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Abstract

In this thesis, we investigate numerically the physical mechanisms that govern the
dynamics of a stratified fluid flow. Two different cases of practical interest are con-
sidered: stable thermal stratification in wall-bounded turbulence, and double diffusive
convection (DDC) subject to shear in a confined fluid layer. We first investigated
the interaction between stable thermal stratification and wall-bounded turbulence.
Current physical mechanisms and scaling laws in stratified channel turbulence have
been tested by Direct Numerical Simulations (DNS) up to shear Reynolds number
Reτ = 550. In this study, we aim at extending present results to higher Reynolds
numbers, by running a series of DNSs of stratified channel turbulence at Reτ = 1000
and shear Richardson number – which measures the relative importance of buoyancy
compared to inertia – in the range 0 ≤ Riτ ≤ 300. By increasing stratification, active
turbulence is sustained only in the near-wall region, whereas intermittent turbulence,
modulated by the presence of non-turbulent wavy structures (Internal Gravity Waves,
IGW), is observed at the channel core. In such conditions, the wall-normal transport
of momentum and heat is considerably reduced compared to the case of non-stratified
turbulence. A careful characterization of the flow-field statistics shows that, despite
temperature and wall-normal velocity fluctuations being very large at the channel cen-
ter, the mean value of their product – the buoyancy flux – vanishes for Riτ ≥ 200. We
show that this behavior is due to the presence of a ∼ π/2 phase delay between the tem-
perature and the wall-normal velocity signals: when wall-normal velocity fluctuations
are large (in magnitude), temperature fluctuations are almost zero, and viceversa.
This constitutes a blockage effect to the wall-normal exchange of energy. In addition,
we present the scaling law for friction factor Cf , and we propose a new scaling for the
Nusselt number, Nu. These scaling laws, which seem robust over the explored range
of parameters, complement and extend previous experimental and numerical data up
to Reτ = 1000, and are expected to help the development of improved models and
parametrizations of stratified flows at large Reτ . We also investigate the energetics
and mixing in wall-bounded stably stratified turbulence, and we propose a new param-
eterization for the irreversible flux Richardson number R∗

f – which is a measures for
irreversible mixing – as a function of gradient Richardson number Rig. In the second
part of this thesis, we examine the effect of mixed slip/no-slip boundary conditions on
DDC subject to shear in a confined fluid layer. DDC results from the competing action
of a stably stratified, rapidly-diffusing scalar (temperature) and an unstably stratified,
slowly diffusing scalar (salinity), which is characterized by fingering instabilities. This
problem has five governing parameters: The salinity Prandtl number, Prs (momen-
tum to salinity diffusivity ratio); the salinity Rayleigh number, Ras (measure of the
fluid instability due to salinity differences); the Lewis number, Le (thermal to salinity
diffusivity ratio); the density ratio, Λ (measure of the effective flow stratification),
and the shear rate, Γ. We investigate fingering dynamics at varying shear rate via
highly-resolved numerical simulations. Simulations are performed at fixed Prs , Ras ,



Le and Λ, while the effect of shear is accounted for by considering different values of Γ.
Preliminary results show that shear tends to damp the growth of fingering instability,
leading to highly anisotropic DDC dynamics associated with the formation of regular
salinity. In turn, these dynamics result in significant modifications of the vertical heat
transport and solute concentration.
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1
Introduction

When the fluid density increases with depth (the acceleration due to gravity points
downwards), the fluid is said to be stably stratified. A schematic of a stably stratified
fluid, where light fluid is located on top of heavy fluid, is illustrated in Fig. 1.1.
Consider a small fluid parcel, shown in Fig. 1.1. Suppose the fluid parcel is raised
adiabatically a small distance above its initial position, without exchanging mass with
its surroundings. At the new position, the density of the fluid parcel is higher than
that of its surroundings, and the fluid parcel experiences a downward buoyancy force.
This buoyancy force tends to bring the fluid parcel back to its initial position, and
therefore the equilibrium is stable. Stable stratification can be observed in a wealth
of situations in which the underlying flow is turbulent. Stably stratified turbulence
occurs in both unbounded [61, 93, 62] and bounded [106, 107, 16] configurations (for
further details see [142]).

Figure 1.1 – Schematic of a stably stratified fluid, where warm fluid is located on top of the cold
fluid.

In this thesis, we are particularly concerned with the occurrence of stably-stratified
turbulence in a channel confined by two solid walls. The flow is heated from the top
and cooled from the bottom so that warm and thus lighter fluid overlays cold and
thus heavier fluid. This flow is subject to a vertical (wall-normal) buoyancy force
that, interacting with turbulence, can strongly change momentum, energy and mass
transport. The study of stably-stratified turbulence in presence of boundaries is of
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great importance in a number of industrial and environmental processes, from energy
supply/removal in heat transfer equipments and chemical/nuclear reactors [19, 86],
to weather forecasting [99] or pollutant dispersion in the atmospheric boundary layer
[97]. The complex physics of wall-bounded stably-stratified turbulence is governed by
the interplay between inertial and buoyancy forces, flavored also by the presence of
viscous forces and thermal diffusion. This interplay is commonly quantified in terms
of three main dimensionless numbers: the Reynolds number Re – ratio of inertial to
viscous forces –, the Richardson number Ri – ratio of buoyancy to inertial forces –
and the Prandtl number Pr – ratio of momentum to thermal diffusivities.
Since the first works of Monin & Obukhov [73] and Bolgiano [10], which were motivated
by the study of the atmospheric boundary layer, a number of field measurements,
experiments, simulations and theoretical models have been developed [22, 142, 15],
with the main purpose of inferring flow stability properties and suitable scaling laws
for the relevant global quantities (i.e. energy/momentum fluxes, length scales, mixing
efficiency) as a function of the observed/imposed stratification. Reportedly, detailed
experimental measurements of stratified flows, in particular in proximity of a wall, are
extremely challenging and difficult to realize when non-optical techniques are employed
[3, 54, 78]. Yet, accurate measurements by optical techniques have become available
only recently [129], and have contributed a lot to the advancement in the field, though
their accuracy in the near wall region remains still problematic.
In this context, numerical simulations – granting access to the entire velocity and tem-
perature field down to the region very close to the wall – have emerged as a valuable
tool to understand and characterize the local as well as the global structure of the
flow. It is therefore not surprising that Large Eddy Simulations and Direct Numerical
Simulations (LES and DNS) of thermally stratified channel turbulence have been per-
formed more and more frequently in the last twenty years. Among the first numerical
studies of wall-bounded stratified flows, Garg et al. [29] employed wall-resolved LES to
compute the dynamics of incompressible stratified turbulence in both close and open
channel flow configurations at a constant Reynolds and Prandtl numbers (Reτ = 180
and Pr = 0.71) but at different Richardson number Riτ (i.e., different stratification
levels). Note that subscript τ indicates parameters expressed in wall-units, i.e. using
the shear velocity uτ as reference velocity. Based on the value of Riτ , the flow was
divided into a buoyancy-affected flow (Riτ < 30, characterized by general turbulence
attenuation), a buoyancy-controlled flow (30 < Riτ < 45, with the possibility of tran-
sient and local flow relaminarization) and a buoyancy-dominated flow (Riτ > 45, with
a complete flow relaminarization). Similar trends, showing the occurrence of local flow
laminarization, were observed by Iida et al. [46] in their DNSs of stratified channel
turbulence at similar Reynolds and Richardson numbers (Reτ = 150, Riτ ≤ 40). As
discussed by Armenio & Sarkar [2], such findings were however in contrast with the
linear stability analysis of Gage & Reid [26] that, compared to the results of Garg
et al. [29] and Iida et al. [46], predicted a complete flow laminarization to occur
only at much higher values of Riτ . A clearcut explanation of this inconsistency was
given only later [72, 28]. In particular, performing DNS of stratified channel turbu-
lence up to Reτ = 550 and Riτ = 960, and employing large computational domains,
Garćıa-Villalba & del Álamo [28] were able to show that the local flow laminariza-
tion at subcritical values of Riτ occurs when the computational domain is not large
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enough to contain the minimal flow unit required to sustain turbulence. In such an
instance, laminar patches appear, increase in size, and become as large as the entire
computational domain, hence making a back transition to turbulence – which would
be observed in larger computational domains – not possible.
All previous studies were particularly important since they demonstrated not only that
the overall momentum and heat transfer rates are reduced for increasing stratification,
but also that the structure of wall-bounded turbulence can be selectively modified.
The current state of DNS research in the field of stably-stratified channel turbulence
is summarized in the (Reτ , Riτ ) phase space diagram shown in Fig. 1.2 [adapted
from 142]. The black solid line represents the boundary ideally separating the laminar
region (above the curve), from the turbulent one (below the curve). This curve,
which has been obtained by best fit of data reported in [26], should not be taken
as a sharp boundary between two regimes, but more likely as a blurry transition
region in which the flow is expected to (gradually) change behavior from turbulent
to laminar flow. There is indeed strong evidence that, when the marginal stability
curve is approached, the flow becomes intermittent (stratification is so strong that
laminar patches appear in the near wall-region, although the mean flow is still able
to sustain turbulence, see [28, 12]). The symbols below the curve represent previous
DNS simulations [46, 72, 137, 28, 144], which reach the maximum Reynolds number
Reτ = 550. Simulations at a larger Reynolds number were performed more recently
by other authors [17, 38, 130], but in different flow configurations (i.e. Couette flow
or open channel). For weakly to moderate stratification, buoyancy-driven wave like
motions (Internal Gravity Waves, IGW) appear at the channel core and coexist with
classical near-wall turbulence (see inset ”Flow 1” below the curve highlighting the
presence of IGW via visualization of temperature contours on a longitudinal section
of the channel). In this case, statistics still scale well in wall units. As already
mentioned, when stratification is increased so to approach the marginal stability curve,
the situations is more complicated, since buoyancy is able to influence not only the
flow region far from the boundary, but also the region close to it. This generally leads
to the collapse of near wall turbulence and to the corresponding appearance of laminar
patches. For very strong stratification – stronger than the critical strength dictated by
the marginal stability curve –, the flow becomes laminar (see inset ”Flow 2” above the
curve, showing a complete laminarization of the flow). It is worth noting that there
is still a bit of uncertainty about the complete relaminarization of strongly stratified
flows. Recently, Donda et al. [18] have argued that the laminarization process induced
by stratification is an inherently transient phenomenon, which is always followed by a
recovery of turbulence provided that sufficiently large finite amplitude perturbation are
imposed on the laminarized state and provided that sufficient time for flow acceleration
is allowed [142].
With the final aim of assessing current physical description and corresponding
parametrizations of stratified wall-bounded turbulence at high Reynolds numbers,
we perform a series of DNS of stably-stratified channel flow at Reτ = 1000, i.e.
well beyond the current state-of-the art limit of Reτ = 550 (see Fig. 1.2), and for
0 ≤ Riτ = 300 . Computations at high Reynolds number are crucial in this field,
given the lack of indications that results obtained by low Reynolds number simula-
tions can be upscaled to the scale of real phenomena, especially in environmental and
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large-scale industrial applications. The present study represents a first effort in this
direction: The detailed dataset produced by the present computationally-intensive
simulations at high Reτ , can definitely help LES and RANS to develop reliable sub-
grid scale and turbulence closure models that properly account for buoyancy effects in
realistic applications.
There are physical situations in which the fluid density depends on two scalar fields
such as Double diffusion convection (DDC). These complex situations are ordinary
occurrences in oceans, where temperature gradient is the stabilizing factor and salin-
ity gradient produces instabilities. DDC is a mixing process driven by the difference
in the molecular diffusivities of two scalar fields, such as heat and salt, within a con-
fined fluid layer [90, 27, 91, 100]. When a fluid layer experiences an unstable gradient
of the slowly-diffusing scalar and a stable gradient of the rapidly-diffusing scalar, a
convective instability can occur: Such instability, referred to as fingering convection
hereinafter [60], leads to the formation of narrow upgoing and downgoing columns of
fluid that develop in the bulk of the flow and favour scalar transport across the layer
[120, 64, 114]. The resulting flow structure is also characterized by the formation of
a thin boundary layer of the slowly-diffusing scalar, which superposes to the veloc-
ity boundary layer [135]. Because of its relevance in many important applications,
ranging from mixing in large water bodies [90, 82, 109] to electrodeposition cells [52],
double-diffusive convection has received a lot of attention since the pioneering works of
Stern [112] and Turner [120]. When the diffusing scalars are temperature and salinity,
in particular, scaling laws for key parameters of DDC (such as the non-dimensional
salinity flux, the salinity Rayleigh number, which measures the strength of the salinity
difference, and the density ratio of the buoyancy forces induced by two scalar differ-
ences) have been derived recently by Yang et al. [135], exploiting a generalisation
of the Grossmann-Lohse theory originally developed for traditional Rayleigh-Bénard
convection [136]. The driving mechanism for DDC in the fingering regime is shown in
Fig. 1.3 schematically. Consider a small fluid parcel in a system in which the warm
salty fluid is located on top of the cold fresh fluid. Assume that the parcel of fluid is
displaced downward (the acceleration due to gravity points downwards). Since tem-
perature is the rapidly diffusing scalar, the fluid parcel rapidly exchanges heat with its
surroundings, so to reach the thermal equilibrium. Differently from the temperature,
the solutal concentration of the parcel does not reach the equilibrium state as quickly
as the temperature due to the low molecular diffusivity of the salt. When the fluid
parcel is cooled to the point where its temperature becomes equal to its surround-
ings, the parcel’s density exceeds the density of the surrounding fluid, and the parcel
proceeds to sink further.
In some situations, e.g. buoyant outflows in water bodies, double-diffusive convection
is affected by shear, which can be produced by bulk motion of water masses like
those produced by adjacent intruding layers [55, 117, 92]. The effect of shear on the
growth of double-diffusive convection has been the subject of several studies (from
the pioneering work of Linden [63], who focused on eddies impinging upon a density
step where salt fingers were growing, to the more recent numerical works by Smyth &
Kimura [104, 105], Radko et al. [92], and Konopliv et al. [55] and experimental works
by Wells et al. [128] and Fernandes & Krishnamurti [21]. The main effect observed
in both laboratory and numerical investigations was the alignment of the fingers in
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Figure 1.3 – Schematic of the driving mechanism for DDC in the fingering regime.

the direction of shear, which leads to the formation of sheet-like structures and to a
reduction of vertical double-diffusive transport rates compared to those measured in
three-dimensional DDC in the absence of shear [92]. In the plane perpendicular to
the direction of shear, however, double diffusion can still produce vertically-elongated
filaments similar to those observed in zero-shear DDC [92]. It should be noted that
most of the numerical investigations of DDC convection in shear flow were conducted
using linear stability analysis [63, 117], which allows for the identification of the most
unstable modes responsible for the onset of convection, or transient growth analysis
[55], which was used to identify the maximum perturbation growth of the fingers
by means of a suitably-defined optimization problem. Only a few studies are based
on fully-resolved three-dimensional simulations of the flow. In particular, Smyth &
Kimura [105] performed direct simulations of DDC in the presence of shear-induced
Kelvin-Helmholtz instabilities, whereas Radko et al. [92] examined the case of DDC
subject to stochastic shear. We also observe that a precise identification of shear
effects on the local diffusive and convective contributions to the total scalar fluxes in
the gravity direction is lacking, the discussion being focused on the global transport
parameters of the flow (e.g. salinity and thermal Nusselt number). In the present
work, we quantify the modifications on DDC induced by the superposition of a mean
shear, which introduces a symmetry breaking effect into the flow. We also examine
the resulting change in the scalar fluxes, determining the relative importance of their
diffusive and convective parts. This problem is of relevance in a number of applications
[109] and, to the best of our knowledge, is investigated here for the first time. To
this aim, we perform fully-resolved three-dimensional simulations of double-diffusive
convection within a fluid layer bounded by a solid (no-slip) wall at the bottom and a slip
surface (mimicking a non-homogeneous convection layer associated with an anisotropic
scalar distribution) at the top. The effect of a steady shear on fingering formation
within a no-slip/slip layer is expected to magnify the asymmetric distribution of the
diffusing scalars (temperature and salinity) across the layer, which is due to the fact
that horizontal fluid motions are allowed at the slip boundary, yet forbidden at the
no-slip boundary. This flow configuration allows us to complement previous studies
of DDC between two no-slip walls (see [37, 133, 6, 52] among others), or two free-
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slip walls [82] or between a no-slip wall and a flux-free boundary [105]. Indeed, as
demonstrated by Yang et al. [134] for the case of zero-shear vertically-bounded DDC
in the fingering regime, comparison of different boundary conditions allows deeper
physical understanding of fingering dynamics. In addition, our study could provide
useful indications regarding the applicability of laboratory experiments, which are
usually performed between no-slip walls, and of numerical studies, which use the free-
slip condition to approximate an interface in natural environments, to actual DDC
flows (like those occurring in water bodies). As mentioned, an important feature of
this flow is the contribution to salinity transport given by diffusive and convective
mechanisms, which will be analyzed in separation. We will discuss how these two
contributions can influence each other and, at the same time, be influenced by the
applied shear. We will also show how the resulting complex interplay can lead to
interesting phenomena such as the occurrence of local counter gradient diffusive fluxes:
These may influence the global heat and mass transfer rates leading to quantitative
changes in the Nusselt numbers.

Thesis outline
• Chapter 2: Mathematical and physical description of stratified shear
flows
In this chapter, the physical and mathematical models used to describe the dy-
namics of stratified shear flows are presented. The governing equations of stably-
stratified turbulence and DDC under Oberbeck-Boussinesq (OB) approximation
are introduced. The validity range of OB approximation is briefly discussed, and
adimensionalization of the variables is presented.

• Chapter 3: Methodology
In this chapter, the discretization of governing equations, the numerical method
and its implementation are reported. The solution procedure is discussed in
details and the spectral representation of the equations are shown. In the last
part, the performances of the numerical implementation is investigated.

• Chapter 4: Interaction between stable stratification and turbulence
In this chapter, building on top of a detailed analysis of the flow-field struc-
ture and statistics, we discuss the influence of stratification on the wall-normal
transport of momentum and heat, and we present possible parametrizations and
scaling laws for the friction factor and for the Nusselt number. We also briefly
discuss the effect of buoyancy on eddy size using energy spectral density analysis.

• Chapter 5: Energetics and mixing in wall-bounded stably-stratified
turbulence
In this chapter, the energy budget equations are introduced. The effect of strat-
ification on sink/source terms of different energy budget equations is examined.
The irreversible mixing in stably-stratified turbulence is quantified using irre-
versible flux Richardson number and a new parametrizations is presented for
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the irreversible flux Richardson number as a function of gradient Richardson
number.

• Chapter 6: Shear effects on double diffusive convection
In this chapter, we investigate the influence of shear on DDC. We discuss the
flow structure and the observed fingering dynamics first, complementing this
phenomenological description with a statistical characterization of velocity, tem-
perature and salinity distributions as well as heat and salinity fluxes.



2
Mathematical and physical

description of stratified shear
flows

This chapter presents the physical and mathematical description of stratified shear
flows. In section 2.1, we demonstrate the physical and mathematical models used
to describe wall-bounded stably stratified turbulent flows. We introduce the general
compressible form of the governing equations (Non-Oberbeck-Boussinesq, NOB) in
subsection 2.1.1. In subsection 2.1.2, we briefly present the Oberbeck-Boussinesq
(OB) approximation and the assumptions on which OB approximation is based. We
introduce the governing equations under OB approximation in a dimensional form in
subsection 2.1.3. Finally, we discuss the ranges of validity of the OB approximation in
subsection 2.1.4. In section 2.2, introduce the governing equations for a DDC problem.
Specifically, we introduce the governing equations of a DDC system in the dimensional
form under OB approximation in subsection 2.2.1. Finally, we introduce two different
scalings employed in the framework of this thesis to prescribe the imposed shear to a
DDC configuration in subsection 2.2.2.

