
Deep Off-Policy Evaluation with
Autonomous Racing Cars

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Fabian Kresse, BSc
Matrikelnummer 11707724

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr. rer. nat. Radu Grosu
Mitwirkung: Dott. Mag. Luigi Berducci

Wien, 12. August 2024
Fabian Kresse Radu Grosu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Deep Off-Policy Evaluation for
Autonomous Racing Cars

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computer Engineering

by

Fabian Kresse, BSc
Registration Number 11707724

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr. rer. nat. Radu Grosu
Assistance: Dott. Mag. Luigi Berducci

Vienna, August 12, 2024
Fabian Kresse Radu Grosu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Fabian Kresse, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 12. August 2024
Fabian Kresse

v

Danksagung

Zuallererst möchte ich mich bei Prof. Radu Grosu bedanken, der mir die Möglichkeit
gegeben hat, an dieser spannenden Masterarbeit zu arbeiten. Ich schätze besonders die
Bereitstellung der notwendigen Ressourcen und des unterstützenden Arbeitsumfeldes,
die diese Arbeit ermöglicht haben.

Ein großer Dank gebührt auch Luigi Berducci, dessen wöchentliche Meetings und ausführ-
liche Rückmeldungen maßgeblich zu dieser Arbeit beigetragen haben. Seine unermüdliche
Unterstützung und seine Geduld beim mehrmaligen Durchlesen und Kommentieren
meiner Arbeit waren von unschätzbarem Wert.

Ohne die Hilfe und das Engagement dieser beiden Personen wäre diese Arbeit nicht
möglich gewesen. Vielen Dank für Ihre Unterstützung, Ihre Zeit und Ihre Expertise.

vii

Acknowledgements

First and foremost, I would like to thank Prof. Radu Grosu for giving me the opportunity
to work on this exciting thesis. I particularly appreciate the provision of the necessary
resources and the supportive working environment that made this work possible.

A special thanks goes to Luigi Berducci, whose weekly meetings and detailed feedback
significantly contributed to this work. His tireless support and patience in reading and
commenting on my work multiple times were invaluable.

Without the help and commitment of these two individuals, this work would not have
been possible. Thank you for your support, your time, and your expertise.

ix

Kurzfassung

Roboteragenten, die mit Reinforcement Learning (RL) in einer Simulation trainiert
wurden, auf die reale Welt zu übertragen, ist in der Praxis schwierig, da sich die Agenten
zu stark an die Besonderheiten des Simulators anpassen. Dies ist besonders problematisch,
wenn die Bewertung der Agenten im selben Simulator erfolgt, da die Überanpassung an
den Simulator verborgen bleibt. Dies führt dazu, dass kostspielige Tests in der realen
Welt notwendig sind, um eine genaue Leistungsabschätzung der Agenten zu erhalten.

In letzter Zeit hat Off-Policy Evaluation (OPE) vielversprechende Anzeichen gezeigt,
den Bedarf an Tests in der realen Welt zumindest zu reduzieren. Dies wird dadurch
erreicht, dass OPE Leistungsabschätzungen basierend auf der Verteilung der Daten in
der realen Welt liefern kann. Allerdings wurde die Wirksamkeit von OPE in realen
Robotikanwendungen noch nicht ausreichend untersucht. Bestehende Benchmarks basie-
ren nur auf simulierten Daten, die die Unvorhersehbarkeit und Komplexität der realen
Welt nicht abbilden. Um diese Forschungslücke zu schließen, präsentiert diese Arbeit
das ersten Robotik-Benchmark für OPE-Methoden in der echten Welt. Als Roboter-
plattform für dieses Benchmark nutzen wir die kostengünstige und leicht zugängliche
F1TENTH-Plattform.

Da die Leistung einiger bestehender OPE-Methoden unzureichend ist, wenn sie naiv auf
unsere untersuchte F1TENTH-Umgebung angewendet werden, untersuchen wir spezifische
Verbesserungen und führen ein Benchmarking von über 20 OPE-Methoden durch. Unter
anderem stellen wir den Termination-aware Per-Decision-Weighted Importance Sampling
(TPDWIS)-Schätzer vor, einen neuen Importance Sampling (IS)-Schätzer, der Trajektorien
mit ungleichmäßigen Längen handhaben kann und bisherige IS-Schätzer aus der Literatur
in unserem Benchmark deutlich übertrifft. Außerdem beweisen wir die Konsistenz dieses
neuen Schätzers, was zeigt, dass er wahrscheinlich auf allgemeinere Probleme angewendet
werden kann.

Schließlich geben wir Empfehlungen dazu ab, welche OPE-Methoden unter verschiedenen
Einschränkungen verwendet werden sollten. Unser neuer Datensatz, das Benchmark, die
vorgeschlagenen Verbesserungen und der neue Schätzer bieten eine solide Grundlage für
die zukünftige Forschung und Entwicklung von OPE-Methoden in der realen Welt.

xi

Abstract

Transferring robot policies trained with Reinforcement Learning (RL) from simulation to
the real-world is challenging due to frequent overfitting to the simulator’s particularities.
This is especially problematic when policy evaluation occurs within the same simulator,
as it conceals overfitting, necessitating frequent and costly real-world deployments for
accurate performance estimation.

Recently Off-Policy Evaluation (OPE) has shown promise in reducing the need for exten-
sive real-world deployment by providing performance estimates based on approximations
of real-world data distributions. However, the effectiveness of OPE methods in real-world
robotics has not been extensively investigated, with existing benchmarks primarily relying
on simulated environments that fail to capture real-world complexities and unpredictabil-
ity. Addressing this gap, this thesis introduces the first real-world robotics benchmark
for OPE methods, utilizing the affordable and accessible F1TENTH platform.

As the performance of some of the existing OPE methods is inadequate when applied
naively to our investigated F1TENTH environment, we explore specific improvements and
benchmark over 20 OPE methods. Among these, we introduce the Termination-aware
Per-Decision-Weighted Importance Sampling (TPDWIS) estimator, a novel Importance
Sampling (IS) estimator capable of handling trajectories with non-uniform lengths,
significantly outperforming previous IS estimators from the literature on our benchmark.
Furthermore, we prove the consistency of this new estimator, indicating that it can be
applied to more general environments.

Finally, we provide recommendations on the most effective OPE methods to employ
under specific constraints. Our novel dataset, benchmark, proposed improvements, and
new estimator offer a robust foundation for future research and development in real-world
OPE methods.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Outline . 3

2 Background and Related Work 5
2.1 Markov Decision Processes . 5
2.2 The Off-Policy Evaluation Problem . 7
2.3 Statistical Estimators . 8
2.4 Off-policy Evaluation Methods . 9
2.5 Off-Policy Evaluation Benchmarks . 16

3 Experimental Setup 19
3.1 F1TENTH Platform . 19
3.2 Agent Design and Parameterization . 26
3.3 Real-world Dataset Collection Protocol 31
3.4 Real-World F1TENTH Offline Dataset 32

4 Deep Off-Policy Evaluation for Autonomous Racing Cars 35
4.1 Model-based . 35
4.2 Fitted Q-Evaluation . 42
4.3 Importance Sampling Methods . 44
4.4 Doubly Robust Estimator . 52

5 The Real-World F1TENTH Benchmark 55
5.1 Evaluation Protocol . 55
5.2 Performance of Off-policy Evaluation Methods 57
5.3 Cross-Method Comparison and Influence of Reward 74
5.4 Which OPE method should be use? . 76

xv

6 Conclusion 79

List of Figures 81

List of Tables 85

List of Algorithms 87

Acronyms 89

Bibliography 91

CHAPTER 1
Introduction

The success of learning algorithms has revolutionized the development of intelligent
machines. Reinforcement Learning (RL) algorithms, in particular, have demonstrated
remarkable capabilities across a wide range of applications, from autonomous driving
to robotic manipulation. These algorithms have achieved feats once thought to be far
beyond the reach of automated systems, showcasing sophisticated decision-making and
adaptability in complex environments.

Despite these advancements, deploying intelligent machines in real-world settings involves
high costs and various risks. Therefore, it is crucial to minimize the deployment of agents
that are either suboptimal or pose hazards. This is especially true in RL robotics control
applications that are trained on massive amounts of simulated data.

Training on simulated data allows scaling in a virtual environment and leveraging
large amounts of computing resources. However, this approach introduces a challenge:
inconsistencies between the real world and the simulator. These discrepancies, termed
the sim-to-real gap, can lead to learned policies overfitting to the simulator, resulting in
potentially brittle controllers when ported to real-world hardware.

Detecting such overfitting to the simulator is not trivial and often necessitates real-
world deployment, risking unsafe behavior in our deployed policy and prolonging the
development cycle for new policies. In standard supervised learning, this issue is mitigated
by the train-test split, where both training and test sets are sampled from the real-world
distribution, enabling accurate performance evaluation on the test set. In contrast, RL
generally involves sampling from an approximate distribution (the simulator), followed
by evaluation on the same distribution, making it harder to detect overfitting concerning
the underlying real-world distribution, as we never directly evaluate on it. As a result, a
policy that performs well in the simulated environment may fail when deployed in the
real world due to overfitting to the simulator’s specific characteristics.

1

1. Introduction

Consequently, evaluating a trained policy before deployment is a major challenge that we
must address to enable the widespread use of RL algorithms in practice. Solely relying
on the simulator where training occurs is insufficient; we need robust evaluation methods
to detect potential overfitting and ensure adequate real-world performance.

Moreover, there are scenarios where hand-coded policies exist, but no simulator is
available. These policies may still require tuning of hyperparameters, which can be costly
and resource-intensive in the real world. While developing a simulator is one option
for evaluation, it is expensive and inherently suffers from the sim-to-real gap. This
further emphasizes the need for alternative evaluation techniques that do not depend on
simulators. To sum up, we want to be able to evaluate the performance of our policies
on the real-world distribution (or a very close distribution) without actually deploying
them in the real world to save on resources.

Such an evaluation is possible with a family of techniques termed Off-Policy Evaluation
(OPE). These techniques utilize a set of historical real-world data, often referred to as
behavior or off-policy data, to estimate the underlying real-world distribution, thereby
enabling the performance evaluation of a novel agent, also known as the target policy.
Because this historical data is typically generated by different policies (the behavior
policies) than those currently being evaluated, these techniques are termed off-policy
techniques. Figure 1.1 illustrates the process of OPE.

Off-Policy Data
OPE Methodߨ ܸగ

Figure 1.1: The process of OPE involves estimating the performance (V π) of a policy π
given historic off-policy data collected in the real world. Figure inspired by [FNN+21].

Crucially, we need to have access to historical datasets. These datasets can be collected
by human experts or from previous policy prototypes. Alternatively, we may perform a
small-scale real-world deployment of some of our agents and perform OPE only on the
remaining agents and identify additional agents that would be worthwhile to be deployed.

Despite the advancements of OPE methods in recent years, their practical usability
has been confined to simple classes of policies and simulated tasks. Recently, novel
benchmarks have been proposed by [FNN+21], [QZG+22], and [VLA+21] to extend the
validation of OPE methods on policies parameterized by deep neural networks. However,
these benchmarks rely solely on simulated data and do not necessarily transfer to real-
world robotics tasks. We believe validating OPE methods in real-world scenarios is

2

1.1. Outline

necessary to assess and reveal their effectiveness in robotics control. Only real-world
data retains the complexity and uncertainty necessary to evaluate safe deployment and
study the sim-to-real gap from the perspective of OPE. To this aim, we propose a novel
application for autonomous racing with real-world F1TENTH miniature racecars.

This aim leads to the following research questions that are answered across this thesis:

1. How can OPE methods be effectively benchmarked in the F1TENTH environment?

2. Which OPE methods perform best in the F1TENTH environment?

3. How can OPE methods be enhanced to improve their practical application in the
context of F1TENTH?

4. How effective is OPE in bridging the sim-to-real gap, when compared to simulation?

In this thesis, we answer these research questions by developing an OPE benchmark for
the F1TENTH environment. We first collected real-world data with existing controllers
in lab conditions. Then, we conduct an extensive experimental phase to compare the
performance of various existing OPE methods. After identifying those approaches’
shortcomings, we finally propose various adaptations tailored to our specific robotics
applications, some of which can be applied more generally to other environments.

1.1 Outline
This thesis is structured in the following way:

Chapter 2 introduces the OPE problem formally and outlines the necessary background
for discussing OPE. Specifically, the main approaches from literature concerning basic
OPE techniques and previous benchmarks are introduced.

Chapter 3 discusses the specific F1TENTH robotics environment we investigate, including
the definition of our agents, the process of off-policy dataset generation, and our evaluation
dataset.

Chapter 4 presents the concrete OPE methods benchmarked in the real-world F1TENTH
environment. Specifically, we discuss the adaptation and design choice to improve the
existing approaches, including the novel TPDWIS estimator and a proof of its consistency.

Chapter 5 describes the experimental evaluation and reports our benchmark results. At
the end of the chapter, we provide recommendations on which OPE method to employ.

Lastly, Chapter 6 summarizes our findings, discusses limitations, and provides direction
for future work.

3

CHAPTER 2
Background and Related Work

This chapter introduces key concepts and methodologies essential to this thesis. It
covers Markov Decision Processes (MDPs), the Off-Policy Evaluation (OPE) problem,
relevant background on statistical estimators, various OPE methods, and examines prior
benchmarks and their results concerning OPE methods.

2.1 Markov Decision Processes
A Markov Decision Process (MDP) is a mathematical framework for modeling stochastic
decision-making processes. The framework is comprised of an environment and an agent
that takes action and influences the state of the environment over time. Furthermore,
the quality of decisions is modeled with a reward signal, a numerical value supplied to
the agent at each timestep.

In this thesis, we consider finite-horizon MDPs that are characterized by a tuple
(S, A, P, R, γ, T), defined as follows:

• S: Represents the state space, denoting all possible states the system can take. A
specific state is denoted with s. Furthermore, an environment starts in an initial
state s1. As a concrete example, an approximate state of a racing car might be
described according to its pose relative to the race track and the current velocities
the car experiences. We generally also include the number of timesteps since the
initial state in our state.

• A: The action space, encompasses all possible actions the agent can take to influence
the next state of the system. A specific action is denoted with a. In our autonomous
racing setting, the action space can be described by a steering command and a
target velocity.

5

2. Background and Related Work

• P : The transition probabilities, P : S × A × S → [0, 1] denote the probability of
reaching a subsequent state st+1 from a state st by performing action at. Since the
transitions are probabilistic, we can capture inherent uncertainty in our environment,
such as state estimation errors and inherent stochasticity due to uncertain timings
or unknown parameters.

• R: The deterministic reward function R : S × A × S → R maps a transition,
composed of state st, action at and next state st+1 to a scalar value rt+1 , quantifying
the immediate reward received upon state transition. For instance, with respect to
racing agents, we might consider a progress reward that scales with the distance
we cover towards our goal line between subsequent states. As we receive immediate
feedback the reward can also be used to guide and train an agent to perform better
in the future.

• γ: The discount factor γ ∈ [0, 1] assigns more weight to rewards that occur sooner
compared with delayed ones.

• T : Our termination function, T : S → {0, 1}. Based on the state, this function
marks whether the state is absorbing (1) or not (0). We call the transitions from the
starting state to an absorbing state an episode. In a racing scenario, the termination
function can be defined as colliding with the environment or getting close to it.
As we deal with finite horizon MDPs every episode is also terminated after a set
number of timesteps.

Figure 2.1 gives a visual overview of the interactions in a MDP.

Environment

Agent
௧ݎ ,௧ݏ ݀௧ܽ௧ܽ௧ାଵ

Figure 2.1: Depiction of an MDP. The environment provides the state st, reward rt and
termination signal dt. Based on this, the agent emits an action at+1, which is again
applied to the environment.

6

2.2. The Off-Policy Evaluation Problem

One fundamental assumption in MDPs is the Markov property, which states that
the state at t + 1 only depends on the state and action at t [SB18]. In our setting, we
consider a stochastic policy π : S × A → [0, 1] from which we sample an action at each
timestep, a ∼ π(s). This setup provides a structured approach to model decision-making
processes and their performance in terms of expected cumulative returns.

