

;2
dp1:n+1

= n!

1
R2(n+1)

n+1B
j=1

.V (pj)

|pj |2 |ψ̂(p1:n)|2sn+1(p1:n+1)
4
pn+1 ×

nG
j=1

pj

;2
dp1:n+1,

where we pulled out the sum and used that ψ̂ is symmetric in its arguments. For the off-
diagonal part, one follows the same procedure. Since there are in total n(n+ 1) summands,
a factor n is left in front of the integral.
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The next two results will be used in the bounds on the diagonal and off-diagonal parts
respectively. In order to appreciate them, note that at the right hand side of both (2.35)
and (2.36), there appears the vector product.

Lemma 2.4.5. Let S be a positive diagonal operator, and let s be the associated Fourier
multiplier. If for every integer n and for every p1:n ∈ R2n with

Hn
k=1 pk ̸= 01

R2

.V (q)(sin θ)2sn+1(p1:n, q)dq ≤ s̃n(p1:n) (2.37)

with θ the angle between q and
Hn

k=1 pk, then for every ψ

⟨ψ,A∗
+SA+ψ⟩Diag ≤ ⟨ψ, (−∆)S̃ψ⟩ (2.38)

where S̃ is the diagonal operator whose Fourier multiplier is s̃.
If the inequality in (2.37) is reversed, then (2.38) holds with the reversed inequality.

Proof. Starting from (2.35) and denoting q = pn+1 we get that the left-hand side equals:

n!

1
R2n

nB
j=1

.V (pj)

|pj |2 |ψ̂(p1:n)|2|
nG

k=1

pk|2
1
R2

sn+1(p1:n, q).V (q)(sin θ)2dqdp1:n

≤ n!

1
R2n

nB
j=1

.V (pj)

|pj |2 |ψ̂(p1:n)|2|
nG

k=1

pk|2s̃n(p1:n) = ⟨ψ, (−∆)S̃ψ⟩ ,

where we used that a× b = |a||b| sin θ, θ being the angle between a and b, and (2.37). Since
every step except the assumption is an equality, the other direction also holds.

Lemma 2.4.6. Let S be a diagonal, positive operator with Fourier multiplier s. If for every
integer n and every p1:n ∈ R2n one has

|
nG

i=1

pi|
1
R2

.V (q)
(sin θ)2sn+1(p1:n, q)

|q +Hn−1
i=1 pi|

dq ≤ s̃n(p1:n)

with θ the angle between q and
Hn

i=1 pi, then for every n ∈ N, ψ ∈ Hn one has

|⟨ψ,A∗
+SA+ψ⟩Off | ≤ n⟨ψ, (−∆)S̃ψ⟩,

with S̃ the diagonal operator of Fourier multiplier s̃.

Proof. We start by bounding the left-hand side of (2.36) as

n!n

1
R2(n+1)

n+1B
j=1

.V (pj)

|pj |2 |ψ̂(p1:n)||ψ̂(p1:n+1\n)|sn+1(p1:n+1)

×
KKKpn+1 ×

nG
k=1

pk

KKKKKKpn ×
4 n−1G

k=1

pk + pn+1

;KKKdp1:n+1

= n!n

1
R2(n+1)

n+1B
j=1

.V (pj)

|pj |2 sn+1(p1:n+1)Φ(p1:n+1)Φ(p1:n−1, pn+1, pn) (2.39)

× |
n−1G
k=1

pk + pn+1||
nG

k=1

pk|dp1:n+1
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where

Φ(p1:n+1) =
|ψ̂(p1:n)||pn+1 ×

Hn
k=1 pk|

|Hn−1
k=1 pk + pn+1|

.

We apply Cauchy-Schwartz and exploit symmetry of ψ to bound (2.39) from above by

n!n

1
R2(n+1)

n+1B
j=1

.V (pj)

|pj |2 sn+1(p1:n+1)Φ(p1:n+1)
2|

n−1G
k=1

pk + pn+1||
nG

k=1

pk|dp1:n+1.

Now set s1 =
Hn

k=1 pk, s2 =
Hn−1

k=1 pk and q = pn+1, which gives

n!n

1
R2(n+1)

n+1B
j=1

.V (pj)

|pj |2 sn+1(p1:n+1)
|ψ̂(p1:n)|2|q × s1|2

|q + s2| |s1|dp1:n+1

= n!n

1
R2n

nB
j=1

5 .V (pj)

|pj |2 dpj

<
|ψ̂(p1:n)|2|s1|3

1
R2

sn+1(p1:n, q)
.V (q)(sin θ)2

|q + s2| dq

≤ n!n

1
R2n

nB
j=1

.V (pj)

|pj |2 |ψ̂(p1:n)|2|s1|2s̃n(p1:n)dp1:n = n⟨ψ, (−∆)S̃ψ⟩ ,

which concludes the proof.

2.4.3 Proof of Theorem 2.4.2

This section is devoted to Theorem 2.4.2. We will first show the lower bound and then the
upper bound, both by induction on k. The induction switches from lower to upper bounds
and viceversa, as follows: For k = 1 the bound (2.32) will be trivial; given (2.32) for k = 1
we will deduce (2.33) with k = 1, then (2.32) with k = 2 and so on.

Proof of the lower bound (2.32). For k = 1 (2.32) trivially holds as H1 is by definition zero
while S1 is non-positive if the constant K2 in the definition (2.31) is large enough.

We need then to prove (2.32) with k ≥ 1 and 2k − 1 replaced by 2k + 1. Assume by
induction that (2.33) holds. Then, we have

H2k+1 = A∗
+(λ−∆+H2k)

−1A+ ≥ A∗
+(λ−∆(1 + c2kS2k))

−1A+ . (2.40)

For ψ ∈ Hn, we apply Lemma 2.4.4 with S = (λ−∆(1 + c2kS2k))
−1 and we split

⟨ψ,A∗
+(λ−∆(1 + c2kS2k))

−1A+ψ⟩ (2.41)

into diagonal and off-diagonal part. In order to control the former from below, we exploit
Lemma 2.4.5 according to which it suffices to consider1

R2

.V (q)(sin θ)2

λ+ |p+ q|2(1 + c2kf2k(n+ 1)UBk−1(λ+ |p+ q|2, z2k(n+ 1)))
dq, (2.42)

where p =
Hn

i=1 pi ̸= 0 and θ is the angle between p and q. Note that the functions f2k, z2k
have argument n+1 because A+ψ ∈ Hn+1 but, by (2.31), f2k(n+1) = f2k+1(n), z2k(n+1) =
z2k+1(n). To lighten the notation, throughout the proof we will omit the argument n and
write z2k+1, f2k+1 instead of z2k+1(n), f2k+1(n).

The denominator in (2.42) is upper bounded by

c2kf2k+1

7
1 +

1

f2k+1

>
(λ+ |p+ q|2UBk−1(λ+ |p+ q|2, z2k+1)),
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as c2k, f2k+1 and UBk−1 are all larger than one. Thus we can concentrate on1
R2

.V (q)(sin θ)2

λ+ |p+ q|2UBk−1(λ+ |p+ q|2, z2k+1)
dq.

For this we first apply Lemmas 2.A.2 and 2.A.4 to obtain the lower bound

π

2

1 1

λ+|p|2
dρ

ρUBk−1(ρ, z2k+1)
− CDiag

LBk−1(λ+ |p|2, z2k+1)√
z2k+1

≥ π

2

1 1

λ+|p|2
dρ

(ρ+ ρ2)UBk−1(ρ, z2k+1)
− CDiag

LBk(λ+ |p|2, z2k+1)√
z2k+1

.

From Lemma 2.A.1 we have that the primitive of the integrand is −2LBk(ρ, z2k+1), so that
the last expression equals

πLBk(λ+ |p|2, z2k+1)− πLBk(1, z2k+1)− CDiag
LBk(λ+ |p|2, z2k+1)√

z2k+1

≥ πLBk(λ+ |p|2, z2k+1)− π
f2k+1

2
− CDiag

LBk(λ+ |p|2, z2k+1)√
z2k+1

,

where in the first inequality we need to choose K2 large enough in (2.31) so that for all k and
n,

LBk(1, z2k+1) ≤
E
L(1, z2k+1) =

E
log(2) + z2k+1 ≤ 1

2
f2k+1 (2.43)

(see also (2.56)). Altogether, the diagonal part of (2.41) is lower bounded as ⟨ψ, (−∆)S̃ψ⟩,
with

S̃ =

7
1 +

1

f2k+1(1)

>−1 π

c2k

�
LBk(λ−∆, z2k+1(N ))

f2k+1(N )

5
1− CDiag

π
E

z2k+1(1)

<
− 1

2

"
(2.44)

(in two instances, we have lower bounded z2k+1 = z2k+1(n) and f2k+1 = f2k+1(n) with the
same quantities for n = 1).

For the off-diagonal terms in (2.41) we use Lemma 2.4.6 so that, calling p :=
Hn

i=1 pi and
p′ :=

Hn−1
i=1 pi, we have to upper bound

n|p|
1
R2

.V (q)(sin θ)2

(λ+ |p+ q|2(1 + c2kf2k+1UBk−1(λ+ |p+ q|2, z2k+1)))|p′ + q|dq . (2.45)

Thanks to Lemmas 2.A.3 and 2.A.4, applied with f(x, z) = c2kf2k+1UBk−1(x, z) and g(x, z) =
1

c2kf2k+1
LBk−1(x, z), this expression is upper bounded by

nCoff

c2kf2k+1z2k+1
LBk−1(λ+ |p|2, z2k+1)

≤ nCoff

c2kf2k+1z2k+1
LBk(λ+ |p|2, z2k+1)

≤ Coff

c2kf2k+1

1

K1(2k + 1)1+ε
LBk(λ+ |p|2, z2k+1), (2.46)

where we used monotonicity properties of LBk, the definition of z2k+1 = z2k+1(n) in (2.31)
and in particular the fact that

n

z2k+1(n)
=

n

K1(2k + 1 + n)2+2ε
≤ 1

K1(2k + 1 + n)1+ε
.
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Combining (2.44) and (2.46), together with Lemmas 2.4.5 and 2.4.6, we conclude that
A∗

+(λ−∆(1 + c2kS2k))
−1A+ is lower bounded by

(−∆)
π

c2k

�
LBk(λ−∆, z2k+1(N ))

f2k+1(N )
A−B

$
where A and B are given by

A =

5
1− CDiag

π
E
z2k+1(1)

<7
1 +

1

f2k+1(1)

>−1

− Coff

πK1(2k + 1)1+ε

B =
1

2

7
1 +

1

f2k+1(1)

>−1

and thanks to (2.40) the same lower bound holds forH2k+1. Note that, provided the constants
K1,K2 in (2.31) are large, one has

A ≥ 1− 1

(k + 1)1+ε
, B ≤ 1− 1

(k + 1)1+ε
. (2.47)

Therefore, we have proven (2.32) (with 2k+1 instead of 2k−1) with c2k+1 given by (2.34).

Proof of the upper bound (2.33). For k ≥ 1, again by the induction hypothesis we have

H2k = A∗
+(λ−∆+H2k−1)

−1A+ ≤ A∗
+(λ−∆(1 + c2k−1S2k−1))

−1A+ .

We split ⟨ψ,A∗
+(λ − ∆(1 + c2k−1S2k−1))

−1A+ψ⟩ into diagonal and off-diagonal parts as in
Lemma 2.4.4. By Lemma 2.4.5 for the diagonal part we need to upper-bound the integral1

R2

.V (q)(sin θ)2

λ+ |p+ q|2(1 + c2k−1

f2k
(LBk−1(λ+ |p+ q|2, z2k)− f2k))

dq

≤ f2k
c2k−1

1
R2

.V (q)(sin θ)2

λ+ |p+ q|2LBk−1(λ+ |p+ q|2, z2k)dq

where we used f2k−1(n + 1) = f2k(n), the same for z (and we suppressed the argument of
both) and, in the second step, exploited the fact that c2k−1 < 1 and f2k > 1. By Lemmas
2.A.2 and 2.A.4, the latter is bounded above by

f2kπ

2c2k−1

51 1

λ+|p|2
dρ

ρLBk−1(ρ, z2k)
+

CdiagUBk−1(λ+ |p|2, z2k)√
z2k

<
.

The integral can be controlled via Lemma 2.A.5, so that1 1

λ+|p|2
dρ

ρLBk−1(ρ, z2k)
≤

1 1

λ+|p|2
dρ

(ρ+ ρ2)LBk−1(ρ, z2k)
+ C

UBk−1(λ+ |p|2, z2k)
z2k

≤ 2UBk−1(λ+ |p|2, z2k) + C
UBk−1(λ+ |p|2, z2k)

z2k
,

the last passage being a consequence of Lemma 2.A.1.
For the off-diagonal terms, we argue as in the analysis of (2.45), so that we need to control

n|p|
1
R2

.V (q)(sin θ)2

(λ+ |p+ q|2(1 + c2k−1

f2k
(LBk−1(λ+ |p+ q|2, z2k)− f2k)))|p′ + q|dq .
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Once again, we can pull out the factor f2k
c2k−1

and apply once more Lemmas 2.A.3 and 2.A.4,

this time with f(x, z) = LBk−1(x, z) and g(x, z) = UBk−1(x, z). Hence we obtain

f2k
c2k−1

nCoffUBk−1(λ+ |p|2), z2k)
z2k

≤ f2k
c2k−1

CoffUBk−1(λ+ |p|2, z2k)
K1(n+ 2k)1+2ε

.

Collecting these upper bounds and using the fact that z2k(n) > z2k(1), we conclude that
A∗

+(λ−∆(1 + c2k−1S2k−1))
−1A+ is upper bounded by

π

c2k−1
A′(−∆)S2k

where this time, upon choosing K1 big enough, we have

A′ = 1 +
CDiag

π
√
K1(2k)1+ε

+
C

πK1(2k)2+2ε
+

Coff

πK1(2k)1+2ε
≤ 1 +

1

k1+ε
. (2.48)

It follows that (2.33) holds with c2k satisfying (2.34).
Let us remark that constants K1 and K2 such that (2.43), (2.47) and (2.48) hold for all

k, n ∈ N clearly exist, so that the proof of Theorem 2.4.2 is concluded.

2.5 Proof of Theorem 2.2.2

This section is devoted to the proof of Theorem 2.2.2 and shows how to exploit the iterative
bounds derived in the previous section. Recall from Section 2.3 that it suffices to prove (2.12)
with D(λ) replaced by D̃(λ) defined in (2.16).

Proof of Theorem 2.2.2. Let us begin with the upper bound. By Lemma 2.4.1 and (2.23),
we have

λ2

2
D̃(λ) ≤ ⟨ϕ, ψ(2k+1)⟩ = ⟨ϕ, (λ−∆+H2k+1)

−1ϕ⟩,

for ϕ such that ϕ̂(q) = q2 (see Remark 2.3.2), which in turn, by Theorem 2.4.2, is bounded
above by

⟨ϕ,(λ−∆(1 + c2k+1S2k+1))
−1ϕ⟩

=

1
R2

.V (q)

|q|2
|ϕ̂(q)|2dq

λ+ |q|2(1 + c2k+1

f2k+1
(LBk(λ+ |q|2, z2k+1)− f2k+1))

≤ f2k+1

c2k+1

1
R2

.V (q)
dq

λ+ |q|2LBk(λ+ |q|2, z2k+1)
. (2.49)

Note that, as ϕ ∈ H1, f2k+1 and z2k+1 are f2k+1(1) and z2k+1(1), that is, are constants
depending only on k.

In view of (2.34), we can replace c2k+1 with its k → ∞ limit. By Eq. (2.64) in Lemma
2.A.2, (2.49) is controlled, up to a multiplicative absolute constant, by

f2k+1

�1 1

λ

dρ

ρLBk(ρ, z2k+1)
+

UBk(λ, z2k+1)√
z2k+1

$
≲ f2k+1

�1 1

λ

dρ

(ρ+ ρ2)LBk(ρ, z2k+1)
+

UBk(λ, z2k+1)√
z2k+1

$
≲ f2k+1UBk(λ, z2k+1) ≲ f2k+1

L(λ, 0) + z2k+1

LBk(λ, 0)
,

(2.50)
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where in the first inequality we applied Lemma 2.A.5, in the second Lemma 2.A.1 and in
the last the monotonicity of LBk(·, z) with respect to z. We now recall that the central limit
theorem, applied to Poisson random variables of rate one, gives that

lim
k→∞

kG
j=0

kj

j!
e−k =

1

2
. (2.51)

Hence, by choosing

k = k(λ) =
* log L(λ, 0)

2

,
. (2.52)

in (2.51) and recalling the definition of LBk in (2.30), we have that for λ sufficiently small

e−k

LBk(λ, 0)e−k
≲ 1E

L(λ, 0)
. (2.53)

Plugging this into (2.50) and using the definition of z2k+1 = z2k+1(1) and f2k+1 in (2.31), we
ultimately get the upper bound

λ2D̃(λ) ≲ (log L(λ, 0))1+ε
E
L(λ, 0)

which is the desired one, since

L(λ, 0) = log

7
1 +

1

λ

>
λ→0∼ | log λ|.

For the lower bound, we argue similarly. Again by Lemma 2.4.1, we have

λ2

2
D̃(λ) ≥ ⟨ϕ, ψ(2k)⟩ = ⟨ϕ, (λ−∆+H2k)

−1ϕ⟩,

for ϕ such that ϕ̂(q) = q2, which in turn, by Theorem 2.4.2, is bounded below by

⟨ϕ, (λ−∆(1 + c2kS2k))
−1ϕ⟩ ≥

1
R2

.V (q)

|q|2
|ϕ̂(q)|2dq

λ+ |q|2(1 + c2kf2kUBk−1(λ+ |q|2, z2k))

≳ 1

f2k

1
R2

.V (q)

|q|2
|ϕ̂(q)|2dq

λ+ |q|2UBk−1(λ+ |q|2, z2k) . (2.54)

We restrict the integral to the cone where |q2|2 ≥ (1/2)|q|2 and we get that (2.54) is lower
bounded by

C

f2k

1
R2

.V (q)
dq

λ+ |q|2UBk−1(λ+ |q|2, z2k)
where now the integral is unrestricted because the integrand depends only on |q|. We can
now apply again Eq. (2.64) in Lemma 2.A.2, so that overall (2.54) is lower bounded, up to
a multiplicative absolute constant, by

1

f2k+1

�1 1

λ

dρ

ρUBk−1(ρ, z2k+1)
− LBk−1(λ, z2k+1)√

z2k+1

$
≥ 1

f2k+1

�1 1

λ

dρ

(ρ+ ρ2)UBk−1(ρ, z2k+1)
− LBk−1(λ, z2k+1)√

z2k+1

$
≳ 1

f2k+1

�
LBk(λ, z2k+1)− LBk(1, z2k+1)− LBk(λ, z2k+1)√

z2k+1

$
≳ 1

f2k+1
[LBk(λ, z2k+1)− f2k+1]

(2.55)
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where in the second inequality we used Lemma 2.A.1, and LBk−1 ≤ LBk, while in the
last (2.43) and that, for k large enough, 1− 1/

√
z2k+1 is bounded below by a strictly positive

constant. Now, the −f2k+1 just gives a constant contribution, which can be absorbed by
decreasing the value of C if λ is small enough. Using the inequality in (2.53) for k as
in (2.52), we see that

LBk(λ, 0) ≳
E
L(λ, 0) ,

which, together with the definition of f2k+1 in (2.31), gives

λ2D̃(λ) ≳ (log L(λ, 0))−1−ε
E
L(λ, 0) .

Hence, (2.15) follows at once and, by (2.13) and the discussion thereafter, so does The-
orem 2.2.2.

2.A Technical estimates

Here we collect some the technical estimates about the integrals involved in the proofs. We
also include some of the properties of the functions LBk and UBk from [CET20, Lemma C.3].

Lemma 2.A.1. For k ∈ N let L,LBk and UBk be the functions defined in (2.29) and (2.30).
Then, L, LBk and UBk are decreasing in the first variable and increasing in the second. For
any x > 0 and z ≥ 1, the following inequalities hold

1 ≤ LBk(x, z) ≤
E
L(x, z),

1 ≤ √
z ≤

E
L(x, z) ≤ UBk(x, z) ≤ L(x, z).

(2.56)

Moreover for any 0 < a < b, we have1 b

a

dx

(x2 + x)UBk(x, z)
= 2(LBk+1(a, z)− LBk+1(b, z)), (2.57)1 b

a

dx

(x2 + x)LBk(x, z)
≤ 2(UBk(a, z)−UBk(b, z)). (2.58)

At last, we also have

∂xL(x, z) = − 1

x2 + x
, ∂xLBk(x, z) = − 1

2(x2 + x)UBk−1(x, z)
,

∂xUBk(x, z) = − 1

2(x2 + x)LBk(x, z)

5
1 +

(12 log L(x, z))
k

k!LBk(x, z)

<
.

(2.59)

Proof. All of these properties were shown in [CET20, Lemma C.3]. For completeness, we add
here the proof.

The two chains of inequalities in (2.56) are a direct consequence of the respective defini-
tions. A computation of the partial derivative with respect to the second variable yields the
desired monotonicity. Furthermore we have that

∂xL(x, z) = − 1

x2 + x
, ∂xLBk(x, z) = −1

2

LBk−1(x, z)

(x2 + x)L(x, z)
(2.60)
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and

∂xUBk(x, z) = −LBk(x, z)− 1
2LBk−1(x, z)

(x2 + x)(LBk(x, z))2

= − 1

2(x2 + x)LBk(x, z)

�
1 +

( 1
2
log L(x,z))k

k!

LBk(x, z)

!
,

(2.61)

which are all strictly negative for any x > 0 and z ≥ 1. The above computation of the partial
derivatives moreover reveals that1 b

a

dx

(x2 + x)UBk(x, z)
= 2

1 a

b
∂xLBk+1(x, z)dx = 2 [LBk+1(a, z)− LBk+1(b, z)] ,

which is (2.57). For (2.58), notice that1 b

a

dx

(x2 + x)LBk(x, z)
=

1 a

b
∂xUBk(x, z)dx+

1

2

1 b

a

LBk−1(x, z)

(x2 + x)LBk(x, z)2
dx

≤
1 a

b
∂xUBk(x, z)dx+

1

2

1 b

a

1

(x2 + x)LBk(x, z)
dx,

where the last inequality follows from the fact that all the terms are positive and for all x we
have LBk−1(x, z) ≤ LBk(x, z). Bringing the last term to the left hand side gives the required
estimate.

Lemma 2.A.2. Let V be a bump function satisfying Assumption 2.2.1. Let z > 1, f(·, z) :
[0,∞) (→ [1,∞) be a strictly decreasing, differentiable function such that

−f(x)

x
≤ f ′(x) < 0 for all x ∈ R (2.62)

and g(·, z) : [0,∞) (→ [1,∞) a strictly decreasing function such that g(x, z)f(x, z) ≥ z. Then,
there exists a constant CDiag > 0 such that for all z > 1, the following bound holdsKKKKK

1
R2

.V (q)(sin θ)2dq

λ+ |p+ q|2f(λ+ |p+ q|2, z) −
π

2

1 1

λ+|p|2
dρ

ρf(ρ, z)

KKKKK ≤ CDiag
g(λ+ |p|2, z)√

z
(2.63)

where 0 ̸= p ∈ R2, θ is the angle between p and q and it is understood that the second integral
is zero if λ+ |p|2 ≥ 1.

Moreover, for λ ≤ 1,KKKKK12
1
R2

.V (q)dq

λ+ |q|2f(λ+ |q|2, z) −
π

2

1 1

λ

dρ

ρf(ρ, z)

KKKKK ≤ CDiag
g(λ, z)√

z
. (2.64)

Proof. As z is fixed throughout, we suppress the dependence of f and g on it. At first, we
use the triangle inequality to split the left hand side of (2.63) intoKKKKK

1
R2

.V (q)(sin θ)2dq

λ+ |p+ q|2f(λ+ |p+ q|2) −
1
R2

.V (q)(sin θ)2dq

(λ+ |p+ q|2)f(λ+ |p+ q|2)

KKKKK (2.65)

+

KKKKK
1
R2

.V (q)(sin θ)2dq

(λ+ |p+ q|2)f(λ+ |p+ q|2) −
1
R2

.V (q)(sin θ)2dq

(λ+ |p|2 + |q|2)f(λ+ |p|2 + |q|2)

KKKKK (2.66)
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+

KKKKK
1
R2

.V (q)(sin θ)2dq

(λ+ |p|2 + |q|2)f(λ+ |p|2 + |q|2) −
π

2

1 1

λ+|p|2
dρ

ρf(ρ)

KKKKK . (2.67)

We will bound these three terms separately. For the first, we re-write it as

KKKλ 1
R2

.V (q)(sin θ)2(f(λ+ |p+ q|2)− 1)dq

(λ+ |p+ q|2f(λ+ |p+ q|2))(λ+ |p+ q|2)f(λ+ |p+ q|2)
KKK

≤ λ

1
R2

dq

(λ+ |p+ q|2f(λ+ |p+ q|2))(λ+ |p+ q|2) .

The latter can be further split into two parts, corresponding to |p+ q| ≤ |p| and |p+ q| > |p|.
In the first case f(λ+ |p+ q|2) ≥ f(λ+ |p|2) and thus we obtain the upper bound

λ

f(λ+ |p|2)
1
R2

dq

( λ
f(λ+|p|2) + |p+ q|2)(λ+ |p+ q|2)

≤ λ

f(λ+ |p|2)

51
R2

dq

( λ
f(λ+|p|2) + |p+ q|2)2

< 1
2 71

R2

dq

(λ+ |p+ q|2)2
> 1

2

=
Cλ

f(λ+ |p|2)
f(λ+ |p|2)12

λ
=

CE
f(λ+ |p|2) ≤ C

g(λ+ |p|2)√
z

,

for some positive constant C. For the other case we use that f(λ + |p + q|2) ≥ z
g(λ+|p|2) .

Applying the same steps as above we get an upper bound of the form

C
E

g(λ+ |p|2)√
z

≤ Cg(λ+ |p|2)√
z

,

which holds as g ≥ 1.

Now we look at (2.66). First note that the restriction of each integral to the region
|q+ p| < |p| has an upper bound of the desired form. Indeed for the first integral we can use

(sin θ)2 ≤ |p+q|2
|p|2 (which holds for any q1 and q3 by elementary Euclidean geometry) to obtain

1
|p+q|<|p|

.V (q)(sin θ)2dq

(λ+ |p+ q|2)f(λ+ |p+ q|2)

≤ |p|−2

1
|p+q|<|p|

dq

f(λ+ |p+ q|2) ≤ C

f(λ+ |p|2) ≤ Cg(λ+ |p|2)√
z

.

For the second integral in (2.66), we can bound from above | sin θ| ≤ 1, the denominator from
below by |p|2f(λ+ 5|p|2) and notice that the area of integration is of order |p|2.

As for the region |q+p| ≥ |p|, define h(x) = xf(x). By (2.62), |h′(x)| ≤ 2|f(x)|, therefore

|h(λ+ |p+ q|2)−h(λ+ |p|2 + |q|2)|
≤ 2||p+ q|2 − |p|2 − |q|2|f(min(λ+ |p+ q|2, λ+ |p|2 + |q|2)) ,
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since f is positive and decreasing. Therefore, we get1
|p+q|≥|p|

.V (q)(sin θ)2|h(λ+ |p+ q|2)− h(λ+ |p|2 + |q|2)|dq
(λ+ |p+ q|2)(λ+ |p|2 + |q|2)f(λ+ |p+ q|2)f(λ+ |p|2 + |q|2)

≲
1
|p+q|≥|p|

.V (q)(sin θ)2|p||q|| cos θ|dq
(λ+ |p+ q|2)(λ+ |p|2 + |q|2)f(max(λ+ |p+ q|2, λ+ |p|2 + |q|2))

≲ |p|
1
|p+q|≥|p|

|q|dq
(λ+ |p+ q|2)(λ+ |p|2 + |q|2)f(λ+ 2|p|2 + 2|q|2)

≲ g(λ+ |p|2)
z

|p|
1
|p+q|≥|p|

|q|dq
(λ+ |p|2 + |q|2)(λ+ |p+ q|2) ≤ C

g(λ+ |p|2)√
z

as can be seen by further splitting the last integral into the region where |q| ≥ 2|p| and the
complementary one, and using z > 1. This concludes the estimate of the second term.

For (2.67), we split the first integral into two regions, one such that |q|2 ≥ 1−(λ+|p|2) and
the other given by its (possibly empty) complement. Note that on the first λ+ |p|2+ |q|2 ≥ 1.
Therefore, the integral can be bounded above by

1

z

1
|q|2≥1−(λ+|p|2)

.V (q)g(λ+ |p|2 + |q|2)dq ≤ g(λ+ |p|2)
z

1
R2

.V (q)dq = C
g(λ+ |p|2)

z
.

To treat the second, since .V (·) is smooth and rotationally invariant, there is a constant C
such that |.V (q)− .V (0)| < C|q|2 for |q| ≤ 1. We can now write the remaining integral as1

|q|2<1−(λ+|p|2)
(sin θ)2dq

(λ+ |p|2 + |q|2)f(λ+ |p|2 + |q|2)

+

1
|q|2<1−(λ+|p|2)

(.V (0)− .V (q))(sin θ)2dq

(λ+ |p|2 + |q|2)f(λ+ |p|2 + |q|2) .

By passing to polar coordinates and setting ρ = λ + |p|2 + |q|2, the first summand can be
immediately seen to equal the second integral in (2.67). The second summand instead can
be controlled via1

|q|2<1−(λ+|p|2)
|.V (0)− .V (q)|(sin θ)2dq

(λ+ |p|2 + |q|2)f(λ+ |p|2 + |q|2)

≤ Cg(λ+ |p|2)
z

1
|q|2<1−(λ+|p|2)

|q|2dq
λ+ |p|2 + |q|2 ≤ C

g(λ+ |p|2)
z

.

Thus, collecting all the estimates obtained so far, (2.63) follows at once.
Finally, to see (2.64), we recall that (2.63) holds uniformly for p ̸= 0. Letting p → 0, the

second integral and the r.h.s. of (2.63) tend to the analogous quantities in (2.64). As for the
first integral in (2.63), for p → 0 the integral over |q| and θ factorizes, and we get the first
integral in (2.64) times 1/2 (coming from the average of (sin θ)2).

Lemma 2.A.3. Let the assumptions of Lemma 2.A.2 be in place. Then, there exists a
constant Coff > 0 such that, for every q1, q2,

|q1|
1
R2

.V (q3)(sin θ)
2dq3

(λ+ |q1 + q3|2f(λ+ |q1 + q3|2))|q2 + q3| ≤ Coff
g(λ+ |q1|2)

z

with θ the angle between q1 and q3.
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Proof. Throughout the proof the constant C appearing in the bounds is independent of q1, q2
and q3 and might change from line to line.

We split R2 into three regions, Ω1 = {q3 : |q1 + q3| < |q1|
2 }, Ω2 = {q3 : |q2 + q3| < |q1|

2 } and
Ω3 = R2 \ (Ω1 ∪ Ω2). Note that Ω1 and Ω2 might not be disjoint, but this is no issue as we
are proving an upper bound.

In Ω1, we exploit the monotonicity of f to bound f(λ + |q1 + q3|2) ≥ f(λ + 1
4 |q1|2).

Moreover, we estimate (sin θ)2 ≤ |q3+q1|2
|q1|2 and .V by a constant to get

|q1|
1
Ω1

.V (q3)(sin θ)
2dq3

(λ+ |q1 + q3|2f(λ+ |q1 + q3|2))|q2 + q3|

≤ C|q1|−1

1
Ω1

|q1 + q3|2dq3
(λ+ |q1 + q3|2f(λ+ 1

4 |q1|2))|q2 + q3|

≤ C
|q1|−1

f(λ+ 1
4 |q1|2)

1
Ω1

dq3
|q2 + q3|

≤ C

f(λ+ 1
4 |q1|2)

≤ C

f(λ+ |q1|2) ≤ C
g(λ+ |q1|2)

z
,

the last step from the third to the fourth line being a consequence of the fact that, on Ω1,|q1|
2 < |q3| < 3

2 |q1|.
For Ω2 we estimate the sine differently, i.e.

(sin θ)2 ≤ 4|q3 + q1|2
|q1|2 ∨ (14 |q2|2)

, (2.68)

which holds as, for |q2| ≤ 2|q1| this is just a weaker estimate than the previous one, while for
|q2| ≥ 2|q1| we claim that, in the region Ω2 the right hand side is always greater or equal to
1 (and thus the inequality holds as well). Indeed, notice that since |q2| ≥ 2|q1|, we have

4|q3 + q1|2
|q1|2 ∨ (14 |q2|2)

= 16
|q3 + q1|2

|q2|2 .

Assume by contradiction that |q3 + q1| < 1
4 |q2|. Then

|q3 + q2| ≥ |q2 − q1| − |q1 + q3| > |q2| − |q1| − 1

4
|q2| ≥ 1

4
|q2|

where in the last step we used once again that |q2| ≥ 2|q1|. Now, on Ω2, |q2 + q3| < 1
2 |q1|, so

that, in conclusion
1

4
|q2| < |q3 + q2| < 1

2
|q1| ≤ 1

4
|q2|

which is a contradiction. Hence, |q3 + q1| ≥ 1
4 |q2|, from which (2.68) follows.

Plugging (2.68) into the integral we get

|q1|
1
Ω2

.V (q3)(sin θ)
2dq3

(λ+ |q1 + q3|2f(λ+ |q1 + q3|2))|q2 + q3|
≤ C

|q1|
|q1|2 ∨ (14 |q2|2)

1
Ω2

dq3
|q2 + q3|f(λ+ |q1 + q3|2) .
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Now we use the monotonicity of f to bound the previous integral from above by

C
|q1|4

|q1|2 ∨ (14 |q2|2)
;
f(λ+ (32 |q1|+ |q2|)2)

1
Ω2

dq3
|q2 + q3|

= C
|q1|24

|q1|2 ∨ (14 |q2|2)
;
f(λ+ (32 |q1|+ |q2|)2)

.

(2.69)

We now bound this term by maximizing over |q2|. It is easy to see that it is monotonically
increasing for |q2| < 2|q1|. For |q2| ≥ 2|q1| we will prove that it is monotonically decreasing.
Since f satisfies assumption (2.62), for any a, b ≥ 0 we have

d

dr

7
1

r2f(a+ (b+ r)2)

>
= −2rf + 2r2(b+ r)f ′

r4f2

= − 2

r3f2
(f + r(b+ r)f ′) ≤ − 2

r3f

7
1− r(b+ r)

a+ (b+ r)2

>
< 0,

where we suppressed the argument of f and f ′ because it does not change. Thus, the
maximum over q2 of the right hand side of (2.69) is achieved at |q2| = 2|q1| and reads

C

f(λ+ (72 |q1|)2)
≤ Cg(λ+ (72 |q1|)2)

z
≤ Cg(λ+ |q1|2)

z
.

We are left to consider the integral over Ω3. In this case, we first bound the (sin θ)2 ≤ 1
and then apply the Hölder inequality with exponents 3

2 and 3, to the two functions ((λ +

|q1 + q3|2)f(λ+ |q1 + q3|2))−1 and |q2 + q3|−1 with respect to the measure .V (q3)dq3, so that
we obtain

|q1|
1
Ω3

.V (q3)(sin θ)
2dq3

(λ+ |q1 + q3|2f(λ+ |q1 + q3|2))|q2 + q3|

≤ |q1|
51

Ω3

.V (q3)dq3

(λ+ |q1 + q3|2f(λ+ |q1 + q3|2)) 3
2

< 2
3
51

Ω3

.V (q3)dq3
|q2 + q3|3

< 1
3

. (2.70)

The second integral is upper bounded by a constant factor times |q1|−1.

In the first integral of (2.70), we make the change of variables q = q1 + q3, bound the
bump function .V by a constant and then pass to polar coordinates, hence we get

C

1 ∞
|q1|
2

ϱdϱ

(λ+ ϱ2f(λ+ ϱ2))
3
2

. (2.71)

We split the domain of integration into two parts, ρ2 > λ and ρ2 ≤ λ (the second one might
be empty). In the first, we note that

λ+ ϱ2f(λ+ ϱ2) ≥ 1

2
(λ+ ϱ2)f(λ+ ϱ2).

Using f(x) ≥ z
g(x) we obtain that this part of (2.71) is upper bounded by

C

1 ∞
√
λ
2

ϱdϱ

((λ+ ϱ2)f(λ+ ϱ2))
3
2

≤ C

1 ∞
|q1|
2

ϱdϱ

((λ+ ϱ2)f(λ+ 4ϱ2))
3
2



BIBLIOGRAPHY 81

≤ C

7
g(λ+ |q1|2)

z

> 3
2
1 ∞

|q1|
2

ϱdϱ

(λ+ ϱ2)
3
2

≤ C|q1|−1

7
g(λ+ |q1|2)

z

> 3
2

, (2.72)

where in the last step we estimated the integral by dropping λ from the denominator.
We now turn to the second part of the integral, where ρ2 ≤ λ. We use the following1 √

λ

|q1|
2

ϱdϱ

(λ+ ϱ2f(λ+ ϱ2))
3
2

≤ 1

f(2(λ+ |q1|2)) 3
2

1 2
√
λ

|q1|
2

dϱ

ϱ2
≤ C|q1|−1 g(λ+ |q1|2) 3

2

z
3
2

.

In conclusion, plugging these estimates into (2.70), we get that the integral over Ω3 is upper
bounded by

C
g(λ+ |q1|2)

z
,

and, collecting all the bounds derived so far, the statement follows at once.

Lemma 2.A.4. The functions UBk(·, z) and LBk(·, z) satisfy the conditions of the previous
lemmas.

Proof. By definition UBk(·, z)LBk(·, z) = L(·, z) ≥ z. From Lemma 2.A.1 we get that
LBk(x, z) > 1 and UBk(x, z) > 1 for all x and that their derivatives are both negative.
Equation (2.59) implies that

∂xLBk(x, z) = − LBk−1(x, z)

2(x2 + x)L(x, z)
≥ −LBk(x, z)

x

and

∂xUBk(x, z) ≥ − UBk(x, z)

(x2 + x)L(x, z)
≥ −UBk(x, z)

x

which gives (2.62).

Lemma 2.A.5. For any z ≥ 1, λ ∈ R+ and p ∈ R2 such that λ+ |p|2 ≤ 1, we haveKKKKK
1 1

λ+|p|2
dρ

ρLBk(ρ, z)
−
1 1

λ+|p|2
dρ

(ρ+ ρ2)LBk(ρ, z)

KKKKK ≤ UBk(λ+ |p|2, z)
z

.

Proof. Note that the difference of integrals equals

0 ≤
1 1

λ+|p|2
dρ

(1 + ρ)LBk(ρ, z)
=

1 1

λ+|p|2
UBk(ρ, z)

(1 + ρ)L(ρ, z)
dρ ≤ UBk(λ+ |p|2, z)

z

because UBk(·, z) is decreasing and L(·, z) ≥ z.
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Chapter 3

Stochastic Burgers equation

Abstract

The Stochastic Burgers equation was introduced in [H. van Beijeren, R. Kutner and H. Spohn,
Excess noise for driven diffusive systems, PRL, 1985] as a continuous approximation of the
fluctuations of the asymmetric simple exclusion process. It is formally given by

∂tη =
1

2
∆η +w · ∇(η2) +∇ · ξ ,

where ξ is d-dimensional space time white noise and w is a fixed non-zero vector. In the
critical dimension d = 2 at stationarity, we show that this system exhibits superdiffusive
behaviour: more specifically, its bulk diffusion coefficient behaves like (log t)

2
3 , in a Tauberian

sense, up to log log log t corrections. This confirms a prediction made in the physics literature
and complements [G. Cannizzarro, M. Gubinelli, F. Toninelli, Gaussian Fluctuations for the
stochastic Burgers equation in dimension d ≥ 2, CMP, 2024], where the same equation was
studied in the weak-coupling regime. Furthermore this model can be seen as a continuous
analogue to [H.T. Yau, (log t)

2
3 law of the two dimensional asymmetric simple exclusion

process, Annals of Mathematics, 2004].

3.1 Introduction

We study the stochastic Burgers equation formally given by

∂tη =
1

2
∆η +w · ∇(η2) +∇ · ξ , (3.1)

where η = η(x, t) is a scalar field depending on time t and space x ∈ Rd, with d ≥ 1, w ∈ Rd

is a fixed vector controlling the strength and direction of the nonlinearity and ξ = (ξ1, . . . , ξd)
is d-dimensional space-time white noise. This equation was introduced in [vBKS85] as a pro-
posed continuum analogue of the fluctuations of driven diffusive systems with one conserved
quantity, like the Asymmetric Simple Exclusion Process. In dimension d = 1 this equation
is equivalent to the space derivative of the Kardar-Parisi-Zhang (KPZ) equation, for which
there is a local solution theory, the large scale statistics have been determined and the con-
nection with the discrete models (in particular the Weakly Asymmetric Exclusion Process on
Z) is well established. See [BG97, HQ18, GPS20] for works connecting particle and growth
models to one-dimensional KPZ. For a study of the bulk diffusivity and similar quantities
for d = 1 see [BQS11]. In dimension d ≥ 3 the recent work [CGT24] establishes Gaussian
fluctuations at large scales. The analogous result for asymetric simple exclusion processes

85
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was proven before in [EMY94, LY97, CLO01]. For dimension d = 2 [CGT24] studies weak
coupling regime, i.e. the size of the nonlinearity is scaled down while looking at larger and
larger scales. In this regime they also find non-trivial Gaussian fluctuations, in the sense that
the limiting equation is a stochastic heat equation with modified Laplacian, that depends on
the nonlinearity. This result suggests superdiffusivity for the strong coupling case, i.e. when
the nonlinearity is not scaled down, but it does not imply it.

Dimension d = 2 is of particular interest for several reasons. It is the critical dimension
in the sense of scaling (and in the sense of regularity structures), as we will further discuss
below. It is also the model which should describe the fluctuations of 2d ASEP, for which
(log t)

2
3 superdiffusivity was shown in [Yau04]. In general, bulk diffusion coefficients have

been conjectured to diverge either like (log t)
1
2 or like (log t)

2
3 for a wide variety of models in

the critical dimension, see e.g. [TV12, LRY05, WAG71]. Recent successes in proving (log t)
1
2

superdiffusivity are [CET23, CHST22, dLFW24]. The distinction between these two classes

is characterized by their symmetries. The models in the (log t)
2
3 universality class have one

direction in which the system behaves superdiffusively, while in the orthogonal direction it
behaves diffusively. In our case this direction is given by the vector w. The models in the
(log t)

1
2 class, on the other hand, often have some kind of rotational symmetry and behave

superdiffusively in every direction.

Let us now situate the present paper with respect to some other works on the topic.

• In [CGT24] the same equation is studied in the weak-coupling limit and the form of the
renormalized Laplacian in the limiting linear equation (see Theorem 1.3 in [CGT24])
suggests the 2

3 exponent.

• The iterative estimation scheme we use is inspired by the methods of [LQSY04, Yau04,
CET23, CHST22]. However the expressions of our upper and lower bounds are differ-
ent, see Theorem 3.4.5 and the definitions in that section. In particular, compared to
[CET23, CHST22] we do not absorb the off-diagonal terms into the main term, but
instead estimate them separately.

• Our result can be seen as an analog of [Yau04] in the continuum and is also the first

critical SPDE for which (log t)
2
3 superdiffusivity has been proven, to the best of the

authors’ knowledge. While our estimates remain technical, we manage to avoid the
splitting of sums into various good and bad regions, which have been a main obstacle
to replicating the success of [Yau04] to other models. Also, compared to [Yau04], the

sub-leading corrections to the (log t)
2
3 behavior are of lower order.

• In dimension 2 and greater, this equation falls outside the domain of applicability of
both the method of regularity structures developed in [Hai14] and the paracontrolled
distribution method of [GIP15, GP18].

• Gaussian Analysis has been succesfully used to understand a variety of critical and
super-critical SPDEs and related models via their generator, see [JP24, CG24, GP20].

Finally let us summarize the structure of this paper. In the following Subsection 3.1.1 we
rigorously define the equation and the bulk diffusion coefficient and state the main theorem.
Then, in Section 3.2, we set up notation and recall elements of Gaussian analysis and the
form of the generator. In Section 3.3 we reduce the problem to estimating certain operators
on Fock space. Then, in Section 3.4, we prove iterative estimates of these operators, and
finally use them in Section 3.5 to prove the main theorem.
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3.1.1 Scaling, Regularization and Green-Kubo formula

As it is written, equation (3.1) is ill-posed, since any solution would be too irregular for
the nonlinearity to be well-defined. Since we are interested in the large scale behaviour, we
regularize the nonlinearity at small scales and then consider larger and larger scales. We do
so by introducing Fourier cutoffs inside and outside the nonlinearity:

∂tη =
1

2
∆η +w ·Π1∇(Π1η)

2 +∇ · ξ , (3.2)

where for a > 0, the Fourier cut-off Πa acts on η in Fourier by cutting modes larger than a,
i.e. 0Πaη(k)

def
= .η(k)1|k|≤a .

Additionally, in order to avoid integrability issues arising in infinite volume, we study the
equation on a large torus T2

N of side-length 2πN . We will later let N go to infinity, see
Theorem 3.1.1. For equation (3.2) we define the bulk diffusivity using a Green-Kubo formula
justified in Appendix 3.B:

DN (t)
def
= 1 +

2|w|2
t

1 t

0

1 s

0

1
T2
N

E
6
Π1:(Π1η)

2:(r, x)Π1:(ΠNη)2:(0, 0)
=
dxdrds , (3.3)

where E denotes the expectation with respect to the stationary solution started from mean-
zero white noise, and :X2: denotes the Wick product, which in this case just subtracts the
expectation, i.e. :X2: = X2 − E(X2). Heuristically, the bulk diffusivity coefficient measures
how correlations spread out in space as a function in time.

For convenience, we work on the torus with side-length 2π. To do so, define the rescaled
solution ηN : R+ × T2

1 → R by

ηN (t, x) = Nη
6
N2t,Nx

=
, (3.4)

which solves the equation

∂tη
N =

1

2
∆ηN +w ·ΠN∇ 6

ΠNηN
=2

+∇ · ξ . (3.5)

Expressing the bulk diffusivity from (3.3) in terms of ηN leads, after a suitable change of
variables, to the expression

DN (t) = 1+N2 2|w|2
t

1 t
N2

0

1 s

0

1
T2
1

E
6
ΠN :(ΠNηN )2:(r, x)ΠN :(ΠNηN )2:(0, 0)

=
dxdrds . (3.6)

Our main theorem concerns the Laplace transform of DN , defined by

DN (λ)
def
=

1 ∞

0
e−λttDN (t)dt . (3.7)

Note that this is the standard Laplace transform instead of the one used in [CET23], but the
two definitions only differ by a factor of λ.

Theorem 3.1.1. Let w ̸= 0, and define the Laplace transform of the bulk diffusivity as in
(3.7). Then, for every δ ∈ (0, 1), there is a constant C = C(|w|) such that, for all λ small
enough,

lim sup
N→∞

DN (λ) ≤ C

λ2
(log log|log λ|)3+δ |log λ| 23

and

lim inf
N→∞

DN (λ) ≥ 1

Cλ2
(log log|log λ|)−3−δ |log λ| 23 .
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Note that by translating [QV08, Lemma 1] into our setting, the upper bound gives

DN (t) ≲ (1 + log(1 + t))
2
3
+o(1) as t ↑ ∞. For the lower bound such a statement is not true

in general. Note however that DN (λ) ∼ C
λ2 |log λ| 23 as λ ↓ 0 would imply 2C

T

2 T
0 tDN (t)dt ∼

T (log T )
2
3 as T ↑ ∞ by general Tauberian inversion theorems, see [Fel91, Chapter XIII.5].

Thus, the theorem says that D(t) grows like (log t)
2
3 , at least in a weak Tauberian sense.

Note also that the correction terms (log log|log λ|)±3±δ of Theorem 3.1.1 are of lower order
with respect to the ones of the corresponding result in [Yau04], which are e±γ(log log|log λ|)2 for
some constant γ > 0.

3.2 Preliminaries

3.2.1 Notation

Recall that for N > 0 we denote by T2
N the torus of side-length 2πN . If N = 1 we write T2

instead of T2
1. Let (ek)k∈Z2 be the standard Fourier basis on T2, i.e. ek(x) =

1
2π exp(ik · x),

which constitute an orthonormal basis of L2(T2). The Fourier transform of a function φ ∈
L2(T2), denoted by F(φ) or φ̂ interchangeably, is given by

F(φ)(k)
def
= φ̂(k)

def
=

1
T2

φ(x)e−k(x)dx for k ∈ Z2 .

Moreover, we denote by k1:n the sequence (k1, . . . , kn), where ki ∈ Z2. For example, for
an L2 function f on (T2)n, we write its Fourier transform as F(f)(k1:n) = F(f)(k1, . . . , kn).

Furthermore we define |k1:n|2 def
=

Hn
i=1 |ki|2.

We denote by P and E the law and the corresponding expectation of the stationary
measure given by mean-zero spatial white noise, as will be defined in subsection 3.2.2. With
P and E we denote instead the law and the corresponding expectation of the process given
by the solution of (3.5) started from the aforementioned stationary measure.

Finally, given A,B ∈ R, we write A ≲ B if there exists an absolute constant c > 0,
independent of all variables on which A and B may depend, such that A ≤ cB. In particular,
we will only use this notation if c is independent of w.

3.2.2 Chaos Decomposition

Let (Ω,F ,P) be a complete probability space and η be real-valued mean-zero spatial white
noise on T2, i.e. η is the Gaussian field with covariance

E (η(φ)η(ψ)) = ⟨φ, ψ⟩L2(T2) , (3.8)

where φ and ψ belong to L2
0(T2), the space of square-integrable real-valued functions that

integrate to 0. Since we work in Fourier, we also want to test η against complex valued func-
tions, by setting, for φ ∈ L2(T2;C), η(φ) = η(Re(φ))+ ιη(Im(φ)), which leads to considering
the covariance function (which extends (3.8))

E
4
η(φ)η(ψ)

;
= ⟨φ, ψ⟩L2(T2;C) , (3.9)

where the inner product is the standard sesquilinear inner product of square-integrable com-
plex valued functions (and φ and ψ still integrate to 0). Note that η is still real-valued in
the sense that η(φ) = η(φ), which would not be the case for complex-valued white noise, see
e.g. [Jan97, Section 1.4]. Using this extension we define η̂(k) = η(e−k). These are complex
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valued Gaussian variables satisfying η̂(k) = η̂(−k) and E
4
η̂(j)η̂(k)

;
= δj,k. Since we only

test against mean-zero functions η̂(0) is not defined and we set it to 0.
Let L2(η) be the space of L2 random variables on Ω measurable with respect to the σ-

algebra generated by η. For n ∈ N, let Hn be the n-th homogeneous Wiener chaos, i.e. the
closed linear subspace of L2(η) generated by the random variables Hn(η(h)), where Hn is the
n-th Hermite polynomial and h is a mean-zero test function of norm 1. By [Nua06, Theorem
1.1.1], L2(η) =

(
n≥0 Hn is an orthogonal Hilbert space decomposition of L2(η). Define also

ΓL2 =
(

n≥0 ΓL
2
n, where ΓL2

n is the n-fold symmetric tensor product of L2
0(T2), i.e. the

space of symmetric L2 functions f on (T2)n which are mean-zero in every variable, i.e. such
that

2
T2 f(x, y1:n−1)dx = 0 for every y1:n−1 ∈ (T2)n−1. By [Nua06, Proposition 1.1.1], there

is a canonical isometry I between ΓL2 and L2(η), whose restrictions In to ΓL2
n are isometries

between ΓL2
n and Hn. This gives the following correspondence. For every F ∈ L2(η) there

is a family of kernels (fn)n≥0 ∈ ΓL2 such that F =
H

n≥0 In(fn) and

E
6
F 2

=
= ∥(fn)n≥0∥ΓL2

def
=

G
n≥0

n!∥fn∥2L2((T2)n) .

Here the right hand side also defines the ΓL2 inner product.

Remark 3.2.1. By this isometry between L2(η) and the Fock space ΓL2, we will identify
throughout the paper operators acting on either space by composing them with I or I−1 as
appropriate (and without mentioning that we are doing so).

Remark 3.2.2. It is not strictly necessary to take the white noise to be mean-zero, but it is
natural since the dynamics of the system are conservative. If we start equation (3.5) from a
standard white noise η0 (i.e. η̂(0) is a standard Gaussian), then, for any future time t, we
have η̂t(0) = η̂0(0). Moreover, η̂t(0) is independent of all other η̂t(k). Therefore we can just
set it to 0. In terms of Fourier kernels it means that for any φ ∈ Hn it holds that φ̂(k1:n) is
0 if any of the k1, . . . , kn are 0.

3.2.3 The Generator

The following is (part of) Lemma 2.1 and Lemma 2.2. from [CGT24].

Lemma 3.2.3. For any deterministic initial condition η0 the solution of (3.5) exists globally
in time and is a strong Markov process, as a α−Hölder continuous process with values in
tempered distributions on the torus. The generator of ηNt can be written as L = L0+A++A−,
where L0 is symmetric with respect to P, A∗

+ = −A−, again with respect to P, and the
operators L0, A+ and A− act on φ ∈ Hn as:

F (L0φ) (k1:n) = −1
2 |k1:n|2φ̂(k1:n) (3.10)

F 6AN
+φ

=
(k1:n+1) = − ι

π(n+ 1)

G
1≤i<j≤n+1

JNki,kj [w · (ki + kj)] φ̂
6
ki + kj , k{1:n+1}\{i,j}

=
F 6AN

−φ
=
(k1:n−1) = − ι n

π

n−1G
j=1

(w · kj)
G

ℓ+m=kj

JNℓ,m φ̂
6
ℓ,m, k{1:n−1}\{j}

=
,

where the indicator function J is given by

Jℓ,m
def
= 1{0<|ℓ|≤N,0<|m|≤N,0<|ℓ+m|≤N} . (3.11)

Additionally the law of mean-zero white noise as defined by (3.8) is stationary for this equa-
tion.
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Note the change in sign in the Fourier multiplier of A−, this is a typo in [CGT24].

Remark 3.2.4. The spatial regularity in Lemma 3.2.3 is not optimal, it can be improved to
some Besov space of negative regularity, see [CES21, Theorem 4.5] where it is done for the
AKPZ equation.

3.3 Truncated Resolvent Equation

The following proposition allows to express DN just in terms of the stationary measure and
the generator. Recall ηN is the stationary solution to (3.5) started from mean-zero white
noise.

Proposition 3.3.1. The Laplace transform of the bulk diffusivity is given by

DN (λ) =
1

λ2
+

8π2

λ2
|w|2E

4
ÑN [η]

6
λN2 − LN

=−1 ÑN [η]
;
,

where ÑN [η] ∈ H2 is purely in the second chaos and given by

ÑN [η]
def
=

1

2π

1
T2

ΠN :(ΠNη)2:(x)dx =
G

ℓ+m=0
0<|ℓ|≤N

:η̂(ℓ)η̂(m): (3.12)

and its kernel nN = I−1
4
ÑN [η]

;
∈ ΓL2

2 is given in Fourier by

F 6
nN

=
(j1, j2) = 1{0<|j1|≤N, j1+j2=0} . (3.13)

Proof. Multiplying (3.6) by t yields

tDN (t) = t+ 2N2|w|2
1 t

N2

0

1 s

0

1
T2

E
6
ΠN :(ΠNηN )2:(r, x)ΠN :(ΠNηN )2:(0, 0)

=
dxdrds .

(3.14)
Since the process ηN is translation invariant in space, we can write the spatial integral in the
expression above as1

T2

1
T2

E
6
ΠN :(ΠNηN )2:(r, x+ y)ΠN :(ΠNηN )2:(0, y)

=
= 4π2E

77
1

2π

1
T2

ΠN :(ΠNηN )2:(r, x)dx

>7
1

2π

1
T2

ΠN :(ΠNηN )2:(0, x)dx

>>
= 4π2E

4
ÑN [ηN (r)]ÑN [ηN (0)]

;
.

Using the stationarity of ηN we note1 t

0

1 s

0
E
4
ÑN [ηN (r)]ÑN [ηN (0)]

;
drds =

1

2
E

571 t

0
ÑN [ηN (s)]ds

>2
<

.

Using this to rewrite (3.14) and applying the Laplace transform gives:

DN (λ) =

1 ∞

0
e−λtDN (t)dt

=

1 ∞

0
e−λt

5
t+ 4π2N2|w|2E

71 t

0
ÑN [ηN (s)]ds

>2
<
dt
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=
1

λ2
+ |w|2 8π

2

λ2
E
4
ÑN (λN2 − LN )−1ÑN

;
,

where in the final step we used [CES21, Lemma 5.1], which allows us to go from an expectation
with respect to the process to one just with respect to the stationary measure.

By the isometry between L2(η) and ΓL2, this expectation is equal to ⟨nN , (λ−LN )−1nN ⟩.
To determine this we would need to invert the operator λ−LN , which is difficult because the
presence operator A means such an inversion involves all chaoses, even though nN is purely
in the second chaos. To overcome this we will apply a technique first used in [LQSY04].
This technique is based on truncating the resolvent equation: Let P≤k be the projection onto

ΓL2
≤k

def
=

(k
n=0 Hn, i.e. onto the first k chaoses and LN

k = P≤kLNP≤k. Let hN,k be the
solution to the truncated generator equation6

λ− LN
k

=
hN,k = nN . (3.15)

The following lemma was first proved in [LQSY04, Lemma 2.1].

Lemma 3.3.2. Let λ > 0. Then for every k,N ∈ N we have that�
nN , hN,2k+1

�
≤

�
nN ,

6
λ− LN

=−1
nN

�
≤

�
nN , hN,2k

�
,

furthermore both bounds monotonically converge to
�
nN ,

6
λ− LN

=−1
nN

�
as k → ∞.

Equation (3.15) written chaos-by-chaos takes the form

(λ− L0)h
N,k
k −A+h

N,k
k−1 = 0 , (3.16)

(λ− L0)h
N,k
k−1 −A+h

N,k
k−2 −A−h

N,k
k = 0 ,

. . .

(λ− L0)h
N,k
2 −A+h

N,k
1 −A−h

N,k
3 = nN ,

(λ− L0)h
N,k
1 −A−h

N,k
2 = 0 .

This system of equations can be solved iteratively starting from the top, which leads to the
following definition.

Definition 3.3.3. For k ≥ 3 we define the operators

HN
2

def
= 0 and HN

k =
6AN

+

=∗ 6
λ− L0 +HN

k−1

=−1AN
+ .

These operators are defined in an analogous way to the operators of the same name in
[CET23] and thus share some basic properties.

Lemma 3.3.4 (Lemma 3.2 from [CET23]). For k ≥ 3, the operators Hk are positive definite
and such that for all n ∈ N the operator Hk maps the n-th chaos into the n-th chaos.

Solving the system of equations (3.16) we obtain

hN,k
2 =

6
(λ− L0) +HN

k −AN
+ (λ− L0)

−1AN
−
=−1

nN . (3.17)

For the operator −AN
+ (λ − L0)

−1AN− notice the following: consider the subspace V of ΓL2

generated by ψ supported only on k1:n which satisfy
Hn

i=1 ki = 0 (for arbitrary n). The
operators AN

+ ,AN− and LN
0 all map V into V and the orthogonal complement of V into the
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orthogonal complement of V . Additionally AN− vanishes on the intersection of V and H2.
Since nN is in V ∩ H2 this implies6

(λ− L0) +HN
k −AN

+ (λ− L0)
−1AN

−
=−1

nN =
6
(λ− L0) +HN

k

=−1
nN . (3.18)

The following lemma summarises the result of this subsection.

Lemma 3.3.5. For all λ > 0, N ∈ N and k ≥ 2 it holds that�
nN , hN,k

�
=

�
nN ,

6
(λ− L0) +HN

k

=−1
nN

�
.

Proof. This follows from (3.15), (3.17) and (3.18).

So all that remains is to estimate the operators Hk’s.

3.4 Iterative Estimates

In this section we set up the iterative estimation scheme for the operators Hk. In order to
do so, we first need to give some definitions.

The skew Laplacian is the linear operator whose action on Fock space is given, for every
φ ∈ ΓL2

n, by

F (Lw
0 φ) (k1:n)

def
= −1

2(w · k)21:nφ̂(k1:n) , where (w · k)21:n def
=

nG
i=1

(w · ki)2 . (3.19)

The sequence of the exponents of the logarithm in the upper and lower bounds is defined
recursively by

θ2
def
= 0 and θk+1 = 1− θk

2
for every k ≥ 3 ,

and admits the close formula

θk =
2

3

5
1−

7−1

2

>k−2
<

for every k ≥ 2 . (3.20)

We now introduce some elementary functions, that morally approximate a logarithm to the
power two third. Let k,N, n ∈ N and δ ∈ (0, 1). For k ≥ 2, x ∈ (0,∞) and z ∈ (1,∞), we set

L(x, z)
def
= log(1 + x−1) + z , Lk(x, z)

def
= (L(x, z))θk , LN

k (x, z)
def
= Lk

4 x

N2
, z
;
. (3.21)

The functions above are accompanied by polynomial coefficients, that morally correspond to
errors made in the estimates. For k ≥ 1, those are given by

zk(n)
def
= K(n+ k)

9
2
+ 3

2
δ and fk(n)

def
= 3(zk(n))

2
3 , (3.22)

where K is a sufficiently large positive constant depending on |w|.
Remark 3.4.1. The exact dependence of K on |w| is not important for us. However, following
the proof, it is not difficult to check that the lower bound that K must satisfy is of the kind

a
6|w| ∨ 1

|w|
=b

for some a, b > 0.
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We also note the trivial identities

zk(n+ 1) = zk+1(n) and fk(n+ 1) = fk+1(n) . (3.23)

Moreover, in the proofs we use the additional notation

Γ̃
def
= Γ̃(ℓ,m, k2:n)

def
= 1

2

6|ℓ|2 + |m|2 + |k2:n|2
=
, (3.24)

Γ̃w def
= Γ̃w(ℓ,m, k2:n)

def
= 1

2

6
(w · ℓ)2 + (w ·m)2 + (w · k)22:n

=
,

where k2:n means k1, . . . , kn and ℓ, m, k2, . . . , kn ∈ Z2 are Fourier modes. This is coherent
with the notation used in [CET23, Section 3]. By the Cauchy-Schwarz inequality, the symbols
above can be compared as follows:

0 ≤ Γ̃w ≤ |w|2Γ̃ . (3.25)

We are finally ready to give the definitions of the operators used for the iterative bounds.