2.1 Stably-stratified turbulence

2.1.1 General Form of the Governing Equations
The complete system of continuity, momentum and energy equations for a Newtonian
fluid with variable properties and a second viscosity [119] equal to zero represents the
most common starting point for the analysis of stably-stratified turbulence [7]. This
set of equations in dimensional form (denoted by the superscript ∗) is:

Dρ∗

Dt∗
+ ρ∗

∂u∗
i

∂x∗
i

= 0 , (2.1)

ρ∗
Du∗

i

Dt∗
= −∂P ∗

∂x∗
i

− ρ∗g∗δ∗3,i + µ∗ ∂Γ
∗
ij

∂x∗
j

+ Γ∗
ij

∂µ∗

∂x∗
j

, (2.2)
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ρ∗c∗p
Dθ∗

Dt∗
= λ∗ ∂

2θ∗

∂x∗
j
2 + ∂λ∗

∂x∗
j

∂θ∗

∂x∗
j

+ β∗
θθ

∗DP ∗

Dt∗
+ µ∗Φ∗ , (2.3)

where u∗
i is the ith component of the velocity vector, P ∗ is pressure, θ∗ is temperature

and g∗ is the gravitational acceleration. Note that

Γ∗
ij =

∂u∗
i

∂x∗
j

+
∂u∗

j

∂x∗
i

− 2
3
∂u∗

k

∂xk
δ∗ij , Φ∗ = 1

2Γ
∗
ij

�
∂u∗

i

∂x∗
j

+
∂u∗

j

∂x∗
i

�
(2.4)

are the rate of strain tensor (Γ∗
ij) and the rate of dissipation of mechanical energy

due to viscosity (Φ∗). The thermophysical fluid properties are density ρ∗, viscosity
µ∗, specific heat c∗p, thermal conductivity λ∗ and thermal expansion coefficient β∗

θ =
−1/ρ∗ (∂ρ∗/∂θ∗)p. Definition of fluid properties as a function of temperature and
pressure is required for a full specification of the problem. To this aim, suitable laws
for the determination of the fluid properties are given in form as [142]

ρ∗ = ρ∗(θ∗, P ∗); c∗p = c∗p(θ∗,P ∗); µ∗ = µ∗(θ∗, P ∗)
β∗
θ = β∗

θ (θ∗, P ∗); λ∗ = λ∗(θ∗, P ∗).
(2.5)

Analytical expressions and correlations derived from thermodynamics and/or experi-
mental measurements [5, 98, 74, 143, 144] are commonly employed to define Eq. 2.5.
The general form of the governing equations is given by Eqs. 2.1-2.3, which are com-
plemented with explicit laws to particularize Eq. 2.5 [142].

2.1.2 Oberbeck-Boussinesq (OB) approximation
It is not only required to have a gravity field for a buoyancy-driven flow to occur,
but it is also crucial to have density variation. It should be noted that the density
variation is different from the variable density in a flow field. The exact governing
equations are uncompromising, and therefore some approximations are required. The
Oberbeck-Boussinesq (OB) approximation [77, 11] is the simplest approximation that
includes buoyancy in the physics of the flow. It is the basis of most of what is known
about natural convection [34]. The OB approximation is built on top of the hypothesis
that the fluid density fluctuations are small enough to be neglected in the continuity
equation and only play a role in the gravitational term of the momentum equation
(i.e., where ρ∗ is multiplied by the acceleration due to gravity g∗) [142]. The assump-
tion of a constant ρ∗ but in the gravitational term is possible to be made because
the acceleration due to gravity is in general much larger than any other local value of
the fluid acceleration (i. e. |g∗| 
 |Du∗

i /Dt∗|), and therefore the product ρ∗g∗ can
produce large effects even when relative density fluctuations with respect to the ref-
erence density ρ∗0 are very small (i.e. (ρ∗ − ρ∗0) /ρ∗0 � 1) [142]. By employing the OB
approximation, all thermophysical properties of the fluid are assumed to be constant
and uniform.

2.1.3 Governing Equations
We consider a stably stratified turbulent flow inside an horizontal straight channel,
shown in Fig. 2.1. The channel is bounded by two solid walls at z = ±h∗, with h∗ being
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the channel half height. The origin of the coordinate system is located at the center
of the channel and the x−, y− and z−axes point in the streamwise, spanwise and
wall-normal directions, respectively. Note that, throughout this thesis, the position
vector (x1, x2, x3) and the velocity vector (u1, u2, u3) are also referred to as (x, y, z)
and (ux, uy, uz), respectively. A stable stratification in the wall-normal direction z
is maintained by keeping a positive temperature difference Δθ∗ = θ∗t − θ∗b between
the top (fixed temperature θ∗t ) and the bottom (fixed temperature θ∗b ) walls. At the
same time, the flow is driven along the streamwise direction x by an imposed mean
pressure gradient. The governing balance equations 2.1-2.3 under OB approximation
in dimensional form and in tensor notation (repeated index implies summation) read
as

∂u∗
i

∂x∗
i

= 0 , (2.6)

ρ∗
∂ui

∂t∗
= −ρ∗u∗

j

∂u∗
i

∂x∗
j

+ µ∗ ∂
2u∗

i

∂x∗
j
2 − ∂p∗

∂x∗
i

+
�
ρ∗ − ρ∗ref

�
g∗ + δ∗1,i, (2.7)

ρ∗c∗p
∂θ∗

∂t∗
+ ρ∗c∗pu

∗
j

∂θ∗

∂x∗
j

= λ∗ ∂
2θ∗

∂x∗
j
2 , (2.8)

where p∗ is the fluctuating kinematic pressure and δ∗1,i is the mean pressure gradient
that drives the flow (note that δi,j = 1 if i = j, while δi,j = 0 if i �=j).

L∗
x

L∗
y

−h∗

+h∗

xy

z

o

Figure 2.1 – Sketch of the computational domain used to run the simulations of stably-stratified
turbulent channel flow. The closed channel is bounded by solid walls at z = ±h∗. The channel has
dimensions L∗

x in the streamwise direction (x∗), L∗
y in the spanwise direction (y∗) and 2h∗ in the

wall-normal direction (z∗). The reference frame is centered in o, located at the channel mid-plane.

Variables are made dimensionless as follows:

ρ = ρ∗

ρ∗0
; µ = µ∗

µ∗
0
; λ = λ∗

λ∗
0
; cp =

c∗p
c∗p,0

; xi =
x∗
i

h∗ ;

ui =
u∗
i

u∗
τ

; t = t∗u∗
τ

h∗ ; p = p∗

ρ∗0u∗
τ
2 ; θ = θ∗ − θ∗0

Δθ∗/2 .

(2.9)

The reference velocity for adimensionalization is the friction velocity u∗
τ =

�
τ∗
w

ρ∗
0
, where

τ∗w is the shear stress at the wall, whereas the reference temperature is the centerline
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temperature θ∗0 = (θ∗t + θ∗b ) /2. Note that subscript 0 is used to represent thermophys-
ical fluid properties at the reference temperature.
With the assumption of uniform thermophysical properties, the governing balance
equations (Eq. 2.6-2.8) in dimensionless form read as:

∂ui

∂xi
= 0 , (2.10)

∂ui

∂t
= Si +

1
Reτ

�
∂2ui

∂xj
2

�
− ∂p

∂xi
, (2.11)

∂θ

∂t
= Sθ +

1
ReτPr

�
∂2θ

∂xj
2

�
. (2.12)

The S-terms contain the non-linear convective terms, the dimensionless mean pressure
gradient and the buoyancy term:

Si = −uj
∂ui

∂xj
+ δi,1 + δi,3Riτθ, (2.13)

Sθ = −uj
∂θ

∂xj
. (2.14)

In the above equations, δi,3 is the Kronecker delta (used to account for the buoyancy
term in the wall-normal direction only), whereas

Reτ = u∗
τh

∗

ν∗0
, P r =

µ∗
0c

∗
p,0

λ∗
0

, Riτ =
g∗β∗

θ0
Δθ∗
2 h

u∗
τ
2 , (2.15)

are respectively the shear Reynolds number, the Prandtl number and the shear
Richardson number, defined in terms of the thermophysical properties at the reference
temperature θ∗0 . In the above dimensionless parameters, β∗

θ0
and ν∗0 are the thermal

expansion coefficient and the kinematic viscosity at the reference temperature, and
are defined as

β∗
θ = − 1

ρ∗

�
∂ρ∗

∂T ∗

�
p

; ν∗0 = µ∗
0

ρ∗0
. (2.16)

Eqs. 2.10-2.14 include buoyancy effects. However, the same equations can be used
to analyze neutrally-buoyant flows, simply assuming a vanishing shear Richardson
number (Riτ = 0).
In the numerical simulations of wall-bounded stratified flows [29, 2, 28], Riτ is com-
monly used to characterize the flow regimes. Unlike numerical simulations, using Riτ
in experiment deals with some limitations. These limitations in experiments are linked
to the difficulty in the determination of the shear velocity uτ (it requires precise evalu-
ation of the wall shear stress). Therefore, in experiments the bulk Richardson number
Rib is usually preferred, since the bulk velocity is an easier quantity to access [142].



2.1. Stably-stratified turbulence 13

2.1.4 Range of validity of the approximate equations
Albeit simple, the OB approximation (Eqs. 2.10-2.14) was extensively used to investi-
gate important flow physics in the broad field of buoyancy-influenced flows [8, 32, 121].
It is important to note that OB approximation can only represent a good approxima-
tion of the exact equations (Eqs. 2.1-2.3) within specific ranges of variation of the key
parameters [110, 70, 34, 75, 76], and therefor employing OB approximation beyond
these ranges is not physically justified. The accuracy error caused by the assumption
of constant density in the continuity equation can be evaluated by computing the ra-
tio between the material derivative of density ρ∗

−1
Dρ∗/Dt∗ and the divergence of the

velocity field ∂u∗
j/∂x

∗
j [57, 118]. By introducing suitable length (l∗0), velocity (u∗

0) and
temperature (Δθ∗0) scales, we get

ρ∗
−1
Dρ∗/Dt∗

∂u∗
j/∂x

∗
j

= β∗
θDθ∗/Dt∗

∂u∗
j/∂x

∗
j

� β∗
θΔθ∗ (u∗

0/l
∗
0)

u∗
0/l

∗
0

= β∗
θΔθ∗. (2.17)

Following assumptions are made for derivation of Eq. 2.17:

• u∗
0 is small compared to the speed of sound c (Mach number Ma = u0/c < 0.3).

• pressure variations in the fluid are slow compared to acoustic pressure waves.

The criteria for the OB approximation to be valid is β∗
θΔθ∗ � 1. This criteria rep-

resent only a rough estimate abut the boundaries for the validity of the OB approxi-
mation. Gray and Giorgini [34] introduced precise boundaries for the validity of the
OB approximation by starting from the full non-linear equations in compressible form
and writing all the fluid properties as a linear Taylor expansion of temperature and
pressure, i.e.:

ρ∗ =ρ∗0 [1− β∗
0 (θ∗ − θ∗0) + γ∗

0 (P ∗ − P ∗
0 )] ,

c∗p =c∗p0 [1− a∗0 (θ∗ − θ∗0) + b∗0 (P ∗ − P ∗
0 )] ,

µ∗ =µ∗
0 [1− c∗0 (θ∗ − θ∗0) + d∗0 (P ∗ − P ∗

0 )] ,
β∗
θ =β∗

θ0 [1− e∗0 (θ∗ − θ∗0) + f∗
0 (P ∗ − P ∗

0 )] ,
λ∗ =λ∗

0 [1−m∗
0 (θ∗ − θ∗0) + n∗

0 (P ∗ − P ∗
0 )] ,

(2.18)

where

a∗ = 1
c∗p

∂c∗p
∂θ∗

, b∗ = 1
c∗p

∂c∗p
∂P ∗ , c∗ = 1

µ∗
∂µ∗

∂θ∗
, d∗ = 1

µ∗
∂µ∗

∂P ∗ ,

e∗ = 1
β∗
θ

∂β∗

∂θ∗
, f∗ = 1

β∗
θ

∂β∗

∂P ∗ , m∗ = 1
λ∗

∂λ∗

∂θ∗
, n∗ = 1

λ∗
∂λ∗

∂P ∗ ,

β∗
θ =− 1

ρ∗
∂ρ∗

∂θ∗
, γ∗ = 1

ρ∗
∂ρ∗

∂P ∗ ,

(2.19)

are the fluid property coefficients. Leading order approximation of the resulting equa-
tions was the tool used by Gray and Giorgini [34] to derived a set of constraints for
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the range of validity of OB approximation. These constraints are introduced as

�∗1 = β∗
θ0Δθ∗ ≤ δ∗, �∗2 = γ∗

0ρ
∗
0g

∗h∗ ≤ δ∗, �∗3 = c∗0Δθ∗ ≤ δ∗,
�∗4 = d∗0ρ

∗
0g

∗h∗ ≤ δ∗, �∗5 = a∗0ρ
∗
0g

∗h∗ ≤ δ∗, �∗6 = b∗0ρ
∗
0g

∗h∗ ≤ δ∗,
�∗7 = m∗

0Δθ∗ ≤ δ∗, �∗8 = n∗
0ρ

∗
0g

∗h∗ ≤ δ∗, �∗9 = e∗0Δθ∗ ≤ δ∗

�∗10 = f∗
0 ρ

∗
0g

∗h∗ ≤ δ∗, �∗11 = β∗
θ0g

∗h∗/c∗p0 ≤ δ∗, �∗12 = �∗11θ
∗
0/Δθ ≤ δ∗,

(2.20)

where δ∗ = 0.1 is a small enough number, which leads to a maximum error of 10%
in the estimate of the fluid property. In Eq. 2.20, the h∗ (channel half height) is
substituted as the characteristic size of the problem. Recently, Pons and Quéré [87]
propose a further restrictive condition for the validity range of OB approximation,
i.e. �12 < 0.02, for the work done by pressure forces and the heat generated by
viscous losses to be negligible. Altogether, these constraints set the boundaries for an
explicit evaluation of the validity ranges of the OB approximation [142]. For air, the
most restrictive conditions are �∗1 (variation of ρ∗ with θ∗), �∗2 (variation of ρ∗ with
P ∗) and �∗12 (pressure work term). For water, the most restrictive conditions are �∗9
(variation of β∗ with T ∗), �∗8 (variation of λ∗ with P ∗) and �∗12 (pressure work term)
[142]. Outside the validity range of OB approximation, more complex Non-Oberbeck-
Boussinesq (NOB) models (incompressible NOB or Low-Mach approximation) must
be employed.

2.2 Double diffusive convection

2.2.1 Governing equations
We consider the problem of DDC in a horizontal layer bounded by a no-slip bottom
wall and a slip top surface that are orthogonal to gravity (pointing downwards) and
are separated by a distance 2h∗. The flow, which is incompressible and Newtonian, is
driven by the competition between the stabilizing distribution of temperature and the
destabilizing distribution of salinity. We define the temperature and salinity difference
cross the fluid layer as Δs∗ = s∗t − s∗b and Δθ = θ∗t − θ∗b , where subscripts t and b
refer to the top and bottom boundary, respectively. Naturally, Δs∗ > 0 and Δθ∗ > 0.
Employing the OB approximation, the fluid density can be prescribed as a linear
function of s∗ and θ∗, and it can be written in the following form:

ρ∗(θ∗, s∗) = ρ∗0 [1− β∗
θθ

∗ + β∗
ss

∗] (2.21)

Note that, ρ∗0 is the reference density of the fluid at reference temperature and salinity.
β∗
s is the volumetric salinity expansion coefficients. Both temperature and salinity are

expressed with respect to their reference values θ∗0 = (θ∗b+θ∗t )/2 and s∗0 = (s∗b+s∗top)/2.
Here, we introduce the governing equations that describe the problem directly in
dimensionless form as

∂ui

∂xi
= 0 , (2.22)

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+
�

Prs
Ras

∂2ui

∂xj
2 + δi,3(Λθ − s) + δ1,i , (2.23)
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∂θ

∂t
+ uj

∂θ

∂xj
= Le

�
1

PrsRas

∂2θ

∂xj
2 , (2.24)

∂s

∂t
+ uj

∂s

∂xj
=

�
1

PrsRas

∂2s

∂xj
2 , (2.25)

For adimensionalization of the governing equations, we used the same normalization
demonstrated in Eq. 2.9 except for the velocity. Salinity is a new variable in the
governing equations of DDC. Therefore, salinity and velocity are made dimensionless
as follows:

ui =
u∗
i�

g∗β∗
sh

∗(Δs∗/2)
, s = s∗ − s∗0

Δs∗/2 . (2.26)

The dimensionless numbers that appear in equations 2.22-2.25 are the Lewis number
Le, the density ratio Λ, the salinity Rayleigh number Ras and the salinity Prandtl
number Prs. These are defined as:

Ras =
g∗β∗

sΔs∗(2h∗)3
κ∗
sν

∗ , P rs =
ν∗

κ∗
s

, Le = κ∗
θ

κ∗
s

, Λ = β∗
θΔθ∗

β∗
sΔs∗

, (2.27)

where κ∗
θ and κ∗

s are the thermal and salt diffusivities, respectively [133]. To keep
the consistency of used notation between the governing equations of stably-stratified
turbulence and DDC, we rewrite the governing Eqs. 2.22-2.25 using S-terms (con-
taining non-linear convective terms, the dimensionless mean pressure gradient and the
buoyancy term) as

∂ui

∂xi
= 0 , (2.28)

∂ui

∂t
= Si +

�
Prs
Ras

�
∂2ui

∂xj
2

�
− ∂p

∂xi
, (2.29)

∂θ

∂t
= Sθ + Le

�
1

PrsRas

�
∂2θ

∂xj
2

�
. (2.30)

∂s

∂t
= Ss +

�
1

PrsRas

�
∂2s

∂xj
2

�
. (2.31)

For the problem of DDC, the S-terms can be written as

Si = −uj
∂ui

∂xj
+ δi,1 + δi,3(Λθ − s), (2.32)

Sθ = −uj
∂θ

∂xj
, (2.33)

Ss = −uj
∂s

∂xj
. (2.34)
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2.2.2 Convective and diffusive scaling of the shear
In addition to the controlling parameters defined in Eq. 2.27, a further parameter that
controls the flow is the imposed shear. In dimensionless form, it is defined as:

Γ = u∗
m

U∗ , (2.35)

where u∗
m is the imposed mean velocity at the top boundary and U∗ is a suitable

reference velocity scale for the DDC process. In convection-diffusion problems, we can
define one velocity scale based on convection and one based on diffusion. The most
common choice one can find in the literature [132, 133, 134] is to scale all velocities
by the free-fall velocity of the convective plumes, defined as U∗ =

�
g∗β∗

sh
∗(Δs∗/2).