A trajectory, is a sequence of tuples τ = {(s1, a1), . . . (si, ai), . . . (sT , aT)}, generated by
repeatedly sampling the next state from our transition probabilities st+1 ∼ P (st, at),
where the action is sampled from the stochastic policy, at ∼ π(st), as discussed above.
We use sτ

t and aτ
t to denote the state and action within trajectory τ . If the identity of

the trajectories is unimportant, we may omit the superscript in our notation. We denote
a trajectory generated by a specific policy π as τπ.

In line with this notation, we denote the reward at timestep t in the trajectory τ with rτ
t .

Given this notation, the return of a complete trajectory Rτ can be calculated as:

Rτ =
T (τ)�
t=1

γt−1 · rτ
t (2.1)

Here, we abuse notation slightly, as we supply our termination function T (·) with the
trajectory (which includes actions), and it returns the timestep on which termination
occurs, based solely on the state.

2.2 The Off-Policy Evaluation Problem
Given a fully specified MDP, we may compute the expected performance V π of our target
policy π, quantified by its expected cumulative reward. Formally, we can express this as:

V π = E[Rτ |τ ∼ π] (2.2)

However, the transition probabilities P , the reward function R or at least the termination
function T are unknown or very hard and costly to infer in most interesting settings.
Hence, we cannot sample trajectories and compute Rτ directly. Off-Policy Evaluation
(OPE) is a collection of techniques to estimate V π leveraging pre-existing data.

In particular, we assume access to an off-policy dataset, consisting of trajectories gener-
ated with various behavior policies {π1, . . . πi, . . . πM }. The trajectories may consist of
completely different behavior policies, previously deployed solutions, or human input in
the case of teleoperation. We formally denote a dataset comprised of trajectories of such
behavioral policies as:

Db = {τπ1
1 , . . . , τπ1

N1
, . . . , τπi

1 , . . . , τπM
NM

} (2.3)

According to this notation, τπi
j denotes the jth trajectory collected under policy πi.

7

2. Background and Related Work

As implied by the off-policy paradigm, our dataset Db generally does not contain trajecto-
ries from the target policy π. Several OPE methods have been developed to estimate the
target performance by leveraging the behavior data and considering the difference with
the target policy. In Section 2.4, we will present the most relevant works for our setting.

2.3 Statistical Estimators
Solving the OPE problem requires estimating accurate statistics from off-policy data.
Therefore, statistical estimators are at the core of OPE methods. These offer different
accuracy in the estimation, trading off bias and variance. This section introduces
fundamental concepts of statistical estimators relevant to the discussion of OPE methods.

The choice of OPE technique involves navigating the trade-off between bias and variance
- a fundamental concept in statistical learning theory [GBD92, JWH+13]. In this context,
bias refers to the error introduced by the assumptions made by the model to simplify
the real-world problem. Variance, on the other hand, refers to the error that occurs due
to the model’s sensitivity to the specific samples used to generate the training dataset.
An estimator with a low variance is more likely to return an acceptable result with less
training data. Accepting some bias, especially when considering smaller datasets, can
reduce variance - potentially reducing overall error [SB18, JWH+13].

However, many estimators discussed throughout this thesis are also consistent. Meaning
that the bias approaches zero as our training dataset grows to infinity. These concepts
are formally defined in the following, as in [Tho15].

Definition 1 (Almost Sure Convergence). A sequence of random variables (Vn)∞
n=1 is

said to converge almost surely to a random variable V if:

Pr
�

lim
n→∞ Vn = V

�
= 1.

Here, Pr denotes the probability measure, quantifying the likelihood of a particular event
occurring.

Definition 2 (Unbiasedness). Let V π be a real-valued parameter of interest and let V be
a random variable. V is said to be an unbiased estimator of V π if and only if

E[V] = V π.

Definition 3 (Consistency). Let V π be a real-valued parameter of interest and let (Vn)∞
n=1

be an infinite sequence of random variables. V is said to be a (strongly) consistent
estimator if and only if

(Vn)∞
n=1

a.s.−−→ V π.

Where a.s.−−→, denotes almost sure convergence, as in Definition 1.

8

2.4. Off-policy Evaluation Methods

Intuitively, an unbiased estimator will match the true value in expectation, while the
error of a consistent estimator will approach zero as more and more samples are made
available. In our setting, the random variable V is our specific estimator, which is
stochastic over the trajectories in our dataset Db. A sequence of estimators is defined by
adding additional trajectories to our dataset Db.

Importantly, being unbiased does not guarantee convergence as we draw more and more
samples from V . To make this clear, let us consider an example of an unbiased but
inconsistent estimator inspired by [Sta12].

Given an on-policy dataset D consisting of trajectories generated with π, we can choose
a return Rτ of one specific trajectory, τπ

i , as our estimator for V π. In that case, clearly,
E[Rτ] = V π. However, as more samples are added to Db, the error Rτ − V π will remain
constant, as our estimator does not depend on the rest of the dataset. To conclude,
the estimator is unbiased - but not consistent. For examples of other combinations of
(un)biasedness and (in)consistency, the reader is referred to [Tho15].

2.4 Off-policy Evaluation Methods
This section discusses various methods to address the OPE problem presented in Sec-
tion 2.2. To this aim we structure this section into four parts, with each of them addressing
one family of OPE methods:

• Model-based (MB): these techniques directly approximate the transition proba-
bilities F ≈ P and estimates the performance of the target policy π by performing
Monte-Carlo trajectory rollouts on F .

• Fitted-Q-Evaluation (FQE): this family of model-free OPE methods learns a
Q-function to predict the target performance from state/action pairs by ensuring
that transitions adhere to the Bellman equation.

• Importance Sampling (IS): a family of classical statistical estimators that re-
weights the behavior performances based on the likelihood of the observed actions
under the target policy compared to the behavior policy.

• Hybrid: These methods combine IS methods with one of the other estimators.

2.4.1 Model-based
Model-based (MB) methods rely on an approximation F of our true transition probabilities
P . This approximate model can be derived from expert knowledge or learned from data,
as we will explain later in this section. Having an approximation F , we can query it to
predict the next state:

st+1 ∼ F(st, at) (2.4)

9

2. Background and Related Work

We can now address the counter-factual question of estimating the performance π by
performing Monte-Carlo trajectory rollouts. Therefore, our estimate is given as:

V π
mb = 1

|Db|
�

sτ
1 ∈Db

1
N

N�
i=1

T (τ)�
t=1

γt−1R(sτ
t , aτ

t , sτ
t+1)

����sτ
t+1 ∼ F(sτ

t , aτ
t), aτ

t ∼ π(sτ
t)

 (2.5)

where we start each rollout at the starting points of the trajectories contained in Db.
Hence, our estimator returns the value estimate conditioned on the provided starting
points. Since both our transition function F and our policy π may be stochastic, we take
the average over N Monte-Carlo rollouts per starting point, such that we can estimate the
true expected value. This formulation also relies on of both the reward and termination
functions, R and T , respectively, being known.

F can be inferred from pre-recorded datasets. Here, we can make one larger distinction
- human-derived dynamics equations, typically in the form of differential equations,
and dynamics learned with function approximation methods directly from the recorded
dataset. The first kind, typically known as simulation, is generally not inferred from our
concrete dataset Db. For the second kind, we explicitly learn a transition model from the
data in Db.

Simulation

Although simulation is often not mentioned alongside traditional OPE methods in the
literature, it fits into this category. The reason for this is straightforward: if we have
access to dynamics equations that model our underlying system, these are generally built
on vast amounts of empirical data. This apparent oversight in previous literature may
stem from previous works treating the simulator as the primary environment under study,
contrasting with the work in this thesis, wherein the agent is deployed in the real world.

While simulation can be a very effective technique, and many simulators are available
for various domains like robotics [BB20, WWG+21, CLW+07], they require extensive
domain knowledge and resources to develop. In our specific setting of autonomous racing,
a dedicated simulator is available [BB20]. However, achieving the most accurate results
requires precise tuning of over 15 parameters, some of which are not readily inferable.
Despite the setting of these parameters, a residual sim-to-real gap persists. This gap is
primarily due to the simulator’s reliance on an approximate representation of the real
world, such as using a single-track dynamics model, which cannot capture every nuance
of real-world conditions.

As already touched upon in Section 1, this issue is commonly known as the sim-to-real
gap [SFMP21, ZQW20]. Many techniques have been proposed to address this gap (see
[SFMP21] and [ZQW20] for comprehensive reviews), with varying degrees of dependence
on real-world deployments. In any case, the performance of simulation directly depends
on the quality of our human-derived dynamics equations and the used parameters.

10

2.4. Off-policy Evaluation Methods

Learning F
Learning the transition probabilities has been extensively studied under the umbrella
of Model-based RL and has yielded promising results, especially when parameterizing
F as a neural network and training it in a probabilistic fashion with log-likelihood
loss [MBJ17, ZPN+21, CCML18, FNN+21, US21]. Some techniques that have, to our
knowledge, not yet been explicitly explored in the OPE setting but are readily transferable
can be found in the survey by [MBP+23]. For instance, multiple works (e.g., [AN04] and
[ACML18]) have found that the state prediction accuracy can be increased by taking
longer parts of trajectories into account, either during training [AN04], or predicting
multiple time-steps at once [ACML18]. In principle, any already existing method for
learning dynamics functions from an offline dataset is applicable to OPE.

If the reward R and termination T functions are not known beforehand, we might
additionally learn them from data [ZPN+21, KN20]. For instance, we can learn the
termination and reward functions as additional models [KN20]. Other work shows that
learning them as an additional state dimension can be beneficial [ZPN+21, MBP+23].
However, in our setting, we assume both the reward and termination functions to be
known, and only focus on learning the transition dynamics.

2.4.2 Fitted-Q-Evaluation
Fitted-Q-Evaluation (FQE) was introduced by [LVY19] specifically for the OPE setting.
FQE predicts V π directly with a Q-function, parameterized as a neural network. Algo-
rithm 2.1 shows the training procedure for FQE. Training relies on the Bellman backup,
as seen in line 4 of Algorithm 2.1.

The trained FQE method takes in a state-action tuple and directly predicts the expected
return for it. Hence for our dataset, the FQE-estimator can be written as:

V π
F QE = 1

|Db|
�

τ∈Db

1
N

N�
i=1

�
Q(sτ

1 , a1)
��a1 ∼ π(sτ

1)

(2.6)

Since our policy π is stochastic, we can sample multiple actions and compute Q estimates
for each, averaging to improve the estimator. N is the number of samples we draw from
our stochastic policy.

2.4.3 Importance Sampling
Importance Sampling (IS) is a longstanding method in statistics that has been successfully
transferred to the OPE problem [PSS00, Tho15]. We will start by discussing IS in general,
then its application to MDPs, and last presenting different IS methods.

General formulation. In the IS framework, we are interested in estimating the
expected value of a function f over samples X, distributed according to some target

11

2. Background and Related Work

Algorithm 2.1: Simplified FQE training, code adapted from [LVY19].
Input: Training Dataset D, Actor π, number training steps T , discount factor γ
Output: Trained FQE Model θ

1 θ = initialize(θ)
2 for 1 to T do
3 {s, a, r, s′, d} ∼ Db // Sample state, action, single-step

reward, next state and boolean done
4 y ← r + (1 − d) · (γQ(s′, π(s′))) // compute targets
5 ŷ ← Q(s, a) // compute Q prediction
6 loss ← loss_fn(y, ŷ) // compute some divergence measure
7 θ ← θ − α∇θloss // update network

8 end
9 return θ

distribution pt:
E[f(X)|X ∼ pt]

having access to samples from a behavior distribution pb, for which we can therefore
compute E[f(X)|X ∼ pb]. The IS estimator allows us to adjust our computations from
pb to effectively estimate the desired expectation under pt. The IS estimator V ′

IS is given
as [Tho15]:

V ′
IS = 1

|X|
|X|�

x∼pb

pt(x)
pb(x)f(x) (2.7)

with |X| being the total number of samples x we draw from pb.

We call pt(X)
pb(X) the Importance Sampling ratio. This ratio reweights the returns of f , having

a weight larger than one for values that are more likely under our target distribution and
a weight less than one for values that are less likely. If the likelihood is the same for each
distribution, the ratio will be one - hence, no reweighting occurs for such samples. Figure
2.2 shows a visualization of how the density of our function f is adjusted from pb to pt.

IS is an unbiased estimator under the following assumption on the probability distribu-
tions:

Assumption 1 (Absolute continuity). pt(x) ̸= 0 =⇒ pb(x) ̸= 0, x ∈ X.

To derive the IS estimator and show its unbiasedness, we can follow the derivation of
[Tho15]:

12

2.4. Off-policy Evaluation Methods

ݐ݅ݏ݊݁݀
ݕ

(ݔ)݂

݂ ݔ ݂ <್ݔ 1 < 1

Figure 2.2: The figure presents the initial distribution of f , represented by a solid line,
derived from samples taken from pb, denoted as f(xpb

). This distribution is modified
using the IS ratio to align with the target distribution f(xpt), illustrated by a dashed
line. Regions labeled with > 1 and < 1 indicate areas where the IS ratio exceeds or falls
below one, respectively.

E[f(X)|X ∼ pt] =
�

x∈supp pt

pt(x)f(x)

(1)=
�

x∈supp pb

pt(x)pb(x)
pb(x)f(x)

=
�

x∈supp pb

pb(x)pt(x)
pb(x)f(x)

= E
�

pt(X)
pb(X)f(X)|X ∼ pb

(2.8)

In step (1) we multiply with 1 = pb(x)
pb(x) . This manipulation requires Assumption 1;

otherwise, the division by pb would be undefined in cases where pb = 0, making it
impossible to compute the IS estimator for such data points. Furthermore, in addition to
being unbiased, as shown above, IS is also consistent [Tho15].

Importance Sampling for Off-Policy Evaluation. We will apply IS in our MDP
context, as for example done by [Tho15], [SB18], and [PSS00]. Our data consists of
trajectories from our behavior policies, τ ∼ πi, with f being replaced by our reward
function. Since our rewards depend on the state history, we are interested in the IS
ratio reflecting the relative probability of a trajectory under the target policy, given the
behavior policy. Therefore, the IS ratio for a single timestep should reflect the likelihood
of both agents ending up in the same state st+1. Hence, the single-step IS ratio is given

13

2. Background and Related Work

as [Tho15, SB18]:

pτ
t = π(at|st)P (st+1|st, at)

πb(at|st)P (st+1|st, at)
= π(at|st)

πb(at|st)
(2.9)

Here, the transition probabilities, P (st+1|st, at) cancel out, simplifying our expression
to the probability of picking an action under our target distribution divided by the
probability under our behavior distribution. We can now restate Assumption 1 for our
specific MDP case:

Assumption 2 (absolute continuity MDP). π(at|st) ̸= 0 =⇒ πb(at|st) ̸= 0 st ∈
S, at ∈ A.

Assumption 2 has a serious consequence on the agents that we can investigate in this
thesis if we want to employ IS in a straightforward manner: our agents need to be
stochastic over the action space. Otherwise, we cannot satisfy the assumption. Consider
a deterministic agent π that takes a different action in st than the deterministic agent πb.
In that case π(at|st) ̸= 0, but πb(at|st) = 0, making Equation 2.9 undefined.

When considering the cumulative IS ratio of trajectories till timestep t, we write:

pτ
1:t =

t�
t′=1

pτ
t′ (2.10)

If we are interested in the IS ratio of a complete trajectory, we denote it with pτ
1:T (τ),

following the notation for T (·) returning the length of a trajectory, as established earlier.

Variants of Importance Sampling

Ordinary Importance Sampling Ordinary Importance Sampling reweights the
returns of all trajectories in Db. The reweighting is performed according to the cumulative
product of the trajectory-wise IS ratios as in Equation 2.10. Our ordinary importance
sampling estimator V π

IS is therefore given as:

V π
IS = 1

|Db|
�

∀τ∈Db

Rτ · pτ
1:T (τ) (2.11)

As for example shown by [Tho15], V π
IS is an unbiased and consistent estimator. However,

the estimator can have very high variance [PSS00, Tho15, SB18, LKTF20].

Per-Decision Importance Sampling

The high variance associated with ordinary IS can sometimes be reduced by using
Per-Decision Importance Sampling (PDIS), as introduced by [PSS00].

14

2.4. Off-policy Evaluation Methods

In the per-decision approach, rather than applying the cumulative IS ratio over an entire
trajectory, each reward at timestep t is adjusted according to the cumulative IS ratio up
to that specific step. The estimator V π

P DIS is defined as:

V π
P DIS = 1

|Db|
�

∀τ∈Db

T (τ)�
t=1

γt−1 · rτ
t · pτ,1:t (2.12)

This variant, also known as step-wise IS, does not compromise the estimator’s unbiasedness
or consistency [PSS00, Tho15], but offers reduced variance in some cases.