Definition 3.4.2. For λ > 0 and k ≥ 2

SN
k

def
=

�
fk(N )LN

k (λ− L0, zk(N )) if k is odd,
1

fk(N )

�
LN
k (λ− L0, zk(N ))− fk(N )

#
if k is even,

where N is the number operator, acting on φ ∈ ΓLn by Nφ = nφ for each n ∈ N and λ is
the Laplace variable.

We will use the following (quite standard) partial ordering of operators:

Definition 3.4.3. Given two self-adjoint operators A and B on ΓL2,

A ≤ B ⇔ ∀n ∀φ ∈ ΓL2
n ⟨Aφ,φ⟩ ≤ ⟨Bφ,φ⟩ ⇔ B −A ≥ 0 ,

where the last statement is taken to mean that B −A is a positive operator.

For this partial ordering the following well-known lemma holds

Lemma 3.4.4. For any two operators A and B on ΓL2 it holds that

0 < A ≤ B ⇔ 0 < B−1 ≤ A−1 .

We can now state the bounds on the operators Hk.

Theorem 3.4.5 (iterative bounds). For every δ ∈ (0, 1) and for every k ∈ Z, k ≥ 0 we have

H2k+3 ≤ c2k+3 ((−Lw
0 )S2k+3 + f2k+3(N )(−L0)) , (3.26)

H2k+2 ≥ c2k+2

7
(−Lw

0 )S2k+2 − 1

(N + k)1+δ
(−L0)

>
, (3.27)

where the constants c2k+1 and c2k+2 are defined recursively by setting, for k ≥ 1,

c2
def
=

1

π(|w|2 ∨ 1)
, c2k+1 =

3

2π|w|

6
1 + 1

2k1+δ

=
c2k

> 1 , c2k+2 =
3

2π|w|

6
1− 1

2k1+δ

=6
1 + 1

2k1+δ

=
c2k+1

< 1

and the δ explicitly appearing in (3.27) is the same as the one used for defining the Sk’s and
the ck’s.
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Note that compared to the structure in previous works ([CHST22], [CET23]), the upper
and lower bounds are now split into a part multiplying the skew Laplacian Lw

0 and a part
multiplying the full Laplacian L0. The second part is used to estimate the off-diagonals, i.e.
we do not absorb them into the diagonal terms, but keep them separate.

Remark 3.4.6. The two inequalities on odd and even terms of the sequence (ck)k≥2 can be
checked by induction, separately on odd and even terms, after distinguishing the two cases
|w| > 1 and |w| < 1. Also, note that

H
k

1
2k1+δ is summable. This implies that, as k → ∞,

c2k+1 and c2k+2 converge to two positive and finite limits, respectively larger and smaller
than 1.

As explained in the above discussion, the main body of the present work consists in
estimating certain scalar products on Fock space. We thus begin with some preliminary
lemmas, which help in pinpointing and breaking down the exact expressions that one needs
to estimate.

Lemma 3.4.7 (Decomposition in diagonal and off-diagonal terms). Let Z be a diagonal
operator on ΓL2 with Fourier multiplier ζ = (ζn)n∈N. Then, for every φ ∈ ΓL2

n, the following
decomposition holds:�6AN

+

=∗ZAN
+φ,φ

�
=

�6AN
+

=∗ZAN
+φ,φ

�
Diag

+
2G

i=1

�6AN
+

=∗ZAN
+φ,φ

�
offi

,

where the diagonal terms, given by the first summand, are defined as�6AN
+

=∗ZAN
+φ,φ

�
Diag

def
=

n!n

2π2

G
k1:n

(w · k1)2φ̂(k1:n)φ̂(k1:n)
G

ℓ+m=k1

JNℓ,mζn+1(ℓ,m, k2:n) ,

while the off-diagonal terms of type 1 and 2 are respectively given by�6AN
+

=∗ZAN
+φ,φ

�
off1

def
=

n!n(n− 1)

π2

G
k1:n+1

(w · (k1 + k2))(w · (k1 + k3))×

× φ̂(k1 + k2, k3, k4:n+1)φ̂(k1 + k3, k2, k4:n+1)JNk1,k2J
N
k1,k3ζn+1(k1:n+1)

(3.28)

and�6AN
+

=∗ZAN
+φ,φ

�
off2

def
=

n!n(n− 1)(n− 2)

4π2

G
k1:n+1

(w · (k1 + k2))(w · (k3 + k4))×

× φ̂(k1 + k2, k3:4, k5:n+1)φ̂(k3 + k4, k1:2, k5:n+1)JNk1,k2J
N
k3,k4ζn+1(k1:n+1) .

(3.29)

The above decomposition is the same as the one used in the proof of [CGT24, Lemma 2.5]
and we refer to [CET23, Lemma 3.6] for the combinatorics needed for the exact expressions
of the multiplicative factors in front of the sums.

Lemma 3.4.8 (How to bound diagonal terms). Let Z1 and Z2 be two positive operators
on ΓL2, diagonal both in chaos and in Fourier, with Fourier multipliers ζi = (ζin)n∈N, for
i = 1, 2. If for every n ∈ N and for every k1:n ∈ Z2nG

ℓ+m=k1

JNℓ,mζ1n+1(ℓ,m, k2:n) ≤ ζ2n(k1:n) , (3.30)

then for every φ ∈ ΓL2
n�6AN

+

=∗Z1AN
+φ,φ

�
Diag

≤ 1

π2
⟨(−Lw

0 )Z2φ,φ⟩ .

Moreover, a reverse inequality in the assumption implies a reverse inequality in the result.
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Proof. Recalling the expressions of AN
+ ,

6AN
+

=∗
and Lw

0 , given in Lemma 3.2.3 and in (3.19)
respectively, and using hyphothesis (3.30), we obtain:�6AN

+

=∗Z1AN
+φ,φ

�
Diag

=
n!n

2π2

G
k1:n

(w · k1)2|φ̂(k1:n)|2
G

ℓ+m=k1

JNl,mζ1n+1(ℓ,m, k2:n) ≤

≤ n!n

2π2

G
k1:n

(w · k1)2|φ̂(k1:n)|2ζ2n(k1:n) =
n!

π2

G
k1:n

(−Lw
0 )|φ̂(k1:n)|2ζ2n(k1:n) =

=
1

π2
⟨(−Lw

0 )Z2φ,φ⟩ .

The reverse inequality follows by repeating the exact same steps above with the inequality
in the other direction.

Lemma 3.4.9 (How to upper bound off-diagonal terms). Let Z1 and Z2 be two positive
operators on ΓL2, diagonal both in chaos and in Fourier, with Fourier multipliers ζi =
(ζin)n∈N, for i = 1, 2.

If for every n ∈ N and for every k1:n ∈ Z2n

|k2|
G

ℓ+m=k1

1

|m|J
N
l,mζ1n+1(ℓ,m, k2:n) ≤ ζ2n(k1:n) ,

then for every φ ∈ ΓL2
nKKKK�6AN
+

=∗Z1AN
+φ,φ

�
off1

KKKK ≤ 2|w|2(n− 1)

π2
⟨(−L0)Z2φ,φ⟩ . (3.31)

If for every n ∈ N and for every k1:n ∈ Z2n

G
ℓ+m=k1

JNℓ,m
ζ1n+1(ℓ,m, k2:n)

|ℓ||m| ≤ 1

|k1|
E|k1:n|2

ζ2n(k1:n) ,

then for every φ ∈ ΓL2
nKKKK�6AN

+

=∗Z1AN
+φ,φ

�
off2

KKKK ≤ |w|2(n− 1)(n− 2)

π2
⟨(−L0)Z2φ,φ⟩ . (3.32)

Proof. Following ideas of [CET23], we define

∀n ∈ N Φ(k1:n)
def
=

nB
i=1

|ki||φ̂(k1:n)| . (3.33)

We start with the estimate for the off-diagonal terms of type 1. In order to have more
easily readable expressions, we give a name to the coefficient (its exact expression is only
used at the end of the proof):

coff1(n)
def
=

|w|2n!n(n− 1)

π2
.

By expanding the left hand side of (3.31), applying the Cauchy-Schwarz inequality and using
definition (3.33), we getKKK�ZAN

+φ,AN
+φ

�
off1

KKK C-S≤ coff1(n)
G

k1:n+1

|k1 + k2||k1 + k3| ×
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× |φ̂(k1 + k2, k3, k4:n+1)||φ̂(k1 + k3, k2, k4:n+1)|JNk1,k2JNk1,k3ζ1n+1(k1:n+1)

= coff1(n)
G

k1:n+1

Φ(k1 + k2, k3, k4:n+1)Φ(k1 + k3, k2, k4:n+1)

|k2||k3|
Cn+1

i=4 |ki|2
JNk1,k2J

N
k1,k3ζ

1
n+1(k1:n+1) .

We now recall the elementary inequality |ab| ≤ a2/2 + b2/2, true for any a, b ∈ R, and apply
it with the choice a = Φ(k1 + k2, k3, k4:n+1)JNk1,k2 and b analogous. By symmetry, the second
addend that we obtain by this procedure is actually equal to the first one, and so we obtain
the upper bound

coff1(n)
G

k1:n+1

(Φ(k1 + k2, k3, k4:n+1))
2

|k2||k3|
Cn+1

i=4 |ki|2
JNk1,k2ζ

1
n+1(k1:n+1) .

Expanding the definition of Φ, applying the change of variables k1:n+1 (→ (ℓ,m, k2:n) and
finally using the hypothesis gives the desired upper bound:

coff1(n)
G

k1:n+1

|k1 + k2|2|k3||φ̂(k1 + k2, k3, k4:n+1)|2
|k2| JNk1,k2ζ

1
n+1(k1:n+1)

= coff1(n)
G

ℓ,m,k2:n

|ℓ+m|2|k2||φ̂(ℓ+m, k2:n)|2
|m| JNl,mζ1n+1(ℓ,m, k2:n)

= coff1(n)
G
k1:n

|φ̂(k1, k2:n)|2|k1|2|k2|
G

ℓ+m=k1

JNl,m
ζ1n+1(ℓ,m, k2:n)

|m|

≤ |w|2n!n(n− 1)

π2

G
k1:n

|φ̂(k1, k2:n)|2|k1|2ζ2n(k1:n) =
2|w|2(n− 1)

π2
⟨(−L0)Z2φ,φ⟩ ,

where the factor n was absorbed in the definition of (−L0) (recall (3.10)).
We now prove the statement about the off-diagonal terms of type 2. We set

coff2(n)
def
=

|w|2n!n(n− 1)(n− 2)

4π2

and follow the same steps already used for the off-diagonal terms of type 1, even though the
expressions to which we apply them now are slightly different. More precisely, we consider
the left hand side of (3.32), use the Cauchy-Schwarz inequality, ab ≤ a2/2 + b2/2 with a =
Φ(k1+k2, k3:4, k5:n+1)JNk1,k2 and b analogous and the change of variables k1:n+1 (→ (ℓ,m, k2:n).
Overall, this gives the upper bound

KKK�ZAN
+φ,AN

+φ
�
off2

KKK ≤ coff2(n)
G
k1:n

|φ̂(k1, k2:n)|2|k1|2|k2||k3|
G

ℓ+m=k1

JNℓ,m
ζ1n+1(ℓ,m, k2:n)

|ℓ||m| .

Finally, by applying the hypothesis of the Lemma to innermost sum of the expression above,
we obtain the upper bound

|w|2n!n(n− 1)(n− 2)

4π2

G
k1:n

|φ̂(k1, k2:n)|2 |k1||k2||k3|E|k1:n|2
ζ2n(k1:n) . (3.34)

Using |k3| ≤
E|k1:n| the sum above is upper bounded byG

k1:n

|k1||k2||φ̂(k1:n)|2ζ2n(k1:n) .
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Since both φ̂ and ζ2n are symmetric, we can replace |k1||k2| in this sum by 1

(n2)

H
i ̸=j |ki||kj |,

which we further estimate by

16
n
2

= G
i ̸=j

|ki||kj | ≤ 1

2
6
n
2

= G
i ̸=j

|ki|2 + |kj |2 = 2

n

nG
i=1

|ki|2 .

Doing so we obtain that (3.34) is bounded by the right hand side of (3.32). This concludes
the proof.

We are now ready to prove Theorem 3.4.5. The proof is written separately for the upper
and lower bounds.

Proof of Theorem 3.4.5, inequality (3.27). We proceed by induction. In this first part of the
proof we show that the (2k + 2)-th lower bound holds assuming that the (2k + 1)-th upper
bound does. In the next part, instead, we will assume the (2k+2)-th lower bound and prove
that the (2k + 3)-th upper bound holds.

As for all proofs by induction, we need an initial step. We take this to be the lower bound
for k = 0. More precisely, this consists in showing

0 = H2 ≥ c2

7
(−Lw

0 )
1

f2(N )
(1− f2(N ))− 1

(N + 2)1+δ
(−L0)

>
.

Since f2(n) > 1 for every n ∈ N, the right hand side above is negative and thus the inequality
holds for any arbitrary choice of c2 > 0 (uniformly in n, k ≥ 1), so we may as well choose the
one given in the statement of the theorem:

c2
def
=

1

π(|w|2 ∨ 1)
.

We now proceed to the inductive argument. Let k ≥ 1. Assume by induction that (3.26)
holds for k − 1, i.e. assume the upper bound stated for H2k+1. We want to prove (3.27) for
k, i.e. we want to prove the lower bound stated for H2k+2. We have:

H2k+2 =
6AN

+

=∗
(λ− L0 +H2k+1)

−1AN
+

≥ 6AN
+

=∗
(λ− L0 + c2k+1 [(−Lw

0 )S2k+1 + f2k+1(N )(−L0)])
−1AN

+

def
=

6AN
+

=∗Z2k+1AN
+ ,

where we used the last equation to define the operator Z2k+1. We observe that Z2k+1 is
diagonal in Fourier and thus, consistently with the notation already used in the other lemmas
of this section, we denote by ζ2k+1 its Fourier multiplier.

By Remark 3.4.3, we set out to bound ⟨6AN
+

=∗Z2k+1AN
+φ,φ⟩ from below, for φ ∈ ΓL2

n.
We recognize an expression of the type considered in Lemma 3.4.7, 3.4.8, and 3.4.9. First
of all, we use Lemma 3.4.7 to split the scalar product above into diagonal and off-diagonal
terms. Then we proceed to study them separately, starting with the diagonal ones.

Recall the definitions of Γ̃ and Γ̃w given in (3.24). In order to apply Lemma 3.4.8, we
need a bound on the sumG

ℓ+m=k1

JNℓ,m
λ+ Γ̃ + c2k+1f2k+2

�
Γ̃wLN

2k+1(λ+ Γ̃, z2k+2) + Γ̃
! , (3.35)

where we first used property (3.23) to replace z2k+1(n+1) and f2k+1(n+1) with z2k+2(n) and
f2k+2(n) respectively and then suppressed the argument of z2k+1 and f2k+1, as it is constant
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throughout. Inside the sum above we recognize the Fourier multiplier ζ2k+1 multiplied by
the product of indicator functions JNℓ,m, as by hypothesis of Lemma 3.4.8.

The estimate of those kind of sums is carried out in Appendix 3.A. However, before
invoking it, we do one additional step and lower bound it by:

1

c2k+1f2k+2

4
1 + 1

f2k+2

; G
ℓ+m=k1

JNℓ,m
λ+ Γ̃ + Γ̃wLN

2k+1(λ+ Γ̃, z2k+2)
, (3.36)

where we multiplied λ by 1 + c2k+1f2k+2 (a number larger than 1), replaced the c2k+1f2k+2

factor of Γ̃LN
2k+1 by 1 + c2k+1f2k+2 and finally factored 1 + c2k+1f2k+2 out and used

1 + c2k+1f2k+2 = c2k+1f2k+2

7
1 +

1

c2k+1f2k+2

>
≤ c2k+1f2k+2

7
1 +

1

f2k+2

>
.

As announced, we now apply Lemma 3.A.4 to the sum in (3.36) to lower bound the whole
expression (3.36) by

B2k+2

f2k+2

π

|w|
�
A2k+2L

N
2k+2

6
λ+ |k1:n|2, z2k+2

=− 4

3
(z2k+2)

θ2k+2

$
, (3.37)

where, in order to increase readability, we set

A2k+2(n)
def
= 1−

7
|w|CDiag + 2 +

3

|w|
>

1

z
θ2k+1

2

,

B2k+2(n)
def
=

3

2c2k+1

4
1 + 1

f2k+2(n)

; . (3.38)

We now proceed with two additional steps. In the first one, observing that θ2k+2 ≤ 2
3 for

every k ≥ 0 and recalling the definition of f2k+2 given in (3.22), we estimate the additive
error in the square brackets of (3.37) by

4

3
(z2k+2)

2
3 ≤ 1

2
f2k+2 ≤

7
1− 1

2k1+δ

>
f2k+2 . (3.39)

In the second step, instead, we observe that
θ2k+1

2 ≥ 1
3 for every k ≥ 1, so that

A2k+2 ≥ 1−
7
|w|CDiag + 2 +

3

|w|
>

1

(z2k+2)
1
3

≥ 1− 1

2k1+δ
,

where the second inequality is true because of the lower bound (z2k+2)
1
3 ≥ 2K

1
3k1+δ, assuming

that K in definition (3.22) is large enough.
Summing up, (3.37) is lower bounded by

B2k+2

f2k+2

π

|w|
7
1− 1

2k1+δ

>6
LN
2k+2

6
λ+ |k1:n|2, z2k+2

=− f2k+2

=
(3.40)

and by using the above as hypothesis in Lemma 3.4.8, we obtain the following bound on the
diagonal term of the scalar product:�6AN

+

=∗Z2k+1AN
+φ,φ

�
Diag

≥
�
B2k+2(N )

π|w|
7
1− 1

2k1+δ

>
(−Lw

0 )SN
2k+2φ,φ

�
∀φ ∈ ΓL2

n .
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We now proceed to estimate the off-diagonal terms. We want to apply Lemma 3.4.9,
whose hypotheses require estimates on two sums involving the Fourier multiplier ζ2k+1, one
for the off-diagonal terms of type 1 and one for the off-diagonal terms of type 2.

The sum that needs to be estimated for the off-diagonal terms of type 1 is

|k2|
G

ℓ+m=k1

1

|m|
JNℓ,m

λ+ Γ̃ + c2k+1f2k+2

�
Γ̃wLN

2k+1(λ+ Γ̃, z2k+2) + Γ̃
! , (3.41)

where, again, we first used property (3.23) and then suppressed the variable n. By dropping
from the denominator of (3.41) λ+Γ̃ and all other terms involving the Fourier modes k{1:n}\{2},
and by lower bounding LN

2k+1 by 0, we obtain the upper bound

|k2|
c2k+1f2k+2

G
ℓ+m=k1

1

|m|
JNℓ,m

(|m|2 + |k2|2) ≲ 1

c2k+1f2k+2
,

where we estimated the sum by the corresponding integral and applied Lemma 3.A.1 with
β = |k2|2 and γ = 1.

Regarding the off-diagonal terms of type 2, instead, we need to estimate the sum

G
ℓ+m=k1

1

|ℓ||m|
JNℓ,m

λ+ Γ̃ + c2k+1f2k+2

�
Γ̃wLN

2k+1(λ+ Γ̃, z2k+2) + Γ̃
! . (3.42)

We now observe that the condition ℓ + m = k1 implies that at least one between ℓ and m
has norm larger than the one of 1

2k1. Using this to replace one |ℓ|2 by |12k1|2 and by applying
arguments analogous to the ones just used in the estimate of (3.41), we obtain that (3.42) is
upper bounded by

16

c2k+1f2k+2

G
ℓ+m=k1

1

|k1||m|
JNℓ,m

(|m|2 + |k1:n|2) ≲ 1

c2k+1f2k+2

1

|k1|
E|k1:n|2

,

where we estimated the sum by the corresponding integral and applied Lemma 3.A.1 with
β = |k1:n|2 and γ = 1.

Using Lemma 3.4.9 with the estimates above as hypotheses, we conclude thatKKKK�6AN
+

=∗Z2k+1AN
+φ,φ

�
Off1

KKKK+ KKKK�6AN
+

=∗Z2k+1AN
+φ,φ

�
Off2

KKKK
≤ Coff

�7
2|w|2(N − 1)

c2k+1f2k+2(N )
+

|w|2(N − 1)(N − 2)

c2k+1f2k+2(N )

>
(−L0)φ,φ

�
≤ Coff

� |w|2N 2

c2k+1f2k+2(N )
(−L0)φ,φ

�
,

where Coff is an absolute constant independent of all variables at play (see (3.54) for more
details). With this we have come to the last step of the proof of the iterative lower bounds.
Recall that we were trying to estimate

�6AN
+

=∗Z2k+1AN
+φ,φ

�
from below, for φ ∈ ΓL2

n. In
order to do so, we split it into diagonal and off-diagonal terms and we bounded each of them
separately. We now put those estimates together:�6AN

+

=∗Z2k+1AN
+φ,φ

�
≥

�6AN
+

=∗Z2k+1AN
+φ,φ

�
Diag

−
KKKK�6AN

+

=∗Z2k+1AN
+φ,φ

�
off1

KKKK− KKKK�6AN
+

=∗Z2k+1AN
+φ,φ

�
off2

KKKK
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≥
��

B2k+2(N )

π|w|
7
1− 1

2k1+δ

>
(−Lw

0 )SN
2k+2 −

Coff |w|2N 2

c2k+1f2k+2(N )
(−L0)

$
φ,φ

�
≥

�
B2k+2(N )

6
1− 1

2k1+δ

=
π|w|

7
(−Lw

0 )SN
2k+2 −

8πCoff |w|3N 2

3f2k+2(N )
(−L0)

>
φ,φ

�
,

where we first used the triangular inequality and then the bounds established in proof. Finally,
the last inequality is obtained by factoring out the coefficient of (−Lw

0 )SN
2k+2 and upper

bounding both
4
1 + 1

f2k+2

;
and

6
1− 1

2k1+δ

=−1
by 2.

At this point, the proof is almost complete. We just need a few more estimates on
the coefficients of the operators appearing in the scalar product above, so that it becomes
exactly the one lower-bounding H2k+2 in the inequality (3.27) of Theorem 3.4.5. First of all,
by recalling the definition of f2k+2 given in (3.22) and taking K large enough, we estimate
the coefficient of (−L0) by above by

8πCoff |w|3n2

3f2k+2
=

8πCoff |w|3n2

9K2/3(n+ 2k + 2)3+δ
≤ 1

(n+ k)1+δ
.

Finally, we consider the coefficient in front of the square bracket and observe that

B2k+2

6
1− 1

2k1+δ

=
π|w| =

3
6
1− 1

2k1+δ

=
2π|w|c2k+1

4
1 + 1

f2k+2

; ≥ c2k+2 ,

simply by expanding the definition of B2k+2 given at (3.38), lower bounding f2k+2 by 2k1+δ

and recalling the definition of c2k+2 given in the statement of Theorem 3.4.5. This concludes
the proof.

Proof of Theorem 3.4.5, inequality (3.26). In this second part of the proof we show that the
(2k+ 3)-th upper bound holds assuming that the (2k+ 2)-th lower bound does. In the hope
of making the reading easier, we note that the general structure of the two parts is similar.

Let k ≥ 0. Assume by induction that (3.27) holds for k, i.e. assume the lower bound
stated for H2k+2. We want to prove that also (3.26) holds for k, i.e. we want to prove the
upper bound stated for H2k+3. Then:

H2k+3 =
6AN

+

=∗
(λ− L0 +H2k+2)

−1AN
+

≤ 6AN
+

=∗7
λ− L0 + c2k+2

�
(−Lw

0 )S2k+2 − 1

(N + k)1+δ
(−L0)

$>−1

AN
+

def
=

6AN
+

=∗Z2k+2AN
+ ,

where we the last equation defines Z2k+2. We denote by ζ2k+2 its Fourier multiplier.
By Remark 3.4.3, our aim is to bound ⟨6AN

+

=∗Z2k+2AN
+φ,φ⟩ from above, for φ ∈ ΓL2

n.
We use 3.4.7 to split the scalar product into diagonal and off-diagonal terms. We start by
studying the diagonal ones. Recall the definitions of Γ̃ and Γ̃w given in (3.24). In order to
apply Lemma 3.4.8 we need a bound on

G
ℓ+m=k1

JNℓ,m
λ+ Γ̃ + c2k+2

�
Γ̃w

f2k+3

4
LN
2k+2(λ+ Γ̃, z2k+3)− f2k+3

;
− Γ̃

(n+1+k)1+δ

! , (3.43)

where we first used property (3.23) to replace z2k+1(n + 1) and f2k+1(n + 1) with z2k+2(n)
and f2k+2(n) respectively and then suppressed the argument of z2k+1 and f2k+1, as it is
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constant throughout. The plan is to estimate this sum by using Lemma 3.A.4, but before
being able to do so we need to manipulate it a bit. While this was also the case for the
proof of the iterative lower bounds, this time the process is a bit more involved, because not
all addends in the denominator are positive. We start by expanding the denominator and
applying inequality (3.25):

G
ℓ+m=k1

JNℓ,m
λ+ Γ̃ +

c2k+2

f2k+3
Γ̃w LN

2k+2(λ+ Γ̃, z2k+3)− c2k+2Γ̃w − c2k+2

(n+1+k)1+δ Γ̃

≤
G

ℓ+m=k1

JNℓ,m
λ+

4
1− |w|2c2k+2 − c2k+2

(n+1+k)1+δ

;
Γ̃ +

c2k+2

f2k+3
Γ̃w LN

2k+2(λ+ Γ̃, z2k+3)
. (3.44)

Now the goal is to factor out the coefficients of Γ̃ and of Γ̃w LN
2k+2, in the same fashion in

which expression (3.36) was obtained. In order to be able to do this, we need some control
on those coefficients. We start by estimating c2k+2 as follows:

|w|2c2k+2 = |w|2
Ck

j=1

4
1− 1

2j1+δ

;
Ck

j=1

4
1 + 1

2j1+δ

;2 c2 ≤ |w|2 1

π(|w|2 ∨ 1)
≤ 1

π
. (3.45)

Thus expression (3.44) is upper bounded by the following:

G
ℓ+m=k1

JNℓ,m
λ+

4
1− 1

π − 1
π(n+1+k)1+δ

;
Γ̃ +

c2k+2

f2k+3
Γ̃w LN

2k+2(λ+ Γ̃, z2k+3)
. (3.46)

In particular, we observe that the coefficient of Γ̃ is positive. Moreover, by (3.45) above and
for a large enough K, we have that

c2k+2

f2k+3
≤ 1− 2

π . This means that replacing the coefficient

of Γ̃ by the one of Γ̃w LN
2k+2 gives an upper bound. Further multiplying λ by c2k+2/f2k+3 and

factoring out finally provides us with an upper bound of the kind we were looking for:

f2k+3

c2k+2

G
ℓ+m=k1

JNℓ,m
λ+ Γ̃ + Γ̃w LN

2k+2(λ+ Γ̃, z2k+3)
.

We are finally ready to apply Lemma 3.A.4 to the sum in the expression above. This
gives us the upper bound

3π

2|w|
7
1 +

|w|CDiag

(z2k+3)θ2k+3

>
LN
2k+3

6
λ+ |k1:n|2, z2k+3

=
,

which, by choosing K large enough, can be further upper bounded by

3π

2|w|
7
1 +

1

2(k + 1)1+δ

>
LN
2k+3

6
λ+ |k1:n|2, z2k+3

=
. (3.47)

Using the bound provided by expression (3.47) in the hypothesis of Lemma 3.4.8 (and
recalling the coefficient that was in front of the sum before invoking Appendix 3.A), we obtain
the following upper bound on the diagonal part:�6AN

+

=∗Z2k+2AN
+φ,φ

�
Diag

≤
�
f2k+3(N )

c2k+2

3

2π|w|
7
1 +

1

2(k + 1)1+δ

>
(−Lw

0 )L
N
2k+3 (λ+ (−L0), z2k+3(N ))φ,φ

�
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=

�
3
4
1 + 1

2(k+1)1+δ

;
2π|w|c2k+2

(−Lw
0 )SN

2k+3φ,φ

�
.

Let us now estimate the off-diagonal terms. We want to apply Lemma 3.4.9, whose
hypotheses require estimates on two sums involving the Fourier multiplier ζ2k+2, one for the
off-diagonal terms of type 1 and one for the off-diagonal terms of type 2.

The sum that need to be estimated for the off-diagonal terms of type 1 is

|k2|
G

ℓ+m=k1

1

|m|
JNℓ,m

λ+ Γ̃ + c2k+2

�
Γ̃w

f2k+3

4
LN
2k+2(λ+ Γ̃, z2k+3)− f2k+3

;
− Γ̃

(n+1+k)1+δ

! , (3.48)

where, again, we first used property (3.23) and then suppressed the variable n. As was the
case for the diagonal terms, we will first manipulate this expression a bit and then apply to
it a lemma proved in the appendix. By dropping from the denominator of (3.48) the Laplace
variable λ and all terms involving the Fourier modes k{1:n}\{2}, by lower bounding LN

2k+2 by
0 and by applying Cauchy-Schwarz (3.25), we obtain the upper bound

4|k2|4
1− |w|2c2k+2 − c2k+2

(n+1+k)δ

; G
ℓ+m=k1

1

|m|
JNℓ,m

(|m|2 + |k2|2) ≲ 14
1− |w|2c2k+2 − c2k+2

(n+1+k)δ

; ,

where we estimated the sum by the corresponding integral and applied Lemma 3.A.1 with
β = |k2|2 and γ = 1.

Regarding the off-diagonal terms of type 2, instead, we need to estimate the sum

G
ℓ+m=k1

1

|ℓ||m|
JNℓ,m

λ+ Γ̃ + c2k+2

�
Γ̃w

f2k+3

4
LN
2k+2(λ+ Γ̃, z2k+3)− f2k+3

;
− Γ̃

(n+1+k)1+δ

! . (3.49)

We now observe that the condition ℓ + m = k1 implies that at least one between ℓ and m
has norm larger than the one of 1

2k1. Using this to replace |ℓ|2 by |12k1|2 and by applying
arguments analogous to the ones just used in the estimate of (3.48), we obtain that (3.49) is
upper bounded by

164
1− |w|2c2k+2 − c2k+2

(n+1+k)δ

; G
ℓ+m=k1

1

|k1||m|
JNℓ,m

(|m|2 + |k1:n|2)

≲ 1

|k1|
E|k1:n|2

π24
1− |w|2c2k+2 − c2k+2

(n+1+k)δ

; ,

where in the last inequality we estimated the sum by the corresponding integral and applied
Lemma 3.A.1 with β = |k1:n|2 and γ = 1.

Using Lemma 3.4.9 with the estimates above as hypotheses, we conclude that:KKKK�6AN
+

=∗Z2k+2AN
+φ,φ

�
Off1

KKKK+ KKKK�6AN
+

=∗Z2k+2AN
+φ,φ

�
Off2

KKKK
≤ Coff

�5
2|w|2(N − 1)

1− |w|2c2k+2 − c2k+2

(N+1+k)δ
+

|w|2(N − 1)(N − 2)

1− |w|2c2k+2 − c2k+2

(N+1+k)δ

<
(−L0)φ,φ

�

≤ Coff

�
|w|2N 2

1− |w|2c2k+2 − c2k+2

(N+1+k)δ
(−L0)φ,φ

�
,
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where Coff is an absolute constant independent of all variables at play (see (3.54) for more
details).

With this we have come to the last part of the proof of the iterative upper bounds. Recall
that we were trying to estimate ⟨6AN

+

=∗Z2k+2AN
+φ,φ⟩ from above, for φ ∈ ΓL2

n. In order
to do so, we split it into diagonal and off-diagonal terms and we bounded each of them
separately. We now put those estimates together:�6AN

+

=∗Z2k+2AN
+φ,φ

�
≤

�6AN
+

=∗Z2k+2AN
+φ,φ

�
Diag

+

KKKK�6AN
+

=∗Z2k+2AN
+φ,φ

�
off1

KKKK+ KKKK�6AN
+

=∗Z2k+2AN
+φ,φ

�
off2

KKKK
≤

�3
4
1 + 1

2(k+1)1+δ

;
2π|w|c2k+2

SN
2k+3 +

Coff |w|2N 2

1− |w|2c2k+2 − c2k+2

(N+1+k)δ
(−L0)

φ,φ

�

≤
�
3
4
1 + 1

2(k+1)1+δ

;
2π|w|c2k+2

5
SN
2k+3 +

πCoff |w|3c2k+2N 2

1− |w|2c2k+2 − c2k+2

(N+1+k)δ
(−L0)

<
φ,φ

�
, (3.50)

where we first used the triangular inequality, then the bounds established in the proof and

finally factored out the coefficient of SN
2k+3, together with the estimate

4
1 + 1

2(k+1)1+δ

;−1
< 1.

At this point, the proof is almost complete. We just need a few more estimates on the
coefficient of (−L0). First we multiply and divide it by f2k+3 and then we use the estimate

πCoff |w|3c2k+2 n
24

1− |w|2c2k+2 − c2k+2

(n+1+k)δ

;
f2k+3

≤ Coff |w|3
3K2/3

n2

(n+ k)3+δ
≤ 1 ,

which holds for K large enough. This tells us that expression (3.50) is upper bounded by�
3
4
1 + 1

2(k+1)1+δ

;
2π|w|c2k+2

6SN
2k+3 + f2k+3(N )(−L0)

=
φ,φ

�
.

Since the fraction in the above expression is exactly the definition of c2k+3 given in the
statement of Theorem 3.4.5, the proof is complete.

3.5 Proof of the main theorem

Proof of Theorem 3.1.1. The strategy of the proof is the following. First of all we apply
Proposition 3.3.1, so to reduce our problem to the one of finding estimates from above and
from below on the quantity

�
nN ,

6
λN2 − LN )−1

=
nN

�
. This is done by using the upper and

lower bounds provided by Lemma 3.3.2, which we first simplify thanks to Lemma 3.3.5 and
then further estimate with Theorem 3.4.5.

We start with the upper bound. We have�
nN ,

6
λN2 − LN

=−1
nN

�
≤

�
nN ,

6
(λN2 − L0) +HN

2k+2

=−1
nN

�
≤

�
nN ,

7
(λN2 − L0) + c2k+2

7
(−Lw

0 )S2k+2 − 1

(N + k)1+δ
(−L0)

>>−1

nN

�
,
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where the first inequality follows from Lemma 3.3.2 and Lemma 3.3.5 and the second one
from estimate (3.27) on H2k+2 given by Theorem 3.4.5. Recalling the Fourier expression of
nN given in (3.13), the above scalar product is exactly twice the sum (3.43), written for n = 2,
k2:n = 0, k1 = 0 and Laplace variable λN2. Following exactly the same steps performed there
(compare with (3.47) and include the factor that multiplies the sum to which Lemma 3.A.4
is applied), we obtain the upper bound

f2k+3(2)

c2k+2

3π

|w|
7
1 +

1

2(k + 1)1+δ

>
LN
2k+3

6
λN2, z2k+3(2)

=
.

By recalling the definition of LN
k , f2k+3 and z2k+3 given by (3.21) and (3.22), we can further

estimate it by

9K
2
3 (2k + 5)3+δ

c2k+2

π

|w|
7
1 +

1

2(k + 1)1+δ

>
L2k+3

4
λ,K(2k + 5)

9
2
+ 3

2
δ
;

≲ C(|w|)k3+δ
46

log
6
1 + λ−1

==θ2k+3 + k
9
2
+ 3

2
δ
;

= C(|w|)
�
k3+δ

6
log

6
1 + λ−1

==θ2k+3− 2
3 + k

15
2
+ 5

2
δ
6
log

6
1 + λ−1

==− 2
3

! 6
log

6
1 + λ−1

== 2
3 ,(3.51)

where in the inequality we used both that c2k+2 is bounded away from 0 and infinity uniformly
in k. Expression (3.51) provides us with a valid upper bound for each value of k, with the

best one being the one that minimizes the factor in front of
6
log

6
1 + λ−1

== 2
3 . We choose

k = k(λ) =
+
(log 4)−1 log log log

6
1 + λ−1

=-
, (3.52)

which is greater than or equal to 0 if λ is such that 1+λ−1 ≥ ee. Recalling the close formula
for θk given in (3.20), this gives us the estimates

θ2k(λ)+3 =
2

3
+

1

3

7
1

4

>⌊(log 4)−1 log log log(1+λ−1)⌋
≤ 2

3
+

1

3 log log (1 + λ−1)
,

k3+δ ≤ 6
log log log

6
1 + λ−1

==3+δ
,

k
15
2
+ 5

2
δ
6
log

6
1 + λ−1

==− 2
3 ≤ 6

log log log
6
1 + λ−1

== 15
2
+ 5

2
δ 6

log
6
1 + λ−1

==− 2
3 ≲ 1 ,6

log
6
1 + λ−1

==θ2k+3− 2
3 ≤ 6

log
6
1 + λ−1

== 1
3 log log(1+λ−1) = 3

√
e ,

where the second inequality in the second to last line is justified by the fact that the left hand
side goes to 0 as λ → 0.

Summing up, upper bounding expression (3.51) by the estimates above and recalling the
expression of DN (λ) derived in Proposition 3.3.1, we obtain

DN (λ) =
1

λ2
+

8π2

λ2
|w|2

�
nN ,

6
λN2 − LN

=−1
nN

�
≲ C(|w|)

λ2

6
log log log

6
1 + λ−1

==3+δ 6
log

6
1 + λ−1

== 2
3 .

Since the above inequality holds for every N ∈ N, taking lim supN→∞ on both sides and
observing that log

6
1 + λ−1

= ∼λ→0 |log(λ)| proves the upper bound of Theorem 3.1.1.
We now proceed to the lower bound. We have�

nN ,
6
λN2 − LN

=−1
nN

�
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≥
�
nN ,

6
(λN2 − L0) +HN

2k+1

=−1
nN

�
≥

�
nN ,

6
(λN2 − L0) + c2k+1 ((−Lw

0 )S2k+1 + f2k+1(N )(−L0))
=−1

nN
�
,

where the first inequality follows again from Lemma 3.3.2 and Lemma 3.3.5 and the second
one from estimate (3.26) on H2k+1 given by Theorem 3.4.5. Again, recalling the Fourier
expression of nN given in (3.13), the above scalar product is exactly twice the sum (3.35),
written for n = 2, k2:n = 0, k1 = 0 and Laplace variable λN2. Following exactly the same
steps performed there (compare with (3.40)), we obtain the lower bound

3π

|w|
1

c2k+1

7
1− 1

2k1+δ

>
1

f2k+2(2)

�
LN
2k+2

6
λN2, z2k+2(2)

=− f2k+2(2)
#
.

Recalling again the definitions of LN
k , f2k+3 and z2k+3 given by (3.21) and (3.22), and using

the fact that c2k+1 is bounded away from 0 and infinity uniformly in k, the above is further
lower bounded by

π

|w|c2k+1K
2
3 (2k + 4)3+δ

�
L2k+2

4
λ,K(2k + 4)

9
2
+ 3

2
δ
;
− 3K

2
3 (2k + 4)3+δ

!
≳ C(|w|)

k3+δ

4
log

6
1 + λ−1

=
+ k(

9
2
+ 3

2
δ)
;θ2k+2

≥ C(|w|)
k3+δ

14
(log (1 + λ−1))

2
3
−θ2k+2 + k(

9
2
+ 3

2
δ)( 2

3
−θ2k+2)

; 6
log

6
1 + λ−1

== 2
3 , (3.53)

where we have used that fact that L2k+2 goes to infinity as λ → 0 to absorb the −1 in the
multiplicative constant. As before, this gives a valid lower bound for each choice of k, this

time with the best one being the one that maximizes the factor in front of log
2
3

6
1 + λ−1

=
. We

use the same choice made for the upper bound, namely (3.52). Recalling the close formula
for θk given in (3.20), this gives us the estimates

θ2k(λ)+2 =
2

3
− 2

3

7
1

4

>⌊(log 4)−1 log log log(1+λ−1)⌋
≥ 2

3
− 1

3 log log (1 + λ−1)
,

6
log

6
1 + λ−1

==( 2
3
−θ2k+2) ≤ 6

log
6
1 + λ−1

== 1
3 log log(1+λ−1) = 3

√
e ,

k(
9
2
+ 3

2
δ)( 2

3
−θ2k+2) ≤ 6

log log log
6
1 + λ−1

== 9+3δ

6 log log(1+λ−1) ≤ 6
√
e ,

k3+δ ≤ 6
log log log

6
1 + λ−1

==3+δ
,

with which we can upper bound all terms that appear in the denominator of (3.53).

Summing up, lower bounding expression (3.53) by the estimates above and recalling the
expression of DN (λ) derived in Proposition 3.3.1, we obtain

DN (λ) =
1

λ2
+

8π2

λ2
|w|2

�
nN ,

6
λN2 − LN

=−1
nN

�
≳ C(|w|)

λ2

6
log log log

6
1 + λ−1

==−3−δ 6
log

6
1 + λ−1

== 2
3 .

Since the above inequality holds for every N ∈ N, taking lim infN→∞ on both sides and
observing that log

6
1 + λ−1

= ∼λ→0 |log(λ)| proves the lower bound of Theorem 3.1.1.
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3.A Replacement Lemmas

The present Appendix is devoted to estimating sums corresponding to the hypothesis of
Lemma 3.4.8 in the context of the proof of Theorem 3.4.5.

We start by stating some useful identities and setting up some notation.

Lemma 3.A.1. For every β > 0 and γ > 01 +∞

0

1

β + γr2
dr =

π

2
√
βγ

,

1 π

0

1

β + γ(cos θ)2
dθ =

πE
β(β + γ)

.

Since this Appendix concerns expressions involving a large number of variables, and it
is of technical nature anyway, let us list them all here once and for all, together with their
range:

λ ∈ (0,+∞) , z ∈ (1,+∞) , ℓ,m, k1, . . . , kn ∈ Z2
0 , N ∈ N , k ∈ N, k ≥ 2 , w ∈ R2 .

(3.54)
In particular, the constant that we omit when using the notation ≲, which was introduced
in subsection 3.2.1, is independent of all variables listed above.

Let us start by introducing some additional notation:

α
def
= α(λ, k1:n)

def
= λ+ |k1:n|2 , αN

def
=

α

N2
,

Γ
def
= Γ(ℓ,m, k2:n)

def
= |ℓ|2 + 1

2

6|k1:n|2= , Γw def
= Γw(ℓ,m, k2:n)

def
= (w · ℓ)2 + 1

2

6
(w · k)21:n

=
.

Recall also the definitions of Γ̃ and Γ̃w given in (3.24). It is useful to observe that

Γ̃ = Γ− ℓ · k1 , Γ̃w = Γw − (w · k1)(w · ℓ) , 1

2
≤ Γ ≲ Γ̃ ≲ Γ . (3.55)

Finally, we take note of the following derivatives, that will be needed later on:

∂xL(x, z) = − 1

x(x+ 1)
, ∂xL

N
k (x, z) = −θk

6
LN
k (x, z)

=θk−1 N2

x(x+N2)
.

Our goal is to study sum (3.56) below, which is the one that appears in the estimates
of the diagonal terms in Theorem 3.4.5. First, in Lemma 3.A.2, we replace the sum with
an integral. Then, in Lemma 3.A.4, we replace this integral with another one, which admits
an explicit primitive. The first replacement comes at the price of an additive constant, the
second one at the price of a lower-order term.

We set

S̃
def
= S̃(λ,N, k, k1:n,w)

def
=

G
ℓ+m=k1

JNℓ,m
λ+ Γ̃ + Γ̃wLN

k

4
λ+ Γ̃, z

; , (3.56)

I
def
= I(λ,N, k, k1:n,w)

def
=

1 π

0

1 1

0

1

(r + αN )(r + αN + 1)
6
1 + |w|2(cos θ)2LN

k (N2(r + αN ), z)
=drdθ . (3.57)

The definition of I is motivated by the change of variables (3.72) below.

Lemma 3.A.2 (From sum to integral). There exists a constant CDiag > 0 such that

|S̃− I| ≤ CDiag

for all in λ ∈ (0,+∞), z ∈ (1,+∞), k1:n ∈ (Z2
0)

n, N ∈ N, k ∈ N such that k ≥ 2 and w ∈ R2.
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Remark 3.A.3. The proof of Theorem 3.4.5 would work even if CDiag depended on |w| (up
to changing the constant K). In the following proof, however, showing that CDiag does not
depend on w does not come with any significant additional difficulties.

Proof. The proof proceeds through a number of steps, each of them consisting in slightly
modifying the expression of S̃, at the price of an additive constant, so that it becomes closer

to the one of Ĩ. More precisely, set S0
def
= S̃ and S6

def
= I. Then for all i ∈ {1, . . . , 6}, step i

consists in showing |Si−1 − Si| ≤ Ci, where the Si’s for i ∈ {1, 2, 3, 4, 5} will be defined in
the proof below and Ci’s are some absolute constants independent of all variables at play.
Compared to [CGT24, Appendix A], we are faced with some additional technical difficulties,
coming from the fact that our equation is in the strong coupling regime.

Step 1 We define S1 by replacing the condition |k1| ≤ N , contained in JNℓ,m, by |k1| ≤ N/2.

In doing so, we lose all summands of S̃ corresponding to ℓ + m = k1 ∈ [N/2, N ]. Without
loss of generality, suppose |ℓ| ≥ N/4. The computation

|S̃− S1| ≤ 2
G

ℓ+m=k1
N
2
≤|k1|≤N

1{N/4≤|ℓ|≤N} 1{|k1−ℓ|≤N}

λ+ Γ̃ + Γ̃wLN
k

4
λ+ Γ̃, z

; ≲
G
ℓ∈Z2

0
N
4
≤|ℓ|≤N

1

|ℓ|2 ≤ C1

completes step 1.

Step 2 We define S2 by

S2
def
=

G
ℓ+m=k1

JNℓ,m1{1≤|k1|≤N/2}
λ+ Γ + ΓwLN

k (λ+ Γ, z)
.

With respect to S1, we replaced Γ̃ and Γ̃w by Γ and Γw respectively. Using relationship (3.55)
on Γ̃w and the triangular inequality, we get that

|S1 − S2| ≤
G

ℓ+m=k1
1≤|ℓ|,|m|≤N, |k1|≤N

2

A+B +D�
λ+ Γ̃ + Γ̃wLN

k

4
λ+ Γ̃, z

;! �
λ+ Γ + ΓwLN

k (λ+ Γ, z)
# , (3.58)

where

A
def
=

KKKΓ− Γ̃
KKK , B

def
=

KKKΓw
4
LN
k (λ+ Γ, z)− LN

k

4
λ+ Γ̃, z

;;KKK ,
D

def
=

KKK(w · k1)(w · ℓ)LN
k

4
λ+ Γ̃, z

;KKK .
We estimate (3.58) by considering the terms with A, B and D separately.

First, by dropping some terms from the denominator of (3.58) (they are all positive) and
using (3.55) for Γ̃, we obtain the following upper bound for the A term:

G
ℓ+m=k1

1≤|ℓ|,|m|≤N, |k1|≤N
2

|ℓ · k1|
Γ̃ Γ

≲
G
|ℓ|≤N

|ℓ · k1|
(|ℓ|2 + |k1|2)2 ≲ 1 (3.59)

where one can check that the constant on the right hand side of (3.59) above is independent
of k1 by splitting the sum into the two regions |ℓ| ≥ |k1| and |ℓ| < |k1|.
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Then, by the mean value theorem applied to the function LN
k and the interval [a, b], where

a
def
= (λ+ Γ̃) ∧ (λ+ Γ) and b

def
= (λ+ Γ̃) ∨ (λ+ Γ), we obtain

B ≲ Γw sup
y∈[a,b]

KKKK N2

y(y +N2)

KKKK KKKΓ̃− Γ
KKK ≲ Γw 1

Γ
|ℓ · k1| ,

where we estimated the derivative of LN
k by first using θk − 1 < 0 and LN

k ≥ 1 and then lower
bounding y+N2 ≥ N2, so that N2 cancels. Finally, we used (3.55) again. Thus, by dropping
λ and Γ from the second factor in the denominator of (3.58) and lower bounding LN

k by 1,
the term of sum (3.58) corresponding to B is upper bounded byG

|ℓ|≤N

Γw|ℓ · k1|
Γ Γ̃ Γw

=
G
|ℓ|≤N

|ℓ · k1|
Γ Γ̃

≲ 1 ,

where the last inequalities follows from the same argument used in estimate (3.59).
Finally, we need to bound the sum corresponding to the D term. First of all, observe

that if w · k1 = 0, then D is identically 0 and so in the following we can assume w · k1 ̸= 0. In
particular, this guarantees that for every ℓ (and for every θ when we will write the integral)
the denominator in the following expressions does not vanish. We then drop some terms from
the denominator, so to obtain an upper bound in which the function LN

k has simplified:

G
ℓ+m=k1

1≤|ℓ|,|m|≤N, |k1|≤N
2

KKK(w · k1)(w · ℓ)LN
k

4
λ+ Γ̃, z

;KKK�
Γ̃wLN

k

4
λ+ Γ̃, z

;!
Γ

≲
G

1≤|ℓ|≤N

|(w · k1)(w · ℓ)|
[(w · ℓ)2 + (w · k1)2] |ℓ|2 .

Finally, we check that the right hand side of the above can be upper bounded by a convergent
series whose sum, as usual, does not depend on any of the variables at play. We do this by
passing to an integral. This is justified after excluding ℓ such that |w · ℓ| ≤ |w|, which can
be treated separately. For more details see Step 5, where this is done carefully for the main
term. We write this integral using polar coordinates:1 2π

0

1 N

0

|(w · k1)||w||cos(θ)|r2
[|w|2(cos θ)2r2 + (w · k1)2] r2drdθ =

1 2π

0

1 N

0

|(w · k1)||w||cos(θ)|
|w|2(cos θ)2r2 + (w · k1)2drdθ

≤ π

2

1 2π

0

|(w · k1)||w||cos(θ)|E|w|2(cos θ)2(w · k1)2
drdθ = π2 ,

where we used Lemma 3.A.1 to compute the integral in r.
Thus step 2 is completed with C2 equal to the sum of the three constants with which we

have estimated the sum corresponding to the A, B and D terms.

Step 3 We define S3 by

S3
def
=

G
ℓ+m=k1

JNℓ,m1{1≤|k1|≤N/2}
λ+ Γ + (w · ℓ)2LN

k (λ+ Γ, z)
.

With respect to S2, we have replaced Γw by (w ·ℓ)2. If (w ·k)21:n = 0, we do not have anything
to prove. Otherwise, we estimate

|S2 − S3| ≲
G

ℓ+m=k1
1≤|ℓ|,|m|≤N, |k1|≤N

2

(w · k)21:n LN
k (λ+ Γ, z)�

λ+ Γ + ΓwLN
k (λ+ Γ, z)

# �
λ+ Γ + (w · ℓ)2LN

k (λ+ Γ, z)
#



3.A. REPLACEMENT LEMMAS 109

≲
G

1≤|ℓ|≤N

(w · k)21:n�
(w · ℓ)2 + (w · k)21:n

#
[|ℓ|2 + |k1:n|2]

≲
1 N

0

1 2π

0

(w · k)21:nr
(|w|2r2(cos θ)2 + (w · k)21:n)(r2 + |k1:n|2)dθdr

≲
1 N

0

(w · k)21:n
r2 + |k1:n|2

rE
(w · k)21:n((w · k)21:n + |w|2r2)dr ,

where we first dropped λ+Γ and (w·ℓ)2LN
k from the first and second factor in the denominator

respectively, then simplified LN
k and finally used Lemma 3.A.1 to estimate the integral in θ.

Before moving from the sum to the integral, one once again needs to exclude ℓ such that
|w ·ℓ| ≤ |w|. These can again easily be treated separately. We now simplify the multiplicative
factor (w ·k)2k1:n in the denominator and drop the additive one, so that we can simplify r and
obtain the upper bound1 N

0

|w · k|1:n
r2 + |k1:n|2

1

|w|dr ≲ |w||k1:n|
|w|

1E|k1:n|2
= 1 ,

where we applied the Cauchy-Schwarz inequality to the numerator and estimated the integral
by using Lemma 3.A.1. This concludes step 3.

Step 4 We define S4 by

S4
def
=

G
ℓ+m=k1

1{1≤|ℓ|≤N}1{1≤|k1|≤N/2}
λ+ Γ + (w · ℓ)2LN

k (λ+ Γ, z)
.

With respect to S3, we have removed the constraint 1{|m|≤N}. More precisely, we are adding
to S3 the terms indexed by the set�

ℓ,m ∈ Z2
0 : ℓ+m = k1, |k1| ≤ N

2 , |ℓ| ≤ N, |m| > N
�
,

which is contained (thanks to the extra condition on |k1| imposed in step 1) in�
ℓ,m ∈ Z2

0 : ℓ+m = k1, |k1| ≤ N
2 , |ℓ| ≤ N, |ℓ| ≥ N

2

�
.

The sum over this last index set can be bounded as done in step 1.

Step 5 We define S5 by

S5
def
=

1
R2

1{|x|≤1}
αN + |x|2 + (w · x)2LN

k (N2(αN + |x|2), z)dx . (3.60)

We set QN
ℓ

def
= 1

N [ℓ− 1
2 , ℓ− 1

2 ]
2 ⊂ R2 and by multiplying and dividing S4 by 1

N2 we obtain

S4 =
G

ℓ+m=k1

1{1≤|ℓ|≤N}1{1≤|k1|≤N/2}
1
QN

ℓ

IN
6

ℓ
N

=
dx , (3.61)

where we denoted by IN the integrand of S5 (without the indicator function 1{|x|≤1}). To

show |S4 − S5| ≤ C5, we write S5 as the sum in ℓ of the integrals over QN
ℓ . Since for large N

the summand IN (x) changes very rapidly when x and w are almost orthogonal, we will treat
this case separately. Note first thatG

ℓ+m=k1

1{1≤|ℓ|≤N}1{1≤|k1|≤N/2}1{|ℓ·w|≤|w|}
λ+ Γ + (w · ℓ)2LN

k (λ+ Γ, z)
≲

G
ℓ̸=0

1{|ℓ·w|<|w|}
|ℓ|2 ≲ 1 .
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For the integral note that
J

|ℓ·w|≤wQN
ℓ is contained in {x ∈ R2 : |x ·w| ≤ 2

N |w|}. Using this
we see G

1≤|ℓ|≤N
|w·ℓ|≤|w|

1
QN

ℓ

IN (x)dx ≤
1
|w·x|≤ 2

N
|w|

IN (x)dx ≤
1 2

−2

1 ∞

−∞
1

α+ |x|2dx1dx2 ≲ 1 ,

where we used a change of variables in x (i.e. scaling by N) and the fact that α ≥ 1 as well
as Lemma 3.A.1. Also note that the x appearing in the rewriting of S4 (3.61) but not in S5,

are contained in {x : 1 ≤ |x| ≤ 1 +
√
2

2N } and1
1≤|x|≤1+

1
2N

IN (x)dx ≲ sup
1≤|x|≤1+

1
2N

|IN (x)| ≲ 1 .

It thus remains to show thatG
1≤|ℓ|≤N
|ℓ·w|≥|w|

1
QN

ℓ

KKIN 6
ℓ
N

=− IN (x)
KK dx ≲ 1 . (3.62)

In order to prove (3.62), we estimate, by the mean value theorem applied to the function IN
and the line segment [ ℓN , x],

KKIN 6
ℓ
N

=− IN (x)
KK ≤ sup

y∈QN
ℓ

|∇IN (y)| KK ℓ
N − x

KK ≲ 1

N
(E + F +G) , (3.63)

where E, F and G are the suprema over QN
ℓ of the the norms of the three terms in the

expression of the gradient below:

−1

2
∇IN (x) =

x+ (w · x)LN
k (N2(|x|2 + αN ), z)w+ (−θk)(w·x)2(LN (N2(|x|2+αN ),z))1−θkx

(|x|2+αN )(|x|2+αN+1)6
αN + |x|2 + (w · x)2LN

k (N2(|x|2 + αN ), z)
=2 .

(3.64)
Since each QN

ℓ has an area of 1
N2 , we need to show thatG

1≤|ℓ|≤N
|ℓ·w|≥|w|

E + F +G ≲ N3 . (3.65)

Note first that for all ℓ such that |ℓ ·w| ≥ |w| and |ℓ| ≥ 1 and for all x ∈ QN
ℓ it holds that5

1−
√
2

2

<KKKK ℓN
KKKK ≤ |x| ≤

5
1 +

√
2

2

<KKKK ℓN
KKKK , (3.66)5

1−
√
2

2

<KKKKw · ℓ

N

KKKK ≤ |w · x| ≤
5
1 +

√
2

2

<KKKKw · ℓ

N

KKKK .
For E note that

sup
x∈QN

ℓ

|x|6
αN + |x|2 + (w · x)2LN

k (N2(|x|2 + αN ), z)
=2 ≲ N3

|ℓ|3 .
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For F note that

sup
x∈QN

ℓ

|w · x|LN
k (N2(|x|2 + αN ), z)|w|6

αN + |x|2 + (w · x)2LN
k (N2(|x|2 + αN ), z)

=2 ≲ N3|w|
|ℓ|2|w · ℓ| ,

where we used one of the factors of the denominator to cancel the LN
k in the numerator. Now

note again by (3.66) that

G
1≤|ℓ|≤N
|ℓ·w|≥|w|

|w|
|ℓ|2|w · ℓ| ≲

1
|x·w|≥(1−

√
2

2
)|w|

|w|
|x|2|w · x|dx ≲ 1 .

Finally for G by similar arguments G ≲ N3

ℓ3
, (note that 0 ≤ θk ≤ 1).

This completes step 5, with C5 equal to the sum of the three constants with which we
have estimated the sum corresponding to the E, F and G terms.

Step 6 Let θw be the angle from the first coordinate axis to w. By successively performing
the change of variables x (→ r(cos θ, sin θ) and r2 (→ r, we first rewrite S5 as follows.

S5 =

1 2π

0

1 1

0

r

r2 + αN + r2|w|2 cos2(θ − θw)LN
k (N2(r2 + αN ), z)

drdθ

=

1 2π

0

1

2

1 1

0

1

r + αN + r|w|2 cos2(θ − θw)LN
k (N2(r + αN ), z)

drdθ

=

1 π

0

1 1

0

1

r + αN + r|w|2(cos θ)2LN
k (N2(r + αN ), z)

drdθ , (3.67)

where in the last equality we used the π-periodicity of the integrand as a function of θ. We

then recall the definition of S6
def
= I given in (3.57). We observe that the absolute value of the

difference between (3.67) and (3.57), after the simplifications that occur, is upper bounded
by 1 π

0

1 1

0

(r + αN )2(1 + |w|2(cos θ)2LN
k ) + αN |w|2(cos θ)2LN

k�
r + αN + r|w|2(cos θ)2LN

k

# �
(r + αN )(r + αN + 1)(1 + |w|2(cos θ)2LN

k )
#drdθ ,

(3.68)
where we omitted the argument of LN

k for ease of reading. We thus study the two terms cor-
responding to the two summand of the numerator separately. The first one can be estimated
by 1 π

0

1 1

0

(r + αN )

[r + αN ] [(r + αN + 1)]
drdθ ≤

1 π

0

1 1

0

1

r + αN + 1
drdθ ≲ 1

and the second one by1 π

0

1 1

0

αN |w|2(cos θ)2LN
k

[r + αN ]
�
(r + αN )(r + αN + 1)|w|2(cos θ)2LN

k

#drdθ
=

1 π

0

1 1

0

αN

(r + αN )2(r + αN + 1)
drdθ

≲ αN

1 1

0

1

(r + αN )2
dr = αN

7
1

αN
− 1

1 + αN

>
≤ 1 .

This concludes step 6 and with it also the proof of Lemma 3.A.2.
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Lemma 3.A.4 (From integral to estimate). Recall the definition of S̃ given in (3.56) (in
particular that it depends on k). There exists a constant CDiag such that, for any even k ≥ 2,

S̃ ≤ 3π

2|w|
7
1 +

|w|CDiag

zθk+1

>
LN
k+1

6
λ+ |k1:n|2, z

=
, (3.69)

whereas, for any odd k ≥ 3,

S̃ ≥ 3π

2|w|

�5
1−

7
|w|CDiag + 2 +

3

|w|
>

1

z
θk
2

<
LN
k+1(α, z)−

4

3
zθk+1

"
, (3.70)

uniformly in λ ∈ (0,+∞), z ∈ (1,+∞), k1:n ∈ (Z2
0)

n, N ∈ N and w ∈ R2.

Proof. By applying Lemma 3.A.2, we immediately get

|S̃− I| ≤ CDiag . (3.71)

The task now is to obtain bounds on I, whose definition was given in (3.57).
We start by proving the statement for k ≥ 4, which corresponds to θk ∈ �

1
2 ,

3
4

#
. We first

transform integral I with the change of variables

u = LN
6
N2(r + αN ), z

=
= log

7
1 +

1

r + αN

>
+ z , du =

−1

(r + αN )(r + αN + 1)
dr , (3.72)

which gives

I =

1 π

0

1 LN (α,z)

LN (N2(1+αN ),z)

1

1 + |w|2(cos θ)2uθk dθdu . (3.73)

By then integrating in θ, using Lemma 3.A.1 with γ = |w|2uθk and β = 1, we get1 LN (α,z)

LN (N2(1+αN ),z)

πE
1 + |w|2uθk du =

π

|w|(I1 − I2) ,

where I1, I2 > 0 are defined by

I1
def
=

1 LN (α,z)

LN (N2(1+αN ),z)

1√
uθk

du , I2
def
=

1 LN (α,z)

LN (N2(1+αN ),z)

5
− 1E

|w|−2 + uθk
+

1√
uθk

<
du .