Following archival literature on buoyancy induced flows, we take the free fall velocity
U∗ as a reference scale.
An alternative choice, perhaps more related to the physics of the process under in-
vestigation here, is to normalize the shear velocity by a diffusive velocity U∗

d , which
appears to be the natural velocity scale for the dynamics of salt finger formation in
our flow. Note that the renormalization based on diffusive scaling is in principle not
appropriate when diffusion is not playing a dominant role, like for example in collec-
tive instability waves, intrusions and thermohaline staircases, all cases for which we
expect the buoyancy scaling to be more appropriate [90, 133]. To define U∗

d , we first
need to set a reference diffusive length scale. In the present problem, we can adopt
the definition by Radko [90], which in this case is:

d∗ =
�

κ∗
θν

∗

g∗β∗
θ
∂�θ∗�
∂z∗

� 1
4

, (2.36)

where the mean temperature gradient ∂�θ�/∂z is used instead of the salinity gradient
since temperature is the rapidly diffusing scalar. Using the diffusive length scale d∗,
we obtain a diffusive velocity U∗

d = κ∗
θ/d

∗, and therefore a (diffusive) dimensionless
shear velocity Γd. As it can be seen from Eq. 2.36, the internal scale d∗ does not
depend on the thickness of the diffusive layer(in this case, channel height 2h∗). If the
thickness of diffusive layer gets much larger compared to the internal scale d∗, the
vertical boundaries lose their significance for the mechanisms in the interior of the
physical domain. Since we are interested in the response of the system to the shear,
we will rescale the applied velocity as a function of the diffusion velocity. The diffusion
velocity is defined as κ∗

θ

d∗ . To express Γ in diffusive scaling, we define diffusion shear
velocity rate Γd as

Γd = u∗
md∗

κ∗
θ

. (2.37)

In the diffusive velocity only the stabilizing scalar is playing a role, whereas the desta-
bilizing scalar is causing the free-fall velocity. In this particular problem, transport
parameters are such that the temperature transfer is dominated by diffusion, thus
leading the temperature gradient to attain a constant value, which in dimensionless
units is ∂�θ�

∂z � 1. Thermal Nusselt number is computed in section 6.3, and it is close
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to unity in our problem. Taking Eq. 2.35, Eq. 2.36 and Eq .2.37 and taking the fact
into account that the thermal Nusselt number is close to unity, we end up with the
following formulation for the ratio between the two shear velocities. Therefore, we
obtain:

Γd

Γ = 1
2

�
RasPrθ

2

LeΛ

� 1
4

. (2.38)
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3
Methodology

3.1 Numerical approach
Throughout this thesis we will analyze two different physical problems (stably-
stratified wall-bounded turbulence and DDC under the effect of shear). The pro-
cedure of the numerical solution shares many similarities between these two problems.
Therefore, in this chapter, we only represent the numerical scheme for the problem
of stably-stratified turbulence. Schematic representation of the numerical algorithm
for both problems is shown in Appendix B. In this chapter, the numerical approach
developed for the solution of Eqs. 2.10-2.12 is discussed. The general overview of
the numerical approach is as follows: The dimensionless system of equations has been
spatially-discretized using a pseudo-spectral approach [14, 45, 84] with Fourier dis-
cretization in the streamwise (x) and spanwise (y) directions and Chebyshev polyno-
mials in the wall-normal (z) direction. The adoption of Fourier series in the x and
y directions implicitly enforces periodic boundary conditions on all variables along
these directions. All variables are Eulerian and are solved on the same computational
grid. A uniform grid spacing is adopted in the streamwise and spanwise directions
(Fourier discretization), while in the wall-normal direction Chebyshev-Gauss-Lobatto
points were chosen, thus leading to a much finer grid close to the channel walls. As
customarily done in pseudo-spectral methods, convective/non-linear terms are com-
puted in physical space and then transformed to wavenumber space using a dealiasing
procedure (2/3 rule).

3.2 Solution Procedure
The present scheme solves for the balance equations of motion Eqs. 2.10-2.12 through
the elimination of pressure. The pressure field can be removed upon taking the curl
of the Navier-Stokes equation, to give:

∂ωk

∂t
= �ijk

∂Sj

∂xi
+ 1

Re
∇2ωk, (3.1)

where ωk = �ijk
∂uj

∂xi
is the k − th component of the vorticity vector. Note that the

S−terms in Eq. 3.1 have already been introduced in subsection 2.1.3. Taking twice the



20 3. Methodology

curl of Eq. 2.11 and using Eq. 2.10 together with the vectorial identity ∇× (∇×v) =
∇(∇ · v)−∇2v, a 4th-order equation in ui can be obtained:

∂(∇2ui)
∂t

= ∇2Si − ∂

∂xi

�
∂Sj

∂xj

�
+ 1

Re
∇4ui. (3.2)

Eqs. 3.1-3.2 can be written with respect to the normal components, i.e. for ω3 and
u3:

∂ω3
∂t

= ∂S2
∂x1

− ∂S1
∂x2

+ 1
Re

∇2ω3. (3.3)

∂(∇2u3)
∂t

= ∇2S3 − ∂

∂x3

�
∂Sj

∂xj

�
+ 1

Re
∇4u3. (3.4)

These two equations are numerically solved for ω3 and u3. With ω3 and u3 known, u1
and u2 can be obtained by solving the following equations simultaneously:

∂u1
∂x1

+ ∂u2
∂x2

= −∂u3
∂x3

, (3.5)

∂u2
∂x1

− ∂u1
∂x2

= ω3. (3.6)

Eqs. 3.5 and 3.6 derive, respectively, from continuity and from the definition of vor-
ticity. Although not needed for time advancement of the solutions, pressure can be
obtained by solving a Poisson-type equation after all velocity components have been
found:

∇2p = ∂Sj

∂xj
. (3.7)

Once the velocity field is known, the temperature field can be obtained from the
solution of the energy balance equation:

∂T

∂t
= ST + 1

ReτPr

�
∂2T

∂xj
2

�
. (3.8)

A schematic representation of the algorithm is shown in Appendix B.

3.3 Spectral Representation of Solutions
To represent the solution in space, finite Fourier expansion in the homogeneous (x1
and x2) directions is used:

f(x1, x2, x3) =
N1
2�

|n1|

N2
2�

|n2|
f̂(k1, k2, x3)ei(k1x1+k2x2), (3.9)

where f̂ represents the Fourier coefficients of a general dependent function, i =
√−1,

N1 and N2 are the number of Fourier modes retained in the series, and the summation
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indices n1 and n2 are chosen so that −N1
2 + 1 ≤ n1 ≤ N1

2 and −N2
2 + 1 ≤ n2 ≤ N2

2 .
The wavenumbers k1 and k2 are given by:

k1 = 2πn1
L1

(3.10)

k2 = 2πn2
L2

, (3.11)

with L1 and L2 being the periodicity lengths in the streamwise and spanwise directions.
Because of the orthogonality of the Fourier functions, the Fourier transform f̂ can be
obtained as:

f̂(k1, k2, x3) =
1

N1N2

N1
2�

|n1|

N2
2�

|n2|
f(x1, x2, x3)e−i(k1x1+k2x2), (3.12)

where x1 and x2 are chosen to be the transform locations

x1 = n1
N1

L1 (3.13)

x2 = n2
N2

L2. (3.14)

In the cross-stream (wall-normal) direction x3, Chebyshev polynomials are used to
represent the solution,

f̂(k1, k2, x3) =
N �

3�
n3=0

a(k1, k2, n3)Tn(x3), (3.15)

where the prime denotes that the first term is halved. The Chebyshev polynomial of
order n3 in x3 is defined as

Tn3(x3) = cos(n3 arccos(x3)), (3.16)

with −1 ≤ x3 ≤ 1. Orthogonality also exist for Chebyshev polynomials, which leads
to the following inverse transformation:

â(k1, k2, n3) =
2
N3

N �
3�

n3=0
â(k1, k2, x3)Tn3(x3). (3.17)

In physical space the collocation points along the cross-stream direction are related to
Chebyshev indexes in the following way:

x3 = cos
�
n3π

N3

�
, (3.18)

The advantage of using Chebyshev polynomials to represent the solution in the cross-
stream direction is that such a representation gives very good resolution in the regions
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close to the boundaries, because the collocation points cluster there (in wall bounded
flows, resolution close to the wall is very important, since large gradients of the solu-
tions occur there). In Fig. 3.1, a representation of the first six polynomials is given.
For in-depth discussion on Chebyshev polynomials and their applications in numerical
analysis, see Fox and Parker [24].
Therefore, the spectral representation (in all three directions) of a generic dependent
variable takes the final form

f(x1, x2, x3) =
N1
2�

|n1|

N2
2�

|n2|

N �
3�

n3=0
â(k1, k2, n3)ei(k1x1+k2x2)Tn3(x3), (3.19)
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Figure 3.1 – The standardized Chebishev polynomials Tr(x3) (with r = 0, ..6) in computational
space for −1 ≤ x3 ≤ 1.

3.4 Discretization of the equations

3.4.1 Momentum equations
With the spectral representation given by Eq. 3.9, Eq. 3.4 can be written as
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Ŝ3

− ∂

∂x3

�
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û3,

(3.20)
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where k2 = k21 + k22. Time-advancement of Eq. 3.20 is performed adopting a IMplicit-
EXplicit scheme (IMEX); S-terms are integrated explicitly with an Adams-Bashforth
scheme, while the other terms implicitly. A Crank-Nicolson scheme is used to integrate
the implicit terms of the second order equation for the wall-normal vorticity and of
the fourth order equation for the wall-normal velocity. The implicit part of the two
energy and salinity transport equations is integrated with an implicit Euler scheme;
this choice reduces the unphysical high frequency oscillations that could arise from
the steep gradients of the equations [4, 138]. At the first time step an explicit Euler
scheme is used for the explicit part of all the equations. The time-differenced form of
Eq. 3.20, based on the above schemes, is
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(3.21)

where superscripts n−1, n and n+1 indicate three successive time levels. By defining
γ = Δt

2 Re we can rearrange Eq. 3.21:
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Introducing β2 = 1+γk2

γ and recalling that ∂û3
∂x3

= −ik1û1 − ik2û2 from continuity, we
can manipulate the last term on the RHS of Eq. 3.22:
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By introducing the historical terms:
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Eq. 3.23 becomes:�
∂2

∂x2
3
− β2

��
∂2

∂x2
3
− k2

�
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If we put Ĥn = k2Ĥn
3 + ∂

∂x3
(ik1Ĥn

1 +ik2Ĥ
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2 ) we come to the final form of the equation:
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Defining φ̂ =
�
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ûn+1
3 the above fourth-order equation becomes a system of

two second-order equations: �
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These equations are solved with the following four boundary conditions:

ûn+1
3 (±1) = 0 (a)
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3
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(±1) = 0 (b).
(3.29)
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The lack of real boundary conditions for φ̂ can be circumvented by decomposing it
into three parts:

φ̂ = φ̂1 + Âφ2 + B̂φ3, (3.30)
where constants Â and B̂ are to be determined. These three individual components
of φ̂ satisfy: �
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(3.31)

Likewise ûn+1
3 can be split into:

û3 = û3,1 + Âu3,2 + B̂u3,3. (3.32)

Once the solution of Eqs. 3.31 has been carried out, we can solve:�
∂2

∂x2
3
− β2

�
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(3.33)

Finally the unknown constants Â and B̂ are determined applying the boundary con-
ditions of Eq. 3.29(b) to ûn+1

3 written in terms of its components:
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(3.34)

With Â and B̂ determined, ûn+1
3 is fully known. The above systems of equations

are solved using a Chebyshev method so the solutions ûn+1
3 will be represented by

Chebyshev coefficients in the wall normal direction x3. Therefore, the solution ûn+1
3

will be a function of k1, k2 and n3:

ûn+1
3 = ûn+1

3 (k1, k2, n3), (3.35)

where 0 < n3 < N3, N3 being the number of coefficients and collocation points in the
wall normal direction. Recalling Eq. 3.9, the solution in space will be:
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The other two velocity components will be determined through the normal vorticity
component ω̂3. Following a discretization procedure similar to that of Eq. 3.4, we can
write: �

∂2

∂x2
3
− β2

�
ω̂n+1
3 = − (ik1Ĥn

2 − ik2Ĥ
n
1 )

γ
, (3.37)

with boundary conditions:

ω̂n+1
3 = ik1û2 − ik2û1 = 0 x3 = ±1. (3.38)

Once vorticity is known, ûn+1
1 and ûn+1

2 can be determined from solving:
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n+1
2 = −∂ûn+1
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that come from the definition of ω̂3 and from continuity equation, respectively. Pres-
sure can be calculated by the transformed Poisson equation Eq. 3.7:�
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Boundary conditions for p̂n+1 can be obtained by the transformed form of Eq. 2.7 in
the x3 direction applied at x3 = ±1.
The above scheme is used to evaluate the solutions in the Fourier-Chebyshev space for
k2 �= 0. The case k2 = 0 corresponds to the solution averaged over an x1 − x2 plane.
In this case the solution procedure is simpler: upon time discretization the x1 and x2
components of Eq. 2.11 in the Fourier-Chebyshev space after time discretization give:
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that can be solved by applying the following boundary conditions:

ûn+1
1 = ûn+1

2 = 0 x3 ± 1. (3.44)

Using the continuity equation, Eq. 3.40, with k1 = k2 = 0 and the condition
ûn+1
3 (±1) = 0 one can show that ûn+1

3 = 0. To calculate p̂n+1 it is necessary to
recall the transformed momentum equation, Eq. 2.11, in the x3 direction for k2 = 0
and ûn+1

3 = 0: we have p̂n+1 = −( �un+1
3 un+1

3 ).
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Figure 3.2 – Slab, panel (a), and pencil, panel (b), decomposition of the computational domain
in physical space. The numbering of the tasks, #0, #1, ..., #N, is reported for reference.

3.4.2 Energy equation
Once the velocity field is given, then the thermal field can be computed solving Eq.
2.12. The convective term Sθ is advanced in the time integration by the second order
explicit Adams-Bashfort scheme, while the implicit Crank-Nicolson method is used to
advance the diffusion term. The time differenced energy equation Eq. 2.12 is therefore
given by:
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All n and n− 1 terms are grouped into the historical term
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where k2 = k21 + k22, γθ = Δt
2Pr·Reτ

. Upon rearrangement the following differential
equation for the temperature field can be obtained:�

∂2

∂z2
− 1 + γ2

T

γT

�
θ̂ = −Ĥθ

γθ
, (3.47)

as an unknown for each Fourier wave number pair (k1, k2). Eq. 3.47 can be solved
with a Chebishev-Tau method to obtain the new temperature field.

3.5 Code implementation
The presented numerical method has been implemented in a parallel Fortran code.
A pure-MPI (Message Passing Interface) approach is adopted to divide the work-
load among independent MPI tasks; the computational domain is evenly distributed
among all the tasks. The main idea lying behind the MPI approach is the division
of the workload among several different tasks that work independently one from each
other (exception made for the communications among tasks); each tasks has its own
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Figure 3.3 – Comparison between slab (dashed lines with square markers) and pencil (solid line
with circle markers) decomposition for different grid sizes. The speed-up with respect to a reference
case on 64 tasks is shown; the ideal scaling is reported with a thin black dotted line. The pencil
decomposition achieves better performances than the slab decomposition even at low numbers of
tasks. The loss of performances for increasing number of tasks can be appreciated for the coarser
grid, Nx×Ny×Nz = 512×256×257. Performance results were obtained on the Broadwell (BDW)
partition of the HPC system Marconi hosted at CINECA (Bologna, Italy).

private variable space, which is not directly accessible to other tasks. With the current
implementation, the domain is split using a 2D decomposition (pencil decomposition):
the computational domain is partitioned along two out of three dimensions (pencil-like
subdomains). This partitioning constitutes an improvement with respect to the 1D
decomposition (slab decomposition), in which the computational domain is partitioned
along only one direction out of three; a graphical visualization of these domain parti-
tioning approaches is reported in Fig. 3.2. While on one hand the pencil decomposition
increases the volume of data communication among the tasks and slightly increases
the replication of data across the variable space of different tasks (parameters, con-
stants, . . . ), on the other hand it greatly increases the maximum number of tasks that
can be used to divide the workload. The maximum number of tasks is limited by the
number of grid points: for a grid with O(N3) points, the maximum number of tasks
for the slab decomposition is O(N), while for the pencil decomposition is O(N2). This
limitation occurs as the minimum size of a slab is N × N × 1, while for a pencil it
is N × 1 × 1: each subdomain must include at least one grid point in each direction.
The pencil decomposition thus overcomes the limitation of the maximum number of
tasks that could be employed; in addition it also shows better performances even at
low numbers of tasks, Fig. 3.3. A loss of performances for increasing number of MPI
tasks can be observed in Fig. 3.3 for the coarse and intermediate grids: in these cases
the number of grid points held by each task becomes too low (O(8k) points per task
for the coarse grid and O(33k) for the intermediate one). As the number of grid points
per task is too low, the time spent in communications among tasks overcomes the time
spent in actual calculations, reducing the overall performances of the code.
The distribution of the computational domain is defined with two parameters, Ny,CPU
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Table 3.1 – Characteristics of the HPC machines on which performance benchmarks were run

Machine HPC centre Node layout Frequency [GHz]
Marconi BDW CINECA (IT) 2×18 cores Intel Xeon 2.3
Marconi KNL CINECA (IT) 1×68 cores Intel Xeon Phi 1.4
Vesta ANL (USA) 1×16 cores IBM BG/Q 1.6
VSC-3 VSC (AT) 2×8 cores Intel Xeon 2.6

and Nz,CPU ; these parameters determine the partitioning of the domain along the y
and z directions. In physical space each task holds all the points in the x direction
and a fraction of the points in the y and z directions. This way a Fourier transform
can be readily taken in the x direction: to compute a Fourier or Chebyshev trans-
form all points in the transform direction are needed. Once the Fourier transform in
the x direction has been taken, the pencils are transposed: data are communicated
through MPI communications among the various tasks, so that each task holds all
the points in the y direction and only a fraction in the remaining directions. Then,
Fourier transforms in the y direction are taken. Again, the pencils are transposed so
that each task holds all the points in the z direction and then Chebyshev transforms
are taken. In modal space the computational domain is divided along the x and y
directions (each task holds all the points in the wall-normal direction). The transform
from physical to modal space thus requires: (i) one-dimensional Fourier transforms
(x direction), (ii) pencil transposition, (iii) one-dimensional Fourier transforms (y
direction), (iv) pencil transposition and (v) one-dimensional Chebyshev transforms
(z direction). The transform from modal to physical space follows the same path
backwards. This process is thus constituted of intensive computation phases (Fourier
and Chebyshev transforms) interleaved with MPI communications among the various
tasks. A MPI Cartesian communicator is adopted to easily define the communication
pattern. Fast Fourier and Chebyshev transforms are taken using the functions pro-
vided in the library FFTW (version 3.3.8) by Frigo and Johnson [25]. This domain
partitioning choice gives the best performances: MPI communications occur only dur-
ing transforms from physical to modal space (and backwards) and, in modal space,
each task solves a series of Helmholtz problems (all Helmholtz problems are indepen-
dent one from each other). Most of the transforms occur during the calculation of
non-linear terms: to avoid the costly calculation of convolution integrals, products
of variables are computed in physical space, then the result is transformed in modal
space (pseudo-spectral method).
Finally, parallel input/output instructions (MPI I/O library) are adopted when read-
ing/writing large data files; this choice improves the overall performances of the code
and allows to distribute the workload among high number of tasks with a limited
amount of replicated data (low usage of memory for each task).
The performances of the code were measured on several High Performance Computing
(HPC) machines: Marconi BDW, Marconi KNL, Vesta and VSC-3. Details on these
machines are reported in Tab. 3.1. Performance data will be reported for the Broadwell
(BDW) and Knights Landing (KNL) partitions of Marconi and for Vesta; VSC-3 (Ivy
Bridge) has similar performances to Marconi Broadwell, thus has not be reported. The
strong scaling benchmark for the various HPC machines is reported in Fig. 3.4. In this
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Figure 3.4 – Strong scaling for different grid sizes on the various architectures: Marconi BDW,
panel (a), Marconi KNL, panel (b), Vesta (grid 512×512×513 in panel (c) and 1024×1024×1025
in panel (d)) for different Multi Threading (MT) configurations. A thin black dashed line shows
the ideal linear scaling.