Weighted Importance Sampling

The range of estimates from the IS and even the PDIS estimators can still be very high
due to the IS ratios having an extensive range of possible values [PSS00, Tho15, SB18].
In many settings, these estimators will return values far below (like in our setting, see
Section 4.3) or above any return observed in the dataset.

This large reward range can be remedied by utilizing Weighted Importance Sampling
(WIS). This is achieved by normalizing the IS ratios, such that they sum up to one [Tho15,
PSS00, SB18]. The WIS sampling estimator is given by:

V π
W IS =

�
∀τ∈Db

Rτ
pτ

1:T (τ)
w

(2.13)

w =
�

∀τ∈Db

pτ
1:T (τ) (2.14)

Henceforth, we refer to the fractional part of Equation 2.13 as the normalized Importance
Sampling ratio. With the normalized IS ratios now adding up to one, the estimated value
of VW IS falls within the range of the highest and lowest cumulative rewards seen in the
associated training data.

Although WIS is no longer unbiased, it is still consistent, with the bias converging
asymptotically to zero under Assumptions 2 [Tho15, SB18]. Additionally, WIS generally
decreases variance significantly, compared to the previous IS estimators. This is very
important in cases where there is not a lot of data available [Tho15].

2.4.4 Hybrid-methods
Hybrid methods combine IS with another method. The other method is generally a
neural network based approach that allows us to estimate V π(s) and Qπ(s, a) [JL16,
FNN+21, VLA+21]. Hence, both MB and FQE-based methods are applicable in this
context.

15

2. Background and Related Work

Generally, IS is utilized with a dataset where the per-step rewards have been modified
in some way by the non-IS-based method. For instance, the Doubly Robust Estimator
(DR) estimator adjusts the per-step rewards with the time-difference error according
to V π(s) and Qπ(s, a). More details and the concrete formalism for DR are given in
Section 4.4. Other advanced hybrid estimators, like MAGIC [TB16], improve results
further by optimizing for the horizon until which IS is applied in a trajectory, after which
only the value function is utilized [TB16].

This thesis explores the performance of various versions of DR, utilizing FQE with
different IS estimators.

2.5 Off-Policy Evaluation Benchmarks
The performance of different OPE methods is inherently tied to the specific task and
the off-policy data. In order to advance the state of the art in OPE and enable fair
comparisons multiple benchmarks have emerged, which are discussed in this section.

Thomas et al.2015

Voloshin et al.2019
Fu et al.2021

Qin et al.2022
This Thesis

Figure 2.3: Example environments from previous OPE benchmarks. This depiction aims
to show the approximate evolution of OPE benchmarks, culminating in the real-world
OPE benchmark introduced in this thesis. However, it needs to be pointed out that there
is some overlap in the tasks of previous benchmarks, and OPE techniques might have
already been applied to the shown environments earlier than depicted.

Caltech OPE Benchmarking Suite (COBS): [VLA+21] benchmark OPE methods
in a total of 8 different simulation environments, ranging from a simple so-called ’graph’
environment with a single integer state and binary actions to more complex and challenging
ones, like Mountain Car and Atari (Enduro). In their work, they benchmark a total
of 33 different OPE methods in these environments; most of the methods are different
combinations of MAGIC and DR with function approximation estimators. They find
that the performance of OPE methods, perhaps unsurprisingly, depends heavily on

16

2.5. Off-Policy Evaluation Benchmarks

the environment and the dataset-target policy mismatch, with no method consistently
outperforming the others across experiment settings [VLA+21]. Regarding IS methods,
they consider IS, PDIS, WIS, and PDWIS, with their experiments indicating PDWIS
performing best amongst them [VLA+21]. They also find that FQE can perform well and
is often amongst the best methods, especially in limited data domains. Regarding hybrid
methods, MAGIC with FQE performs best, generally outperforming its DR counterpart
[VLA+21]. Last, in their experiments, where they consider a naive Model-based method,
this method performs worst among the considered methods since small errors in the
transition model tend to accumulate [VLA+21]. As evaluation metrics, COBS considers
Near-Top Frequency, measuring how often a method tends to be in the top 10% of the
best performing methods, as measured with relative mean squared error across multiple
seeds [VLA+21].

Near real-world Benchmark for offline RL (NeoRL): [QZG+22] proposes a com-
plete pipeline for training and evaluating offline RL algorithms. Importantly, they
emphasize the need for realistic, real-world-like data generation. NeoRL contains a
total of 52 tasks across 7 domains [QZG+22]. All of the tasks are simulation-based.
Furthermore, since NeoRL focuses on providing a whole pipeline for offline RL in general,
they only evaluate two OPE methods, namely FQE and WIS. Both methods severely
underestimate the true return across all tasks, ranking the seven investigated policies
incorrectly, with both preferring the third best-performing policy. Furthermore, they
note that WIS and FQE often cannot distinguish bad-performing policies from good ones
[QZG+22].

Deep OPE Benchmark (DOPE): [FNN+21] propose the Deep OPE Benchmark
(DOPE) focusing on complex continuous robotic domains, incorporating established
benchmarks in this domain, namely RL Unplugged [GWN+20] and D4RL [FKN+20].
Similar to the previously discussed benchmarks, they only consider simulation data. They
benchmark FQE-L2, DR, a version of PDWIS, VPM, and DICE on all their tasks and
additionally evaluate an Autoregressive Model-based method and FQE-DD on a subset of
tasks [FKN+20]. VPM and DICE do not apply to the setting investigated in this thesis
since they aim to estimate the action log probabilities, which we assume are known (see
Chapter 3.1.2 for more information on the setting we investigate). Their results indicate
that the versions of FQE and the MB methods perform best, generally outperforming
DR slightly. However, they assume the action probabilities are unavailable. This most
likely explains the under-performance of methods that rely on IS. Across all benchmarks
FQE, DR, and as indicated by DOPE, MB methods can perform well in OPE, depending
on the environment and setting.

Figure 2.3 shows a selection of tasks considered in the previously discussed OPE bench-
marks and the task considered in this thesis. Importantly, none of the benchmarks
known to the authors consider real-world robotics data or investigate the potential for
OPE to bridge the sim-to-real gap in real-world robotics.

17

CHAPTER 3
Experimental Setup

This chapter details the creation and the properties of the F1TENTH offline dataset
studied throughout this thesis. First, Section 3.1, describes the setup of our mobile
robot actor and the associated Markov Decision Process of our environment. Section 3.2
describes the design and parametrization of the agents deployed on the robot platform.
Section 3.3 discusses the collection of real-world data. Last, Section 3.4 discusses proper-
ties of the resulting dataset, including the number of agents contained, the trajectories
and the split into train and evaluation datasets.

3.1 F1TENTH Platform
In order to study the performance of OPE methods in real-world robotics applications,
we adopted the F1TENTH robotics platform, introduced by [OZKM20]. The platform is
ideal for testing mobile robotics applications due to its simple accessibility and relatively
low-cost hardware. The simulator, integrated in a training environment f1tenth-gym,
supports the Robot Operating System (ROS) [QCG+09] and implements the gymnasium
API [BCP+16]. The accessible features of this platform have made it an attractive choice
for deploying and studying Reinforcement Learning (RL) methods in the real world,
with various research projects having already explored its potentials [BBB+22, EEJ21a,
EEJ21b]. Furthermore, the F1TENTH platform is regularly used in racing competitions,
attracting a diverse range of research activities [BZL+22].

3.1.1 F1TENTH Actor
In this section, we describe the hardware of the platform and the auxiliary software.

Hardware: We conducted our experiments on car-2 of the TU Wien ARC racing fleet.
This vehicle is built according to the official F1TENTH guidelines [F1T23].

19

3. Experimental Setup

For state inference and navigation, we employ a the Lidar Hokuyo 10LX 2D [Hok15]. The
LIDAR has a 270-degree field of view (FOV) with a total of 1081 LIDAR beams spread
evenly across it. LIDAR data is made available in a best-effort manner with an average
update rate between 30-40Hz. As IMU sensor, we employ a Sparkfun Razor-9DOF IMU
[Spa19]. The IMU data is published with an average of 100Hz. As computing platform,
we adopted a Nvidia Jetson Xavier NX, running Xubuntu. Figure 3.1 shows a vehicle
equivalent to the one utilized for this thesis.

Figure 3.1: A F1TENTH racing vehicle, equivalent to the one employed in this thesis.
Image minimally adapted from [GB24].

Auxiliary Software: The vehicle software uses ROS2 Foxy to exchange data between
sensors and actuators. Figure 3.2 provides an overview of our ROS2 setup for deploying
agents in the real world. Our implementation of the F1TENTH racing stack serves as the
primary abstraction layer for sensor and actuators interaction. This stack encapsulates
all necessary ROS2 nodes to deploy the robot. Amongst the most relevant nodes, we
have the Particle Filter, which is responsible for pose estimation from the raw LIDAR
data; the IMU node handling the calibration and forwarding of the IMU data; and the
Teleop Node for manual teleoperation and interventions.

The second major component shown in in Figure 3.2, the Agent Wrapper, has been
developed specifically for this thesis. The wrapper’s primary purpose is to provide
the same interface in the real world as in simulation, such that executing the same
agent in the real world and simulation is possible. To this aim, the Observation Dict
Assembler pre-processes the received real-world observations and provides them in a
unified dictionary format to the experiment controller and, subsequently, the agent. The
Agent Wrapper is also responsible for data collection and controlling trajectory rollouts

20

3.1. F1TENTH Platform

Particle Filter

IMU

Teleop

. . .

Observation Dict Assembler

Experiment Controller

Logging Agent

raw obs

actions

F1TENTH Stack

Agent Wrapper

Hardware

Real World

Figure 3.2: ROS2 architecture for real-world data-collection. The left part of the diagram,
in the ’Real World’ category, shows the F1TENTH software stack to run the vehicle.
The Agent Wrapper, on the right side, implements a unified interface for our agent and
controls real-world dataset collection.

as described in more detail in Section 3.3. A modified version of the Agent Wrapper
exists for simulation, which takes in the simulation observations and provides the same
observation to the agent as the real-world Agent Wrapper.

3.1.2 F1TENTH Offline Dataset Environment
In addition to an actor on which we can deploy an agent, our environment is defined by
the racing track on which the vehicle drives. This thesis focuses on a single real-world
racing track. The track, as obtained with LIDAR-based SLAM, specifically with the
ROS2-slam toolbox [MJ21], is shown in Figure 3.3.

In the following, we describe the concrete F1TENTH MDP, including action space, state
space, state-space transitions, and the investigated reward functions.

Action Space

The previously discussed F1TENTH stack takes a target steering angle in radians (rad)
and a target velocity in meters per second (m/s) as an input. The agent wrapper provides
a target velocity between 0.5 and 5.0 m/s and a steering angle. Subsequently, the racing
stack attempts to match these targets. However, the agents we employ only provide

21

3. Experimental Setup

0.00 2.50 5.00 7.50 10.00

x [m]

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

y
[m

]

Treitlstraße, Infsaal 3

Figure 3.3: Our map as inferred by LIDAR-based SLAM. The driving direction is always
clockwise. White areas indicate areas where driving is possible. Black areas are outside
of the x/y state space.

changes in action, or delta actions, capped at ±0.3 for both steering and velocity. Hence,
our agent wrapper calculates the absolute target commands from the previous actions.

Observation Space

Our agents are provided with an observation dictionary that contains the data shown in
Table 3.1. To keep our agents stateless, as required by the OPE techniques employed, we
include the previous absolute actions in the observations.

Observation Unit Inference range
LIDAR Ranges m (normalized) LIDAR Sensor [0,1]

position x m computed [-∞, ∞]
position y m computed [-∞, ∞]
position θ rad computed [0,6.283]

linear velocity x m/s IMU Sensor [-∞, ∞]
linear velocity y m/s IMU Sensor [-∞, ∞]

angular velocity z m/s IMU Sensor [-∞, ∞]
previous steering rad stored [-0.418, 0.418]
previous velocity m/s stored [0.5,5.0]

timestep - computed [0,250]

Table 3.1: The observation dictionary provided to each agent.

• LIDAR Ranges: To reduce the dimensionality, we down-sample the original 1081
rays to 54. Next, we pre-process them by cutting off ranges longer than 10 meters
and normalizing the ranges to fall in the intervals of 0 and 1.

22

3.1. F1TENTH Platform

• Position: The position is defined with respect to our map origin. For pose
estimation, we utilize a particle filter [WK18]. The particle filter computes the pose
by ray-casting from each particle in a particle cloud, generated randomly around
an estimated pose, picking the particle that has the highest similarity with our
LIDAR rays. We use the default parameterization of the particle filter as used in
previous racing events.

• Velocities: The velocity vector is estimated with the IMU.

• Previous Absolute Actions: Since our agents have to be stateless and we are
employing delta-actions, we have to provide our agents with the previous absolute
steering and velocity targets. These are initialized in the first timestep to a neutral
steering of 0.0 and an initial velocity of 0.5 m/s in all trajectory rollouts we perform.
After this initial timestep, they are always equivalent to the action supplied to the
racing stack in the previous timestep.

• Timestep The timestep in the MDP is provided, as it is required for accurately
modeling episodic MDPs.

Due to the asynchronous nature of ROS applications, the observation dictionary for
real-world inference is updated in a best-effort manner. This means that as soon as new
data is registered, we update the corresponding entry in the observation dictionary. In
the real-world case, the observations provided to the agent are subject to noise and delay.
Especially at high speeds, the delay becomes a significant issue for the agent, acting
on old information. On the other hand, data provided by our utilized f1tenth-gym
simulator [OZKM20] is largely noise-free (some small noise is applied to the LIDAR rays),
and state estimation is exact. We discuss this sim-to-real gap and resulting performance
differences in greater detail in Section 5.2.1.

State-space Transitions

Operating in a continuous real-world environment, we discretize time to model transitions
with a specific granularity, choosing a frequency of 20Hz for both logging data and
invoking our agent. Importantly, given the real-world nature, action execution is delayed,
and observations will also be old. While we log the timestamps of both the action emission
and state estimation and make it easy to access them in our dataset environment, we
disregard them in the rest of this thesis, leaving a potential area for future work. Figure
3.4 shows the difference between the timestamp of state estimation and action emission
for one trajectory. Note that the actual time delta is significantly higher since there
are also delays associated with data capture at the sensor and forwarding the required
data to our state estimator. As our system has no real-time guarantees, we occasionally
experience very high delays, as visible in Figure 3.4.

23

3. Experimental Setup

0 50 100 150 200 250

MDP Time Step

0.02

0.04

0.06

0.08

0.10

0.12

0.14
T
im

e
D
iff
er
en
ce

[s
]

Time Difference between Action and Pose Timestamp

Figure 3.4: Delta-time between state estimation and action emission in seconds vs.
timestep for one sample trajectory rollout. The spikes visible in the figure are large
time delays between state estimation and action emission. As we are on a non-real-time
computing platform these might occure due to factors such as high congestion on the
system.

Reward Functions

To complete the definition of our MDP, we discuss the reward functions. We investigate
four different reward functions to study the reward’s influence on our OPE estimate. In
cases of early termination, the reward for the remaining timesteps is set to zero. For
better efficiency, the rewards are computed offline by processing each state of the collected
trajectory.

• Progress Reward: The Progress Reward RProgress
t is assigned to an agent based

on the distance traversed between two consecutive time steps t and t + 1 along
a predefined centerline. Formally, let progress(s) be a function that returns the
progress along the centerline given a state s. The Progress Reward is defined as:

RProgress
t (st, at, st+1) = (progress(st+1) − progress(st)) · Cp (3.1)

where Cp is a constant that scales the reward. We set Cp = 100 in our experiments.
The larger the distance an agent traverses between t and t + 1 with respect to a
predefined centerline, the higher the reward.