The integral I1 is the one announced in the general strategy explained before Lemma 3.A.2.
Indeed, it can be computed explicitly:

I1 =

6
LN (α, z)

=θk+1

θk+1
−

6
LN (N2(1 + αN ), z)

=θk+1

θk+1
=

LN
k+1(α, z)

θk+1
− LN

k+1(N
2(1 + αN ), z)

θk+1
.

(3.74)
It is precisely this computation that gives upper and lower bounds of the form logarithm to
the power θk, with the sequence of powers (θk)k≥2 converging to 2/3. The integral I2, instead,
is regarded as an error term and can be estimated by

I2 =

1 LN (α,z)

LN (N2(1+αN ),z)

E
|w|−2 + uθk −

√
uθk√

uθk
E
|w|−2 + uθk

du

≤
1 LN (α,z)

LN (N2(1+αN ),z)

√
uθk +

E|w|−2 −
√
uθk√

uθk
√
uθk

du
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= |w|−1

1 LN (α,z)

LN (N2(1+αN ),z)

1

uθk
du

=
1

|w|(1− θk)

�6
LN (α, z)

=1−θk − 6
LN (N2(1 + αN ), z)

=1−θk
!
. (3.75)

The inequality

θk+1 − (1− θk) =
θk
2

> 0

shows that I2(N) = oN→∞(I1(N)), so that I2 is indeed of lower-order in N with respect to
I1.

We now have everything we need to conclude the proof in the case k ≥ 4. We first show
the upper bound (3.69). Inequality (3.71) and the above steps give

S̃ ≤ π

|w|(I1 − I2) + CDiag . (3.76)

Then, by plugging (3.74) and (3.75) into (3.76) above and dropping the negative terms, we
obtain

S̃ ≤ π

|w|θk+1

6
LN (α, z)

=θk+1 + CDiag

≤ π

|w|θk+1

6
LN (α, z)

=θk+1 + CDiag

6
LN (α, z)

=θk+1

zθk+1

≤ 3π

2|w|
7
1 +

|w|CDiag

zθk+1

>
LN
k+1(α, z) , (3.77)

where we observed that, for k even, θk+1 ∈ �
2
3 , 1

#
. What we obtained is exactly the

claimed (3.69).

Finally, we prove the lower bound (3.70). Inequality (3.71) and the above steps give

S̃ ≥ π

|w|(I1 − I2)− CDiag .

By dropping the second term in the square brackets in (3.75) and using 1+αN ≤ 2 to estimate
the negative term in (3.74) by Lk+1(1 + αN , z) ≤ (log 2 + z)θk+1 ≤ (log 2)θk+1 + zθk+1 , we
obtain

S̃ ≥ π

|w|

�6
LN (α, z)

=θk+1

θk+1
− (log 2)θk+1

θk+1
− zθk+1

θk+1
− 1

|w|(1− θk)

6
LN (α, z)

=1−θk

"
− CDiag

≥ 3π

2|w|

�5
1− |w|CDiag + 2

zθk+1
− 3

|w|z θk
2

<
LN
k+1(α, z)−

4

3
zθk+1

"

≥ 3π

2|w|

�5
1−

7
|w|CDiag + 2 +

3

|w|
>

1

z
θk
2

<
LN
k+1(α, z)−

4

3
zθk+1

"
, (3.78)

where for the first inequality we observed that, for k odd, θk+1 ∈ �
1
2 ,

2
3

#
and then applied

similar steps as the ones used to obtain (3.77), whereas in the second one we used that
θk+1 ≥ θk

2 . What we obtained is exactly the claimed (3.70).

If k = 3, we proceed as above until we reach we reach (3.73). At this point, we do
not need to split I into I1 and I2, since in this case I already admits an explicit primitive.
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Indeed, by first using Lemma 3.A.1 to integrate in θ and then applying the change of variables
v = 1 + |w|2u, we obtain

I =
2π

|w|2
E
1 + |w|2u

KKKKLN (α,z)

LN (N2(1+αN ),z)

,

so that

S̃ ≥ I− CDiag

≥ 3π

2|w|

�7
1− |w|CDiag

zθ4

>
LN
4 (α, z)− 4

3

7
1

|w|2 + log(2) + z

>θ4
"

≥ 3π

2|w|
�7

1−
7
|w|CDiag + 2 +

3

|w|
>

1

zθ4

>
LN
4 (α, z)− 4

3
zθ4

$
,

where we recalled that θ4 =
1
2 and followed steps similar to the ones with which we obtained

(3.78). The claimed 3.70 immediately follows by the trivial θ4 ≥ θ4
2 .

If k = 2, LN
k ≡ 1, because θ2 = 0 by definition. In this somewhat degenerate case, we

estimate from above I, defined in 3.57, using the following steps. First apply Lemma 3.A.1
to integrate it in θ. Then lower bound the resulting factor (r + αN + 1) in the denominator
by 1 and integrate in r. The upper bound obtained in this way is

π

|w| log
7
1 +

1

αN

>
≤ π

|w|L
N
3

6
λ+ |k1:n|2, z

=
. (3.79)

Finally, the stated (3.69) follows from (3.71) and steps analogous to the ones that concluded
the case k ≥ 4.

Remark 3.A.5. In inequalities (3.77) and (3.78), we first go from an additive error to a
multiplicative one, which is easier to iterate, but increases complexity, and then decrease
complexity by estimating LN (α, z) by z. This is quite rough, but otherwise the iteration
would give more and more complicated bounds at each step.

3.B Heuristic Derivation of the Green Kubo Formula

In this section we give a heuristic derivation of the bulk diffusivity formula (3.3).
Consider the equation on the full space regularized with Fourier cutoff 1 with regularized

white noise:

∂tη =
1

2
∆η +w ·Π1∇(Π1η)

2 +∇ ·Πaξ , (3.80)

where Πaξ is a space time white noise, regularized in space by a cut-off in Fourier at level
a ∈ (1,∞). It can be seen using techniques adopted in [CES21] that this equation still
has a unique solution, existing for all time, and this solution is a strong Markov process
invariant under translations in space and time. The invariant measure is given by regularized
spacial white noise ηa, regularized by the same cutoff as Πaξ. We consider the equation run
at stationarity, i.e. started from ηa. Since the noise is regularized, η will be a continuous
function and therefore we can evaluate it at space-time points. This allows us to define the
correlation function

S(x, t) = E(η(x, t)η(0, 0)) ,

for t ≥ 0 and x ∈ R2.
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The bulk diffusivity is commonly defined (see e.g. [Yau04, Spo12] for examples from
discrete systems and [BQS11] for a continuous example in d = 1) as the matrix (Dij(t))1≤i,j≤2

with entries given by

Dij(t) =
1

2t

1
R2

xixjS(x, t)dx .

Without loss of generality assume that w2 = 0, then the reflection symmetry of the system
in the second component gives D12(t) = D21(t) = 0. We will work with the bulk diffusivity
as defined in [CET23]

D(t) =
1

2t

1
R2

|x|2S(x, t)dx ,

which can be interpreted as (1/t times) the variance of S(·, t) seen as a density. In a particle
system this would be the density of a second class particle started at the origin. This definition
of the bulk diffusivity can be connected to the bulk diffusivity matrix above by taking the
trace, see also the remark at the end of the section.

We now want to show that this definition of the bulk diffusivity is heuristically consistent
with (3.3). To do this assume that S(x, t) decays fast in |x|, noting that for the linear case
(w = 0) it is Gaussian. Also assume that S(·, t) integrates to 1 for every t. At time t = 0
this is true by the law of the stationary measure, since cutting Fourier-modes larger than 1
is equivalent to convolving with a mass 1 bump function. For later time it formally follows
from the conservative nature of (3.80):1

R2

S(x, t)dx =

1
R2

E(η(x, t)η(0, 0))dx = E

71
R2

η(x, t)dx η(0, 0)

>
= E

71
R2

η(x, 0)dx η(0, 0)

>
=

1
R2

S(x, 0)dx = 1 ,

where the second to last equality follows from an integration by parts, because the entire right
hand side of (3.80) can be put in divergence form. Integrating (3.80) in time, multiplying by
η(0, 0) and taking expectations we obtain:

S(x, t) = S(x, 0) +
1

2

1 t

0
∆S(x, s)ds+

1 t

0
N (η)(x, s)η(0, 0)ds , (3.81)

where the noise term disappears because it has zero space-average and N is

N (η) = w · ∇ (Π1η)
2 .

We will integrate the terms on the left hand side against |x|2 and divide them by 2t one by
one. The first one doesn’t depend on time before dividing by 2t and so will vanish for large
t. The second one is

1

4t

1 t

0

1
R2

|x|2∆S(x, t)dx =
1

t

1 t

0

1
R2

S(x, t)dx = 1 .

Finally let’s consider the third one. Using that N is quadratic in η and η is Gaussian we see
that

E (N (η)(s, x)η(s, 0)) = 0 . (3.82)

and we rewrite1
R2

|x|2E (N (η)(s, x)η(0, 0)) dx =

1
R2

|x|2E (N (η)(s, x)(η(0, 0)− η(s, 0)) dx
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=

1
R2

|x|2E
4
N (ξa)(x)Ẽξa(η̃(s, 0)− η̃(0, 0))

;
dx ,

where the Ẽξa is the law of η̃(r, x)
def
= η(s − r, x) and we used translation invariance of ξa.

The time reversed process η̃ satisfies the equation (3.80) with a changed sign in front of
the Laplacian and the nonlinearity and a different noise with the same law, that is also
independent of ξa. Using this we get

E
4
N (ξa)(x)Ẽξa(η̃(s, 0)− η̃(0, 0))

;
=

1 s

0
E
4
N (ξa)(x)Ẽξa(−∆η̃(r, 0)−N (η̃)(r, 0)

;
dr ,

(3.83)
where we used that the noise term vanishes under the expectation. The term with the
Laplacian, after being integrated against |x|2, using the translation invariance to move the x
to the η̃ and an integration by parts becomes

−
1 s

0

1
R2

E
4
N (ξa)(0)Ẽξa(η̃(r, x)

;
dxdr = −

1 s

0

1
R2

E (N (ξa)(0)η(s− r,−x)) dxdr

= −
1 s

0

1
R2

E (N (ξa)(0)η(0,−x)) dxdr = 0 ,

where we used that the dynamics are conservative and then again (3.82).
The second term in (3.83) also integrated against |x|2 becomes

−
1
R2

1 s

0
|x|2E

4
N (ξa)(x)Ẽξa(N (η̃)(r, 0))

;
drdx

= −
1
R2

1 s

0
|x|2E (N (η)(s, x)N (η)(s− r, 0)) drdx

= −
1
R2

1 s

0
|x|2E (N (η)(r, x)N (η)(0, 0)) drdx

= −
1
R2

1 s

0
|x|2E 6

((w · ∇)Π1:(Π1η)2:)(r, x)((w · ∇)Π1:(Π1η)2:)(0, 0)
=
drdx

= 2|w|2
1
R2

1 s

0
E
6
(Π1:(Π1η)2:)(r, x)(Π1:(Π1η)2:)(0, 0)

=
drdx ,

where in the last step we first performed integration by parts on the gradient from the
first factor, and then used translation invariance to move the x to the second factor, after
which we perform another integration by parts. Each integration by parts gives a factor
−1, as well as an additional −1, since the x becomes a −x when moved to the second
factor. These integration by parts are not rigorous, since we cannot exchange the integral
and the expectation. However the terms in each line are well-defined assuming the decay
in S mentioned above. Here the Wick squares :X2: simply subtract the expectations, i.e.
:X2: = X2 − E(X2). They are necessary since otherwise the integrand would not decay in
space. Collecting all the terms in equation 3.81 we obtain:

D(t) = 1 +
2|w|2
t

1 t

0

1 s

0

1
R2

E
6
(Π1:(Π1η)2:)(0, 0)(Π1:(Π1η)2:)(r, x)

=
dxdrds+ o(1) .

Dropping the o(1) term and replacing R2 with a large torus T2
N we obtain exactly formula

(3.3).
If we had chosen instead to analyse Dij(t) the same steps would have given (for w parallel

to the first coordinate axis)

D11(t) = D(t)− 1/2, D12(t) = D21(t) = 0, D22(t) = 1/2 .

As we see the asymptotic behaviours of D11 and D are equivalent.
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Chapter 4

Near-critical dimers and massive
SLE2

abstract

We consider the dimer model on the square and hexagonal lattices with doubly periodic
weights. The purpose of this paper is threefold: (a) we establish a rigourous connection
with the massive SLE2 constructed by Makarov and Smirnov [MS10] (and recently revisited
by Chelkak and Wan [CW19]); (b) we show that the convergence takes place in arbitrary
bounded domains subject to Temperleyan boundary conditions, and that the scaling limit
is universal; and (c) we prove conformal covariance of the scaling limit. For this we intro-
duce an inhomogeneous near-critical dimer model, corresponding to a drift for the underlying
random walk which is a smoothly varying vector field or alternatively to an inhomogeneous
mass profile. When the vector field derives from a potential satisfying a certain nonnegat-
ivity assumption we prove that the corresponding loop-erased random walk has a universal
scaling limit. Our techniques rely on an exact discrete Girsanov identity on the triangular
lattice which may be of independent interest. We complement our results by stating precise
conjectures making connections to a generalised Sine-Gordon model at the free fermion point.

4.1 Introduction

Makarov and Smirnov initiated in [MS10] a programme to describe near-critical scaling limits
of planar statistical mechanics models in terms of massive SLE and/or Gaussian free field.
To quote from their paper:

The key property of SLE is its conformal invariance, which is expected in 2D lattice models
only at criticality, and the question naturally arises: Can SLE success be replicated for off-
critical models? In most off-critical cases to obtain a non-trivial scaling limit one has to
adjust some parameter [...], sending it at an appropriate speed to the critical value. Such
limits lead to massive field theories, so the question can be reformulated as whether one can
use SLEs to describe those. Massive CFTs are no longer conformally invariant, but are still
covariant when mass is considered as a variable covariant density [...].

As part of this programme, Makarov and Smirnov introduced a massive version of SLE2,
which will be defined more precisely in Section 4.1.4. As established rigourously recently
by Chelkak and Wan [CW19], this can be seen as the scaling limit of the loop-erasure of a
massive random walk, i.e., a random walk which has a fixed probability of being killed at
every step, and which is conditioned to leave the domain before being killed. Makarov and
Smirnov also listed a number of fascinating questions, many of which remain open today.
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Figure 4.1: Doubly periodic weights on the square and hexagonal lattices. Black vertices of
type 1 are marked with disks. The weights s0, . . . , s3 or a0, . . . , a2 are periodically repeated
around every black vertex of type 1. Every other edge weight is equal to 1.

In this paper we carry out part of this programme for the near-critical dimer model. The
dimer model is one of the most classical models of statistical mechanics, and is equivalent to
random matchings on a planar bipartite graph. That is, given such a (finite) graph G, we
associate to every dimer covering (or perfect matching) m (a subset of the edges such that
every vertex is covered exactly once) the Gibbs weight

P(m) =
1

Z

B
e∈m

we,

where we > 0 are given edge weights and Z is a normalisation constant (partition function).
The model is also equivalent to tilings (in particular to lozenge tilings if the underlying
graph is the hexagonal lattice; see [Gor21] for a recent superb introduction). The study
of the dimer model goes back to the pioneering work of Temperley and Fisher [TF61] and
Kasteleyn [Kas61], who computed its partition function, and noted that it is equal (up to a
sign or more generally a complex number of modulus one) to the determinant of a matrix now
called the Kasteleyn matrix, which is a suitably weighted adjacency matrix. This identity is
the starting point of a far-reaching theory which eventually led Kenyon to prove convergence
(subject to so-called Temperleyan boundary conditions, described below) of the associated
height function to a Gaussian free field in a sequence of two landmark papers [Ken00], [Ken01]
when all edge weights are equal. This was the first proof of conformal invariance for a planar
model of statistical mechanics.

4.1.1 Off-critical dimer model.

In this paper we are concerned with an off-critical model, which can be defined either on the
square lattice or on the hexagonal lattice when the edge weights are assumed to be doubly
periodic, in the following sense. We start with the square lattice. Let s0, . . . , s3 > 0. We
divide the square lattice into the usual black and white vertices in checkboard fashion, and the
black vertices are themselves divided into two alternating classes B1 and B2 (as in [Ken00]).
We declare that around every B1 vertex, the edge weights are respectively s0, . . . , s3 as we
move in the clockwise direction starting from the east (thus sk corresponds to the direction
ik = eikπ/2, k = 0, . . . , 3; here i =

√−1). All other edge weights are set to 1. See Figure
4.1 for an illustration. We will further specify the weights sk so as to be in the near-critical
regime in (4.3).
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A similar construction can be applied to the hexagonal lattice. Consider the usual black
and white colouring of the vertices of the hexagonal lattice H. Black vertices at distance
two apart in H form a triangular lattice, which is a tripartite graph. So all black vertices
in H belong one of three possible classes, B1, B2, B3, say. We declare that the edge weights
around a B1 vertex are respectively a0, a1 and a2 going counter-clockwise starting from the
east direction See Figure 4.1.

This model was first considered in the work of Chhita [Chh12] in the case of the square
lattice, who called it the “drifted” dimer model, for reasons that will become clear later.
Suppose sk = 1 + ckδ, where δ tends to zero (we will later identify δ with the mesh size).
This scaling will be enforced throughout the paper. As already noted in [Chh12], this choice
of scaling essentially corresponds to studying the liquid-gas boundary of the dimer phases.
When applying the treatment of Kenyon [Ken00] to this model, if K denote the associated
Kasteleyn matrix then one can easily check that L = K∗K, viewed as an operator on the
black vertices, is approximately the negative of a massive Laplacian: indeed, on the B1

vertices, the diagonal entry is of the form s20 + . . . + s23, while the sum of the off-diagonal
entries is −2s1s3 − 2s0s2. (The reason why this is only an approximation is because terms
of the form L(b1, b2) are not all exactly zero when b1 ∈ B1, b2 ∈ B2; they are simply lower
order than L(b1, b

′
1) for b1, b

′
1 ∈ B1). (In fact, after a suitable transformation, the inverse

Kasteleyn matrix can be related to a modified Kasteleyn matrix which corresponds exactly
to the Green function of a massive random walk, see Section 3 of [Chh12]).

From this it is perhaps natural to conjecture that the height function, suitably rescaled,
converges to the massive Gaussian free field, which is (informally) the Gaussian field
whose covariance matrix is the massive Green function. Surprisingly, however, [Chh12]
showed that while there is a scaling limit for the height function as δ → 0 in the full plane,
the limit cannot be the massive Gaussian free field since its moments do not even satisfy the
Wick relation, hence it is not even Gaussian.

The purpose of this paper is threefold:

• First, we extend the results of [Chh12] in several different ways: we consider not only
the square lattice but also the hexagonal lattice; furthermore our results are not only
valid in the whole plane but in arbitrary simply connected domains subject to Temper-
leyan boundary conditions (these are perhaps the nicest boundary conditions from the
combinatorial point of view and are defined immediately below in Section 4.1.2).

• Second, we show for the first time a connection to massive models and more specific-
ally to the massive SLE2, constructed by Makarov and Smirnov [MS10] and revisited
recently by Chelkak and Wan [CW19].

• Finally, we show that the scaling limit of the height function obeys a certain conformal
covariance rule. This is reminiscent of other near-critical scaling limits previously ob-
tained e.g. for percolation [GPS18]. Interestingly however, the covariance rule involves
not only the modulus of the derivative of the conformal map but also its argument.

Last but not least, this will be complemented by some novel conjectures attempting to
make a connection with a generalised Sine-Gordon model (which will be introduced below)
at its free fermion point. Along the way we identify a larger and more interesting family of
near-critical dimer models which give an intuitively transparent explanation for why and how
the Sine-Gordon model is connected to near-critical dimers; these models are characterised
by the fact that the mass (or equivalently the drift) is inhomogeneous.
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Figure 4.2: A Temperleyan domain on the square lattice and a Temperleyan domain on the
hexagonal lattice. In both the black vertices of type B1 have been highlighted and a (non-B1)
black vertex on the lower left boundary has been removed.

At the technical level a key contribution of this paper will be an exact discrete Girsanov
identity on the triangular lattice as well as a proof that the loop-erasure of a random walk
with drift which may vary with the position has a scaling limit.

4.1.2 Temperleyan boundary conditions.

To make the connection to massive SLE and state our results, we will now define precisely
the type of boundary conditions we impose on the model, which in the case of the square
grid are known as Temperleyan. We recall the definition in this case first. Let Ω ⊂ C be
a bounded simply connected domain of the complex plane. Let Γδ = (v(Γδ), E(Γδ)) be a
sequence of graphs in δZ2 approximating Ω: that is, Γδ is a planar graph with vertex set
v(Γδ) ⊂ Ω ∩ (δZ2) and edge set E(Γδ) such that if x, y ∈ v(Γδ) and x ∼ y in δZ2, then
(x, y) ∈ E(Γδ) if and only if [x, y] ⊂ Ω. We assume that the vertex boundary of Γδ, i.e. the
vertices v ∈ v(Γδ) which have at least one neighbour w of the full plane square lattice not in
v(Γδ), is within O(δ) of ∂Ω. We also assume that Γδ is Temperleyan: namely, all corners
(be them convex or concave) are of type B2, and one further such corner has been removed.
See e.g. Figure 4.2. Equivalently, along the vertex boundary, all black vertices are of type B2,
i.e, the boundary alternates between B2 and white vertices (except at the removed corner).

We make a similar definition in the hexagonal case. We say that the domain Γδ whose
vertices are in δH is Temperleyan if the boundary does not contain any B1 vertices (i.e.,
consists only of B2 and B3 and white vertices), and a vertex of type B2 or B3 has been
removed. Figure 4.2 shows examples of a Temperleyan domain on both the square and
hexagonal lattices.

4.1.3 Temperley’s bijection.

Temperley’s bijection is a powerful tool which relates the dimer model on the Temperleyan
graph Γδ to a pair of spanning trees on a different graph. As it turns out, the Temperleyan
boundary conditions described above are such that both dimer models (i.e., on the square
and hexagonal lattices respectively) are equivalent to a certain spanning tree on a (possibly
directed) graph Ωδ whose vertices are the B1 vertices of Γδ (or, equivalently, to a pair of dual
spanning trees on Ωδ and its planar dual). In the square lattice (and for rectangles) this goes
back to the original paper of Temperley and Fisher [TF61]. This was considerably generalised
and strengthened in many subsequent works, in particular, [KPW00]. That paper included
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the perhaps lesser well known case of the hexagonal lattice, which we will use in this paper
and will be recalled in more detail in Section 4.2.1; in that case, the corresponding graph Ωδ

of the spanning tree is the directed triangular lattice with mesh size δ.
As developed in the sequence of papers [BLR20, BLR19, BLR22], Temperley’s bijection

can be used to describe the scaling limit of the height function fluctuations via a random
geometric approach. Essentially these papers reduce the problem of finding the scaling limit
of the dimer height function to the (easier) problem of finding a scaling limit for the associated
Tempereleyan tree in the Schramm topology: in other words, to the question of the scaling
limit of a single branch of that tree. In turn, by Wilson’s algorithm, this boils down to the
scaling limit of the loop-erasure of the random walk on the (possibly directed) graph Ωδ.

4.1.4 Massive SLE2.

As already mentioned, the construction of massive SLE2 was sketched by Makarov and
Smirnov in [MS10] and recently revisited by Chelkak and Wan [CW19] (see also [BBK08]
for a mathematical physics perspective). We will describe it in the radial case for ease of
comparison with the situation which is of interest to us, though one should note that Chelkak
and Wan’s paper actually deals with the chordal case.

A massive random walk (on the square lattice, say) is a walk which has a chance of order
δ2 to be killed at every time step (the constant of proportionality is by definition m2/2, where
m ≥ 0 is the mass), and otherwise moves like ordinary walk. Massive radial SLE2 describes
the scaling limit of the loop-erasure of a massive random walk from o to a (where a is on
the boundary of a simply connected domain Ω, and o is in the interior of Ω), conditioned on
not getting killed before reaching a. In fact, it is more convenient to define massive SLE2

by its associated Loewner flow, which in the radial case is defined by Loewner’s equation
(parametrised by capacity)

dgt(z)

dt
= −φ′(z)gt(z)

gt(z) + ζt
gt(z)− ζt

; z ∈ Ωt

where φ is a fixed conformal map sending Ω to D and o to 0, Ωt denotes the slit domain
Ω \ γ([0, t]) (since κ = 2 we do not need to remove more than that), gt is the Loewner map
from Ωt to D, and if we write the driving function in the form ζt = eiξt , then ξ solves the
Stochastic Differential Equation:

dξt =
√
2dBt + 2λtdt;λt =

∂

∂gt(at)
log

P
(m)
Ωt

(o, at)

PΩt(o, at)
. (4.1)

Here at = γ(t), and P
(m)
Ωt

and PΩt are the Poisson kernels for the Brownian motion with
mass m, and regular Brownian motion respectively, in Ωt. By Brownian motion with mass
m we mean the law of a standard Brownian motion, killed at rate m2 (which defines a
subprobability measure)1.

The above expression for λt is that in [CW19] which is somewhat similar to the one ap-
pearing in Makarov and Smirnov [MS10, (9)]. However we feel it deserves a few explanations,
notably considering the meaning of the differentiation ∂

∂gt(at)
. This should be understood as

a spatial differentiation with respect to x ∈ R after mapping Ωt to D, setting at = eix, and

1Note that the probability with which the above discrete random walk is killed at each step (namely,
(1/2)m2δ2) is chosen so that in the scaling limit, we obtain a Brownian motion killed at rate m2. Indeed,
if Xδ is an ordinary random walk on δZ2, then (X2δ−2t)t≥0 converges weakly uniformly on compacts to a
standard planar Brownian motion. In [CW19] the killing probability is chosen to be δ2m2 instead of δ2m2/2
but this appears to be a typo.
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evaluating the result at x = ξt. That is, let ρ = m2, and let ρt denote the (squared) mass
profile in D that corresponds to the constant mass m in Ωt; i.e., after mapping to D (and
applying the relevant time change) we obtain a Brownian motion killed at rate ρt(x)). Then

λt =
∂

∂x
log

P
(ρt)
D (0, eix)

P
(0)
D (0, eix)

KKKKK
x=ξt

.

By choice of normalisation, the denominator in the fraction is simply equal to 1, so that this
logarithmic derivative can also be written in the form:

λt =
∂
∂xP

(ρt)
D (0, eix)

P
(ρt)
D (0, eix)

KKKKK
x=ξt

.

The spatial derivative of the Poisson kernel, i.e., the numerator of this fraction, is a quantity

which can be shown to correspond to what Chelkak and Wan [CW19] denote by Q
(ρt)
D (x, at).

Their result in fact establishes convergence with

λt =
Q

(ρt)
D (0, eiξt)

P
(ρt)
D (0, eiξt)

=
Q

(ρ)
t (o, at)

P
(ρ)
t (o, at)

. (4.2)

Proving this chain of identities would require some arguments. This is circumvented by
defining λt (i.e., the right hand side of (4.1)) as in the right hand side of (4.2).

The description above is then a theorem proved in the chordal case and on the square
lattice by [CW19] (the radial case is briefly discussed as being analogue to, and in fact a little
simpler than, the chordal case). See Theorem 1.1 in [CW19] for a precise statement, and see
[Law05] as well as [BN23] for general references on SLE.

4.1.5 Main results

Our first result below concerns the branches of the Temperleyan tree for an off-critical dimer
model on a graph (defined more precisely below, which may be a piece either of the square
lattice or of the hexagonal lattice, scaled by δ) with Temperleyan boundary conditions, as
explained above. The result shows that the scaling limit exists, and furthermore gives a
connection to massive models. On the square lattice, suppose that the weights s0, . . . , s3
satisfy

sk = 1 + ckδ (k = 0, . . . , 3) (4.3)

counterclockwise from the east direction, while on the hexagonal lattice we assume that the
weights a0, . . . , a2 satisfy

ak = 1 + ckδ (k = 0, . . . , 2) (4.4)

also counterclockwise from the east direction. We consider the associated rescaled drift vector
α defined respectively by

α =
1

2

3G
k=0

cki
k;α =

2

3

2G
k=0

ckτ
k, (4.5)

where i =
√−1 = eiπ/2 and τ = e2iπ/3 are the fourth and third roots of unity, respectively.

The scaling factors in front of these expressions are chosen to guarantee that in the scaling
limit, a random walk with the above weights converges to Brownian motion with drift α: that
is, if Xδ denotes this random walk on either δZ2 or δT, then (Xδ

2δ−2t)t≥0 converges weakly,
uniformly on compacts, to (Bt + αt)t≥0, where B is a standard planar Brownian motion.
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We also assume

c0 + c2 = c1 + c3 (4.6)

in the square lattice case. See Remark 4.2.14 for a discussion of this condition.
We suppose we are given a Temperleyan lattice domain Γδ as in Section 4.1.2 and a dimer

model on Γδ. Applying the Temperleyan bijection leads to a pair of dual trees respectively
on Ωδ and its dual, where Ωδ is a subgraph of either δT or δZ2. Note that there is natural
edge boundary ∂Ωδ on Ωδ, corresponding to pair of vertices (y1, y2) of the lattice such that
y1 and y2 are neighbours in the lattice, at least one of y1 or y2 is a vertex of Ωδ but not both.
With a slight abuse of notation we will still refer to yδ as a point on the boundary, identify
it in calculations with y2 and say that yδ → y if y2 converges to y as δ → 0 (or equivalently
y1). Likewise, we will often consider the random walk (Xn,≥ 0) on Ωδ. With an abuse of
notation we will refer to the first time τ that the walk leaves Ωδ as the smallest n ≥ 1 such
that (Xn−1, Xn) is a boundary edge. We will also identify, with an abuse of notation, the
position Xτ with the boundary edge (Xτ−1, Xτ ), and denote it by Yδ in the following.

Theorem 4.1.1. Consider a near-critical dimer model as above in a domain Γδ with Tem-
perleyan boundary conditions. Let oδ be a vertex on the primal lattice and let γδ be the path
starting from oδ in the associated Temperleyan tree on Ωδ. Let Yδ ∈ ∂Ωδ denote the endpoint
of this path. Then conditional on Yδ = aδ, if oδ → o ∈ Ω and aδ → a ∈ ∂Ω, then also the path
γδ converges to radial massive SLE2 (see (4.1)) from a to o with mass m = ∥α∥/√2 (associ-
ated with a standard planar Brownian motion killed at rate ∥α∥2/2), where ∥α∥ denotes the
Euclidean norm of the drift vector α defined in (4.5).

In fact, the distribution of Yδ converges weakly to a distribution µ
(α)
z on ∂Ω, which is

the exit law from Ω of Brownian motion with unit covariance matrix and drift vector α. We
therefore obtain the following result.

Theorem 4.1.2. Let Tδ denote the Temperleyan tree associated with the dimer configuration
in Γδ (either in the hexagonal or square lattice case). Then as δ → 0, the tree Tδ converges
in the Schramm sense to a continuum limit tree T . Each branch of this tree from a point

z ∈ Ω has the law described in Theorem 4.1.1: that is, sample a according to µ
(α)
z ; given a,

the branch of T from z to a has the law of massive radial SLE2 with mass m = ∥α∥/√2
(associated with a Brownian motion killed at rate ∥α∥2/2).

A key result from [BLR20] (see also [BLR19]) is that the convergence of the Temperleyan
tree implies the convergence of the dimer height function. This requires only a uniform
crossing estimate and some basic estimates such as polynomial decay on the probability for
the loop-erasure to visit a small ball, and control on the moments of winding close to a point
(these estimates are a fairly simple consequence of our work, and are written explicitly at the
end of Section 4.5 in a more general context). We obtain the following corollary:

Corollary 4.1.3. In the setup of Theorem 4.1.1 or 4.1.2, the centered height function hδ −
E(hδ) converges to a limit as δ → 0 whose law depends only on the vector α defined in (4.5).

4.1.6 Exact Girsanov identity

To establish these results, we observe that the law of a branch in the Temperleyan tree
may be described via Wilson’s algorithm as the loop-erasure of a random walk on Ωδ with
near-critical weights defined by (4.3) on the square lattice and (4.4) on the directed triangular
lattice respectively. The random walk corresponding to these weights is one which has a drift:
as the mesh size δ → 0, the random walk converges to a Brownian motion with drift vector
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α defined in (4.5). Furthermore, using a discrete Girsanov transform (which will be detailed
below), we relate the corresponding random walks to massive ones on the same lattices; the
above result then intuitively follows by the known convergence of the massive LERW to the
massive SLE2 of Makarov and Smirnov (proved rigourously by Chelkak and Wan recently in
[CW19]).

We now describe our Girsanov identity. As this holds independent of any scaling limit
consideration we formulate it in the unscaled triangular lattice T and square lattice Z2.
The Girsanov identity takes a slightly different form in each case. Although both are exact
formulas, the connection between massive and drifted walk is only exact on the triangular
case (Corollary 4.2.5) whereas it is approximate in the case of the square lattice (Corollary
4.2.12). On the other hand, the application of the results of Chelkak and Wan [CW19] in the
directed triangular case needs additional arguments because of the lack of reversibility. As
we believe this result is of independent interest, we state it below on the triangular lattice
where the statement is the simplest. We consider a Markov chain on the (directed) triangular
lattice T where the jump probabilities are allowed to depend on the position of the vertex v
of the triangular lattice T. That is, suppose given for any v ∈ T, a collection of parameters
(α0(v), α1(v), α2(v)) ∈ R3, and let Q denote the law of a Markov chain such that if the walk
is at the vertex v, then the jump probabilities are given by

Q(v, v + τk) =
eαk(v)

a(v)
, k = 0, . . . , 2, with a(v) = eα0(v) + . . .+ eα2(v). (4.7)

Let also Y denote the position of the random walk when it hits ∂Ω and let Q(·|Y = y) denote
the conditional law given the exit point is y. We also let P = P(0) denote the law of the usual
simple random on the directed triangular lattice T.

Fix γ = (x0, . . . , xn) a given path on the triangular lattice, starting from some point x0 =
z ∈ Ω of some length n = N(γ). Let dxs = xs+1 − xs ∈ {1, τ, τ2} ⊂ R2, for s = 0, . . . , n− 1
denote the discrete derivative of γs at time s. Define β(v) > 0 by

exp(−β(v)2) = (a(v)3 )−3
2B

k=0

eαk(v), (4.8)

which is well-defined by the arithmetic-geometric mean inequality. Let α = α(v) = 2
3(α0 +

α1τ + α2τ
2), which is a complex number (identified with a vector in R2) associated to every

vertex v of the triangular lattice T.
Note that while α does not uniquely determine the αi, it does determine Q, since the

transition probabilities in (4.7) do not change under a shift (α1, α2, α3) → (α1 + x, α2 +
x, α3+x) and all (α1, α2, α3) corresponding to a specific α are related to one another by such
a shift. Thus given a vector α(v) ∈ R2, there is a unique choice of α0(v), α1(v), α2(v) ∈ R
summing to zero such that α(v) = 2

3(α0(v) + α1(v)τ + α2(v)τ
2). The following gives us an

exact value for the global Radon–Nikodym derivative of the law Q compared to P(0).

Theorem 4.1.4.
Qx(γ)

Px(γ)
= exp(Mn − 1

2Vn), (4.9)

where

Mn =

n−1G
s=0

⟨α(xs), dxs⟩ and Vn =
2

3

n−1G
s=0

β2(xs). (4.10)
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Of particular relevance in this article will be the case where the drift vector α = α(v), v ∈
Ωδ derives from a potential function Φ : T → R, i.e., when

α(v) = ∇TΦ(v) :=
2

3

2G
i=0

(Φ(v + τ i)− Φ(v))τ i; (4.11)

in other words, αi+1(v) = Φ(v + τ i) − Φ(v) for 0 ≤ i ≤ 2. If α is of this form, the Radon–
Nikodym derivative in Theorem 4.1.4 takes a particularly nice form:

Corollary 4.1.5. Suppose α derives from a potential function Φ as above. Then

Qx(γ)

Px(γ)
= exp (Φ(xn)− Φ(x0)−An) ;

where

An =

n−1G
s=0

∆TΦ(xs) +
1

3
β2(xs).

Here ∆TΦ(x) = 1
3

H2
i=0Φ(x+τ i)−Φ(x) is the usual graph Laplacian on the directed triangular

lattice T.

To understand the formulas in Theorem 4.1.4 and Corollary 4.1.5, we now explain how
both should be viewed as the discrete analogues of Girsanov’s theorem followed by an ap-
plication of Itô’s formula. Indeed, in the continuum, if Q is the law of the solution of the
stochastic differential equation (SDE)

dXt = dBt + α(Xt)dt ; where α(x) = ∇φ(x) (4.12)

and where φ is a smooth Lipschitz function on R2, then

dQ
dP

KKKK
t

= exp

71 t

0
α(Xs) · dXs − 1

2

1 t

0
∥α(Xs)∥2ds

>
(4.13)

= exp

7
φ(Xt)− φ(X0)− 1

2

1 t

0
∆φ(Xs) + ∥∇φ(Xs)∥2ds

>
. (4.14)

Thus the two terms Mn and Vn in (4.9) are the discrete analogues of the two terms on the
right hand side of (4.13). The term An in Corollary 4.1.5 is the direct discrete analogue of
the integral in (4.14).

4.1.7 Conformal covariance; loop-erased random walk with drift

A fundamental feature of critical models in two-dimensional models of statistical mechanics
is that they display conformal invariance. In the near-critical regimes that are under consid-
eration in this paper, we cannot of course expect conformal invariance but rather a change
of conformal coordinates rule known as conformal covariance which, roughly speaking,
says that the transformation needs to be corrected by suitable powers of the derivative of the
conformal map. This has been established in particular in the case of near-critical percolation
in the paper [GPS18] (where this follows from analogous covariance rules for the limit of the
uniform measure on pivotal points proved earlier in the remarkable work [GPS13]). To state
such a result we need to extend the setup slightly, by allowing the drift vector α to depend
continuously on the point z ∈ Ω.

Thus, let us fix α : Ω → R2 ≃ C a locally Lipschitz, bounded vector field (identified with
a complex-valued function) on Ω; for z ∈ Ω, α(z) ∈ R2 will represent the drift at position z.
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Our results pertain only to the case where α derives from a potential, i.e. there exists a
C1 function φ : Ω̄ → R such that α = ∇φ. (We will also make additional assumptions on φ
in the theorem.)

Given such a bounded, continuous vector field, we associate weights on the (scaled) dir-
ected triangular lattice Ωδ as follows:

αδ
i (v) = φ(z + δτ i)− φ(z); i = 0, . . . , 2 (4.15)

and, as before, these parameters define a Markov chain on Ωδ (which we will refer to later as
random walk on Ωδ with drift α) given by:

P(φ)(v, v + δτ i) =
eα

δ
i (v)

a(v)
, i = 0, . . . , 2, with a(v) = eα

δ
0(v) + . . .+ eα

δ
2(v). (4.16)

Thus the weights are defined by the gradient of the potential φ, computed locally at each
point z ∈ Ωδ. An easy application of the Stroock–Varadhan theorem shows that as δ → 0,
the position of a random walk starting from oδ → o ∈ Ω, after scaling time by 2δ−2, converges
to the solution of the Stochastic Differential Equation dXt = dBt + α(Xt)dt. Since α derives
from a potential, the previous SDE takes the form

dXt = dBt +∇φ(Xt)dt, (4.17)

known as a Langevin SDE or diffusion.
We will show that Theorems 4.1.1 and 4.1.2 can be generalised to this more general setup

both for the case of a general drift vector field. The first step is the construction of a scaling
limit for the loop-erased random walk with drift (i.e., with weights as above) when the drift
vector field derives from a potential satisfying a certain condition.

Theorem 4.1.6. Let Ω be a simply connected domain and α : Ω → R2 be given. Fix o ∈ Ω
and let oδ ∈ Ωδ such that oδ → o as δ → 0. Let a ∈ ∂Ω and let aδ be a sequence of vertices
on the boundary of Ωδ such that aδ → a.

Suppose the vector field α derives from a smooth potential φ : Ω̄ → R and suppose also
that

ρ(x) =
1

2
∆φ(x) +

1

2
∥∇φ(x)∥2 ≥ 0;x ∈ Ω. (4.18)

Let (Xδ
t , t = 0, 1, . . .) be a random walk on Ωδ with drift α = ∇φ, i.e., a sample from P(φ)

oδ

defined in (4.16). Let σδ denote the first time at which Xδ leaves Ω and consider the the
loop erasure LE(Xδ) of the walk up until this time. Then conditionally on Xδ

σδ = aδ, LE(Xδ)
converges weakly to a radial Loewner evolution γ starting from γ0 = a, whose driving function
ζt = eiξt (when parametrised by capacity) satisfies the stochastic differential equation

dξt =
√
2dBt + λtdt, λt =

∂

∂gt(at)
log

5
P

(ρ)
Ωt

(o, at)

PΩt(o, at)

<
, (4.19)

where at = γ(t), Ωt = Ω \ γ([0, t]) is the slitted domain at time t, gt is the Loewner map

from Ωt to D and P
(ρ)
Ωt

and PΩt are the Poisson kernels for massive Brownian motion with

(squared) mass profile ρ = 1
2∆φ+ 1

2∥∇φ∥2, and regular Brownian motion respectively, in Ωt:
that is, the Brownian motion is killed at instantaneous rate ρ(x) when in x ∈ Ω.

As above, the drift term in (4.19) has to be understood appropriately, and will really

be defined as Q
(ρ)
t (o)/P

(ρ)
t (o) where these terms will be defined carefully in Section 4.4. In
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particular, the construction of the Poisson kernel P
(ρ)
Ωt

appearing in the result above is not
trivial and will also be described in Section 4.4. That there is also a unique strong solution
to the SDE (4.19) is also not obvious; this will follow from the estimate in Lemma 4.4.16.

Discussion of the assumption (4.18). The theorem above relies on the condition (4.18)
which plays a technical but important role. We do not believe this assumption is necessary,
but it greatly simplifies the analysis leading to the result. Essentially, our discrete Girsanov
theorem allows us to relate random walk with drift to random walk with variable mass.
The corresponding limiting (squared) mass function is then given by the formula

ρ(x) :=
1

2
∆φ(x) +

1

2
∥∇φ(x)∥2. (4.20)

Thus our assumption (4.18) amounts to requiring the killing rate to be nonnegative. One can
already intuit the emergence of this function from (4.14).

Although this condition could appear somewhat artificial, we note that this condition is
actually invariant under conformal transformations. More precisely, fix T : Ω → Ω̃ a
conformal isomorphism of simply connected domains, and let X be a solution of the Langevin
SDE (4.17), where we assume 1

2∆φ + 1
2∥∇φ∥2 ≥ 0. Then T (Xt) is, up to a time-change, a

solution of the SDE:
dYt = dB̃t +∇φ̃(Yt)dt. (4.21)

This is also a Langevin SDE (4.17), where the new potential φ̃ is simply given by

φ̃(y) = φ(T−1(y)).

From there it is not hard to see that

∆φ̃(T (x)) = ∆φ(x) · |T ′(x)|2;
(this is best seen by computing the Laplacian via Wirtinger derivatives). Since

∥∇φ̃(T (x))∥2 = |T ′(x)|2∥∇φ(x)∥2,
we deduce that the associated mass function ρ̃ satisfies

ρ̃(y) = |T ′(x)|2ρ(x); y = T (x). (4.22)

Thus ρ ≥ 0 if and only if ρ̃ ≥ 0.

Physically, the assumption (4.18) corresponds to a potential that tends to push the diffu-
sion towards the boundary. In particular, if φ is convex then this condition is satisfied. (Note
that our φ follows an unusual sign convention: the Langevin diffusion is pushed towards
higher potential instead of the more commonly adopted convention of lower potentials).

Remark 4.1.7. The relation (4.22) is a conformal covariance relation for the mass
functions.

We now address the consequence of Theorem 4.1.6 for the dimer model. Let α = ∇φ be
a vector field deriving from a smooth potential φ : Ω̄ → R satisfying (4.18). To the weights
eαk(v) in (4.16) we can associate edge weights on Γδ in a bipartite fashion similar to (4.1).
The only difference with what was discussed in Section 4.1.1 is that now the weights a0, a1, a2
depend on the point v. We call this the inhomogeneous massive dimer model.

Nevertheless, Temperley’s bijection still applies: thus dimer configurations on Γδ are in
(measure-preserving) bijection with wired spanning trees on Ωδ. Using results from [BLR20],

we deduce from Theorem 4.1.6 that the height function h
(α)
δ of the corresponding dimer model

converges to a scaling limit (this generalises Corollary 4.1.3 to the variable drift setting).
Furthermore, under the additional technical restriction that the conformal map T : Ω → Ω̃
extends analytically to a neighbourood of Ω, the limit is conformally covariant.
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Theorem 4.1.8. Fix Ω and α = ∇φ satisfying (4.18) as above. The height function h
(α)
δ , of

the corresponding biperiodic dimer model just described, has a scaling limit which we denote
by h(α);Ω. Furthermore, let T : Ω → Ω̃ denote a conformal isomorphism of bounded simply
connected domains, and suppose that T extends analytically to a neighbourhood of Ω. Then
we have the identity in law,

h(α);Ω ◦ T−1 = h(α̃);Ω̃

where at a point w ∈ Ω̃,
α̃(w) = (T−1)′(w) · α(T−1(w)). (4.23)

The product above refers to the multiplication of complex numbers; and this drift vector field
α̃ derives from the potential φ ◦ T−1.

To explain the theorem, we point out that the new drift vector field α̃ in Ω̃ has an
amplitude which, compared to that of α in Ω, has been scaled by 1 over the modulus of
the derivative of the conformal map going from Ω to Ω′, and the vector has been rotated
(in the positive direction) by the argument of its derivative. This is the desired conformal
covariance rule. Once again, we point out that this formula may be simply understood in
terms of conformal covariance of Langevin diffusions. Simply put, the above rule describes (by
Itô’s formula and the Cauchy–Riemann equations) the change of coordinates for a Brownian
motion with drift α = ∇ϕ.

4.1.8 Comments and open problems

1. The limiting height function h(α);Ω is determined implicitly from the scaling limit of the
associated Temperleyan tree. A natural question would be to identify its law explicitly.
For this the Coleman correspondence (see [BW20] which establishes a rigorous
version) is a natural starting point. Briefly speaking, the Coleman correspondence can
be viewed as a massive extension of the boson-fermion correspondence, embodied (in
the critical case) by the convergence of the dimer (= fermionic) height function to the
Gaussian (= bosonic) free field. This suggests that the height function h(α) should be
related in the scaling limit to the so-called Sine-Gordon model at the free fermion
point, from quantum field theory. The latter is one of the most canonical quantum (yet
not conformal) field theories. Despite its non-conformal nature, it enjoys a great deal
of integrability. Informally, the sine-Gordon field is defined (in the whole plane) by the
law

PSG(dh) ∝ exp

7
z

1
C
cos(

E
βh(x))dx

>
PGFF#(dh), (4.24)

where PGFF#(dh) corresponds to the law of a Gaussian free field in Ω (with Dirichlet
boundary conditions) but normalised so that the whole plane Green function satisfies

G#
C (x, y) = −(2π)−1 log |x− y|.

The above expression is however purely formal, as the cosine of (multiples) of the GFF
is ill-defined. While this can be made sense of using the theory of imaginary chaos
([JSW18]) for all β < 4π, the free fermion point (corresponding to β = 4π) falls just
outside the regime where this theory yields a nontrivial object.

We conjecture however that the Sine-Gordon field above describes the limit of the di-
mer height function only in the case of constant mass/drift (and assuming also that the
drift vector field points to the right, or that Ω is the full plane). More generally, we
conjecture the following description for the limiting height function for the inhomogen-
eous massive dimer model (with weights (4.16)), given any vector field deriving from a
smooth potential φ : Ω̄ → R.
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Conjecture 4.1.9. Let P(α);Ω denote the law of the field h(α);Ω in Theorem 4.1.8. Then

P(α);Ω(dh) ∝ exp

7
z0

1
Ω

�
eih(x)/χ, α(x)

�
dx

>
PGFF(dh). (4.25)

Again this expression is informal and assigning it a meaning is itself nontrivial. The
factor z0 in front of the integral comes from conventions such as the normalisation of
the Laplacian and that of the limiting drift α. But note how the expression (4.25)
reduces to that in (4.24) at the free fermion point when Ω is replaced by the whole
plane. Indeed, first of all the normalisation of the GFF in PGFF and PGFF# differ by
a factor of

√
2π. Thus h# = (2π)−1/2h, so that

√
βh# = (1/χ)h when β = 4π and

χ = 1/
√
2 is the imaginary geometry constant associated to κ = 2.

Furthermore, when Ω = C then by rotational invariance, then ⟨eih(x)/χ, α(x)⟩ has the
same law as ∥α(x)∥ cos(√2h(x)). Thus taking α(x) = α to be constant the expression
(4.25) indeed boils down to (4.24) with z = z0∥α∥. Since z is the mass parameter of
the Sine-Gordon model, this is entirely consistent with our Theorem 4.1.1 (and with
z0 = 1/

√
2 in our choice of conventions for the normalisation of the Laplacian).

The above conjecture is informally supported by the imaginary geometry approach to
the dimer model ([BLR20]). Informally, this conjecture says that massive SLE2 is (in
some sense) a flow line of the Sine-Gordon field at the free fermion point. We do not
know whether this should hold away from the free fermion point, but it is tempting to
conjecture so. (Recall that for β < 4π the Sine-Gordon field is absolutely continuous
with respect to a GFF so that the notion of flow line is at least well defined).

2. A possible approach to the above (which is also of independent interest in its own right)
is the following: can an axiomatic characterisation of this field be given in the manner
of [BPR20, BPR21, AP21]? (This last question is due to Christophe Garban who asked
it in a slightly different form.)

3. A separate line of enquiry concerns the possible implications of our results to the study
of the Ising model. By bosonization, it is known that the critical Ising model is related
to the critical dimer model ([Dub11]). This correspondence remains at least partly valid
in the near-critical regime studied here, but we do not know whether the corresponding
Ising model is near-critical in the sense of commonly studied perturbations of the critical
Ising model (see in particular, [DCGP14], [CIM21], [Par18], [CJN20] and references
therein).

4. Finally we have developed a near-critical dimer theory on the square and hexagonal
lattices using the symmetries of these lattices, but it would be of considerable interest
to have a theory in some more general setting, e.g., for double isoradial graphs (i.e.,
superposition of an isoradial graph and its dual) since we know for instance that the
Temperleyan bijection extends to this setting ([KPW00]).

Updates. Since the paper was first put on arXiv we can report on a few developments in
the direction of the above conjectures.

1. On the one hand, Mason [Mas22] showed that in the full plane and in the case of
constant drift, the two-point correlation of the limiting massive dimer height function
coincides with that of the free fermion Sine-Gordon field.
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2. Separately, Papon considered the case κ = 4 of Makarov and Smirnov’s programme
([Pap23a, Pap23b]). Roughly speaking, she shows in these articles the following results:
convergence of the massive harmonic explorer to massive SLE4, and a conformal invari-
ance property analogous to Theorem 4.1.8. Furthermore, level lines of the massive GFF
are given by massive variant of CLE4, and the occupation field of a massive Brownian
loop soup coincides with the square of the massive GFF. The pairwise relations between
these three objects hold simultaneously, as in the work of Qian and Werner for the non-
massive case ([QW19]).

3. Finally, Rey [Rey24] has developed a Girsanov identity for isoradial graphs and applied
it to massive dimer models, thereby generalising the results of this paper.

While it is not the purpose of this paper to give an extensive overview of recent works
on near-critical models, we feel it is appropriate to conclude this introduction by mentioning
some which are at least in spirit motivated by similar questions albeit for different models.
These include, beyond the already mentioned works on near-critical percolation [GPS18] and
the near-critical Ising model [CIM21], [Par18], [CJN20] and [DCGP14], the work of Duminil-
Copin and Manolescu on scaling relations in the random cluster model [DCM20]), the work
of Benoist, Dumaz and Werner [BDW20] on near-critical spanning forests, and Camia’s work
on off-critical Brownian loop soup [Cam13].

4.1.9 Notation and Scaling

The triangular lattice T always refers to the directed triangular lattice, in which each edge
has been directed in the respective direction 1, τ or τ2, i.e. when we speak of a random walk
on this lattice only steps in those three directions are allowed.

We recall that Ωδ is the graph on which all random walk paths will leave (a scaled copy
of the triangular lattice or the square lattice, approximating Ω), which is often identified
with its vertex set. In this paper several measures on such lattice paths appear. For the
convenience of the reader we collect the most important ones here.

• The simple random walk measure P(0), which takes all possible steps with equal prob-
ability. Note that if Xδ has law P(0) then (X2δ−2t)t≥0 converges to a standard planar
Brownian motion (this holds both on δT and on δZ2).

• Given a function ρδ : Ωδ → [0, 1], the massive random walk measure P(ρδ) is the massive
random walk, dying at each step with probability ρδ(v) if it is in position v ∈ Ωδ (and
otherwise jumping to one of its neighbours with equal probability).

• Consider the triangular lattice case. Given αδ : Ωδ → R2 a discrete vector field, the
random walk with variable drift P(αδ) takes steps according to (4.7), i.e., the walk
jumps from v to v + δτk with probability proportional to eαk(v) (k = 0, 1, 2), where
α0(v), α1(v), α2(v) ∈ R are uniquely defined by the requirements

H2
k=0 αk(v) = 0 and

α(v) = 2
3

H2
k=0 αk(v)τ

k.

Here we have defined the law of random walk with drift αδ, P(αδ), only in the case of the
triangular lattice. Obviously, an analogous definition can be given in the case of the square
lattice too; this will be made explicit in Section 4.2.4 when it is needed.

The weights αδ(v) = αδ(v) typically depend on both δ and v. When there is no risk of

ambiguity we will sometimes write P(α) for P(αδ), and likewise we will write P(ρ) for P(ρδ) if
there is no risk of confusion.
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Usually we view them as measures on the canonical path space, whose corresponding
random variable is denoted by Xδ

t , t = 0, 1, . . . . Sometimes however, given a discrete path
γδ = (x0, . . . , xn) we write P(γδ) for P((Xδ

s )s=0,...,n = (γδs)s=0,...,n), where P is any of the laws
above.

Note that P(0) is a special case of all of these measures, setting the respective parameters
to 0.

For the appropriate weights these random walks have scaling limits. For instance, if
αδ(v) = δF (v) + o(δ) for some bounded Lipschitz-continuous F , then this random walk
converges to the solution of the SDE

dXt = F (Xt)dt+ dBt .

let φ : Ω → R be a smooth function. Noting the fact that ∇δTφ(v) = δ∇φ(v) + o(δ) (recall
our conventions for the discrete gradient in (4.11)), this implies that if αδ(v) = ∇δT(φ), then

the random walk corresponding to Pαδ
converges in the scaling to the Langevin diffusion

dXt = ∇φ(Xt)dt+ dBt .

That is, (Xδ
2δ−2t)t≥0 converges weakly under P(αδ) to the above Langevin diffusion.

Likewise, in the massive case, suppose that ρδ(v) = δ2ρ(v)/2 + o(δ2). Then the random

walk corresponding to P(ρδ), converges (under the same scaling) to massive Brownian motion

with profile ρ, i.e. its law converges to the measure P(ρ)
x whose Radon–Nikodym derivative

with respect to Brownian motion is given by

dP(ρ)
x

dPx

KKKKK
t

= exp

7
−
1 t

0
ρ(Xs)ds

>
.

Organisation of the paper. In Section 4.2 we state and prove the discrete Girsanov
identities and explain the implication for the connection between drifted and massive walks
which lies at the heart of this paper. In Section 4.3 we extend Chelkak and Wan’s result
about the convergence of the massive LERW to massive SLE2 to the directed triangular case;
the additional difficulty compared to their setup is the lack of reversibility. At this stage
Theorems 4.1.1 and 4.1.2 are proved.

In Sections 4.4 and 4.5 we show how to get the existence of a scaling limit for loop-erased
random walk on graphs where the drift is a variable function of the vertices given by the
gradient of a potential (in particular, the scaling limit of the random walk is given by a
Langevin diffusion). Finally in Section 4.5 we transfer results about convergence of trees
to convergence of height function (which implies in particular the conformal covariance of
Theorem 4.1.8).

4.2 Girsanov identity; proof of Theorems 4.1.1 and 4.1.2

In this section we start with a proof of Theorem 4.1.1, which we prove separately in the
case of the square and hexagonal lattices. As mentioned the result will follow from applying
a form of Temperley’s bijection and studying the scaling limit of the corresponding loop-
erased random walk (which describe branches in the spanning tree by Wilson’s algorithm).
Since Temperley’s bijection is not so well known in the case where Γδ is a subgraph of the
hexagonal lattice, we start by explaining the bijection in this case, which can also be found
(albeit somewhat informally) in Section 2 of [KPW00]; see in particular their Figure 2.
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Figure 4.3: A dimer configuration on the hexagonal lattice, and its associated pair of dual
spanning trees from Tempereley’s bijection. The outer (i.e., boundary) vertex is represented
as a black hexagon for convenience. The unique path connecting a vertex v (at the centre of
the hexagon) to the boundary has been highlighted on the tree; the corresponding path on
the dimer graph appears as a dotted line. Each dimer on this path can be viewed as the first
half of the corresponding tree edge. Conversely, we obtain the tree by multiplying by two
each dimer emanating from a B1 vertex, in the direction from black to white.

4.2.1 Temperley’s bijection on the hexagonal lattice

As mentioned in Section 4.1.3, Temperley’s bijection relates rooted spanning trees on a graph
Ωδ (already discussed in Section 4.1.2) to dimers on the graph Γδ, a Temperleyan subgraph
of the hexagonal lattice. We start by describing how Ωδ and Γδ are related to one another.
The bijection itself will be stated in Theorem 4.2.1 and is illustrated in Figure 4.3.

Consider the triangular lattice, that is the graph whose vertices are given by a+bτ , where
a, b ∈ δZ are integers (times δ) and τ = e2iπ/3 is the third root of unity, and where each pair
of vertices at distance δ is connected by an edge. We will give each edge an orientation, such
that it is oriented in direction 1, τ or τ2 and a weight, which is a1, a2 or a3 accordingly. This
gives a directed graph in which each vertex has three outgoing and three incoming edges. We
will call this graph the directed triangular lattice and denote it by T throughout this article.

Let us now choose a simply connected set of vertices of T and identify all other vertices
as a single outer vertex. We call the resulting graph Ωδ. A spanning tree of Ωδ rooted
at the outer vertex is a spanning set of edges containing no cycle. By orienting the edges
to wards the root of the tree (the outer vertex), any such tree is equivalent to a spanning
arborescence, i.e., a collection of directed edges such that there is exactly one outgoing edge
from each non-root vertex (and none at the root), and having no cycle (irrespective of the
orientation). This point of view is useful in Temperley’s bijection since edges come with a
natural orientation.

(Sometimes such a tree is called an arborescence). By definition we assign a weight to a
rooted spanning tree given by the product of the weights of the edges in the tree.

Now consider the superposition graph H∗ obtained in the following way. The vertices
of H∗ are the vertices, edges and faces of Ωδ. To avoid terminological confusion, call the
vertices of H∗ nodes and call them vertex-nodes, edge-nodes and face-nodes depending on
their counterpart in Ωδ. The edges of H∗ are called links and are defined as follows: connect
a vertex-node v and an edge-node e if e is an outgoing edge of v in Ωδ and give this link
the same weight as e in Ωδ. Also connect an edge-node e and a face-node f if e is adjacent
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to f in Ωδ, and assign weight 1 to such links. Finally obtain Γδ from H∗ by deleting the
vertex-node corresponding to the outer vertex and one face-node for a face adjacent to the
the outer vertex. Note that the vertex nodes of H∗ are the B1 vertices of the hexagonal
lattice, while edge-nodes are white. (The face nodes of H∗ are either of type B2 or B3.) For
an illustration of this procedure see Figure 4.3.

The graph Γδ obtained this way is exactly a Temperleyan domain of the hexagonal lattice
as defined in Section 4.1.2, and by choosing Ωδ as the directed triangular lattice formed by
the B1 vertices in such a domain, it is also clear that each Temperleyan subgraph of the
hexagonal lattice can be obtained in this way. The weights on this graph are as in Figure
4.1. The relevant version of Temperley’s bijection is then the following:

Theorem 4.2.1 ([KPW00]). There is a weight preserving bijection between spanning trees
of Ωδ rooted at the outer vertex (i.e., spanning arborescences rooted at the outer vertex) and
dimer configuration on Γδ.

The bijection is easier to describe in the direction “dimers” to “trees”: given a dimer
configuration m on Γδ, define a collection T of oriented edges in Ωδ as follows: for every
dimer occupying a link between a vertex-node v ∈ v(Ωδ) and an edge node e ∈ E(Ωδ),
include the outgoing edge e from v to T . One can check that the resulting collection of
edges T is a spanning tree in the sense above. (Essentially, to every vertex v ∈ v(Ωδ) there
is a unique outgoing edge containing v in T by definition of the dimer model and of T ;
following the outgoing edges from a given vertex v ∈ v(Ωδ) may not result in a cycle by
duality considerations, and thus necessarily ends at the outer vertex – this is the unique path
to the outer vertex in the definition). Once again, we refer to Figure 4.3 for illustration.