benchmark the problem size is kept constant (fixed grid size), while the total number
of MPI tasks, Ntasks, is increased, thus reducing the load of each task (lower problem
size per node). The strong scaling benchmark measures the speed-up with respect to
a reference case; here the reference case has been selected as the lower number of tasks
that could be run using all physical cores on all the requested nodes. On Marconi
BDW and KNL the available RAM per node is higher (O(100) GB), thus the problem
could fit on the memory of two nodes on the BDW partition and one node on the
KNL partition. On the other hand, as on Vesta the available RAM per node is 16 GB,
the smaller problem size required a minimum of 4 nodes, while the larger problem size
required a minimum of 32 nodes. Ideally, the speed-up should grow linearly with the
number of tasks employed (thin black dashed line in Fig. 3.4). This benchmark is the
most relevant for the cases that will be presented in the following: the total problem
size is kept fixed (between 512 × 256 × 257 and 1024 × 1024 × 1025 grid points)
and the strong scaling performances of the code are exploited by selecting a total
number of tasks that guarantees a reasonable time-to-solution while keeping a high
efficiency (speed-up close to the ideal one). As the total number of tasks is increased
the parallel overhead also increases: the time spent by the code in communications and
synchronizations increases with respect to the time spent in actual computations. This
effect is clear for the lower grid sizes (up to 512× 512× 513 grid points): as the total
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number of MPI tasks is increased, the speed-up strongly reduces and departs from the
ideal speed-up. The number of points per task becomes too low for increasing total
number of tasks, thus the time spent in calculations reduces, while the communication
and synchronization time increases. On the larger problem size (1024 × 1024 × 1025
grid points) the computational load of each task is high enough to mask the time spent
in communications and synchronizations calls, thus this case shows an optimal strong
scaling for all the numbers of tasks tested. Considering the problem size adopted
for the three-dimensional simulations that will be presented in the following, usually
about 1024 MPI tasks are employed, so that a strong scaling close to the ideal is always
achieved.
Finally, Multi Threading (MT) was also included in the strong scaling benchmarks
performed on Vesta (IBM BG/Q architecture). This machine is characterized by 16
physical cores per node; each of these physical cores can spawn up to four virtual
cores (threads). A different MPI task can then be assigned to each thread. In total,
three Multi Threading configurations were tested: 1, 2 and 4 threads per core (MT×1,
MT×2 and MT×4). Multi Threading is an attractive option, as it allows to increase
the total number of tasks while keeping the same usage of computational resources:
most HPC systems bill for the amount of time a physical core (or node) is requested,
without considering the effective number of tasks actually used. Thus, for the same
amount of physical computational resources, up to four times virtual computational
resources are available with Multi Threading. However, Multi Threading may not
always be convenient: the same CPU-level physical resources (for instance registers
and L1 and L2 cache levels) are shared among the various threads. Depending on the
specifics of the machine it may or may not be advantageous and thus it should be
checked beforehand.
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4
Interaction between stable

stratification and turbulence

Reproduced in part from:
F. Zonta, P. Hadi Sichani and A. Soldati, Interaction between thermal stratification and turbulence in
channel flow, J. Fluid Mech., under revision.

To investigate the interaction between stable stratification and turbulence, we consider
a stably stratified turbulent flow inside an horizontal channel bounded by two solid
walls described in subsection 2.1.3. We run a series of DNSs to solve conservation
of mass, momentum and energy under the Oberbeck-Boussinesq (OB) approxima-
tion (Eqs. 2.10-2.12). Periodicity along x and y is assumed for both velocity and
temperature, while no-slip velocity and imposed-temperature conditions are assumed
at the two walls. Present simulations are run at fixed Reynolds and Prandtl num-
ber (Reτ = 1000 and Pr = 0.71) but at different values of the Richardson number
Riτ = 50, 100, 200, 300. A reference simulation at Riτ = 0 (neutrally-buoyant) is also
performed. From a physical point of view, the simulation set up can represent the flow
of air inside a channel of height 2h∗ ∼ 1.5 m at a reference bulk Reynolds number
Reb = ρ∗u∗

bh
∗/µ∗ = 2×104 and subject to a wall-to-wall temperature difference up to

≈ 10K. The computational domain has size L∗
x×L∗

y ×L∗
z = 4πh∗× 2πh∗× 2h∗ and is

discretized using 1024×1024×1025 nodes in the streamwise, spanwise and wall-normal
direction, respectively. A comprehensive overview of the most important parameters
of the simulations is provided in Table 4.1. Note that the size of the computational
domain and the spatial resolution, reported in Table 4.1, has been chosen to fulfill the
requirements imposed by the DNS. In particular, we explicitly compare the employed
grid resolution with the minimum value of the Kolmogorov length scale (occurring at
the wall) – computed as η∗k =

�
ν∗

3
/�∗k

�1/4
, with �∗k the turbulent kinetic energy dissi-

pation – with the grid spacing. Also listed in Table 4.1 is the value of the key response
parameters in stratified turbulence, the Nusselt number Nu = 2q∗wh∗/(λ∗Δθ∗), with
q∗w the heat flux at the wall. A thorough discussion on the behavior of Nu, and of
other important macroscopic parameters, will be given in Sec. 4.4.
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4.1 Qualitative behavior of the flow structure

We look first at the qualitative structure of the flow, focusing in particular on the
instantaneous temperature distribution θ on a (y − z) cross-section of the channel
located at x = Lx/2. Results, which are shown in Fig. 4.1 for Riτ = 0 (Panel a,
neutrally-buoyant case) and for Riτ = 300 (Panel b, stably stratified case), will be
conveniently discussed by keeping the neutrally-buoyant case (Riτ = 0, Fig. 4.1a)
as reference. For Riτ = 0, temperature is a passive scalar and, as such, it is purely
transported by velocity. Vortical structures rising from the boundaries are therefore
free to travel over long distances, since they are only bounded by the physical constraint
imposed by the walls. Under the action of these vortical structures, a fluid particle
with a given temperature is brought to a region with a different temperature, where it
thermalizes by diffusion (see Fig. 4.1a). This naturally gives a high degree of mixing.
For Riτ = 300, the situation is different. While vortical structures are still dominating
the near-wall region, their influence away from the boundary appears limited. The
reason is that vortical structures are in this case subject to an additional vertical (i.e.
in the wall-normal direction) constraint imposed by gravity, which reduces their range
of influence to approximately half of the channel height (this is rather clear upon
comparison of Fig. 4.1a and Fig. 4.1b). As a consequence, the channel results divided
into a top, hot part, and a bottom, cold part (Fig. 4.1b). These two parts behave
almost independently each other, and are separated by Internal Gravity Waves (IGW,
streaky structure developing at the channel center). The physics of IGWs is simple:
because of the background density profile – with density decreasing with height – a
fluid particle that is displaced in the wall-normal direction by velocity fluctuations is
subject to a restoring buoyancy force that tends to bring it back to its initial position.
The fluid particle trespasses its initial equilibrium position and overshoots inertially,
giving rise to an oscillation that constitutes the essence of IGWs. We anticipate here,
but it will become clear by looking at the fluid statistics (Sec. 4.2), that IGWs appear
inside a thermocline – i.e. a region where temperature changes much more than it
does above and below it, hence representing a sort of thick interface that hinders the
wall-normal transfer of momentum and heat. Due to their importance in the dynamics
of stably-stratified flows, IGWs have been analyzed in detail in a number of previous
studies (for a comprehensive review on the topic, see [111]).
To appreciate further the different flow structure induced by the stable stratification,
we turn now our attention to the distribution of temperature θ and axial velocity ux on
a longitudinal x− z plane located at y = Ly/2. Results are shown in Fig. 4.2: panel a
and panel b refer to Riτ = 0 (temperature and axial velocity, respectively), while
panel c and panel d refer to Riτ = 300 (temperature and axial velocity, respectively).
The flow moves from left to right. As expected, for Riτ = 0, temperature (Fig. 4.2a)
– which is a passive scalar – is efficiently mixed throughout the entire height of the
channel by the dominant vortical structures. The flow (Fig. 4.2b) appears organized
into taller vortices which are emitted from the wall and contain ensembles of smaller
scale vortices. The wall-normal extension of these taller vortices scales with the channel
height ∼ 2h∗. For Riτ = 300, on the other hand, the situation is controlled by the
presence of IGWs, which – as clearly visible in both the temperature and velocity
maps – dominate the central region of the channel. The presence of these structures
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a) Neutrally buoyant, Riτ = 0

b) Stratified, Riτ = 300

Figure 4.1 – Contour maps of temperature, θ, on a (y − z) cross section located at x = Lx/2.
Panel a) refers to the neutrally-buoyant case, Riτ = 0. Panel b) refers to the stably-stratified case
at Riτ = 300.

Temperature field, θ

Temperature field, θ

naturally modifies the entire dynamics of the flow, inducing an extra confinement to the
wall-normal development of vortices, and reducing at the same time their capability of
effectively mixing the flow. As a side observation, we note that the temperature field
in the proximity of the channel center appears stretched and tilted at an angle with
respect to the horizontal direction. This is due to the presence of a strong horizontal
shear in that region.

4.2 Velocity and temperature statistics
We now characterize the flow from a statistical viewpoint. Unless differently stated,
all results will be presented in wall units, obtained by normalizing velocities by u∗

τ ,
lengths by l∗τ = ν∗/u∗

τ , times by t∗τ = ν∗/u∗2

τ and temperatures by θ∗τ = q∗w/u∗
τ . In

Fig. 4.3 we show the behavior of the mean streamwise velocity �ux� as a function
of the wall-normal coordinate, in linear (Fig. 4.3a) and semilog (Fig 4.3b) scale.
Brackets indicate time and space average over the homogeneous directions. Results
are rendered according to the following color code: blue (up-triangle) refers to the
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Neutrally buoyant, Riτ = 0

Stratified, Riτ = 300

Figure 4.2 – Contour maps of temperature θ (panels a and c) and streamwise velocity ux (panels
b and d) on a (x − z) longitudinal section located at y = Ly/2. Panel a) and b) refer to the
neutrally-buoyant case, Riτ = 0. Panel c) and d) refer to the stably-stratified case at Riτ = 300.
The temperature tilting induced by the horizontal shear at the channel center is also explicitly
indicated (panel c).

a) Temperature field, θ

b) Streamwise velocity, ux

c) Temperature field, θ

d) Streamwise velocity, ux

neutrally-buoyant case (Riτ = 0), yellow (down-triangle) refers to Riτ = 50, green
(square) refers to Riτ = 100, purple (diamond) refers to Riτ = 200 and red (circle)
refers to Riτ = 300. The law of the wall, �ux� = z+, and �ux� = (1/κ) log(z+) + 5.5,
with κ the Von Kármán constant, is also shown in Fig. 4.3b by a solid line. As
expected (see in particular Fig. 4.3b), in the neutrally-buoyant case the mean velocity
closely follows the law of the wall – since temperature is a passive scalar that does not
influence the velocity field –. In the stably stratified cases, we observe an increase of the
mean axial velocity, which is particularly pronounced in the core part of the channel
(see both Fig. 4.3a-b), as the shape of the velocity profile deviates significantly from
the classical logarithmic behavior and approaches a nearly-laminar, parabolic shape
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[28]. This tendency towards a laminarization in the core part of channel is due to
the conversion of turbulent kinetic into potential energy, which occurs when a fluid
particle moves in the wall-normal direction within the flow. Note also that, since the
mean pressure gradient is kept constant among the different simulations, the mean
wall stress remains constant, and so does the slope of the velocity at the wall, with all
profiles collapsing onto that of the neutrally-buoyant case (z < 0.1).
As shown in Fig. 4.4, stratification modifies the behavior of the mean temperature
field �θ�, which takes a layered structure formed by a near-wall layer (0 < z < 0.1), a
transition layer (0.1 < z < 0.8) and a core layer (0.8 < z < 1). Note that temperature
in Fig. 4.4a is shown in outer units, i.e. not rescaled in wall units (for an overview
of the scaling system, see Appendix A). Compared to the neutrally buoyant case,
stratification reduces the mean temperature gradient in the near-wall layer (i.e. it
reduces the Nusselt number), while at the same time increasing it in the core layer.
This latter observation is of particular importance, since it indicates the tendency for
turbulent stratified channel flows to develop a kind of thick interface – the thermocline
– inside which the temperature changes more vigorously than it does immediately
above and below. The thermocline, which forms right where the mean shear vanishes,
constitutes a barrier for wall-normal momentum and heat transport. Reportedly [144,
142, 28, 23], there is a strong connection between the presence of a thermocline, and the
presence of IGWs – which, as discussed in Sec. 4.1, occur at the channel center –, in the
sense that IGWs develop where a thermocline exists. Interestingly, the temperature
gradient in the core region of the channel does not increase monotonically for increasing
Riτ : it first increases (going from Riτ = 0 to Riτ = 100), and then reduces (going
from Riτ = 100 to Riτ = 300). We anticipate here, but we will come back to it later,
that this non-monotonic trend of the temperature profile at the channel center can be
explained by looking at the intertwined behavior of the turbulent (or buoyancy) and
diffusive fluxes. In the transition layer, between the near-wall and the core layer, the
temperature gradient remains small, as the flow is characterized by an higher degree
of mixing. Not surprisingly, when rescaled in wall units, i.e. by keeping the friction
temperature θ∗τ = q∗w/u∗

τ as reference, the mean temperature profile Θ = (θ∗ − θ∗w)/θ∗τ
recovers a monotonic behavior (Fig. 4.4b). This is particularly visible in the inset of
Fig. 4.4b, where a close-up view of the mean temperature profile in the core region of
the channel is given. Note also that, for the neutrally buoyant case, and similarly to
what happens for the streamwise velocity �ux�, the behavior of Θ can be parameterized
by Θ = Pr · z+ (boundary layer) and Θ = 2.2 log(z+) + 3.3 (core region).
To evaluate the influence of stratification on turbulence, we now look at the root
mean square of the streamwise �u�

x,rms�, spanwise �u�
y,rms� and wall-normal �u�

z,rms�
velocity fluctuations, and at the root mean square of temperature fluctuations �Θ�

rms�.
Results, which are presented in Fig. 4.5, clearly show that all velocity and temperature
fluctuations are essentially unaffected by stratification in the near-wall region (z <
0.1), where they recover the behavior of canonical near-wall turbulence. Farther from
the wall, in the region 0.3 < z < 0.8, �u�

x,rms� decreases first and increases later
compared to the neutrally buoyant case, while the opposite behavior – increasing
first and decreasing later – is observed for �u�

z,rms�. Note that the crossover between
the profiles of stratified and neutrally-buoyant turbulence occurs around z � 0.5,
and is somehow influenced by Riτ . By contrast, �u�

y,rms� is characterized by a clear
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Figure 4.3 – Mean fluid streamwise velocity �ux� as a function of the wall-normal direction, z,
in linear (panel a) and semiology scale (panel b) for the different cases considered in the present
study. Comparison between the reference case of unstratified turbulence (Riτ = 0), and the
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rms�, panel d). Comparison between the reference case of unstratified turbulence

(Riτ = 0), and the stratified turbulence at Riτ = 50, Riτ = 100, Riτ = 200 and Riτ = 300 (filled
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increase that – provided Riτ > 0 – seems independent of the value of Riτ . This
behavior, and in particular the increase of �u�

x,rms� and �u�
y,rms�, is associated to

the increase of velocity gradient (see also Fig. 4.6a and the discussion therein) in
that region, while the corresponding decrease of �u�

z,rms� is due to the conversion
of wall-normal momentum into potential energy. In the core region of the channel,
z > 0.8, �u�

x,rms� strongly decreases while �u�
z,rms� develops a peak that is not visible

in neutrally buoyant turbulence and is due to the presence of IGWs. Correspondingly,
a marked peak at the channel center is also observed for the temperature fluctuations,
Fig. 4.5d. Note that, for �Θ�

rms�, there is a clear crossover between the different cases
of stratified turbulence: for increasing Riτ , temperature fluctuations tend to increase
in the transition layer, 0.1 < z < 0.8, and decrease in the core layer 0.8 < z < 1
(though remaining much larger than the neutrally-buoyant case).



42 4. Interaction between stable stratification and turbulence

4.3 Momentum and heat fluxes
We focus here on the wall-normal behavior of momentum and heat fluxes, two key
quantities in turbulent transport phenomena. The momentum flux can be obtained
from the Reynolds-averaged streamwise momentum equation as

τtot = 1− 2z+
Reτ

= ∂�ux�
∂z+� �� 	
τv
xz

+ �u�
xu

�
z�� �� 	

τt
xz

, (4.1)

where the turbulent
�
τ txy

�
and viscous

�
τvxy

�
counterparts to the overall stress are

explicitly indicated. The behavior of τ txy and τvxy (symbols) is shown in Fg. 4.6a,
together with the behavior of τtot (solid black line). Increasing Riτ , we note a general
reduction of τ txy, in particular in the core region, where �u�

xu
�
z� � 0 for Riτ ≥ 200.