24

3.1. F1TENTH Platform

• Checkpoint Reward: The Checkpoint Reward RCheckpoint
t is a fixed reward Cc

assigned to an agent upon reaching predefined static checkpoints along the centerline
of a track. Specifically, let there be N checkpoints, indexed as {1, 2, . . . , N},
positioned along the centerline of the track. For each checkpoint i ∈ {1, 2, . . . , N},
the agent receives the reward Cc the first time it reaches the checkpoint during a
lap. Formally, the Checkpoint Reward is defined as:

RCheckpoint
t (st, at, st+1) =

�
Cc if progress(st) reaches checkpoint i for the first time
0 otherwise

(3.2)

For the Checkpoint Reward, we define 10 static checkpoints along the centerline of
the track. Upon reaching a checkpoint for the first time during a lap, the agent
receives a fixed reward, denoted by Cc = 10. This reward is designed to evaluate
the performance of OPE methods in the presence of sparse events. Crucially, for
the checkpoint reward to be well defined in st, at and st+1, we must assume that
the already reached checkpoints are part of our state.

• Lifetime Reward The Lifetime Reward RLifetime
t assigns a constant value of 1 to

an agent at each time step where no termination is encountered. Hence:

RLifetime
t (st, at, st+1) = 1 − Tt(st) (3.3)

The Lifetime Reward is designed to evaluate the ability of OPE methods to predict
when an agent will crash. Similar to the Checkpoint Reward, this reward investigates
performance in the presence of sparse and relatively rare events. Although all our
rewards incorporate sparse termination events, the Lifetime Reward specifically
helps disentangle the influence of such events.

• Minimum Action Reward The Minimum Action Reward RMinimum Action
t is

assigned based on the absolute steering angle at each time step. Formally, let steer
be the absolute steering angle at time step t and steermax be the maximum steering
angle. The Minimum Action Reward is defined as:

RMinimum Action
t (st, at, st+1) = 1 −

�
asteer

t

steermax

�2

(3.4)

The Minimum Action Reward is high if there is little steering away from the neutral
position and low if the steering angle is large. This reward is always between 0 and
1. While our previous rewards are defined over the state dimensions, this reward
is defined over parts of the action space to investigate performance of OPE with
respect to rewards defined over the action space.

25

3. Experimental Setup

Termination Condition and Truncation

All trajectories are truncated after 250 timesteps, corresponding to an episode covering
12.5 seconds if no crash occurs. The truncation length has been chosen so that fast agents
can complete a bit more than a lap and recording a large number of trajectories is still
feasible.
Intuitively, we wish to terminate a trajectory if our agent crashes into the boundaries of
our track. To avoid excessive crashing in the real-world environment and damaging the
hardware, we define a safety cone in front of the car that, if violated, sends a breaking
command and terminates the current trajectory.
Assessing a safety cone breach involves checking the LIDAR readings within a 50-degree
arc to the left and right of the vehicle’s forward direction. By calculating the cosine
of each ray’s angle multiplied by its length, the trajectory is terminated to prevent a
collision if any value falls below 30 cm. The same termination condition is applied to
data collected in the simulation environment to enable fair comparisons. In addition, a
human operator can engage a safety termination manually in order to avoid hardware
damage.

• Termination Condition: Formally, the condition is defined as:

Tt(st) =

����������
1 if cos(θi) · di < 0.3 for any i ∈ [−50◦, 50◦]
1 if t > 250
1 if Human Operator Intervention
0 otherwise

(3.5)

where θi is the angle of the i-th LIDAR ray, di is its length and t the current
timestep.

3.2 Agent Design and Parameterization
To investigate OPE methods, we collect data with a variety of agents. Past research has
employed different strategies to come up with such a variety. [FNN+21] train different
online RL algorithms, varying the seeds and picking evenly spaced snapshots during
training as their agents. Similarly, [QZG+22] trains seven offline RL algorithms on their
datasets, subsequently evaluating those. [VLA+21] considers two agent classes, with the
first being essentially a random walker, synthesizing different agents by shifting the action
probability distribution. For the second class, an ϵ-Greedy agent, a Q network is trained
to predict the best action in a given state. Post-training, this agent is parameterized
using various ϵ values, dictating how much random exploration the agent performs.
In this thesis, to avoid coping with sim-to-real transfer, we utilize two well-known driving
controllers and parameterize them to achieve a variety of behaviors: a version of Follow-
the-Gap (FTG), initially introduced by [SG12], and Pure Pursuit (PP), as introduced by
[WST+85].

26

3.2. Agent Design and Parameterization

To fulfill the requirement for stochasticity in IS, inspired by [FNN+21], we introduce
stochasticity to our action outputs. We add noise as a truncated normal distribution with
a standard deviation of 0.03 to all our delta actions (as discussed earlier, our delta actions
are capped at ±0.3). While a higher standard deviation leads to additional variance, our
real-world experiments show that a high standard deviation leads to excessive crashing.
This is mainly because the car’s turning radius correlates with the standard deviation’s
magnitude.

The following Sections 3.2.1 and 3.2.2 explain the two utilized controllers in greater
detail and discuss the different possible parameterizations. Our agents are implemented
in numpy and support batches of input data for efficient parallel processing; this is
necessary for efficient evaluation and training of methods like FQE. All agents in this
section operate on the transformed observation dictionary, as discussed previously.

3.2.1 Follow-the-Gap
Follow-the-Gap (FTG), is a purely reactive F1TENTH racing method. Originally
introduced by [SG12], it and its variants like the disparity extender [Ott19], have seen
use in F1TENTH racing.

Steering Control: The guiding principle behind the FTG method is:

1. to identify a gap

2. steer towards the middle of the largest identified gap

This is accomplished using the LIDAR present on our racing actor. In our method, we
first set a minimum horizon length h, identifying allowed steering angles as the angle of
any LIDAR ray larger than h. We denote this set of viable, not blocked, steering angles
with Snb.

To avoid steering too close to a wall, LIDAR rays close to steering angles not in Snb are
removed from Snb. The Gap Blocker parameter controls the number of removed rays. If
Snb is empty, we reduce our horizon and repeat this process until we have at least one
ray in Snb. If we find multiple, we pick the one with the largest range value and steer
toward the middle of its gap. Figure 3.5 shows a visualization of inferring the steering
angle in FTG.

Velocity Control: The target velocity for the vehicle is determined based on the length
of the LIDAR ray located at the center of the FOV, adjusted by a factor, the Speed
Division Coefficient. The process involves several steps: First, we clip the the middle ray
to be at most the length of our Speed Division Coefficient, k. After dividing with the
resulting value, which is between 0 and 1, we scale it with our maximum velocity.

The target velocity, vtarget, is thus calculated using the following equation:

27

3. Experimental Setup

Steering Angle
Horizon

Largest Gap

Figure 3.5: A visualization of FTG. The blue car is driving along a track and detects
two gaps above and below an obstacle drawn in black. The algorithm picks the larger
gap and steers towards its middle.

vtarget =
�min(lmiddle, k)

k

�
× vmax (3.6)

In this equation, lmiddle represents the length of the central LIDAR ray, k is the Speed
Division Coefficient, and vmax is the maximum speed of 5 meters per second. As for all
agents, the minimum speed is set to 0.5 m/s.

The discussed procedure yields the parameters listed in Table 3.2 to adapt the behavior
of our FTG algorithm.

Parameter Name Utilized Range Units
Gap Blocker 0-10 -

Initial Horizon 2-8 m
Speed Division Coefficient 0.4-1.2 -

Table 3.2: Adaptable parameters for different FTG agents.

We will now shortly discuss the influence of each parameter on agent behavior.

• Initial Horizon: The initial horizon significantly impacts agent behavior by
defining how much the agent looks ahead in its decision-making. In general, short
initial horizons lead to more suboptimal behavior. The horizon setting has no
impact on the speed of the agent.

28

3.2. Agent Design and Parameterization

• Gap Blocker: This parameter also influences the steering behavior of the car and,
crucially, how many horizon iterations have to be performed. With larger values
leading to a shorter effective horizon. However, values that are too small can lead
to collisions with the track boundaries.

• Speed Division Coefficient: The only parameter directly influencing the speed
of the agent. Smaller values lead to higher speeds and larger values lead to lower
speeds.

3.2.2 Pure Pursuit
Pure Pursuit (PP) is a geometric planner for trajectory tracking, first introduced by
[WST+85]. In contrast with FTG, PP requires information on its current position on
the racing track and needs a racing line consisting of multiple racing points.

Steering Controller: Given the current x and y position on the racing track, PP
picks the next racing point that is in front of the current position at a certain lookahead
distance. We calculate the steering angle as follows:

δ = atan
�2 × lwb × sin(α)

l

�
(3.7)

Where α is the angle from the driving direction axis of the vehicle to the racing point.
The wheelbase, lwb, the distance between the front and rear axles of the car, set to 0.3
meters in our case, and l the lookahead distance. Calculating the steering angle in this
way, as opposed to simply picking α as our target, leads to driving on an arc, resulting
in more stable behavior. A visualization of PP steering is given in Figure 3.6.

Velocity Controller: The agent’s speed is inferred according to a precomputed speed
profile of the raceline, stored in the raceline points, and scaled by the Speed Scaling
Coefficient.

Therefore, we have the parameters listed in Table 3.3 to adapt our PP algorithm.

Parameter Name Utilized Range Unit
Raceline File 1-8 -

Speed Scaling Coefficient 0.3-1.0 -
Lookahead distance 0.5 -1.4 m

Table 3.3: Adaptable parameters for different PP agents.

In the following, we briefly describe each parameter in more detail.

• Raceline File: We generated eight different racelines by utilizing the TUM global
race trajectory optimization tool chain [TUM23]. We generate diverse racelines
by modifying the original racetrack image (e.g. adding additional obstacles) and
varying various parameters within the toolchain. Figure 3.7 shows the different
generated racelines. Which influences the car’s speed and behaviors.

29

3. Experimental Setup

Steering Angle
Lookahead

Figure 3.6: A visualization of PP. The blue car is driving along a track and directly
steers towards the first raceline point after the lookahead distance. This visualization
shows α as the steering angle for simplicity and visual clarity.

0.00 2.50 5.00 7.50 10.00

x [m]

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

y
[m

]

Racelines

Figure 3.7: Different racelines used for PP agents. The driving direction is clockwise.

30

3.3. Real-world Dataset Collection Protocol

• Speed Scaling Coefficient: We scale the velocity targets of the raceline with this
coefficient. High-speed coefficients may reduce the trajectory tracking capabilities
and are subject to crashes.

• Lookahead Distances: Changing the lookahead distance can significantly in-
fluence the agent’s behavior. Picking a smaller lookahead makes the agent more
unstable in the real world due to the delay in commands and estimation. A large
lookahead results in the agent cutting corners.

3.3 Real-world Dataset Collection Protocol
Since OPE methods always predict performance with respect to starting points in the
state space, and we wish to evaluate other agents from the same starting points, we pick
a total of 10 possible starting points along the centerline. Our experiment controller
automatically starts rollouts from these starting points and reduces the amount of human
oversight needed. The experiment controller observes the following protocol:

1. In the initial state, the agent is dormant. The agent does not move but can be
steered via remote commands by a human operator. The human operator has to
initiate step 2 manually.

2. Pick and remove a starting point from our list of remaining starting points that is
relatively close to our current position but sufficiently far away such that we can
easily reach a stable state when following the centerline. If no new starting points
are available, restart with all original starting points.

3. Navigate with PP along the centerline until within <1m of the starting point.

4. Reduce speed to 0.5 m/s and set steering to neutral for 1 second.

5. Engage the agent and start logging the observations provided to the agent and the
actions emitted.

6. Terminate the trajectory if (a) or (b)

a) If the human operator terminates the trajectory or our termination condition
is met, we terminate the trajectory and enter the dormant state - human
intervention is needed.

b) If the trajectory reaches the truncation length - set to 250 timesteps - we
return to 2.; starting initialization of the next trajectory rollout.

Crucially, in step 4 we do not fully stop the car, since starting the motor from completely
idle is sometimes associated with random delays in our hardware and software setup.
After we have collected a sufficient amount of trajectories for our target agent we update
our agent configuration and start the next set of rollouts with the next agent. Note that
we collect the same amount of trajectories for each of our ten initial starting states.

31

3. Experimental Setup

3.4 Real-World F1TENTH Offline Dataset
The resulting real-world F1TENTH dataset comprises 1305 trajectories from 55 unique
agents. Among them, 51 agents contributed 10 or more trajectories each. It is important
to note that there is a small variation in trajectory counts for some agents due to manual
data cleaning, which removed several trajectories for reasons such as inaccurate state
estimation at the trajectory’s start or improper manual termination.

The dataset is divided into a training and evaluation set. The training set consists of
480 trajectories collected with 40 unique agents, with 36 agents each contributing 10
to 20 trajectories. The evaluation set includes 825 trajectories from 15 different agents,
where each agent’s contribution ranges from 48 to 90 trajectories, though most agents are
represented with exactly 50 trajectories. Figure 3.8 shows the trajectories in the training
and evaluation set in the x/y position space. Table 3.4 shows various statistics on the
evaluation and training dataset.

Training Evaluation Total
Nr. Agents 40 15 55

FTG 8 4 12
PP 32 11 43

Nr. Trajectories 480 825 1 305
Nr. Terminations 285 417 702
Nr. Transitions 79 395 148 529 227 924

Table 3.4: Composition of the Real-World F1TENTH dataset.

As we are in a continuous and stochastic environment, the starts of our trajectories are
clustered around our chosen starting points. Figure 3.9 shows the actual starting points
of all trajectories in our dataset. It can be observed that they are indeed clustered heavily
around ten starting points, but some outliers exist.

Figures 3.10-3.13 plot the discounted sum of rewards for the evaluation and training sets,
for the different rewards discussed in Section 3.1.2. The ordering of the agents is kept
the same in all plots. It is important to note that a large part of the variance visible for
both the training and evaluation agents is due to the ten different starting positions.

32

3.4. Real-World F1TENTH Offline Dataset

0.00 2.50 5.00 7.50 10.00

x [m]

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

y
[m

]

Evaluation Dataset Rollouts

0.00 2.50 5.00 7.50 10.00

x [m]

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

y
[m

]

Train Dataset Rollouts

Figure 3.8: Visualization of evaluation and training rollouts in the x/y observation space.
Terminations are marked with a ∆. Different colors represent different agents.

0.00 2.50 5.00 7.50 10.00

x [m]

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

y
[m

]

Treitlstraße, Infsaal3

Figure 3.9: Our map with starting points.

Agents
0

20

40

60

80

100

S
u
m

 o
f

d
is

c
o
u
n
te

d
 r

e
w

a
rd

Evaluation Dataset

Agents
0

20

40

60

80

100

S
u
m

 o
f

d
is

c
o
u
n
te

d
 r

e
w

a
rd

Train Dataset

Figure 3.10: Performance as measured by the discounted sum of the Progress Reward
with γ = 0.99. The left figure shows evaluation agents; the right figure training set
agents.

33

3. Experimental Setup

Agents
0

20

40

60

80

100
S
u
m

 o
f

d
is

c
o
u
n
te

d
 r

e
w

a
rd

Evaluation Dataset

Agents
0

20

40

60

80

100

S
u
m

 o
f

d
is

c
o
u
n
te

d
 r

e
w

a
rd

Train Dataset

Figure 3.11: Performance as measured by the discounted sum of the Lifetime Reward
with γ = 0.99. The left figure shows evaluation agents; the right figure training set
agents.

Agents
0

20

40

60

80

100

S
u
m

 o
f

d
is

c
o
u
n
te

d
 r

e
w

a
rd

Evaluation Dataset

Agents
0

20

40

60

80

100

S
u
m

 o
f

d
is

c
o
u
n
te

d
 r

e
w

a
rd

Train Dataset

Figure 3.12: Performance as measured by the discounted sum of the Minimum Action
Reward with γ = 0.99. The left figure shows evaluation agents; the right figure training
set agents.

Agents
0

20

40

60

80

100

S
u
m

 o
f

d
is

c
o
u
n
te

d
 r

e
w

a
rd

Evaluation Dataset

Agents
0

20

40

60

80

100

S
u
m

 o
f

d
is

c
o
u
n
te

d
 r

e
w

a
rd

Train Dataset

Figure 3.13: Performance as measured by the discounted sum of the Checkpoint Reward
with γ = 0.99. The left figure shows evaluation agents; the right figure training set
agents.

34

CHAPTER 4
Deep Off-Policy Evaluation for

Autonomous Racing Cars

This chapter discusses the Off-Policy Evaluation methods investigated in this thesis,
focusing on adaptations from previous works to the F1TENTH environment. Section 4.1
describes the Model-based methods explored in our research. Section 4.2 discusses FQE
methods. Section 4.3 examines additional IS methods that were not already introduced,
and also introduces our novel TPDWIS estimator. Finally, Section 4.4 discusses the DR
estimators investigated.