4.2.2 Proof of Theorem 4.1.4 and relation to massive walk

We consider first the case of the triangular lattice and give the proof of Theorem 4.1.4, and
recall that here we work on the unscaled lattice T rather than the scaled lattice δT.

Proof of Theorem 4.1.4. Let n0 = n0(v), n1 = n1(v) and n2 = n2(v) be the number of steps
taken by γ from v in the directions 1, τ and τ2 respectively. Then

P(α)
x (γ)

=
B

v∈v(Ω)

2B
k=0

(
eαk

a
)nk = 3−n

B
v∈v(Ω)

�
((a/3)−(n0+n1+n2)

2B
k=0

(eαk)
n0+n1+n2

3

2B
k=0

(eαk)nk−n0+n1+n2
3

"

= 3−n
B

v∈v(Ω)

e−β(v)2
n0+n1+n2

3 exp

5
2G

k=0

αk(nk − n0+n1+n2
3 )

<

= 3−ne−
1
2Vn exp

5G
v

α0(
2n0−n1−n2

3 + α1(
2n1−n0−n2

3 ) + α2(
2n2−n0−n1

3 )

<

= 3−ne−
1
2Vn exp

5
2
3

G
v

⟨α0 + α1τ + α2τ
2, n0 + n1τ + n2τ

2⟩
<

where we have used in the last line that ⟨1, τ⟩ = ⟨1, τ2⟩ = ⟨τ, τ2⟩ = −1/2. To conclude, simply
observe that each dxs contributes exactly 1, τ or τ2 exactly n0, n1 or n2 times respectively.
Therefore,

2

3

G
v

⟨α0 + α1τ + α2τ
2, n0 + n1τ + n2τ

2⟩ =
n−1G
s=0

⟨α(xs), dxs⟩ = Mn, (4.26)
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so that
P(α)
x (γ)

P(0)
x (γ)

= exp(Mn − 1
2Vn),

as desired.

Before we proceed with the case of constant drift let us first consider the case of drift of
gradient type.

Proof of Corollary 4.1.5. Consider a single summand ofMn. Let j be such that xs+1−xs = τ j

⟨∇TΦ(xs), xs+1 − xs⟩ = 2

3

2G
i=0

(Φ(xs + τ i)− Φ(xs))⟨τ i, τ j⟩ = (4.27)

2

3

7
Φ(xs + τ j)− Φ(xs)− 1

2
(Φ(xs + τ j+1)− Φ(xs))− 1

2
(Φ(xs + τ j+2)− Φ(xs))

>
= (4.28)

Φ(xs+1)− Φ(xs)−∆TΦ(xs). (4.29)

Telescoping the first term gives the desired result.

Remark 4.2.2. Since Theorem 4.1.4 and Corollary 4.1.5 are just statements about the random
walk on the triangular lattice, i.e. independent of the embedding of this graph, we chose to
state it for the unscaled lattice T. However, for convenience let us describe what these
results become when we scale the triangular lattice, as this will be the situation of interest
in the rest of the article. Thus, let us assume that we are given αδ : δT → R, such that
αδ(v) = δα(v) + o(δ)2. Let αδ

0, α
δ
1, α

δ
2 be associated weights such that αδ = 2

3

H2
k=0 α

δ
kτ

k

(these are defined only up to a common additive constant, as 1 + τ + τ2 = 0).
Then, as will be checked in Lemma 4.2.4, the corresponding factor β(v) (which does not

depend on the choice of the above constant) will be of order δ2. The statement of Theorem
4.1.4 remains unchanged except that one has

Mn =
n−1G
s=0

⟨δ−1αδ(xs), dxs⟩ . (4.30)

The additional factor δ−1 compared to (4.26), comes from the scaling of the triangular lattice:
in (4.26) we had used that dxs ∈ {1, τ, τ2}, but on the scaled triangular lattice one has instead
dxs
δ ∈ {1, τ, τ2}, so we need to add a factor of δ−1 to compensate. The fact that the terms in

the sum defining Mn in (4.30) are each of order δ, while the summands in the sum defining
Vn are of order δ2 is consistent with the fact that Mn converges to a stochastic integral and
Vn converges to a finite variation integral (with n of order δ−2 in both cases).

A similar remark applies to Corollary 4.1.5 when we scale the triangular lattice. The
assumption α(v) = ∇TΦ(v) becomes

αδ(v) = ∇δTφ(v) :=
2

3

2G
s=0

(φ(v + τ s)− φ(v))τ s = δ∇φ(v) + o(δ2) ,

for v ∈ δT, and smooth φ : Ω → R. Using

∆δTφ(v) :=
1

3

2G
s=0

φ(v + τ s)− φ(v) =
δ2

4
∆φ(v) + o(δ2)

in place of ∆T the statement remains unchanged.



4.2. GIRSANOV IDENTITY; PROOF OF THEOREMS 4.1.1 AND 4.1.2 137

Figure 4.4: Two samples of loop-erased random walks on the triangular lattice in a hexagon
of side-length 500. Left: no drift. Right: small drift to the right.

4.2.3 Statement of the theorem about LERW

We may now state the theorem needed for the proof of Theorem 4.1.1. Let Γδ be as in
Theorem 4.1.1 and let Ωδ denote the embedded graph on which the tree obtained from the
Temperleyan bijection lives; thus Ωδ is either a portion of the scaled square lattice or of
the (directed) triangular lattice, and is embedded within the domain Ω. With an abuse of
notation, we often identify the vertex set v(Ωδ) of Ωδ with Ωδ itself. Consider the random
walk on Ωδ arising from the weights (4.4) (resp. (4.3)). Observe that in either case, the

corresponding law is of the form P(αδ) with αδ = δα+ o(δ) does not depend on v, where α is
as in (4.5). For instance, in the case of the triangular lattice, we define αδ

k (0 ≤ k ≤ 2) by

exp(αδ
k) = ak = 1 + ckδ (4.31)

so αδ = 2
3

H2
k=0 α

δ
kτ

k = 2
3δ

H2
k=0 ckτ

k + o(δ) = δα+ o(δ).

Theorem 4.2.3. Suppose Ω is bounded and suppose αδ : Ω → R2 is independent of v and
satisfies αδ = δα+ o(δ) for some fixed α ∈ R2. Let o ∈ Ω and let oδ denote a lattice point on
Ωδ which converges to o as δ → 0. Let (γδ0 , . . . , γ

δ
T ) denote the loop-erasure of a random walk

sampled from P(αδ)

oδ
, starting from oδ killed when leaving Ωδ, and identify γδ with its linear

interpolation to get a continuous path on [0, T ]. Then as δ → 0,

γδ → γ0,

where γ0 has the following law: first, its endpoint a has the law µ
(α)
o which is the hitting

distribution of ∂Ω by a Brownian motion with drift α starting from o; furthermore, condi-
tionally given a, γ0 is a massive radial SLE2 from a to o in Ω with mass ∥α∥/√2. Here the
convergence is in the sense of uniform convergence up to reparametrisation.

Note that Theorems 4.1.1 and 4.1.2 follow directly from Theorem 4.2.3 and Temperley’s
bijection (Theorem 4.2.1). The rest of Section 4.2 will be devoted to a proof of Theorem
4.2.3. We will separate the case of the square and triangular lattices as the proofs are a little
different in each case. We first outline the main ideas. Essentially, we are able to relate at
the discrete level the loop-erasure of random walk on Ωδ with that of a massive random walk.
The relation is exact in the case of the triangular lattice and approximate in the case of the
square lattice. On the square lattice, we know by the results of Makarov and Smirnov [MS10]
(as clarified by the more recent work of Chelkak and Wan [CW19]) that the massive LERW
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converges to massive SLE2. Combined with the above-mentioned approximate relation on
the square lattice, this gives a proof of Theorem 4.2.3 in this case. The theorem of Chelkak
and Wan is however only stated for the square lattice and we will verify that their approach
can be extended to cover the directed triangular lattice as well. The lack of reversibility is a
difficulty in that case.

Let us now begin the proof of Theorem 4.2.3 for the triangular lattice, with a proof of
the fact that the loop-erased random walk has the same law as the loop-erasure of a massive
walk, once we condition on the endpoint.

Fix αδ as in the theorem, and write ak = aδk = eα
δ
k (k = 0, . . . , 2), and a = a0 + a1 + a2.

Let β(v) = βδ(v) be implicitly defined by (4.8), which as we will soon see is of order δ2, and
clearly does not depend on v. We will want to compare our walk P(α) with an appropriate
massive walk. Let m = mδ > 0 be defined by

1

3
(1− m2δ2

2
) =

3
√
a0a1a2
a

. (4.32)

(Note that m is well defined by the arithmetic-geometric mean inequality.) The mass m can
also be related to the factor β2 previously introduced in (4.8): that is,

1− m2δ2

2
= exp(−β2/3).

We now show that the mass m = mδ is non degenerate in the limit, and in fact simply
equals the norm of the drift vector α (up to a factor 1/2).

Lemma 4.2.4. Let αδ be as in Theorem 4.2.3 and β be as above. Then

β2(v) =
3

4
δ2∥α∥2 + o(δ2), (4.33)

Equivalently, if m = mδ be as in (4.32) then mδ converges as δ → 0 to ∥α∥
2 .

Proof. In fact we will directly prove the result on m. This will come from a careful second
order expansion (note however that our assumption about αδ implies only αδ = δα + o(δ)).

For k = 0, 1, 2, let us write ak = eα
δ
k = 1 + ckδ, and let s = c0 + c1 + c2, so that with these

notations a = a0 + a1 + a2 = 3 + sδ. Then starting from the identity

3
E
(1 + c0δ)(1 + c1δ)(1 + c2δ)

3 + sδ
=

1

3
(1− m2δ2

2
),

and expanding the product before doing a Taylor expansion of the left hand side as δ → 0,
we find

1 + sδ
3 + ( c0c1+c1c2+c2c0

3 − 1
9s

2)δ2 + o(δ2)

3 + sδ
=

1

3
(1− m2δ2

2
)

in other words, writing κ = c0c1+c1c2+c2c0
3 − 1

9s
2,

1

3
+

κ

3
δ2 + o(δ2) =

1

3
(1− m2δ2

2
)

from which it follows that
m2 = −2κ+ o(1).

Let us call p = c0c1 + c1c2 + c2c0, so that

κ =
p

3
− s2

9
=

p

3
− 1

9
(

2G
k=0

c2k + 2p) =
p

9
− 1

9

2G
k=0

c2k
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Now observe that since ⟨1, τ⟩ = ⟨τ, τ2⟩ = ⟨1, τ2⟩ = −1/2,

∥α∥2 = 4

9
⟨c0 + c1τ + c2τ

2, c0 + c1τ + c2τ
2⟩

= −4

9
p+

4

9

2G
k=0

c2k = −κ.

Therefore,

m2 =
1

2
∥α∥2 + o(1),

as desired.

Let ρ = ρδ = m2δ2/2, and let P(ρ) = P(ρδ) denote the law of massive random walk, which
has jump probabilities

P(ρ)(v, v + δτk) =
1

3
(1− m2δ2

2
) =

3
√
a0a1a2
a

; k = 0, . . . , 2

and which jumps to an additional ghost or cemetery vertex with probability ρδ = m2δ2/2
(in which case say that the path has died). Let P(ρ)(·|Y δ = aδ) denote the conditional law of
massive random walk, given that the walk does not die before leaving Ωδ and that the exit
point is aδ.

From Theorem 4.1.4 we get the following corollary:

Corollary 4.2.5. For each δ > 0, for each oδ ∈ Ωδ and aδ ∈ ∂Ωδ, we have

P(αδ)

oδ
(·|Yδ = aδ) = P(ρδ)

oδ
(·|Yδ = aδ).

Proof. Since αδ does not depend on v, the discrete stochastic integral can be written as

Mn =

n−1G
s=0

⟨δ−1αδ(xs), dxs⟩ = ⟨δ−1αδ, aδ − oδ⟩ (4.34)

and so does not depend on the path γδ subject to the condition Y δ = aδ. Furthermore the
mass m has been chosen so that the quadratic variation part cancels the mass term exactly:
that is,

exp(−1
2Vn) = (1− m2δ2

2
)n.

Hence the ratio of the left hand side to the right hand side is a constant, independent of the
path γδ, therefore this constant is one since both probability measures sum up to one when
we sum over all paths.

Corollary 4.2.6. Let α = αδ be as in Theorem 4.2.3 and consider the mass m as in (4.32)
and ρ = ρδ = m2δ2/2. Suppose oδ → o ∈ Ω, aδ → a ∈ ∂Ω,

P(α)

oδ

P(ρ)

oδ

(γδ) → exp(⟨α, a− o⟩).

Proof. This follows from our exact expression for (P(α)

oδ
/P(0)

oδ
)(γδ), (4.34), the already observed

fact that the quadratic variation part cancels exactly with the mass, and the fact that δ−1αδ

converges to α.
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Note that this is stated without conditioning the massive walk to hit the boundary before
dying. (This conditioning would simply add a term to the Radon-Nikodym derivative of the
previous lemma, corresponding to the probability to hit the boundary before dying.)

From Corollary 4.2.6, in particular we see that when γδ is a loop then P(α)(γδ) = P(ρ)(γδ).
Although we do not need this here, this implies that the loop measures associated with the
drifted walk P(α) and P(ρ) are identical. Since these loop measures can be used to identify the
law of loop-erased random walk (see, e.g., [LL10, Chapter 9.5]), we can use this observation
to deduce that the expression obtained in Lemma 4.2.6 can be transferred at the level of the
loop-erasure. In fact this can be proved directly as follows. If X is a lattice path, let LE(X)
denote the chronological loop-erasure of X considered up until its hitting time of ∂Ωδ (if the
path never reaches ∂Ωδ – for instance if it dies before reaching the boundary – then LE(X)
is by convention the empty path).

Lemma 4.2.7. Let γδ denote a fixed (sequence of) simple lattice paths from oδ ∈ Ωδ to
aδ ∈ ∂Ωδ, with oδ → o ∈ Ω, aδ → a ∈ ∂Ω. Then

P(α)(LE(X) = γδ)

P(ρ)(LE(X) = γδ)
→ exp(⟨α, a− o⟩).

as δ → 0.

Proof. This follows directly from Corollary 4.2.6 by summing over all ways to obtain γδ as a
loop-erasure, and noting that the expression for the Radon-Nikodym derivative in Corollary
4.2.6 depends only on the endpoints of the path, and not the rest of the path itself.

As was mentioned in the introduction, the scaling limit of massive LERW is rather well
understood, at least on the square lattice. Although the existing proofs of convergence to
massive SLE2 do not cover the case of the triangular lattice, it is possible with a bit of effort
to extend these methods to cover this case (the main issue is the lack of reversibility which is
needed to establish the crucial “resolvent identity” at the discrete level). We state the result
here, but defer its proof until later, and see how this can be used to deduce Theorem 4.2.3.

Theorem 4.2.8. Let Ωδ ⊂ δT approximate Ω with oδ ∈ Ωδ → o ∈ Ω, and let aδ be a boundary
point of Ωδ such that aδ → a ∈ ∂Ω. Consider the loop-erasure of a random walk sampled

from P(ρδ)

oδ
, started at oδ and conditioned to hit the boundary at aδ before dying, with mass

ρδ = m2δ2/2, where m = mδ → m, converges in law to radial massive SLE2 from a to o with
mass m.

Since the exit distribution of massive LERW from Ωδ, conditional on exiting this domain
before dying, has a limit as δ → 0 (the “massive harmonic measure” on ∂Ω), and since the
law of radial massive SLE2 from a ∈ ∂Ω to o ∈ Ω is continuous with respect to a, we deduce
from this theorem that the scaling limit holds even if we do not condition on the exit point
aδ of the random walk, and simply condition on not dying before reaching the boundary.

The proof of Theorem 4.2.8 is deferred to Section 4.3. For now, we see how this immedi-
ately implies Theorem 4.2.3 for the triangular lattice.

Proof of Theorem 4.2.3. This will follow rather simply from Lemma 4.2.7, the fact that the
expression for the Radon-Nikodym derivative is well-behaved, and the fact that the extinction
probability for the massive walk converges to some nontrivial probability bounded away from
zero and one as δ → 0. Indeed, since Ω is bounded, the function exp(⟨α, a − o⟩), viewed
as a function of the endpoint a ∈ ∂Ω, is a bounded continuous functional on path space.
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Therefore, if F is another arbitrary such functional, then letting σδ be the hitting time of
∂Ωδ by Xδ,

E(αδ)

oδ
[F (LE(Xδ))] = E(ρδ)

oδ

�
F (LE(Xδ)) exp(⟨α+ o(1), Yδ − oδ⟩)

KKKσδ < ∞
!
P(ρδ)

oδ
(σδ < ∞)

→ EmSLE2
o [F (γ) exp(⟨α, Y − o⟩)] p(o),

where EmSLE2
o denote the law of a massive radial SLE2 started from massive harmonic measure

on ∂Ω (a point which we denote by Y ), towards o, and p(o) is the survival probability
for massive Brownian motion in Ω starting from o, killed at rate ρ = m2 = ∥α∥2/2, i.e.,
p(o) = P(ρ)

o (σ < ∞) = EBM
o (exp(−∥α∥2σ/2)) with σ the exit time from Ω. The rest of the

result follows immediately by specifying F to be a continuous function of the endpoint Yδ.

4.2.4 Discrete Girsanov on the square lattice

Now let us consider the case of the square lattice, so Ωδ is a portion of δZ2 which approximates
Ω in the sense discussed above. Our first task is to define precisely what we mean by P(αδ).
Let ck : Ω

δ → R be bounded functions for k = 0, . . . , 3, satisfying c0 + c2 = c1 + c3 at each
vertex v ∈ Ωδ. Then P(αδ) is the law of the Markov chain on Ωδ whose jump probabilities
from the vertex v ∈ Ωδ are given by

P(αδ)(v, v + δik) =
ak(v)

a(v)
k = 0, . . . , 3 , (4.35)

where

a(v) =

3G
k=0

ak(v) and ak(v) = 1 + ck(v)δ, for k = 0, . . . , 3, v ∈ Ωδ.

And define α = αδ via

αδ(v) =
1

2

3G
k=0

ak(v)i
k =

δ

2

3G
k=0

ck(v)i
k ∈ C ≃ R2.

Again αδ does not determine the ck uniquely, but only up to global shift, which does not
influence the limit of the law, so that our notation P(αδ) is justified.

Together these assumptions guarantee that, if ck(v) is given by some fixed Lipschitz
function ck : Ω → R evaluated at v ∈ Ωδ ⊂ Ω, then αδ = δα+o(δ), where α = (1/2)

H3
k=0 cki

k.
(This is in particular the situation of interest for Theorem 4.1.1, where ck are in fact constant).
Thus α is itself a Lipschitz vector field defined on all of Ω; this random walk converges to a
Brownian motion with drift α under the same scaling as discussed in Section 4.1.9.

Again fix γδ = (x0, . . . , xn) a given path, this time on the square lattice, starting from
some point x0 = oδ ∈ Ωδ of some length n = N(γδ). Define αδ

k(v) ∈ R, k = 0, . . . , 3 by

exp(αk) = ak = 1 + ckδ. (4.36)

Define also (for i = 1, 2), βi = βδ
i (v) ≥ 0 by

exp(−β2
i ) =

ai−1ai+1

(a/4)2
.

Note that β1 is well defined by the arithmetic-geometric mean inequality since for i = 1, 2,

a

4
= 1 +

1

4

3G
k=0

ckδ = 1 + 1
2(ci−1δ + ci+1δ) =

ai−1 + ai+1

2
,
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where we used the assumption that c0 + c2 = c1 + c3. We will then denote by β ∈ R2 the
vector β = (β1, β2).

The next lemma gives the Girsanov identity in the case of the square lattice, which for
conciseness we only give on the scaled lattice.

Lemma 4.2.9. On the square lattice, we have

P(αδ)
z (γδ)

P(0)
z (γδ)

= exp(Mn − 1
2Vn), (4.37)

where Mn and Vn can be written as

Mn =
n−1G
s=0

δ−1⟨α(xs); dxs⟩ and Vn =
n−1G
s=0

δ−2∥β(xs)⊙ dxs∥2

where a ⊙ b is the Hadamard product of the vectors a = (a1, a2) and b = (b1, b2), whose
coordinate are aibi (i = 1, 2). Explicitly, Vn = δ−2

Hn−1
s=0 β1(xs)

2|dx1s|2 + β2(xs)
2|dx2s|2.

Proof. Denote for a given path γδ of length n whose starting point is z, by n0(v), . . . , n3(v)
the number of steps of the walk from v and going in the direct 1, i,−1,−i respectively.

P(α)
z (γδ) (4.38)

=
B

v∈v(Ωδ)

a
n0(v)
0 a

n1(v)
1 a

n2(v)
2 a

n3(v)
3 a−n

= 4−n
B

v∈v(Ωδ)

7
a0
a2

>n0−n2
2

7
a1
a3

>n1−n3
2

7
a0a2
(a/4)2

>n0+n2
2

7
a1a3
(a/4)2

>n1+n3
2

= 4−n exp

 G
v∈v(Ωδ)

(α0 − α2)
n0 − n2

2
+ (α1 − α3)

n1 − n3

2
− β2

1

n0 + n2

2
− β2

2

n1 + n3

2


= 4−n exp(Mn − 1

2Vn), (4.39)

where in the last step we used that for each step of the walk in direction 1, i,−1 or −i the left
two summands contribute 1/2 times α0−α2, α1−α3, α2−α0 or α3−α1 respectively, whereas
the right two summands contribute 1/2 times β2

1 or β2
2 depending on whether the displacement

is horizontal or vertical. This leads to the expressions for Mn and Vn respectively. The
negative powers of δ in the expressions of Mn and Vn compensate the length of dxs.

We can again compare P(α) with an appropriate massive random walk. Let m = mδ =
mδ(v) > 0 be defined by:

1
4(1−

m2δ2

2
) =

4
√
a0a1a2a3

a
Note that this choice of m also satisfies:

(1− m2δ2

2
) = exp(−β2

1 + β2
2

4
).

We will see below that in the situation of interest for Theorem 4.2.3 (and so in particular for
Theorem 4.1.1) β2

i will indeed be of order δ2.
Let ρ = ρδ(v) = m2δ2/2 and let P(ρ) be the law of the massive random walk, which has

jump probabilities

P(ρ)(v, v + δik) = 1
4(1−

m2δ2

2
), for k = 0 . . . , 3
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and which jumps to an additional ghost or cemetery vertex with probability m2δ2

2 (in which

case we say that the path has died). Let P(ρ)(·|Yδ = aδ)) denote the conditional law of the
massive random walk, given that the walk does not die before leaving Ωδ and that the exit
point is aδ.

Lemma 4.2.10. Suppose αδ does not depend on v and αδ = δα + o(δ), or equivalently ck
converges as δ → 0 for k = 0, . . . , 3. Then for i = 1, 2

β2
i = 1

4(ci−1 − ci+1)
2δ2 + o(δ2).

In particular δ−2∥β∥2 converges as δ → 0. Furthermore,

m2 → ∥α∥2
2 .

Proof. Note that by definition, for i = 1, 2,

e−β2
i =

ai−1ai+1

(a/4)2
=

(1 + ci−1δ)(1 + ci+1δ)

(1 + ci−1+ci+1

2 δ)2
= 1− 1

4(ci−1 − ci+1)
2δ2 + o(δ2),

as desired. Now,

1− m2δ2

2
= exp(−β2

1+β2
2

4 ) = exp
4
− δ2

16

4
(c2 − c0)

2 + (c3 − c1)
2
;;

so that
m2 = 1

8

4
(c2 − c0)

2 + (c3 − c1)
2
;
+ o(δ2).

On the other hand, α = 1
2

H3
k=0 cki

k = ((c2 − c0)/2, (c3 − c1)/2) so that

∥α∥2 = 1
4((c2 − c0)

2 + (c3 − c1)
2),

which concludes the proof.

While an exact connection between massive random walk and the random walk with
drift conditioned on the exit point holds only for the triangular lattice, a similar statement
holds asymptotically also for the square lattice. To establish the connection between the two
random walks we first prove the following lemma:

Lemma 4.2.11. Fix αδ = δα+ o(δ), where α ∈ R2 is fixed. Let σ = σδ be the first time the
random walk leaves the domain Ωδ and θ < 1. Then uniformly over zδ ∈ Ωδ:

P(αδ)
zδ

(|Vσ − σ
∥β∥2
2

| > δθ) → 0,

as δ → 0. In particular this holds also under P(0)
zδ .

Proof. Since (Xδ
2δ−2t)t≥0 converges to Brownian motion with drift α ∈ R2, σ = σδ is of order

δ−2 and fluctuates on that scale, i.e. the distribution of δ2σδ has a nontrivial weak limit,
which simply is the law of the exit time σ of Ω by a Brownian motion with drift α (let P(α)

denote its law).

Let ϵ > 0. Choose K large enough that P(α)
z (σ > K) < ϵ uniformly over z ∈ Ω. For δ

small enough it follows by compactness that

P(αδ)
zδ

(σ > Kδ−2) < 2ϵ.
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At each step, the walk takes a horizontal or a vertical step, each with probability 1
2 (since

c0 + c2 = c1 + c3). Therefore Qn := Vn − n
β2
1+β2

2
2 = Vn − n∥β∥2/2 is a martingale with

increment jumps uniformly bounded by O(δ2) by Lemma 4.2.10.

Hence qn = δ−2Qn is a martingale with bounded increments, and we are interested in the
terminal value of Qn at the stopping time σ = σδ. Using Freedman’s martingale inequality
(Proposition (2.1) in [Fre75]), we conclude

P(αδ)
zδ

(|Qσδ | > δθ) ≤ P(αδ)
zδ

(σ > Kδ−2) + P(αδ)
zδ

(|qσ| > δθ−2;σ ≤ Kδ−2)

≤ 2ϵ+ exp(− δ2θ−4

2(Cδθ−2 +Kδ−2)
)

≤ 2ϵ+ exp(−cδ2θ−2),

where c depends only on K and θ (and hence only on ϵ and θ) but not on δ. The lemma
follows since θ < 1.

This allows us to prove the analogue of Corollary 4.2.6:

Corollary 4.2.12. Let γδ be a path in Ωδ from oδ ∈ Ωδ. Then if oδ → o ∈ Ω and aδ → a ∈ ∂Ω

P(αδ)

oδ
(γδ)

P(ρδ)

oδ
(γδ)

→ exp(⟨(a− o), α⟩),

in probability as δ goes to 0, under either the law P(ρδ)(·|Yδ = aδ) or P(αδ)(·|Yδ = aδ).

Proof. By 4.2.9 we have that the ratio satisfies:

P(αδ)

oδ
(γδ)

P(ρδ)

oδ
(γδ)

= exp(Mn − 1
2Vn + n

∥β∥2
4

) = exp(Mn) exp

7
1
2(n

∥β∥2
2

− Vn)

>
.

Since we are only considering paths that do not die before reaching their endpoint, Lemma
4.2.11 applies and the second term converges in probability to 1 with respect to P(αδ) since
the term in the exponential converges to 0 in probability.

On the other hand, as in the triangular case, since αδ does not depend on v, Mn =
⟨δ−1αδ, aδ − oδ⟩, which converges to ⟨α, a− o⟩ under our assumptions.

Remark 4.2.13. Note in particular that if Gδ is the good event

Gδ := {|Vσ − σ
∥β∥2
2

| ≤ δθ},

then we have learnt that on Gδ we may write

P(αδ)

oδ
(γδ)

P(ρδ)

oδ
(γδ)

= (1 + o(1)) exp(⟨(a− o), α⟩),

where the o(1) term is nonrandom. Note that since P(ρδ)(Gδ|Yδ = aδ) → 1 this implies that
Lemma 4.2.7 also holds on the square lattice.

With this proposition we can now conclude to the proof of Theorem 4.2.3 in the case of
the square lattice.
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Proof of Theorem 4.2.3, square lattice case. Let F be a bounded continuous functional on
curves in Ω (for the topology of uniform convergence of paths up to reparametrisation).
Let o, a and oδ, aδ be as in Corollary 4.2.12. Let γδ denote the random walk with jump
probabilities given by (4.35) and let σδ denote the first time γδ leaves Ωδ. Let LE(γδ) denote
the chronological loop-erasure of γδ. We want to show that

E(αδ)

oδ
[F (LE(γδ))] →

1
a∈∂Ω

EmSLE2
o;a [F (γ)]µ(α)

o (da) (4.40)

where EmSLE2
o;a is the law of massive radial SLE2 between a and o in Ω, with massm = ∥α∥/√2,

and µ
(α)
o (dy) denote the hitting distribution of Brownian motion with drift α of ∂Ω from o.

Then

E(αδ)

oδ
[F (LE(γδ))] = E(αδ)

oδ
[F (LE(γδ)1Gδ

] + o(1)

= E(ρδ)

oδ
[F (LE(γδ))1Gδ∩{σδ<∞}(1 + o(1)) exp(⟨α, γδσδ − oδ⟩)] + o(1)

= (1 + o(1))E(ρδ)

oδ
[F (LE(γδ)1{σδ<∞} exp(⟨α, γδσδ − oδ⟩)] + o(1)

by Remark 4.2.13. Now, using Lemma 4.2.10, by [CW19, Theorem 1.1], and since γδ
σδ is a

bounded, a.s. continuous functional of γδ (when Ω is bounded), we find

E(αδ)

oδ
[F (LE(γδ))] → p(ρ)(o)

1
a∈∂Ω

EmSLE2
o;a [F (γ) exp(⟨α, a− o⟩)]µ(ρ)

o (da),

where µ
(ρ)
o is the law of Xσ under P(ρ)

o , conditioned on σ < ∞ and p(ρ)(o) is the probability
of this event.

Taking F to be a function of γδ
σδ only, we see that1

a∈∂Ω
F (a)µ(α)

o (da) = p(ρ)(o)

1
a∈∂Ω

F (a) exp(⟨α, a− o⟩)µ(ρ)
o (da),

so that
µ(α)
o (da) = p(ρ)(o) exp(⟨α, a− o⟩)µ(ρ)

o (da)

almost everywhere with respect to µ
(ρ)
o . This proves (4.40) and hence Theorem 4.2.3 in the

case of the square lattice.

Remark 4.2.14. If we had not assumed c0 + c2 = c1 + c3 we could not write the “quadratic
variation term” Vn in the form of a sum along the path of positive terms of type β2

k, k = 1, 2.
Even if we don’t insist on the positivity of these terms and try to analyse the limiting
behaviour, we find that Vn is the sum of terms of order δ rather than δ2. The first order
contribution however cancels out on the large scale and we do get a term of order 1 when n is
of order δ−2, but it does not seem that this term can easily be interpreted as a massive term;
in particular it seems it might not be concentrated at a fixed time n ≈ tδ−2. In other words,
the Radon-Nikodym dervative of the random walk with drift with respect to the massive
random walk picks up a non-trivial contribution due to the walk taking more horizontal or
vertical steps, even though the proportion of those steps behaves like 1

2 + cδ.

4.3 Convergence of massive LERW on the triangular lattice

In [LSW01] Lawler, Schramm and Werner proved that the scaling limit of the loop-erased
random walk in a simply connected domain on the square lattice converges to radial SLE2.
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While the proof is written for the LERW on the square grid, in the last chapter it is mentioned
that the proof can be adapted to more general setups; the random walk on the directed
triangular lattice is explicitly mentioned as an example of an irreversible random walk to
which the proof applies. In [MS10] Makarov and Smirnov proposed a strategy for proving
convergence of the massive LERW to massive SLE2 building in part on ideas coming from
Conformal Field Theory (see [BBC09, BBK08]). This strategy was then successfully followed
by Chelkak and Wan in [CW19], using a framework for convergence to SLE developed by
Kemppainen and Smirnov in [KS17] and a recent addition [Kar18] by Karilla. We show in
this section that the arguments of Chelkak and Wan in [CW19] can be adapted to the directed
triangular lattice which will imply a proof of Theorem 4.2.8. The additional difficulty here is
the lack of reversibility, which is crucially used to derive a discrete “resolvent identity” and
is the heart of the proof in [CW19]; see in particular Proposition 4.3.12 below. We note that
a more general proof (but requiring quite a bit more work) will be given in Section 4.4, so
that this section could be skipped by the reader.

In order to stay close to the notations of [CW19] we will use, in this section only, the
notation P(m) (instead of P(ρ)) for the massive random walk which dies with probability
m2δ2/2 at each step; likewise partition functions will be denoted e.g. by Z(m), as we will see
below.

4.3.1 Convergence of domains and curves

For each discrete domain Ωδ ⊂ δT we associate a polygonal domain Ω̂δ ⊂ C which is the
union of open hexagons with side length δ centered at vertices of Ωδ. Notice that vertices of

δT on the boundary of Ω̂δ are exactly vertices on the outer vertex boundary of Ωδ.

We will assume that Ω̂δ converges to Ω in the Carathéodory topology and if this is the

case write, that Ωδ approximates Ω. This means that each inner point of Ω belongs to Ω̂δ

for small enough δ and each boundary point of Ω can be approximated by boundery points
of Ωδ, see, e.g., [Pom92]. Further, we assume that 0 ∈ Ωδ for each δ and we have a point

aδ ∈ ∂Ωδ which converges to a ∈ ∂Ω. Let ψ
Ω̂δ : Ω̂

δ → D be the unique conformal map such

that ψ
Ω̂δ(o) = 0 and ψ

Ω̂δ(a
δ) = 1. Then it can be seen (see, e.g., [Pom92]) that Carathéodory

convergence is equivalent to the uniform convergence on compacts of ψ
Ω̂δ and ψ−1

Ω̂δ
to ψΩ and

ψ−1
Ω respectively.

The main theorem of [KS17] states that if a family Σ of measures of random curves satisfies
a certain annulus crossing condition, then the family is tight and furthermore, if Pn ∈ Σ is
a weakly converging subsequence then its limit is a random Loewner chain. Moreover if
(W (n))n∈N are the driving processes of the random curves (γ(n))n∈N that satisfy the annulus
crossing condition which are parametrized by capacity then:

• (W (n))n∈N is tight in the space of continuous functions on [0,∞) with the topology of
uniform convergence on compact subsets.

• (γ(n))n∈N is tight in the space of curves up to reparametrization with the supremum
norm.

If the sequence converges in either of the topologies it also converges in the other one and
the limit of the driving processes is the driving process of the limiting random curve.

That the annulus crossing condition is satisfied is checked for a chordal loop-erased random
walk in [KS17, Section 4.5] with a remark that the radial case is equivalent to calculations in
[LSW01].



4.3. CONVERGENCE OF MASSIVE LERW ON THE TRIANGULAR LATTICE 147

4.3.2 Absolute continuity with respect to classical SLE2

Let 0 < δ < m−1 ≤ ∞. Here, m is the mass, which we allow to be zero and δ is the scale. We
consider subgraphs Ωδ of the scaled triangular lattice δT, which approximate some domain
Ω ∈ C. Given such δ,m,Ωδ as well as two vertices wδ, zδ we define the partition function of
the massive random walk:

Z
(m)

Ωδ (wδ, zδ) :=
G

πδ∈S(wδ ,zδ)

7
1

3
(1− m2δ2

2
)

>#πδ

, (4.41)

where the sum is over all possible paths πδ from wδ to zδ remaining in Ωδ. If m = 0 this
corresponds to the classical random walk and we drop the superscript (m); thus

ZΩδ(wδ, zδ) = Z
(0)

Ωδ (w
δ, zδ).

If wδ is an interior vertex and zδ is a vertex on the boundary, this is the probability that
a random walk with killing rate m2δ2

2 started at wδ leaves the boundary at zδ without any
conditioning. More generally, ZΩδ(wδ, zδ) is the discrete massive Green function, i.e.
the expected number of visits to zδ starting from wδ before hitting the boundary or being

killed. Note that, because of the directed edges in general Z
(m)

Ωδ (wδ, zδ) ̸= Z
(m)

Ωδ (zδ, wδ). In
the limit however, we will see (in section 4.3.3) that equality holds.

To apply the tightness results to the massive case we first need some estimates on this par-
tition function, which are similar (but easier in some respects) as Lemma 2.4 and Proposition
2.5 in [CW19].

Proposition 4.3.1. For each domain Ωδ with Ωδ ⊂ B(0, 1), for each ε > 0 there exists
c > 0 (depending only on ε > 0) such that the following holds. For each interior point vδ at
distance at least ε > 0, and for each boundary point bδ, δ ≤ 1

2m
−1, one has

Z
(m)

Ωδ (vδ, bδ)

ZΩδ(vδ, bδ)
≥ exp(−cm2).

Proof. We proceed as in the proof of Proposition 2.5 in [CW19]. By Jensen’s inequality (since

1− m2δ2

2 ≥ 0):

Z
(m)

Ωδ (vδ, bδ)

ZΩδ(vδ, bδ)
= E

7
(1− m2δ2

2
)#πδ

>
≥ (1− m2δ2

2
)E(#πδ),

where the expectation is for a classical random walk π started at vδ conditioned to leave at
bδ. Therefore it suffices to show

E(#πδ) ≤ const · δ−2. (4.42)

In the chordal context of [CW19], where this needs to be proved for a random walk excursion
from the boundary point aδ to the boundary point bδ, this is the content of Lemma 2.4 in
[CW19] (in fact that Lemma is even more precise, since it bounds the expected time spent
at any given point by a constant). This is done by referencing [Che16], which also works in
the directed triangular lattice, as this random walk also satisfies conditions (S) and (T) in
[Che16]. Rather than adapting the arguments of [Che16] to our radial context, let us give
a brief argument which shows how the chordal estimate (Lemma 2.4 in [CW19]) implies the
desired radial estimate (4.42). Let ε > 0 be such that vδ is at distance at least ε > 0 from the
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boundary. Let uδ be another interior point, also at distance at least ε > 0 from the boundary.
Let Puδ→bδ denote the law of simple random random walk, conditioned to leave Ωδ through
bδ. Our first observation is that

dPuδ→bδ

dPvδ→bδ
≤ C (4.43)

for a constant C depending only on ε > 0. Indeed, by first computing the Radon–Nikodym
derivative with respect to simple random walk as a Doob h-transform, we see that the left
hand side is simply Puδ(Xσ

Ωδ
= bδ)/Pvδ(Xσ

Ωδ
= bδ), where σΩδ is the hitting time of the

boundary. This ratio is easily seen to be bounded by a constant depending only on ε (but
otherwise independent of uδ, vδ). Indeed, it suffices to show that the walks beginning at vδ

and at uδ can be coupled by requiring the walk from uδ to make a loop around vδ without
leaving Ωδ (an event of positive probability even when we condition on Xσ

Ωδ
= bδ, see e.g.

Corollary 4.5 in [BLR20] – here we use the fact that Ωδ is assumed to be contained in the
unit ball). This immediately implies (4.43).

Let us now see how (4.43) and Lemma 2.4 in [CW19] imply (4.42). Fix a boundary point
aδ at distance at least ε > 0 from bδ. Let σε denote the first time that a given trajectory (we
will use the random walk excursion Y from aδ to bδ) is at distance ε from the boundary, and
note that Paδ→bδ(σε < ∞) ≥ c uniformly (which also follows from Lemma 2.4 in [CW19],
where it is noted explicitly that the expected amount of time spent at a point is comparable to
the probability to visit a macroscopic ball). Furthermore, given σε < ∞, and given Yσε = uδ,
the Markov property (for the excursion Y ) implies that the remainder of the trajectory of Y
is distributed according to Puδ→bδ . We deduce (by neglecting the amount of time spent by Y
until σε):

Eaδ→bδ(σ
δ
Ω) ≥ Eaδ→bδ(σ

δ
Ω;σε < ∞)

≥ Eaδ→bδ [1σε<∞Euδ→bδ(σ
δ
Ω)|uδ=Yσε

]

≥ Paδ→bδ(σε < ∞)C−1Evδ→bδ(σ
δ
Ω)

≥ cEvδ→bδ(σ
δ
Ω)

where C is as in (4.43) and the value of c changes from line to line, but always depends only
on ε. Since the left hand side is bounded above by c−1δ−2, (4.42) follows.

From this (just as in [CW19, Section 2.5]) it follows that the densities of massive LERW
with respect to classical LERW are uniformly bounded from above by exp(cm2R2) and thus
the tightness of the law of massive LERW follows. Also, (as in [CW19, Section 2.6]) it follows

that each subsequential limit of P(m)

Ωδ is absolutely continuous with respect to the SLE2 on Ω.
Thus we can use Girsanov’s theorem to find the driving term of ξt of the Loewner evolution

under P(m)

Ωδ .

4.3.3 Convergence of the Green function

In this section we prove the convergence of Z
(m)

Ωδ (u, v) to a multiple of the massive Green

function G(m)(u, v). To do so we will show that G(m)(u, ·) is precompact in a suitable space
of functions, and we will show that any subsequential limit must satisfy the following three
properties:

G(m)(u, ·) = 0 on the boundary of Ω, (4.44)

(−1
2∆+m2)G(m)(u, ·) = 0 away from u, and (4.45)

G(m)(u, v) =
1

π
log(|u− v|−1) +O(1) as v → u. (4.46)
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As we will see, these three properties uniquely characterise the the (continuous) massive
Green function; from this the desired convergence will follow immediately. The second
condition is that G(u, ·) is a massive harmonic function. It will be useful to appeal to the
discrete notion of massive harmonicity: given m ≥ 0 we call a function H massive discrete
harmonic at v ∈ δT if

H(v) =
1

3
(1− m2δ2

2
)

G
w∈δT:w∼v

H(w). (4.47)

Remark 4.3.2. Note that discrete massive harmonic functions with mass m correspond to
massive harmonic functions in the sense of (4.45). Indeed, the graph Laplacian approximates
1
4∆ as δ → 0 and thus a limit h of massive harmonic functions hδ on δT satisfies

(
1

4
∆− m2

2
)h =

1

2
(
1

2
∆−m2)h = 0 .

This is precisely the reason for the factor 1
2 in the definitions of the massive random walk.

H being a discrete massive harmonic function is equivalent to being discrete harmonic on
the augmented graph where every vertex is connected to an additional cemetery point, where
the transition probability to the cemetery is m2δ2

2 from every point; and the value of H at
the cemetery point being 0. We immediately deduce:

Lemma 4.3.3. Let Ωδ be a bounded domain in δT and (Xn)n∈N be a massive random walk

with mass m2δ2

2 . Let H be a bounded real valued function defined on Ωδ ∪ ∂Ωδ and massive

discrete harmonic at every point of Ωδ. Denote by P(m)
v the law of this walk started at v and

by E(m)
v the corresponding expectation. Let σΩδ be the hitting time of the boundary and let σ∗

denote the killing time, or hitting time of the cemetery state. Then

H(v) = E(m)
v

4
H(Xσ

∂Ωδ
)1{σ∗>σ

Ωδ}
;
.

The above statement needs to be interpreted carefully as we defined the boundary ∂Ωδ to
be the edge boundary, that is, pairs (y1, y2) of vertices such that exactly one of these vertices
(say y1) lies in Ωδ. In the above statement, we abusively identify ∂Ωδ with the outer vertex
boundary (i.e., the vertices of the form y2 where (y1, y2) is a boundary edge such that y1 ∈ Ωδ

but y2 /∈ Ωδ). Now we can prove the uniqueness of the Green function:

Lemma 4.3.4. For each u ∈ Ω and k ∈ R+ there is exactly one function G(u, ·) : Ω → R
that is massive harmonic away from u, 0 on the boundary, and satisfies

G(u, ·) = k log(|u− v|−1) + o(log |u− v||) as v → u.

Proof. Let h and g be two such functions. Then f := h − g is a massive harmonic function
that is massive harmonic away from u, 0 on the boundary, and

f(v) = o(log(|u− v|))
as v → u. Fix x ̸= u ∈ Ω and let P(m)

x be the law of massive Brownian motion with mass
m started at x: thus if σ∗ denote an exponential random variable with rate m2 then by
definition

E(m)
x (f(Bt)) = Ex(f(Bt)1{σ∗>t}).

Since f is massive harmonic, Mt = f(Bt)1{σ∗>t} is a P(m)
x -local martingale. Let r > 0, B(u, r)

be the disk of radius r, σr the hitting time of B(u, r) and σΩ the hitting time of ∂Ω. It is a
well known fact about Brownian motion that the probability that

Px(σr < σΩ) ≲ 1/ log(1/r),
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as r → 0. (This can be seen by applying the optional stopping theorem to the Px-local
martingale log |Bt − u|, see for example [LG16]). By applying the optional stopping theorem

to M under P(m)
x (which is justified since f is smooth and hence bounded away from u, as Ω

is bounded) we obtain:

f(x) = E(m)(Mσr∧σΩ).

The only contribution comes from the event σr < min(σ∗, σΩ) since if either of these two
stopping times occur before σr then the martingale is equal to zero. Hence

f(x) = Ex(f(Bσr)1σr<min(σ∗,σΩ))

But f(Bσr) = o(log(r)) by assumption on f , and

Px(σr < min(σ∗, σΩ)) ≤ Px(σr < σΩ) ≲ 1/ log(1/r).

Hence letting r → 0 we see that f(x) = 0. Since x was arbitrary, we deduce f = 0 and hence
g = h, as desired.

(The existence of a function satisfying (4.44), (4.45) and (4.46) follows from the result
in [CW19], or the convergence result below.) In order to prove convergence of the discrete

Green function Z
(m)

Ωδ (u, v) to G(m)(u, v) we will show precompactness and identify the limit
ultimately via Lemma 4.3.4. The following lemma will be useful for the existence of sub-
sequential limits:

Lemma 4.3.5. There are constants C and β depending on m such that for all positive massive
harmonic functions H defined in B(v0, 2r)∩δT with r ≤ m−1 and for all v1, v2 ∈ B(v0, r)∩δT
one has:

|H(v1)−H(v2)| ≤ C(|v2 − v1|/r)β max(H(v)).

Proof. Essentially, one can follow the argument of [CW19, Lemma 3.10]. Its proof relies on
the following estimate: for any annulus A = A(v0, r, 2r), let E(A) be the event that Xn makes
a non-trivial loop around in the annulus before leaving it and before dying, i.e. there are
0 < s < t < σA such that X[s, t] disconnects v0 from ∞; and σ∗ > σA. Then there exists a
positive constant c > 0independent of δ, r, v0, and v such that:

P(m)
v (E(A(v0, r, 2r))) ≥ c, (4.48)

for all 8δ < r ≤ m−1 and all v ∈ δT such that 3
2r − δ ≤ |v0 − v| ≤ 3

2r + δ. This needs to be
established in our directed context, which is not covered explicitly by [CW19]. To see this,
simply observe that we can in fact also require σA ≤ Mr2δ−2 for some large M . Then

P(m)
v (E(A)) ≥ P(m)

v (E(A);σA ≤ Mδ−2r2)

≥ P(0)
v (E(A);σA ≤ Mδ−2r2)(1− m2δ2

2
)Mδ−2r2

≥ exp(−(M/2)r2)[P(0)(E(A))− P(0)(σA > Mδ−2r2)]

It is well known and easy to see that P(0)(E(A)) is bounded away from 0 (by convergence
to Brownian motion) and the second term can be made arbitrarily small by choosing M
sufficiently large. The result follows.

Finally, for the estimate we also need the following lemma about convergence of the
conditioned (non-massive) random walk to a Brownian bridge:



4.3. CONVERGENCE OF MASSIVE LERW ON THE TRIANGULAR LATTICE 151

Lemma 4.3.6. Let t > 0. Let Xδ
n be the simple random walk on δT started at xδ converging

to x. Let yδ ∈ δT approximate y in such a way that for any δ > 0 it is always possible to
go from xδ to yδ in ⌊δ−2t⌋ steps with positive probability. Then the law of (Xδ

⌊δ−2s⌋)s∈[0,t]
conditioned on Xδ

⌊δ−2c⌋ = yδ converges to the law of the Brownian bridge (bs)s∈[0,t] from x to
y of duration t > 0.

Proof. We interpolate linearly between vertices to consider (Xδ
⌊δ−2s⌋)s∈[0,t] as a continuous

function on [0, t]. Let (Sδ
s)0≤s≤t be this interpolation. Fix u = 2t/3, and let us first show that

(Sδ)0≤s≤u converges to (bs)0≤s≤u. Fix F : C([0, u]) → R be a bounded continuous functional.
Then the conditioning Sδ

t = yδ weights every path (Sδ
s)s∈[0,u] by how likely it is to go to yδ

from Sδ
u. Thus the conditional expectation of the functional can be rewritten as:

Exδ(F ((Sδ
s)s∈[0,u])|Sδ

t = yδ) = Exδ

7
F ((Sδ

s)s∈[0,u])
Pxδ(Sδ

t = yδ|Sδ
u)

Pxδ(Sδ
t = yδ)

>
. (4.49)

The probability in the numerator can be written as Pzδ(S
δ
t/3 = yδ), with zδ = Sδ

u. The ratio
of probabilities therefore converges and the limit is

E(F ((Bs)s∈[0,u])
φ(y−Bu

t−u )

φ(yt )
) = E(F ((bs)0≤s≤u)),

where φ is the density of a two-dimensional standard normal random variable. Applying the
same argument but in the other direction of time (from t to t− u = t/3), the time-reversed
random walk Ŝ is distinct but the same argument applies to it. We deduce that

Exδ(F ((Sδ
t−s)s∈[0,u])|Sδ

t = yδ) = Eyδ [F (Ŝδ
s)0≤s≤u|Ŝδ

t = xδ)

→ E[F ((b̂s)0≤s≤u)] = E[F ((bt−s)0≤s≤u)]

where b̂ is a Brownian bridge of duration t from y to x, and we used the reversibility of
Brownian bridge. Altogether this proves the lemma.

We will use this to approximate the probability that a random walk conditioned on the
point at time n leaves a domain by the corresponding probability for the Brownian motion.

Corollary 4.3.7. Let Ωδ approximate a domain Ω ∈ C and xδ, yδ approximate x, y in Ω.
Let Px→y;t denote the law of a Brownian bridge of duration t from x to y. For any t > 0,

Pδ
xδ(σΩδ > tδ−2|Xδ

⌊tδ−2⌋ = yδ) → Px,y(t) := Px→y;t(σΩ > t)

Suppose x, y are fixed. When t is small the Brownian bridge of duration t is close to a
straight line segment [x, y]. If the latter is contained in Ω then it is very likely that the bridge
did not leave Ω by time t. This can be made rigorous through the following lemma.

Lemma 4.3.8. Let Px,y(t) be as above. Assume that the line between x and y is in Ω. Then:

lim
t→0

Px,y(t) = 1.

Furthermore, Px,y is a continuous function of t.

Proof. Let (bs)s∈[0,t] be the Brownian bridge from x to y of duration t. A well known rep-
resentation of the Brownian bridge is bs = x + (y − x) st +Ws − s

tWt, where (Ws)s∈[0,t] is a



152 CHAPTER 4. NEAR-CRITICAL DIMERS AND MASSIVE SLE2

standard two dimensional Brownian motion started at 0. By rescaling the time to the interval
[0, 1] we get b̂t = btc for t in [0, 1], which satisfies:

b̂s = x+ (y − x)s+Wst − sWt.

As t → 0 the second term Wst − sWt converges to 0 in probability as t → 0, uniformly in s.
Since Ω is an open set and hence also contains an open set around the line from x to y this
implies that Px,y(t) converges to 1.

It is also useful to recall the following elementary estimate which can be obtained e.g. by
Stirling’s approximation (or from computing the Fourier transform):

Lemma 4.3.9. Let xδ and yδ ∈ δT be sequences of lattice points. Then there exists a constant
C < ∞ independent of xδ, yδ, δ and n such that

Pxδ(Xn = yδ) ≤ C

n
(4.50)

for some universal constant C > 0.

Lemma 4.3.10. Let x, y ∈ C and xδ, yδ = xδ + aδ + bδτ ∈ Ωδ such that xδ → x and yδ → y
and that n− a− b is divisible by 3. Then

3−n

7
n

n− a− b, n− a+ 2b, n+ 2a− b

>
=

√
27

2πn
exp(−|x− y|2

δ2n
)(1 +O(δ)). (4.51)

where the error is uniform in xδ, yδ and δ, n such that |x − y|2δ−2 < n < Mδ−2 for some
constant M .

Proof. Since yδ − xδ → y − x we have that a and b are of order δ−1. Because the domains
are bounded they are uniformly of this order. Therefore all entries in the multinomial coeffi-
cient are uniformly of order δ−2 and we can apply Stirling’s approximation to all appearing
factorials to obtain that the multinomial coefficient equals:

nn
√
2πn

(n−a−b
3 )

n−a−b
3 (n+2a−b

3 )
n+2a−b

3 (n−a+2b
3 )

n−a+2b
3 (

E
2πn/3)33n

(1 +O(δ2))

=

√
27

2πn

7
(1 +

−a− b

n
)(1 +

2a− b

n
)(1 +

−a+ 2b

n
)

>−n
3

×

(1 +
−a− b

n
)−

−a−b
3 (1 +

2a− b

n
)−

2a−b
3 (1 +

−a+ 2b

n
)−

−a+2b
3 (1 +O(δ2))

=

√
27

2πn

7
1 +

−3(a2 − ab+ b2)

n2
+O(δ3)

>−n
3

×

(1 +
−a− b

n
)−

−a−b
3 (1 +

2a− b

n
)−

2a−b
3 (1 +

−a+ 2b

n
)−

−a+2b
3 (1 +O(δ2))

=

√
27

2πn
exp(

a2 − ab+ b2

n
) exp(−(−a− b)2 + (2a− b)2 + (2b− a)2

3n
)(1 +O(δ))

=

√
27

2πn
exp(−|x− y|2

δ2n
)(1 +O(δ)).

In the last step we used that δ2(a2 − ab+ b2) = |aδ + bδτ |2 = |x− y|2 + o(δ).
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Lemma 4.3.11. Let Ωδ ⊂ δT be a sequence of lattice domains satisfying Ωδ ⊂ B(0, R) for
some R > 0 independent of δ. Let xδ and yδ ∈ ΩδT be a sequences of lattice points. Then
there exists a constants c > 0 depending on R, but not on δ, n, xδ or yδ such that for all
n ≥ 1:

P(0)

xδ (τΩδ > n|Xδ
n = yδ) < exp(−cnδ2). (4.52)

Proof. This can easily be deduced from the fact that the Radon–Nikodym derivative of the
conditioned random walk compared to an unconditional random walk, restricted to [0, n/2], is
bounded (see, e.g., (4.49)), and the analogous (and straightforward) bound for unconditional
random walk. Details are left to the reader.

Now we state the main result of this section:

Proposition 4.3.12. Let Ω ⊂ C be a bounded simply connected domain and x, y ∈ Ω be two
distinct points of Ω. Assume that discrete domains Ωδ ⊂ δT approximate Ω. Then

Z
(m)

Ωδ (xδ, yδ) →
√
3G

(m)
Ω (x, y).

Proof. Fix r > 0 and assume that |x− y| ≥ r. We will need to obtain estimates that do not
depend on r > 0. To begin we rewrite the Green function as

Z
(m)

Ωδ (xδ, yδ) =

∞G
n=0

P(0)
xδ

(Xn = yδ)(1− m2δ2

2
)nP(0)

xδ (τ∂Ω > n|Xn = yδ). (4.53)

We split this sum into three parts: First the sum from n = 0 to ⌊|x − y|2δ−2⌋, then from
n = ⌊|x − y|2δ−2⌋ + 1 to ⌊Mδ−2⌋ (where M is a large constant chosen suitably later), then
larger values of n. We will call these sums I, II and III and estimate them separately.

Bounding I. To estimate the first part of the sum we compare P(0)

xδ (Xn = yδ) with the same
probability for points that are closer to x, as follows. Depending on the residue of n modulo
3 a different set of vertices is reachable from xδ. Assuming that a point is reachable and is at
least twice as close to x than yδ in the Euclidean sense, then it is easier to reach that point
than yδ:

Lemma 4.3.13. Fix n ≥ 0. For any vertex z such that P(0)

xδ (Xn = z) > 0 and satisfies

|z − xδ| < 1
2 |yδ − xδ|, we claim that

P(0)

xδ (Xn = z) ≥ P(0)

xδ (Xn = yδ).

Proof. Since the number of steps n is fixed this is just about comparing multinomial coeffi-
cients. It is easy to check that for any n and any a1, a2, a3 such that n = a1 + a2 + a3 and
a1 > a2 it holds that: 7

n

a1, a2, a3

>
≤

7
n

a1 − 1, a2 + 1, a3

>
.

Assume without loss of generality that yδ − xδ = a1 + a2τ + a3τ
2, such that a1 + a2 + a3 = n

and a1 ≥ a2 ≥ a3. The above inequality implies that for any z reachable from y by repeatedly

reducing one of the ai and increasing another aj subject to ai > aj satisfies: P(0)

xδ (Xn = z) ≥
P(0)

xδ (Xn = yδ). It is clear that in this way only points z can be be obtained that are also

reachable in n steps from xδ.
Claim All z reachable from xδ in n steps, which are in the quadrilateral descriped by the

lines through xδ in the directions 1 and τ and through yδ in the directions orthogonal to 1
and τ are reachable through these operations. See figure 4.3.3.
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Figure 4.5: Situation of Lemma 4.3.13, the bold line marks the relevant quadrilateral, the
marked points are the points reachable with n steps from x and the orange arrows are the
three steps possible from yδ.

Proof of the claim:

By applying the step of reducing a1 and increasing a2 we see that all such points on the
line through yδ orthogonal to 1 are reachable and the same by reducing a2 and increasing a3
for the line orthogonal to τ . By choosing the correct starting point on these lines any other
point in the quadrilateral is reachable by applying the step of reducing a1 and increasing a3.
This proves the claim.

By mirroring this quadrilateral on the lines in directions 1, τ and τ2 through xδ we obtain

that also all z in the resulting hexagon satisfy P(0)

xδ (Xn = z) ≥ P(0)

xδ (Xn = yδ). The vertices

of this hexagon are the reflections of yδ along those lines. The points on the boundary of
this hexagon which are closest to xδ are the projections of yδ onto the lines through x in
directions 1 and τ (and their respective reflections). Since the angle between those lines is 1

3π
both of those points have distance from xδ of at least 1

2 |xδ − yδ|, therefore the disk of radius
1
2 |xδ − yδ| is contained in the hexagon. This proves the Lemma. Note that the extreme case
of this being the largest disk that fits inside the hexagon is obtained exactly when yδ − xδ is
a multiple of 1, τ or τ2.

There are approximately C|x − y|2δ−2 points verifying the conditions of Lemma 4.3.13,
where C = 1

6
√
3
π. Consequently we have:

⌊|x− y|2δ−2⌋ =
G
z

⌊|x−y|2δ−2⌋G
n=0

P(0)

xδ (Xn = z)

≥ (C + o(1))|x− y|2δ−2I

Which implies that I < 1/C + o(1) and thus I is bounded independently of r.

Bounding III. From Lemma 4.3.11, we see that

P(0)

xδ (τ∂Ω > n|Xn = yδ) ≤ exp(−cnδ2).

By Lemma 4.3.13, P(0)
xδ (Xn = yδ) ≤ P(0)

xδ (Xn = xδ) ≤ C/n by Lemma 4.3.9. Hence, crudely
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bounding (1− m2δ2

2 )n by 1 in the sum III we get

III ≤
G

n≥Mδ−2

P(0)
xδ

(Xn = yδ)P(0)

xδ (τ∂Ω > n|Xn = yδ)

≤
G

n≥Mδ−2

C

n
exp(−cnδ2) =

G
k≥1

2k+1Mδ−2−1G
n=2kMδ−2

C

n
exp(−cM2k)

=
G
k≥1

C exp(−cM2k),

which is bounded independently of r, as desired.

Estimating II. For II we estimate the number of lattice paths using Stirling’s formula.
Assume without loss of generality that yδ = xδ + a + be2πi/3 = a + bτ with a = aδ, b = bδ ∈
{0, 1, . . .} (other cases are similar), then the number of paths from xδ to yδ is 0 if n− a− b
is not divisible by 3. If n − a − b is divisible by 3, the number of paths is given by the
multinomial coefficient: 7

n
n−a−b

3 , n+2a−b
3 , n−a+2b

3

>
.

Now, in the regime II, Applying Lemma 4.3.10 we find

P(0)

xδ (Xn = yδ) =

√
27

2πn
exp(−|x− y|2

δ2n
)(1 +O(δ)) (4.54)

Recall that Px,y(t) = Px→y;t(τ∂Ω > t). By Corollary 4.3.7 we get:

Px(τ∂Ω > n|Xδ
n = y) = Px,y(nδ

2)(1 + oδ(1)),

where oδ(1) → 0 when δ → 0, uniformly in n such that |x− y|2δ−2 ≤ n ≤ Mδ−2 . Using this
we get:

II =

√
27

6π

⌊Mδ−2⌋G
n=⌊|x−y|2δ−2⌋+1

1

n
exp(−|x− y|2

δ2n
)Px,y(nδ

2)(1− m2δ2

2
)n(1 +O(δ))(1 + oδ(1))

(4.55)

=

√
3

2π
(1 + oδ(1))

⌊cδ−2⌋G
n=⌊|x−y|2δ−2⌋+1

1

n
exp(−|x− y|2

δ2n
)(1− m2δ2

2
)nPx,y(nδ

2), (4.56)

where the fact 1/3 in the first line comes from the fact that only one in three terms contribute
to the sum (owing to periodicity).

This can be transformed into a Riemann sum, from which we deduce:

II =

√
3

2π
(1 + oδ(1))

1 M

|x−y|2
Px,y(s) exp(− |x−y|2

s ) exp(−m2s)

s
ds (4.57)

The convergence of the Riemann sum is guaranteed by the fact that the continuity of the
integrand over the relevant interval.