Accordingly, a corresponding increase of τvxy – and hence of the velocity gradient
∂ux/∂z – is observed, so that the overall linear behavior of the total shear stress is
recovered (Eq. 4.1). This is clearly visualized in the inset of Fig. 4.6a, where a close-
up view of the behavior of τ txy and τvxy at the channel center, 0.8 < z < 1, is given.
In view of the present results, it is clear that the velocity increase observed at the
channel center (see Fig. 4.3) is due to the reduction of turbulent momentum flux in
the wall-normal direction (i.e. reduction of u�

xu
�
z), and to the corresponding increase

of the relative importance of τvxy therein [137, 2].
Linked to the previous analysis of the wall-normal momentum flux, we now consider
the wall-normal heat flux, whose behavior can be obtained from the Reynolds-averaged
energy balance equation as

�u∗�
z θ∗

�� − α∗ ∂�θ∗�
∂z∗

= α∗
�
∂�θ∗�
∂z∗

�
w

= q∗w, (4.2)

where α∗ = ν∗/Pr is the thermal diffusivity. Normalizing Eq. 4.2 by q∗w =
−α∗



∂θ∗
∂z∗

�
w
, and recalling that q∗w = θ∗τu∗

τ , we finally obtain [2, 28]:

�u∗�
z θ∗

��
q∗w

− α∗ ∂θ∗
∂z∗

q∗w
= �u�

zΘ��� �� 	
qt

− 1
Pr

∂�Θ�
∂z+� �� 	
qd

= 1. (4.3)

The two terms qt and qd, explicitly indicated in Eq. 4.3, represent the turbulent
(usually referred to as buoyancy flux) and the diffusive counterparts to the total heat
flux, and their behavior is shown in Fig. 4.6b. By looking at the profile of qt, it is
apparent that, while moving away from the wall – and no matter the value of Riτ – qt
increases sharply until it reaches a maximum value of approximately qt � 0.95 around
z � 0.1. In neutrally buoyant conditions, this peak value is kept almost unaltered
throughout the entire channel, clearly corresponding to the constant flux hypothesis
customarily assumed in neutral boundary layers [116, 79]. At larger Riτ , we observe
a significant decrease of qt in the core region of the channel. This decrease is so
important that, for Riτ > 200, qt � 0. Interestingly, and in agreement with previous
observations [78, 28], we cannot find evidence of the speculated mean counter gradient



4.3. Momentum and heat fluxes 43

flux (or, in other words, negative qt) at the center of the channel [54, 2]. Nevertheless,
we plan to test our findings even at larger Riτ . Between the near wall and the core
region of the channel there is a region in which qt remains almost constant and close to
unity for all cases considered here, with only a slight decrease for increasing Riτ . The
diffusive heat flux qd has a mirror-like behavior compared to qt, since the total heat
flux is constant across the channel, see Eq. 4.3: qd decreases sharply while moving
away from the wall and it subsequently increases – with the only exception of Riτ = 0,
for which it remains uniform and very low – in the core region of the channel. This
trend of qd is important to explain the non-monotonic behavior of the temperature
profile observed in Fig. 4.4 (qd is, by definition, proportional to the mean temperature
gradient). Note indeed that the mean temperature gradient along the wall-normal
direction can be conveniently expressed as [2]:

∂�θ�
∂z

=
�
∂�θ�
∂z

�
w

�
1− �u∗�

z θ∗
��

u∗
τθ

∗
τ

�
, (4.4)

where [∂�θ�/∂z]w is the dimensionless mean temperature gradient at the wall, i.e.
the Nusselt number. Eq. 4.4, together with the observation that the buoyancy flux
qt = �u∗�

z θ∗
��/u∗

τθ
∗
τ = �u�

zΘ�� becomes almost zero for Riτ > 200 (see Fig. 4.6b),
indicates that for large stratification the temperature gradient at the channel center
perfectly matches the temperature gradient at the wall. Since the temperature gradient
at the wall (i.e. the Nusselt number) decreases for increasing Riτ , the same does
the temperature gradient at the channel center (but only once Riτ is large enough
for qt to be approximately zero). To summarize, the temperature gradient at the
channel center initially increases for increasing stratification, until the stratification
becomes so strong to completely damp the turbulent heat transfer (buoyancy flux), i.e.
qt = �u�

zΘ�� � 0, at the channel center. When it happens, the temperature gradient
at the channel center – which becomes equal to the temperature gradient at the wall
(Nusselt number) – decreases for increasing Riτ .
Despite the large fluctuations of temperature and wall-normal velocity observed around
the channel center for increasing Riτ (Fig. 6.4c-d), the buoyancy flux �u�

zΘ�� reduces
remarkably down to the point at which, for Riτ ≥ 200, it completely vanishes. To un-
derstand the reason behind this behavior, we focus on the distribution of temperature,
Θ�, and wall-normal velocity fluctuations, u�, on a wall-parallel plane (x− y) located
at the channel center. This is shown in Fig. 4.7 for Riτ = 0 and Riτ = 300. While
for Riτ = 0 (Fig. 4.7a-b), the picture displays the typical features of fully-developed
turbulence, with spots of positive and negative temperature and wall-normal veloc-
ity randomly distributed over the considered plane, for Riτ = 300 (Fig. 4.7c-d) the
situation is different, and there seems to be a connection between Θ� and u�+

z , which
are both organized into stripes extending along the spanwise direction y. However,
stripes of u�

z appear to lag behind those of Θ�+. The phase lag between u�
z and Θ�

distributions can be estimated by looking at the coherency spectrum

Cu�
z,Θ�(κw) =

� ∞

−∞
Ru�

z,Θ�(s) exp (−2πjsκw) ds, (4.5)

with κw = k∗h∗ the dimensionless wavenumber and Ru�
z,Θ� the correlation coefficient

between u�
z and Θ�. In particular, it is intriguing to focus on the phase of Cu�

z,Θ�(κw).
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Neutrally buoyant, Riτ = 0 Stratified, Riτ = 300

Figure 4.7 – Temperature and velocity fluctuations on a wall-parallel (x− y) plane located at the
channel center for Riτ = 0 (panel a and b) and for Riτ = 300 (panel c and d). Phase of the cross
spectrum, φ
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�
, as a function of the wavenumber κw = k∗h∗ for Riτ = 0 (panel e) and for

Riτ = 300 (panel f).
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As shown in Fig. 4.7f, we clearly notice that, for Riτ = 300, u�
z and Θ� are shifted

by π/2 (see Fig. 4.7f). Such a phase delay is clearly not observed at Riτ = 0 (see
Fig. 4.7e). This result confirms and extends previous observations obtained at smaller
Reτ (see [46]). It is important to note that the presence of this phase shift explains
why, although temperature and wall-normal fluctuations are both very large at the
channel center, their correlation – that is, the buoyancy flux �u�

zΘ�� –, is almost zero:
where Θ� is maximum in magnitude, u�

z � 0 and viceversa, consistently with the
presence of a wavy motion (IGW).
Not only the average value of the buoyancy flux qt is important, but also its distribution
in space and time. To understand it, we focus on the two limiting cases Riτ = 0
and Riτ = 300 and we look at the behavior of qt, normalized by the corresponding
maximum qt,max, on a wall-parallel plane (x − y) located at the channel center (Fig.
4.8, panels a-b). Then, we compute the corresponding probability density function
Π(qt/qt,max) (Fig. 4.8c).
For Riτ = 0 (blue line in Fig. 4.8c), Π(qt/qt,max) is highly asymmetric, with the most
probable value occurring for qt/qt,max = 0 and with larger positive fluctuations com-
pared to negative ones. This suggests that, although the mean temperature difference
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Figure 4.8 – Contour map of the turbulent heat flux qt = �Θu�
z� on a wall-parallel (x− y) plane

located at the channel center for Riτ = 0 (panel a), for Riτ = 300 (panel b), and corresponding
probability density function Π(qt) (panel c).

a) Riτ = 0

b) Riτ = 300

c)

between the walls induces a net positive wall-normal energy flux (i.e. the mean value
�u�

zΘ�� > 0), u�
zΘ� can often be negative, indicating the presence of regions character-

ized by local counter gradient heat fluxes. The occurrence of localized countergradient
heat fluxes is an extremely important phenomenon that has been observed also in other
situations [43, 141, 36]. From a physical point of view, small positive and negative val-
ues of Θ�u�

z are due to turbulence, which is characterized by uncorrelated velocity and
temperature fluctuations. These small positive and negative values of Θ�u�

z, which
are equally likely events, balance each other and do not contribute to the net heat
transport [102]. Only large velocity and temperature fluctuations produced by larger
coherent structures are correlated and contribute to the net heat flux. And clearly,
large positive fluctuations are larger than negative ones, so to produce a positive net
heat flux.
The asymmetry of Π(qt/qt,max) is almost completely absent at Riτ = 300. In partic-
ular, while the probability of observing positive fluctuations is globally reduced (i.e.
there is a reduction of large correlated velocity and temperature fluctuations), negative
fluctuations are rather persistent, so that the average value of qt/qt,max is close to zero.
This is nicely rendered by the contour maps of qt/qt,max shown in Fig. 4.8b: while
most of the plane is characterized by a correlation qt/qt,max ≈ 0 (and corresponding
to the most probable value of Π(qt/qt,max) in Fig. 4.8), small and rare patches of large
positive qt/qt,max coexist with small and rare patches of large negative qt/qt,max.

4.4 Macroscopic characterization of the flow: Rib,
Cf , Nu

Although the shear Richardson number Riτ is customarily used to characterize the
flow in numerical simulations of wall-bounded stratified turbulence [142], its use in
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experiments/field measurements is much more limited. The reason is the difficult
experimental evaluation of the shear velocity, which in turn requires the measurement
of the shear stress at the wall. As a consequence, in many experiments the bulk
Richardson number Rib = β∗(Δθ∗/2)g∗h∗/(2u∗2

b ) is usually preferred, since the bulk
velocity u∗

b is an easily accessible quantity. To draw a link between simulations and
experiments/field measurements, it is interesting to evaluate the behavior of the bulk
Richardson number Rib, as a function of the shear Richardson number Riτ . This
behavior is shown in Fig.4.9. Present results (filled symbols, •), which are plot together
with literature results obtained at lower Reτ ([28], open symbols), confirm previous
indications that Rib ∝ Ri

2/3
τ . In view of its independence on Reτ – at least over about

one decade, from Reτ = 180 up to Reτ = 1000 –, the proposed Rib scaling seems a
general property of the flow that can be used as a robust parametrization tool, as will
be shown below.
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Figure 4.9 – Bulk Richardson number, Rib, as a function of the shear Richardson number, Riτ , for
the present simulations at Reτ = 1000, and for previous simulations at Reτ = 180 and Reτ = 550
[28]. The proposed scaling Reb ∼ Ri

2/3
τ is also explicitly indicated.

Perhaps the most important quantities to be monitored in wall-bounded stratified
turbulence are the overall momentum and heat transfer rates, which are commonly
quantified in terms of the friction factor Cf – shear stress to kinetic energy ratio – and
by the the Nusselt number Nu – convective to conductive heat transfer ratio – as:����

Cf = 2τ∗w
ρ∗u∗2

b

,

Nu = 2q∗wh∗

λ∗Δθ∗
.

(4.6)

Results obtained from the present simulations are shown by filled symbols (•) in Fig.
4.10-4.11, together with the results obtained in previous studies [28, 2, 29, 144, 140].
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Focusing on Cf (Fig. 4.10), it is clear that an increase of stratification (increase of
Riτ ) reduces the wall-normal momentum transfer, via the reduction of wall-normal
turbulent transport and via the corresponding increase of the volume flowrate (keeping
the imposed pressure gradient constant). Interestingly, recalling that Rib ∝ Ri

2/3
τ (see

Fig.4.9), and considering that Cf/4 = Rib/Riτ , we obtain Cf ∼ Ri
−1/3
τ [28]. This

scaling law, which is shown in Fig.4.10 together with the reported numerical results,
predicts fairly well the behavior of Cf for a broad range of Riτ , with some departure
observed only at very large stratification levels (when local flow laminarization is likely
to start).
The fair collapse observed for Cf is not recovered for the Nusselt Number Nu (not
shown in Fig. 4.11). Interestingly, when rescaled by Re

−2/3
τ , the collected results

collapse nicely (Fig. 4.11)) and scale as Nu · Re
−2/3
τ ∼ Ri

−1/3
τ (therefore giving

Nu · Re
−2/3
τ ∼ Cf ). The proposed scaling differs from classical analogies widely used

in literature – like the Chilton and Colburn one Cf/2 = Nu · Re−1 · Pr−1/3 [9] –
to relate heat, mass and momentum transfer coefficients. It is reasonable to expect
that the interaction between buoyancy and momentum modifies the main transport
processes in a non-trivial way that is hard to predict by simplified assumptions. An
in-depth analysis and a corresponding accurate parametrization of the actual flow
field are therefore required to shed some light on the proposed scaling, which however
appear rather robust.
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Figure 4.10 – Friction factor Cf as a function of the shear Richardson number Riτ . Results
of present study (filled symbols) are shown together with results obtained in previous studies
[29, 2, 28, 144, 140]. The proposed scaling Cf ∼ Ri

−1/3
τ is also explicitly indicated.
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4.5 Internal gravity waves
Internal gravity waves propagate in stably stratified flows [111]. When a fluid particle
is displaced in the wall-normal direction, it tends to be restored to its original position;
however, it may overshoot inertially and oscillate about this point [144]. To character-
ize the frequency of oscillation, buoyancy frequency N (or Brunt–Väisälä frequency)
is commonly introduced. In dimensional form, it is defined as

N∗ =
�
−g∗β∗ ∂�θ∗�

∂z∗
(4.7)

In Fig .4.12, we show the dimensionless buoyancy frequency N = N∗h∗/u∗
τ as a

function of wall-normal distance for different shear Richardson numbers. Except for
a narrow region at the channel center, where the action of IGWs is detected [2, 28],
N is rather small in the remaining part of the channel. The increase of N at the
channel walls is less significant, since it is induced by the confinement effect due to
the boundary condition.
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Figure 4.12 – Dimensionless buoyancy frequency (Brunt–Väisälä frequency) as a function of wall-
normal distance for different shear Richardson numbers.

The peak of N , located at the channel center is linked with the sharpening of the
mean temperature profile (Fig. 4.4). In this region, the peak of N increases as
stratification increases, indicating that a higher stratification affects the structures of
the core region more strongly. Using the buoyancy frequency N , we can calculate the
gradient Richardson number as

Rig = N2

S2 =
−g∗β∗ ∂�θ∗�

∂z∗�
∂�u∗

x�
∂z∗

�2 (4.8)
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where S is the shear rate. Rig has been broadly employed as the key parameter in the
studies of homogeneous stratified turbulence because of the spatially constant value
of Rig [95, 39]. In these studies, Rig � 0.25 has been identified as a critical value for
describing the nature of the flow structure. For Rig � 0.25, turbulence does not grow
or decay. For large Rig, turbulence decays, while for small Rig it grows.
In particular in linear stability analysis [71], Rig ≥ 0.25 is considered as a sufficient
condition to obtains flow laminarization. This has also been confirmed experimentally
[85, 95]. A large variation of Rig across the channel has been observed in the previous
numerical studies of wall-bounded stably-stratified turbulent flows by Armenio and
Sarkar [2], Taylor et al. [115], Garćıa-Villalba & del Álamo [28] and Zonta et al. [144].
Their results showed that Rig varies from very small values close to the wall, to very
large values close to the center of the channel. In Fig. 4.13, we represent the Rig in
logarithmic scale as a function of the dimensionless wall-normal distance for different
Riτ . A good agreement can be found between the results presented in Fig. 4.13 and
previous studies [2, 115, 28, 144]. A sharp increase of the slope of Rig profiles can
be seen at the core region of the channel, where the values of Rig are above ≈ 0.2.
This large variation of Rig along the wall-normal direction is due to the fact that
in the core region ∂�ux�/∂z → 0 and therefore Rig is very large, while in the near-
wall region ∂�ux�/∂z is large and Rig becomes small. In the center of the channel,
due to the symmetry condition, ∂�ux�/∂z = 0 and Rig diverges. Another important
observation from figure 4.13 is that the regions where Rig is bellow ≈ 0.2 are the
turbulent regions, while the regions where Rig is above ≈ 0.2 are the regions where
the turbulence activity is weakened and the internal gravity waves are dominant.

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

 0  0.2  0.4  0.6  0.8  1

Ri
g
 = 0.2

R
i g

z

Riτ=50

Riτ=100

Riτ=200

Riτ=300

Figure 4.13 – Gradient Richardson number as a function of wall-normal distance for different
shear Richardson numbers.

To investigate the effect of buoyancy on eddy size, we compute the streamwise energy
spectra of wall-normal velocity fluctuations [46, 137, 144]. In Fig. 4.14, we show the
premultiplied streamwise energy spectral density of the wall-normal velocity fluctu-
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ations at the channel center (z+ = 1000) for different levels of stratification. The
footprint of IGWs can be clearly observed from the peak of energy spectral density
occurred at the dimensionless wave number k∗xh∗ ≈ 5 (k∗x is the wave number in di-
mensional form), which is not present in the neutrally-buoyant condition. The effect of
IGWs is to induce fluctuations of wall-normal velocity at the characteristic frequency
of the waves [144]. This correlation is demonstrated by Zonta et al. [144] by assum-
ing that IGWs move with a velocity similar to the fluid velocity at the centerline.
Here we focus on the case Riτ = 300, where the effect of stratification is stronger.
It can be seen from Fig. 4.3 that �ux� reaches a maximum � 47 at the channel
center. Following the assumption made by Zonta et al. [144], we can assume that
uwave � 47 and therefore u∗

wave = uwave × u∗
τ � 1m/s. The associated frequency is

f∗
wave = u∗

wave×k∗x/2π � 1 s−1. The dimensionless buoyancy frequency at the channel
center is N � 38 (see Fig. 4.12), which in dimensional form is N∗ = Nu∗

τ/h
∗ � 1 s−1.

These two calculations are in good agreement with each other.
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Figure 4.14 – Premultiplied streamwise energy spectral density of the wall-normal velocity fluc-
tuations at the channel center (z+ = 1000) for different shear Richardson numbers as a function
of wave number.

Note that a physically sound approach to investigate the dynamics of IGWs is to
separate large scale, coherent, fluctuations from small scale incoherent ones. To do
so, a triple decomposition [44, 108] is usually employed. In the framework of this
thesis, we have tried to decompose the fluctuations into coherent and incoherent ones,
but we were not able to obtain convincing results, likely because IGWs can lose some
coherency in the spanwise direction. Very recently, the dynamical properties of IGWs,
and the interaction between IGWs and wall turbulence has successfully studied by
Lloyd et al. [65]. This will be the subject of a future investigation.
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Energetics and mixing in

wall-bounded stably-stratified
turbulence

Reproduced in part from:
P. Hadi Sichani, F. Zonta and A. Soldati, Energetics and mixing in wall-bounded stably stratified
turbulent flow at Reτ = 1000, Phys. Rev. Fluids, in preparation.

This chapter explores the stably-stratified wall-bounded turbulence from the ener-
getics perspective. In section 5.1, we analyze the energy exchange between different
energy reservoirs by computing different budget equations. Turbulent kinetic energy
(TKE), mean kinetic energy (MKE), fluctuating temperature variance (FTV), mean
temperature variance (MTV) and total potential energy (TPE) budget equations are
introduced and numerically analyzed. We then analyze the effect of stratification on
energy transfer via different mechanisms. We demonstrate that the turbulence activ-
ity is almost completely suppressed in a narrow region at the channel center, where
buoyancy leaves its most significant footprint on the flow dynamics. In section 5.2,
we investigate the vertical turbulent mixing of momentum and heat in wall-bounded
stratified turbulence at Reτ = 1000. Finally, we present a new parameterization for
the irreversible flux Richardson number. This new parameterization performs better
for our current results compared to the parameterization proposed by Venayagamoor-
thy & Koseff [127]. We speculate that the better performance of this parameterization
is because our simulations include the effect of wall in the irreversible flux Richardson
number.
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5.1 Energetics in wall-bounded stably-stratified tur-
bulence

5.1.1 Turbulent kinetic energy (TKE) budget
To obtain the TKE = 1

2u
�u� budget equation, we first decompose the velocity vector

into the mean and fluctuating components (ui = �ui� + u�
i). Then we multiply the

(Reynolds) decomposed Navier–Stokes equations by the fluctuating velocity field u�
i,

and we take an ensemble averaging [68, 51]. The TKE budget equation in dimension-
less form becomes

D[TKE]
Dt

=
�
−∂�u�

ip
��

∂xi

�
� �� 	

Πk
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�
−�u�

iu
�
j�
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∂xj
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��
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+ [Riτ �u�
zθ

��]� �� 	
Φz

(5.1)

The terms on the right-hand side represent the pressure diffusion, Πk, the production
of TKE, Pk, the turbulent diffusion, Tk, the viscous diffusion of TKE, Dk, the tur-
bulent viscous dissipation, �k ,and the buoyancy flux, Φz. The material derivative of
TKE (The term on the left-hand side of Eq. 5.1) is zero because the flow is statisti-
cally steady. The TKE production term, Pk, accounts for the generation of velocity
fluctuations via mean shear. This term represents a source in the TKE budget equa-
tion. The energy injected via Pk is entirely balanced by the dissipation of TKE, �k,
and buoyancy flux, Φz, which are the sink terms in Eq. 5.1. The pressure diffusion,
Πk, the turbulent diffusion, Tk, and the viscous diffusion, Dk, are redistribution terms
with no net contribution. The buoyancy flux , Φz, which is the only term directly
influenced by buoyancy, is also the only term that is responsible for the exchange
between the kinetic and potential energy [83]. The other terms in TKE budget are
affected by stratification indirectly since the temperature field influences the velocity
field by acting as an active scalar. In Fig. 5.1, we show different terms of TKE budget
equation (Eq. 5.1) for the neutrally-buoyant case (Riτ = 0) and Riτ = 300 normal-
ized by u∗4

τ /ν∗. Profiles for Riτ = 50, 100 and 200 are not included in Fig. 5.1 since
they exhibit an intermediate behavior and therefore, do not add to the discussion.
The buoyancy flux term, Φz, is also not shown in Fig. 5.1 because it is rather small
compared to the other right-hand side terms of Eq. 5.1.
In Fig. 5.1, filled symbols are used to plot the TKE budget terms for the neutrally-
buoyant case (Riτ = 0), whereas open symbols refer to the Riτ = 300 case. The
largest effect of stratification is on the TKE production and viscous dissipation in the
core region of the domain, where buoyancy plays a dominant role. In the near-wall
region, all terms are important. By contrast, moving towards the channel center, the
two leading terms are Pk and �k, which nicely balance each other. The inset of Fig.
5.1 shows �k close to the channel center (900 < z+ < 1000). Please note that, unlike
the main panel, the x-axis of the inset is linear.
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Figure 5.1 – TKE budget for neutrally-buoyant case (filled symbols) and Riτ = 300 case (open
symbols). The inset represents the turbulent viscous dissipation close to the channel center for
both unstratified and stratified cases.