4.1 Model-based
We investigate a total of eight distinct Model-based approaches. Due to the popularity of
simulation as an OPE method, we first briefly discuss the f1tenth-gym simulator. The
remainder of the section focuses on learning-based methods. We describe the training
details pertinent to all trained models in Section 4.1.2. Section 4.1.3 addresses adaptations
of the state-space to facilitate training, ensuring that the models can effectively learn
from the data. Section 4.1.4 discusses the loss functions employed for optimizing our
learning-based models, Log-Likelihood and Mean-Squared-Error. Section 4.1.5 discusses
the various models and architectures, whose performance we investigate. Finally, Section
4.1.6 discusses the evaluation procedure for MB methods. Table 4.1 presents an overview
of the various combinations of state-space models and loss functions utilized in this thesis.

4.1.1 Simulation
We utilize the simulator from [OZKM20], with slight modifications to allow starting at a
speed of 0.5 m/s, consistent with our dataset trajectories. Studying the performance of the
simulator to provide OPE estimates is crucial for comparing the ability of OPE to bridge

35

4. Deep Off-Policy Evaluation for Autonomous Racing Cars

Model Name Loss Type From
Simulation - [OZKM20]
Naive Model (MSE) MSE [KN20]
Naive Model (LL) LL [ZPN+21]
Delta Model (MSE) MSE [Far23]
Delta Model (LL) LL this thesis
Autoregressive Model LL [ZPN+21]
Autoregressive Delta Model LL this thesis
Ensemble (any model) MSE or LL this thesis

Table 4.1: Overview of the models and employed loss functions investigated in this
thesis. The Ensemble Model can be combined with any of the other models to enhance
performance.

the sim-to-real gap. The default parameters of the simulator are employed, replicating
the experience of a typical user. For more detailed information on the simulator, readers
are referred to [OZKM20].

4.1.2 Common Training Procedure

In order to fit our dynamics model F we sample one transition (or rather a batch of
transitions) from our training dataset (st, at, st+1) ∼ Db. We then transform the sampled
values as described in Section 4.1.3 and provide them to our neural network (see Section
4.1.5 for more details on the architectures employed), performing a forward pass followed
by the loss computation, as described in Section 4.1.4. Subsequently, we train the neural
network parameters with backprogation.

We use the Adam optimizer to train all models, with a learning rate of 0.001 and weight
decay of 0.0001. Training proceeds for 10,000 steps, chosen based on the stabilization of
our evaluation metric—the sum of mean squared errors (MSE) between predicted and
actual state trajectories. The training set is shuffled, and we employ a batch size of 256.
The training was conducted using PyTorch version 2.1.1 on an NVIDIA GeForce RTX
3090.

4.1.3 Observation and Action Space Transformations

Section 3.1.2 discussed the observation dictionary provided to our agents that is also
logged1. To reduce complexity in learning the state transition function F , we opt for
multiple transformations of the original observation space. These transformations are
crucial for improving the efficiency and accuracy of our models. We apply the following
transformations before passing data to F :

1Additional data is logged as well and available in our provided dataset; however, for this thesis, we
will rely on information available from the observation dictionary.

36

4.1. Model-based

Normalization: We normalize all state dimensions using the mean and standard
deviation of the associated state dimensions in the training set.

LIDAR Ranges: There are a total of 54 LIDAR ranges in our single timestep observation
dictionary. Since the LIDAR rays do not influence the dynamics of the underlying system,
we remove them from the state-space. However, since our agent requires LIDAR rays
to infer the next action (FTG does), we compute the next timestep LIDAR rays with a
function O(s′

x, s′
y, s′

θ), based on the predicted position values. For our implementation
of O, we perform raycasting on our map, as implemented in the simulator introduced
earlier [OZKM20]. For future approaches that do not want to rely on such hand-crafted
functions, it could be feasible to learn O from the dataset, for example, as a neural
network.

Cyclic encoding of θ: To facilitate smoother learning, we transform the rotation with
respect to our map θ (originally ranging from 0 to 2π) into its sine and cosine components.
This commonly used encoding enhances the learning process by explicitly encoding the
equivalence of 0 and 2π, avoiding discontinuities.

Previous Actions: The previous actions are included in our original observation
dictionary. However, since they are not dependent on the dynamics of the system we
remove them from the state vector provided to our MB method. Instead, we use them to
compute the raw action a, as the previous action plus the delta action, that we provide,
normalized, to F .

Hence, the states s that we provide to our dynamics function, and which we receive back,
consist of the observations listed in Table 4.2.

Observation Unit (when not normalized)
position x m
position y m

position θ (sin) rad
position θ (cos) rad
linear velocity x m/s
linear velocity y m/s

angular velocity z m/s

Table 4.2: The observations provided to our MB dynamics method.

4.1.4 Loss Functions
To train the neural networks described in the rest of this section, we require a divergence
measure between the predictions and our targets: the loss function. The batch Mean-
Squared-Error (MSE) loss function is defined as:

lossMSE = 1
n

n�
i=1

(st+1,i − F(st,i, at,i))2 (4.1)

37

4. Deep Off-Policy Evaluation for Autonomous Racing Cars

where the additional subscript i indicates the index of the states and actions in our
training batch.

Training the model in a probabilistic fashion with a Log-Likelihood (LL) loss makes it
possible to capture uncertainty in the state transitions. Training models this way has
shown promising results in previous studies [ZPN+21, LKTF20]. To train our network
in such a way, the network’s output must be adapted. Instead of returning a singular
prediction for the next state, the network must return a probability distribution. Generally,
in previous works, a multivariate normal distribution is returned by the network (e.g.,
[ZPN+21] and [LKTF20]).

To return a multivariate normal distribution, the network is adapted to output the mean
(µt+1) and the logarithmic standard deviation (log σt+1) of the predicted distribution for
each next state dimension:

µt+1, log σt+1 = F(st, at) (4.2)

Any given model F can be adapted to return such a distribution by doubling the size of
the output layer. The Log-Likelihood loss is then given as:

lossLL =
n�

i=1
− log N (st+1,i|µt+1,i, σt+1,i) (4.3)

As with the MSE loss, we sum over the batch size, with i denoting the index in the batch.
The distribution N (st+1,i|µt+1,i, σt+1,i) represents the multivariate normal distribution
estimating the likelihood of st+1,i given our model outputs. When evaluating our estimator
according to Equation 2.5, we discard the standard deviation and perform next state
prediction based only on the mean.

4.1.5 Model Architecture
The various state-space models from Table 4.1 are discussed here. These approaches are
based on the works of [ZPN+21], the Highway Environment [Far23], and [KN20], or are
novel combinations of these models and loss functions, as indicated in the table.

Naive Model (MSE & LL)

The naive model, as presented in the works of [KN20] and [ZPN+21] in the OPE context,
is a simple feed-forward neural network that fits F from Equation 2.4 in a straightforward,
supervised manner. The input of the neural network is assembled by concatenating the
state and action, and the next state prediction is computed by performing a forward pass
through the network.

During training, a batch of associated states, actions, and next states is sampled. The
states and actions are then passed through the network to compute predictions for
the next states. The loss function is applied to our predictions and target next state

38

4.1. Model-based

values. Subsequently, back-propagation through the neural network is performed, and the
network parameters are updated according to the gradients and our optimizer settings.

The architecture of our neural network is equivalent to that adopted by [KN20]. After
concatenating our states and actions, they are passed through four hidden layers, each
comprising 256 units, culminating in an output layer that delivers a tensor matching the
dimensionality of the state-space. The ReLU activation function is employed after each
layer, except for the output layer, to ensure non-linearity in the model’s computations.
The LL version of the naive model is equivalent to the MSE version, with the difference
that the output size is doubled, as discussed in Section 4.1.4.

As the original implementation is only available in TensorFlow, we ported the code to
PyTorch.

Delta Model (MSE & LL)

The naive model offers several ideas for improvement, especially if more context is
known about the specific dynamics problem we want to learn. While not yet evaluated
on a previous OPE benchmark, the implementation of a MB method in the Highway
Environment for autonomous driving [Far23] is relevant to our problem setting.

Motivated by classical control theory, [Far23] reformulates our next state prediction as
follows:

dx = A(s̃t, a) · st + B(s̃t, a) · a

st+1 = st + ∆t · dx
(4.4)

where s̃t represents the modified state vector with the x, y, and θ components set to zero
to eliminate direct dependencies on position and orientation. In [Far23] only the x and y
components are set to zero; we additionally set θ to zero since the current rotation is
also invariant to the delta next state. This modification helps increase sample efficiency
by ensuring the model focuses on learning the underlying dynamics independent of the
specific location and orientations.

A and B are neural networks we fit during training with backpropagation. A outputs a
matrix with dimensions equal to the state-by-state dimension. The output layer of B
produces a matrix of state-by-action dimension. Since our θ is split into sine and cosine
components, we additionally normalize these components to ensure the trigonometric
identity 1 = θ2

sin + θ2
cos is fulfilled for our next state s′. Lastly, ∆t = 1

20 , which is the
timestep size in our environment.

To train the Delta Model with LL loss, we double the size of dx from Equation 4.4 and
correspondingly increase the size of the matrices returned by A and B. Subsequently, we
use the second half of dx as our log standard deviations to train with LL loss.

We re-implement and adapt the available code from [Far23] in PyTorch. The Delta Model
is expected to improve performance by focusing on the relative changes in state.

39

4. Deep Off-Policy Evaluation for Autonomous Racing Cars

Autoregressive Model

Autoregressive Models (AMs) have shown promising results when employed for OPE on
the RL Unplugged Benchmark [ZPN+21]. The advantage of such models lies in their
ability to capture dependencies between the state dimensions, which can lead to more
accurate predictions. Instead of directly predicting the next state in a single forward
pass like the previous models, the next state is constructed iteratively by predicting
subsequent state dimensions. Each subsequent state dimension prediction is conditioned
on the already predicted state dimensions.

During the training process, the loss is accumulated across each state dimension, and
backpropagation is performed after the entire next state has been predicted. Pseudo-code
detailing the Autoregressive Model’s forward pass and training update is presented in
Algorithms 4.1 and 4.2, respectively.

Algorithm 4.1: Autoregressive Model Prediction
Input: State vector s, action vector a, model θ
Output: Next state vector s′

1 s′ ← ZeroTensorLike(s) // Initialize s′

2 for i ← 1 to size(s) do
3 s_one_hot ← OneHot(i, size(s)) // One-hot encode dimension i
4 input_states ← Concatenate(s, s′, s_one_hot)
5 s′[:, i] ← θ(input_states, a) // Update dimension i

6 end
7 return s′;

As a base model, we utilize the naive model. In accordance with [ZPN+21] we make the
following changes to make our model autoregressive: The dimensionality of the input is
changed to be three times the original state dimension. This accommodates the addition
of the next state tensor into the model’s input and a one-hot encoding vector to inform
the model of the next state dimension to predict in this forward pass. Secondly, the
network output is changed to provide two values, the prediction of the dimension of the
next state and the log standard deviation, for training with LL loss.

Autoregressive Delta Model

For this model, we combine the AM and Delta Model. In the implementation of this
model, we employ the Delta Model (LL) and adapt the input of our A and B networks to
×3 the original size, as similarly done for the single network in the Autoregressive Model.
We then employ a wrapper around this model that only returns one state at a time to
reproduce the functionality of an AM. When predicting the heading θ, we return the sine
and cosine components jointly to maintain the trigonometric identity. Additionally, we
return the relevant log standard deviation as computed by the DM for training with LL
loss.

40

4.1. Model-based

Algorithm 4.2: Autoregressive Model Update Step
Input: State vector s, action vector a, next state vector s′, model θ
Output: Updated model θ

1 begin
2 Initialize total_loss ← 0;
3 for i ← 1 to size(s) do
4 s_one_hot ← OneHot(i, size(s));

// One-hot encode dimension i
5 s_next_state ← s′ with elements from i onwards set to 0;
6 target ← s′[i];
7 input_states ← Concatenate(s, s_next_state, s_one_hot);
8 prediction ← θ(input_states, a) // Model prediction for

dimension i
9 loss ← LossFunction(target, prediction);

// Compute loss for dimension i
10 total_loss ← total_loss + loss;
11 end
12 θ ← θ − α∇θtotal_loss;
13 return θ;
14 end

By combining the iterative prediction capability of AM with the prediction of state changes
of DM, the ADM model is expected to achieve more accurate and robust predictions of
the next state. This integration allows the model to capture dependencies between state
dimensions while focusing on the underlying dynamics independent of specific positions
and orientations.

Model Ensembles

It is well established that combining the predictions of multiple models can improve
overall performance. This approach can potentially decrease variance in the output
prediction and smooth out errors. One way to train such multi-model ensembles is by
resampling with replacement from our original batch, generating slightly different training
batches for each model in the ensemble. Inference is then performed by averaging the
output of all models across all state dimensions.

We investigate the performance of ensembles of the Naive Model (MSE and LL), AM,
and the ADM. Each ensemble consists of five models. We will denote a specific ensemble
of a model with the model name followed by the number five in brackets (e.g., NM(5),
AM(5), ADM(5)).

41

4. Deep Off-Policy Evaluation for Autonomous Racing Cars

4.1.6 Evaluation Procedure

As discussed in Section 3.4, the starting states of our evaluation trajectories do not
completely align with our training starting states due to the continuous nature of our
environment. To provide the best possible estimations of the evaluation trajectories,
we start our MB trajectory rollouts from the recorded initial states of the evaluation
trajectories associated with the target agent. We perform one trajectory rollout per
starting state, resulting in approximately 50 trajectories per agent. Termination detection
is performed in accordance with the ground-truth termination function outlined in Section
3.1.2.

4.2 Fitted Q-Evaluation

Following previous work, we investigate two different versions of FQE [FNN+21, ZPN+21].
These two versions differ in the output of the Q function, being either a scalar return value,
as introduced in the seminal work by [LVY19], or a probability distribution [PPM+20,
BMHB+18].

First, Section 4.2.1 discusses common training settings. Section 4.2.2 discusses the
observation and action space transformations we employ to enable efficient training.
Section 4.2.3 discusses the loss function, the most significant differentiator between our
two employed versions of FQE. In Section 4.2.4 we briefly discuss the neural network
model. Last, we discuss the evaluation procedure we adopt in Section 4.2.5.

4.2.1 Common Training Procedure

We sample a transition from our shuffled training dataset, this time to learn our Q-
function: (st, at, st+1, rt) ∼ Db. Note that, contrary to MB, we also include the single-step
reward rt in our sample, as we need it to compute the Bellman backup. Next, we transform
our state and actions as outlined in Section 4.2.2. Following the training procedure
in Algorithm 2.1, we then compute our targets and predictions computing the loss as
outlined in Section 4.2.3.

We use the Adam optimizer to train all models, setting a learning rate of 0.0001 and
weight decay of 0.00001. Training proceeds for 200,000 steps, chosen based on observed
convergence and a limited compute budget. Details on the performance of FQE across
the training timesteps are given in Section 5.2.2. The training set is shuffled, and we
employ a batch size of 256. Our implementation is based on the TensorFlow version
of FQE-L2 from [KN20]. Therefore, as in standard RL Q-learning, we utilize a second
target network to reduce the effect of a shifting target function and to stabilize training.
The training was conducted using PyTorch version 2.1.1.

42

4.2. Fitted Q-Evaluation

4.2.2 Observation and Action Space Transformations
In addition to the transformations of the data described in Section 4.1.3, we add a
timestep observation, tobs ∈ (0, 1). The need for this additional observation is evident
when considering that without tobs, there is no information in the sampled state indicating
how soon the trajectory will be truncated.

4.2.3 Loss Function
FQE-L2 This version of FQE minimizes the L2 error of the target values. Therefore,
the loss function for a batch of data with size N is given as follows:

lossL2 =
N�

i=1
(y(i) − ŷ(i))2 (4.5)

where y is obtained with a single-step Bellman backup, as seen in line 4 of Algorithm 2.1,
and ŷ is our direct Q-prediction.

Furthermore, we scale the direct output of the Q network by multiplying it with 100.
Since 100 > Rτ > 0, for all of our trajectories and rewards, the target output of the
Q network should be between 0 and 1. This approach is inspired by code provided by
[KN20].