From (4.57) and our bounds on I and III note that Z
(m)

Ωδ (xδ, ·) is uniformly bounded in

δ on compacts of Ω \ {x}. Using Lemma 4.3.5 we deduce that Z
(m)

Ωδ (xδ, ·) has subsequential
limits in every compact of Ω\{x}. By considering a countable number of such compacts (e.g.
Ωn = {y ∈ Ω : d(y, x) ∧ d(y, ∂Ω) ≥ 1/n}) and a standard diagonalisation argument we may
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assume that there are subsequential limits in all of these compact domains simultaneously,
which are necessarily consistent with one another. Let h(x, ·) denote any such limit. We aim
to identify h uniquely.

As we are interested in the behaviour when y is close to x we can assume that the
straight line from x to y is in Ω and therefore lemma 4.3.8 applies and Px,y(s) approaches 1
as s goes to 0. Elementary computations give the asymptotic behaviour of this integral as
−2 log(|x− y|) +O(1) when |x− y| → 0.

It is elementary to check that Z
(m)

Ωδ (xδ, ·) is a discrete massive harmonic function in the
sense of Lemma 4.3.3. Since the convergence to the limit in the chosen subsequence is
uniform, it is not hard to see that we can pass to the limit in the solution of the massive
Dirichlet problem of Lemma 4.3.3, and deduce that h(x, ·) is massive harmonic away from x.
Furthermore, from our estimates above it follows that

h(x, y) = −
√
3

π
log(|x− y|) +O(1). (4.58)

Thus h is the unique function satisfying the desired properties. Therefore all subsequential
limits are the same which proves the desired convergence of the discrete massive Green
functions.

Remark 4.3.14. The factor
√
3 can be explained as follows: Just as in the discrete case, the

expected time spent by Brownian motion in a disk B is given by the integral of the Green’s
function. The random walk considered in this section converges to Brownian motion under
the scaling X⌊2tδ−2⌋. Thus, the expected amount of time spent in B of the discrete walk on
the scaled lattice should satisfy:

1
2δ

2E(|{n : Xn ∈ B}|) = 1
2δ

2
G

yδ∈B∩δT
Zm
Ωδ(x

δ, yδ) →
1
B
Gm

Ω (x, y)dy .

This is indeed the case, since the density of points in the square lattice is 2√
3
and thus the

sum converges to the integral after cancelling the 1
2 from the time change with 2√

3
from the

lattice and the
√
3 from the statement of Proposition 4.3.12. Therefore the factor

√
3 in the

right hand side of Proposition 4.3.12 is consistent with the above.

4.3.4 Convergence of discrete massive Poisson kernel

Given a domain Ω, an interior point z ∈ Ω and a boundary point a ∈ ∂Ω (thought of as a
prime end of Ω), we define the continuous massive Poisson kernel as:

P
(m)
Ω (z, a) := PΩ(z, a)−m2

1
Ωt

G
(m)
Ω (z, w)PΩ(w, a)dA(w). (4.59)

where PΩ(w, a) is the (non-massive) continuous Poisson kernel.
This definition is motivated by the following crucial identity for the discrete massive Green

function (this is the discrete counterpart of the resolvent identities to which we will return in
Section 4.4.4, which related massive and non-massive harmonic functions, as already observed
in the work of Makarov and Smirnov [MS10]):

Lemma 4.3.15.

(1− m2δ2

2
)Z

(m)

Ωδ (wδ, zδ) = ZΩδ(wδ, zδ)− m2δ2

2

G
vδ∈IntΩδ

Z
(m)

Ωδ (wδ, vδ)ZΩδ(vδ, zδ), (4.60)
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Proof. We prove this by splitting each trajectory in the definition of ZΩ into two parts, and
summing over all possible ways to do so:G

vδ∈IntΩδ

Z
(m)

Ωδ (wδ, vδ)ZΩδ(vδ, zδ) =
G

vδ∈IntΩδ

G
k≥0

G
π:w→z,
πk=v

(
1

3
(1− m2δ2

2
))k(

1

3
)(#π)−k

=
G

π:w→z

(
1

3
)#π

#πG
k=0

(1− m2δ2

2
)k

=
G

π:w→z

(
1

3
)#π 1− (1− m2δ2

2 )(#π)+1

m2δ2

2

=
ZΩδ(wδ, zδ)− (1− m2δ2

2 )Z
(m)

Ωδ (wδ, zδ)
m2δ2

2

.

Rearranging the terms gives the desired result.

The importance of the Poisson kernel stems from the well known martingale observable
of Lawler, Schramm and Werner [LSW01]. Namely, let γδ be a massive LERW between bδ in
Ωδ and aδ ∈ ∂Ωδ. We parametrise γδ from bδ to aδ. For a vertex vδ ∈ Ωδ, define the massive
martingale observable as:

M (m)
n (vδ) :=

Z
(m)

Ωδ\γδ [0,n]
(vδ, γδ(n))

Z
(m)

Ωδ\γδ [0,n]
(bδ, γδ(n))

. (4.61)

Since γδ(n) is on the boundary of Ωδ \γδ[0, n], this is also simply equal to the ratio of hitting
probabilities of γδ(n) from vδ vs. bδ. Proceeding exactly as in [LSW01, Remark 3.6], one can

check that for every δ > 0 and every fixed vertex vδ, the sequence (M
(m)
n (vδ))0≤n≤T (bδ) gives

a martingale (see also [Law13, Lemma 7.2.1]).
The strategy of the proof of convergence of this martingale observable to its continuum

limit in Chelkak and Wan [CW19] is to:

• first, prove the convergence of the non-massive martingale observable in the non-massive
case (something which was in fact already proved in the radial case by Lawler, Schramm
and Werner [LSW01] and generalised by Yadin and Yehudayoff [YY11], but in the
chordal context of [CW19] requires some additional justifications); this was proved in
Proposition 3.5 and Corollary 3.6 in [CW19] (and put in the correct chordal framework
in Proposition 3.14)

• second, prove that the ratio of massive Green function to non-massive Green function
converges to its continuum limit, which is Proposition 3.15 in [CW19].

The first step follows directly from the work of Yadin and Yehudayoff [YY11], which holds
for arbitrary planar graphs subject to convergence of random walk to Brownian motion (which
we know is true on the directed triangular lattice). Therefore only the second step needs to
be justified, this is the content of the next lemma (which is the analogue of Proposition 3.15
in [CW19]).

Lemma 4.3.16. In the setup above for any z ∈ Ωt and zδ → z as δ → 0, one has:

Z
(m)

Ωδ
t
(zδ, aδt )

ZΩδ
t
(zδ, aδt )

→ P
(m)
Ωt

(z, at)

PΩt(z, at)
= 1−m2

1
Ωt

PΩt(w, at)

PΩt(z, at)
G

(m)
Ωt

(z, w)dA(w).
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Proof. The proof in [CW19] works also for the directed triangular lattice, as besides the
convergence results of the last section it only requires the identity above, and estimates on
the massive Green function, which follow from convergence to Brownian motion. One might
at first be worried as the right-hand side of (4.60) is not linear in Z, whereas the limit of
the discrete Green function for the triangular lattice is

√
3 times massive Green function (see

Proposition 4.3.12. However, the factor
√
3 combines with the 1

2 in (4.60) to make the sum
over the triangular lattice to converge to a Lebesgue integral, see the remark after Proposition
4.3.12.

As a corollary we obtain the following convergence of martingale observables. Fix a
subsequential limit (γt)t≥0 of massive LERW on the directed triangular lattice, which a priori
we know to be a simple curve (by absolute continuity with standard LERW), and parametrise
it by capacity. Let Ωt = Ω \ γ([0, t]). Let at = γ(t) denote the tip of the curve at time t,
which is on the boundary of Ωt.

Corollary 4.3.17. Fix r > 0. Suppose vδ ∈ B(bδ, r/2). For t ≤ log(1/r), let nt denote the
first n such that the capacity of γδ([0, n]) viewed from bδ exceeds t (equivalently, the conformal
radius of bδ in Ω \ γ([0, n]) is less than e−t).

M (m)
nt

(vδ) → P
(m)
Ωt

(v, at)

P
(m)
Ωt

(b, at)
=: M

(m)
Ωt

(v),

almost surely along the underlying subsequential limit δ → 0.

4.3.5 Proof of the main statement

We are now ready to prove convergence to massive SLE2, as stated in Theorem 4.2.8.

Proof of Theorem 4.2.8. As discussed in Section 4.3.2 the laws of the massive loop-erased
random walks are tight and all subsequential limits are absolutely continuous with respect
to classical SLE2. This justifies the application of Girsanov’s theorem which in particular
implies that the driving function ξt is a semi-martingale under P(m).

Moreover, the discrete martingales of (4.61) have continuous limits as shown in Proposi-
tion 4.3.17. Writing the martingale in the form

M (m)
n (vδ) =

Z
(m)

Ωδ
n
(vδ, aδn)

ZΩδ
n
(vδ, aδn)

Z
(m)

Ωδ
n
(bδ, aδn)

ZΩδ
n
(bδ, aδn)

−1

ZΩδ
n
(vδ, aδn)

ZΩδ
n
(bδ, aδn)

with aδn = γδ(n) and Ωn = Ω \ γδ([0, n]), we see that M (m)(vδ) is uniformly bounded: the
first term is trivially bounded by 1, the second is bounded by Proposition 4.3.1 (and Koebe’s
one-quarter theorem), and the third one is bounded for n ≤ nt by (uniform) convergence to
the continuous Poisson kernel (here we use the strength of the result of Yadin and Yehudayoff
[YY11]) and conformal invariance of the latter. Hence the limit in Corollary 4.3.17 must also
be a martingale (see Remark 2.3 and (2.14) in [CW19] for the argument).

Standard Itô calculations together with Hadamard’s formula (as outlined in [MS10] and
written out in [CW19], see Section 4.3 and more specifically Lemma 4.9) for this family of
martingales imply that the law of the driving function ξt under P(m) is uniquely determined.
Changing from the chordal to radial setting does not change this argument. In Sections 4.4.4
to 4.4.6 we will perform these calculations for a variable mass, one can also refer to them for
the (very minor) changes to the radial setting.
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4.4 Convergence of massive LERW on general planar graphs

In the previous section it was proven that on a triangular and on a square lattice the loop
erasure of a random walk with certain weights converges to SLE2 with drift given by a re-
weighting of massive SLE2. This also extended a result from [CW19] which proved that the
loop erasure of a massive random walk on the square lattice converges to massive SLE2 as
conjectured in [MS10].

We now want to extend this result to a general mass profile ρ and to a more general planar
graph. To do this we will combine techniques from [YY11] and [CW19]. In particular we will
first argue similarly to [CW19] that the laws of the LERW are tight and any limit point is
absolutely continuous with respect to the law of SLE2. Then we use the strategy employed
by [YY11] to show that the discrete Poisson kernel ratios converge to the continuous ones
and finally use this convergence to identify the limiting law again as in [CW19].

We will use the following convergence of paths. For two continuous curves α, β : [0, 1] → C,
consider the norm infg supx∈[0,1] |α(x) − β ◦ g(x)|, where the infimum is over all continuous
increasing bijections g : [0, 1] → [0, 1]. This is a norm on equivalence classes of continuous
curves under reparametrization. A law µδ on continuous curves is said to converge weakly to
a law µ, if it converges weakly in the topology of this norm.

Recall that a Brownian motion with mass profile ρ is a Brownian motion, which dies
at rate ρ(Xs) when at position Xs, i.e. it is a process which is absolutely continuous with
respect to Brownian motion and has Radon Nikodym-derivative

dP(ρ)
x

dPx

KKKKK
Ft

= exp(−
1 t

0
ρ(Xs)ds). (4.62)

Note that the total mass of P(ρ)
x is less than one, so it is not a probability measure but a

(finite) measure on paths.
Fix a domain Ω and two bounded, smooth functions ρ, ρ̃ : Ω → [0,∞). Let Ωδ be a

sequence of planar graphs embedded in the complex plane, with weights wδ and a discrete
mass function ρδ from the vertices of Ωδ to R+. Denote the partition function of the massive

random walk with mass ρδ as Z
(ρ)

Ωδ (x
δ, yδ). We need to assume the following properties of

these objects:

1. Let (Xδ
t , t = 0, 1, . . .) be the massive random walk on Ωδ, started at a specified vertex

oδ → o of Ωδ, with transition probabilities proportional to the directed weights wδ and
probability to die at each step given by ρδ(v) = δ2

2 Iρ(v) + o(δ2), where the o(δ2) term
needs to be uniform in v. The law of (Xδ

δ−2t, t ≥ 0) (interpolated continuously between

time steps) converges weakly (in the above sense) as δ → 0, to the law (measure) P(ρ)
o

of a Brownian motion with mass profile ρ.

2. Consider the non-massive random walk on with transition probabilities proportional
to the directed weights wδ in a domain Ωδ ⊂ B(0, R) started at oδ and conditioned
to leave at aδ. Denote with σδ the number of steps before hitting the boundary ∂Ωδ.
There is a constant c0 uniform in R and Ωδ, such that

E(0)

Ωδ ,oδ→aδ
(σδ) ≤ c0R

2δ−2 (4.63)

3. The random walk satisfies a uniform crossing assumption: Let R be the horizontal
rectangle [0, 3] × [0, 1] and R′ be the vertical rectangle [0, 1] × [0, 3]. Let B1 :=
B((1/2, 1/2), 1/4) be the starting ball and B2 := B((5/2, 1/2), 1/4) be the target ball.
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Let Rr = rR + z (resp. R′
r = rR′ + z) for some r > 0 and z ∈ Ω, and suppose that

Rr (resp. R′
r) ⊂ Ω ⊂ RD. Let Br

1, B
r
2 be the corresponding scaled starting and target

balls. Let Crossr denote the event that the walk hits Br
2 before leaving the rectangle

Rr (respectively R′
r) or getting killed. We will say that the graphs (Ωδ) satisfying the

uniform crossing estimate if there is a constant c > 0 such that, uniformly over z ∈ Br
1,

uniformly over r ≤ R,
P(0)
z (Crossr) ≥ c. (4.64)

Assumption (i) is essentially an assumption about the fact that random walk converges to
a Brownian motion, potentially up to a time-change (as in [YY11]). Our assumption basically
requires that this time-change is not too rough, since before time change the rate of dying is
ρ̃(x) at a point x, whereas after this time-change the rate of dying is given by ρ(x), and both
are assumed smooth and bounded.

The main theorem of this section is:

Theorem 4.4.1. Let Ω and ρ, ρ̃ be as above, and let Ωδ, ρδ and wδ be such that the assump-
tions above are satisfied. Let again (Xδ

t , t = 0, 1, . . .) be the random walk on Ωδ, started at a
specified vertex oδ → o of Ωδ, with transition probabilities proportional to the directed weights
wδ and dying at each step with probability ρδ. Let σδ denote the first time at which Xδ leaves
Ω (with σδ = ∞ if Xδ dies before leaving the domain) and consider the loop erasure LE(Xδ) of
the walk up until this time. Then conditionally on σδ < ∞ and Xδ

σδ
= aδ, LE(Xδ) converges

weakly to a radial Loewner evolution γ, whose driving function ζt = eiξt (when parametrised
by capacity) satisfies the stochastic differential equation

dξt =
√
2dBt + λtdt, λt =

∂

∂gt(at)
log

5
P

(ρ)
Ωt

(o, at)

PΩt(o, at)

<
, (4.65)

where at = γ(t), Ωt = Ω \ γ([0, t]) is the slitted domain at time t, gt is the Loewner map from

Ωt to D and P
(ρ)
Ωt

and PΩt are the Poisson kernels for the Brownian motion with mass profile
ρ, and regular Brownian motion respectively, in Ωt.

The definition of the Poisson kernel P
(ρ)
Ωt

(o, at) appearing in the theorem is not a priori
obvious (its construction will be explained in Section 4.4.1). We will obtain more explicit
expressions for the drift term λt in the course of the proof, which will show in particular that
when the domains Ωt are contiunous with respect to the Carathéodory topology (which must
be the case a.s. here), t (→ λt is itself continuous. Furthermore, we will see as a result of
Lemma 4.4.16 that

2∞
0 λ2

tdt ≤ C for some constant C > 0, thereby showing that λt satisfies
the Novikov condition and ensuring existence and pathwise uniqueness for solutions to the
SDE (4.65).

4.4.1 Poisson kernel for Brownian motion with mass

To describe the scaling limit of loop-erased random walk when the walk itself does not con-
verge to a Brownian motion, but rather to a Brownian motion with mass, it is necessary to
first define the Poisson kernel ratio of the latter, and describe a few of its properties.

Recall that the Poisson kernel of Brownian motion in a domain Ω, when it exists, is the
density hΩ(x, a) of harmonic measure in Ω viewed from x ∈ Ω, with respect to the natural
length measure |da| on ∂Ω, evaluated at the point a ∈ ∂Ω. For a fixed o ∈ Ω, the Poisson
kernel ratio is then the quantity

λΩ(x, a) = λ
(0)
Ω (x, a) =

hΩ(x, a)

hΩ(o, a)
.
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As Brownian motion is conformally invariant, this makes sense even when the boundary of
the domain is not smooth but Ω is simply connected; in that case we still have

Px(Xσ ∈ I)

Po(Xσ ∈ I)
→ λΩ(x, a) (4.66)

as I ⊂ ∂Ω and I ↓ a, where Px is the law of Brownian motion X starting from x, and σ is
the first time that X leaves Ω. To be more precise, I should be thought of as a decreasing
sequence of compacts in the Martin boundary of Ω, whose intersection is {a}, where a is also
viewed as an element of the Martin boundary (or, equivalently, a prime end). Equivalently, we
may parameterize Ω by the unit disc D via its Riemann mapping ψ : D → Ω; then I = ψ(Ĩ),
where Ĩ is an arc of ∂D shrinking to ã ∈ ∂D. When Ω has a locally connected boundary
(which will a.s. hold in the cases where we apply the results below) then the Riemann map

ψ may be extended from D̄ to Ω̄. For future reference we also denote by Px→a = P(0)
x→a;Ω the

conditional law Px, given Xσ = a. (This is obtained by mapping a Brownian motion B̃ in D,
conditioned so that B̃σ̃ = ã, where ψ(ã) = a, and σ̃ is the first exit time from D by B̃, and
performing the appropriate time-change).

Now suppose ρ : Ω̄ → R is a given smooth real valued function on Ω̄, and consider the law
P(ρ) of the associated massive Brownian motion with profile ρ, i.e. a Brownian motion dying
with probability ρ(Xs)ds at each time step. Without conformal invariance, some arguments
are required to construct this Poisson kernel ratio for arbitrary simply connected domains Ω.
In fact, various constructions are possible, which we summarise:

• the approach of Yadin and Yehudayoff [YY11] can be used directly to show that the
left hand side of (4.66) forms a Cauchy sequence, and it would be possible to obtain
some mild regularity this way.

• we could use the so-called resolvent identity to define the Poisson kernel ratio (this will
be discussed in much greater detail below, but going back to the work of Makarov and
Smirnov [MS10] and also used extensively by Chelkak and Wan [CW19]).

• by multiplying the standard Poisson kernel ration by the appropriate change of measure
(“Girsanov”) terms.

In fact all these approaches will play a role in the arguments below and part of the work
will be to show these various definitions coincide with one another. While in [CW19] the
second option is chosen, we have found it simplest to start from the Girsanov approach which
gives us a continuous object to work with and for which some minimal regularity can be
easily shown. From this we can connect to the discrete picture and separately show that it
obeys the appropriate resolvent identity, see Proposition 4.4.7.

Theorem 4.4.2. Suppose Ω is bounded and simply connected. As I ⊂ ∂Ω shrinks to a ∈ ∂Ω
(thought of as a prime end or a point on the Martin boundary)

P(ρ)
x (σ < ∞, Xσ ∈ I)

P(ρ)
o (σ < ∞, Xσ ∈ I)

→ P
(ρ)
Ω (x, a)

P
(ρ)
Ω (o, a)

(4.67)

converges to a limit, which we denote by λ
(ρ)
Ω (x, a), the Poisson kernel ratio of the corres-

ponding massive Brownian motion. Furthermore,

P
(ρ)
Ω (x, a) = λ

(0)
Ω (x, a)Ex→a

�
exp

7
−
1 σ

0
ρ(Xs)ds

>$
, (4.68)

where λ
(0)
Ω (x, a) is the above (non-massive) Poisson kernel ratio.
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Remark 4.4.3. x (→ P
(ρ)
Ω (x, a) thus coincides up to a constant with x (→ λ

(ρ)
Ω (x, a) but this

choice of normalisation will turn out to be more adapted to the resolvent identity below.

Proof of Theorem 4.4.2. For I ⊂ ∂Ω (viewed as a subset of the Martin boundary),

P(ρ)
x (σ < ∞, Xσ ∈ I) = E(0)

x

�
1{Xσ∈I} exp

7
−
1 σ

0
ρ(Xs)ds

>$
= P(0)

x (Xσ ∈ I)Ex

�
exp

7
−
1 σ

0
ρ(Xs)ds

>KKKKXσ ∈ I

$
(4.69)

= P(0)
x (Xσ ∈ I)

1
I
Ex→y

�
exp

7
−
1 σ

0
ρ(Xs)ds

>$
h#I (x, dy) (4.70)

where h#I (x, dy) is the harmonic measure of Brownian motion restricted to I, viewed as a
measure on the Martin boundary, and normalised so that it gives I unit mass.

Suppose now that I ↓ a in the above sense of Martin boundaries. The integrand y ∈
∂Ω (→ Ex→y[exp(−

2 σ
0 ρ(Xs)ds] is clearly continuous with respect to the natural topology on

the Martin boundary of Ω because ψ : D̄ → Ω̄ is continuous. Using the dominated convergence
theorem (as ρ ≥ 0), the integral converges to Ex→a[exp(−

2 σ
0 ρ(Xs)ds], as I ↓ a. Taking the

ratio of the right hand side of (4.70) with the same expression but for the starting point b,
and using (4.66), we conclude that the limit (4.67) exists, and is equal to the right hand side
of (4.68), as desired.

Note that from the formula (4.68) a number of features of the Poisson kernel ratio are
immediately obvious, such as its continuity with respect to x or a, or continuity with respect
to the domain in the Carathéodory sense.

4.4.2 Convergence of discrete Poisson kernel

Recall that Z
(ρ)

Ωδ (x
δ, aδ) denotes the total mass of random walk paths going from xδ to aδ

without being killed: that is, Z
(ρ)

Ωδ (x
δ, aδ) = P(ρ)

xδ (σ
δ < ∞, Xδ

σδ = aδ).

Lemma 4.4.4. For r > 0 and Ωδ a sequence of subgraphs approximating Ω all containing
a ball of radius r around oδ → o and marked boundary points aδ, and xδ → x ∈ B(o, 12r) it
holds that

Z
(ρ)

Ωδ (x
δ, aδ)

Z
(ρ)

Ωδ (oδ, aδ)
→ P

(ρ)
Ω (x, a)

P
(ρ)
Ω (o, a)

Essentially this is an adapation of the arguments in [YY11]. We will content ourselves
with describing the instances where changes are needed. Because of this, we feel it is useful to
first give a simplified overview of the arguments in [YY11], as it may otherwise prove difficult
to see why the instances below are indeed the only arguments that need to be changed. In
order to go through this we first map Ω to the unit disc D (this is both because the proof of
convergence to SLE requires mapping everything to a reference domain, and in order to avoid
issues related to the distinction between prime ends of a domain and the actual boundary).
Thus let ϕ = ψ−1 be the map from Ω to D sending o to 0.

The first observation of Yadin and Yehudayoff is that “the exit probabilities are correct”:
given a small macroscopic arc Ĩ on ∂D and I = ψ(Ĩ) ⊂ ∂Ω, then the ratio of the probabilities
Pδ
x(Xσδ ∈ I)/Pδ

o(Xσδ ∈ I) converges to what one would expect, namely Px(Bσ ∈ I)/Po(Bσ ∈
I). This is the content of their Lemma 4.8 and is a more or less obvious consequence of the
assumption that random walk converges to Brownian motion, together with planarity. When
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the arc I (or rather Ĩ ⊂ ∂D) is small, this ratio is itself close to the continuum Poisson kernel
ratio λ(x, o; Ω) (essentially by definition of the latter).

Next for a boundary point a ∈ ∂Ω (understood as a prime end) and an interior point x,
set ã = ϕ(a), x̃ = ϕ(x) and X̃ = ϕ(X). They fix a small boundary arc Ĩ ⊂ ∂D centered
around ã and write

Hδ(x, a,Ω) = Pδ
x̃(X̃σδ = ã|X̃σδ ∈ Ĩ)Pδ

x̃(X̃σδ ∈ Ĩ),

so that it suffices to prove that the ratio

Pδ
x̃(X̃σδ = ã|X̃σδ ∈ Ĩ)

Pδ
o(X̃σδ = ã|X̃σδ ∈ Ĩ)

≈ 1 (4.71)

is close to 1, in the sense that

lim sup
Ĩ↓ã

lim sup
δ→0

KKKKKPδ
x̃(X̃σδ = ã|X̃σδ ∈ Ĩ)

Pδ
o(X̃σδ = ã|X̃σδ ∈ Ĩ)

− 1

KKKKK = 0 (4.72)

The key argument for this is a multiscale coupling, which is implicitly described in Pro-
positions 5.4 – 5.6. The idea is to consider exponentially growing scales Rj , j = 1, . . . , N
(from microscopic to macroscopic) and points ξj in the unit disc at distance of order Rj from
both ã and the unit circle, with Rj ≈ ejr, and r being the width of the arc Ĩ = ϕ(I). At the
smallest scale j = 1, ξj is thus at a distance of order r from ã itself, while at the largest scale
j = N , ξj is at macroscopic distance from ã. They condition both walks starting from x and
o respectively to leave Ω through I. At each successive scale, there is a positive chance that
when the walks get to that scale, they will go and visit the same predetermined small ball,
chosen to be centered around ξj and to have a radius proportional to Rj times a very small
constant. Once that is the case, the conditional chances of exiting through a specifically
rather than anywhere else in I are necessarily essentially the same for both walks, which
proves (4.71). Essentially, Proposition 5.4 shows that the coupling succeeds with positive
probability at each scale independently of previous attempts. Proposition 5.5 shows that the
ratio in (4.71) is bounded even in the unlikely event that the coupling never succeeded, and
Proposition 5.6 quantifies how close to 1 the ratio in (4.71) once there is a success.

At the discrete level, the only properties of the walks that are needed are planarity (which
of course always holds for the random walks considered in this paper) as well as crossing
estimates (i.e., (4.64)) and simple consequences of it, such as Beurling estimates. These
will be discussed briefly in Appendix 4.B. At the continuum level the required estimates
are described (without proof) in Section 3 of [YY11], mostly Proposition 3.3 to Lemma 3.10.
One can see that with very few exceptions, these estimates are properties of Brownian motion
which are concerned with typical events of Brownian motion that can additionally be required
to hold in a short time scale. In such cases the change of measure between massive (or drifted)
and ordinary Brownian motion is harmless, hence these properties also obviously hold true in
our situation. The lone exception is Proposition 3.3 (recalled below as Lemma 4.A.1, which
concerns the probability to hit a very small ball); since this is not a typical event for Brownian
motion, one needs to consider the effect of the change of measure and more specifically one
needs to check that conditioning on the atypical event does not cause the change of measure
to degenerate. This will be carried out in Appendix 4.A. This concludes our discussion of
the proof of Lemma 4.4.4.
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4.4.3 Density and absolute continuity with respect to classical SLE2

In this section we will use assumption 2 to show that the massive SLE2 with profile ρ is mutu-
ally absolutely continuous with respect to classical SLE2 and the Radon Nikodym derivative
is bounded.

Proposition 4.4.5. There is a constant c0 such that for every R and every domain Ωδ ⊂
B(0, R) and internal point xδ and boundary point aδ,

1 ≥ Z
(ρ)

Ωδ (x
δ, aδ)

Z
(0)

Ωδ (xδ, aδ)
≥ exp(−c0R

2∥Iρ∥∞) . (4.73)

Proof. The inequality on the left hand-side is obvious since ρ ≥ 0. For the equality on the
right hand side note that the ratio can be written as

E(0)

Ωδ ,vδ→aδ

σδ−1B
s=0

(1− ρδ(Xs))

 ≥ E(0)

Ωδ ,vδ→aδ

�6
1− δ2∥Iρ∥∞ + o(δ2)

=σδ!
≥ 6

1− δ2∥Iρ∥∞ + o(δ2)
=E(0)

Ωδ,vδ→aδ
(σδ)

≥ exp(−c0R
2∥Iρ∥∞) ,

where the second inequality follows from Jensen’s inequality, and the last inequality is a direct
consequence of assumption 2.

Note that since

Z
(ρ)

Ωδ (x
δ, aδ)

Z
(ρ)

Ωδ (oδ, aδ)
=

Z
(ρ)

Ωδ (x
δ, aδ)

Z
(0)

Ωδ (xδ, aδ)

Z
(0)

Ωδ (o
δ, aδ)

Z
(ρ)

Ωδ (oδ, aδ)

Z
(0)

Ωδ (x
δ, aδ)

Z
(0)

Ωδ (oδ, aδ)

we deduce from this lemma that the left hand side (which is our discrete massive martingale
observable) is also bounded provided that Ω contains a ball of radius r around o: indeed,
the first two fractions are bounded by the previous Lemma, and the third one is the classical
(non-massive) martingale observable, which is bounded as long as Ω contains a ball of radius
r as in [CW19], say.

Let P(ρ)

oδ→aδ
denote the random walk starting from oδ with mass ρ, conditioned so that

σδ < ∞ and Xδ
σδ = aδ.

Proposition 4.4.6. Let

D
(ρ)

Ωδ (γ
δ) :=

P(ρ)

oδ→aδ
(LE(Xδ) = γδ)

P(0)

oδ→aδ
(LE(Xδ) = γδ)

be the Radon Nikodym derivative of the Loop erasure of the ρ-massive random walk with
respect to the loop-erasure of the regular random walk, conditioned to leave Ωδ at aδ. Then

D
(ρ)

Ωδ (γ
δ) ≤ exp(c0Diam(Ω)∥ρ∥∞)

for each γδ. Furthermore

E(0)

oδ→aδ
[log(D

(ρ)

Ωδ (LE(X
δ)))] ≥ −c0Diam(Ω)2∥ρ∥∞. (4.74)
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Proof. Note that by definition

D
(ρ)

Ωδ (γ
δ) =

H
Xδ :LE(Xδ)=γδ w(ρ)(Xδ)H
Xδ :LE(Xδ)=γδ w(0)(Xδ)

· Z
(0)

Ωδ (o
δ, aδ)

Z
(ρ)

Ωδ (oδ, aδ)
. (4.75)

The upper bound follows from the fact that the first fraction is less than 1 and the bound
in Proposition 4.4.5. For the lower bound note that the second fraction is bigger than 1 and

the first one is equal to E(0)

Ωδ [
Cσδ−1

s=0 (1 − ρδ(Xδ
s ))|LE(Xδ) = γδ]. Taking the logarithm and

applying Jensen gives the lower bound

log(D
(ρ)

Ωδ (γ
δ) ≥ E(0)

oδ→aδ

 log(

σδ−1B
s=0

(1− ρδ(Xδ
s )))

KKKKKKLE(Xδ) = γδ

 .

Taking the expectation in γδ with respect to the measure of the loop-erasure removes the
conditioning and gives

E(0)

oδ→aδ
[log(D

(ρ)

Ωδ (LE(X
δ)))] ≥ E(0)

oδ→aδ
[log(

σδ−1B
s=0

(1− ρδ(Xδ
s )))] ≥ −c0Diam(Ω)2∥Iρ∥∞ ,

again by assumption 2.

This last proposition implies that the laws of the Loop-erasure of the massive random
walks are tight, and any limit point is mutually absolutely continuous with respect to SLE2.
Furthermore, by (4.74) and Girsanov’s theorem, the Loewner transform of a limit point is
driven by a process of the form ξt =

√
2Bt + 2λt and therefore our goal is to identify λt. See

Section 2.6 of [CW19] for more details.

4.4.4 Resolvent identity

We fix a boundary point y = a, and consider the Poisson kernel P
(ρ)
D (x) = P (ρ)(x, a) asso-

ciated just with the mass profile ρ from the previous section. On a subdomain D (which
will later be Ωt) with a marked boundary point a′ (which will later be at), we consider

P
(ρ)
D (x) = P

(ρ)
D (x, a′).

We aim to establish the following resolvent identity for P
(ρ)
D (x):

P
(ρ)
D (x) = P

(0)
D (x)−

1
D
G

(ρ)
D (x, y)ρ(y)P

(ρ)
D (y)dy, (4.76)

where G
(ρ)
D (x, y) = G

(ρ)
D (x, y) is an appropriate Green function, more precisely the Green

function of the Brownian motion with mass profile ρ with Dirichlet boundary conditions in
D: that is,

G
(ρ)
D (x, y) =

1 ∞

0
p
(ρ)
t (x, y)dt

where for t ≥ 0,

p
(ρ)
t (x, y) := pt(x, y)Ex→y;t[exp(−

1 t

0
ρ(Xs)ds)1{X[0,t]⊂D}] (4.77)

and pt(x, y) denotes the (full plane) transition probabilities for standard Brownian motion.
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A trivial but essential property of the massive Green function is that it is bounded by the
standard (non-massive) Green function, i.e.

G
(ρ)
D (x, y) ≤ G

(0)
D (x, y)

for all x, y ∈ D. This allows us to estimate many integrals simply with their non-massive
counterparts.

We are now in a position to prove the resolvent identity (4.76).

Proposition 4.4.7. We have

P
(ρ)
D (x) = PD(x)−

1
D
G

(ρ)
D (x, y)ρ(y)PD(y)dy . (4.78)

Proof. It is clear from the expression of the potential kernel P (ρ)(x) in Theorem 4.4.2 that
this is C2 in Ω; the definition as a limit of hitting probabilities shows that it is harmonic with
respect to the generator of the massive Brownian motion, i.e. Lρ := 1

2∆− ρ.
Let us consider the function

f(x) = P
(ρ)
D (x)− PD(x).

Our goal is to show that f(x) =
2
D G

(ρ)
D (x, y)ρ(y)PD(y)dy for all x ∈ D.

Note that from (4.68) f is clearly continuous (in fact twice differentiable) in D. Further-
more if x = xn tends to a point x′ ∈ ∂D with x′ ̸= a, both terms in f(xn) tend to zero. We
now claim that f(x) is “negligible compared to the probability of leaving by a” as x → a.
Let us explain what we mean by this. Recall the map ϕ : D → D which is the conformal
isomorphism sending o to 0 and a to 1. For small r > 0, let AD

r be the set of points in D at
distance r from 1 and let Ar = ϕ−1(AD

r ). Let Dr be the connected complement of D \Ar not
adjacent to a.

Lemma 4.4.8. For x ∈ Ar we have f(x) = o(1/r) uniformly. On the other hand, for fixed
x ∈ D, as r → 0 (assume without loss of generality that r is small enough that x ∈ Ωr), if
σr = inf{t ≥ 0 : Xt /∈ Dr} then there is a constant C = C(x,Ω, φ) such that

P(0)
x (Xσr ∈ Ar) ≤ Cr, r > 0.

Proof. Recall that P
(ρ)
D (x) = PD(x)Ex→a[exp(

2 σ
0 ρ(Xs)ds)]. Note that PD(x) is exactly con-

formally invariant (it is equal to the Poisson kernel ratio λ
(0)
D (x, a) for Brownian motion) and

so PD(x) ≤ O(1/r) uniformly on Ar (using the exact value of the Poisson kernel in the unit
disc and the fact that by definition Ar is mapped to AD

r by ϕ which lies at distance r from
1). Furthermore, uniformly for x ∈ Ar, the expectation Ex(exp(

2 σ
0 ρ(Xs)ds)) → 1 as x → a

(i.e., as r → 0) by dominated convergence since σ → 0 in probability (indeed, D is simply
connected hence has a regular boundary) and ρ(x) ≥ 0. Thus

f(x) = PD(x)

7
Ex[exp

1 σ

0
ρ(Xs)ds]− 1

>
= o(1/r)

as r → 0, as desired.
For the probability to leave through Ar, we simply note that using conformal invariance

of harmonic measure for Brownian motion, we have that

P(0)
x (Xσr ∈ Ar) = P(0)

ϕ(x)(XσD
r
∈ AD

r ) ≤ C(x,Ω)r

which concludes the proof.
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For the proof of Proposition 4.4.7 we will need to find a suitable martingale. Recall that

f(x) = P
(ρ)
D (x)− PD(x). Note that since, P

(ρ)
D is Lρ harmonic,

Lρf = LρP
(ρ)
D − LρPD

= 0− (
1

2
∆− ρ)PD

= ρPD.

We will call g(x) = −ρ(x)PD(x), so that the above identity reads

Lρf = −g. (4.79)

Lemma 4.4.9. For t ≤ σ, let It =
2 t
0 ρ(Xs)ds, and let

Mt = f(Xt)e
−It +

1 t

0
g(Xs)e

−Isds.

Then for each r > 0, (Mt∧σr , t ≥ 0) is a continuous local martingale under P(0)
x .

Proof. We apply Itô’s formula:

dMt = −dIte
−Itf(Xt) + e−Itdf(Xt) + g(Xt)e

−It

= mart. + e−It

�
−ρ(Xt)f(Xt)dt+

1

2
∆f(Xt)dt+ g(Xt)dt

$
= mart. + e−It [Lρf(Xt) + g(Xt)]dt

and so, since Lρf + g = 0 by (4.79), Mt is indeed a continuous local martingale up to time
σr.

We are now ready to derive a proof of the resolvent identity. To do this we apply the
optional stopping for Mt at time t ∧ σr (until which M remains bounded, so the application
is justified: indeed f is continuous on Ωr and has zero boundary conditions on ∂Ωr except
on Ar where it is uniformly bounded by o(1/r) by the Lemma 4.4.8, a similar justification
applies to g also). We find, since M0 = f(x),

f(x) = Ex

�
f(Xt∧σr)e

−It∧σr

"
+ Ex

�1 t∧σr

0
g(Xs)e

−Isds

$
(4.80)

We will now let t → ∞ and then r → 0 in both terms separately to obtain the resolvent
identity. We start with the first term, for which we claim the limit as t → ∞ and then
r → 0 is simply zero. Indeed, since r > 0 is fixed and f is bounded D̄r, by the dominated
convergence theorem we get

lim
t→∞Ex

�
f(Xt∧σr)e

−It∧σr

"
≤ E(0)

x [f(Xσr)].

Furthermore recall that f(x) = 0 for x ∈ ∂Ω with x ̸= a, so the only contribution comes from
the event where Xσr ∈ Ar: thus

|E(0)
x [f(Xσr)]| ≤ Px(Xσr ∈ Ar) sup

x∈Ar

|f(x)|

= O(r)o(1/r) → 0
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by Lemma 4.4.8.
It remains to deal with the second term, which is of the form1

Dr

g(y)G
(ρ)
t,r (x, y)dy,

where G
(ρ)
t,r (x, y) is the Green function for Brownian motion up to time t, weighted by

exp(−It), and stopped when leaving Dr, i.e.,

G
(ρ)
t,r (x, y) =

1 t

0
p(ρ)s,r (x, y)ds; p(ρ)s,r (x, y) = ps(x, y)Ex→y;s[e

Is1{X[0,s]⊂Dr}]

Letting t → ∞, there is no problem (by monotone convergence) in showing thatG
(ρ)
t,r converges

pointwise to G
(ρ)
r (x, y), the massive Green function in the domain Dr. Subsequently letting

r → 0, there is for the same reason no problem in showing that this converges monotonically

to G
(ρ)
D (x, y). Thus, for all t < ∞ and r > 0,

G
(ρ)
t,r (x, y) ≤ G

(ρ)
D (x, y) ≤ G

(0)
D (x, y) .

Furthermore, observe that since |g(y)| = ρ(y)PD(y) and ρ is bounded,1
D
G

(0)
D (x, y)|g(y)|dy ≤ C

1
D
G

(0)
D (x, y)PD(y)dy < ∞. (4.81)

To see the finiteness of the right hand side, observe that both terms in the integral on the right
hand side are conformally invariant, and that after mapping by the conformal isomorphism ϕ,

PD(ϕ(y)) ∼ 2/|ϕ(y)− 1| as y → a, while G
(0)
D (ϕ(x), ϕ(y)) ∼ |1− ϕ(y)|, so that the integrand

is bounded in the neghbourhood of y = a. Elsewhere, PD(y) is bounded, and the Green
function GD(x, y), while having a singularity at y = x, is clearly integrable over D.

Consequently the assumptions of the dominated convergence theorem are satisfied, and
we deduce that

lim
r→0

lim
t→∞Ex

�1 t∧σr

0
g(Xs)e

−Isds

$
=

1
D
G

(ρ)
D (x, y)g(y)dy.

Plugging into (4.80), we therefore obtain:

f(x) =

1
D
G

(ρ)
D (x, y)g(y)dy,

which is the desired identity.

There is also a resolvent identity for the Green function G(ρ) itself.

Proposition 4.4.10. We have

G
(ρ)
D (x, z) = GD(x, z)−

1
D
GD(x, y)ρ(y)G

(ρ)
D (y, z)dy. (4.82)

Proof. Since Gρ is also Lρ-harmonic in both variables, and G is harmonic, the proof proceeds
essentially along the same lines. The difference is that we need to replace Lemma 4.4.8 by

the following control over f(z) := G
(ρ)
D (x, z)−G

(0)
D (x, z) near z = x:

Lemma 4.4.11. Let f be as above. Then as z → x,

f(z) = o(log |x− z|−1).
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Proof. Since G
(ρ)
Ω (x, z) ≤ G

(0)
Ω (x, z) we only need a lower bound on the massive Green func-

tion. This is easily obtained: for any ε > 0,

G
(ρ)
Ω (x, z) =

1 ∞

0
p
(ρ)
t (x, z)dt

≥
1 ε

0
p
(0)
t (x, z)e−Itdt

≥ e−ε∥ρ∥∞
7
G(0)(x, z)−

1 ∞

ε
p
(0)
t (x, z)dt

>
≥ (1− ε∥ρ∥∞)

4
G(0)(x, z)−O(1)

;
where we used the easy consequence of Beurling’s estimate that for a simply connected domain
Ω, pt(x, z) ≤ t−1−η for some η > 0. The lemma follows.

The rest of the argument proceeds exactly as in the proof of Proposition 4.4.7.

From this we can deduce a massive version of Hadamard’s formula (see [CW19, Lemma
4.7] for the case of constant mass). Let (Kt)t≥0 be a growing family of compact Ω-hulls in
Ω, growing from a to the inner point o ∈ Ω and having the locality property (see e.g. [BN23]
for a definition of these terms), generated by a continuous curve γt growing in Ω from a to o.
Let Ωt = Ω \Kt, which is a monotone decreasing family of subdomains of Ωt, and let at be
the point on the (Martin) boundary of Ωt corresponding to γt. We will assume that γ[0,∞)
has Lebesgue measure zero.

Let G
(ρ)
t = G

(ρ)
Ωt

be the massive Green function in Ωt and let P
(ρ)
t = P

(ρ)
Ωt

be the Poisson
kernel (with normalisation specified by Proposition 4.4.2 associated with the boundary point
at). Since Ωt is monotone decreasing, it is obvious that for each fixed z ̸= x in Ω, t (→
G

(ρ)
t (x, z) is monotone decreasing until the first time t such that either one of x and z are

in Kt. The massive Hadamard identity expresses the derivative of G
(ρ)
t in terms of product

of Poisson kernels. Intuitively, this is because the paths from x to z that are lost between
times t and t + dt can be decomposed into two portions, one from x and one from z, which
go via the tip of the curve at. (In the case of constant mass, this is stated without proof in
the proof of Proposition 3.1 by Makarov and Smirnov [MS10]; the argument below is close
to the proof given by Chelkak and Wan [CW19, Lemma 4.7]).

Proposition 4.4.12. For each fixed x ̸= z, such that x, z ∈ Ωt, the massive Green function

s (→ G
(ρ)
s (x, z) is differentiable at s = t, and

∂tG
(ρ)
t (x, z) = −πP

(ρ)
t (x)P

(ρ)
t (z), (4.83)

where P
(ρ)
t is defined above.

Proof. Since the mass ρ is nonnegative (or more precisely by (4.77)), for s < t,

0 ≤ G(ρ)
s (x, z)−G

(ρ)
t (x, z) ≤ G(0)

s (x, z)−G
(0)
t (x, z)

so the increments of G(ρ) are bounded by those of G(0). Since s (→ G
(0)
s (x, z) is differen-

tiable by the classical (non-massive) Hadarmard formula (see, e.g., [SS13]) we deduce by

monotonicity that s (→ G
(ρ)
s itself is differentiable.

Therefore ∂tG
(ρ)
t (x, z) exists for all x, z ∈ Ωt and it also holds that

0 ≤ −∂tG
(ρ)
t (x, y) ≤ −∂tG

(0)
t (x, y) = πPt(x)Pt(y) < ∞. (4.84)
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Recall from the Green function resolvent identity that

G
(ρ)
t (x, z) = G

(0)
t (x, z)−

1
Ωt

G
(0)
t (x, y)ρ(y)G

(ρ)
t (y, z)dy

Since γ[0, t] has Lebesgue measure equal to zero we can replace the domain of integration in
the above integral by Ω.

Differentiating this identity (4.82), using the classical Hadamard formula and the resolvent
identity for the massive Poisson kernel (Proposition 4.4.7), we obtain:

∂tG
(ρ)
t (x, z) = −πPt(x)Pt(z) + π

1
Ω
Pt(x)Pt(y)ρ(y)G

(ρ)
t (y, z)dy

−
1
Ω
GD(x, y)ρ(y)∂tG

(ρ)
t (y, z)dy

= −πPt(x)P
(ρ)
t (y)−

1
Ω
GD(x, y)ρ(y)∂tG

(ρ)
t (y, z)dy. (4.85)

Differentiation under the integral is justified because both Gt and G
(ρ)
t are decreasing in t so

their product is also monotone, and we can then use the positive case of the Fubini theorem
(i.e., the Tonnelli theorem) as well as the fundamental theorem of calculus to conclude.

Consider now the integral operators Gt and G
(ρ)
t acting on an arbitrary function h : Ωt →

R by

(Gth)(x) :=

1
Ω
Gt(x, y)ρ(y)h(y)dy (4.86)

(G
(ρ)
t h)(x) :=

1
Ω
G

(ρ)
t (x, y)ρ(y)h(y)dy. (4.87)

whenever the integrals above converge. Using these operators we can rewrite (4.85) as

(Id +Gt)(∂tG
(ρ)
t (·, z)) = −πPt(·)P (ρ)

t (z). (4.88)

Again by the resolvent identity (4.82) we will see that

(Id−G
(ρ)
t )(Id +Gt)h = h, (4.89)

whenever all involved integrals are absolutely convergent. Indeed the left hand side, evaluated
at x, expands as

h(x)−
1
Ω
G

(ρ)
t (x, y)ρ(y)h(y)dy +

1
Ω
Gt(x, y)ρ(y)h(y)dy

−
11

Ω×Ω
G

(ρ)
t (x, z)ρ(z)Gt(z, y)ρ(y)h(y)dydz

= h(x) +

1
Ω
ρ(y)h(y)

7
Gt(x, y)−G

(ρ)
t (x, y)−

1
Ω
G

(ρ)
t (x, z)ρ(z)Gt(z, y)dz

>
dy

= h(x),

since the bracketed term in the integral vanishes due to the Green function resolvent identity
(4.82) and reversibility of Gt(z, y).

For h(x) = ∂tG
(ρ)
t (x, z) the absolute convergence of the integrals is justified by, respect-

ively: (4.84) and the finiteness of the integral in (4.81), and an application of (4.6) in [CW19]
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(also recalled below explicitly in (4.92)) together with the fact that
2
ΩGt(z, y)dy is bounded

uniformly in z ∈ Ω by a constant depending only on the diameter of Ω.
Applying (4.88) and Proposition 4.4.7 yields

∂tG
(ρ)
t (·, z) = (Id−G

(ρ)
t )(Id +Gt)∂tG

(ρ)
t (·, z)

= (Id−G
(ρ)
t )(−πPt(·)P (ρ)

t (z))

= −πP
(ρ)
t (·)P (ρ)

t (z).

This proves the statement.

4.4.5 Derivative resolvent identity

We continue with the setup introduced above Proposition 4.4.12. Thus, Kt is a growing
family of hulls generated by a continuous curve γt, and Ωt = Ω \Kt. This curve will later be
either be non-massive or massive SLE2.

We define the (radial) derivative kernel Qt in Ωt by setting for y ∈ Ωt,

Qt(y) = Qt(y, at) = Im

7
2ϕt(y)

(1− ϕt(y))2

>
,

where that ϕt : Ωt → D is the unique conformal isomorphism mapping o to 0 and at to
1. (This is the radial analogue of (4.1) in [CW19]). The reason for introducing this radial
derivative kernel Qt is that, writing Pt for the potential kernel ratio PΩt ,

dPt(x) = Qt(x)dξt.

In the chordal case this is an easy application of Itô’s formula which can be seen for instance
from Proposition 7.7 in [BN23]. In the radial case this calculation is slightly more involved

but essentially similar. To calculate dP
(ρ)
t (x) we need to define massive version of Qt. For

this it is simpler to define Q
(ρ)
t via its associated resolvent identity: namely, we set

Q
(ρ)
t (x) = Qt(x)−

1
Ω
G

(ρ)
t (x, y)ρ(y)Qt(y)dy. (4.90)

To make this definition we need to check that the integral appearing on the right hand side

is finite; we will check this is a.s. the case for almost every time. Since G
(ρ)
t (x, y) ≤ Gt(x, y)

it suffices to prove the same with G
(ρ)
t replaced with the ordinary Green function Gt in Ωt.

This is done in [CW19, Corollary 4.6] for the chordal case. What remains to be checked is
that these arguments can be carried over to the radial case, but for completeness we will also
repeat the rest of the argument.

Proposition 4.4.13. For any fixed Loewner chain we have the following estimate. For all
x ∈ Ω, for almost every time t ≥ 0,

2
ΩGt(x, y)Qt(y) < ∞. In particular this holds almost

surely for the Loewner chain driven by (ξt)t≥0.

Proof. Using [CW19, Lemma 4.1] and expressing our Q in the upper-half plane via a suitable
Möbius map (and conformal invariance of P ), it is easy to check thatKKKKPt(y)

Pt(x)
− 1

KKKKGt(x, y) ≤ C,

KKKKQt(y)

Pt(y)
− Qt(x)

Pt(x)

KKKK Gt(x, y)

Pt(x)
≤ C (4.91)

for some uniform constant C > 0 independent of anything. In particular,

Pt(y)Gt(y, x) ≤ Pt(x)Gt(y, x) + CPt(x) (4.92)
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and

|Qt(y)|Gt(x, y) ≤ CPt(x)Pt(y) + |Qt(x)|Gt(x, y) + C|Qt(x)|. (4.93)

When we integrate over y ∈ Ω, the third term does not depend on y so is integrable, the
second term depends on y only through Gt(x, y) but using the fact that Gt(x, y) ≤ GΩ(x, y)
which has only a logarithmic singularity at x, it is easy to see that this term too is integrable
for all t ≥ 0. The problematic term is the first term. The proposition follows if we can prove1

Ω
Pt(y)dy < ∞ (4.94)

for almost every t ≥ 0, almost surely. In fact, we will check1 ∞

0

�1
Ωt

Pt(y)dy

$2
dt ≤ C(Ω) < ∞ (4.95)

where C(Ω) depends only on Ω (this is the analogue of Corollary 4.6 (i) in [CW19]). This
will obviously imply (4.94) and thus Proposition 4.4.13. This however follows immediately
from the classical Hadamard formula since�1

Ωt

Pt(y)dy

$2
=

11
Ω
Pt(x)Pt(y)dxdy = − 1

π

11
Ω
∂tGt(x, y)dxdy.

Thus integrating over t > 0 we get1
t>0

�1
Ωt

Pt(y)dy

$2
dt =

1

π

11
Ω
GΩ(x, y)−G∞(x, y)dxdy ≤ 1

π

11
GΩ(x, y)dxdy < ∞.

For our subsequent use of the radial derivative kernel in Itô’s formula we need a strength-
ening of (4.95), which is the analogue of Corollary 4.6 (ii) in [CW19]. This is the key estimate,
and requires us to make one additional assumption compared to the general setup introduced
above Proposition 4.4.12, We will stop assuming that (γt)t≥0 is deterministic and arbitrary,
and instead assume it is random, absolutely continuous on compact intervals of time [0, T ]
with respect to SLEκ for some κ ≤ 4. (In our application in this article, γ will be either SLE2

or the inhomogeneous massive SLE2, so these assumptions will be satisfied).

Lemma 4.4.14. Almost surely, for any fixed T > 0,1 T

0

1
Ωt

Pt(x)
2dxdt < ∞

In view of the nature of the singularity of Pt(x) near at, such a result might seem surprising
initially.

Proof. Fix x ∈ Ω and suppose t < τx. Let y be sufficiently close to x that y ∈ Ωt, but y ̸= x.
We know that we may write the Green function

Gt(x, y) = − 1

π
log |x− y|+ ht(y),

where ht(y) is harmonic in y ∈ Ωt (including at y = x) and ht(x) = 1/(π) log crad(x,Ωt) (see,
e.g., Theorem 1.23 in [BP23]). The left hand side is (for instance by Hadamard’s formula)
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differentiable in t; since in the right hand side only ht(y) depends on t we get that t (→ ht(y)
is differentiable and

∂tht(y) = ∂tGt(x, y) = −πPt(x)Pt(y).

We want to take y → x and this requires an exchange of derivation of limit. This can be
done using the fact that ht(x) is harmonic and thus satisfies the mean value property:

ht+δ(x)− ht(x)

δ
=

1
y

ht+δ(y)− ht(y)

δ
s(dy)

where s(dy) is the uniform law on some given circle centred at x of arbitrary sufficiently
small positive radius. Pointwise, as δ → 0, the terms in the integral converge to Pt(x)Pt(y)
by the above. The assumptions of the dominated convergence theorem are satisfied by the
mean value theorem and the fact that t (→ Pt(x)Pt(y) is continuous at a given time t so long
as y ∈ Ωt. We deduce, using harmonicity of Pt(y):

1

π
∂t log crad(x,Ωt) = −πPt(x)

2,

for any x ∈ Ωt. Therefore, 1 T

0
Pt(x)

2dt =
1

π2
log

crad(x,Ω)

crad(x,ΩT )
,

for any x ∈ ΩT (note the unimportant difference of a factor of π/2 with respect to the proof
of Corollary 4.6(ii) in [CW19], which comes from a different choice of normalisation of the
Laplacian and what appears to be a typo).

This can be integrated over x ∈ ΩT and even x ∈ Ω when we set the integrand to be
infinity on KT ; since KT has Lebesgue measure a.s. equal to zero this does not make a
difference. We get 1

ΩT

1 T

0
Pt(x)

2dtdx =
1

π2

1
ΩT

log
crad(x,Ω)

crad(x,ΩT )
dx.

Using Fubini’s theorem (since the integrand is positive) we can exchange the space and time
integration on the left hand side. Taking expectations, we further obtain:

E
�1 T

0

1
ΩT

Pt(x)
2dx

$
=

1

π2

1
Ω
E
�
1x∈ΩT

log
crad(x,Ω)

crad(x,ΩT )

$
dx

In the left hand side there is do difference if we replace ΩT by Ωt (since the difference has
zero Lebesgue measure a.s.) and in the right hand side for the same reason we can ignore the
indicator. The result follows since the expectation on the right hand side is finite. Indeed,
much stronger bounds are known than (negative) logarithmic moments for crad(x,ΩT ): it
is known that P(dist(w,KT ) ≤ ε) ≤ C(T )ε1−κ/8 with κ ≤ 4 (see, e.g., Proposition 4 in
[Bef08] for the chordal case, but the argument easily generalises to the radial case). This gives
polynomial hence the desired logarithmic moments using the Koebe one-quarter theorem.

This result implies a lemma (“stochastic Fubini”) corresponding to Lemma 4.8 in [CW19]:

Lemma 4.4.15. The process t (→ 2
ΩG

(ρ)
t (x, y)Qt(y)dy is a local semi martingale in the

filtration of the driving function (ξt)t≥0. Moreover almost surely, for all T > 0 the following
identity is satisfied:1

Ω

1 T

0
G

(ρ)
t (x, y)Qt(y)dξtdy =

1 T

0

1
Ω
G

(ρ)
t (x, y)Qt(y)dydξt (4.96)

This follows from Proposition 4.4.13 and Lemma 4.4.14 in the same way as in [CW19].
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4.4.6 Identification of LERW limit: proof of Theorem 4.4.1

In this section we complete the proof of Theorem 4.4.1 by showing that the limit of loop-
erased random walk on the triangular lattice, in the case where the walk itself converges to
inhomogeneous massive Brownian motion, exists and is given by a Lowener evolution whose
driving function ξ satisfies (4.19).

Let us summarise the situation at this stage. As already mentioned at the end of Section
4.4.3, we know that subsequential limits of the loop-erasure exist (i.e., the laws of the loop-
erasure are tight), and it suffices to identify any subsequential limit uniquely. We also know,
again from the same discussion, that any subsequential limit is absolutely continuous with
respect to radial SLE2, and may be described by a radial Loewner evolution whose driving
function ξ satisfies

dξt =
√
2dBt + 2λtdt. (4.97)

Our goal is thus to identify λt (we will show that λt =
Q

(ρ)
t (o)

P
(ρ)
t (o)

) and show that the above SDE

has a unique weak solution (we will in fact get strong pathwise uniqueness).

Proof of Theorem 4.4.1. We know by a classical argument, see [LSW01, Remark 3.6], that

for every vertex xδ, we get a discrete martingale observable M
(ρ)
n (xδ) defined by

M (ρ)
n (xδ) =

Z
(ρ)

Ωδ\γδ [0,n]
(xδ, γδ(n))

Z
(ρ)

Ωδ\γδ [0,n]
(oδ, γδ(n))

. (4.98)

Applying Lemma 4.4.4 (which, as already explained, extends to our setup one of the main
results of Yadin and Yehudayoff [YY11]), we see that if we take xδ → x ∈ Ω and parameterize
γδ[0, n] by capacity (which requires taking n = nδ(t) for any given t > 0) then, assuming
z ∈ Ωt, we have as δ → 0, for each t > 0,

Z
(ρ)

Ωδ\γδ [0,n]
(xδ, γδ(n))

Z
(ρ)

Ωδ\γδ [0,n]
(oδ, γδ(n))

→ P
(ρ)
Ωt

(x, at)

P
(ρ)
Ωt

(o, at)
(4.99)

where at denotes the tip of γt, viewed as a prime end in Ωt. This is the analogue of Proposition
3.16 in [CW19]. The right hand side is continuous in t ≥ 0, as remarked at the end of
Section 4.4.1. Furthermore, as argued in Section 2.4 of [CW19], the discrete martingales

M
(ρ)
n (xδ) yield continuous martingales in any subsequential limit (see in particular Remark

2.3 in [CW19]), hence we deduce that for every x ∈ Ω, every r > 0,

Mρ
t (x) :=

P
(ρ)
Ωt

(x, at)

P
(ρ)
Ωt

(o, at)
; t ∧ τr

is a martingale, where for every r > 0 the stopping time τr is defined as inf{t > 0 : |γt − b| ∧
|γt − x| ≤ r}.

Now we explain how these martingales can be used to identify the drift λt uniquely. To see

this, first recall that P
(ρ)
t := P

(ρ)
Ωt

satisfies the resolvent identity (Proposition 4.4.7), namely,

P
(ρ)
t (x, at) = Pt(z, at) +

1
Ω
G

(ρ)
t (x, y)ρ(y)Pt(y, at)dy.

Now we know that in the critical (ρ = 0) case, one has as a direct application of Loewner’s
equation

dPt(x, at) = Qt(x)dξt.
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Since this is an a.s. identity, this same identity remains true by absolute continuity for our
subsequential limit. Together with the Hadamard formula (Lemma 4.4.12), the resolvent

identity for P
(ρ)
t (Proposition 4.4.7) implies

dP
(ρ)
t (x) = Qt(x)dξt +

1
Ω
G

(ρ)
t (x, y)ρ(y)Qt(y)dξtdy − πP

(ρ)
t (x)

1
Ω
P

(ρ)
t (y)ρ(y)Pt(y)dydt

= Q
(ρ)
t (x)dξt − πP

(ρ)
t (x)

1
Ω
P

(ρ)
t (y)ρ(y)Pt(y)dydt, (4.100)

where we used Lemma 4.4.15 to exchange dξt and dy.

Since we know that
P

(ρ)
t (x)

P
(ρ)
t (o)

is a bounded martingale for any x ∈ B(o, 12r) until time τr,

we consider:

d
P

(ρ)
t (x)

P
(ρ)
t (o)

=P
(ρ)
t (o)−1dP

(ρ)
t (x) + P

(ρ)
t (x)d (P

(ρ)
t (o)−1) + d ⟨P (ρ)

t (o)−1, P
(ρ)
t (x)⟩t

=P
(ρ)
t (x)

7
d (P

(ρ)
t (o)−1)− πP

(ρ)
t (o)−1

1
Ωt

ρ(y)Pt(y)P
(ρ)
t (y)dydt

>
(4.101)

+Q
(ρ)
t (x)

4
P

(ρ)
t (o)−1dξt + d ⟨ξt, P (ρ)

t (o)−1⟩
;
. (4.102)

Since this is a martingale for any x, and P
(ρ)
t and Q

(ρ)
t are clearly linearly independent

functions of x, both of (4.101) and (4.102) (and thus each bracket in these two lines) must
be local martingales and thus have vanishing finite variation parts. By standard stochastic

calculus arguments (applying Itô’s formula to describe dP
(ρ)
t (o)−1 from (4.100)), the finite

variation part of the second bracket is

2

(P
(ρ)
t (o))

λt − 2
Q

(ρ)
t (o)

(P
(ρ)
t (o))2

, (4.103)

this implies that λt =
Q

(ρ)
t (o)

P
(ρ)
t (o)

, as desired.