Figure 5.2 – Contour maps of TKE viscous dissipation, �k, on a (y − z) cross section located
at x = Lx/2. Panel a) refers to the neutrally-buoyant case, Riτ = 0. Panel b) refers to the
stably-stratified case at Riτ = 300.
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Figure 5.3 – Contour maps of TKE viscous dissipation, �k, on a (x − z) longitudinal section
located at y = Ly/2. Panel a) refers to the neutrally-buoyant case, Riτ = 0. Panel b) refers to
the stably-stratified case at Riτ = 300.

a)

b)

Riτ = 0

Riτ = 300

0−0.25

It can be seen from the inset of Fig. 5.1 that there is a cross-over between �k for
Riτ = 300 and �k for Riτ = 0 at z+ ≈ 950 . �k for Riτ = 300 tends to almost zero
at the channel center. This narrow region at the core of the channel, where buoyancy
leaves its most significant footprint on the flow field, represents a strong barrier to
the wall-normal heat and momentum transport. This behavior can also be observed
quantitatively in Figs. 5.2 and 5.3. The contour maps of �k can be seen on a cross
section located at x = Lx/2 in Fig. 5.2 and on a longitudinal section located at
y = Ly/2 in Fig. 5.3 for Riτ = 0 and Riτ = 300. Note that the range of the values
shown in Figs. 5.2 and 5.3 are between zero and the mean value evaluated at the
wall (−0.25). The largest variability of �k occurs in wall-normal direction. �k reaches
its maximum in magnitude at the walls, where turbulence is the only mechanism
controlling the flow dynamics. For the neutrally-buoyant case, �k reaches the value
≈ −23, and for the Riτ = 300 case this value is ≈ −32. However the mean value of �k
at the wall for both cases remain very close to each other (the average �k at the wall
for both unstratified and stratified case is −0.25). At the channel center �k reaches a
mean value equal to zero. It can be seen that regardless of stratification effects, the
largest variation of �k is in the near-wall region. In panel b) of Figs. 5.2 and 5.3, it is
observable that in a narrow region at the channel center �k is almost zero, however for
the unstratified case some variation of �k can still be seen in this region. This narrow
region refers to the region, shown in the inset of Fig. 5.1 (950 < z+ < 1050), where
buoyancy is able to kill turbulence.
To examine the variation of �k quantitatively in this region, we compute the probability
density function (PDF) of �k inside two subdomains. The two subdomains have a
volume of Lx × Ly × z�, where z� in inner units is 950 < z+� < 1050 for the first
subdomain, and 900 < z+� < 1100 for the second subdomain. In Fig. 5.4, we show the
PDF of �k normalized by the mean value of �k at each subdomain for each dataset.
It can be seen that the most probable events are the values of �k very close to zero.
The tails of the PDF are not shown down to the smallest values, since it does not
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Figure 5.4 – PDF of �k/ | ��k� | for neutrally-buoyant case and Riτ = 300 case inside two different
subdomains.

add to the discussion. It can be seen from Fig. 5.4 that for the unstratified case the
PDF of �k/ | ��k� | collapse on top of each other, meaning that the �k does not change
significantly between the two subdomains. For the stratified case, the probability of
having values of �k very close to zero is higher in 950 < z+ < 1050 compared to
900 < z+ < 1100. This confirms the observation we had from the inset of Fig. 5.1.
It suggests that in a narrow region of 950 < z+ < 1050 buoyancy is able to kill the
activity of turbulent viscous dissipation almost completely.

5.1.2 Mean kinetic energy (MKE) budget
To derive the MKE = 1

2 �ui��ui� budget equation, the Reynolds-decomposed
Navier–Stokes equations is multiplied by the mean velocity field �ui�, and an ensemble
averaging is taken. The MKE transport equation in dimensionless form is
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(5.2)

The left-hand side of Eq. 5.2 represents the material rate of change of MKE, and it is
equal to zero as the flow is in a statistically steady condition. The different terms on
the right-hand side of Eq. 5.2 represent the power injected in the system via the mean
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pressure gradient, !Πk, the production of TKE, !Pk, the work done by the Reynolds
stresses, !Tk, the viscous diffusion of MKE, !Dk, and the mean flow viscous dissipation, �k. It should be noted that !Pk, which is a source term in TKE acts as a sink term in
the MKE budget equation (!Pk = −Pk).
The energy input, !Πk, is acting as a source term and it represents the energy injected
into the system through the mean pressure gradient. This energy is then partially
dissipated by the mean flow viscous dissipation,  �k, and partially used to generate
turbulent fluctuations via the production term, !Pk. Therefore,  �k and !Πk represent a
sink of energy in the MKE balance equation. The two remaining terms, the energy
transport by the Reynolds stress, !Tk, and the viscous diffusion, !Dk, redistribute the
energy across the channel and thus act only as internal transport mechanisms that do
not bear a net contribution. In other words, they are neither sinks nor sources [94].
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Figure 5.5 – Budget of MKE for neutrally-buoyant case (filled symbols) and Riτ = 300 case (open
symbols).

In Fig. 5.5, the different terms of MKE budget equation (Eq. 5.2) normalized by
u∗4

τ /ν∗ are shown for the neutrally-buoyant case (Riτ = 0) with filled symbols and
stratified case (Riτ = 300) with open symbols. In the near-wall region (up to z+ ≈ 5),
the mean flow viscous dissipation,  �k is balanced by the viscous diffusion, !Dk. In the
buffer region (5 < z+ < 30), all terms play an important role [67]. In this region,!Tk and !Πk balance the energy losses from  �k, !Dk and !Pk. In these two regions,
the stratification is not affecting the transport of MKE. However, MKE transport is
modulated by buoyancy in the core region of the channel, where the energy injected
into the system !Πk is balanced by !Tk (mean flow energy is converted to turbulence).
The stratification becomes very important for z+ > 950. In this narrow region, or
the stratified case (Riτ = 300), the energy injected into the system via the mean
pressure gradient is not anymore balanced by the energy transported by Reynolds
stress, as for the neutrally-buoyant case, but it is balanced by viscous diffusion, !Dk. A
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similar behavior was also reported for �k in Sec. 5.1.1, and it confirms that the region
950 < z+ < 1000 represents (because of the buoyancy effect) a strong barrier to the
transport of heat and momentum.

5.1.3 Fluctuating temperature variance (FTV) budget
The budget equation of FTV = 1

2θ
�θ� is obtained by multiplication of the fluctuating

temperature field θ� by Reynolds-decomposed energy equation. The ensemble averaged
FTV budget equation in dimensionless form is given as

D[FTV ]
Dt

=
�
−�u�

jθ
��∂�θ�
∂xj

�
� �� 	

Pθ

+
�
−1
2
∂�u�

jθ
�θ��

∂xj

�
� �� 	

Tθ

+

�
1

2ReτPr

∂2�θ�θ��
∂x2

j

�
� �� 	

Dθ

+
�
− 1
ReτPr

�
∂θ�

∂xj

∂θ�

∂xj

��
� �� 	

�θ

(5.3)

The left-hand side of Eq. 5.3 represents the material derivative of FTV. The terms
on the right-hand side of Eq. 5.3 represent the production of turbulent fluctuating
temperature, Pθ, the turbulent diffusion of temperature fluctuations, Tθ, the molecular
diffusion of temperature fluctuations, Dθ, and the dissipation of temperature fluctu-
ations, �θ. In Fig. 5.6, all the contributing terms to the FTV budget, normalized by
u∗2

τ θ∗
2

τ /ν∗, are shown for the neutrally-buoyant case (open symbols) and for all of the
stratified cases (filled symbols).
As it can be observed from, production and dissipation of temperature fluctuations (Pθ

and �θ, respectively) are the most significant terms of FTV budget over the domain for
the neutrally-buoyant case. In neutrally buoyant condition, the turbulent and molec-
ular diffusion of temperature fluctuations only redistribute temperature fluctuations
in the near-wall region. In this case, the temperature fluctuations are in equilibrium
outside the near-wall region, because production and dissipation are locally in balance
[67]. Similar behavior of FTV is also observed by Alcántara-Ávila et al. [1], Kasagi
et al. [51], Lyons et al. [67] and Krishnamoorthy & Antonia [56]. In stably stratified
conditions, a notable increase in production and dissipation is observed throughout
the entire domain. The increase in the mean temperature gradient (by increasing the
strength of stratification) reflects in to a increase of production, which still balances
the dissipation [46]. The peak location of temperature fluctuations (channel center)
production refers to the region where buoyancy dominates. In general, the turbu-
lent diffusion term transfers the temperature fluctuations from the core region of the
channel to the near-wall region. On the other hand, molecular diffusion shows an
interesting behavior very close to the channel center. In this narrow region, molecular
diffusion shows a negative mean value for a weak stratification (Riτ = 50 and 100),
but a positive mean value for the moderate stratified cases (Riτ = 200 and 300). The
peak amplitude in the turbulent diffusion shows that the two weaker stratified cases
transfer more energy in the form of turbulent diffusion compared to the other two
more strongly stratified cases (where turbulence is almost completely suppressed) at
the channel center.
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5.1.4 Mean temperature variance (MTV) budget
To obtain the MTV = 1

2 �θ��θ� budget equation, the Reynolds-decomposed energy
equations is multiplied by the mean temperature field �θ� , and an ensemble averaging
is taken. The MTV budget equation in dimensionless form is given as

D[MTV ]
Dt

=
�
�u�
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(5.4)

The first term on the right-hand side of Eq. 5.4 represents the production of mean
temperature variance, !Pθ. This term acts as a sink term in MTV budget, whereas it
is a source term in FTV (Pθ = −!Pθ). The second term is turbulent diffusion of the
mean temperature variance, !Tθ. Third and fourth terms are the molecular diffusion
of mean temperature variance, !Dθ and dissipation of mean temperature variance,  �θ,
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respectively. In Fig. 5.7, all the right-hand side terms of Eq. 5.4, normalized by
u∗2

τ θ∗
2

τ /ν, are shown for neutrally-buoyant case (open symbols) and all the stratified
cases (filled symbols).
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The only source of MTV in the near-wall region is the molecular diffusion of MTV. As
shown in Fig. 5.7, the molecular diffusion is primarily affected by stratification in the
viscous wall region. The larger the stratification strength, the stronger the molecular
diffusion in the near-wall region. Both molecular and turbulent diffusion are the most
important mechanisms in transferring MTV in the near-wall region. By departing
from the wall toward the channel center, the stratification shows its largest influence
at the core region of the channel, where both molecular and turbulent diffusion of
MTV are source terms and the production and the dissipation of MTV act as sinks.
It is worth to mention, that the turbulent diffusion of MTV becomes a source term at
the core region of the channel under the stratification effect, whereas this term acts
as the main sink in the near-wall region.

5.1.5 Total potential energy (TPE) budget
As discussed in Sec. 5.1.1, the buoyancy flux , Φz, in TKE budget is the only term,
which exchanges mechanical energy between the kinetic and potential energy. To
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derive the budget equation of the TPE of the system, we use the classical definition
of the TPE (see Winters et al. [131]). The specific gravitational potential energy of
the system with volume V is defined as

TPE =
�

g∗

ρ∗0V ∗

��
V ∗

ρ∗z∗dV ∗ =
�
g∗

ρ∗0

�
�ρ∗z∗�V (5.5)

where �.�V indicates the volume average quantity. Recalling the linear equation of
state for an incompressible and Boussinesq fluid (see subsection 2.1.4) and given the
fact that there is no net potential energy associated with the fluctuating component
of the density [41], the evolution equation of TPE can be written as

TPE = g∗β∗��θ∗�z∗�
V

(5.6)

To obtain the TPE budget equation, the Reynolds-decomposed energy equation is
substituted into Eq. 5.6 to give (in dimensionless form)
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w

�
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(5.7)

In Eq. 5.7, the first term on the left-hand side, Φz is the buoyancy flux. This term
is a sink term in TKE budget, whereas it is a source of energy in TPE. The second
term, Φi, represents the rate at which total potential energy increases due to vertical
redistribution resulting from molecular diffusion (conversion rate from internal energy,
IE, to potential energy) [122]. The term ,Φi, can be seen as the rate at which the center
of mass of the volume would be raised or lowered as a result of molecular diffusion of
the stratifying scalar if there was no fluid motion [42]. The third term, Φb is the rate of
diffusive buoyancy flux across the surface. A clear description of the different processes,
namely ”mixing” and ”stirring”, by which the potential energy of the system can be
increased via fluid motions is presented by Peltier & Caulfield [83]. The key point is to
separate the increase of potential energy of the system via Φi from mixing. In general,
it is very difficult to ascertain that the averaging procedure produces an estimate free
from contamination by adiabatic processes in stratified turbulent flows with IGWs.
in consequence, an spatial and long-time averaging is required [131]. Therefore, the
instantaneous values of the Φz can be very misleading for measuring the mixing. The
average quantities in Eq. 5.7, in combination with the volume integral of TKE and
MKE can provide an accurate description of the mechanical energy transfer in the
stably-stratified turbulent channel flow. The energy exchange between different energy
reservoirs has been broadly investigated in archival literature. The mechanical energy
exchange between MKE, TKE and TPE is studied for the global ocean circulation [41],
horizontal convection [30] and Rayleigh-Bénard convection [31], extensively. A similar
framework has been also employed to study the mechanical energy budget and mixing
efficiency of the ice-covered freshwater basins heated by solar radiation by Ulloa et
al. [122]. Howland et al. [40], presented the energy pathways in a triply periodic
domain with external forcing on the velocity and density fields. Scotti and White
[101] studied the energy transfer between MKE, TKE and TPE for stratified rotating
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flows. The mechanical energy pathways has benn also studied by Kirkpatrick et al.
[53] for a stratified open turbulent channel flow after removal of a volumetric heat
source. A physically sound approach to investigate the irreversible mixing in stratified
turbulence is to separate the available potential energy from the background potential
energy. Although, this will be the subject of a future investigation, we measure the
irreversible mixing using a simplified approach for stably-stratified turbulent flows in
the following section.

5.2 Mixing in thermally stratified turbulence
Evaluation of irreversible vertical turbulent mixing of momentum and density when
turbulence interacts with buoyancy forces that do depend on local density gradients
is very complex and challenging. Precise quantification of irreversible mixing of mo-
mentum and density/temperature is crucial for many practical applications such as air
quality prediction in the atmospheric boundary layer and prediction of heat fluxes and
circulation in oceanic flows [127]. To evaluate vertical mixing in turbulent stratified
flows, it is common practice to relay on the concept of turbulent eddy viscosity and
diffusivity [88]. Based on the gradient-transport hypothesis [88], the turbulent eddy
viscosity Km and diffusivity Kρ in a unidirectional shear flow are given as

Km = −�u�
xu

�
z�

∂�ux�
∂z

, Kρ = −�θ�u�
z�

∂�θ�
∂z

(5.8)

In general Km and Kρ can be estimated either directly or indirectly. For a direct
estimation of these two quantities, it is crucial to calculate the turbulent fluxes and
mean gradients from measurements [66]. The concept of mixing-length was introduced
by Taylor [113] for the first time and Prandtl [89] used this concept to define Kρ, as
it is defined in Eq. 5.8 (Prandtl mixing length model). The ratio between Km and
Kρ is usually referred to as turbulent Prandtl number [58], and can be written in
dimensionless form as

PrT =
�u�

xu
�
z�∂�θ�∂z

�u�
zθ

�� �ux�
∂z

(5.9)

Quantification of PrT as a function of stratification strength (here Riτ ) is a crucial
subject in the field of turbulence modeling [126, 33]. PrT is shown in Fig. 5.8 as
a function of dimensionless wall-normal direction (panel a) and Rig (panel b). It
can be seen from Fig. 5.8-a that in the near-wall region, PrT remains unaffected by
stratification and in the region below z ≈ 0.7, the turbulent Prandtl number varies
only slightly. As also pointed out by Garćıa-Villalba & del Álamo [28], above this
region, PrT shows a significant variation and a Riτ dependence of PrT can not be
observed clearly. In Fig. 5.8-b, the turbulent Prandtl number is represented as a
function of Rig for different shear Richardson numbers. It seems that the assumption
of PrT ≈ 1, customarily taken in turbulence modeling, is reasonable for Rig ≤ 0.2
only, however for Rig ≥ 0.2, where the stratification starts to leave its footprint on
the flow dynamic, such an assumption is not correct.
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Figure 5.8 – Turbulent Prandtl number as a function of, a) dimensionless wall-normal direction
and panel b) gradient Richardson number.

a) b)

The definition of Km and Kρ as in Eq. 5.8 is the the simplest approach, but it hides
some issues. Due to the coexistence of turbulence and IGWs, direct estimation of
heat and momentum fluxes is challenging even if the flow field is highly resolved.
The issue arises because IGWs have almost no contribution to irreversible mixing and
the separation of flux contribution from IGWs and turbulence is still problematic.
Therefore, a number of indirect methods for estimation of fluxes has been proposed.
A common assumption of these methods is that the turbulent flow is statistically sta-
tionary in time and homogeneous in space. Osborn & Cox [81] based their model on
a simplified FTV budget equation, which is then used to give an approximate expres-
sion for buoyancy flux, Φz. For temperature stratified flows, as the flow configuration
studied throughout this thesis, it is usually assumed that Kθ = Kρ [96]. Osborn &
Cox model [81] results into the definition of Kθ in dimensionless form [35]

Kθ = �| ∇θ� |2�
�


d�θ�
dz

�2
�
. (5.10)

The expression on the right-hand side of Eq. 5.10 is usually called Cox number.
Osborn [80] employed a different approach to estimate Kρ. By simplifying the TKE
balance equation, a three-way balance between production of TKE, buoyancy flux
and turbulent viscous dissipation can be obtained. Osborn model [80] estimates the
vertical eddy diffusivity of density in dimensionless form as

Kρ =
�

Rif
1−Rif

�
�k
N2 , (5.11)

where Rif is the flux Richardson number, and can be defined as

Rif = Φz

Pk
. (5.12)

Rif represents the ratio of buoyant destruction to shear production in the turbulent
kinetic energy equation [28]. The definition of PrT , presented in Eq. 5.9 can be
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rewritten as PrT = Rig/Rif . In Fig. 5.9, the flux Richardson number is shown as a
function of gradient Richardson number. For Rig < 0.2, the profiles collapse on the
solid black line Rig = Rif , meaning that when Rig is below its critical value, PrT does
not vary significantly with Rig. A similar behavior was also found by Garćıa-Villalba
& del Álamo [28]. This collapse is lost for higher values of Rig.
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Figure 5.9 – Rif as a function of gradient Richardson number for different Riτ .