FQE-DD [PPM+20] utilize a discrete distributional Q-critic network. This method
extends the concept of scalar return values to predict entire discrete probability distribu-
tions, as originally introduced to RL with the C-51 network architecture proposed by
[BDM17].

For the implementation of FQE-DD, additional hyperparameters, dictating the properties
of the discrete output distribution have to be defined. First, specifying the range of possible
rewards, denoted by rmin and rmax, to define the bounds of the Q-function’s output
distribution is necessary. Additionally, the discrete output distribution’s granularity is
determined by the output layer’s size l. In this thesis we choose rmin = 0, rmax = 100
and l = 101.

The output distribution of the Q-network is then constructed by mapping each output
neuron o0, . . . , ol−1 onto our discrete distribution. With j being the index of the output
neuron, the mapping is straightforward:

rj = rmin + j
rmax − rmin

l − 1 (4.6)

For each output atom, we compute an associated probability pi by taking the exponential,
ensuring normalization over all outputs:

pi = exp(oi)�l−1
j=0 exp(oj)

. (4.7)

43

4. Deep Off-Policy Evaluation for Autonomous Racing Cars

Together with the computed locations in the distribution, the probabilities yield a discrete
output distribution, assigning a (normalized) probability pi to each possible reward ri in
the output distribution.

As discussed in [BDM17], training the discrete distribution network is not entirely
straightforward, as the computed target y from Algorithm 2.1 in line 4 does not necessarily
coincide with the support of the output distribution. To train the model, the probability
mass of each result of the Bellman backup is distributed to the closest support values
in proportion to the distance to the support atoms. This method allows our model to
handle the potentially continuous values yielded by the Bellman backup and be trained
with standard categorical cross-entropy:

lossCE = −
N�

i=1

l�
j=1

y(i,j) · log(ŷ(i,j)) (4.8)

Here, both y(i,j) and ŷ(i,j) are represented as vectors of length l, encapsulating the
distribution across discrete reward bins. The subscript j denotes the jth bin in this
distribution, to which the Bellman backup target y(i,j) has been appropriately discretized
following the method outlined above. For more details, the reader is referred to [BDM17].

4.2.4 Model Architecture
We employ the neural network model as for the naive MB method described in Section
4.1.5. We adjust the input size to fit the expanded state-space for FQE, and we adapt
the output layer in accordance with the loss function employed.

4.2.5 Evaluation Procedure
The evaluation procedure for FQE is equivalent to the one employed for MB. However,
instead of performing rollouts, we query the Q-function with multiple sampled actions
according to the initial evaluation state. To estimate the expectation, as described in
Equation 2.6, we sample twenty actions per initial state.

4.3 Importance Sampling Methods
As Importance Sampling does not utilize any function approximations and differs sig-
nificantly from the two previously discussed estimator families, this section exhibits a
different structure. First, Section 4.3.1, motivates IS as a valid approach in our envi-
ronment. Then Section 4.3.2 provides general observations on the IS ratio, particularly
for our environment, and motivates our novel estimator introduced later. Section 4.3.3
and 4.3.4 discuss Per-Horizon Weighted Importance Sampling (PHWIS) [DTB18] and
Per-Decision-Weighted Importance Sampling (PDWIS) [Tho15] respectively. Based on
these two estimators, Section 4.3.5 introduces the novel Termination-aware Per-Decision-
Weighted Importance Sampling (TPDWIS) estimator that extends PDWIS to handle

44

4.3. Importance Sampling Methods

variable-length trajectories in a statistically consistent way. Furthermore, we provide a
proof of the consistency of the TPDWIS estimator.

4.3.1 Validity of Importance Sampling in F1TENTH

Let us now briefly reconsider Assumption 2, namely π(at|st) ̸= 0 =⇒ πb(at|st) ̸= 0,
made in Section 2.4.3 for IS to be valid in a MDP. In our case, the two distributions are
the target and behavior agent action distributions. Since we, as discussed in Section 3.1.2,
employ truncated normal distributions that are defined over the entire feasible action
space (truncation only occurs at the boundaries where actions are not possible), it is
guaranteed that for all our i behavioral agents πi(at|st) > 0 holds, and the assumption is
therefore always satisfied, leading to IS techniques being valid in our setting. Therefore,
we can employ IS, WIS and PDIS as discussed in Section 2.4.3.

4.3.2 Importance Sampling ratio for long time horizons

As discussed in Section 2.4.3, the IS ratio lies at the core of all our IS-based methods.
Hence, we make some general observations about the IS ratio in our environment here.
Figure 4.1 showcases the trend of the cumulative IS ratios p0:t by plotting the ratios
across time steps t for various behavior agent trajectories, under one specific target policy.
Each line represents a different trajectory, colored differently to distinguish between
agents with varied parameterizations.

Two key observations can be made from Figure 4.1: First, the rate at which the cumulative
product of the IS ratios decreases varies among agents with different parameterizations.
For instance, the green trajectories, associated with one specific behavior agent, show a
slower rate of decrease compared to the darker blue trajectories, which correspond to a
different agent. Trajectories, and hence also agents, with more gradually decreasing IS
ratios can be considered to be more aligned with our target agent, since the probabilities
of taking the same actions are higher.

Second, consistent with the observations by [SMGDV21] and [DTB18], the magnitude of
the trajectory-wise cumulative IS ratio is linked to the episode’s length. The prominent
× on the top left of Figure 4.1, marking an early crash by the blue agent, exemplifies this.
The cumulative IS ratio associated with this trajectory is notably higher than that of all
other trajectories due to the early termination of the episode. Nonetheless, examining
the long-term IS ratios for this agent across different rollouts reveals a rapid decrease,
underscoring a significant behavioral deviation from our target agent. Indeed the blue
agent is a FTG agent, while our target agent is a PP agent.

This difference in magnitude of the cumulative IS ratios for different length trajectories
presents a challenge. Estimators such as IS and WIS, which rely solely on trajectory-wise
IS ratios, will assign disproportionately large weights to early terminating trajectories.
Consequently, this leads to an underestimation of the true reward.

45

4. Deep Off-Policy Evaluation for Autonomous Racing Cars

0 50 100 150 200 250

Episode Timestep t

10−286

10−248

10−210

10−172

10−134

10−96

10−58

10−20

p 1
:t

Cumulative importance-sampling ratio vs. timesteps for
pure pursuit2 0.6 1.0 raceline2 0.3 0.5

Figure 4.1: Cumulative IS ratios across trajectories. Note the logarithmic scale on the
y-axis. Each × marks the end of a trajectory, representing the final cumulative IS ratio
of the trajectory. Different colors denote trajectories from different agents.

4.3.3 Per-Horizon Weighted Importance Sampling
In order to solve the issue of different length trajectories [DTB18] propose the Per-Horizon
Weighted Importance Sampling (PHWIS) estimator. Their estimator is given as:

VP HW IS =
maxτ T (τ)�

t=1
Wt

�
τ∈Db

T (τ)=t

γt−1rτ
t

pτ
1:t�

τ∈Db
T (τ)=t

pτ
1:t

(4.9)

where

Wt =
�

τ∈Db

�
1{T (τ)=t}pτ

1:t
�

�
τ∈Db

pτ
1:min(t,T (τ))

(4.10)

In this approach, the WIS ratio is computed for each time horizon separately and
subsequently reweighted. However, this approach still leads to the importance of shorter

46

4.3. Importance Sampling Methods

trajectories being severely overestimated since Wt retains the property of assigning
significantly higher weights to shorter trajectories [DTB18]. This is the case because of
the minimum we take in the denominator of Wt; a large weight due to early termination
will dominate later timesteps in the denominator. Hence [DTB18] propose a second
estimator, Heuristic Per-Horizon Weighted Importance Sampling (HPHWIS):

W h
t =

�
τ∈Db

�
1{T (τ)=t}pτ

1:t
� 1

T (τ)�
τ∈Db

pτ
1:min(t,T (τ))

(4.11)

In cases where the expression 1{T (τ)=t}pτ
1:t < 1 (which is empirically the case in many

settings) this corresponds with an increase in magnitude for longer horizons. While they
obtain good empirical results in their work on toy examples, it is unclear if even the
unmodified VP HW IS is a statistically consistent estimator.

4.3.4 Per-Decision-Weighted Importance Sampling
As pointed out in Section 4.3.2, only considering the cumulative IS ratio can lead to
underestimation. Hence, we might expect better performance on our data with PDIS.
However, as can be observed in Figure 4.1, our IS ratios are very small, leading to severe
underestimation if not utilizing some form of normalization.

The concept of a Per-Decision-Weighted Importance Sampling (PDWIS) estimator origi-
nates from [PSS00]. However, their version is inconsistent as shown in [Tho15]. [Tho15]
introduces a consistent version of PDWIS. For brevity, we will refer to this version as
PDWIS in the remainder of this work. Similar to WIS, PDWIS is no longer unbiased,
but consistent [Tho15].

To formulate the PDWIS estimator, we adjust our importance weights at each timestep
so their sum equals one. Hence, the PDWIS estimator is given as:

V π
P DW IS =

maxτ T (τ)�
t=1

�
∀τ∈Db

γt−1rτ
t · pτ

1:t�
τ∈Db

pτ
1:t

(4.12)

By normalizing weights at each timestep, the maximum (or minimum) return is effectively
represented by the sum of the maximum (or minimum) rewards observed at each timestep
across all considered trajectories.

The PDWIS estimator raises a crucial question about managing trajectories that end
prematurely. Since our calculation extends over the length of the longest trajectory in
our dataset, how should we adjust the IS ratio, pτ,1:t, for those trajectories that conclude
before reaching time t? This question is discussed in the remainder of this section and
culminates in the introduction of our novel TPDWIS estimator.

47

4. Deep Off-Policy Evaluation for Autonomous Racing Cars

PDWIS (Constant)

In the Caltech OPE Benchmarking Suite (COBS) [VLA+21], the authors set the timestep-
wise IS ratio pτ

t = 1 for T (τ) < t. This is equivalent to the minimum operation employed
in PHWIS.

Clearly, this approach suffers from the previously discussed drawbacks: since we set all
timestep-wise IS ratios to one after a crash, the cumulative IS ratios of early crashes will
eventually dominate our normalized IS ratio, being only close to one where the step-wise
reward is zero (a trajectory that has crashed previously) and very close to zero elsewhere.

We will denote this version with PDWIS (C).

PDWIS (Mean)

The observation from Section 4.3.2, that an agent’s similarity is reflected in how quickly
its IS ratio drops, suggests a simple strategy to adjust for agents that end early due to
crashes. To counteract the dependence on trajectory length, we extend their IS ratios
using the average rate of the specific trajectory. This is comparable to an additional
approach taken in [DTB18], where an estimator is proposed that reweights the trajectories
based on their average IS ratio.

However, in our setting we are faced with one additional challenge: our agents exhibiting
highly similar behaviors during the initial timesteps, leading to initial IS ratios that are
nearly identical and very close to one. If an agent crashes during these early stages,
extending the IS ratio with the mean can lead to significant overestimation of the IS
ratio for this trajectory in later timesteps.

To address this and improve the performance of our estimator in our specific setting, we
introduce a hyperparameter tstart that defines a minimum trajectory length and specifies
the starting point for applying the mean extension method. For our purpose, we set this
to tstart = 15.

Unfortunately, in addition to requiring an additional hyperparameter, our adjusted
Mean-Extended PDWIS estimator is no longer consistent. To see this, simply consider a
scenario with a target agent that crashes before tstart and utilizes our lifetime reward -
even if we have infinite data, our estimator can never converge to the true value.

We will denote this version with PDWIS (Mean).

PDWIS (Zero)

Considering an alternative method, one might think to disregard trajectories terminating
before the current timestep or, equivalently, set the timestep-wise IS ratios for these
trajectories to zero. However, this strategy makes our PDWIS estimator inconsistent.

To illustrate, consider a scenario where our target agent always crashes immediately at
timestep one, terminating the trajectory. The true return, Vtarget, would therefore reflect

48

4.3. Importance Sampling Methods

the agent’s return at that initial timestep. Let us now consider that data is collected
with multiple behavior agents, with at least some progressing beyond the first timestep.
In that case, as we add more data that progressed beyond the first timestep, our PDWIS
estimator V begins to diverge. To see this, let’s consider the PDWIS (zero) estimator:

V =
maxτ T (τ)�

t=1
Vt (4.13)

Here we adapt Vt, the inner sum of Eq. 4.12, slightly in-order to account for excluding
trajectories that have already crashed:

Vt =
�

τ∈Db
T (τ)≥t

γt−1rτ
t · pτ

1:t�
τ∈Db

T (τ)≥t

pτ
1:t

(4.14)

V1 will asymptotically approach Vtarget, since the PDWIS estimator is consistent for
the first timestep. Nonetheless, the overall estimate V incorporates contributions from
timesteps beyond the first. These additional contributions are not inherently zero,
especially in scenarios like ours where every reward is positive. Consequently the
remainder of the sum �maxτ T (τ)

t=2 Vt is guaranteed to be larger than 0, if the behavior
dataset contains trajectories that do not crash in the first timestep. This adds a non
vanishing bias term as the number of our samples approaches infinity.

Therefore, adapting our estimator to exclude trajectories where T (τ) < t leads to
inconsistency. Nonetheless, this approach serves as a foundation for the Termination-
aware Per-Decision-Weighted Importance Sampling estimator we introduce in the next
section. There, we incorporate the likelihood of termination in earlier timesteps such
that, as we argue, consistency is restored to our estimator.

4.3.5 Termination-Aware Per-Decision Weighted Importance Sampling
This section first introduces the novel Termination-aware Per-Decision-Weighted Impor-
tance Sampling (TPDWIS) estimator and then gives an argument concerning consistency.

The TPDWIS estimator is given as:

V π
T P DW IS =

maxτ T (τ)�
t=1

St

�
τ∈Db

T (τ)≥t

γt−1rτ
t

pτ
1:t�

τ∈Db
T (τ)≥t

pτ
1:t

(4.15)

with:

St =
�
t′<t

��1 −

�
τ∈Db

T (τ)≥t′

�
1{T (τ)=t′}pτ

1:t′
�

�
τ∈Db

T (τ)≥t′
pτ

1:t′

�� (4.16)

49

4. Deep Off-Policy Evaluation for Autonomous Racing Cars

Note that, except for the St term this estimator is equivalent to the Zero-extended
PDWIS estimator described previously. St describes the likelihood of not being in a
terminating state at a timestep t.

Intuitively, we calculate the expected value at timestep t by multiplying the expected
value under the assumption we have not yet crashed, with the probability of actually not
having crashed. Notably, also notice the similarities between the PHWIS estimator, Eq.
4.9, and Eq. 4.15. However, note that we calculate the weight differently, and PHWIS
calculates the inner sum over only the current timestep. In the following, we show that
our estimator is provably consistent and outperforms PHWIS and all other IS estimators
significantly in our empirical evaluation (see Section 5.2.3).