The following lemma together with continuity of λt implies the uniqueness of solutions to
the SDE (4.97) by Novikov’s condition.

Lemma 4.4.16. There is a constant C = C(∥ρ∥∞,Diam(Ω)) < ∞ such that the drift λt

almost surely satisfies 1 ∞

0
|λt|2 ≤ C, .

Proof. We start by noting that

P
(ρ)
t (o) = Eo→at;Ωt [exp(−

1 σ

0
ρ(Xs)ds] ≥ exp(−c0∥ρ∥∞Diam(Ω)2)

≥ exp[−∥ρ∥∞Eo→at;Ωt(σ)].

We claim that Eo→at;Ωt(σ) ≤ c0Diam(Ω)2. To see this, note that (for instance using the
Doob transform description of Brownian motion conditioned to leave Ωt by at),

Eo→at;Ωt(σ) =

1
Ωt

GΩt(o, y)
Pt(y, at)

Pt(o, a)
dy.



176 CHAPTER 4. NEAR-CRITICAL DIMERS AND MASSIVE SLE2

Moreover, one can deduce from (4.91) and conformal invariance that

Gt(o, y)
Pt(y, at)

Pt(o, at)
≤ c0(1 +Gt(o, y)) ≤ c0(1 +GΩ(o, y))

so that

Eo→at;Ωt(σ) ≤ co(

1
Ω
1 +GΩ(o, y)dy) ≤ c′0Diam(Ω)2

as claimed.
Furthermore, by the resolvent equation for Q

(ρ)
t (4.90) and Qt(o) = 0 by definition, we

have

Q
(ρ)
t (o) = −

1
Ω
G

(ρ)
t (o, y)ρ(y)Qt(y)dy (4.104)

Combining these two estimates together and using (4.93), we get

1 ∞

0

KKKKK Q(ρ)
t (o)

P (ρt)(o)

KKKKK
2

dt ≲
1 ∞

0

71
Ω
Pt(z)dx

>2

dt ≤ 1

π

1
Ω

1
Ω
GΩ(z, w)dzdw ,

as shown in the proof of (4.95), and where the hidden constant depends only on Diam(Ω)
and ∥ρ∥∞ and the final integral is bounded by a constant only depending on Diam(Ω).

This concludes the proof of Theorem 4.4.1.

4.5 Scaling limit of the LERW with drift and conformal cov-
ariance

In this section we explain how Theorem 4.4.1 implies Theorem 4.1.6. We also discuss why
this implies convergence of the height function in the associated dimer models and why
these satisfy conformal covariance (Theorem 4.1.8). To do this we will rely on our discrete
Girsanov theorem (more precisely Corollary 4.1.5). We will in particular need to check that
the assumptions of Theorem 4.4.1 are satisfied not only on the directed triangular lattice,
but also on the image of this lattice under a conformal map.

Remark 4.5.1. While in principle possible, trying to work directly with quantities associated
to the random walk with drift poses serious difficulty since the formal analogues of many
statements (e.g. 4.90) have well-posedness issues stemming from worse regularity properties
of the operator 1

2∆+ α · ∇ compared to 1
2∆− ρ.

Let us begin with the proof for the triangular lattice.

Proof of Theorem 4.1.6. We want to apply Theorem 4.4.1. Recall that P(φ) denotes the law
of a random walk on Ωδ with drift α(v) = αδ(v) where αδ

k(v) = φ(v + δτk) − φ(v) (the
transition probabilities of the walk are described in (4.7)). By Corollary 4.1.5 the law P(φ),

conditioned so that Xδ
σδ = aδ, has the same law as the random walk P(ρδ) with mass

ρδ = ∆δTφ+
1

3
β2,

also conditioned so that Xδ
σ = aδ (and in particular to survive until doing so).

We need to check that this random walk P(ρδ) satisfies the conditions of the theorem 4.4.1.
First note that ρδ(v) = δ2ρ(v)/2 + o(δ2) uniformly in v, where ρ(z) = 1

2(∆φ(z) + ∥∇φ(z)∥2)
as in the statement of Theorem 4.1.6.
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As already noted in Section 4.1.9, this implies that (Xδ
2tδ−2))t≥0 converges weakly, uni-

formly on compacts, to the law P(ρ) of Brownian motion killed at the instantaneous rate ρ(x)
when in position x ∈ Ω.

Secondly we need to check that there is a constant c0 such that

E(0)

Ωδ ,oδ→aδ
(σδ) ≤ c0δ

−2R2 . (4.105)

This is an estimate purely for the simple random walk on the triangular lattice and follows
as in [CW19, Corrollary 2.8].

It remains to check the uniform crossing assumption (4.64). In order to prove that

P(ρδ)
z (Crossr) ≥ c for some uniform constant c > 0 we will in fact consider the restricted

event G = Crossr ∩{τ ≤ δ−2}, where τ is the stopping time at which the walk first leaves the
relevant rectangle.

P(ρδ)
x (Crossr) ≥ P(ρδ)

x (G) = E(0)
z (1G

τB
s=0

(1− ρδ(Xs)) (4.106)

≥ P(0)
z (G)(1− ∥ρδ∥∞)δ

−2
(4.107)

= (1 + o(1)) exp(−c∥ρ∥∞)P(0)
x (G). (4.108)

The statement follows since P(0)
z (G) is uniformly bounded below. Thus the assumptions of

Theorem 4.4.1 are fulfilled and Theorem 4.1.6 follows.

Now to prove 4.1.8 we will first show conformal covariance for massive SLE2.

Theorem 4.5.2 (Conformal covariance for SLE2 with mass profile). Let Ω be a simply
connected domain, and ρ : Ω → [0,∞) be a bounded and continuous mass profile. Let
T : Ω → Ω̃ be a conformal map such that |T ′| is uniformly bounded away from 0 and ∞ on
Ω. Then the image of radial massive SLE2 from a ∈ ∂Ω to o ∈ Ω, with mass profile ρ, under
T is given by radial massive SLE2 from T (a) (seen as an element of the Martin boundary)
to T (o) with mass profile |(T−1)′(·)|2ρ(T−1(·)).
Proof. The strategy of this proof is as follows: Let Xδ be the random walk on the directed
triangular lattice with mass profile ρδ approximating ρ as in the previous theorem. Consider
the random walk T (Xδ), which is a random walk on the image of the directed triangular
lattice T (Ωδ) under T . Note that this is also a planar graph. We will aim to apply Theorem
4.4.1 to this walk and so need to check that the conditions of the theorems are also fulfilled.

Noting that condition 2 on the expected time to leave the domain, does not depend on the
embedding of the graph, so it follows directly from what we proved above. It remains to check
the other two assumptions. The fact that it converges to a time changed massive Brownian
motion follows from the standard conformal invariance of Brownian motion. Indeed if Bt is
standard Brownian motion, then so is B̃t := T (Bξ−1(t)), where ξ(t) =

2 t
0 |T ′(Bs)|2ds. Let σΩ

be the time at which Bt leaves Ω and σ̃Ω̃ be the time at which B̃t leaves Ω̃. By definition,
ξ(τΩ) = τ̃Ω̃. Now consider the Radon–Nikodym derivative of a massive Brownian motion in

Ω with profile ρ with respect to standard Brownian motion and rewrite to in terms of B̃:

exp

7
−
1 τΩ

0
ρ(Bs)ds

>
= exp

7
−
1 τΩ

0
ρ(T−1(B̃ξ(s))ds

>
(4.109)

= exp

7
−
1 τΩ̃

0
ρ(T−1(B̃s))|T ′(T−1(B̃s)|2ds

>
(4.110)

= exp

7
−
1 τD′

0
ρ(T−1(B̃s))|((T−1)′(B̃s)|−2ds

>
. (4.111)
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Since the condition in Theorem 4.4.1 is convergence of paths up to time reparametrization,
this shows that assumption 1 holds. The uniform crossing estimate (3) follows the fact that
this assumption is invariant under conformal maps using the Koebe one-quarter theorem and
the uniform control over |T ′| in our assumption.

To prove Theorem 4.1.8 we first see how Theorem 4.1.6 implies convergence of the dimer
height function when the weights are given by (4.4).

Proposition 4.5.3. Consider the directed triangular lattices with weights (4.4). Let h(α),δ

denote the height function of the biperiodic dimer on the dimer graph Gδ (a piece of the
hexagonal lattice). Then h(α),δ converges, in the sense that if f is a test function, then

(h(α),δ, f) → (h(α), f)

converges in law and in the sense of moments. Here h(α),δ is identified with a function defined
on all Ω which is constant on each face of Gδ, and the inner product above is simply the L2

inner product of square integrable functions.

Proof. The convergence of the loop-erased random walk in Theorem 4.1.6, applied iteratively
using Wilson’s algorithm, implies the convergence of the uniform spanning tree T with weights
(4.4) in the Schramm topology ([Sch99]). Recall that this tree is identical to the tree one
obtains from applying the Temperley bijection to the biperiodic dimer model with weights
(4.4). We apply a general theorem (Theorem 8.1 in [BLR19]) in order to deduce convergence
of the height function. The theorem, which follows the approach originating in [BLR20],
is particularly simple to apply on simply connected domains, which is our situation. The
assumptions of that theorem in this simplified situations are as follows:

• There exists c > 0 such that the following holds. For any vertex v ∈ v(Ωδ), for any
interior point z ∈ Ω, if r = |v− z| ∧dist(v, ∂Ω)∧dist(z, ∂Ω) and if γ is the loop-erasure
of the random walk starting from v and killed when it leaves Ω, then for any 0 < ϵ < 1,

P(φ)
v (γ ∩B(z, rϵ) ̸= ∅) ≤ ϵc, (4.112)

in other words γ is polynomially unlikely to enter a small ball near z.

• There exists C, c > 0 and for every k ≥ 1 there is a constant Mk such that the following
holds. For any v ∈ v(Ωδ), let γ denote the loop-erasure of the random walk starting
from v and killed when it leaves Ω, parameterized from v to ∂Ω. For all r > 0, let θr
denote the first time it leaves B(v, r) and σr the last time it is in B(v, er). For s < t, let
W (γ[s, t]) denote the intrinsic winding of the path γ([s, t]) (that is, on a graph where
all edges are straight, the sum of the turning angles of γ during that interval of time).
Then for every k ≥ 1,

E(φ)
v [ sup

θr≤s≤t≤σr

|W (γ[s, t])|k] ≤ Mk, (4.113)

in other words the winding of the path γ at any scale r is of order one.

The proofs in [BLR20] of both these facts for the random walk on Ωδ relies on nothing but
the uniform crossing estimate of (4.64); in fact Proposition 4.4 of [BLR20] and Proposition
4.12 of [BLR20] are stated for general random walks on embedded planar graphs subject to
the uniform crossing estimate (convergence to Brownian motion is also assumed throughout
that section, but plainly that assumption is only used to identify the law of the limit of
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loop-erased random walk). Hence Proposition 4.4 of [BLR20] applies and yields (4.112); and
Proposition 4.12 of [BLR20] also applies and yields uniform stretched exponential tails hence
(4.113). This completes the proof of Proposition 4.5.3.

It is also possible to deduce (4.112) and (4.113) from the Proposition 4.4 of [BLR20] and
Proposition 4.12 of [BLR20] (applied to the usual driftless random walk on the square lattice)
and the fact that the Radon-Nikodym derivative in Corollary 4.1.5 is uniformly bounded by
exp(2 supx∈Ω |φ(x)|).

Let us see how this may be used to finish the proof of (4.112) and (4.113). Consider for
instance (4.112).

P(φ)
v (γ ∩B(z, rϵ) ̸= ∅) = E(0)

v [1{γ∩B(z,rϵ) ̸=∅}e
φ(Xσ)−φ(X0)−1

2Aσ ]

≤ P(0)
v [γ ∩B(z, rϵ) ̸= ∅] exp(2 sup

x∈Ω
|φ(x)|)

so using Proposition 4.4 of [BLR20] we obtain (4.112). The same argument also implies
(4.113).

This concludes the proof of Proposition 4.5.3.

Proof of Theorem 4.1.8. We are now ready to finish the proof of Theorem 4.1.8. All that
remains to prove is the conformal covariance of the limiting height function h(α);Ω (here we
write explicitly the dependence on the domain Ω in order to avoid confusions). Let Ω̃ be
another bounded simply connected domain and let T : Ω → Ω̃ be a conformal map with
bounded derivative. Recall that we wish to show

h(α);Ω ◦ T−1 = h(α̃);Ω̃

where at a point w ∈ Ω̃,
α̃(w) = (T−1)′(w) · α(T−1(w)). (4.114)

The idea is to use the same approach as in Theorem 4.5.2, i.e. using both the convergence
as in Proposition 4.5.3 and the same type of result on the lattice obtained by the image of
Gδ under T . Indeed since the connection with the massive random walk (i.e. Theorem 4.1.5)
does not depend on the embedding, the analogue of Theorem 4.1.6 for the random walk on
the deformed triangular lattice is an immediate consequence of Theorem 4.5.2. The scaling
limit of the corresponding random walk is necessarily the image by T of a Brownian motion
with drift α in Ω. Applying Itô’s formula and the Cauchy–Riemann equations, one checks
that α and α̃ are related via (4.114).

Likewise (4.112) and (4.113) are trivially verified in Ω̃δ because they are verified in Ωδ

and T has bounded derivative. The dimer model associated to T (Gδ) is the image by T of
the dimer model on Gδ and has a height function which necessarily converges to h(α);Ω ◦T−1

in Ω̃. On the other hand, the law of the limiting Temperleyan tree is uniquely determined
by the law of its branches, which by Theorem 4.1.6 are off-critical radial SLE2 with limiting
drift vector field α̃, as described in (4.19). We conclude that, in law,

h(α);Ω ◦ T−1 = h(α̃),Ω̃,

as desired.

4.A Continuum hitting probabilities

The following well-known proposition is recalled as Proposition 3.3 of [YY11] and can be
proved using the fact that for two dimensional Brownian motion log(|Bt|) is a local martingale
and the inequality log(1− r) ≤ −r.
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Lemma 4.A.1. Let D be the unit disc and let x ∈ D be different from 0. Let 0 < ϵ < |x|. Let
σ be the exit time of Xt from the unit disc D. Then

Px(∃t ∈ [0, σ] : |Xt| < ϵ) ≥ 1− |x|
log(1/ϵ)

, (4.115)

We need to replace this with a suitable analogue for massive Brownian motion.

Lemma 4.A.2. Suppose Ω = D is the unit disc. There exists a constant c > 0 such that the
following holds. Let x ∈ Ω be different from 0 and 0 < ϵ < |x|. Let σ be the exit time of Xt

from the disc. Then

P(ρ)
x (∃t ∈ [0, σ ∧ σ∗] : |Xt| < ϵ) ≥ c

1− |x|
log(1/ϵ)

. (4.116)

Proof. Suppose without loss of generality that ε = e−N for some N ≥ 1. Writing down the
Radon–Nikodym derivative with respect to ordinary Brownian motion, and letting σϵ being
the first time the trajectory enters B(0, ϵ), we get

P(m)
x (σϵ < σ) = E(0)

x

7
1{σϵ<σ} exp(−

1 σϵ

0
ρ(Xs)ds)

>
≥ E(0)

x

4
exp(−σϵ∥ρ∥∞)

KKKσϵ < σ
;
Px(σϵ < σ).

Thus it remains to show

Ex

4
exp(−M2σϵ)

KKKσϵ < σ
;
≥ c, (4.117)

for some constant c, where M2 = ∥ρ∥∞. A priori, the difficulty is that conditioning the
Brownian motion to hit a very small ball might cause the process to waste a lot of time and
thus make it highly likely to be killed (or equivalently make the exponential term very small).
We will see this is not the case; essentially, when we condition planar Brownian motion to
hit zero before leaving the unit disc, it does so in an a.s. finite time.

Let σ0 = inf{t > 0 : |Bt| = ek for some k ∈ Z}, and define inductively a sequence of
stopping times σn by setting

σn+1 = inf{t > σn : |Bt| = ek for some k ∈ Z with|Bt| ≠ |Bσn |}.

In words, the sequence σn corresponds to the sequence of times at which |Bt| is of the form
ek for some distinct k.

Let Mn = logr(|Bσn |). Because log |x| is a harmonic function on R2 and rotational
invariance of Brownian motion, it is easy to see that Mn is nothing but simple random walk
on Z with a possibly random initial value M0 which however differs from log |x| by at most
1. Let θϵ denote the first n such that Mn ≤ −N (recall that we have assumed ϵ = e−N , so θϵ
corresponds to Brownian motion entering B(0, ϵ)). Let θ be the smallest n such that Mn ≥ 0
(which corresponds to Brownian motion leaving the unit disc).

Now let us describe the effect of conditioning on σϵ < σ (or equivalently σϵ < σ). The
conditional transition probabilities are well known and easy to compute (this can be viewed
as an elementary version of Doob’s h-transform). Writing P̃ for the conditional probability
measure given θϵ < θ, we obtain for −N + 1 ≤ k ≤ −1,

P̃(Mn+1 = k ± 1|Mn = k) =
1

2
(1∓ 1

|k|). (4.118)
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Note that this description is actually independent of N (or equivalently ϵ). The formalism
of electrical networks is useful to describe the conditional walk defined by (4.118) (which, up
to the sign, is essentially a discrete version of a three-dimensional Bessel process, and is in
particular transient). To put it in this framework, note that (4.118) coincides with the walk
on the network with conductances c(k, k−1) =

6|k|+1
2

=
. Indeed in that case the corresponding

stationary measure is then

π(k) =

7|k|+ 1

2

>
+

7|k|
2

>
= k2

after simplification, so that c(k, k − 1)/π(k) coincides with (4.118) as desired. The corres-
ponding unit current voltage v(k) = 2

|k| (if we set zero voltage at −∞ and unit voltage at 1),

which means that the expected number of visits to k is exactly 2|k| if we let the conditioned
walk (4.118) live forever. We deduce that

Ẽ(#{n ≤ θ : Mn = k}) ≤ 2|k|. (4.119)

(This can also be computed directly using elementary computations based on the gambler’s
ruin probability, and considering the probability from k that the conditioned walk ever returns
to k).

Now let us decompose

σϵ − σ0 =

θϵ−1G
n=0

(σn+1 − σn) =
N−1G
j=1

∞G
m=1

1{Nm
j <θϵ}(σNm

j +1 − σNm
j
) (4.120)

where for 1 ≤ j ≤ N − 1 and m ≥ 1, n = Nm
j is the time of the mth visit to level −j by the

martingale Mn. We will check that the conditional expectation of the left hand side, given
θε < θ, remains finite as ε → 0.

Let F denote the σ-algebra generated by all the random variables of the form Xσn , 0 ≤
n ̸= N . Note that the event θε < θ is measurable with respect to F , and that given F ,
the trajectory of (Xt, 0 ≤ σε) may be split in pieces of the form X[σn, σn+1], which are
independent of one another, and where each piece may be described as a Brownian motion
starting from Xσn conditioned to exit a certain annulus An = B(0, eMn+1) \ B(0, eMn−1)
through Xσn+1 . Now, if A is any annulus of the form B(0, ek+1) \ B(0, ek−1) and y ∈ A is
any interior point, z ∈ ∂A is any point on the boundary of the annulus A, then it is not hard
to see for some constant C > 0, by Brownian scaling,

Ey(σA|XσA = z) ≤ Ce2k (4.121)

where σA is the time at which X leaves A, and this estimate is uniform in y ∈ A, z ∈ ∂A,
and k ∈ Z. Consequently,

E(σn+1 − σn|F) ≤ Ce2Mn . (4.122)
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This implies that Ẽ(σ0) ≤ C < ∞. Furthermore, using (4.120)

Ẽ(σϵ − σ0) =
N−1G
j=1

∞G
m=1

Ẽ
�
1{Nm

j <θϵ}(σNm
j +1 − σNm

j
)
!

=

N−1G
j=1

∞G
m=1

Ẽ
�
1{Nm

j <θϵ}Ẽ[(σNm
j +1 − σNm

j
)|F ]

!

≤
N−1G
j=1

∞G
m=1

Ẽ
�
1{Nm

j <θϵ}Ce−2j
!

≤ C

N−1G
j=1

e−2jẼ(#{n ≤ θ : Mn = j})

≤ C
N−1G
j=1

j2e−2j .

Here we used (4.122) in the third line, and (4.119) in the last line. The right hand side is
uniformly bounded in N (or equivalently ε). We deduce that E(σϵ|σϵ < σ) ≤ C for some
constant C independent of x. Therefore, using Jensen’s inequality and convexity of x (→ e−x,
we get

Ex

4
exp(−M2σϵ)

KKKσϵ < σ
;
≥ exp(−M2Ex(σϵ|σϵ < σ)) ≥ exp(−M2C),

which proves (4.117). This concludes the proof of Lemma 4.A.2.

4.B Discrete crossing, Beurling estimates

To end this section we conclude with the remaining missing discrete estimates required for
the proof of Theorems 4.1.6 and 4.4.1. The first one concerns disconnection events: for z ∈ Ω,
and r > 0 such that B(z, 10r) ⊂ Ω, let us write x[0, t] ⟲(r) z for the event that the path
x[0, t] disconnects B(z, r) from B(z, 5r)c (or, equivalently, makes a noncontractible loop in
the corresponding annulus); this is the notation from [YY11]. The next lemma corresponds
to Proposition 3.4 in [YY11] although there it is only stated for Brownian motion, although
we will need its random walk version.

Lemma 4.B.1. For every R there exists a z such that the following holds: Let 0 < r ≤ R
and let z ∈ C. Let T be the exit time of X(·) from B(z, r). Then for every xδ ∈ B(z, r/2),

P(ρ)

xδ (X(0, T ) ⟲(r) z) ≥ c.

Proof. Encircling a point at scale r contains the intersection of ten box-crossing events (see
Figure 4.B). We conclude using our crossing assumption (4.64).

The last missing piece is a Beurling estimate (corresponding to Proposition 4.1. in
[YY11]), which shows that a walk starting close to the boundary of a domain is very likely to
leave this domain in a short time, without going far from its starting point. Actually what is
needed is the version of this estimate in which we want to ensure the random walk will hit a
given curve which is close to its starting point; of course, this makes no difference. Such an
estimate is well known in the critical case where the walk converges to Brownian motion. This
remains true in the off-critical regime thanks to the following observation: while of course the
off-critical Brownian motions are not scale invariant, this effect disappears at small scales. In
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z

Figure 4.6: Making a loop by crossing rectangles.

fact, making loops at any scale above that separating the curve from the starting point guar-
antees an intersection, and so we can get a uniform bound using the previous observations.
Also, since we assume that the original domain Ω is bounded, we do not need to consider
arbitrarily large scales and can therefore obtain uniform bounds for all domains which have
diameter less than some constant R.

The desired estimate is formulated in [YY11] after applying a conformal map to the unit
disc (let ϕ denote the unit conformal map from Ω to D such that ϕ(o) = 0 and ϕ′(o) > 0).
This is initially a little worrying, since we did not assume uniform crossing after applying
the conformal map ϕ but instead only in Ω itself. (Note that this uniform crossing estimate
could in fact fail to hold for ϕ(Ωδ) if the domain Ω is not very nice). Thankfully, we will see
that thanks to Koebe’s one quarter theorem we can get the required estimate.

Lemma 4.B.2. For all α,R > 0, there exists an η > 0 such that for all ϵ̃ > 0, for all simply
connected domains Ω such that 0 ∈ Ω ⊂ B(0, R), and for all ã ∈ (1 − ϵ̃)⩽̸, there exists a δ0
such that the following holds for all δ < δ0:

Let y ∈ v(Ωδ) ∩ ϕ−1(ρ(ã, ηϵ̃)) ∈ Ω. Let Xδ denote random walk on Ωδ starting from y.
Then, for every continuous curve g starting in B(ã, ηϵ̃) and ending outside of B(ã, ϵ̃),

Pδ
y(ϕ(X[0, T ]) ∩ [g] = ∅) ≤ α

where [g] is the range of g and T is the time at which ϕ(X) leaves B(ã, ϵ̃).

Proof. Let ϵ̃ > 0 and let ã ∈ (1 − ε̃)D. Let a = ϕ−1(ã) ∈ Ω, and let ε = |(ϕ−1)′(ã)|ε̃; note
that we have no control over the actual size of ε since it depends on the conformal map near
ã. Nevertheless, applying the Koebe 1/4-theorem (twice), it is easy to see that the image of
curve g under ϕ−1 starts from a ball of radius 4ηε around a, and ends outside of a ball of
radius ε/4 around a. For ϕ(Xδ[0, T ]) to avoid g, Xδ[0, T ] must therefore avoid making loops
at all scales between 4ηε and ε/4 (this corresponds to a fixed number of scales, even though
ε itself is variable). Furthermore, using the strong Markov property, all the events ⟲(r) a
occur with fixed positive probability (by Lemma 4.B.1) and independently of one another.
By choosing η small enough, this probability can therefore be made smaller than α, uniformly
over all the parameters.

Together these results conclude the convergence of the discrete Poisson kernel and there-
fore the proof of Theorem 4.4.1.



184 CHAPTER 4. NEAR-CRITICAL DIMERS AND MASSIVE SLE2

Bibliography

[AP21] Juhan Aru and Ellen Powell. A characterisation of the continuum Gaussian free
field in d ≥ 2 dimensions. arXiv preprint arXiv:2103.07273, 2021.

[BBC09] Michel Bauer, Denis Bernard, and Luigi Cantini. Off-critical SLE(2) and SLE(4):
A field theory approach. Journal of Statistical Mechanics: Theory and Experi-
ment, 2009(7), 2009.

[BBK08] Michel Bauer, Denis Bernard, and Kalle Kytölä. LERW as an example of off-
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Chapter 5

The stochastic six-vertex speed
process

abstract

For the stochastic six-vertex model on the quadrant Z≥0 × Z≥0 with step initial conditions
and a single second-class particle at the origin, we show almost sure convergence of the
speed of the second-class particle to a random limit. This allows us to define the stochastic
six-vertex speed process, whose law we show to be ergodic and stationary for the dynamics
of the multi-class stochastic six-vertex process. The proof follows the scheme developed in
[ACG23] for ASEP and requires the development of precise bounds on the fluctuations of the
height function of the stochastic six-vertex model around its limit shape using methods from
integrable probability. We also obtain a novel result that allows us to control the behavior
of an individual second-class particle by controlling the behavior of a geometric number of
third-class particles.

5.1 Introduction

5.1.1 Preface

Type I II III IV V VI

Configuration

Weight 1 1 b1 1− b1 b2 1− b2

Figure 5.1: The six allowed configurations for the stochastic six-vertex model

Figure 5.2: A possible sampling of the stochastic six-vertex model on the quadrant with step
initial data. The height function is denoted in blue.

The stochastic six-vertex model was first introduced by Gwa and Spohn in [GS92] as a
specialization of the six-vertex model, which is a classical model from equilibrium statistical
mechanics going back to [Pau35]. Recently there has been a lot of interest in this model.
It is connected via a suitable limit degeneration to ASEP [Agg17], the Kardar-Parisi-Zhang
equation [CT17, Lin20, CGST20], the stochastic telegraph equation [BG19] and lies in the

187
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(one-dimensional) KPZ universality class [GS92, BCG16, ACH24], in particular exhibiting

N
1
3 fluctuations andN

2
3 correlations on a domain of sizeN , see [Agg16, AB19, Bor18, BCG16,

CD18]. Furthermore, it can be put into the more general setting of higher-spin vertex models,
see [CP16, Agg18, BP18].

To define the stochastic six-vertex model we need to specify two parameters b1, b2 ∈ [0, 1].
Given a subset D of Z2, a configuration of the stochastic six-vertex model is given by a subset
of the edges incident to the vertices in D such that at each vertex a local conservation law is
satisfied, namely that the number of edges to the left and the bottom of that vertex equals
the number of edges to the top and right. See Figure 5.1 for the six possible configurations at
a given vertex. We call the bottom and left edges incident to a vertex its incoming edges and
the top and right edges its outgoing edges. We say that edges are occupied if they are in
the selected subset, and we sometimes refer to occupied edges as particles or arrows oriented
from top to bottom and left to right. Each of the six possibilities is assigned a weight, see
Figure 5.1, and the weight of a configuration is given by the product of its vertex weights. For
finite D, a configuration is then sampled proportional to its weight, after perhaps specifying
some edges as a boundary condition.

We will study this model on the quadrant Z≥0 × Z≥0. On Z≥0 × Z≥0 the model can be
taken to be defined via the following stochastic sampling algorithm, which coincides with
taking a limit of the model on finite boxes [0, N ]× [0,M ] → Z≥0 × Z≥0, see [GS92, BCG16].
First one needs to specify a boundary configuration on the edges incoming from the left at
the vertices {0} × Z≥0 and from the bottom at the vertices Z≥0 × {0}. Choose any vertex
where both the left and bottom edges have already been determined. In the beginning, the
only such vertex is (0, 0), but later there will be potentially many such vertices. The law does
not depend on this choice.

• If there are two incoming particles then there is only one possibility for the outgoing
edges. Set the outgoing edges to be occupied as well, as in configuration I. Similarly,
if there are zero incoming particles, then set the outgoing edges to be unoccupied as in
configuration II. Continue by selecting the next vertex.

• If there is a single incoming vertical particle, there are two possible configurations: III
and IV. Choose III with probability b1 and IV with probability 1− b1.

• Similarly, if there is a single horizontal incoming particle choose configuration V with
probability b2 and VI with probability 1− b2.

If one chooses which vertices to update in an antidiagonal way (i.e. ordered by x+ y) every
vertex will eventually be updated and this defines a law on configurations of Z≥0 × Z≥0.

There is an alternative parameterization of the model by parameters q, κ > 0 defined as

q :=
b1
b2

κ :=
1− b1
1− b2

.

This parameterization will be quite useful to us, and these variables will appear in many
formulas throughout the paper.

The most common boundary condition that we will work with is one where all incoming
edges from the left boundary of the quadrant are occupied and all incoming edges from
the bottom boundary are empty. We will refer to this boundary condition as step initial
conditions in analogy with analogous initial conditions in interacting particle systems. For
a given configuration ω of the stochastic six-vertex model with step initial conditions, we
define the height function H(x, t) = H(x, t;ω) for x, t ∈ R≥0 by setting H(x, 0;ω) = 0 for all
x and increasing H whenever one crosses a path in the vertical direction, see Figure 5.2.
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The model exhibits two very different behaviors depending on whether b1 or b2 is larger.
If b1 > b2, then particles prefer moving up to moving to the right. Since the upper part of
the quadrant is already packed, this leads to a sharp transition between a region with density
1 and a region with density 0, whose boundary stays close to the line x = t. This behavior
is known as a shock. On the other hand if b1 < b2, particles want to move right more than
up, and thus they spread out. Three regions form: one above the line x = κ−1t, where the
density of particles is 1, one below the line x = κt, where the density is 0, and one in between,
where the density decreases continuously from 1 to 0 (See the right-hand side of Figure 5.4
for a simulation). The middle section is known as the rarefaction fan. Both the shock and
rarefaction fan regimes are interesting in their own rights, but our results concern the latter:
from now on we always assume b1 < b2.

We will now introduce the multi-class stochastic six-vertex model. Instead of every edge
being either occupied or unoccupied it will now be assigned a class from R∪{−∞,∞}. The
classes assigned to the two outgoing edges equal the classes of the incoming edges, and the
weight of a vertex depends on the classes, see Figure 5.3. Intuitively if i < j then a particle
of class i treats particles of class j as holes. The single-class stochastic six-vertex model can
be obtained from the multi-class one by setting the class of unoccupied edges to 1 and the
class of occupied edges to ∞.

Configuration
i

i

i

i

j

i

j

i

j

j

i

i

i

j

i

j

i

i

j

j

Weight 1 b1 1− b1 b2 1− b2

Figure 5.3: The allowed configurations for the multi-class stochastic six-vertex model, where
red lines represent class i and blue lines represent class j for i < j.

Our main theorem concerns the following variant of the step initial condition, which we
will call step initial conditions with a vertical second-class particle at the origin.
All particles coming in from the left have class 1, there is a single particle coming in from
the bottom at (0, 0), and all other incoming particles from the bottom have class ∞, i.e. are
holes, see Figure 5.4. By the conservative property of the model, for every t there is exactly
one x such that the vertical arrow leaving (x, t) has class 2. We call this x the position of
the second-class particle at time t and denote it by Xt. Our main result states that the
speed Xt

t of the second-class particle converges a.s. to a random limit:

Theorem 5.1.1. Let 0 < b1 < b2 < 1 and consider the stochastic six-vertex model with step
initial positions with a vertical second-class particle at the origin. Let Xt be the position of
the second-class particle at time t. Then almost surely

lim
t→∞

Xt

t
= U (5.1)

where U is a continuous random variable taking values in [κ−1, κ] with density
√
κ

2(κ−1)x
− 3

2 .

Even the weak convergence of the speed of the second-class particle has not been stated
in the literature, to the best of the authors’ knowledge. However, it follows readily from the
hydrodynamic limit proved in [Agg20] in the same way as for ASEP using the arguments
from [FK95]. For the convenience of the reader we adapt this argument to our setting in
Appendix 5.A.
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t

x

Figure 5.4: On the left: step initial conditions with a vertical second-class particle at the
origin. Black arrows denote first-class particles, while the grey arrow denotes the second-class
particles. Dashed lines denote holes. On the right: a simulation of this process on a 200 by
200 square with b1 = 0.3 and b2 = 0.6 and with the second-class particle in red.

For TASEP with step initial conditions, the weak convergence of the speed of a second-
class particle at the origin was first proven in [FK95] and a.s. convergence was proven in
[MG05] (see also [FP05] and [FMP09] for alternative proofs). For the Hammersley process,
a.s. convergence of the speed of a second-class particle at the origin was proven in [CP07]
under suitable initial conditions, and for the totally asymmetric zero range process (TAZRP),
this was proven in [Gon14]. All of these proofs rely crucially on connections between the
models under consideration and last passage percolation models (for example, TASEP can
be coupled with exponential last passage percolation). Since this no longer holds for ASEP,
new tools were required to prove the analogous result for ASEP under step initial conditions,
and this was done in [ACG23] using inputs from integrable probability as well as a coupling
due to Rezakhanlou [Rez95]. Since for the stochastic six-vertex model last passage methods
also do not apply, our proof strategy for Theorem 5.1.1 is inspired by the ideas in [ACG23].
The speed of second-class particles for ASEP and the Hammersley process has also been
studied for other classes of initial conditions in [CP13, GSZ19, FGN19].

We also derive a bound on the fluctuations around the limiting speed:

Theorem 5.1.2. Let Xt be the position of the second-class particle at time t as above and
U its almost sure limit. Then for any δ > 0, almost surely we have that

lim
t→∞ |Xt − tU |t−( 7

9
+δ) = 0 . (5.2)

Remark 5.1.3. For the stochastic six-vertex model with stationary initial conditions, the
fluctuations are of order t

2
3 , see e.g. [Agg16, LS23], so the best exponent one could achieve

in the above expression is −(23 + δ) , see also Remark 5.5.9.

For ASEP and TASEP the fluctuations at stationarity are also of order t
2
3 [QV07, BS10],

but the fluctuations of the speed of a second-class particle around its eventual limit speed
are also not known. Our techniques can also be used for ASEP, where they would give an
analogous result to Theorem 5.1.2 for ASEP.

Going beyond adding a single second-class particle into our model, we can consider initial
conditions where each incoming particle has a different class in Z ∪ {−∞,∞}. Individually,
each particle will have an asymptotic speed given by Theorem 5.1.1. By considering the
joint speeds of all the particles simultaneously, we can construct the stochastic six-vertex
model speed process. Speed processes have previously been constructed and studied for
TASEP [AAV08], TAZRP [ABGM21], and ASEP [ACG23]. To define the speed process, we
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first need to discuss how we can view the stochastic six-vertex model as a particle system, as
was first done in [GS92], see also [BCG16, Section 2.2].

5.1.2 The stochastic six-vertex model as an interacting particle system

Until this point, we have treated the stochastic six-vertex model as a measure on configur-
ations consisting of oriented edges. However, it is also natural to consider it as a particle
system, as has already been quite noticeable in the language we have been using and was
already observed in [GS92]. Let us now introduce notation that emphasizes this connection.
For a given configuration ω on Z≥0 × Z≥0 define ηt(x) for x ∈ Z≥0 by

ηt(x) =

�
1 if the incoming vertex at (x, t) from below in ω is occupied

0 else.

Defined like this (ηt)t∈Z≥0
is a Markov process with values in {0, 1}Z≥0 . We call this a

stochastic six-vertex process. The boundary conditions on the bottom give the initial
condition η0 and the boundary conditions on the left inject particles at specific times. The
transition probabilities of this process can be described as follows: Particles stay in place
with probability b1 and start moving to the right with probability (1−b1). If a particle starts
moving, the amount it moves is the minimum of a Geo(b2) distributed random variable and
the distance to the nearest particle to its right. If it moves to the location of the neighboring
particle to the right, that other particle then starts moving, following the above described
rules. See [BCG16, Section 2.2] for these transition weights written out in more detail.

We now define the height function in this setting and show that it generalizes the definition
of H(x, t) above for the case of step initial conditions.

Definition 5.1.4 (Height Function). For a given stochastic six-vertex process (ηt)t≥0, the
height function ht(x) = ht(x; η) is the unique function (up to a global shift) that satisfies

ht(x; η)− ht(x+ 1; η) = ηt(x) (5.3)

ht+1(0; η)− ht(0; η) =

�
1 if there is an incoming arrow from the left at (0, t)

0 else.
(5.4)

Since the height function is only unique up to a global shift, unless otherwise specified the
choice of height function is made by setting h0(0) = 0, but in some places it will be convenient
to choose some other h0(0). For a configuration ω of the stochastic six-vertex model with
step initial conditions, one recovers the definition of H(x, t) above, since by (5.3), h0(x) = 0
for all x.

Definition 5.1.5. As shown in [Agg20], these dynamics can be extended to processes ηt :
Z → {0, 1}. We call this the stochastic six-vertex process on the line.

Given an initial condition η0 : Z → {0, 1} that satisfies η0(x) = 1x<0, the restriction
(ηt(x))x,t∈Z≥0

of the stochastic six-vertex process on the line to x ≥ 0 agrees with the process
on the quadrant with step initial conditions. It is this process that we will be considering in
Sections 5.2 to 5.6. The height function is still defined by (5.3) and (5.4).

This extension is also compatible with the multi-class stochastic six-vertex process. While
the single-class processes ηt : Z → {0, 1} have occupation variables in {0, 1} with 0 encoding
holes and 1 encoding particles, we will let the multi-class processes have occupation variables
in Z∪{∞}, with ∞ encoding holes and all other values encoding particles of different classes.
In other words, we define the multi-class stochastic six-vertex process on the line as
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ηt : Z → Z ∪ {∞}, where ηt(x) = i if at time t, there is a particle of class i at position x
To avoid confusion, we will always specify in the text whether we are considering a single- or
multi-class process.

We can now define the speed process whose existence will be obtained as a corollary of
Theorem 5.1.1.

Corollary 5.1.6 (Existence of the speed process). Consider the multi-class stochastic six-
vertex model on the line with initial conditions η0(x) = x for all x ∈ Z, i.e. at position x
there is a particle of class x. We call this packed initial conditions. Denote by Xt(x) the

position of the unique particle of class x at time t. Then the process
4
Xt(x)

t

;
x∈Z

converges

a.s. as t → ∞ to a process U(x). We call U(x) the stochastic six-vertex model speed
process.

Now that the stochastic six-vertex model speed process is defined, we can study some of its
properties. In Section 5.8, we will prove that the speed process is ergodic and stationary with
respect to the dynamics of the multi-class stochastic six-vertex model. Assuming uniqueness
of multi-class stationary measures with a given marginal for the stochastic six vertex model,
this, together with recent results from [ANP23] implies that the stochastic six vertex speed
process is related to the ASEP speed process by a deterministic map.

There are also many avenues for further work on these processes. In particular the article
[BSS22] shows that the suitably rescaled TASEP speed process converges weakly to a process
known as the stationary horizon. The stationary horizon was first introduced in [Bus23]
and is expected to be a universal scaling limit for multi-class invariant measures of models
in the KPZ universality class. Then in [BSS24], they develop a more general framework
to show convergence to the stationary horizon. In particular, they show that if a model
converges to the directed landscape under suitable rescaling, then the stationary measures
of the associated multi-class process converge to the stationary horizon at the level of finite-
dimensional projections. In [ACH24] they prove the convergence of the stochastic six-vertex
model and ASEP to the directed landscape, and hence using the results from [BSS24], they
obtain as a corollary [ACH24, Corollary 2.14] that the stationary measures for the multi-
class ASEP converge to marginals of the stationary horizon. By the above discussion, these
stationary measures are the same as for the multi-class stochastic six-vertex model. It is still
an open problem to prove convergence of the ASEP and stochastic six-vertex model speed
processes to the stationary horizon in the space D(R, C(R)).

5.1.3 Proof Ideas

The proof of the main theorem uses a variety of tools. We follow the general strategy de-
veloped in [ACG23], which requires certain model-specific inputs that have not yet been
developed for the stochastic six-vertex model. In particular, we need the following two in-
gredients, which are the key novelties of this paper:

• A statement that a second-class particle to the right of any number of third-class
particles will at any fixed time be overtaken by at most a geometric number of third-
class particles.

• Effective hydrodynamic estimates that quantify how close the height function of the
stochastic six-vertex model started from step initial conditions will be to its limit shape.

These results will be used in the following way. We want to control the behavior of a
single second-class particle. Hydrodynamic theory allows us to control the bulk behavior of
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many particles, so we augment our system by filling up all empty positions to the left of Xt

with third-class particles. We then use our effective hydrodynamic estimates to control the
union of the second- and third- class particles. Finally, we can revert this back to an estimate
on the position of the second-class particle since we know that our second-class particle is to
the left of at most a geometric number of the third-class particles. A similar argument can
be made to bound the position of the second-class particle from the left.

We now state these two results in detail. The first will be the content of Proposition 5.1.7
and the second, the content of Propositions 5.1.8 and 5.1.9.

5.1.4 Controlling a Second-Class Particle by Third-Class Particles

The following proposition allows us to control the behavior of a single second-class particle
by controlling the behavior of a large number of third-class particles inserted to the left of
the second-class particle.

Recall that q = b1
b2
. By X ∼ Geo(q) we denote the law given by

P[X = k] = (1− q)qk for k ≥ 0 .

Proposition 5.1.7. Let (ηt)t≥0 be a multi-class stochastic six-vertex process on the line with
parameters 0 < b1 < b2 < 1 and with the following initial conditions:

• There are some first-class particles (finitely or infinitely many).

• There is a single second-class particle.

• There are M third-class particles, all to the left of the second-class particle.

Let Zt(0) > Zt(1) > · · · > Zt(M) be the ordered positions of the second- and third-class
particles at time t. Further, let Lt be number of third-class particles to the right of the
second-class particle at time t. Then for any t the law of Lt, conditioned on both Z and the
space-time history of the first-class particle is dominated by Geo(q).

Let us briefly compare this result with Rezakhanlou’s coupling from [Rez95], which was
used to control a second-class particle in ASEP in [ACG23]. In [Rez95] an auxiliary label
process on the second and third-class particles is defined, which has the following properties.

• Every second- and third-class particle has a unique label from 0 to M , which can change
over time.

• The law of this labeling process at any fixed time is that of a uniform permutation, and
it is stationary.

• It is coupled to the dynamics of the multiclass ASEP, such that at any time, the particle
with label 1 is to the left of the single second-class particle.

This allows us to control the second-class particle with a uniformly chosen third-class particle,
see [AB19, (5.4)].

One can construct an analogous coupling for the stochastic six-vertex model,1 but only
for the case b1 < 1

2 . Proposition 5.1.7 takes a different approach and works for all b1 < b2.
There are two key differences between these approaches: Firstly, Proposition 5.1.7 does not

1Such a coupling was presented by Ivan Corwin at the 2022 PIMS-CRM Summer School in Probability.
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proceed via a coupling. Secondly, the bound in Proposition 5.1.7 is significantly stronger for
large M . Intuitively, the result from [Rez95] shows that the number of third-class particles
that do not pass the second-class particle grows linearly in the number of third-class particles,
while Proposition 5.1.7 shows that the number that do pass is of order 1.

Since the statement of Proposition 5.1.7 is entirely insensitive to scaling time or space, it
can be carried over to ASEP, with q = b1

b2
fixed. For ASEP this result could also be obtained

from the censoring inequality [PW13].

5.1.5 Tail Bounds for the Height Function

In this subsection, we state effective hydrodynamic estimates for the fluctuations of the height
function H(x, t) of the stochastic six-vertex model with step initial conditions. To do so we
first state the law of large numbers for H.

With probability one it holds that

lim
n→∞

H(⌊nx⌋, ⌊ny⌋)
n

= g(x, y), ∀x, y ∈ R≥0. (5.5)

where for b1 ≤ b2, we have

g(x, y) =

				
y − x if x

y ≤ κ−16√
x−√

κy
=2

κ−1 if κ−1 < x
y < κ

0 if x
y ≥ κ

(5.6)

and for b1 ≥ b2, we have

g(x, y) =

�
0 if x ≥ y

y − x if x ≤ y.

This was proven at the level of weak convergence in [BCG16] and [Agg20] and was strengthened
to almost sure convergence in [DL23].

Let g(x) := g(x, 1). We prove the following two tail bounds on the fluctuations of the
height function H around its limit shape g.

Proposition 5.1.8. Fix ε > 0. There exists a constant c = c(ε) > 0 such that the following
holds: For any µ ∈ [κ−1 + ε, κ−1 − ε] and for any T ≥ 1, s ≥ 0,

P
�
H(Tµ, T ) ≥ g(µ)T + sT 1/3

!
≤ c−1e−cs

3
2 , (5.7)

and c can be chosen to weakly decrease in ε.

Proposition 5.1.9. Fix ε > 0. There exists a constant c = c(ε) > 0 such that the following
holds: For any µ ∈ [κ−1 + ε, κ−1 − ε] and for any T ≥ 1, s ≥ 0,

P
�
H(Tµ, T ) ≤ g(µ)T − sT 1/3

!
≤ c−1(e−cs + e−cT ),

and c can be chosen to weakly decrease in ε.

Remark 5.1.10. The power T
1
3 on the left-hand side of Propositions 5.1.8 and 5.1.9 is optimal,

since on this scale the fluctuations of the height function have been shown to converge to
the Tracy-Widom GUE distribution, see [BCG16, Theorem 1.2]. The optimal exponents
on the right-hand side however, are expected to be s3 for Proposition 5.1.8 and s3/2 for
Proposition 5.1.9 as was obtained for the longest increasing subsequence of a permutation in
[LM01, LMR02]. The parameters µ1 and µ2 need to be bounded away from the edge of the
rarefaction fan in order to obtain a uniform constant c(ε).
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We call Proposition 5.1.8 a “lower tail” bound since it corresponds to the lower tail of
the Tracy-Widom distribution. Similarly, we call Proposition 5.1.9 an “upper tail” bound.
The reason that the upper tail decays more slowly than the lower tail is because in order for
the height function to be smaller than expected, we just need the position of the right-most
path/particle in the stochastic six-vertex model to be small. On the other hand for the height
function to be larger than expected, we must have that the positions of many paths/particles
are large. Since this requires more deviations to occur, it has a smaller probability.

We prove the lower tail bound by using an identity from [Bor18] that expresses the q-
Laplace transform of the height function in terms of an expectation with respect to the law
of the Meixner ensemble. This identity allows us to bound the upper tail for the height
function by the lower tail of the position of the smallest hole in the Meixner ensemble. The
Meixner ensemble is a determinantal point process, so this tail can be expressed as a Fredholm
determinant, which we then bound using Widom’s trick [Wid02]. The upper tail bound is
more straightforward. We directly express the q-Laplace transform of the height function in
terms of a Fredholm determinant and use Fredholm determinant estimates from [AB19].

Tail estimates for the height function of the stochastic six-vertex model have previously
been obtained in [LS23] for stationary initial conditions. The recent work [DLM24] obtains
a large deviation principle for the stochastic six-vertex model with step initial conditions,
whereas our results are in the “moderate deviation” regime There is also an upcoming work
[GS] that will prove tight tail bounds in the moderate deviations regime.

5.1.6 Proof Sketch

We now sketch the proof of Theorems 5.1.1 and 5.1.2 using the above two ingredients. To
show that the speed Xt

t converges a.s., we will introduce a sequence of times Sn and prove that
as long as we are not too close to the edge of the rarefaction fan, then with high probability,KKKKXSn

Sn
− XSn+1

Sn+1

KKKK ≤ S−γ
n (5.8)

for some positive γ.
For this to imply convergence of the sequence

XSn
Sn

, we need the right-hand side to be
summable. For general times Sn ≤ t ≤ Sn+1, one can then use the monotonicity of Xt to

bound
KKKXt

t − XSn
Sn

KKK as long as the sequence Sn does not grow too quickly. We will take the

sequence Sn+1 = Sn + T (Sn) := Sn + S
7
9
n and prove (5.8) for this sequence in Proposition

5.5.2.
To prove Proposition 5.5.2, we want to control the behavior of the second-class particle

after some large initial time S0. However, the effective hydrodynamic bounds in Propositions
5.1.8 and 5.1.9 only allow us to control the behavior of a large number of particles, not
of an individual one since they are mesoscopic statements as opposed to microscopic ones.
Therefore, we fill up all empty positions to the left of XS with third-class particles and
control the union of the second- and third-class particles by Propositions 5.1.8 and 5.1.9.
Letting T = T (S) = S

7
9 , Proposition 5.1.7 will guarantee that only a small number of these

third-class particles will be to the right of XS+T at time S+T , so that controlling the union
of the second- and third-class particles gives us a bound on XS+T .

We split the proof of (5.8) into an upper and a lower bound, which are treated analogously.
Proposition 5.1.7 reduces the lower bound to showing that a large number of these second-
and third-class particles are to the right of XS +

XS
S T −S1−γ at time S+T . To do so denote

by B(1,2,3) the augmented (single-class) stochastic six-vertex model containing the union of
all first-, second- and third-class particles and by B(1) the process with only the first-class
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t = 0 t = S t = S + T

0 1
κ
S XS κS XS

S+T
S

Figure 5.5: A sketch of the densities of the processes B(1) in black at times 0, S and S + T
and Bstep in blue at times S and S+T . At time S the process B(1,2,3) is given exactly by the
maximum of the two processes B(1) and Bstep, while at time S+T it is at least the maximum
of B(1) and Bstep.

particles. Additionally, we introduce an auxiliary third process Bstep which is started at time
S from the initial condition Bstep

S (x) = 1x≤XS
. At time S these three processes satisfy

B(1,2,3)
S (x) = max(B(1)

S (x),Bstep
S (x)) . (5.9)

The multi-class stochastic six-vertex process allows us to couple B(1,2,3) and Bstep such that

at any later time S+T it holds that B(1,2,3)
S+t (x) ≥ Bstep

S+t(x). Since B(1,2,3) and B(1) are already
coupled in such a way, this implies that for any t ≥ 0

B(1,2,3)
S+t (x) ≥ max(B(1)

S+t(x),Bstep
S+t(x)) . (5.10)

Note that this also couples B(1) and Bstep in some non-trivial way. See Figure 5.5 for a sketch
of the particle densities of the processes B(1) and Bstep at times 0, S, and S + T .

By using the effective hydrodynamic estimates together with a recent approximate mono-
tonicity result from [ACH24], we show that with high probability B(1) is still close to the
hydrodynamic limit at time S+T , uniformly over all possible configurations of B1

S when on a
certain event HS , which also occurs with high probability. Since the process Bstep is started
from step initial conditions, it is also close to a hydrodynamic limit at time S + T , which is
obtained by translating the hydrodynamic limit for standard step initial conditions. By the
coupling above

B(1,2,3)
S+T (x)−B(1)

S+T (x) ≥ Bstep
S+T (x)−B(1)

S+T (x). (5.11)

Using the hydrodynamic estimates for the two processes on the right-hand side, this gives
a lower bound for the number of third-class particles to the right of XS

S (S + T ) − S1−γ , as
desired.

Remark 5.1.11. While the general strategy outlined above is similar to the strategy employed
in [ACG23], we would like to highlight the following differences:

• The choice of time steps Sn is different than the choice in [ACG23] and is optimized to
allow us to also prove the more refined fluctuation result in Theorem 5.1.2. See Remark
5.5.9 for further discussion.

• The fact that Proposition 5.1.7 does not get worse with the number of particles (as
compared to Rezakhanlou’s coupling) allows us to fill in all empty positions to the left
of the second-class particle with third-class particles. In [ACG23] only a small number
of positions were filled, which made it necessary to deal with more complicated “φ-
distributed” Bernoulli initial conditions and introduced a further approximation step.
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• For ASEP, monotonicity is a straightforward consequence of the basic coupling. How-
ever, for the stochastic six-vertex model, the basic coupling is not monotone, and we
instead need to use a recent result from [ACH24] which gives an approximate form of
monotonicity for the basic coupling, see Proposition 5.2.6.

5.1.7 Structure

In section 5.2, we recall some couplings and properties of the stochastic six-vertex model,
including the approximate monotonicity result from [ACH24] which is stated in Proposition
5.2.6. The two core ingredients are proved in Sections 5.3 and 5.4 respectively—in Section
5.3 we prove Proposition 5.1.7 and in Section 5.4 we prove Propositions 5.1.8 and 5.1.9.

These results are then used in Sections 5.5, 5.6 and 5.7 to prove the main theorem. In
order these sections show that

• the main theorem follows if one can show that with high probability the second-class
particle does not deviate too much from its current speed in a given time frame,

• which follows if one can show that the augmented progress with additional third-class
particles does not deviate too much from its hydrodynamic limit with high probability,

• which follows from the effective hydrodynamics from Section 5.4 together with approx-
imate monotonicity.

Finally in Section 5.8 the existence of the speed process is deduced from Theorem 5.1.1, and
some of its properties are found using recent results from [BB19, ANP23].

5.1.8 Notation

Throughout the paper, many floor functions are dropped when we consider large integers.
We use �A,B� = [A,B] ∩ Z

for intervals of integers.
Our convention for geometric random variables is that a random variable X ∼ Geo(q)

satisfies
P[X = k] = (1− q)qk .

We consider both single-class and multi-class processes by considering their occupation
variables. Single-class processes have occupation variables in {0, 1} with 0 encoding holes
and 1 encoding particles, while multi-class processes have occupation variables in Z ∪ {∞},
with ∞ encoding holes and all other values encoding particles of different classes.

The parameters b1 and b2 are fixed throughout the paper and therefore all constants can
depend on them freely even if this is not explicitly mentioned.

5.2 The basic coupling

We consider the following construction of the single-classt stochastic six-vertex model, which
also allows us to couple multiple stochastic six-vertex models with varying boundary condi-
tions. We will first state it on the quadrant.

Definition 5.2.1 (Basic Coupling). We will construct a coupling using two independent
families (χ1(x, t))x,t≥0 and (χ2(x, t))x,t≥0 of i.i.d. Bernoulli(b1) and Bernoulli(b2) random
variables respectively. Given such random variables, we can sample the stochastic six-vertex
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model in the following way. If at a given vertex there are either two incoming arrows or no
incoming arrows then there is only a single possible outcome. If there is a single incoming
vertical arrow at (x, t) and χ1(x, t) = 1, then the the outgoing arrow is vertical. If χ1(x, t) = 0,
then the outgoing arrow is horizontal. Similarly, if there is a single incoming vertical arrow
and χ2(x, t) = 1, then the outgoing arrow is vertical. If χ2(x, t) = 0, then the outgoing arrow
is horizontal.

Given boundary conditions on the left and bottom edge of Z≥0 × Z≥0 the random vari-
ables (χ1(x, t))x,t≥0 and (χ2(x, t))x,t≥0 uniquely define a configuration, which can be obtained
by updating the vertices along the anti-diagonal lines {(x, t) : x + t = k} with increasing
k. Note also that the order of updates does not matter. Using the same (χ1(x, t))x,t≥0 and
(χ2(x, t))x,t≥0 for different boundary conditions gives a coupling of stochastic six-vertex mod-
els, which we call the basic coupling.

This coupling was used in [ACH24]. Before we recall several properties of this coupling,
let us show how it can be used to define the stochastic six-vertex-process on the line, in a
way that is similar to both the construction in [Agg20, Section 2.1] using a different coupling
of the stochastic six-vertex model and to the graphical construction of Harris for ASEP on
Z in [Har78].

Proposition 5.2.2 (Extension to Z). The construction in Definition 5.2.1 can be extended
to the domain Z × Z≥0. More specifically given two independent families (χ1(x, t))x∈Z,t≥0

and (χ2(x, t))x∈Z,t≥0 of i.i.d. Bernoulli(b1) and Bernoulli(b2) and any boundary conditions
on the incoming edges of Z × {0}, there is almost surely a unique configuration on Z × Z≥0

that is coherent with the boundary conditions and that at each vertex satisfies the rules in
Definition 5.2.1, i.e. if there is only one incoming arrow, the configuration at the vertex
(x, t) is given by the values of χ1(x, t) and χ2(x, t). Furthermore, the law of this unique
configuration is given by the stochastic six-vertex model.

Proof. We will construct the configuration line by line. Consider first the random variables
χ1(x, 0) and χ2(x, 0). We call a vertex (x, 0) such that χ1(x, 0) = χ2(x, 0) = 0 a cut-vertex.
Almost surely, there are infinitely many cut-vertices both to the left and to the right of the
origin since each vertex (x, 0) has an independent positive probability of (1−b1)(1−b2) to be
a cut-vertex. Notice that at a cut-vertex, the outgoing horizontal edge is occupied if and only
if the incoming vertical edge is occupied, and the outgoing vertical edge is occupied if and
only if the incoming horizontal edge is occupied. Therefore, if (x0, 0) and (x1, 0) with x0 < x1
are cut-vertices, the configuration of all vertices (x, 0) with x0 < x ≤ x1 is determined by
the incoming arrows at these vertices and the Bernoulli variables χ1(x, 0) and χ2(x, 0) for
x0 ≤ x ≤ x1. Therefore on the probability 1 event that there are cut-vertices infinitely far to
the left, the configuration is uniquely determined.

Again, using the same Bernoulli random variables for different initial conditions gives a
coupling of stochastic six-vertex processes. Let us now consider several properties of this
coupling starting with attractivity.

As mentioned in the introduction, we will use the notation (ηt(x))x∈Z,t≥0 for the occupa-
tion variables, i.e. ηt(x) = 1 if the vertical incoming edge is occupied. The initial conditions
are then given by a function η0(x) : Z → {0, 1}.

Lemma 5.2.3 (Attractivity). Given a collection of initial conditions ηk0 for k = 1, . . . , n,
such that ηi0(x) ≤ ηj0(x) for i ≤ j and all x ∈ Z, under the basic coupling it will hold that

ηit(x) ≤ ηjt (x) for all t ∈ Z≥0 and x ∈ Z.
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Proof. Let us consider ηi and ηj . Assume that the desired property is true until updating
a specific vertex. If at this vertex the incoming arrows are identical for ηi and ηj , by the
coupling the outgoing arrows will also be identical. If they are not, since the property holds
for all the previous steps, either there are two incoming arrows in ηi or no incoming arrows
in ηj . In either case the the outgoing arrows will also still satisfy the desired condition.

Remark 5.2.4. Note that the basic coupling with initial conditions ηk0 for k = 1, . . . , n, such
that ηi0(x) ≤ ηj0(x) for i ≤ j and all x ∈ Z, exactly corresponds to the n+ 1-class stochastic
six-vertex model with classes {1, . . . , n,∞} in the following way. Define

ηmult
t (x) = min{i ∈ {1, . . . n} : ηit(x) = 1} ,

where the convention is used that the minimum of the empty set is ∞. By considering the
possible situations at a single vertex, one easily checks that ηmult

t is a multi-class stochastic
six vertex process.

The attractivity property also has the following analogue for the multi-class process.

Lemma 5.2.5 (Merging). Let (ηt)t∈Z≥0
be a multi-class stochastic six-vertex model with

classes in Z ∪ {−∞,∞}, i.e. ηt : Z → Z ∪ {−∞,∞}. Then for any weakly increasing
function ϕ : Z ∪ {−∞,∞} → Z ∪ {−∞,∞}, the process (ϕ ◦ ηt)t∈Z≥0

is also a multi-class
stochastic six-vertex model.

Proof. This is an immediate consequence of the weights in Figure 5.3 only depending on the
incoming classes i and j via their ordering. Consider a vertex for which an update is about
to be performed. If the two incoming classes i and j are equal, they will also be equal after
applying the map, and in either case, there is exactly one outcome which then of course has
probability 1. If the two incoming classes i and j are different, i.e. i < j (note that we do
not assume whether i is the horizontal or vertical incoming arrow), then either ϕ(i) < ϕ(j) or
ϕ(i) = ϕ(j). In the first case, there are two possible outcomes for both a vertex with incoming
arrows i and j and a vertex with incoming arrows ϕ(i) and ϕ(j) and the probabilities match,
since the relative order of the incoming arrows is the same. In the second case there are two
possible outcomes before applying ϕ but only one outcome after applying ϕ. Since the two
possibilities before applying ϕ are complementary, their probabilities sum up to 1, which is
the probability of the one possible outcome after applying ϕ.

Recall that given a stochastic six-vertex process (ηt(x))x∈Z,t≥0, there is a height function
ht(x; η) defined up to a global shift defined in Definition 5.1.4 The following proposition is
Lemma D.3 of [ACH24].