Reportedly, Rif has been used in literature to introduce Γ = Rif/(1 − Rif ), which
is sometimes referred to as the mixing efficiency. Based on theoretical analysis of
Ellison [20] and the experiments of Britter [13], Osborn [80] assumed a constant value
of Rif = 0.17, which ultimately lead to Γ = 0.2. To evaluate the sensitivity of the
assumption made by Osborn [80], a series of studies has been performed [35, 95, 22,
48, 47, 83, 49, 103].
More recently, Ivey & Imberger [48] tried to overcome the limitation associated to
the assumption that the flow is steady in time and homologous in space by taking
the inhomogeneous and unsteady transport terms in the TKE balance equation into
account, and proposed an alternative definition of flux Richardson number as

RiIIf = Φz

Φz + �k
(5.13)

Although the RiIIf definition of Ivey & Imberger [48] does not require the assumption
of homogeneity and steadiness of the turbulent flow, it is still influenced by the effect
of countergradient fluxes that are common in more strongly stratified flows [127].
To solve this issue, Peltier & Caulfield [83] gave a proper definition of the mixing in
stably-stratified turbulence by taking only the irreversible conversions of energy locally
into account. Hence, following the approach demonstrated by Venayagamoorthy &
Stretch [126], a third definition of flux Richardson number can be defined as
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Ri∗f = �PE

�PE + �k
(5.14)

Where �PE is the dissipation rate of turbulent (available) potential energy and is
defined as

�PE = N2�θ

�
d�ρ�
dz

�−2
(5.15)
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Figure 5.10 – Comparison of Rif , RiIIf and Ri∗f as a function of Rig for different shear Richardson
numbers.
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Riτ = 50 Riτ = 100

Riτ = 200 Riτ = 300

Note that in case of stationary andhomogeneous flows all the three difinitions of flux
Richardson are equal (Rif = RiIIf = Ri∗f ). Recently, Venayagamoorthy & Koseff
[127] carried out an extensive study of the differences and similarities between the
three definitions of the flux Richardson number defined in Eqs. 5.12, 5.13 and 5.14.
They used the dataset from the DNS study of homogeneous shear flows by Shih et al.
[103] and the stably stratified turbulent channel flow DNS dataset of Garćıa-Villalba
& del Álamo [28], which is up to Reτ = 550 to examine the behavior of Rif , RiIIf
and Ri∗f . However, the validity of these results at higher Reynolds numbers is still
an open question [127]. Here we examine the sensitivity of the proposed results by
Venayagamoorthy & Koseff [127] for Reτ = 1000. In Fig .5.10, we show Rif , RiIIf
and Ri∗f as a function of Rig for all of the stratified cases. In the region, where Rig
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Figure 5.11 – The irreversible flux Richardson number Ri∗f as a function of Rig for different Riτ .
Both dashed lines show the fit given by Eq. 5.16 with different choice of Ri∗f∞ and γ.

is below ≈ 0.2, all the three definition collapse on top of each other, and the flux
Richardson number is a linear function of Rig, no matter which definition of the flux
Richardson number is taken. This suggests that, here shear is playing a dominant role,
any of the three definitions of flux Richardson number can be employed for evaluating
the irreversible mixing in stably-stratified turbulent flows. Although Rif , RiIIf and
Ri∗f have a good agreement for Rig < 0.2, they do not follow a similar trend at
higher Rig. It can be seen that for all of the stratification levels (Riτ = 50, 100, 200
and 300) that we have simulated, Rif and RiIIf show a clear variability for Rig > 0.2,
whereas Ri∗f exhibit approximately a negligible variability in this regime. The physical
mechanism behind the variability of Rif and RiIIf is different. The variability of Rif
for Rig > 0.2, is due to the fact that both fluxes (heat and momentum) vary in
time and space. However, the variation of RiIIf for Rig > 0.2 is only caused by the
variation of of buoyancy flux. In addition, since the production of TKE becomes
small at the core region of the channel (the mean shear rate decreases), the standard
definition of Rif given in Eq. 5.12 loses its significance. Unlike Rif , RiIIf appears
to decrease for Rig > 0.2. However, the definition of RiIIf is also weak at higher
Rig values when strong enough countergradient buoyancy fluxes become important.
We can speculate that, where the footprint of reversible effects caused by IGWs are
apparent (core region of the channel), the buoyancy flux is contaminated and therefore
it can not be considered as a good measure for the mixing. By contrast, the irreversible
flux Richardson Ri∗f is not influenced by the same limitations, since it extracts the
impacts of reversible contributions by definition and tends to an approximate constant
at higher Rig.
Interestingly, Karimpour & Venayagamoorthy [50], building on top of the work by
Mellor & Yamada [69], found that the behavior of Ri∗f as a function of Rig can be
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modeled as an exponential function:

Ri∗f = Ri∗f∞


1− e(−γRif )

�
(5.16)

where Ri∗f∞ and γ are constants. Venayagamoorthy & Koseff [127] examined this
exponential fit against the DNS data of Shih et al. [103] by setting Ri∗f∞ = 0.25
and γ = 7, and found a good agreement between the proposed fit and the DNS data
of Shih et al. [103]. However, the proposed fit was not tested for a fully-developed
wall bounded flow. We found that, by choosing different Ri∗f∞ and γ, the fit shows a
better agreement with our dataset for a fully-developed wall-bounded turbulent flow
at Reτ = 1000. By setting Ri∗f∞ = 0.2 and γ = 10, we are able to capture the
asymptotic behavior of Ri∗f at higher Rig very well (see Fig. 5.11).
The better performance of the new parameterization could be due to the effect of wall
on the irreversible flux Richardson number Ri∗f , which is not taken into account in the
parameterization proposed by Venayagamoorthy & Koseff [127].



6
Shear effects on double diffusive

convection

The content of this chapter was recently published in:
P. Hadi Sichani, C. Marchioli, F. Zonta, and A. Soldati, Shear effects on scalar transport in double
diffusive convection, ASME J. Fluids Eng. 142:121105, 2020. [36]

In the chapter, we investigate the problem of DDC under the effect of shear, which
introduces a symmetry breaking effect into the flow. We also quantify the scalar
fluxes and the relative importance of their diffusive and convective parts. To this aim,
we perform fully-resolved three-dimensional simulations of double diffusive convection
within a fluid layer bounded by a solid (no-slip) wall at the bottom and a slip surface
at the top by solving the dimensionless set of conservation equations (Eqs. 2.22-2.25),
introduced in subsection 2.2.1. The application of a shear is realized by imposing
a mean horizontal velocity u∗

m at the top boundary, and a no-slip condition at the
bottom boundary. More specifically, at the top boundary, we impose that both mean
and fluctuating components of the wall-normal fluid velocity are zero (no penetration
through the upper slip surface), but we allow fluctuations of the streamwise and span-
wise velocities, thus ensuring mass conservation. Note that, for the horizontal velocity
components, only the mean value is imposed (equal to the applied shear velocity in
the streamwise direction and to zero in the spanwise direction). Periodicity is applied
for all variables along the homogeneous directions x and y. Present simulations are
run at Ras = 107, Λ = 1, Prθ = 7, Prs = 700, which yield Le = 100 and from Eq.
2.38, Γd � 23.5Γ. Three different values of the dimensionless shear velocity are chosen:
Γ = 0, Γ = 0.02 and Γ = 0.1, corresponding to Γd = 0, Γd � 0.47 and Γd � 2.35
respectively. The domain, whose dimensions are 4πh∗ × 2πh∗ × 2h∗, is longer in the
streamwise direction to cope with the applied shear. The spatial grid is composed by
1024 × 512 × 513 nodes along x,y and z, respectively, and has been chosen to cap-
ture the thin salinity boundary layers. Validation of the grid resolution is provided in
Appendix C. All the simulations start from a zero-velocity (hydrostatic) initial con-
dition. At the beginning of the simulation, salinity has a uniform distribution equal
to (st+ sb)/2, while temperature is distributed linearly across the fluid layer (between
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the values θt and θb). The same initial conditions were chosen by Yang et al. [135],
which are in turn similar to those considered in the experiments by Hage & Tilgner
[37] and by Kellner & Tilgner [52] for the zero-shear case. Note that small random
perturbations of both the salinity and the temperature fields have been applied to
accelerate the flow development over time.
In the following section, the results of the numerical simulations are presented and
discussed. The structure of the flow is first analyzed from a qualitative viewpoint in
section 6.1 and then from a quantitative viewpoint described by statistical moments in
section 6.2 and transport fluxes in section 6.3. Although statistics have been computed
for all three values of Γ, the effects of shear we wish to discuss are magnified for the
case with Γ = 0.1. For this reason, in the following we will show results at Γ = 0.02
only when they add to the discussion.

6.1 Phenomenology of DDC fingering
We start our analysis by looking at the instantaneous flow structure. A three dimen-
sional rendering of salinity isosurfaces, and the associated two dimensional maps of
salinity contours are shown in Fig. 6.1 for Γ = 0 (left column: panels a-b-c-d) and
for Γ = 0.1 (right column: panels e-f-g-h). The flow structure for Γ = 0.02 (not
shown in the figure) exhibits an intermediate behavior between those shown. Salinity
contours are measured on horizontal slices located at z ≡ z∗/h∗ = −0.95, z = 0 and
z = 0.95, respectively. We look first on the zero-shear case, and we focus on panel a).
Thin salt fingers of heavy and light fluid are emitted from the top and bottom bound-
ary, travel over the entire vertical extension of the fluid layer and reach the opposite
boundary. The shape and the distribution pattern of these fingers is such that heavy
and light fingers come one after the other and define the boundaries of adjacent and
vertically-elongated convection cells. The qualitative structure of the flow is similar
to that observed in the classical configuration with two no-slip boundaries [132, 135]
although the different boundary conditions prescribed here (slip conditions at the top,
and no-slip conditions at the bottom) induce a slight asymmetry, with fingers emerg-
ing from the top boundary being a bit stronger than those emerging from the bottom
boundary. The main reason for this asymmetry is that all components of the fluid ve-
locity must go to zero at the bottom boundary, while horizontal motions are possible
at the top boundary where only vertical motions are forbidden (vertical geometrical
constraint). As a consequence, the flow recirculation close to the upper portion of
the fluid layer is stronger compared to that occurring in the lower portion of the layer
[134]. To analyze the organized flow structure of salt fingers more closely, we focus now
on the two-dimensional contour maps of salinity in Figs. 6.1b-c-d. Near the top and
bottom boundaries (Fig.6.1b-d) we observe the presence of thin branches (sheet-like
structures) characterized by different orientations and connected in such a way that
they form a regular network of polygonal-shape cells. At the bottom boundary (Fig.
6.1b), these thin branches are characterized by low salinity (rendered as blue isocon-
tours). Intense blue spots appear at the intersection between neighbouring branches,
and represent the root of light fingers that move vertically upwards. At the same
time, dense fingers (rendered as red regions of salty fluid in Fig. 6.1) move close to
the bottom boundary to replace the fluid transported away by upward-moving fingers
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Figure 6.1 – Three-dimensional volume rendering, and associated two-dimensional maps, of salin-
ity distribution for Γ = 0 (panels a,b,c,d) and Γ = 0.1 (panels e,f,g,h). Two dimensional maps are
measured at z = −0.95 (i.e. close to the bottom boundary, panels b and f), z = 0 (i.e. at the
cell center, panels c and g) and z = 0.95 (i.e. close to the top boundary, panels d and h). For all
panels, the same colormap but different opacity settings are used, with red indicating high-salinity
(dense) fluid, and blue indicating low-salinity (light) fluid. An opacity filter is used for the volume
rendering, whereas a standard sequential colormap is used for the two-dimensional maps.
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(fluid eruptions). Since temperature diffusion mechanisms are almost three orders of
magnitude faster than salinity diffusion mechanisms, temperature horizontal gradients
are quickly equalized while fingers travel upward, and the flow field can be considered
in thermal equilibrium over horizontal planes. It is therefore solely the salinity dif-
ference that produces the buoyancy forces driving the fingers upward. But, since salt
convection is in this instance stronger than salt diffusion, such buoyancy forces main-
tain fingers coherency and drive them across the fluid layer, up to the top boundary.
Here the fluid becomes progressively denser and accumulates (red branches connected
by red spots) until there is a thick enough layer of dense fluid for a new finger to form.
Each finger travels the entire fluid layer and generates a stable jet of fluid close to the
opposite boundary. Upon impingement with such boundary, fingers are deflected in
the horizontal direction and lose their coherence. The deflection of fingers generates
a strong divergence of the horizontal velocity field near the boundary, which collects
fluid into specific regions (thin branches converging towards spots) from which fingers
with opposite buoyancy are emitted. From a vis − a − vis comparison of Fig. 6.1b
with Fig. 6.1d we note that the pattern of branches at the bottom boundary is more
organized than the one at the top boundary, due to the different boundary condition.
Also, the extremely organized pattern of structures observed near the boundaries is
replicated at the center of the fluid layer (Fig. 6.1c) in the form of a sequence of
alternating fingers (round-shaped structures) of heavy and light fluid, rendered in red
and blue respectively.
When the mean shear Γ = 0.1 is applied at the top wall, the situation changes re-
markably. This is visualized in the right column of Fig. 6.1 (panels e-f-g-h). By
looking at the 3D maps of salinity (Fig. 6.1e), it is apparent that salt fingers are
inclined by the mean shear and lose the strong vertical coherence observed for Γ = 0
in Fig. 6.1a. This is even more visible by looking at the 2D contour maps of salinity
measured at the three different vertical locations (panels f-g-h in Fig. 6.1). Close
to the bottom boundary (Fig. 6.1f), we still observe the presence of thin, sheet-like
branches, which however form long chains aligned with the direction of the imposed
shear. Shorter braids, orthogonal to the direction of shear, connect the different hori-
zontal chains. A similar pattern, though less organized and coherent, is observed close
to the top boundary (Fig. 6.1h), and is somehow maintained also at the center of the
fluid layer (Fig. 6.1g). This dramatic change of the flow structure will reflect on the
corresponding statistics, as discussed in the next section.

6.2 Statistical moments of velocity, temperature
and salinity

The profiles of dimensionless salinity, �s(z)�, temperature, �θ(z)� and axial velocity
�ux(z)� are shown in Fig. 6.2 as a function of the distance from the bottom boundary,
z, for Γ = 0 and Γ = 0.1. Angular brackets indicate averaging in time and over the
horizontal x− y plane. Profiles for Γ = 0.02 are not included since they always fall in
between those shown and, therefore, do not add to the discussion. Note that, the axial
velocity, shown in Fig. 6.2, is made dimensionless with the free-fall velocity of the fin-
gers (u = u∗/

�
g∗β∗

sh
∗(Δs∗/2)). The time-averaging window, in dimensionless form,
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Figure 6.2 – Profile of the mean salinity, �s�, mean temperature, �θ�, and mean horizontal velocity,
�ux�, as a function of the vertical distance from the bottom boundary, z, for Γ = 0 (panel a) and
Γ = 0.1 (panel b). The vertical dotted line in panel b (zero line) is added for clarity.

is defined as Tavg = T ∗
avg/ (h∗/U∗), where T ∗

avg is the time window in physical units
and h∗/U∗ is the time scale associated with the free-fall velocity U∗. According to this
definition, Tavg measures the averaging time window as multiple of the characteristic
time taken by the salt fingers to cross the entire fluid layer by free fall. Time averaging
of the statistics was performed over statistically-steady flow fields, and therefore, all
observables examined in this thesis refer to statistically-steady flow conditions. The
convergence toward the steady state condition was monitored by examining the time
evolution of several macroscopic observables, such as the Reynolds number and the
Nusselt number. An example of such time evolution is shown in Fig. 6.3.
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Figure 6.3 – Time evolution of heat flux (panel a) and salinity flux (panel b). Note that, time is
dimensionless and normalised with respect to h∗/U∗.

The values of Tavg considered in each simulation are 2200, 2700 and 3000 for Γ = 0,
Γ = 0.02 and Γ = 0.1, respectively. We consider first the case Γ = 0 (Fig. 6.2a).
As expected, we find that �ux(z)� = 0. Also expected is the linear profile of the
mean temperature, �θ(z)�, which is typical of a diffusion-dominated process: This is
clearly the case of temperature, which has a large diffusion coefficient and diffuses
very efficiently. What is non-trivial is the behavior of the mean salinity �s(z)�. First,
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�s(z)� is not symmetric, due to the asymmetric velocity boundary conditions. We also
notice that the mean salinity changes very rapidly close to the boundaries. This marks
the presence of two thin boundary layers, which however seem to differ in thickness:
Due to the different boundary conditions, the bottom boundary layer seems thicker
than the top one. A more quantitative evaluation of the boundary layer thickness will
be given below, based on the behavior of the salinity fluctuations. In the core region
of the fluid layer, for 0.5 < z < 1.5, the mean salinity is almost constant and equal
to �s� � 0.15. Interestingly, the profile of the mean salinity is non-monotonic and
develops a local minimum in the region 1.5 < z < 2 as well as a local maximum in the
region 0 < z < 0.5. This non-monotonic behavior has important consequences for the
global heat and salinity transfer rates, which will be discussed in Sec. 6.3. Considering
the Γ = 0.1 case, the global picture does not change much compared to the Γ = 0
case (in particular for �s� and �θ�), the only obvious difference being the profile of the
mean horizontal velocity, which exhibits a linear behavior between the values �ux� = 0
at the bottom wall and �ux� = 0.1 at the top wall.
To understand further the different salinity and temperature distributions induced by
shear, we look at the behavior of the root mean square of their fluctuations, �θrms� and
�srms�. Results are presented in Fig. 6.4. Open symbols refer to the case Γ = 0, while
filled symbols refer to the case Γ = 0.1. Again, curves for Γ = 0.02 are not included as
they would fall in between those shown in the figure. Differences in the horizontal and
vertical components of the velocity field are also not shown because they are rather
small and hence negligible. Fluctuations of temperature (Fig. 6.4a) are relatively
small and reach their maximum value (� 9% of the temperature at the boundary) at
the center of the fluid layer. The action of a mean shear does not modify qualitatively
the shape of the profile, but induces a general attenuation of the fluctuations (� 6% of
the temperature at the boundary). Focusing on the salinity fluctuations (Fig. 6.4b),
we note that, regardless of the value of Γ, they are much larger than temperature
fluctuations, and reach a maximum very close to the boundary (� 25% of the salinity
at the boundary). It is interesting to note that there is a slight asymmetry in the
profile of �srms� for both values of Γ, with salinity fluctuations being larger close to
the bottom boundary. The action of a mean shear induces a general reduction of
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Figure 6.4 – Profile of the root mean square of temperature fluctuations, �θrms� (panel a), and
of salinity fluctuations, �srms� (panel b), as a function of the vertical distance from the bottom
boundary, z, for Γ = 0 and Γ = 0.1, respectively.
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solute fluctuations, but does not change qualitatively the shape of the profile. The
location at which fluctuations peak is used to estimate the thickness λ ≡ λ∗/h∗ of the
boundary layer. For Γ = 0, λ = 3.133×10−2 at the bottom wall and λ = 2.243×10−2

at the top wall, while for Γ = 0.1 we have again λ = 3.133 × 10−2 at the bottom
wall but λ = 2.523 × 10−2 at the top wall. The slight increase of the boundary layer
thickness at the top wall resulting from the application of the mean shear indicates a
weaker vertical salinity transport, as will be discussed below.