Proof of consistency for TPDWIS

To set the groundwork for arguing the consistency of TPDWIS, we look at the findings
in [Tho15], which suggest that under the previously discussed mild assumptions, which
hold in our setting, a PDWIS estimator given by:

V π
P DW IS =

maxτ T (τ)�
t=1

Xt (4.17)

is consistent if, for each timestep t, it holds that Xt
a.s.−−→ E[rt|τ ∼ π] [Tho15]. We will

show that this holds for every timestep in TPDWIS. Formally, our proof is concluded if
we can show:

∀t ≤ max
τ

T (τ) : St

�
τ∈Db

T (τ)≥t

γt−1rτ
t

pτ
1:t�

τ∈Db
T (τ)≥t

pτ
1:t

a.s.−−→ E[rt|τ ∼ π] (4.18)

To this aim, we rewrite the expected reward in each timestep with the law of total
expectation, considering the termination time T (τ) of the trajectories:

E[rt|τ ∼ π] = P (T (τ) ≥ t|τ ∼ π) · E[rt|τ ∼ π, T (τ) ≥ t]
+P (T (τ) < t|τ ∼ π) · E[rt|τ ∼ π, T (τ) < t]

(4.19)

Here, E[rt|τ ∼ π, T (τ) ≥ t] is the expected reward assuming the trajectory hasn’t
terminated by timestep t, and P (T (τ) ≥ t|τ ∼ π) is the probability that the trajectory
has not crashed at timestep t, we will call this the survival probability. The second part
of the equation accounts for the expected reward if the trajectory has terminated before
t, and its corresponding probability. Since E[rt|τ ∼ π, T (τ) < t] = 0 — no reward is
collected post-crash—the equation simplifies to:

E[rt|τ ∼ π] = P (T (τ) ≥ t|τ ∼ π) · E[rt|τ ∼ π, T (τ) ≥ t] (4.20)

50

4.3. Importance Sampling Methods

Therefore, clearly, we can rewrite the right side of Eq. 4.18 with the right side of Eq.
4.20. We will then show that the following two statements hold:

St
a.s.−−→ P (T (τ) ≥ t|τ ∼ π) (4.21)

�
τ∈Db

T (τ)≥t

γt−1rτ
t

pτ
1:t�

τ∈Db
T (τ)≥t

pτ
1:t

a.s.−−→ E[rt|τ ∼ π, T (τ) ≥ t] (4.22)

We remark that the left sides of both Eq. 4.21 and Eq. 4.22 are independent of each other,
since each trajectory in each of the different sets considered is generated independently
and there is no overlap. Therefore, as per the Continuous Mapping Theorem, we can
combine the terms with multiplication on both sides of the a.s.−−→ operator. This then
yields our consistent TPDWIS estimator as given in Equation 4.15, with the expectation
written as on the right side of Eq. 4.20. Hence, it just remains to be seen that Eq. 4.21
and Eq. 4.22 are valid:
The Survival Probability: We will first rewrite the survival probability into the
cumulative product of not crashing at any prior timestep t′:

P (T (τ) ≥ t|τ ∼ π) =
�
t′<t

�
1 − P (T (τ) = t′|T (τ) ≥ t′, τ ∼ π)

(4.23)

Note that in each timestep t′, we use the likelihood under the condition of not having
yet crashed (e.g. the condition T (τ) ≥ t) such that the survival probability is calculated
properly. We can write P (T (τ) = t′|T (τ) ≥ t′, τ ∼ π) as a simple WIS estimate of the
likelihood of crashing at timestep t′, excluding timestep where we have crashed, which
we know to be consistent:�

τ∈Db
T (τ)≥t′

�
1{T (τ)=t′}pτ

1:t′
�

�
τ∈Db

T (τ)≥t′
pτ

1:t′

a.s.−−→ P (T (τ) = t′|T (τ) ≥ t′, τ ∼ π) (4.24)

Plugging the results from Eq. 4.24 into Eq. 4.23 is valid since the crashing probabilities
of subsequent timesteps are independent; doing so gives us our survival probability term
as in Eq. 4.16. Furthermore, the consistency of our WIS estimator is not compromised
by excluding trajectories, as earlier crashing trajectories cannot have an influence on the
crashing likelihood at t′. We can conclude that Eq. 4.21 holds.
The Expectation: Again, as for the survival probability, we argue that the left side of
Eq. 4.22 is equivalent to a WIS estimator, which we know to be consistent. Excluding
trajectories that have already crashed before t′ does not make the estimator inconsistent,
as these trajectories cannot have any influence on the estimated reward given that t′ was
reached.
Finally, as we have shown that both Eq. 4.21 and Eq. 4.22 hold, we have shown that Eq.
4.15 is a consistent estimator as argued earlier.

51

4. Deep Off-Policy Evaluation for Autonomous Racing Cars

4.3.6 Evaluation procedure for Importance Sampling
Equation 2.9 reveals that the cumulative IS ratio, and therefore our reward estimation, is
conditioned on the initial state sτb

1 of our behavior trajectory. Hence, IS will always return
an estimate of our reward, given we start in sτb

1 . To evaluate our estimate, we would
need multiple evaluation Monte Carlo rollouts starting exactly in sτb

1 . In a continuous
real-world settings, it’s not possible to ensure that all trajectories commence from the
same initial state.

Consequently, for each evaluation starting point, we pick all behavioral trajectories that
start within a radius rstart, which we set to 1 meter, and consider them as belonging to
the same starting state for purposes of calculating our IS estimate and evaluation. Note
that we do not change the actual starting states in the trajectories, we simply do this
to obtain a set of trajectories Db that we can provide to our estimator. Subsequently,
we compare the results of the estimation with the according evaluation result. This
method might introduce bias and make the performance of IS worse when compared
with the other estimators, which we may ask to perform estimation from any initial state.
However, as this is a limitation of IS in general, and there are no obvious solutions to
this issue, we believe our evaluation method to be justified.

4.4 Doubly Robust Estimator
We combine different IS estimators with FQE-DD for our investigation of the DR method.
Specifically, we investigate the performance of DR with IS, PDIS, WIS and TPDWIS.

The DR estimator is doubly robust because it retains the benefit of both IS and FQE
to improve the estimate. The original formulation of the DR estimator from [JL16] for
OPE is recursive and restricted to the finite horizon setting. [TB16] provides a more
practical formulation of the estimator that we present here. The formulation in [TB16]
transforms our single-step rewards according to the following formula:

r̂τ
t = rτ

t − Qπ(sτ
t , aτ

t) + γV π(sτ
t+1) (4.25)

After transforming the reward according to Equation 4.25 we can utilize any IS-based
method together with the transformed rewards r̂, estimating V̂ π∗IS . After performing IS,
our final estimator is then calculated as follows:

Vπ
DR = V̂ π∗IS + 1

|Db|
�

∀τ∈Db

V π(sτ
1) (4.26)

We utilize FQE-DD to compute both Qπ(sτ
t , aτ

t) and V π(sτ
t+1). Computing Qπ(sτ

t , aτ
t) is

straightforward since FQE is defined as a Q-function. For computing V π we similarly
employ the Q-function of FQE-DD:

V π(sτ
t+1) = 1

N

N�
i=1

Q(sτ
t+1, a) where a ∼ π(sτ

t+1) (4.27)

52

4.4. Doubly Robust Estimator

For calculating the adjusted rewards, as given in Eq. 4.25, we estimate V π(sτ
t+1) with

N = 5 samples per step-wise reward. For the value function in Eq. 4.26, we sample a
total of 20 actions per initial state.

53

CHAPTER 5
The Real-World F1TENTH

Benchmark

In this chapter, we benchmark the performances of the OPE methods investigated within
this thesis. To this aim, Section 5.1 explains the overall evaluation protocol employed to
compare different OPE methods. Including the evaluation metrics we adopt. Section 5.2,
discusses the performance of the different OPE methods when compared within their
respective OPE method families. Section 5.3 compares the best-performing methods
from each family and analyses differences for different reward signals. Finally, in Section
5.4, we give practical guidelines on selecting OPE methods.

5.1 Evaluation Protocol
We evaluate the performance of an OPE method by supplying the method with our
training dataset and all our 15 evaluation agents {π1, π2, . . . π15}. For each of the
agents πi, the OPE method produces a value estimate ˆV πi , yielding an array of value
estimates V̂ π = { ˆV π1 , ˆV π2 , . . . ˆV π15}. As previously outlined in Section 3.3, during our
data collection procedure, we collected estimates of the ground truth performances of
the evaluation agents: V π = {V π1 , V π2 , . . . V π15}. These ground truth estimates are
computed over at least 50 trajectories performed with the respective evaluation agent.
Comparing estimates V̂ π with ground truths V π, we compute different evaluation metrics.
As discussed by [FNN+21], evaluation of OPE methods should not be confined to metrics
that solely take into account the direct value difference between V πi and ˆV πi . Instead, the
performance measurement of OPE should also consider the ability of the OPE method
to rank the policies and select the best policy correctly, irrespective of the absolute
estimated value . Both of these tasks are important in real-world OPE applications, as
we might be interested in selecting the best-performing policies from a set of policies and
might not be only interested in the concrete predicted raw value estimate.

55

5. The Real-World F1TENTH Benchmark

Hence, we adopt the same metrics as utilized by [FNN+21] in the DOPE benchmark.

Spearman Rank Correlation: This metric measures how well our estimator can rank
our different agents, irrespective of the absolute estimated values. The SRC is calculated
as:

MSRC = cov(Ra(V π), Ra(V̂ π))
σRa(V π)σRa(V̂ π)

(5.1)

where Ra(·) is a function that converts our array of value estimates to a ranking. For
instance, we might map the highest value in V π to one, the second highest to two, and so
on. This step removes the dependence on absolute values, focusing only on the ranking.
cov denotes the covariance between the embedded rank variables:

cov(X, Y) = (X − E[X]) · (Y − E[Y])
|X| (5.2)

Furthermore, σ denotes the standard deviation of our rank variables.

The SRC ranges from −1 to 1. A value of 1 indicates perfect ranking alignment with
the ground truths, while −1 signifies an inverse correlation. An SRC of zero implies
that the ranking is essentially random, indicating that our OPE method produces no
monotonicity concerning the ground truths. In summary, values closer to 1 indicate
a better-performing OPE method in terms of ranking. Figure 5.1 shows scatter plot
examples of the aforementioned concrete SRC values.

Figure 5.1: Scatter plot depicting multiple agents with varying SRC values. Each blue
dot represents a distinct agent πi, with the Ground Truth Performance on the x-axis
and the corresponding OPE estimate on the y-axis. The red line indicates the expected
results for a perfect OPE method.

Regret@1: This metric measures the ground truth difference between the best policy
according to our estimator and the actual best policy. It is calculated as:

MR@1 =
����max

πi
(V πi) − V πbest

���� (5.3)

56

5.2. Performance of Off-policy Evaluation Methods

with
πbest = arg max

πi
(V̂ πi) (5.4)

High values indicate that the best policy suggested by our estimator significantly deviates
from the actual best policy. Conversely, low values indicate better estimator performance,
suggesting closer alignment with the actual best policy. As this metric is only affected by
a few good-performing policies, it is much more prone to outliers.

Mean Absolute Error: Contrary to the previous metrics, this metric does not only
focus on ranking performance but also the accuracy of the magnitude of the estimate.
We calculate the MAE by calculating the mean of absolute per-agent errors. Hence:

MMAE =
�|V π |

i=1 |V πi − V̂ πi |
|V π| (5.5)

Consequently, low values indicate better performance. Previous literature commonly
employs Mean Squared Error as a performance metric. However, like [FNN+21], we opt
for MAE in order to properly assess robustness with respect to outliers.

5.2 Performance of Off-policy Evaluation Methods
We now discuss the performance of our OPE estimators within their respective OPE
method families.

5.2.1 Model-based
Table 5.1 presents the results for most of our investigated Model-based methods. These
results are visualized in Figures 5.2, 5.3, and 5.4, showing the SRC, MAE, and R@1,
respectively. As outlined in Section 4.1, we also investigate model ensembles, with their
results presented in Table 5.2.

We discuss the performance of our methods in four distinct groups:

• Simulation: As the most commonly used OPE method in real-world robotics
applications and its undeniable importance, we discuss the performance of simulation
first. Specifically pointing out the shortcomings of the simulator for our environment.

• Literature: These methods have been adopted with minimal changes from the
literature and include: Naive Model (Mean-Squared-Error) (NM (MSE)), Naive
Model (Log-Likelihood) (NM (LL)), Delta Model (Mean-Squared-Error) (DM
(MSE)) and the Autoregressive Model (AM).

• Adaptions: These methods have been significantly adjusted from the literature.
The specific adaptations are discussed in Section 4.1. These methods are Delta
Model (Log-Likelihood) (DM (LL)) and Autoregressive Delta Model (ADM). ADM
(5) denotes our best-performing ensemble model, consisting of five distinct ADM
models. We will discuss only this ensemble in this group.

57

5. The Real-World F1TENTH Benchmark

• Ensembles: Finally, we more generally discuss the performance of ensembles of
different MB methods.

AD
M
(5
)

AD
M

DM
(L
L) AM

DM
(M
SE
)

NM
(L
L)

NM
(M
SE
)

Si
m
ula
tio
n

−0.5

0.0

0.5

1.0

S
p
ea
rm

an
R
an
k
C
or
re
la
ti
on

Progress Reward

AD
M
(5
)

AD
M

DM
(L
L) AM

DM
(M
SE
)

NM
(L
L)

NM
(M
SE
)

Si
m
ula
tio
n

−0.5

0.0

0.5

1.0

S
p
ea
rm

an
R
an
k
C
or
re
la
ti
on

Lifetime Reward

AD
M
(5
)

AD
M

DM
(L
L) AM

DM
(M
SE
)

NM
(L
L)

NM
(M
SE
)

Si
m
ula
tio
n

−0.5

0.0

0.5

1.0

S
p
ea
rm

an
R
an
k
C
or
re
la
ti
on

Minimum Action Reward

AD
M
(5
)

AD
M

DM
(L
L) AM

DM
(M
SE
)

NM
(L
L)

NM
(M
SE
)

Si
m
ula
tio
n

−0.5

0.0

0.5

1.0

S
p
ea
rm

an
R
an
k
C
or
re
la
ti
on

Checkpoint Reward

Figure 5.2: SRC for our different MB OPE methods and the rewards investigated.

AD
M
(5
)

AD
M

DM
(L
L) AM

DM
(M
SE
)

NM
(L
L)

NM
(M
SE
)

Si
m
ula
tio
n

0

10

20

30

R
eg
re
t@
1

Progress Reward

AD
M
(5
)

AD
M

DM
(L
L) AM

DM
(M
SE
)

NM
(L
L)

NM
(M
SE
)

Si
m
ula
tio
n

0

10

20

30

R
eg
re
t@
1

Lifetime Reward

AD
M
(5
)

AD
M

DM
(L
L) AM

DM
(M
SE
)

NM
(L
L)

NM
(M
SE
)

Si
m
ula
tio
n

0

10

20

30

R
eg
re
t@
1

Minimum Action Reward

AD
M
(5
)

AD
M

DM
(L
L) AM

DM
(M
SE
)

NM
(L
L)

NM
(M
SE
)

Si
m
ula
tio
n

0

10

20

30

R
eg
re
t@
1

Checkpoint Reward

Figure 5.3: R@1 for our different MB OPE methods and the rewards investigated.

58

5.2. Performance of Off-policy Evaluation Methods

AD
M
(5
)

AD
M

DM
(L
L) AM

DM
(M
SE
)

NM
(L
L)

NM
(M
SE
)

Si
m
ula
tio
n

101

102

M
ea
n
A
bs
ol
ut
e
E
rr
or

Progress Reward

AD
M
(5
)

AD
M

DM
(L
L) AM

DM
(M
SE
)

NM
(L
L)

NM
(M
SE
)

Si
m
ula
tio
n

101

102

M
ea
n
A
bs
ol
ut
e
E
rr
or

Lifetime Reward

AD
M
(5
)

AD
M

DM
(L
L) AM

DM
(M
SE
)

NM
(L
L)

NM
(M
SE
)

Si
m
ula
tio
n

101

102

M
ea
n
A
bs
ol
ut
e
E
rr
or

Minimum Action Reward

AD
M
(5
)

AD
M

DM
(L
L) AM

DM
(M
SE
)

NM
(L
L)

NM
(M
SE
)

Si
m
ula
tio
n

101

102

M
ea
n
A
bs
ol
ut
e
E
rr
or

Checkpoint Reward

Figure 5.4: MAE for our different MB OPE methods and the rewards investigated.

Simulation

In Table 5.1 and the associated Figures 5.2, 5.3, and 5.4, it can be observed that Simulation
is generally the worst performing method or among the worst performing methods across
all our metrics and rewards. In this section, we will investigate some of the reasons for
this gap.

Figure 5.5 shows scatter plots of simulation estimates versus ground truth performance
for our four rewards. We highlight two sets of agents that are significant outliers in
the simulation estimates compared to the ground truth: PP agents with very short
lookahead distances, highlighted in red, and a subset of fast FTG agents, highlighted in
yellow. Furthermore, Figure 5.6 displays real-world and simulation rollouts of two agent
configurations from these subsets.

Pure-pursuit with short lookahead: These pure-pursuit agents have very short
lookahead distances (< 0.5 meters). In Figure 5.5, we observe that the simulation
overestimates the performance of these agents concerning the Lifetime Reward. The same
pattern holds for the Minimum Action Reward, where the overestimation is particularly
significant. This discrepancy arises because a short lookahead distance induces significant
oscillatory behavior in the actual trajectory compared to the racing line in the real world.
This oscillatory behavior increases the crash rate in the real world. Furthermore, the
Minimum Action Reward is especially impacted, as oscillations are associated with a
very low Minimum Action Reward. However, this oscillatory behavior is absent in the
simulator, as evidenced by the plotted trajectories in Figure 5.6.