Proposition 5.2.6 (Approximate Monotonicity). Consider two single-class initial conditions
η1 : Z → {0, 1} and η2 : Z → {0, 1} both with at most N particles . Further consider height
functions ht(x; η

1) and ht(x; η
2) satisfying ht(x; η

1) = ht(x; η
2) = 0 for x large enough. If

M ≥ (logN)2 and |h0(x; η1) − h0(x; η
2)| < K for all x ∈ Z, and t ≥ 0, then with probability

at least 1− c−1e−cM , and for all x ∈ Z it holds that

|ht(x; η1)− ht(x; η
2)| ≤ K +M .

Remark 5.2.7. In [ACH24] this is stated without the absolute value. However, the basic
coupling has the following property: If (η1, η2) are two stochastic six-vertex processes coupled
using the basic coupling so are (η2, η1). (This is a property that the monotone coupling
in [Agg20, Proposition 2.6] does not have). Additionally the conditions on η1 and η2 are
symmetric and therefore the statement with the absolute value follows from the statement
without the absolute value by a simple union bound.



200 CHAPTER 5. THE STOCHASTIC SIX-VERTEX SPEED PROCESS

Another property that we will need is a special case of [ACH24, Lemma D.4], and the
proof is quite similar to [Agg20, Proposition 2.17].

Proposition 5.2.8 (Finite Speed of Discrepancies). There exists a constant c = c(b2) > 0
depending only on b2 such that the following holds. Consider two particle configurations η0 and
ξ0 with height function h0(x; η) and h0(x; ξ)which are equal on some interval �A,B�. Then,
under the basic coupling, with probability at least 1− c−1e−cT it holds that ht(x; η) = ht(x; ξ)

for all t ≤ T and all x ∈
�
A+ 2T

1−b2
+ 1, B

�
.

Using Propositions 5.2.8 and Propositions 5.2.6 together, we can show that given two
initial conditions with height functions close on an interval, the height functions will stay
close on a smaller interval for some time.

Lemma 5.2.9 (Approximate Monotonicity on Intervals). There exists a constant c = c >
0, depending only on b1, b2 ∈ (0, 1), such that the following holds. Consider two particle
configurations η0 and ξ0 with height functions h(x; η0) and h(x; ξ0) such that for x ∈ �A,B�
we have |h0(x; ξ)−h0(x; η)| ≤ K. Let M ≥ log(B−A)2. Then we can couple them such that
with probability at least 1 − c−1(e−cT + e−cM ) it holds that |hT (x; ξ) − hT (x; η)| ≤ 3K +M
for all x ∈ �A+ 2T

1−b2
+ 1, B�.

Proof. This will follow from Propositions 5.2.6 and 5.2.8. Let Iη0 be the particle configuration
obtained from η0 by setting

Iη0(x) =
		
0 if x < A

η(x) if x ∈ �A,B�
0 if x > B ,

(5.12)

and define Iξ0 in the same way. Couple η, ξ, Iη and Iξ all with one basic coupling (i.e. all using
the same iid Bernoulli random variables). Let the height functions h0(x; Iη) and h0(x; Iξ) be
chosen such that h0(B; Iη) = h0(B; Iξ) = 0, i.e. h0(x; Iη) = h0(x; η) − h0(B, η) for x ∈ �A,B�
and the same for ξ. Note that h0(x; η) − h0(B, η) is a height function for η0, and therefore
by applying Proposition 5.2.8 twice, once for η and once for ξ and a union bound, we obtain
that

ht(x, Iη) = ht(x, η)− h0(B, η) and ht(x, Iξ) = ht(x, ξ)− h0(B, ξ), for (5.13)

holds for all t ≤ T and all x ∈ �A+ 2T
1−b2

, B� with probability at least 1− c−1e−cT .
Further note that at time 0, for all x

|h0(x; Iη)− h0(x; Iξ)| = |(h0(x; η)− h0(B, η))− (h0(x; ξ)− h0(B; ξ))| ≤ 2K . (5.14)

Therefore we can apply Proposition 5.2.6 to Iξ and Iη since they are coupled with the basic
coupling. Indeed both Iξ and Iη have at most B − A particles each, so we will have with
probability at least 1− c−1e−cM that

|hT (x; Iη)− hT (x; Iξ)| ≤ 2K +M for all x ∈ Z. (5.15)

By a union bound, with probability at least 1 − c−1(e−cT + e−cM ) both events (5.13) and
(5.15) take place. On this event it holds for all x ∈ �A+ 2T

1−b2
+ 1, B� that

|hT (x, η)− hT (x, ξ)| ≤ |hT (x, η)− hT (x, Iη) + hT (x, Iξ)− hT (x, ξ) + hT (x, Iη)− hT (x, Iξ)|
≤ |hT (x, η)− hT (x, Iη)− hT (x, Iξ) + hT (x, ξ)|+ |hT (x, Iη)− hT (x, Iξ)|
= | − h0(B, η) + h0(B, ξ)|+ |hT (x, Iη)− hT (x, Iξ)|
≤ K + 2K +M = 3K +M ,
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where we are used a triangular inequality, (5.13), (5.15) and that |−h0(B, η)+h0(B, ξ)| < K,
by the assumption on the height functions at time 0.

Remark 5.2.10. The factor 3 in the term 3K + M in the previous step is an artifact of
Proposition 5.2.6 being only stated only for height functions which are 0 far enough to the
right. This restriction could easily be removed, which would remove the factor 3. However,
for our purposes the above is sufficient.

This property will be used in Proposition 5.7.2, to show that if a stochastic six-vertex
process η is close to its hydrodynamic limit at time S, it will still be close to its hydrodynamic
limit at time S + T with high probability, even conditioned on its full configuration at time
S.

Finally, the stochastic six-vertex model has the following two symmetries which are often
used together.

Proposition 5.2.11 (Particle-Hole Inversion). If we interchange all particles and holes in a
stochastic six-vertex process, we obtain another stochastic six-vertex process, but with b1 and
b2 swapped.

Proposition 5.2.12 (Space Inversion). If we exchange the two coordinate axes in a stochastic
six-vertex process, we obtain another stochastic six-vertex process, but with b1 and b2 swapped.

Proof. Both of these can be seen by looking at what happens to the six configurations in
Figure 5.1 under this inversion.

Using both of these symmetries on the quadrant, which is symmetric with respect to
the line x = t, we obtain a symmetry of one stochastic six-vertex model with itself. In
particular one can see that the law of the stochastic six-vertex model started from step initial
conditions on the quadrant is invariant after applying both inversions. Furthermore, the step
initial condition with a single particle coming in at the origin from the left is dual to step
initial conditions with a single particle coming in at the origin from the bottom. Therefore
it suffices to prove the main theorem for this kind of initial condition.

5.3 Number of overtaking third-class particles

The purpose of this subsection is to prove Proposition 5.1.7 which will allow us to control an
individual second-class particle by controlling a large number of third-class particles.

Proof. As stated we will condition both on the paths of the first-class particles and on Z
and prove the statement for any given realization of these. After conditioning on the paths
of the first-class particles, one can run the stochastic six-vertex dynamics as follows: Assume
all vertices (x, t) with t ≤ t0 and x ∈ Z have already been updated. Let xmin := Zt0(M)
and xmax := Zt0(0) be the position of left-most and the right-most second- or third-class
particles, respectively. Since we have conditioned on the paths of the first-class particles,
the configurations of the vertices (x, t0 + 1) for x < xmin are already determined. Starting
with x = xmin one can update each vertex (x, t0 + 1) sequentially. The only time the result
of this update is random is when the incoming particles are the second-class particle and a
third-class particle. All other updates are determined by either the paths of the first-class
particles or Z. Therefore after updating (xmax, t0 + 1) all remaining vertices (x, t0 + 1) are
determined. One can then continue with the next line (x, t0 + 2).

Using this system of updating we will redefine Lt to refer to the number of third-class
particles to the right of the second-class particle after t updates have been performed. The
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sequence Lt where t now refers to an update is a refinement of the original sequence Lt

indexed by times t since there are (potentially) multiple updates performed between times
t and t + 1. Therefore, proving that Lt is dominated by Geo(q) for the refined sequence of
updates will give the desired result for times t.

How can Lt change when updating a vertex? It will only change when the incoming
particles are exactly a second- and a third-class particle. In this case, the two incoming
particles must be in positions Zt(k) and Zt(k + 1) for some 0 ≤ k ≤ M − 1 and Lt is either
k or k + 1. Then Lt changes in the following way:

• If Lt = k, then Lt+1 = k + 1 with probability b1 and Lt+1 = k with probability 1− b1.

• If Lt = k + 1, then Lt+1 = k with probability b2 and Lt+1 = k + 1 with probability
1− b2.

Now let us see how the law of Lt evolves. We will identify laws on {0, 1, . . . ,M} with
vectors in RM+1 and write (ei)0≤i≤M for the standard coordinate basis of this space. The law
of L0 is given by e0 since L0 is deterministically 0. Let S(t) denote the collection of updates
at which the two incoming particles are both either second- or third-class particles, which is
given by Z. By the above observation, the law of Lt is given by B

k∈S(t)
Pk

 e0 , (5.16)

where the matrices Pk are given by the transition rates above, i.e.

Pk =

99999999

1 0
. . .

1− b1 b2
b1 1− b2

. . .

0 1

@@@@@@@@
. (5.17)

To understand this product we introduce a new basis (vi)
M
i=0. Let vi be the vector corres-

ponding to the law of the random variable min(i, G) where G ∼ Geo(q), i.e.

(vi)k := P [min(i, G) = k] =

		
(1− q)qk if k < i

qi if k = i

0, if k > i.

(5.18)

This basis satisfies the following relation with the matrices Pk for all 0 ≤ k ≤ M − 1 and
0 ≤ j ≤ M :

Pkvj =

		
vj if j ̸= k, k + 1

(1− b2)vk + b2vk+1 if j = k

b1vk + (1− b1)vk+1 if j = k + 1 .

(5.19)

To see this, first recall that q = b1
b2

so that qb2 = b1. We now check each of the three cases
in (5.19):

1. j ̸= k, k + 1: Since Pk is equal to the identity matrix in all rows except k and k + 1
(Pkvj)i = (vj)i for i ̸= k, k + 1. For j < k, we have (vj)k = (vj)k+1 = 0 and therefore also
(Pkvj)i = (vj)i for i = k, k + 1. For j > k + 1, we have (vj)k+1 = q(vj)k and therefore:

(Pkvj)k = (1− b1)(vj)k + b2(vj)k+1 = (1− b1 + qb2)(vj)k = (vj)k (5.20)
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and

(Pkvj)k+1 = b1(vj)k + (1− b2)(vj)k+1 =

7
b1
q

+ 1− b2

>
(vj)k+1 = (vj)k+1. (5.21)

2. j = k: We have (vj)k = qk and (vj)k+1 = 0. Therefore,7
(Pkvj)k
(Pkvj)k+1

>
=

7
1− b1 b2
b1 1− b2

>7
qk

0

>
(5.22)

=
b1
q

7
(1− q)qk

qk+1

>
+

7
1− b1 − b1(1− q)

q

>7
qk

0

>
(5.23)

=b2

7
(1− q)qk

qk+1

>
+ (1− b2)

7
qk

0

>
. (5.24)

This suffices since (vk)j = (vk+1)j for j different from k, k + 1.

3. j = k + 1: The calculation is similar to the one above and we omit the details.
Returning to the law of Lt, we can write it as

MG
i=0

λt(i)vi (5.25)

for some random coefficients λt(i). Using (5.16) together with (5.19), we see that for any
time t, the vector λt is the law of a random variable on {0, 1, . . . , N}. Letting X be a random
variable with this law independent of G ∼ Geo(q), we see that Lt is equal in distribution to
min(X,G), and therefore is dominated stochastically by G. This proves the statement.

Note that M being finite was only used to define the vertex by vertex updates. This
assumption can easily be removed.

Remark 5.3.1. The proof shows that the law of Lt is equal in distribution to the law of
the minimum between a geometric random variable and a process Xt, which behaves in the
same way as Lt, except that b1 and b2 are reversed. This seems to be some kind of duality
statement. It would be interesting to see if this is a specific case of some more general duality.

We can also obtain a dual statement to Proposition 5.1.7:

Corollary 5.3.2. Let (ηt)t be a multi-class stochastic six-vertex process with the following
initial conditions:

• There are some first-class particles (finitely or infinitely many).

• There are M second-class particles.

• There is a single third-class particle, to the left of all second-class particles.

Let Lt be the number of second-class particles to the left of the third-class particle. Then
conditioned on the paths of the first-class particles, and the joint paths of the second- and
third-class particles, for any t ≥ 0 the random variable Lt is stochastically dominated by
Geo(q).

Proof. In the initial configuration, there are four classes of particles: {1, 2, 3,∞}, (recall that
holes are considered particles of class ∞). We invert the order of classes so that particles
of class 1 become holes, holes become particles of class 1, and the second and third-class
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particles swap class. Doing this and swapping the x and t coordinates, we obtain a stochastic
six-vertex model with the same parameters b1 and b2 by Propositions 5.2.11 and 5.2.12. This
is now a stochastic six-vertex process on the domain Z≥0×Z, i.e. the right half plane, which
can be defined in the same way as the stochastic six-vertex model on the line. The boundary
conditions obtained after these transformations satisfy the hypothesis of Proposition 5.1.7,
with the third-class particles being above the second-class particle. The proof then goes
through without any changes.

Remark 5.3.3. While we stated Proposition 5.1.7 and Corollary 5.3.2 for the stochastic six-
vertex process on the line, they can also be stated for the stochastic six-vertex model on
domains whose boundary is a down-right path. Since the proof takes a vertex-by-vertex
approach, it will carry through with minimal changes.

5.4 Effective hydrodynamic estimates

The purpose of this section is to prove Propositions 5.1.8 and 5.1.9. Before doing that, we
combine them to prove the following theorem:

Recall that H(X,T ) refers to the height function of a stochastic six-vertex model on the
quadrant with step initial conditions and that g(x) = g(x, 1) is the limit shape of the height
function (see (5.5)).

Theorem 5.4.1. For any ε > 0, there exists c = c(ε) > 0 such that the following holds. For
any µ1, µ2 ∈ [κ−1 + ε, κ− ε], and for any T ≥ 1, s ∈ [0, T ],

P
�
|H(Tµ1, T )−H(Tµ2, T )− (g(µ1)− g(µ2))T | ≥ sT 1/3

!
≤ c−1e−cs . (5.26)

Furthermore, the constant c can be chosen to weakly decrease in ε.

Proof of Theorem 5.4.1. For any µ ∈ [κ−1 + ε, κ− ε] we have the following two bounds from
Propositions 5.1.8 and 5.1.9, respectively. There exists a c (that will change from line to line)
such that

P
�
H(Tµ, T ) ≥ g(µ)T + sT 1/3

!
≤ c−1e−cs

2
3

P
�
H(Tµ, T ) ≤ g(µ)T − sT 1/3

!
≤ c−1(e−cs + e−cT ) ≤ 2c−1e−cs.

Combining these two bounds, we obtain

P
�
|H(Tµ, T )− g(µ)T | ≥ sT 1/3

!
≤ c−1e−cs .

It follows from a union bound that

P
�
|H(Tµ1, T )−H(Tµ1, T )− (g(µ1)− g(µ2))T | ≥ sT 1/3

!
≤ P

�
|H(Tµ1, T )− g(µ1)T | ≥ s

2
T 1/3

!
+ P

�
|H(Tµ2, T )− g(µ2)T | ≥ s

2
T 1/3

!
≤ c−1e−cs.

This finishes the proof of Theorem 5.4.1. The constant c can be chosen to be weakly decreasing
in ε, since this is the case for both Proposition 5.1.8 and Proposition 5.1.9.

We immediately obtain the following corollary of Theorem 5.4.1:
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Corollary 5.4.2. For any ε > 0, there exists c = c(ε) > 0 such that the following holds. For
any T ≥ 1 and for any s ∈ [0, T ],

P
�

max
µ1,µ2∈[κ−1+ε,κ−ε]

|H(Tµ1, T )−H(Tµ2, T )− (g(µ1)− g(µ2))T | ≥ sT 1/3

$
≤ c−1T 2e−cs,

(5.27)

and c can be chosen to weakly decrease in ε.

Proof. Notice that there are only finitely many µi satisfying κ−1 + ε ≤ µi ≤ κ− ε and such
that Tµi is an integer. In fact, there are at most κT of them, giving at most O(T 2) possible
pairs (µ1, µ2). Taking a union bound of (5.26) over all such pairs yields the result.

Finally, we can quickly extend Proposition 5.1.8 to the case of step Bernoulli boundary
conditions, i.e. the incoming arrows from the left are given by i.i.d. Bernoulli(ρ) random
variables, while the incoming positions from the bottom are all still empty. Denote these
boundary conditions as (ρ, 0)-Bernoulli boundary conditions. Even though we don’t need
this result to prove our main theorem, we state it as a corollary for completeness.

Corollary 5.4.3. Fix ε > 0. There exists a constant c = c(ε) > 0 such that the following
holds: Let ρ ∈ [ε, 1] and let Hρ(x, y) be the height function for the stochastic six-vertex model
on the quadrant with (ρ; 0)-Bernoulli boundary conditions. For any µ ∈ [κ−1 + ε, κ− ε] and
for any T ≥ 1, s ≥ 0,

P
�
Hρ(Tµ, T ) ≥ g(µ)T + sT 1/3

!
≤ c−1e−cs

3
2 . (5.28)

Proof. This is a straightforward consequence of the attractivity of the stochastic six-vertex
model, by which we can couple the model with (ρ; 0)-Bernoulli initial data with the model with
step initial data. In this coupling the height function of the model with (ρ; 0)-Bernoulli initial
data is smaller at every point, and thus the statement follows from Proposition 5.1.8.

Remark 5.4.4. Proposition 5.1.9 can also be extended to the case of (ρ, 0)-Bernoulli boundary
conditions as follows: For µ ∈ [κ−1 + ε, κ− ε]

P
�
Hρ(Tµ, T ) ≤ g(µ)T − sT 2/3

!
≤ c−1e−cs

by following the same steps as in [ACG23, Appendix B].

Note that we only obtain T
2
3 fluctuations here as opposed to the T

1
3 fluctuations obtained

in Proposition 5.1.9. The reason for this is that for (ρ, 0)-Bernoulli boundary conditions, the

rarefaction fan is
�

x
t ∈

�
κ

(κρ−ρ+1)2
, κ

!�
, which is smaller than the rarefaction fan for step

initial conditions. Therefore, for small µ, the vertex (Tµ, T ) is outside the rarefaction fan.
Instead, it is in a region where the process is very close to the stationary process given by
i.i.d. Bernoulli(ρ) random variables. In such a region the fluctuations of the process are
Gaussian, so it is expected that the 2

3 exponent could be improved to a 1
2 . If one restricts µ

to the smaller interval
�

κ
(κρ−ρ+1)2

+ ε, κ− ε
!
, the same bound as in Proposition 5.1.9 can be

obtained and the proof barely changes.
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5.4.1 Proof of Proposition 5.1.8

To prove Proposition 5.1.8, we will make use of a remarkable exact identity that relates the
height function of the stochastic six-vertex model to the holes of the Meixner ensemble. We
can then reduce the question of studying the tail of the height function to studying the tail
for the position of the smallest hole in this determinantal point process. We study this tail
by taking asymptotics of the associated kernel.

In this subsection, we define the Meixner ensemble, which is a determinantal point process
on Z. We will then relate the q-Laplace transform of the stochastic six-vertex model height
function to an expectation with respect to the Meixner ensemble.

We give a brief introduction to the theory of discrete determinantal point processes. Let
X denote the state space of a single particle, which we will take to be a countable set (for the
Meixner ensemble, we will take X = Z≥0). A subset X ⊆ X is called a point configuration,
and we define Conf(X) = 2X to be the set of all possible point configurations.

We define the following Borel sigma algebra for Conf(X):

B := σ ({X ∈ Conf(X) : |A ∩X| = n} : n ∈ N, A ⊆ X compact ) .

A probability measure P on (Conf(X),B) is called a random point process. From now on,
we will use X to denote this random point process by setting X : Conf(X) → Conf(X),
X(ω) = ω.

We define the n-point correlation function as follows: for A = {x1, ..., xn} ⊆ X, let

ρn(A) = ρn(x1, ..., xn) := P [A ⊆ X] .

Definition 5.4.5 (Determinantal Point Process). A random point process X is determinantal
if there exists a kernel K : X × X → R such that for all n ≥ 1 and for all x1, . . . , xn with
xi ̸= xj for i ̸= j, we have

ρn(x1, ..., xn) = det
6
K(xi, xj)

n
i,j=1

=
(5.29)

Let W (x) : X → R be a weight function, and let P0, P1, . . . be the family of orthonormal
polynomials with respect to W , i.e.,1

X
Pi(x)Pj(x)W (x)dx = ✶i=j .

The corresponding N -point ensemble (a random point process where P is supported on con-
figurations with exactly N particles) is given by

P(x1, . . . , xN ) ∝ det(V (x1, . . . , xN ))2
NB
i=1

W (xi),

where V (x1, . . . , xN ) = (xj−1
i )Ni,j=1 is the Vandermonde matrix, and det(V (x1, . . . , xN )) =C

i<j(xj − xi) is the Vandermonde determinant. An N -point ensemble generated in this way
is determinantal with the Christoffel-Darboux kernel

KN (x, y) = (W (x)W (y))
1
2

N−1G
n=0

Pn(x)Pn(y). (5.30)

The Meixner polynomials are a family of orthogonal polynomials on Z≥0. We fix two
parameters: β > 0 and ξ ∈ (0, 1), and then define the weight function W : Z≥0 → R:
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W (x) =
Γ(β + x)

Γ(β)x!
ξx. (5.31)

We can then define the Meixner polynomials to be the family of orthogonal polynomials with
respect to the weight function W . Using these orthogonal polynomials, we can define the
Meixner ensemble Meixner(N, β, ξ) to be the corresponding N -point ensemble.

We use the term particles to refer to the elements of a point process X and use the
term holes to refer to elements of X \ X. Particle-hole involution is an involution from
Conf(X) → Conf(X) that exchanges particles with holes. In other words, X (→ X◦ := X \X.
If we start with an N -point ensemble, then particle-hole involution yields a point process
with infinitely many particles. Suppose that X is a determinantal point process with kernel
K. Then X◦ is a determinantal point process with kernel 1−K.

Next, we give a brief overview of Schur measures. An integer partition is denoted as λ =
(λ1, λ2, . . .) where λ1 ≥ λ2 ≥ · · · and l(λ) denotes the number of nonzero λi in the partition
λ. Let Y denote the set of all integer partitions. Let x = (x1, x2 . . .),y = (y1, y2, . . .) be two
sets of nonnegative variables. For fixed x and y, we define the Schur measure SM(x;y)(λ)
as a measure on partitions λ as follows:

SM(x;y)(λ) :=
sλ(x)sλ(y)

Π(x;y)
(5.32)

where sλ is the Schur symmetric function indexed by λ and Π(x;y) =
H

λ sλ(x)sλ(y) is the
partition function. We need to assume that Π(x;y) < ∞ for our choice of x and y for this
to define a valid probability measure.

The Meixner ensemble can be obtained as a pushforward of the Schur measure as follows:
Consider the Schur measure of the form SM(x, . . . , x; y . . . , y) where we take n copies of
x and m copies of y. Using standard properties of Schur functions, it follows that this
measure is supported on Y(min{m,n}), which is the set of partitions with l(λ) ≤ min{m,n}.
Finally, consider the map from Y(min{m,n}) → Conf(Z≥0) such that λ (→ {min{m,n} + λi −
i}min{m,n}

i=1 . Then the pushforward of SM(x, . . . , x; y . . . , y) to a measure on Conf(Z≥0) gives
us the Meixner ensemble Meixner(min{m,n}, |m− n|+ 1, xy). This can be checked directly,
see Proposition 8.2 in [BO17].

The following identity originates from [Bor18], although we state a version written in
[BO17]: Let E6v refer to the expectation with respect to the stochastic six-vertex model and
let ESM denote the expectation with respect to a specified Schur measure.

Proposition 5.4.6 (Proposition 8.4 in [BO17]). Take any 0 < q < 1 and κ > 1 and consider
the stochastic six-vertex model on the quadrant parameterized by q and κ. Consider any
integers M,N ≥ 1. Then for any ξ /∈ −qZ≤0 we have

E6v

B
i≥0

1

1 + ξqH(M,N)+i
= ESM

B
j≥0

1 + ξqλN−j+j

1 + ξqj
(5.33)

where in the right-hand side we assume that qλ−m = 0 for m ≥ 0, and the expectation is with
respect to the Schur measure SM(κ−1q1/2, . . . , κ−1q1/2� �
 


N

; q−1/2, . . . , q−1/2� �
 

M−1

).

If M > N , then the Schur measure in (5.33) is supported on Y(N). We can obtain
the N particles of the Meixner(N,M − N, κ−1) ensemble by taking the above-mentioned
pushforward of the Schur measure so that the particles in the Meixner ensemble are given by
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{λi +N − i}Ni=1 = {λN−j + j}N−1
j=0 . On the other hand, if M ≤ N , then the Schur measure is

supported on Y(M−1). We now have that

{λN−j + j}N−1
j=0 = {0, · · · , N −M} ⊔ {λi + (N −M) +M − i}M−1

i=1 .

This gives us the M − 1 particles in Meixner(M − 1, N − M + 2, κ−1) each shifted over
deterministically by N − (M − 1) along with the addition of particles packed from 0 to
N −M . In either case, we can obtain the following identity:

Proposition 5.4.7. Take any 0 < q < 1 and κ > 1 and consider the stochastic six-vertex
model on the quadrant parameterized by q and κ. Consider any integers M,N ≥ 1. Then for
any ξ /∈ −qZ≤0 we have

ESM

B
j≥0

1 + ξqλN−j+j

1 + ξqj
= EX

B
x∈X

1

1 + ξqx
. (5.34)

where in the left-hand side we assume that qλ−m = 0 for m ≥ 0 and the right-hand expectation
is with respect to the point process

X ∼
�
Meixner◦(N,M −N, κ−1) if M > N

N − (M − 1) +Meixner◦(M − 1, N −M + 2, κ−1) if M ≤ N ,
(5.35)

where for a point process X, n + X denotes the point process obtained by deterministically
shifting over each particle in X by n.

Proof. The proof of this follows from crossing out each term in the denominator that equals
one of the nontrivial terms in the numerator (i.e., a term corresponding to one of the particles
in the Meixner ensemble). All terms that remain in the denominator will correspond to holes
of the associated Meixner ensemble.

We now explain how we go from Propositions 5.4.6 and 5.4.7 to proving Proposition 5.1.8.
We will first need the following definition and lemma:

Definition 5.4.8 (q-Pochhammer symbol). For any complex numbers q and a such that
|q| < 1, we define (a; q)∞ =

C∞
j=0(1− aqj).

The following Lemma is taken from [ACG23] and it allows us to connect the q-Laplace
transform of H (the left-hand side of (5.33)) with the tail probability of H.

Lemma 5.4.9 (Lemma B.7 in [ACG23]). Let A be a real-valued random variable, q ∈ [0, 1)
and b ∈ R. Then,

P[A ≤ 0] ≤ 2 ·
4
1− E

�6−qA; q
=−1

∞
!;

, (5.36)

E
�6−qA; q

=−1

∞
!
≥ eq

b/(q−1) · P[A ≥ b], (5.37)

E
�6
1 + qA

=−1
!
≤ P[A > −b] + qb · P[A ≤ −b]. (5.38)

Remark 5.4.10. While in the statement of Proposition 5.1.8 we consider a height function of
the form H(Tµ, T ), for the remainder of this section we will work with the more general form
H(Tµ, Tν) in order to highlight that many of the formulas that we will use in our analysis
will have some symmetries in µ and ν. In the end, we will simply take ν = 1. This does not
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actually reduce generality, since any appropriate H(M,N) can be obtained by taking T = N
and µ = M/T .

The constants in this section are allowed to depend on κ freely, but can be chosen to be
uniform in µ and ν as long as κ−1+ε ≤ µ ≤ κ−ε and ν = 1 (Any other compact set bounded
away from the two lines µ

ν = κ−1 and µ
ν = κ would also work). In particular this will also be

true for all implicit constants hidden in big O notation terms.

TakeM = Tµ,N = Tν, and ξ = qg(µ,ν)T−sT 1/3
. Then using (5.37), withA = H(Tµ, Tν)−

g(µ, ν)T − sT 1/3 and b = 0, we obtain

P
�
H(Tµ, Tν) ≥ g(µ, ν)T + sT 1/3

!
≤ e−1/(q−1) · E6v

B
i≥0

1

1 + ξqH(M,N)+i
(5.39)

= e−1/(q−1) · EX

B
x∈X

1

1 + ξqx
(5.40)

where the point process X is defined as in Proposition 5.4.7. We can estimate the last product
by dropping all terms in the product except for that corresponding to the smallest hole x1.
More precisely, since all the terms in the product are at most 1, we have

EX

B
x∈X

1

1 + ξqx
≤ 1

1 + ξqx1
. (5.41)

Using (5.38) with A = x1 − g(µ, ν)T − sT 1/3 and b = sT 1/3

2 , we see that

1

1 + ξqx1
≤ P

�
x1 > g(µ, ν)T +

sT 1/3

2

"
+ q

sT1/3

2 P

�
x1 ≤ g(µ, ν)T +

sT 1/3

2

"
(5.42)

≤ P

�
x1 > g(µ, ν)T +

sT 1/3

2

"
+ q

sT1/3

2 . (5.43)

So in order to obtain an upper bound on P
�
H(Tµ, Tν) ≥ g(µ, ν)T + sT 1/3

#
, it will suffice

to obtain an upper bound on P
�
x1 > g(µ, ν)T + sT 1/3

2

!
. Let us denote the holes of the

Meixner ensemble by x1, x2, .... We know that λ has at most N nonzero parts. If there are
only k nonzero parts, then λk+1, ..., λN = 0, so there are N −k Meixner particles at positions
0, ..., N − k − 1. Therefore, the smallest hole x1 will occur at position N − k. It follows that
ℓ(λ) = N − x1. Equivalently, we have

x1 = N − ℓ(λ). (5.44)

It follows from (5.44) that

P

�
x1 > g(µ, ν)T +

sT 1/3

2

"
= P

�
−ℓ(λ) > (g(µ, ν)− ν)T +

sT 1/3

2

"
. (5.45)

According to [Bor18, In the proof of Theorem 6.1] we can represent the tail probabil-
ity P [−ℓ(λ) > h] as a Fredholm determinant. We first recall the definition of a Fredholm
determinant, see e.g. [AB19, Definition A.1]
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Definition 5.4.11 (Fredholm Determinant). Fix a contour C ⊂ C in the complex plane. Let
K : C × C → C be a meromorphic function with no poles on C × C. We define the Fredholm
determinant

det(Id+K)L2(C) = 1 +

∞G
k=1

1

(2πi)kk!

1
C
· · ·

1
C
det [K (xi, xj)]

k
i,j=1

kB
j=1

dxj .

We then have

P[−ℓ(λ) > h] = det(1− IK)ℓ2(h,h−1,...) = det(1−Πh
IKΠh). (5.46)

where IK is a correlation kernel obtained as a dual of the kernel for the Meixner ensemble
and Πh is the projection from ℓ2(Z) to ℓ2(h, h− 1, . . . ).

We can write out IK explicitly as (see [Bor18, Equation (6.1) and the subsequent paragraph
in the reference])

IK(x, y) =
1

(2πi)2

) )
(
√
κ− z−1)N

(
√
κ− z)M−1

(
√
κ− w)M−1

(
√
κ− w−1)N

dzdw

(w − z)zx+1w−y
(5.47)

where x, y ∈ Z and the integrals are taken over positively oriented circular contours with
1/

√
κ < |z| < 1 < |w| < √

κ. Note that our integrand has poles at 0, 1/
√
κ and

√
κ, so the

contours are chosen so that they do not pass through the poles.
To estimate the Fredholm determinant in (5.47) we will use a technique known as Widom’s

trick first used in [Wid02, Lemma 1]. It consists in the observation that for a kernel K with
eigenvalues in [0, 1] it holds that

det(1−K) ≤ exp(−Tr(K)) . (5.48)

The following lemma checks that the operator Πh
IKΠh satisfies this condition.

Lemma 5.4.12. The operator Πh
IKΠh has real eigenvalues (µj)j≥0 all of which are in [0, 1]

and hence
det(1−Πh

IKΠh) ≤ exp(−Tr(Πh
IKΠh)) . (5.49)

Proof. Let I(x, y) = 1x=y be the identity operator and K as in [Bor18, Equation (6.1)]. As

noted in [Bor18, Below Equation (6.1)] the operator IK satisfies IK = I − K. The operator
K is related to the Christoffel-Darboux kernel KN (see (5.30)) associated to the Meixner
ensemble via a gauge transformation, see Theorem 3.3 and Lemma 3.5 in [BO06]. Since I is
invariant under gauge transformations, this also means that IK is related to I−KN via a gauge
transformation. The operator KN is a projection operator since it is a Christoffel-Darboux
kernel. Therefore, I −KN is also a projection operator and finally IK as well, since a gauge
transform of a projection operator is a projection operator. After the gauge transformation,
Πh

IKΠh becomes self-adjoint, so the eigenvalues are real and non-negative. Since we have now
also seen that this operator is a composition of projections, at most 1. Since 1−x ≤ exp(−x)
for x ∈ [0, 1] this implies (5.49).

Therefore, obtaining an upper bound on P[−ℓ(λ) > h] reduces to obtaining a lower
bound for Tr(Πh

IKΠh). Similar kinds of bounds were obtained for other kernels in e.g.
[Wid02, BFP14]. We first compute this trace in the following lemma.

Lemma 5.4.13. We have

Tr(Πh
IKΠh) =

1

(2πi)2

) )
exp(T (Gx(z)−Gx(w))

dzdw

(w − z)2
, (5.50)
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where
Gx(z) = ν ln

6√
κ− z−1

=− µ ln
6√

κ− z
=− x ln(z) (5.51)

and we have reparameterized M,N and h as

µ =
M − 1

T
; ν =

N

T
; x =

h

T
.

Proof. The trace is given by

Tr(Πh
IKΠh) =

hG
j=−∞

IK(j, j)

=

hG
j=−∞

1

(2πi)2

) )
(
√
κ− z−1)N

(
√
κ− z)M−1

(
√
κ− w)M−1

(
√
κ− w−1)N

4w
z

;j dzdw

(w − z)z
.

Since |w/z| > 1 by our choice of contours, we can sum w/z from −∞ to h which yields

Tr(Πh
IKΠh) =

1

(2πi)2

) )
(
√
κ− z−1)N

(
√
κ− z)M−1

(
√
κ− w)M−1

(
√
κ− w−1)N

4w
z

;h dzdw

(w − z)2
.

Finally, we can rewrite the integrand in exponential form to obtain (5.50).

The function G has the following two critical points:

z±c =
µ+ ν + (κ+ 1)x±E−4κ(µ+ x)(ν + x) + (µ+ ν + (κ+ 1)x)2

2
√
κ(µ+ x)

(5.52)

We can see that these two critical points are equal if we choose x = x±c where

x±c =
(
√
µ±√

κν)2

κ− 1
− ν. (5.53)

Note that x−c = g(µ, ν)− ν. For x = x−c , we have

z+c = z−c =

√
µ−√

κν√
κµ−√

ν
.

Denote this value as zc. For general x, we can rewrite the formula for z±c as

z±c =
µ+ ν + (κ+ 1)x±

D
(κ− 1)2(x− x+c )(x− x−c )

2
√
κ(µ+ x)

. (5.54)

If x−c < x < x+c , then the two critical points z±c are not real. Then it holds that

|z±c | =
F

ν + x

µ+ x
. (5.55)

The following lemma describes how this function behaves around (x−c , zc).

Lemma 5.4.14. The function Gx(z) satisfies:

G′′′
x−
c
(zc) = 2

√
κµν(

√
κ−E

µ/ν)2(
√
κ−E

ν/µ)2

z3c (κ− 1)3
.
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z+c

z−c

1√
κ

√
κ

L2

L1

Γ2

Γ1

0

z+c

z−c

1√
κ

√
κ

L2

L1

0

Figure 5.6: Left panel: the level lines L1 and L2. Right panel: the contours Γ1 and Γ2.

As x → x−c from above we have the following:

z+c = zc +
i
6
1− κ−1

= 1
2 (κ−1µν)

1
4

E
x− x−c√

κ(κµ+ ν + 2
√
κµν)

+O(x− x−c ) and (5.56)

G′′
x(z

+
c ) =

iG′′′
x−
c
(zc)(1− κ−1)

1
2 (κ−1µν)

1
4

E
x− x−c√

κ(κµ+ ν + 2
√
κµν)

+O(x− x−c ) , (5.57)

where the implicit constant in the big O term can be chosen independently of µ ∈ [κ−1+ε, κ−ε]
and x ∈ [x−c , x+c ], i.e. it depends only on κ and ε.

Proof. The first two equalities are calculations, the third one is the Taylor expansion of G′′

in x and z around (x−c , zc).

Now that we have established all the variables at play we can state an estimate on the
trace.

Proposition 5.4.15. Define s = 2(x− x−c )T
2
3 . For any ε there exist s0, T0 and C such that

for any µ ∈ [κ−1 + ε, κ − ε] and ν = 1, any x ∈ �
x−c + s0

2 T
−2/3, 0

#
and any T > T0 it holds

that:

Tr(Πh
IKΠh) ≥ Cs3/2.

Here s is seen as function of h via the two equations x = h
T and s = (x− x−c )T

2
3 .

To prove Proposition 5.4.15 we will deform the contours in (5.50). To do so we need
to understand the level lines of Re(Gx(z)) which pass through the critical points z±c . The
following proposition describes the properties of these level lines, which are depicted in the
left panel in Figure 5.6:

Proposition 5.4.16. Let x be such that x−c < x < x+c . Then there are two smooth curves
L1 and L2 such that:

1. The two curves only intersect at the critical points, i.e. L1 ∩ L2 = {z±c }.
2. The two curves are the level lines through the critical points, i.e. Re(Gx(z)) = Re(Gx(z

+
c ))

iff z ∈ L1 ∪ L2.

3. Both curves are bounded simple loops.

4. L1 contains 0 and 1/
√
κ but not

√
κ, while L2 contains

√
κ and 1/

√
κ but not 0.
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Proof. Note that while the logarithms in the definition of G(z) require a choice of branch cut,
Re(log(z)) is defined and smooth everywhere except 0 and does not depend on the choice of
branch cut.

Let us consider the level lines through the critical points. Since the function is critical
at this point and the second derivative does not vanish, there are exactly two level lines
emerging, which intersect each other at those points. These cannot intersect at any other
points, since the intersection points would again be critical points of Gx. For z with |z| large
it holds that

Re(Gx(z)) = −(µ+ x) ln(|z|) + ν ln
6√

κ
=
+ o(1). (5.58)

Since for x ≥ x−c we have µ+x > 0, the level lines must be bounded. Considering Re(Gx(z))
on the real line we see poles at 0, 1/

√
κ and

√
κ, where this function converges to +, − and

+∞ respectively. Between two consecutive poles, the level lines can only cross once, since
otherwise between two crossings there would be another critical point of G. This means
there are exactly four points d1, . . . , d4 along the real line such that Re(Gx(di)) = Re(G(z±c ))
which satisfy d1 < 0 < d2 < 1/

√
κ < d3 <

√
κ < d4. Each of the four half-lines emanating

from one of the critical points will intersect the real line at exactly one of those four points.
Indeed the only other option would be for two of these lines to meet, but that would create
a closed level-line loop containing no pole, which would force the function to be constant by
harmonicity. A brief consideration shows that the only way to connect the half-lines gives
the description in the fourth point.

Finally, there cannot be any other points z for which Re(Gx(z)) = Re(G(z±c )), since each
of those would need to lie on a closed level-line, and such a level line would need to surround
a pole and therefore also intersect the real line. But all points on the real line with value
Re(G(z±c )) already lie on the two level lines through the critical points.

Using these properties of the level lines we can choose contours Γ1 and Γ2, as depicted in
the right panel in Figure 5.6.

Proposition 5.4.17. Let x be such that x−c < x < x+c . Then there are two simple curves Γ1

and Γ2 such that:

• The two curves only intersect at the critical points, i.e. Γ1 ∩ Γ2 = {z+c , z−c }.
• At the critical points the two curves intersect perpendicularly and in the direction of
steepest ascent and descent respectively.

• The two curves only intersect the level lines L1 and L2 at the critical points.

• Both curves contain 0 and 1/
√
κ but not

√
κ.

• On Γ1, the function Gx is always larger than Gx(z
+
c (x)), on Γ2 it is always smaller.

• There exists an r = r(κ) such that for w ∈ Γ1 and z ∈ Γ2, the inequality |w − z| ≤
r(x− x−c )

1
2 implies that either

|w − z+c | < 2r(x− x−c )
1
2 and |z − z+c | < 2r(x− x−c )

1
2

or

|w − z−c | < 2r(x− x−c )
1
2 and |z − z−c | < 2r(x− x−c )

1
2 .

Furthermore r can be chosen such that 4r(x− x−c )
1
2 < |z+c − z−c | for all x ∈ [x−c , 0].
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Proof. Let us first consider the steepest descent/ascent curves through the critical points.
These are given by the level lines of Im(Gx(z)). They cannot cross L1 or L2 at points
other than the critical points z±c . Since along these curves, the real part is strictly increas-

ing/decreasing, these curves must end at the poles of Gx(z) which are at 0, κ−
1
2 , and κ

1
2 . By

considering the signs of the poles one can see that the steepest descent curve (which is in

the region where Re(Gx) is positive) connects the pole at 0 to the pole at κ
1
2 . The steepest

ascent curve connects κ−
1
2 to ∞.

By considering small circlesK0,K
κ− 1

2
,K

κ
1
2
around each pole and a large circleK∞ around

the origin, we can construct the contours as follows: The curve Γ1 is given by the steepest
descent curves through the critical points until those hit the circles K0 and K

κ
1
2
. Then it

follows those circles such that it contains 0 but not κ
1
2 . The curve Γ2 is given by the steepest

ascent curve until it hits K∞ and K
κ− 1

2
, where it similarly follows the circles such that it

includes 0 and κ−
1
2 .

By considering (5.58) and (5.55), one can see that the choice of circle can be made
independently of µ and x. Indeed one can see that Re(G(zc)) depends continuously on
µ ∈ [κ−1 + ε, κ − ε] and x ∈ [x−c , x+c ] and is therefore bounded uniformly in absolute value,
with the bound depending only on κ. Around each of the poles, one can also find a uniform
lower or upper bound depending on the sign of the pole. For example, around 0 one can
bound:

Re(Gx(z)) = ν ln(|√κ− z−1|)− µ ln(|√κ− z|)− x ln(|z|) ≳ (ν + x) ln(|z|−1) , (5.59)

where for |z| small enough the implicit constant depends only on κ. The prefactor ν + x =
(
√
µ±√

κν)2

κ−1 is bounded below by a constant which only depends on κ and ε. Therefore one
can find a radius small enough, depending only on κ and ε such that for K0 a circle of this
radius and z ∈ K0, Re(Gx(z)) > Re(G(zc)) + 1 for all µ ∈ [κ−1 + ε, κ− ε] and x ∈ [x−c , x+c ].
In particular, this ensures that z+c is outside this ball around 0. With very similar arguments
one can determine the radii of K

κ− 1
2
,K

κ
1
2
and K∞, such that for all x and µ, the values

of Re(Gx(z)) on these circles is respectively larger, larger and smaller than the value of
R(Gx(z

+
c )).

For the last point, we will actually show the following stronger statement: There exists
an r0 = r0(κ) such that for all r < r0, µ ∈ [κ−1 + ε, κ − ε], and x ∈ [x−c , 0] it holds that for
w ∈ Γ1 and z ∈ Γ2, the inequality |w − z| ≤ r implies that either

|(w − z+c | < 2r and |z − z+c | < 2r) or (|w − z−c | < 2r and |z − z−c | < 2r) .

This clearly implies the desired statement. For the last point, first consider fixed x ∈ (x−c , 0]
and µ ∈ [κ−1+ ε, κ− ε]. Since the two curves only intersect at z+c and z−c and intersect there
perpendicularly, there exists an Ir0 = Ir0(x, µ, κ) such that for all r < Ir0 the statement holds.
For x = x−c the two critical points merge into a double critical point, and Γ1 and Γ2 deform
in the following way. The part of Γ1 that connects the critical points to K

κ
1
2
deforms into

a piece-wise continuous curve, which has a 2π/3 angle at the zc and leaves this point in the
directions eπi/3 and e−πi/3 The part of Γ1 which connects the critical points to K0 becomes
straight lines connecting zc to K0, parallel to the horizontal axis. Similarly Γ2 deforms into
a straight line segment connecting zc to Kκ−1/2 and a piece-wise continuous curve which goes
through zc at an 2π/3 angle, in the directions e2πi/3 and e4πi/3. See Figure 5.8 for the level
lines of a double critical point, which appears in the other tail bound. Since these curves
still only meet at zc and there they do so at a π/3 angle, there also clearly is a Ir0 such
that the statement holds for x = xc. Since Γ1 and Γ2 deform continuously in x ∈ [x−c , 0]
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z+c

z−c

Γ2

Γ1

1√
κ

√
κ0

z+c

z−c

Γ3

=
C

−

Figure 5.7: An illustration of how we pick up residues when deforming the original circular
contours into Γ1 and Γ2.

and µ ∈ [κ−1 + ε, κ − ε], one can find r by taking a minimum over all r0. Since the factor

(x− x−c )
1
2 is

Decreasing r further one can obtain 4r(x − x−c )
1
2 < |z+c − z−c |, which guarantees that w

and z are indeed close to the same critical point when |w − z| ≤ r(x− x−c )
1
2 .

Proof of Proposition 5.4.15. For clarity, we divide the proof into several steps:

Step 1. Decomposing the trace into two parts: Recall that in our original definition
of IK in (5.47), we started off with two positively oriented circular contours for w and z such
that 1/

√
κ < |z| < 1 < |w| < √

κ. We will now deform these two circular contours into our
new choice of contours Γ1 and Γ2, respectively.

Originally, the z contour is nested inside of the w contour. When we deform the z contour
into Γ2, part of it will cross through the w contour, see Figure 5.7. Therefore we will pick
up some residues since our integrand has a pole of order 2 at z = w due to the term 1

(w−z)2
.

After doing this deformation, we can decompose Tr(Πh
IKΠh) into two parts as follows:

Tr(Πh
IKΠh) =

�
1

(2πi)2

)
Γ1

)
Γ2

exp(T (Gx(z)−Gx(w))
dzdw

(w − z)2

$
+

�
− 1

(2πi)2

)
C

)
Γ3

exp(T (Gx(z)−Gx(w))
dzdw

(w − z)2

$
, (5.60)

where Γ1 and Γ2 are the contours given in Proposition 5.4.17, C is an arc connecting z+c
and z−c and intersecting the real line between κ−

1
2 and κ

1
2 , and Γ3 is a contour around this

arc, intersecting the real line only between κ−
1
2 and κ

1
2 (i.e. not including any pole other

than z = w). Denote the first expression in (5.60) as I1 and the second one as I2, such that
Tr(Πh

IKΠh) = I1 + I2. Here I1 needs to be interpreted as a principal value integral due to
the quadratic singularity at the intersection points. I2 accounts for the residues picked up in
the above-described deformation.

Step 2: Estimating I2: In this step we show that there exists a constant C = C(ε) ,

such that I2 > Cs
3/2
0 . Let fw(z) :=

exp(T (Gx(z)−Gx(w))
(w−z)2

. Using Cauchy’s residue theorem for a

pole of order 2, we can compute

I2 = − 1

(2πi)2

1
C

)
Γ3

fw(z)dzdw = − 1

2πi

1
C
Res(fw, w)dw (5.61)

= − 1

2πi

1
C
TG′

x(w)dw (5.62)

= −T (Gx(z
+
c )−Gx(z

−
c ))

2πi
. (5.63)
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Since z±c (y) are critical points, and since only one term in Gy depends explicitly on y, we
can compute

d

dy
Gy(z

±
c (y)) = ln(z±c (y)).

At x−c , we have z+c = z−c , so we can add and subtract Gx−
c
(z+c ) = Gx−

c
(z−c ) to get

Gx(z
+
c )−Gx(z

−
c ) = (Gx(z

+
c )−Gx−

c
(z+c ))− (Gx(z

−
c )−Gx−

c
(z−c )) (5.64)

=

1 x

x−
c

ln

7
z+c (y)

z−c (y)

>
dy. (5.65)

This integrand is purely imaginary since we are taking the log of the ratio of complex
conjugates (which has modulus 1). Therefore, when we divide by 2πi we will get something
real. We now estimate the integrand. Since the modulus is 1, the integrand is just the

argument of z+c (y)

z−c (y)
, which varies along the unit circle clockwise starting at 0.

Let us define the new variable v =
D
(y − x−c ) and also define

Z(v) :=
z+c (y)

z−c (y)
=

µ+ ν + (κ+ 1)y +
D
(κ− 1)2(y − x+c )(y − x−c )

µ+ ν + (κ+ 1)y −
D
(κ− 1)2(y − x+c )(y − x−c )

=
µ+ ν + (κ+ 1)(v2 + x−c ) + v

D
(κ− 1)2(v2 + x−c − x+c )

µ+ ν + (κ+ 1)(v2 + x−c )− v
D

(κ− 1)2(v2 + x−c − x+c )
.

Note that Z(0) = 1, so that

Z(v) = 1 + Z ′(0)v +O(v2)

where

Z ′(0) =
−i2(κ− 1)3/2κ1/4(µν )

1/4

ν1/2
�
κ1/2(µν )

1/2(κ+ 1)− (1 + µ
ν )κ

# .
We can see that the numerator above is bounded for µ

ν ∈ [κ−1 + ε, κ − ε]. We can also see
that the denominator is zero precisely when µ

ν → κ−1 or µ
ν → κ and is positive between those

two values. Finally, note that Z ′(0) is purely imaginary and iZ ′(0) > 0. It follows that there
exists C = C(ε) such that iZ ′(0) > C for all µ ∈ [κ−1 + ε, κ− ε] and ν = 1.

It follows that

ln

7
z+c (y)

z−c (y)

>
= Z ′(0)v +O(v2)

= Z ′(0)
D

(y − x−c ) +O(y − x−c )

and that 1 x

x−
c

ln

7
z+c (y)

z−c (y)

>
dy = Z ′(0)(x− x−c )

3/2 +O((x− x−c )
2) ,

where the O(x−x−c )2 is uniform in µ. Plugging this back into (5.63) and (5.65), we conclude
that
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I2 = − T

2πi

1 x

x−
c

ln

7
z+c (y)

z−c (y)

>
dy > CT (x− x−c )

3/2 (5.66)

= CT (sT−2/3)3/2

= Cs3/2

for some positive real constant C depending on ε, which changes from line to line.

Step 3: Estimating I1. In this section, we show that the integral I1 defined above is
bounded uniformly in x, i.e., there exists constants C, T0, s0 depending on ε, such that I1 < C
for all x in [x−c + s0T

− 2
3 , 0] and T > T0.

Consider first the part of the integral I1 where |z − w| ≥ r(x − xc)
1
2 , where r is from

Proposition 5.4.17.

1

(2πi)2

)
Γ1

)
Γ2

exp(T (Gx(z)−Gx(w)))
1|z−w|≥r(x−xc)

1
2
dzdw

(w − z)2
.

This integral we can bound by taking absolute values and the triangle inequality to obtain

1

(x− xc)r2(2π)2

)
Γ1

)
Γ2

exp(T (Re(Gx(z)−Gx(w))))dzdw

This integral has no singularities and can be split into the product of two integrals, each of
which can be treated using the method of steepest descent. Each of them gives a contribution

C√
TG′′

x(z
+
c )

for T large enough. Combined with the prefactor 1
(x−xc)r2(2π)2

we obtain the upper

bound T−1|G′′
x(z

+
c )|−1r−2(x−xc)

−1. By Lemma 5.4.14, this is of order (x−xc)
− 3

2

T ≲ s
−3/2
0 and

therefore O(1).

As observed in Proposition 5.4.17, since the distance of the two critical points z+c and z−c
is of order

E
x− x−c by Lemma 5.4.14 we have the following. For small but fixed r, the only

w ∈ Γ1 and z ∈ Γ2 such that |w − z| ≤ r(x− xc)
1
2 satisfy either

|w − z+c | < 2r(x− xc)
1
2 and |z − z+c | < 2r(x− xc)

1
2

or

|w − z−c | < 2r(x− xc)
1
2 and |z − z−c | < 2r(x− xc)

1
2

i.e. they are both close to the same critical point.

By symmetry it suffices to consider both w and z in the ball around z+c of radius 2r(x−
xc)

1
2 . Denote this ball by B. Let us Taylor expand around our integrand.

exp(T (Gx(z))−Gx(w)) =

exp

7
1

2
TG′′

x(z
+
c )((z − z+c )

2 − (w − z+c )
2)

>
(1 +O(T |z − z+c |3 + |w − z+c |3)), (5.67)

where the big O constant depends on ε, but not on x or T . Let us first consider the contri-
bution of the big O term on the right. After taking absolute values we have to bound)
Γ1∩B

)
Γ2∩B

T (|z − z+c |3 + |w − z+c |3) exp
7
1

2
TRe(G′′

x(z
+
c )((z − z+c )

2 − (w − z+c )
2))

>
dzdw

|w − z|2 .



218 CHAPTER 5. THE STOCHASTIC SIX-VERTEX SPEED PROCESS

Since our contours meet at a right angle at the critical point we have 1
|z−w|2 = O

4
1

|z−z+c |2+|w−z+c |2
;

and the integral is bounded by

T

1
R

1
R
(|z|+ |w|) exp

7
−1

2
T |G′′

x(z
+
c )|(−z2 − w2)

>
dzdw ≲ T

(TG′′
x(z

+
c ))

3
2

= O(s
− 3

4
0 ).

For the other part of (5.67) we use a change of variables z = z+c + ξ1/
D

TG′′
x(z

+
c ) and

w = z+c + ξ2/
D
TG′′

x(z
+
c ) which yields the principal value integral:1

�Γ1

1
�Γ2

exp(ξ21 − ξ22)

(ξ1 − ξ2)2
dξ1dξ2 ,

where IΓ1 and IΓ2 are contours crossing at the origin with IΓ1 vertical and IΓ2 horizontal there.
This is clearly bounded away from the origin, and close to the origin the exponential can be
estimated by 1 up to an O(1) error, and the resulting principal value integral is also of order
O(1).

Combining the above estimates, one obtains that I1 is O(1). Combining this with (5.66)
one obtains that

Tr(Πh
IKΠh) = I1 + I2 > Cs

3
2

for a different constant C, using that s ≥ s0 to absorb the O(1) term.

We now prove Proposition 5.1.8:

Proof of Proposition 5.1.8. Combining Equations (5.40)-(5.46) and (5.49) and setting ν = 1
and h as

h = (g(µ)− 1)T +
sT 1/3

2
= x−c T +

sT 1/3

2
.

we have that

P
�
H(Tµ, T ) ≥ g(µ)T + sT 1/3

!
≤ e−1/(q−1)

5
P

�
−ℓ(λ) > (g(µ)− 1)T +

sT 1/3

2

"
+ q

sT1/3

2

<
(5.68)

= e−1/(q−1)

7
det(1−Πh

IKΠh) + q
sT1/3

2

>
(5.69)

≤ e−1/(q−1)

7
exp(−Tr(Πh

IKΠh)) + q
sT1/3

2

>
, (5.70)

By Proposition 5.4.15 there exist constants C, T0, and s0 depending on ε such that for
s > s0, T > T0 and x ∈ [x−c + s0

2 T
−2/3, 0]:

Tr(Πh
IKΠh) ≥ Cs3/2 .

Noting that x is given by

x =
h

T
= x−c +

sT−2/3

2
,

the restriction x ∈ [x−c + s0
2 T

−2/3, 0] is equivalent to s ∈ [s0,−2T
2
3x−c ]. For s in this range,

applying Proposition 5.4.15 to (5.70) yields

P
�
H(Tµ, T ) ≥ g(µ)T + sT 1/3

!
≤ e−1/(q−1)

7
exp(−Cs

3
2 ) + q

sT1/3

2

>
≤ c−1 exp(−cs

3
2 ) .

(5.71)
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For s > −2T
2
3x−c we have

g(µ)T + sT
1
3 > (x−c + 1)T − 2Tx−c = T (1− x−c ) > T .

Since H(µT, T ) can be at most T , for such s the left-hand side of (5.71) is 0 and therefore
(5.7) is trivially satisfied.

In summary, we have proved Proposition 5.1.8 for all s ≥ s0 and all T ≥ T0. For fixed
T < T0, the statement is trivial for s large enough as the left-hand side is 0 if g(µ)T+sT

1
3 > T .

Thus by increasing s0 the statement holds for all T ≥ 1 and s > s0. By decreasing c such
that c−1e−cs ≤ 1 for s < s0 the statement holds for all T ≥ 1 and s ≥ 0. That c can be
chosen weakly decreasing in ε is easily checked by checking that all constants in the above
estimates depend continuously on ε.

5.4.2 Proof of Proposition 5.1.9

The goal of this section is to prove Proposition 5.1.9.

Remark 5.4.18. Again, it suffices to prove the statement for T ≥ T0 and s ≥ s0 for some T0

and s0 large enough. For fixed T , the left-hand side becomes 0 for s large enough since the
height function is always non-negative. We can also alter the constant c to be small enough
so that the right-hand side becomes greater than 1 for all s < s0.

In this section, we will closely follow the results in [AB19]. We start with an identity that
relates the q-Laplace transform of the stochastic six-vertex model under step Bernoulli initial
data, to a Fredholm determinant of some kernel.

Recall that (ρ, 0)-Bernoulli boundary conditions denotes the boundary condition in which
the incoming arrows from the left are given by i.i.d. Bernoulli(ρ) random variables, while
the incoming positions from the bottom are all empty. The following proposition is stated
for ρ ∈ (0, 1) as Proposition 5.1 in [AB19]. We will ultimately need statements for ρ = 1.
What we will do here is first prove the desired tail bound for ρ < 1 and extend to ρ = 1
by attractivity. An alternative proof is to notice that the following proposition itself can be
extended to ρ = 1 either using the continuity of the involved formulas in the parameter ρ.
This case is also a consequence of Lemma 4.18 in [BCG16].

Proposition 5.4.19 (Prop 5.1 in [AB19]). Fix b1, b2 ∈ (0, 1); ρ ∈ (0, 1];x ∈ Z; and p ∈ R.
Denote β = ρ/ (1− ρ).

Let Γ ⊂ C be a positively oriented, star-shaped contour in the complex plane containing
0, but leaving outside −qκ and qβ. Let C ⊂ C be a positively oriented, star-shaped contour
contained inside q−1Γ; that contains 0,−q, and Γ; but that leaves outside qβ.

Let E6v denote the expectation with respect to the stochastic six-vertex model with left
jump probability b1, right jump probability b2, and (ρ, 0)-Bernoulli initial data. Then, we
have that

E6v

�
16−qHρ(X,T )+p; q

=
∞

"
= det

4
Id +K(p)

;
L2(C)

(5.72)

where

K(p)
6
w,w′= = 1

2i log q

∞G
j=−∞

)
Γ

6
κ−1w + q

=X−1

(κ−1v + q)X−1

(v + q)T

(w + q)T

6
q−1β−1v; q

=
∞

(q−1β−1v; q)∞

· vp−1w−p

sin
4

π
log q (log v − logw + 2πij)

; dv

w′ − v
, (5.73)
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Once we choose p appropriately, (5.72) implies a bound on the probability P[Hρ(X,T ) ≤
−p] by applying (5.36). Let µ = X−1

T and for µ ∈ [κ−1 + ε, κ− ε] we define

fµ =
(
√
κµ− 1)2/3(κ−√

κµ)2/3

(κ− 1)κ1/6µ1/6
.

The function fµ appears as the scaling factor in the convergence to Tracy-Widom GUE
fluctuations, see [BCG16, Theorem 1.2]. We then define for s ≥ 0:

pT = sfµT
1/3 − g(µ)T.

We will now study asymptotics of the kernel KpT , closely following section 6 of [AB19],
but adding in control of the decay in s as well, since in [AB19] they treat s as a constant.

5.4.3 Fredholm Determinant Estimates

Our first step is to rewrite the formula for the kernel K(pT ) in an exponential form that
utilizes the explicit form we chose for pT . Plugging p = pT into (5.73), we obtain

K(pT )
6
w,w′= = 1

2i log q
×
G
j∈Z

)
Γ

exp (T (G(w)−G(v)))

sin (π(log q)−1(2πij + log v − logw))

×
6
q−1β−1v; q

=
∞

(q−1β−1w; q)∞

×
4 v

w

;sfµT 1/3 dv

v (w′ − v)
,

where we define

G(z) = µ log
6
κ−1z + q

=− log(z + q) + g(µ) log z.

Next, we Taylor expand G around its critical point: We compute its derivative

G′(z) =
(
√
κµ− 1)2

κ− 1

(z − ψ)2

z(z + qκ)(z + q)

with

ψ =
q(κ−√

κµ)√
κµ− 1

.

Therefore, ψ is a critical point of G, and we have G′′(ψ) = 0. We also have

G′′′ (ψ) =
2(
√
κµ− 1)5

q3(κ− 1)3(κ−√
κµ)

√
κµ

= 2

7
fµ
ψ

>3

.

Putting this all together, the Taylor expansion of G can be written as

G(z)−G (ψ) =
1

3

7
fµ (z − ψ)

ψ

>3

+R

7
fµ (z − ψ)

ψ

>
, (5.74)

where R is the remainder. By Taylor’s remainder theorem, we have

R

7
fµ (z − ψ)

ψ

>
= O

4
|z − ψ|4

;
as |z − ψ| → 0.
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−q−qκ

Γ

qβ

C

Figure 5.8: The solid lines represent the contours Γ and C, and the dashed curves represent
the level lines of Re(G(z)).