6.3 Heat and salinity flux
The different flow behavior induced by shear at the top boundary is expected to
influence also the transport rates of heat and salinity. The total heat and salinity
fluxes are:

qθ =
�

1
16

RasPrθ
Le

� 1
2

�uzθ� − ∂�θ�
∂z

, qs =
�

1
16RasPrs

� 1
2

�uzs� − ∂�s�
∂z

, (6.1)

and are the sum of a convective contribution (proportional to �uzθ� and �uzs�, re-
spectively) and a diffusive contribution (proportional to ∂�θ�/∂z and ∂�s�/∂z, respec-
tively). The behavior of qθ and qs as a function of the vertical coordinate z is shown
in Fig. 6.5 and in Fig. 6.6, respectively. We focus first on qθ (Fig. 6.5), for the case
Γ = 0. The diffusive and convective components of the total flux are shown using
different symbols. In addition, to visualize better their behavior, only a portion of the
x-axis is shown. It is apparent that the diffusive heat flux is slightly larger than unity
close to the boundaries, ∂�θ�/∂z � 1.1, and slightly smaller than unity at the center of
the fluid layer, ∂�θ�/∂z � 0.97. Overall, the departure from a purely diffusive profile,
which would correspond to ∂�θ�/∂z = 1, is mild. To counterbalance this temperature
anomaly, and to give the expected uniform and constant value of qθ (vertical dashed
line qθ � 1.11), the convective heat flux is maximum, and approximately constant at
the center of the fluid layer,

� 1
16

RasPrθ
Le

� 1
2 �uzθ� � 0.15. The application of the mean

shear at the top boundary induces only negligible changes of both �uzθ� and ∂�θ�/∂z,
and gives an overall heat flux that is only 1% lower than that measured for Γ = 0
for both Γ = 0.02 and Γ = 0.1. We turn now to the behavior of the salinity flux qs
(Fig. 6.6), and on its diffusive and convective parts, starting from the case Γ = 0. The
diffusive part ∂�s�/∂z, which measures the steepness of the salinity gradient in the
vertical direction, is very large close to the boundaries, but drops down abruptly (it
is already close to zero at a distance of Δz � 0.1 from the boundaries. Interestingly,
salinity gradients become negative, as shown in the two left-hand insets of Fig. 6.6.
A negative diffusive flux indicates the existence of regions of the flow where the local
mean salinity gradient is opposite to the imposed one (counter-gradient regions). This
may be ascribed to the low diffusivity of salinity, and to the fact that vertical fingers
carry their salinity almost unchanged throughout the entire height of the fluid layer.
As a consequence, there are regions close to the bottom boundary in which the salinity
is that characteristic of the top boundary, and viceversa, thereby inducing the local
salinity inversion. The behavior of the convective part of the total flux is complemen-
tary to the diffusive one: large values of �uzs� are observed throughout the entire fluid
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Figure 6.5 – Vertical behavior of temperature fluxes as a function of the distance from the bottom
boundary, z, for Γ = 0 (triangles), Γ = 0.02 (squares) and Γ = 0.1 (circles). Both the convective
part (�uzθ�, lines and filled symbols in blue scale) and the diffusive part (∂�θ�/∂z, lines and open
symbols in red scale) to the total heat flux (qθ, corresponding to the dashed lines on the right-
hand side of the plot) are shown. Note that only a portion of the x-axis is shown to emphasize
the shear-induced modifications of the fluxes.

layer but in the region near the boundaries, where the convective part drops to zero.
When summed up together, the diffusive and the convective parts give a total salinity
flux that is uniform and constant (see vertical dashed line qs � 23). Considering the
Γ = 0.02 and Γ = 0.1 cases, we immediately observe that, while the diffusive part is
almost unaffected by the imposed shear, the convective part is remarkably reduced
(although its shape is qualitatively similar). This behavior has of course an influence
on the total salinity flux, which becomes smaller (vertical dashed line at qs � 22 for
Γ = 0.02 and qs � 21 for Γ = 0.1). In dimensionless form, and integrated over the
entire domain, the heat and salinity fluxes yield the temperature and salinity Nusselt
numbers

Nuθ = 1
2

� 2

0
qθdz , Nus =

1
2

� 2

0
qsdz , (6.2)

which are the most important output parameters (i.e. global responses) of the con-
sidered physical systems. In Fig. 6.7 we show the behavior of Nus, normalized by
its reference value Nus,0 computed at zero shear, as a function of the applied shear
rate, indicated as Γ in the bottom horizontal axis and as Γd in the top horizontal
axis. The values of Nus are also explicitly given in the table inside Fig. 6.7, together
with the values of Nuθ, which undergo a negligible change (within 1%) and hence
are not directly plotted. We observe that the salinity flux Nus/Nus,0 decreases for
increasing Γ. For the smallest value of the imposed shear rate, Γ = 0.02, we measure
a decrease of about 3% in the vertical salinity flux. The decrease of Nus becomes
larger (approximately 10%) in the Γ = 0.1 case. These important modifications in
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the salinity flux can be discussed also considering the diffusive scaling introduced in
Sec. 2.1. The comparison between corresponding values of Γ (which are significantly
smaller than unity) and Γd (which are of order unity) leads us to hypothesize that
indeed diffusive scales are more relevant than the convective scales as far as salinity
transport is concerned.
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Figure 6.7 – Salinity Nusselt number Nus normalized by Nus at Γ = 0 (Nus,0) as a function of
the applied shear rate, indicated as Γ on the bottom horizontal axis and as Γd on the top horizontal
axis. The table summarizes the values of Nus together with the values of the temperature Nusselt
number, Nuθ (not plotted).

The other important output parameters are the induced flows velocities, customarily
measured by the horizontal and vertical Reynolds numbers:
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or, simply, by the overall Reynolds number Re =
�
Rex

2 +Rey
2 +Rez

2 [52, 133]. The
value of the horizontal and vertical Reynolds numbers are summarized in Table 6.1.
As expected, and also anticipated by the discussion of Fig. 6.5, we observe a significant
increase of Rex with Γ, accompanied by a slight increase of Rey. No monotonic trend
is observed for Rez. However, considering the ratio Rez/Rex = uz,rms/ux,rms, we
find Rez/Rex � 2 when Γ = 0 but Rez/Rex � 0.15 when Γ = 0.1. The decrease of
Rez/Rex reflects a reduction of the vertical convective salinity flux and reveals that the
structure of the fingers and their vertical velocity become weaker as the applied shear
increases. It is indeed the reduced vertical velocity that weakens the vertical salinity
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flux, which is the flux influenced by the velocity field: Temperature is essentially
dominated by diffusion and remains almost unaltered upon application of the shear.

Table 6.1 – Horizontal and vertical Reynolds numbers as a function of the applied shear rate, Γ.

Γ Rex Rey Rez
0 0.28781 0.29117 0.57703

0.02 0.75536 0.32231 0.59546
0.1 3.66565 0.35609 0.56290
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7
Concluding remarks and future

developments

7.1 Conclusion

In this thesis, we first investigated the interaction between stable thermal stratifica-
tion and turbulence in a confined configuration. We assessed the current physical de-
scription and parametrizations of stratified wall-bounded turbulence at high Reynolds
number by running a series of DNS of stably-stratified channel flow at fixed Reynolds
and Prandtl number (Reτ = 1000 and Pr = 0.71, respectively) and at different val-
ues of the shear Richardson number, up to Riτ = 300. From a physical viewpoint,
the simulation set up can be assimilated to the flow of air inside a channel of height
2h ∼ 1.5 m at a reference bulk Reynolds number (based on h) Reb = 2× 104 and sub-
ject to a wall-to-wall temperature difference up to ≈ 10K. For the considered range
of Riτ , active turbulence is sustained close to the walls, where the strong mean shear
generates small-scale vorticity that is not affected by the imposed stratification. Far-
ther from the wall, where vortices and flow structures are larger, stratification has an
important influence. Even for low-to-moderate levels of stratification, buoyancy effects
dominate in this region, as the mean shear is small (the channel center is a symmetry
plane). Interestingly, although temperature and wall-normal velocity fluctuations are
very large at the channel center, their correlation – which represents the buoyancy flux
– decreases so much that – for Riτ ≥ 200 – it becomes nearly zero. We show that this
behavior is due to the presence of a ≈ π/2 phase shift between the temperature fluc-
tuations and the wall-normal velocity fluctuations that causes no correlation between
the two signals. These findings are consistent with the presence of Internal Gravity
Waves at the channel center. It is noteworthy to observe that, although hypothesized
in previous works [54, 2], we did not find evidence of any mean countergradient heat
flux, even at the largest stratification considered here. These results, however, can
supply further motivation to examine this flow at even higher stratification levels. We
also focused on the behavior of the overall momentum and heat transfer rates, rep-
resented by the friction factor, Cf , and the Nusselt number, Nu, respectively. We
showed that the friction factor scales as Cf ∼ Ri

−1/3
τ , while the Nusselt number scales

as Nu · Re
−2/3
τ ∼ Ri

−1/3
τ . We remark here that the current large-scale dataset of
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stably-stratified channel turbulence at Reτ = 1000 are expected to help LES (Large
Eddy Simulation) and RANS (Reynolds averaged Navier-Stokes) to build efficient and
reliable subgrid scale and closure models for wall-bounded buoyancy-influenced turbu-
lence [59]. Finally, by calculating different budget equations, we examined the effect
of stratification on energetics. The most significant stratification influence occurs at
the channel center, where the turbulence activity is completely suppressed. The tur-
bulent viscous dissipation vanishes under the buoyancy effect in this narrow region.
The influence of stratification on the near-wall region was only observed in the tur-
bulent and molecular diffusion terms of the mean temperature variance budget. Such
an effect in the near-wall region can be observed only in MTV budget, because the
imposed stratification applied via a mean temperature difference on the walls. We also
evaluated the mixing in wall-bounded stably-stratified turbulence by computing flux
Richardson number based on three different definitions. Finally, we proposed a new
parameterization for the irreversible flux Richardson number as a function of gradient
Richardson number, which seems to perform better compared to the parameterization
proposed by Venayagamoorthy & Koseff [127]. We speculate that the better perfor-
mance of this parameterization is because our simulations include the effect of wall in
the irreversible flux Richardson number.

Finally, we investigated the interaction of thermal and solutal stratification with shear,
where the fluid layer experiences a solutal unstable stratification (slowly diffusing
scalar) and a stable thermal stratification (rapidly-diffusing scalar) simultaneously. We
performed fully-resolved three dimensional simulations of double diffusive convection
in a confined fluid layer in the fingering regime to examine the influence of shear
on heat and salinity transport fluxes: In particular, we focused on the modifications
produced by shear on the diffusive and convective contributions to the total flux,
which are investigated for the first time. In the present problem, temperature is
the rapidly-diffusing scalar characterized by a stabilizing distribution across the fluid
layer (the top boundary being set at a larger temperature compared to the bottom
one), whereas salinity is the slowly-diffusing scalar characterized by a destabilizing
distribution across the layer (the top boundary being set at a larger salinity compared
to the bottom one). To simulate this flow configuration, we considered mixed slip/no-
slip boundary conditions: Even in the absence of shear, these produce an asymmetric
distribution of the diffusing scalars in the vertical direction that mimics the presence
of a non-homogeneous convection layer. Simulations are run with fixed values of
the salinity Rayleigh number Ras = 107, salinity Prandtl number Prs = 700, Lewis
number Le = 100, and density ratio Λ = 1, whereas three different values of shear are
considered: Γ = 0 (corresponding to zero shear), Γ = 0.02 and Γ = 0.1 (corresponding
to a shearing velocity equal to one fiftieth and one tenth of the convective free-fall
velocity of the fingers, respectively). In the reference case with zero shear, the flow
is dominated by vertical elongated fingers that span the entire height of the fluid
layer and transfer efficiently their salt concentration. The application of the shear at
the top surface modifies both the size and the structure of the fingers, which appear
weaker and aligned with the direction of shear. These flow modifications are found
to have an influence on the global heat, salt and momentum transport. In particular,
we document a global decrease of about 10% of the salinity Nusselt number (i.e. the
dimensionless salinity transport coefficient) for the Γ = 0.1 case. Our analysis show
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that such decrease may be due to the weakening of vertical convective flux observed for
increasing Γ. The accurate methodology used in this thesis to investigate the problem
of DDC under shear effect proved to be a powerful tool to analyze the complex interplay
between diffusive and convective transport mechanisms in DDC and identify the key
physical parameters of the problem.

7.2 Future development
There are various topics of interest that could be tackled in future as a follow-up of
this thesis.

• Wall-bounded stably-stratified turbulence
In terms of future works, some proposals could be suggested, such as applying
a decomposition of the flow field, which can separate the turbulent fluctuations
from the IGWs. Separating the large scale, coherent fluctuations from small
scale incoherent ones would allow full characterization of the different contribu-
tions separately. A further investigation is also required for splitting the total
potential energy into available and background potential energy. To this aim,
long enough time averaging is required to close the available and background
potential energy budget precisely. By separating the available potential energy
from total energy, a direct measure of mixing can be evaluated. Investigat-
ing the flow field under the Non-Oberbeck-Boussinesq condition, arising when
large temperature gradients are present or when the typical size of the involved
flow scales is large, could also help for a more realistic understanding of stably-
stratified wall-bounded turbulence. An additional improvement that would be
interesting in the future is investigating the dispersion of heavy and light parti-
cles in wall-bounded stably-stratified turbulence. In the archival literature, the
dispersion of heavy and light particles has been investigated extensively in the
homogeneous stratified turbulence [125, 123, 124]. Recently, Zhang et al. [139]
examined the dynamic of semi- and neutrally-buoyant particles in wall-bounded
stably stratified turbulence.

• Double diffusive and convection under shear effect
Further investigations are required to explore the impact of local counter-
gradient diffusion mechanisms on the global flow parameters over a broader
range of values of Γ and, in turn, to derive accurate scaling laws for the scalar
transport fluxes. The follow-up of this thesis is running simulations of DDC with
imposed shear at higher Ras numbers to investigate the interaction between fin-
gering double diffusive convection turbulence with weak/moderate shear. Such
simulations will require an increased number of computational grid points, which
might be doable with employing an adaptive mesh refinement scheme to increase
the resolution for the salinity field only. An adaptive mesh refinement strategy,
however, contrasts with the pseudo-spectral discretization. Therefore, a different
spatial discretization scheme should be adopted. In addition, an adaptive mesh
refinement scheme would complicate the load balance at the simulation run time.
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A
Variables scaling system

In the problem of stably-stratified turbulence, we have two different scaling systems.
Since we deal with turbulence in this problem, all the valuables can be expressed in
either inner (wall) or outer units. The outer scaling system is as follows:

xi =
x∗
i

h∗ , ui =
u∗
i

u∗
τ

, t = t∗u∗
τ

h∗ , θ = θ∗ − θ∗0
Δθ∗/2 . (A.1)

The variables in inner units are defined as:

x+
i = x∗

i u
∗
τ

ν∗
, ui =

u∗
i

u∗
τ

, t+ = t∗u∗2

τ

ν∗
, Θ = θ∗ − θ∗w

θ∗τ
. (A.2)

Throughout this thesis, the variables expressed in outer units are represented without
superscripts. Superscripts have also been dropped for the velocity, as they have the
same definition in both outer and wall units, and for temperature, since the dimen-
sionless temperature is defined with different letters (small/capital letter) in the inner
(θ) and outer (Θ) units. Time and position vector in wall units are presented with +

superscript. For the problem of DDC, since we do not deal with turbulence, no inner
and outer units are defined. All the variables are made dimensionless as follows:

θ = θ∗ − θ∗0
Δθ∗
2

, s = s∗ − s∗0
Δs∗
2

, ui =
u∗
i�

g∗β∗
sh

∗(Δs∗/2)
, t = t∗

h∗√
g∗β∗

sh
∗(Δs∗/2)

(A.3)

The only variable with two different scaling is the imposed shear. The two different
scaling of the imposed shear is describes in detail in subsection 2.2.2.
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B
Schematic representation of the

numerical algorithm

Here we schematically represent the numerical algorithm employed to solve the prob-
lem of stratified turbulence and DDC. Since the solution procedure shares many sim-
ilarities between the two problems, we introduced the numerical solution procedure
only for the case of stratified turbulence in section 3.2. The main differences among the
solver used for the problem of stratified turbulence and DDC are i) S-terms introduced
in subsection 2.1.3 and subsection 2.2.1 are different. ii) An additional transport equa-
tion is solved for the salinity. A schematic representation of the numerical algorithm
is shown in Fig. B.1. Note that symbols ∧ and ∨ refer to logical “and” and “or”.

Initialization

Time level : n

Calculation of :

Calculation of :

Calculation of :

Update the solution :

Figure B.1 – Schematic representation of the numerical solver.
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C
Double diffusive convection

validation

Validation refers to the case of DDC in a no-slip/no-slip box at Ras = 107, Prs =
700, Λ = 2 and Le = 100, which replicates one of the cases examined by Yang
et al. [135]. In Fig. C.1, we show the three-dimensional volume rendering of the
instantaneous flow structure (panel a) and the associated two-dimensional maps of
the salinity distribution, taken at three different locations: Near the top boundary
(z = +0.95, panel b); at the center (z = 0, panel c) and near the bottom boundary
(z = −0.95, panel d). Table C.1 shows a comparison between the domain size and
grid resolution of the two simulations, and table C.2 represent the global response
parameters of the flow: salinity Nusselt number, Nus, temperature Nusselt number,
Nuθ, Reynolds number, Re, and salinity boundary layer thickness, λ∗

s/2h∗.

Table C.1 – Comparison of domain size and grid resolution.

Present Simulation Yang et al. [135]
Domain size πh∗ × πh∗ × 2h∗ 4h∗ × 4h∗ × 2h∗

Grid Resolution 512 × 512 × 257 432 × 432 × 240

Grid spacings
Δx = Δy = 3.06 · 10−3 Δx = Δy = 4.63 · 10−3

Δzmin = 7.53 · 10−5 Δzmin = 8.64 · 10−5

Δzmax = 1.22 · 10−2 Δzmax = 1.31 · 10−2

Table C.2 – Comparison of global response parameters.

Present Simulation Yang et al. [135]
Nus 18.26 18.33
Nuθ 1.047 1.045
Re 0.5276 0.5770

(λ∗
s/2h∗)× 10−2 3.305 3.244
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a)

b)

c)

d)

Figure C.1 – Three dimensional volume rendering of salinity field (panel a) and the associated
two dimensional maps of salinity distribution, taken at three different locations: Near the top
boundary (z = +0.95, panel b); at the center (z = 0, panel c) and near the bottom boundary
(z = −0.95, panel d).
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