This remainder can be bounded uniformly for κ−1 + ε ≤ µ ≤ κ − ε. Note that G′′′(ψ) = 0
at µ = κ−1 and G′′′(ψ)) = ∞ at µ = κ−1, so µ being bounded away from κ−1 and κ is really
necessary for uniformity.

We now need to choose contours Γ and C. We use the contours defined in [AB19, Defini-
tions 6.2-6.5], which will take the following shape. The contour Γ will consist of two parts: a
piecewise linear part Γ(1) and a round part Γ(2) that connects the endpoints of Γ(1). Similarly
C will consist of two parts C(1) and C(2), where C(1) is piecewise linear and C(2) is a round
part connecting the end points of C(1).

Definition 5.4.20. For a real number r ∈ R and a positive real number ϖ > 0 (possibly
infinite), let Wr,ϖ denote the piecewise linear curve in the complex plane that connects r +
ϖe−πi/3 to r to r+ϖeπi/3. Similarly, let Vr,ϖ denote the piecewise linear curve in the complex
plane that connects r +ϖe−2πi/3 to r to r +ϖ2πi/3.

The contours C and Γ look as follows:

• C(1) = Wψ,ϖ and Γ(1) = Vψ−ψf−1
µ T−1/3,ϖ, for some sufficiently small ϖ (independently

of T ).

• C(2) is a positively oriented contour from the top endpoint ψ + ϖeπi/3 of C(1) to the
bottom endpoint ψ+ϖe−πi/3 of C(1), and Γ(2) is a positively oriented contour from the
top endpoint ψ−ψf−1

µ T−1/3+ ϖe2πi/3 of Γ(1) to the bottom endpoint ψ+ψf−1
µ T−1/3+

ϖe−2πi/3 of Γ(1).

• We take C = C(1) ∪ C(2) and Γ = Γ(1) ∪ Γ(2).

See Figure 5.8 for a depiction of these contours.

Proposition 5.4.21. The contours Γ and C satisfy the following properties: The contour Γ
is positively oriented and star-shaped; it contains 0 , but leaves outside −qκ and qβ. Fur-
thermore, C is a positively oriented, star-shaped contour that is contained inside q−1Γ; that
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contains 0,−q and Γ; but that leaves outside qβ. Furthermore, there exists some positive real
number c1 > 0, independent of T , such that

max

		 sup
w∈C

v∈Γ(2)

Re(G(w)−G(v)), sup
w∈C(2)

v∈Γ

Re(G(w)−G(v))

		 < −c1 ,

where c1 depends on ε, but is uniform in µ.

Proof. These properties are all stated in [AB19, Definition 6.3, Lemma 6.6, and Lemma 6.13]
except for the uniformity of c1. This uniformity follows from the uniformity of G and ψ in
µ ∈ [κ−1 + ε, κ− ε].

By Proposition 5.4.21, Γ and C satisfy the necessary conditions stated in Proposition
5.4.19. We can now analyze the kernel K := K(pT ) for the different cases where v, w belong
to the different components of these contours. The first case is where w ∈ C(1) and v ∈ Γ(1).
In this case, both w and v are close to ψ. The second case is where either w ∈ C(2) or v ∈ Γ(2).
Let IK(w,w′) be the same kernel as K(w,w′), but where we replace the contour Γ with Γ(1).

We perform a change of variables to zoom in around ψ: Let σ = ψf−1
µ T−1/3 and set

w = ψ + σ .w; w′ = σ + σ .w′;

v = ψ + σ.v; .K( .w, .w′) = σ IK(w,w′)

K( .w, .w′) = σK(w,w′).

For any contour D, set .D = σ−1(D − ψ). In particular, we have

0C(1) = W0,ϖ/σ,
0Γ(1) = V−1,ϖ/σ.

Notice that as T → ∞, we have

0C(1) → W0,∞, 0Γ(1) → V−1,∞/σ,

each of which consists of a pair of rays emanating from 0 and −1 respectively.

The only difference between .K and K is that for .K we are integrating over the contour.Γ(1) and for K we are integrating over the contour .Γ. The following lemma will deal with
estimating these two kernels.

Lemma 5.4.22. There exist positive constants c, C and T0 all depending on ε such that for
T ≥ T0 we have

1. KKKK( .w, .w′)− .K( .w, .w′)
KKK < c−1 exp

6−c
6
T + | .w|3==

for all .w ∈ 0C(1) and .w′ ∈ .C ∪W0,∞

2. KKK( .w, .w′)
KK < c−1 exp

6−c
6
T + | .w|3==

for all .w ∈ 0C(2) and .w′ ∈ .C ∪W0,∞.
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3.

| .K( .w, .w′)| ≤ C

1 + | .w′| exp(−c|ŵ|3 − cs)

for all .w ∈ 0C(1) and .w′ ∈ .C.
Combining the above items, we can conclude thatKKK( .w, .w′)

KK ≤ c−1 exp
6−c| .w|3 − cs

=
+ c−1 exp

6−c| .w|3 − cT
=

(5.75)

for all .w ∈ .C and .w′ ∈ .C.
Proof. The proof of the first two items is the content of Corollary 6.14 in [AB19]. For the
proof of Item 3 we write out the formula for kernel .K( .w, .w′) in terms of the variables .w, .w′,
and .v, using the fact that σ = ψf−1

µ T−1/3 as well as the Taylor estimates in (5.74). We have

.K( .w, .w′) = σ IK(w,w′)

=
σ

2i log q
×
G
j∈Z

)
�Γ(1)

exp (T (G(ψ + σ .w)−G(ψ + σ.v)))
sin (π(log q)−1(2πij + log(ψ + σ.v)− log(ψ + σ .w)))

×
6
q−1β−1(ψ + σ.v); q=∞
(q−1β−1(ψ + σ .w); q)∞

×
7
ψ + σ.v
ψ + σ .w

>sfµT 1/3

σd.v
(ψ + σ.v) (σ .w′ − σ.v)

=

)
�Γ(1)

σψ−1

2i log q
×
G
j∈Z

exp
4 �w3−�v3

3 + T
6
R
6
T−1/3 .w=−R

6
T−1/3.v==;

sin (π(log q)−1(2πij + log(1 + σψ−1.v)− log(1 + σψ−1 .w)))
×

6
q−1β−1(ψ + σ.v); q=∞
(q−1β−1(ψ + σ .w); q)∞

×
7
1 + σψ−1.v
1 + σψ−1 .w

>sψσ−1

d.v
(1 + σψ−1.v) ( .w′ − .v) .

Next, we estimate each of the terms in the integrand, using Proposition 5.4.23. Multiply-
ing the seven bounds in Proposition 5.4.23 together, we obtain that the integrand is bounded

in absolute value by c−1

1+| �w′| exp
6
csRe.v − c(| .w|3 + |.v|3)= . Noting that Re.v ≤ −1 for .v ∈ 0Γ(1),

we obtain

| .K( .w, .w′)| ≤
)
�Γ(1)

c−1

1 + | .w′| exp
6
csRe.v − c(| .w|3 + |.v|3)= d.v

≤
)
�Γ(1)

c−1

1 + | .w′| exp
6−cs− c(| .w|3 + |.v|3)= d.v

≤ C

1 + | .w′| exp(−c|ŵ|3 − cs).

Proposition 5.4.23. In this proposition, we prove estimates for the terms in the integrand
of the kernel .K. There exists c = c(ε) > 0 such that for T large enough, the following seven

bounds hold for all .w ∈ 0C(1) = W0,ϖ/σ, .w′ ∈ .C, and .v ∈ 0Γ(1) = V−1,ϖ/σ:
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KKKK 1

1 + σψ−1.v
KKKK ≤ c−1; (5.76)KKKK 1.w′ − .v

KKKK ≤ c−1

1 + | .w′| ; (5.77)KKKK 1 + σψ−1.v
1 + σψ−1 .w

KKKKsψσ−1

≤ c−1 exp (csRe(.v)) ; (5.78)

σψ−1

| log q|
G
j ̸=0

KKKK 1

sin (π(log q)−1(2πij + log(1 + σψ−1.v)− log(1 + σψ−1 .w)))
KKKK ≤ c−1T−1/3; (5.79)

KKKK σψ−1

log q sin (π(log q)−1(log(1 + σψ−1.v)− log(1 + σψ−1 .w)))
KKKK ≤ c−1; (5.80)KKKKK

6
q−1β−1(ψ + σ.v); q=∞
(q−1β−1(ψ + σ .w); q)∞

KKKKK ≤ c−1 exp
6
c−1 (| .w|+ |.v|)= (5.81)KKKKexp7 .w3 − .v3

3
+ T

4
R
4
T−1/3 .w;−R

4
T−1/3.v;;>KKKK ≤ c−1 exp

7
−1

5
(| .w|3 + |.v|3)> (5.82)

Proof. The proof of all of these inequalities except for (5.78) can be found in [AB19, Proof
of Lemma 6.12] without uniformity in µ. Uniformity in µ is checked in [ACG23, Proof of
Lemma C.9]. In [AB19], s is fixed, and therefore they do not need estimates that depend on
s. The proof of (5.78) is as follows:

First note that |1 + σψ−1 .w| ≥ 1 for all .w ∈ 0C(1), so that we have

KKKK 1 + σψ−1.v
1 + σψ−1 .w

KKKKsψσ−1

≤ KK1 + σψ−1.vKKsψσ−1

.

For fixed .v, we have limT→∞
KK1 + σψ−1.vKKsψσ−1

= exp (sRe.v) . Without loss of generality let

us suppose that we choose .v to be on the upper half plane so that .v = −1 + rϖ
σ e2πi/3 =

−1− rϖ
2σ + r

√
3ϖi
2σ for some 0 ≤ r ≤ 1. Then we have

1 + σψ−1.v = 1− σψ−1 − rϖψ−1

2
+

r
√
3ϖψ−1i

2
.

If we choose ϖ small enough then there exists a T0 such that for T ≥ T0,
KK1 + σψ−1.vKK < 1.

Therefore,
KK1 + σψ−1.vKKsψσ−1

is increasing monotonically in T for T ≥ T0 and is therefore
bounded by exp (sRe.v).

We will need the following lemma about Fredholm determinants from [AB19]:

Lemma 5.4.24 (Lemma A.4 in [AB19]). We have

KKdet(Id+K)L2(C) − 1
KK ≤ ∞G

k=1

2kkk/2

(k − 1)!

1
C
· · ·

1
C

kB
i=1

KKKKKK1k
kG

j=1

|K (xi, xj) |2
KKKKKK
1/2

kB
i=1

dxi. (5.83)
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Proof of Proposition 5.1.9. Combining Lemma 5.4.24 with Lemma 5.4.22, we obtain the fol-
lowing (allowing the constant c to change between lines):KKKdet(Id+K(pT ))L2(C) − 1

KKK
=

KKKdet(Id+K)
L2(�C) − 1

KKK
≤

∞G
k=1

2kkk/2

(k − 1)!

1
�C · · ·

1
�C

kB
i=1

KKKKKK1k
kG

j=1

|K (xi, xj) |2
KKKKKK
1/2

kB
i=1

dxi

≤
∞G
k=1

2kkk/2

(k − 1)!

1
�C · · ·

1
�C

kB
i=1

KKKKKK1k
kG

j=1

6
c−1 exp

6−c|xi|3 − cs
=
+ c−1 exp

6−c|xi|3 − cT
==2KKKKKK

1/2
kB

i=1

dxi

=

∞G
k=1

2kkk/2

(k − 1)!

71
�C
6
c−1 exp

6−c|x|3 − cs
=
+ c−1 exp

6−c|x|3 − cT
==

dx

>k

=
∞G
k=1

2kkk/2

(k − 1)!

6
c−1e−cs + c−1e−cT

=k 71�C c−1 exp
6−c|x|3= dx>k

This last integral is bounded above by a constant, and we can also bound (k−1)! ≥ 8−kkk.
We then obtainKKKdet(Id+K(pT ))L2(C) − 1

KKK ≤ ∞G
k=1

16k

kk/2
6
c−1e−cs + c−1e−cT

=k ≤ c−1(e−cs + e−cT ). (5.84)

Combining (5.36), (5.72), and (5.84) we have the following: There exists c = c(ε) such

that for all T large enough and for all s ≥ 0 we have that for µ ∈
�

κ
(κρ−ρ+1)2

+ ε, κ− ε
!
:

P[Hρ(Tµ, T ) ≤ g(µ)T − sfµT
1/3] ≤ 2

4
1− det(Id+K(pT ))L2(C)

;
≤ c−1(e−cs + e−cT ).

Due to the fact that fµ is bounded uniformly for µ ∈ [κ−1+ε, κ−ε], we can absorb the constant
fµ into s by simply substituting s → f−1

µ s. We then get the desired bound on P[Hρ(Tµ, T ) ≤
g(µ)T − sT 1/3] for all ρ ∈ (0, 1). Finally, we use attractivity to obtain the same bound for

step initial data (i.e. ρ = 1). Chose ρ such that [κ−1 + ε, κ − ε] ⊂
�

κ
(κρ−ρ+1)2

+ ε
2 , κ− ε

2

!
.

Then we have that for all µ ∈ [κ−1 + ε, κ− ε]:

P[H(Tµ, T ) ≤ g(µ)T − sT 1/3] ≤ P[Hρ(Tµ, T ) ≤ g(µ)T − sT 1/3] ≤ c−1(e−cs + e−cT )

as desired.

5.5 From linear trajectories to the proof of the main theorem

We can now begin to prove the main theorem. Let us recall the setup of Theorem 5.1.1.
We start a stochastic six-vertex process from step initial conditions with a vertical second-
class particle at the origin. In this section, and in Sections 5.6 and 5.7, we always view the
stochastic six-vertex model as a particle system on the line (see Definition 5.1.5). On the
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line, the above initial conditions are given by a first-class particle at every position x < 0,
a second-class particle at position 0 and holes at positions x > 0. Denote by (At)t≥0 the
single-class stochastic six-vertex process given by the first-class particles in this process and
by Xt the position of the second-class particle at time t. These processes are started from
the initial conditions

A0(x) = 1x<0 and X0 = 0 ,

and (A,X) contains all the information of the multi-class process. Let Fs denote the σ-
algebra generated by (A,X) until time s, for s ∈ Z≥0.

Let us now define some events, which will be vital to the proof of the main theorem.

Definition 5.5.1. Fix positive integers S and T . We define the following FS-measurable
event, which depends on some ε > 0:

PS =

�
XS

S
∈ [κ−1 + ε, κ− ε]

�
. (5.85)

We also define the following FS+T -measurable events, which depend on some γ ∈ [0, 1]:

E≥
S =

�
XS+T −XS ≥ XS

S
T − S1−γ

�
(5.86)

E≤
S =

�
XS+T −XS ≤ XS

S
T + S1−γ

�
.

Finally, we let ES := E≥
S ∩ E≤

S .

On the event PS , the speed XS
S is bounded strictly away from the edge of the rarefaction

fan so that the effective hydrodynamic bounds in Corollary 5.4.2 will apply. On event ES ,
we control how much the speed of the second-class particle at time S + T deviates from the
speed at time S. In the following proposition, we choose appropriate time steps S and T and
show the existence of a high-probability FS-measurable hydrodynamic event HS upon which
ES will hold with high probability at time S + T . We call Hs the hydrodynamic event since
it is the event upon which at time S the height function of A has not deviated too much
from the hydrodynamic limit. We will show that the same is true at time S + T with high
probability, for any possible configuration in HS .

Proposition 5.5.2. For any integer S ≥ 1, let T = Sβ for some β ∈ (23 , 1). For any positive

α < β
2 − 1/3 and for any ε ∈ (0, 14), there is a c = c(ε, α) > 0 and an FS-measurable event

HS such that for all S ≥ 1 and for γ = 5
6 − β

2 − α we have

P[HS ] ≥ 1− c−1e−cSα
P[ES |FS ] ≥ (1− c−1e−cTα

)1Ps∩Hs . (5.87)

Note that since T < S, the bound on P[HS ] remains true if we replace S with T .

Remark 5.5.3. The parameters α, β and γ have the following meaning. The parameter β
controls the size of the time steps, with β closer to 1 giving larger time steps. The parameter
γ determines our control on the trajectory of the particle, with larger γ giving tighter bounds.
For each β we can prove the statement of the proposition for each γ < 5

6− β
2 and the difference

between the two is α. Therefore, small α are of interest. There is a trade-off for the value
of β. Bigger β gives better control along the sequence of time steps. To see this note that
S1−γ = T

1
6
β−1+ 1

2
+αβ−1

, and this exponent is minimized for β = 1. However, between the
time steps, bigger β leads to less control, since we use a rough bound based on monotonicity
between time steps. We will ultimately set β = 7

9 , where the value β = 7
9 is obtained by an

optimization balancing these two effects.
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Before proving this proposition, let us see how it implies Theorems 5.1.1 and 5.1.2. This
largely follows [ACG23, Section 4], especially Proposition 5.5.8, except that there a different
choice of time sequence was made, see Remark 5.5.9.

Definition 5.5.4. For S0 ≥ 2 define (Sm)m≥1 and (Tm)m≥0 as follows. Let T (S) = Sβ. Let
Tm = T (Sm) and Sm+1 = Sm + Tm. Note that T (S) is strictly increasing for all S ≥ 1.

Lemma 5.5.5. There exists constants z− = z−(β) > 0 and z+ = z+(β) > 0, such that

z−m
1

1−β ≤ Sm ≤ z+m
1

1−β for all m ≥ 1.

Proof. This follows from a straightforward induction argument, using the fact that z−x
1

1−β +

(z−x
1

1−β )β − z−(x + 1)
1

1−β is both positive at x = 2 and strictly increasing on [2,∞] for z−
small enough (but still positive). The upper bound also follows by induction, for z+ bigger
than 1 and such that the inequality is true for S1.

Lemma 5.5.6. For each ε there exists a D = D(ε, β, α) such that for S0 ≥ D the following
holds G

m≥0

S−γ
m ≤ ε/9;

G
m≥0

c−1e−cTα
m < ε/2; κ

Tm

Sm
< ε/9, for all m ≥ 0 . (5.88)

Proof. By Lemma 5.5.5 and the monotonicity of Sm in S0 mentioned in Definition 5.5.4, it

holds that Sm ≥ max(S0, z−m
1

1−β ). The term (z−m
1

1−β )−γ = z−γ
− m

−5
6+

β
2+α

1−β is summable

since the exponent is less than −1 by the assumption α < β
2 − 1

3 . Therefore by the dominated
convergence theorem asD → ∞ this sum goes to 0. The second and third sums are convergent
since Sm and Tm grow faster than linear in m, and therefore the sums can be bounded by
geometric series. By the same dominated convergence argument, the statement follows.
Finally κTm

Sm
< ε/4 simply follows from the fact that Tm

Sm
goes to 0 as S0 goes to ∞.

Definition 5.5.7. Define εm by setting ε0 = ε ∈ (0, 14) and

εm+1 = εm − S−γ
m

and note that for S0 > D(ε, β, α) all εm are positive (in fact they are greater than 8ε
9 ) by

Lemma 5.5.6. Define further the event

Lε
S0
(k) =

k−13
m=0

P εm
Sm

∩Hεm
Sm

∩ ESm (5.89)

and let Lε
S0

= Lε
S0
(∞).

Since the constant c in Proposition 5.5.2 can be taken to be weakly decreasing in ε, we
can assume that the statement of Proposition 5.5.2 holds with the same c for all εm in the
definition above.

Proposition 5.5.8. There exists a constant d such that for all ε ∈ (0, 1/4) there is a constant
D such that for all S0 ≥ D the probability of Lε

S0
is at least 1− (d+ 1)ε.
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Proof. Note first that the event P εm
Sm

∩ ESm is contained in the event P
εm+1

Sm+1
, since on the

event ESm it holds that
KKKXSm+1

Sm+1
− XSm

Sm

KKK ≤ S−γ
m . Using this we obtain

P[Lε
S0
(k)] = P[P ε0

S0
]−

k−1G
m=0

P[Lε0
S0
(m) ∩ P εm

Sm
∩ (Hεm

Sm
)c] (5.90)

−
k−1G
m=0

P[Lε0
S0
(m) ∩ P εm

Sm
∩Hεm

Sm
∩ (Eεm

Sm
)c]−

k−1G
m=1

P[Lε0
S0
(m) ∩ (P εm

Sm
)c] (5.91)

≥ P[P ε0
S0
]−

G
m≥0

P[P εm
Sm

∩ (Hεm
Sm

)c]− P[P εm
Sm

∩Hεm
Sm

∩ (ESm)
c] , (5.92)

where we used the fact noted above to observe that P[Lε0
S0
(m) ∩ (P εm

Sm
)c] = 0. By Propos-

ition 5.A.4, Xt
t converges in law to a continuous random variable on [κ−1, κ], with density√

κ
2(κ−1)x

− 3
2 . This density is bounded, and therefore there is a constant d such that for all

S0 large enough P[P ε0
S0
] ≥ 1 − dε, for all ε0. Note further that by Proposition 5.5.2, both

P[P εm
Sm

∩(Hεm
Sm

)c] and P[P εm
Sm

∩Hεm
Sm

∩(ESm)
c]) are less than c−1e−cTα

m , and thus by Lemma 5.5.6
the right-hand side of (5.90) is at least 1− (d+ 1)ε.

Proof of Theorem 5.1.1. We already have weak convergence to the desired distribution from
Proposition 5.A.4, so it remains to prove a.s. convergence. We will show that with probability
at least 1 − (d + 1)ε the difference between the limit superior and the limit inferior of Xt

t
is less than ε. This immediately implies that this probability is indeed 1 since these events
form a decreasing family as ε goes to 0. Since this holds for any ε, the conclusion follows as
the limit superior and the limit inferior must then be equal with probability 1.

Claim: Fix ε > 0. There exists D such that for s, s′ > D, with probability at least
1− (d+ 1)ε: KKKKXs

s
− Xs′

s′

KKKK ≤ ε . (5.93)

Proof of Claim: Let D be large enough such that both Lemma 5.5.6 and Proposi-
tion 5.5.8 hold. Let S0 = D. For S0 < s < s′ let m be the largest integer such that Sm < s
and m′ be the smallest integer such that s′ < Sm′ . By Proposition 5.5.8 the event Lε

S0
holds

with probability at least 1− (d+1)ε. Assume now that the event Lε
S0

takes place, so that in
particular ESm takes place for all m ≥ 0. ThenKKKKXs

s
− XSm

Sm

KKKK ≤ KKKKXs

s
− XSm+1

s

KKKK+ KKKKXSm+1

s
− XSm+1

Sm+1

KKKK+ KKKKXSm+1

Sm+1
− XSm

Sm

KKKK (5.94)

≤ |XSm −XSm+1 |
Sm

+
|XSm+1 |
Sm+1

Sm+1 − Sm

Sm
+ S−γ

m (5.95)

≤ 2

7
κ
Tm

Sm
+ S−γ

m

>
≤ 4

9ε , (5.96)

where in the second inequality we used monotonicity of Xs for the first two terms, and for the

third term we used that on ESm it holds that |XSm+1

Sm+1
− XSm

Sm
| ≤ S−γ

m . For the third inequality

we used the event ESm to control |XSm −XSm+1 | and that
XSm
Sm

< κ, since P εm
Sm

holds. The

final inequality then follows from Lemma 5.5.6. By the same argument
KKKXs′

s′ − XSm′
Sm′

KKK ≤ 4
9ε.

Finally, it holds thatKKKKXSm

Sm
− XSm′

Sm′

KKKK ≤ m′−1G
n=m

KKKKXSn

Sn
− XSn+1

Sn+1

KKKK ≤ m′−1G
n=m

S−γ
n ≤ 1

9ε (5.97)
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since ESn holds for all m ≤ n ≤ m′ and Lemma 5.5.6. It follows that with probability at
least 1− (d+ 1)ε, KKKKXs

s
− Xs′

s′

KKKK ≤ ε , (5.98)

for all s, s′ > S0 which was the claim.
This now implies that with probability at least 1− (d+ 1)ε,KKKKlim sup

t→∞
Xt

t
− lim inf

t→∞
Xt

t

KKKK < ε, (5.99)

and the proof of Theorem 5.1.1 follows.

Note that the conditions on β and α together with the definition of γ imply

β + γ > 1 (5.100)

Proof of Theorem 5.1.2. For time steps given by T (S) = Sβ , again for each ε there exists a
D(ε, β, α) such that the event Lε

S0
occurs with probability at least 1− (d+1)ε for all S0 > D.

Letting C be a constant that can depend on β and α and that can change from line to line,
we note that on this event we have

|XSn − SnU | =
KKKKKKXSn − Sn

XSn

Sn
+

G
m≥n

XSm+1

Sm+1
− XSm

Sm

KKKKKK (5.101)

=Sn

KKKKKK
G
m≥n

XSm+1

Sm+1
− XSm

Sm

KKKKKK (5.102)

≤Sn

G
m≥n

S−γ
m (5.103)

≤CSn

G
m≥n

m
−γ 1

1−β (5.104)

≤CSnn
−γ 1

1−β
+1

(5.105)

≤CS2−γ−β
n . (5.106)

In (5.104) and (5.106), we used Lemma 5.5.5 to bound Sn from above and below by constants

times n
1

1−β and we used the fact that the −γ 1
1−β ≤ −1 by (5.100) to ensure that p-series in

(5.104) converges and can be bounded. It remains to check the behavior times s that are not
of the form Sn. For s between Sn and Sn+1 we get

|Xs − sU | ≤ |Xs −XSn |+ |XSn − SnU |+ |SnU − sU | (5.107)

≤ |XSn+1 −XSn |+ |XSn − SnU |+ κ|Sn+1 − Sn| (5.108)

≤ C(S1−γ
n + S2−γ−β

n + Sβ
n) ≤ C(s2−γ−β + sβ), , (5.109)

where in the second inequality, we used monotonicity of Xs in the first term and that U is
bounded by κ in the third term. For the third inequality, we used that the event En holds
for the first term, (5.106) for the second term, and the definition of Sn+1 for the third term.
Setting β = 7

9 gives γ = 4
9 − α, which gives 2 − γ − β = 7

9 + α, therefore showing that on

an event of probability 1− (d+ 1)ε the limit of |XS − sU |s− 7
9
−2α is 0, which concludes the

proof.
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Remark 5.5.9. While we used the sequence Sn+1 = Sn + Sβ
n , which grows polynomially, in

[ACG23], they used the sequence Sn+1 = Sn + Sn
logSn

, which grows like e
√
n. The latter

sequence would have sufficed to prove Theorem 5.1.1. Furthermore, this time scale gives

|XSn − SnU | ≤ S
2
3
+

n

which is the expected order of fluctuations. However, it grows too quickly to prove the finer
statement in Theorem 5.1.2 as in (5.109), we crucially used the fact that |Sn+1 −Sn| ≤ sβ to
bound the fluctuations between the times Sn.

5.6 From hydrodynamic events to linear trajectories

The purpose of this section is to prove Proposition 5.5.2. We write the full proof only for E≥
S ,

since E≤
S can be treated similarly. We will outline the proof for E≤ at the end of Section 5.7.

Let us now proceed with the proof for the process E≥. We couple the process (A,X)
to a new multi-class stochastic six-vertex process B by filling in every position to the left
of XS with particles. Then Proposition 5.1.7 allows us to control the position of XS+T by
controlling a large number of these additional particles.

Definition 5.6.1. Define a new multi-class process (Bt)t≥0, with first-, second- and third-
class particles, depending on AS in the following way:

• It has the same parameters b1 and b2.

• At time 0 each site j ∈ Z in B0 is occupied by a first-class particle at time 0 if it is
occupied by a particle in AS,

• the site XS is occupied by a second-class particle,

• and each site to the left of XS not occupied by a particle in AS is also occupied by a
third-class particle.

Further let M be the number of third-class particles in B, which is finite, since it is at most
XS. Further, let Zt(0) > Zt(1) > · · · > Zt(M) denote the ordered positions of the second-
class particle and the third-class particles in Bt. At time 0 we have Z0(0) = XS, but at later
times, XS+t can be any of the positions Zt.

We will also consider the two single-class processes obtained by merging the second-
class and third-class particles in B with either the holes or the first-class particles. That is,

let (B(1)
t )t≥0 be the single-class process given by just the first-class particles in B and let

(B(1,2,3)
t )t≥0 be the single-class process of the first-, second- and third-class particles in B

forgetting their classes. The triplet (B(1)
t ,B(1,2,3)

t ,XS+t)t≥0 contains all the information of
B.

The process B depends both on AS and XS . We will often use a union bound over
possible values of XS . To do so it will be convenient to introduce a version of B in which
the position of the second-class particle is replaced by a deterministic position X. For X in
the interval [S(κ−1+ ε), S(κ− ε)]∩Z, define BX as the process obtained from AS by adding
a second-class particle at X if that position is empty and filling all empty positions k < X
with third-class particles (note that BX may not have a second-class particle if there is a
particle at position X in AS). Let further B(1,2,3),X be the single-class process of the first-
and second-class particles in BX . Note that it possible to couple all the processes BX , B,
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A and X such that the first-class particles in BX
t and Bt are given by AS+t, and such that

substituting XS for X it holds that

BXS = B . (5.110)

Note however that the law of B conditioned on XS = X is not given by BX , since XS and
the first-class particles in B are non-trivially correlated. However, by showing that certain
events happen for all BX with exponentially small probability, one can use (5.110) to show
that they also happen for B with exponentially small probability.

Lemma 5.6.2. Let G ∼ Geo(q) be independent of FS and Z. Then for any y ∈ Z and any
S, T ≥ 1 it holds that

P[XS+T ≥ XS + y|FS ] ≥ P[ZT (G ∧M) ≥ XS + y|FS ] . (5.111)

Proof. Denote the number of third-class particles that are to the right of the second-class
particle in BT by K, such that XS+T = ZT (K). By Proposition 5.1.7, the law of K
conditioned on FS and ZT is dominated by Geo(q). Therfore K can be coupled to a random
variable G∗ ∼ Geo(q) independent of FS and ZT such that K ≤ G∗ almost surely. Thus we
obtain

P[XS+T ≥ XS + y|FS ] = P[ZT (K) ≥ XS + y|FS ] (5.112)

≥ P[ZT (G
∗ ∧M) ≥ XS + y|FS ] (5.113)

where in (5.113) we used K ≤ G∗ ∧ M and the ordering of ZT . Note that the right-hand
side does not depend on the coupling between K and G∗ since G∗ is independent of FS and
Z. Therefore, we can replace G∗ by G in (5.113).

Let L be defined as

L = #

�
second- and third-class class particles in BT to the right of

XS

S
(S + T )− S1−γ

�
.

(5.114)
Using Lemma 5.6.2, we can reduce the proof of Proposition 5.5.2 to the following lemma
which states that L is of order at least S

1
3 with high probability.

Lemma 5.6.3. For any positive ε < 1
4 , and for T, α and γ as in Proposition 5.5.2, there is

a constant c > 0 and an FS-measurable event HS such that for all S ≥ 1

P(HS) ≥ 1− c−1e−cSα
(5.115)

and

P[L ≥ S
1
3 |FS ] ≥ (1− c−1e−cTα

)1PS∩HS
. (5.116)

Before proving this proposition let us see how it implies Proposition 5.5.2.

Proof of Proposition 5.5.2. As said above, we only prove the statement for E≥
S . Condition

on FS and assume that HS ∩ PS holds. Let G ∼ Geo(q) be independent of Z and FS , as
above. Define the events

FS =

�
ZT (G ∧M) ≥ XS

S
(S + T ) + S1−γ} and GS = {L > S

1
3

�
(5.117)
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and recall the definition of the event E≥
S is

E≥
S =

�
XS+T −XS ≥ XS

S
T − S1−γ

�
.

Setting y = XS
S T − S1−γ , it follows from Lemma 5.6.2 that P[E≥

S |FS ] ≥ P[FS |FS ]. By the
distribution of G,

P[FS |GS ,FS ] ≥ P[G ≤ S1/3] ≥ 1− qS
1
3 .

Combining this with the statement of Lemma 5.6.3 gives

P[E≥
S |FS ] ≥ P[FS |FS ]

≥ P[FS |GS ,FS ]P[GS |FS ]

≥
7
1− qS

1
3

>6
1− c−1e−cTα=

1HS∩PS

≥ (1− c−1e−cTα
)1HS∩PS

.

The final inequality is obtained by decreasing c so that we can absorb the term qS
1
3 (since

α ≤ 1/3 and S ≥ T ).

5.7 From effective hydrodynamics to hydrodynamic events

The purpose of this section is to prove Lemma 5.6.3. To this end let (Bstep,X)t≥0 be a

stochastic six-vertex process started from step initial conditions shifted byX, i.e. Bstep,X
0 (x) =

1x≤X . Clearly, at time 0 we have that B(1,2,3),X
0 (x) ≥ Bstep,X

0 (x) for all x ∈ Z, so by attractiv-
ity (Proposition 5.2.3) we can couple them so that this holds for any later time as well. Note

that B(1,2,3),X and B(1) are already coupled such that B(1,2,3),X
t (x) ≥ B(1)

t (x) for any time t
by their relation to the multi-class process BX . This gives a coupling of the three processes
B(1,2,3),X ,B(1),Bstep,X such that at all times t it holds that

B(1,2,3),X
t (x) ≥ max(B(1)

t (x),Bstep,X
t (x)) for all x ∈ Z.

The process Bstep,X is a stochastic six-vertex process started from step initial conditions, thus
we can use Corollary 5.4.2 to control its height function. Understanding B(1) is more intricate
since its initial conditions are given by AS . We will not be able to control B(1) for all values
of AS , and instead find an FS-measurable event HS , which we call the hydrodynamic event,

that holds with high probability. On this event, with high probability, B(1)
T is close to the

hydrodynamic profile of a stochastic six-vertex process started from step initial conditions
and evaluated at time S + T .

To simplify notation throughout this section, we will define ht([X,Y ]; η) := ht(X; η) −
ht(Y ; η). Let us now define the following shorthand notation for the event that a process is
close to its hydrodynamic limit.

Definition 5.7.1. For a single-class stochastic six-vertex process (At)t≥0 started from step
initial conditions, a time t and α, ε > 0 define the event Cα,ε

t (A) as�KKht([X,Y ];A)− t(g(Xt )− g(Yt ))
KK ≤ t

1
3
+α, for all X and Y in [t(κ−1 + ε), t(κ− ε)]

�
.

(5.118)
Note that this event does not depend on the choice of height function h(x,A), since it only
concerns height function differences.
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Using this definition, Corollary 5.4.2 with s = tα gives P[Cα,ε
t (A)] ≥ 1− c−1t2e−ctα , with

the constant c > 0 depending on ε.

Proposition 5.7.2. For T = T (S) as in Proposition 5.5.2, for α, ε > 0, and for S ≥ 1, there
is a constant c = c(ε) and an FS-measurable event HS that holds with probability 1−c−1e−cSα

such that
P
�
Cα,ε
S+T (A)|FS

# ≥ 1HS
(1− c−1e−cSα

) . (5.119)

Proof. By making c smaller the right-hand side of (5.118) can be made non-positive for S
small, so it suffices to consider S large enough. Let ( IAt)0≤t≤S be an independent copy of
(At)0≤t≤S , i.e. a stochastic six-vertex process started from step initial conditions and run
until time S. After time S we will couple these two processes, such that they are no longer
independent.

Define HS = C
a
2
, ε
2

S (A). This event has the desired probability by Corollary 5.4.2 and is

FS-measurable. Further, let IHS = C
a
2
, ε
2

S ( IA). On the intersection of HS and IHS it holds thatKKhS([X,Y ];A)− S
6
g
6
X
S

=− g
6
Y
S

==KK ≤ S
1
3
+α

2 , for all X and Y in [S(κ−1 + ε/2), S(κ− ε/2)]
(5.120)

andKKKhS([X,Y ]; IA)− S
6
g
6
X
S

=− g
6
Y
S

==KKK ≤ S
1
3
+α

2 , for all X and Y in [S(κ−1 + ε/2), S(κ− ε/2)].

(5.121)
These events do not depend on the choice of height function and therefore we can choose
the height functions which satisfy hS(S(κ− ε

2),A) = hS(S(κ− ε
2),

IA) = 0. With this choice
of height function and setting Y = S(κ − ε

2) in (5.120) and (5.121), it follows that on the

intersection HS ∩ IHS we have

|hS(X;A)− hS(X; IA)| ≤ 2S
1
3
+α

2 for X ∈ [S(κ−1 + ε/2), S(κ− ε/2)] .

Thus we can couple ( IAt)t≥S with (At)t≥S via the coupling given in Lemma 5.2.9 withM = S
1
3

and K = 2S
1
3
+α

2 . Denote the event that this coupling succeeds, i.e.�KKKhS+T (X; IA)− hS+T (X;A)
KKK < 6S

1
3
+α

2 + S
1
3 for X ∈ [S(κ−1 + ε

2) +
2T

1−b2
+ 1, S(κ− ε

2)]
�

(5.122)
as D. Then the statement of Lemma 5.2.9 gives

P[D|HS ∩ IHS ,FS ] ≥ 1− c−1e−cT − c−1e−cS
1
3 ,

which implies that

P[D|FS ] ≥ P[D|HS ∩ IHS ,FS ]P[HS ∩ IHS |FS ] ≥ 1HS
(1− c−1e−cSα

) , (5.123)

where we used that IHS is independent of FS and both c−1e−cT and c−1e−cS
1
3 were absorbed

into c−1e−cSα
by decreasing c.

Consider now the event
D ∩ C

a
2
, ε
2

S+T (
IA) . (5.124)

On this event, it holds that

|hS+T ([X,Y ];A)− (S + T )(g( X
S+T )− g( Y

S+T ))| ≤ 13S
1
3
+α

2 + 2S
1
3

for all X and Y in [S(κ−1 + ε
2) +

2T
1−b2

+ 1, S(κ− ε
2)] , (5.125)
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by repeated use of the triangle inequality. For large enough S we have

[S(κ−1 + ε), S(κ− ε)] ⊂ [S(κ−1 + ε
2) +

2T
1−b2

+ 1, S(κ− ε
2)]

since T = Sβ for some β < 1. Furthermore, for large enough S

13S
1
3
+α

2 + 2S
1
3 ≤ S

1
3
+α .

Therefore, for large enough S, the event Cα,ε
S+T (A) contains D∩C

a
2
, ε
2

S+T (
IA). Using (5.123) and

noting that C
a
2
, ε
2

S+T (
IA) is independent of FS we obtain that

P[Cα,ε
S+T (A)|FS ] ≥ P[D ∩ C

a
2
, ε
2

S+T (
IA)|FS ] (5.126)

≥ (P[D|FS ]− P[C
a
2
, ε
2

S+T (
IA)c|FS ]) ∨ 0 (5.127)

≥ (1− c−1e−cSα − c−1(S + T )2e−c(S+T )α)1HS
(5.128)

≥ (1− c−1e−cSα
)1HS

, (5.129)

where (c−1(S + T )2e−c(S+T )α)1HS
is absorbed by increasing c.

We can now prove Lemma 5.6.3.

Proof of Lemma 5.6.3. We can decrease c such that (5.116) is trivial for S small and therefore
it suffices to consider large enough S. First fix some X ∈ [S(κ−1 + ε), S(κ − ε)] ∩ Z. By
Proposition 5.7.2 we have

P[Cα,ε/2
S+T (A)|FS ] ≥ 1HS

(1− c−1e−cSα
) .

The event C
α,ε/2
S+T (A) states a bound for all pairs of points in [(S+T )(κ−1+ε/2), (S+T )(κ−

ε/2)]. For S large enough both X
S (S + T ) − S1−γ and X

S (S + T ) are in this interval since
X
S ∈ [κ−1 + ε, κ− ε] and S1−γ

S+T ≤ ε/2 for S large enough. Since the law of B(1)
T is equal to the

law of AS+T , we have

P
�KKhT ([XS (S + T )− S1−γ , XS (S + T )];B(1))

− (S + T )(g(XS − S1−γ

S+T )− g(XS ))
KK ≤ (S + T )

1
3+α

KKFS

!
≥ (1− c−1e−cSα

)1HS
. (5.130)

The process Bstep,X is also started from step initial data translated by X. For large
enough S both X

S (S + T )− S1−γ −X and X
S (S + T )−X are in [T (κ−1 + ε/2), T (κ− ε/2)].

Indeed X
S (S + T ) − X = X

S T , and
S1−γ

T < ε/2 since T = Sβ and β + γ > 1 (see (5.100)).
Thus we can apply Theorem 5.4.1 to obtain:

P
�KKhT ([XS (S + T )− S1−γ , XS (S + T )];Bstep,X)−

T (g(XS − S1−γ

T )− g(XS ))
KK ≤ T

1
3+α

!
≥ 1− c−1e−cTα

. (5.131)

Let us compare the limit shape terms in (5.130) and (5.131) by bounding their difference

∆ = T

7
g

7
X

S
− S1−γ

T

>
− g

7
X

S

>>
− (S + T )

7
g

7
X

S
− S1−γ

S + T

>
− g

7
X

S

>>
, (5.132)
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By the explicit form of g(x) = (
√
x−√

κ)2

κ−1 , one can easily see that on the interval [κ−1, κ]
both the first and second derivative of g are uniformly bounded and in particular g′′(x) ≥ C
for some C depending only on κ, for all x ∈ [κ−1, κ]. Considering the second-order Taylor
expansion of g at X

S , we have

T (g(XS − S1−γ

T )− g(XS )) = −T (g′(XS )
S1−γ

T +
g′′(XS )

2 (S
1−γ

T )2 +O(S
1−γ

T ))

= −g′(XS )S
1−γ +

g′′(XS )

2 (S
2−2γ

T ) +O(S
3−3γ

T 2 ).

Similarly for the other term in (5.132) we obtain

(S + T )(g(XS − S1−γ

S+T )− g(XS )) = −g′(XS )S
1−γ +

g′′(XS )

2 (S
2−2γ

S+T ) +O( S3−3γ

(S+T )2
)

For large enough S the error terms are smaller than the second order terms, since S1−γ

T → 0
and we obtain

∆ ≥ CS2−2γ

7
1

T
− 1

S + T

>
≥ C

2
S2−2γT−1 ≥ C

2
S1/3+2α (5.133)

where the linear terms cancel each other out and we use that T = Sβ and γ = 5
6 − β

2 − α.
Let LX be defined as

LX = #{second- and third-class particles in BX
T to the right of

X

S
(S + T )− S1−γ}

and note that

LX =
G

x≥XS
S

(S+T )−S1−γ

B(1,2,3),X
T (x)−B(1)

T (x) ≥
X
S
(S+T )G

x=
XS
S

(S+T )−S1−γ

Bstep,X
T (x)−B(1)

T (x) ,

since B(1,2,3),X
T (x) ≥ Bstep,X

T (x) for every x ∈ Z. If the events in (5.130) and (5.131) take
place this sum can be bounded from below by

X
S (S+T )G

x=
XS
S (S+T )−S1−γ

Bstep,X
T (x)−B(1)

T (x)

= hT ([
X
S (S + T )− S1−γ , XS (S + T )];Bstep,X)− hT ([

X
S (S + T )− S1−γ , XS (S + T )];B(1)))

≥ CS
1
3
+2α − (S + T )

1
3
+α − T

1
3+α ≥ S

1
3 , (5.134)

for S large enough. Therefore

P[LX ≥ S
1
3 |FS ] ≥ 1HS

(1− c−1e−cTα
) ,

where we use that the event (5.131) is independent of FS , since it only depends on Bstep,X ,
which is only coupled to B after time S. Using a union bound we obtain

P[LX ≥ S
1
3 for all X ∈ [S(κ−1 + ε), S(κ+ ε)] ∩ Z|FS ] ≥ 1HS

(1− Sc−1e−cTα
)

and we further can absorb S into c−1e−cTα
by decreasing c. By the definition of L in (5.114),

the definition of PS in (5.85), and the observation (5.110) we have that

P[L ≥ S
1
3 |FS ] ≥ P[LX ≥ S

1
3 for all X ∈ [S(κ−1 + ε), S(κ+ ε)] ∩ Z|FS ]1PS

≥ 1HS∩PS
(1− c−1e−cTα

)

as desired.
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Let us now sketch what needs to be changed for E≤. We need to show that on the
hydrodynamic event (which is the same) the second-class particle does not deviate too much
to the right. To do so we will delete all particles to the right of the second-class particle, which
corresponds to a multi-class particle system (Bt)t≥0 with the following initial conditions

• A first-class particle in every position that is occupied by a first-class particle in AS

and is to the left of XS ,

• A second-class particle in every position that is occupied by a first-class particle in AS

that is to the right of XS and

• A third-class particle in the position XS .

This process satisfies the conditions of Corollary 5.3.2 and by an argument analogous to
Lemma 5.6.3 it suffices to show that there are a large number of second-class particles in BT

to the left of XS
S (S+T )+S1−γ . Denoting by B(1) the process of the first-class particles in B,

by B(1,2,3) the process of the first, second- and third-class particles, and by Bstep a stochastic
six-vertex process with step initial conditions translated to position Xt. At time 0 we have

B(1)
0 (x) ≤ min(B(1,2,3)

0 (x),Bstep
0 (x)) ,

so Bstep can be coupled to B(1) such that B(1)
t (x) ≤ Bstep

t (x) at all later times t as well. Note

that B(1)
t (x) ≤ B(1,2,3)

t (x) already holds by definition. By Proposition 5.7.2, B(1,2,3)
T = AS+T

is close to the hydrodynamic limit at time S + T with high probability. Since Bstep is also
a stochastic six-vertex model started from step initial conditions we can use Theorem 5.4.1
to say that it is also close to the hydrodynamic limit at time T translated by XT with high
probability. These two results, together with a union bound over all possible values of Xt

and a calculation similar to (5.133), yield the desired result.

Remark 5.7.3. For ASEP one could have simply used particle-hole duality to obtain the proof
for E≤ as a corollary of the proof for E≥. After exchanging first-class particles with holes,
and reversing space, one again obtains a multi-class ASEP, and the events E≥ and E≤ are
exchanged. For the stochastic six-vertex model, this is not the case. Applying the particle-
hole duality for the stochastic six-vertex model exchanges the two axes and therefore maps
the event E≥ into an event that concerns the times at which the second-class particle hits
positions S and S + T . This is clearly not the same as the event E≤. A different choice of
E≥ and E≤ such that they are symmetric with respect to the particle-hole symmetry of the
stochastic six-vertex model could be considered.

5.8 Symmetry and stationarity of the speed process

In this section, we will prove Corollary 5.1.6 and discuss various properties of the stochastic
six-vertex model speed process.

Proof of Corollary 5.1.6. By the color merging property, the law of (Xt(x))t≥0 is equal to that

of (x+Xt(0))t≥0. By Theorem 5.1.1 the speed Xt(0)
t converges almost surely, and therefore

so does each speed Xt(x)
t . Since there are countably many particles, this also implies that

almost surely all of the speeds converge.

An immediate consequence of the construction is the ergodicity of the speed process. In
this section ergodic always refers to ergodicity with respect to translations of Z, i.e. of space.
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Proposition 5.8.1 (Ergodicity for the Speed Process). The stochastic six-vertex speed pro-
cess is ergodic.

Proof. This is immediately inherited from the fact that the process (Xt(x))x∈Z,t≥0 can be
constructed by sampling i.i.d. pairs of Bernoulli(b1) and Bernoulli(b2) random variables at
every vertex, which are clearly ergodic under the shift.

To obtain stationarity of the speed process we need the following symmetry, which is a
special case of [BB19, Corollary 7.1.]

Proposition 5.8.2 (Color Position Symmetry in Finite Domains). Consider the stochastic
six-vertex model on an M × N box, with particles of class 1 to M + N coming in on the
left and lower boundaries such that from the top left to the bottom right the classes are in
increasing order. Enumerate the outgoing positions along the top and right boundary with
{1, . . . ,M +N} in descending order, first from left to right along the top and then from top
to bottom along the right edge. Denote by π the (random) permutation of {1, . . . ,M + N}
obtained by letting π(x) is the class of the particle at position x. Then π and π−1 are equal
in law.

Proof. This follows from [BB19, Corollary 7.1] by specializing the Ferrer diagram S to a
rectangle and using the fact that rectangles are invariant under point reflections.

We now extend this to the stochastic six-vertex model on the line.

Proposition 5.8.3 (Color Position Symmetry on the Line). Consider the random bijection
πN : Z → Z obtained by running the stochastic six-vertex model from packed initial conditions
until time N (i.e. on a box of infinite width and height N +1) and letting πN (x) be the class
of the particle exiting at the vertex (x,N). Then (πN (x))x∈Z and (−π−1

N (−x))x∈Z are equal
in law.

Proof. Consider the box �−M,M� × �0, N�. Consider the boundary conditions consisting of
the incoming arrows from the left with {−M −N − 1, . . . ,−M − 1}, in increasing order from
top to bottom, and incoming arrows from the bottom with classes {−M,M} from the bottom,
again in increasing order. Enumerate the outgoing positions on the top and right boundary
with {−M −N − 1, . . . ,M}, again in clockwise order, i.e. starting with −M −N − 1 in the
bottom right corner and ending with M in the top left corner. Again let πM,N (x) be the
class of the outgoing particle at position x. Note that there is the following relation between
πM,N and πN for all x, y ∈ [−M,M ]

P(πN (x) = y) = P(πM,N (x) = −y) . (5.135)

Indeed, by using the merging property (Proposition 5.2.5), one can see that the trace of the
particle of class y inside the box �−M,M� × �0, N� is the same for both models since all
particles coming from the left have a smaller class than y. Thus the probability to exit the
box through a specific vertex along the top edge is the same in both models. The negative
sign on the right-hand side is due to the outgoing boundary positions being enumerated in
descending order. Using this twice along with Proposition 5.8.2, we obtain

P(πN (x) = y) = P(πM,N (x) = −y) = P(πM,N (−y) = x) = P(πN (−y) = −x) , (5.136)

which proves the statement.

Now note that π−1
N (x) = XN (x), since it is the position of the particle of class x at time

N . We can use this to prove that the speed process is stationary with respect to the dynamics
of the multi-class stochastic six-vertex process.
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Proposition 5.8.4 (Stationarity of the Speed Process). Let U be sampled from the stochastic
six-vertex speed process. Consider the multi-class stochastic six-vertex model with initial con-
ditions given by (−U(−x))x∈Z. This process is stationary.

Proof. Start with packed initial conditions and run the process until times N and N + 1.
Since πN (x) equals in distribution −π−1

N (−x), which equals −XN (−x), we know that both
(πN (x)/N)x∈Z and (πN+1(x)/N)x∈Z converge in law to (−U(−x))x∈Z by Corollary 5.1.6. Let
µN be the law of (πN (x)/N)x∈Z on the space RZ and νN the law of (πN+1(x)/N)x∈Z. The
laws µN+1 and νN only differ by multiplying the corresponding random variables with a factor
N

N+1 . Since the dynamics do not change under monotone relabeling of classes, and division

by N is such a monotone relabeling, we have for any bounded function f on RZ1
f(η)dνN (η) =

1
P1f(η)dµN (η) (5.137)

where P1 is the one-step evolution operator for the process. Since both µN and νN converge
to the law of (−U(−x))x∈Z, this proves the statement.

The following conjecture is known for multi-class TASEP and ASEP respectively proven
in [Lig76] and [FKS91] respectively. However, for the stochastic six-vertex model no proof of
this seems to be in the literature, see also [ANP23, Remark 7.9].

Conjecture 5.8.5 (Uniqueness of Stationary Translation-invariant Measures). For λk ∈
(0, 1) with

Hn
k=0 λk = 1, there is a unique ergodic stationary measure for the n-class stochastic

six-vertex process on the line with P(η0(x) = k) = λk.

The existence can be derived abstractly from a compactness argument. Recently in
[ANP23] such measures have also been constructed in a way that is amenable to calculating
marginals. It should be possible to prove uniqueness in a similar way to the analogous results
for ASEP and TASEP, using the corresponding result for the single-class process, which is
proven in [Agg20].

Given this conjecture, one can conclude the following

Proposition 5.8.6. Given Conjecture 5.8.5 the ergodic stationary measures for the stochastic
six vertex model (on the line) are the ergodic stationary measures for the multi-class ASEP
speed process.

Proof. This follows from Conjecture 5.8.5 together with the observation that the stationary
measures constructed for both ASEP and the stochastic six vertex model in [ANP23] are
actually identically. This can be seen by noticing that the stationary measures in [ANP23,
Theorem 3.3] when specialized to ASEP, as done in [ANP23, Section 4.2] and considered on
the line instead of the cylinder, are exactly the stationary measures in [ANP23, Section 7.3]
for the stochastic six vertex model.

This result implies the following connection between the stochastic six vertex speed pro-
cess and the ASEP speed process.

Theorem 5.8.7. Let f be the unique increasing map from [−κ,−κ−1] to [−1, 1], which maps

a random variable with density
√
κ

2(κ−1) |x|−
3
21x∈[−κ,−κ−1] to uniform random variable in [−1, 1].

Given Conjecture 5.8.5, if U is sampled according to the stochastic six vertex speed process.
Then

(f(−U(−x)))x∈Z

has the same law as the ASEP speed process.
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Proof. Note first that, since f is increasing, and the dynamics only considers the relative
ordering of the labels, (f(−U(−x)))x∈Z is still stationary for the stochastic six-vertex process.
Given any (λk)k=1,...,n which satisfy

Hn
k=1 λk = 1, consider the increasing map ϕ from [−1, 1]

to {1, . . . , n} such that ϕk is an interval of length 2λk. By the merging property (ϕλ ◦
f(−U(−x)))x∈Z is a stationary measure for the n-class stochastic six-vertex process. By the
definition of ϕλ and f it also satisfies

P[ϕλ ◦ f(−U(0)) = k] = λk .

Ergodicity is also inherited from U . By Conjecture 5.8.5 there is only one such measure, and
by Proposition 5.8.6 this is the same as the unique ASEP stationary measure with the same
densities. If one denotes by IU a sample of the ASEP speed process, this implies that

(ϕλ ◦ f(−U(−x)))x∈Z = (ϕλ ◦ IU(x))x∈Z, in law.

This equality is satisfied for all ϕλ, and this set of functions is sufficiently large to determine
all the marginals of the speed processes, as was outlined in [AAV08]. It follows that

(f(−U(−x)))x∈Z = (IU(x))x∈Z, in law,

as desired.

5.A Hydrodynamic limit and weak convergence

In this section we will give a summary of the hydrodynamic limit and local statistics for the
stochastic six-vertex model proved in [Agg20], specialized to the step initial conditions on the
corner. We will then use these results to show the weak convergence of Xt

t , which mirrors
the arguments for ASEP from [FK95].

We will work with the single-class stochastic six-vertex model on the quadrant, i.e. as
process (ηt(x))x,t∈Z≥0

taking values in {0, 1}.
To state the hydrodynamic limit, we define the function φ as

φ(ρ) :=
κρ

(κ− 1)x+ 1
,

where we recall that κ = 1−b1
1−b2

. This function encodes the “slope relation” of the stochastic
six-vertex model (see [Agg22]). In particular, if the stochastic six-vertex model is run from
i.i.d. Bernoulli(ρ) initial conditions on the bottom and i.i.d. Bernoulli(ϕ(ρ)) from the left,
the process is stationary under space time shifts. Furthermore the asymptotic speed of a
single second-class particle added to such initial conditions will be given by φ′(ρ).

We can now state the general hydrodynamic limit in [Agg20, Theorem 1.1]. This is stated
for the stochastic six-vertex model on the Torus. Let TN be the discrete torus Z/NZ and T
the torus R/Z.

Theorem 5.A.1 (Theorem 1.1 from [Agg20]). Consider initial conditions ηN0 (x) : TN →
{0, 1} which approximate a profile ρ0 : T → [0, 1], in the sense that

lim
N→∞

sup
x,y

KKKKKK 1N
⌊Ny⌋G

i=⌊Nx⌋
ηN0 (i)−

1 y

x
ρ0(x)

KKKKKK = 0 .

Let (ρt(x))t≥0,x∈R be the entropy solution of the partial differential equation

∂

∂t
ρt(x) +

∂

∂x
φ(ρt(x)) = 0 (5.138)
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with initial condition given by ρ0. Then uniformly on compact sets, we have the following
convergence in probability:

lim
N→∞

1

N2

NTG
t=0

NXG
x=0

ηNt (x) =

1 T

0

1 X

0
ρt(x)dxdt .

This theorem gives the expected density of particles at large times and scales. It is sup-
plemented by the following local statistics result, given in [Agg20, Theorem 1.3], which states
that whenever ρt(x) is continuous at (x, t) the system will be approximately at equilibrium,
that is the microscopic behavior around ηNt(Nx) will approach a stationary measure.

Theorem 5.A.2 (Theorem 1.3 from [Agg20]). In the setting of Theorem 5.A.1, consider a
point (t, x) such that ρt(x) is continuous at (t, x), and fix an integer k ≥ 1. Then the law of

[ηN⌊Nt⌋+s(⌊Nx⌋+ y)]y∈�−k,k�,s∈�0,k�
converges in law to the stationary process started from i.i.d. Bernoulli(ρt(x)) random vari-
ables and restricted to the rectangle �−k, k� × �0, k�.

To prove the weak convergence we will now need the following consequence of these
theorems.

Corollary 5.A.3. Let ηt : Z → {0, 1}, be the stochastic six vertex process on the line started
from η0(x) = 1x<0 and α be a positive real number. Then

lim
t→∞P[ηt(αt) = 1] = ρ1(α) ,

where

ρt(x) =

				
1 if x

t < κ−1
√

κt/x−1

κ−1 if κ−1 ≤ x
t ≤ κ

0 if x
t > κ

(5.139)

is the unique weak solution to (5.138) from ρ0(x) = 1x<0.

Proof. Since Theorems 5.A.1 and 5.A.2 are stated on the torus, we need to connect the
process on the line with the process on a torus. Let B be some integer, which will later
be chosen to be large. Let ηt be the stochastic six-vertex model on the line started from
step initial conditions and ηNt : T2B3N+1 → {0, 1}, be the stochastic six-vertex process on
T2B3N+1 started from the initial conditions

ηN,T
t (x) =

�
1, for −B2N ≤ x ≤ 0

0 else,

where we identify the torus T2B3N+1 with the set �−B3N,B3N�. Then by [Agg20, Propos-
ition 5.7] the processes η and ηN can be coupled to agree on the interval �−BN,BN� until
time BN with probability 1− exp−BN , if B is large enough such that B2N − 4BN

1−b2
> BN .

Assuming further that B is large than α, we obtain

|P[ηN (αN)]− P[ηN,T
N (αN)]| ≤ exp−BN .

Therefore it remains to apply Theorem 5.A.2 to ηN . Note that the PDE (5.138) is invariant
under scaling space and time by the same factor, and we can therefore also consider ρt
defined on the torus of size 2B3, which simplifies the notation. The initial condition of ηN
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approximate initial conditions ρT0 (x) = 1x∈[−B2,0] on the torus of side-length 2B3 identified

with [−B3, B3]. By Proposition 5.3 and Remark 5.4 of [Agg20], the solution ρTt of (5.138)
for these initial conditions and ρt (the solution for step initial conditions on R) agree at time
t on [−B2 + ct, B2 − ct], where c = maxx∈[κ−1,κ] |ϕ′(x)|. Given B large enough such that
B2 − c > α, this implies that

ρT1 (α) = ρ1(α) .

Applying Theorem 5.A.2 with k = 0, t = 1 and x = α gives the desired result.

Proposition 5.A.4 (Weak Convergence of the Speed of the Second-Class Particle). Let Xt

be the position of the second-class particle under step initial conditions with a single second-
class particle at the origin, as in Theorem 5.1.1 and let ρt(x) be given by (5.139). Then the
asymptotic speed of the second-class particle Xt

t converges weakly to a random variable with
density √

κ

2(κ− 1)
x−

3
21κ−1≤x≤κ . (5.140)

Proof. Consider step initial conditions (for the single-class model), i.e. η0(x) = 1x<0, and let

0 be the same initial conditions shifted by 1 to the right i.e. Iη0(x) = 1x≤0. Let (ηt)t≥0 and
(Iηt)t≥0 be the two stochastic six-vertex processes started from these initial conditions, with
the height functions made unique by the choice that h0(1; η) = h0(1; Iη) = 0. In particular
h0(0; η) = 0, but h0(0; Iη) = 1. We will couple them in two different ways. The first coupling π1
is given by the multi-class stochastic six-vertex model with step initial conditions and a single
second-class particle at the origin, i.e. the setup of Theorem 5.1.1 and of this proposition.
Denote the position of the second-class particle at time t with Xt, as above. The second
coupling π2 is given by the deterministic shift i.e.

Pπ2 [Iηt(x) = ηt(x− 1)] = 1.

We will now calculate E[ht(x; Iη)− ht(x; η)] under both of these couplings. Under π1 the
configurations are identical except for the second-class particle and so the height functions
agree for all (x, t) such that x > Xt and ht(x; η) = ht(x; Iη) − 1 for (x, t) such that x ≤ Xt.
This gives

Eπ1 [ht(x; Iη)− ht(x; η)] = P[x ≤ Xt] .

Under π2 the height functions are related by deterministic shift ht(x; Iη) = ht(x − 1; η) and
therefore

Eπ2 [ht(x; Iη)− ht(x; η)] = Eπ2 [ht(x− 1; η)− ht(x; η)] = E[ηt(x− 1)] .

By the linearity of expectations, E[ht(x; Iη) − ht(x; η)] does not depend on the coupling
we take and therefore we obtain the following identity:

P[x ≤ Xt] = E[ηt(x− 1)] .

Choosing x = ⌊αt⌋ we obtain

P
�
Xt

t
≥ α

$
= E[ηt(⌊αt⌋ − 1)].

By Corollary 5.A.3 the right hand side converges to ρ1(α). Therefore Xt
t converges weakly

to the random variable with density

−ρ′1(x) =
√
κ

2(κ− 1)
x−

3
21κ−1≤x≤κ ,

which proves the proposition.
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