59

5. The Real-World F1TENTH Benchmark

Table 5.1: Benchmark results for MB methods. Best results are highlighted, in case
the ensemble model is the best-performing method, second-best results are additionally
highlighted.

Estimator Spearman (↑) Mean Absolute Error (↓) Regret@1 (↓)

Pr
og

re
ss

R
ew

ar
d ADM (5) 0.81 ± 0.05 3.39 ± 0.89 0.00 ± 0.00

ADM 0.79 ± 0.06 4.04 ± 1.35 1.91 ± 2.45
DM (LL) 0.72 ± 0.12 5.00 ± 1.66 2.31 ± 4.72
AM 0.56 ± 0.24 9.26 ± 4.99 6.71 ± 7.62
DM (MSE) 0.38 ± 0.22 7.93 ± 1.71 8.33 ± 7.56
NM (LL) 0.55 ± 0.23 9.97 ± 5.48 6.04 ± 6.39
NM (MSE) 0.36 ± 0.26 17.63 ± 3.15 12.74 ± 10.17
Simulation -0.22 ± 0.00 9.86 ± 0.00 16.95 ± 0.00

Li
fe

tim
e

R
ew

ar
d ADM (5) 0.71 ± 0.09 7.22 ± 1.37 7.29 ± 8.93

ADM 0.68 ± 0.10 8.72 ± 2.32 6.92 ± 8.15
DM (LL) 0.60 ± 0.16 10.63 ± 3.42 9.48 ± 9.11
AM 0.35 ± 0.26 16.72 ± 8.69 9.29 ± 7.70
DM (MSE) 0.15 ± 0.21 15.89 ± 4.00 7.03 ± 8.88
NM (LL) 0.29 ± 0.29 18.41 ± 9.81 12.26 ± 7.79
NM (MSE) 0.08 ± 0.27 23.93 ± 7.77 12.88 ± 9.83
Simulation -0.36 ± 0.00 22.26 ± 0.00 14.62 ± 0.00

M
in

A
ct

io
n

R
ew

ar
d ADM (5) 0.88 ± 0.04 4.15 ± 0.94 0.35 ± 1.73

ADM 0.84 ± 0.08 5.15 ± 1.67 0.85 ± 2.88
DM (LL) 0.86 ± 0.04 5.40 ± 1.96 2.12 ± 3.77
AM 0.76 ± 0.16 9.56 ± 5.09 8.04 ± 5.03
DM (MSE) 0.73 ± 0.07 9.62 ± 2.08 10.07 ± 3.81
NM (LL) 0.73 ± 0.14 9.89 ± 4.10 9.81 ± 5.01
NM (MSE) 0.57 ± 0.16 12.18 ± 4.02 13.14 ± 5.95
Simulation 0.54 ± 0.00 27.77 ± 0.00 8.83 ± 0.00

C
he

ck
po

in
t

R
ew

ar
d ADM (5) 0.77 ± 0.08 7.17 ± 1.54 2.18 ± 3.02

ADM 0.76 ± 0.10 7.25 ± 1.38 4.33 ± 5.28
DM (LL) 0.61 ± 0.19 7.17 ± 1.63 7.14 ± 6.71
AM 0.51 ± 0.29 10.71 ± 3.61 8.01 ± 6.05
DM (MSE) 0.36 ± 0.31 10.03 ± 2.49 10.11 ± 6.13
NM (LL) 0.45 ± 0.32 10.89 ± 4.86 8.49 ± 7.41
NM (MSE) 0.26 ± 0.27 14.46 ± 2.87 14.10 ± 9.90
Simulation -0.29 ± 0.00 10.30 ± 0.00 15.54 ± 0.00

Fast FTG: As observed in Figure 5.5, the performance of FTG agents configured to
be particularly fast is significantly underestimated in simulation (the yellow agents in
the Figure). These agents crash much sooner in simulation than in reality, affecting

60

5.2. Performance of Off-policy Evaluation Methods

Table 5.2: Evaluation of ensemble estimators for different rewards.

Estimator Spearman (↑) Mean Absolute Error (↓) Regret@1 (↓)

Pr
og

re
ss

R
ew

ar
d ADM 0.79 ± 0.06 4.04 ± 1.35 1.91 ± 2.45

ADM (5) 0.81 ± 0.05 3.39 ± 0.89 0.00 ± 0.00
AM 0.56 ± 0.24 9.26 ± 4.99 6.71 ± 7.62
AM (5) 0.68 ± 0.17 5.32 ± 2.15 3.53 ± 5.29
DM (LL) 0.72 ± 0.12 5.00 ± 1.66 2.31 ± 4.72
DM (LL) (5) 0.75 ± 0.12 4.31 ± 1.11 0.70 ± 2.14
NM (MSE) 0.36 ± 0.26 17.63 ± 3.15 12.74 ± 10.17
NM (MSE) (5) 0.46 ± 0.23 13.80 ± 2.93 8.85 ± 8.57

Li
fe

tim
e

R
ew

ar
d ADM 0.68 ± 0.10 8.72 ± 2.32 6.92 ± 8.15

ADM (5) 0.71 ± 0.09 7.22 ± 1.37 7.29 ± 8.93
AM 0.35 ± 0.26 16.72 ± 8.69 9.29 ± 7.70
AM (5) 0.41 ± 0.24 10.93 ± 3.80 11.06 ± 8.41
DM (LL) 0.60 ± 0.16 10.63 ± 3.42 9.48 ± 9.11
DM (LL) (5) 0.62 ± 0.11 9.07 ± 1.95 10.33 ± 8.67
NM (MSE) 0.08 ± 0.27 23.93 ± 7.77 12.88 ± 9.83
NM (MSE) (5) 0.03 ± 0.25 17.10 ± 8.09 14.90 ± 8.88

M
in

A
ct

io
n

R
ew

ar
d ADM 0.84 ± 0.08 5.15 ± 1.67 0.85 ± 2.88

ADM (5) 0.88 ± 0.04 4.15 ± 0.94 0.35 ± 1.73
AM 0.76 ± 0.16 9.56 ± 5.09 8.04 ± 5.03
AM (5) 0.82 ± 0.09 6.22 ± 2.52 5.48 ± 5.30
DM (LL) 0.86 ± 0.04 5.40 ± 1.96 2.12 ± 3.77
DM (LL) (5) 0.87 ± 0.05 4.85 ± 1.38 0.00 ± 0.00
NM (MSE) 0.57 ± 0.16 12.18 ± 4.02 13.14 ± 5.95
NM (MSE) (5) 0.62 ± 0.13 11.22 ± 2.72 13.57 ± 5.32

C
he

ck
po

in
t

R
ew

ar
d ADM 0.76 ± 0.10 7.25 ± 1.38 4.33 ± 5.28

ADM (5) 0.77 ± 0.08 7.17 ± 1.54 2.18 ± 3.02
AM 0.51 ± 0.29 10.71 ± 3.61 8.01 ± 6.05
AM (5) 0.58 ± 0.25 9.03 ± 2.84 7.86 ± 6.35
DM (LL) 0.61 ± 0.19 7.17 ± 1.63 7.14 ± 6.71
DM (LL) (5) 0.65 ± 0.14 7.10 ± 1.65 4.82 ± 6.15
NM (MSE) 0.26 ± 0.27 14.46 ± 2.87 14.10 ± 9.90
NM (MSE) (5) 0.30 ± 0.32 10.38 ± 3.25 11.35 ± 8.34

all our rewards, as they are set to zero for timesteps after a crash. The exact reasons
for this simulation-reality mismatch are harder to pinpoint compared to the previous
set of agents. However, investigating Figure 5.6 reveals that, in reality, the agent drifts
much more to the outside of curves. This discrepancy might be due to parameters in the

61

5. The Real-World F1TENTH Benchmark

5 10 15 20 25 30 35 40 45
Ground Truth Mean Reward

5

10

15

20

25

30

35

40

45
S
im
ul
at
io
n
M
ea
n
R
ew

ar
d

Progress Reward

10 20 30 40 50 60 70 80 90
Ground Truth Mean Reward

10

20

30

40

50

60

70

80

90

S
im
ul
at
io
n
M
ea
n
R
ew

ar
d

Lifetime Reward

10 20 30 40 50
Ground Truth Mean Reward

10

20

30

40

50

60

70

S
im
ul
at
io
n
M
ea
n
R
ew

ar
d

Minimum Action Reward

5 10 15 20 25 30 35 40 45
Ground Truth Mean Reward

5

10

15

20

25

30

35

40

45

S
im
ul
at
io
n
M
ea
n
R
ew

ar
d

Checkpoint Reward

Figure 5.5: Scatter plot of simulation estimates vs. ground truth performance for our
evaluation agents. Each dot represents one agent. Red dots indicate PP agents with a
short lookahead distance. Yellow dots signify a subset of very fast FTG agents.

0.00 2.50 5.00 7.50 10.00

x [m]

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

y
[m

]

Agent trajectories

Agents

real

sim

0.00 2.50 5.00 7.50 10.00

x [m]

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

y
[m

]

Agent trajectories

Agents

real

sim

Figure 5.6: Both figures show a comparison of the recorded real-world rollouts versus
their simulated rollouts, starting from the same initial state. The left figure depicts a PP
agent with a short lookahead distance. The right figure shows a fast FTG agent.

simulator, such as the friction coefficient, being misaligned with reality.

62

5.2. Performance of Off-policy Evaluation Methods

Methods from Literature

In this group of methods, the Autoregressive Model consistently outperforms all the other
methods across our rewards and benchmarking metrics. Furthermore, regarding the naive
model, the LL loss consistently outperforms the MSE loss. It is worth noting that this
loss is already employed in the AM model, and the MSE loss was not investigated in
relation to this model. Lastly, concerning R@1 and SRC, there appears to be no clear
trend as to whether DM (MSE) outperforms NM (MSE), with DM (MSE) performing
better in roughly half of the metric and reward combinations. However, in terms of MAE,
DM (MSE) clearly outperforms NM (MSE) across every reward.

Adaptions from Literature

Following the previous results, we combined the LL loss and the DM, as described in
Section 4.1. This combination led to the most significant improvement in the Lifetime
Reward, with a more than 100% increase in the SRC metric compared to the previous
best AM method from the literature.

Additionally, we combined the AM and the DM, yielding ADM, as outlined in Section
4.1. This combination resulted in further improvements across almost all our rewards
and metrics. In cases where ADM is not the best-performing method, it is very close, as
shown in Table 5.1. We conclude that from our adaptions ADM performs the best.

Performance of Ensembles

As can be observed in Table 5.2, utilizing ensembles as described in Section 4.1.5 generally
leads to better-performing models, except for the naive model. Furthermore, this trend
is not always visible in the R@1 metric. However, as this metric is more sensitive to
changes in performance estimation of only a few agents, we conclude that employing
ensembles tends to improve performance.

5.2.2 Fitted-Q-Evaluation
For FQE, we investigate two methods from literature and report results in Table 5.3.
Concerning the SRC and MAE metrics, FQE-DD tends to outperform FQE-L2, except
for the Minimum Action Reward, where both estimators achieve comparable performance.
However, in terms of the R@1 metric, FQE-L2 outperforms FQE-DD.

While FQE exhibits the need for hyper-parameter tuning, we do not investigate this
extensively due to the comparably large compute resources required to train FQE
methods, making extensive tuning infeasible within the scope of this thesis. Furthermore,
as the performance of FQE is competitive with our selected hyperparameters and hyper-
parameter tuning might be infeasible for real-world applications, we believe that our
results are representative of the method’s overall potential. For our training setup, on an
NVIDIA GeForce RTX 3090, training one FQE model for a single reward and a single
agent for 200k steps takes 2-4 hours, depending on the model.

63

5. The Real-World F1TENTH Benchmark

Inline with previous work [PPM+20], since it is not clear when an FQE model has
converged, we provide the SRC value over the training steps in Figure 5.7. It should be
noted that the SRC reported in the figure is only computed over single action samples, as
opposed to the values reported in Table 5.3, explaining the slight inconsistencies between
the table and the figures.

We can observe that, generally, the predicted SRC remains relatively stable over the
training steps for our dense rewards. The different training seeds also produce similar
results for these rewards across the training steps. On the other hand, our sparser and
longer time-horizon rewards result in much higher variance concerning different seeds
and appear to exhibit worse convergence. Especially the Checkpoint Reward appears
to exhibit significant variance along the training steps. We hypothesise that this is due
the methods initially learning to focus on the speed at which the agents drive, only later
starting to fit to the sparsity present due to early terminations. However, this requires
further investigation.

Table 5.3: Evaluation of estimators for different rewards.

Estimator Spearman (↑) Mean Absolute Error (↓) Regret@1 (↓)
Progress Reward FQE DD 0.75 ± 0.02 3.87 ± 0.46 1.92 ± 0.00

FQE (L2) 0.70 ± 0.11 4.43 ± 0.29 1.28 ± 0.91
Lifetime Reward FQE (DD) 0.67 ± 0.05 7.04 ± 0.61 10.27 ± 8.68

FQE (L2) 0.60 ± 0.10 7.23 ± 1.26 3.20 ± 4.52
Min. Action Reward FQE (DD) 0.86 ± 0.02 5.57 ± 0.12 10.62 ± 0.00

FQE (L2) 0.88 ± 0.02 6.25 ± 0.26 10.62 ± 0.00
Checkpoint Reward FQE (DD) 0.73 ± 0.05 4.53 ± 0.24 3.31 ± 0.00

FQE (L2) 0.65 ± 0.05 5.46 ± 0.23 2.21 ± 1.56

64

5.2. Performance of Off-policy Evaluation Methods

(a) SRC as predicted by FQE for the Progress Re-
ward.

(b) SRC as predicted by FQE for the Lifetime Re-
ward.

(c) SRC as predicted by FQE for the Minimum
Action Reward.

(d) SRC as predicted by FQE for the Check-
point Reward.

Figure 5.7: SRC for FQE-DD (blue) and FQE-L2 (red) over the training timesteps.
The averaged result is plotted with solid lines, while individual runs are shown with
transparency.

5.2.3 Importance Sampling

In Table 5.4, we report the results for our estimators belonging to the IS family. These
results are also visualized in Figures 5.8, 5.9, and 5.10. We do not provide standard
deviations for IS methods, as these methods are deterministic and only depend on the
training data. While we do not include this in our work, it is possible to calculate
standard deviations using bootstrapping.

We will proceed with discussing the estimator’s performance in two groups:

• Previous Literature: These estimators encompass IS, PDIS, WIS, PHWIS, and
PDWIS (C). We will also discuss the performance of PDWIS (Mean) in this category,
although it could be argued that this estimator has some novel aspects.

65

5. The Real-World F1TENTH Benchmark

TP
DW

IS

PD
W
IS
(M
ea
n)

PD
W
IS
(C
)

W
IS

PD
IS IS

PH
W
IS

−0.5

0.0

0.5

1.0
S
p
ea
rm

an
R
an
k
C
or
re
la
ti
on Reward Progress

TP
DW

IS

PD
W
IS
(M
ea
n)

PD
W
IS
(C
)

W
IS

PD
IS IS

PH
W
IS

−0.5

0.0

0.5

1.0

S
p
ea
rm

an
R
an
k
C
or
re
la
ti
on Reward Lifetime

TP
DW

IS

PD
W
IS
(M
ea
n)

PD
W
IS
(C
)

W
IS

PD
IS IS

PH
W
IS

−0.5

0.0

0.5

1.0

S
p
ea
rm

an
R
an
k
C
or
re
la
ti
on Reward Minimum Action

TP
DW

IS

PD
W
IS
(M
ea
n)

PD
W
IS
(C
)

W
IS

PD
IS IS

PH
W
IS

−0.5

0.0

0.5

1.0

S
p
ea
rm

an
R
an
k
C
or
re
la
ti
on Reward Checkpoint

Figure 5.8: SRC for our different IS methods and the rewards investigated.

TP
DW

IS

PD
W
IS
(M
ea
n)

PD
W
IS
(C
)

W
IS

PD
IS IS

PH
W
IS

101

102

M
ea
n
A
b
so
lu
te

E
rr
or

Reward Progress

TP
DW

IS

PD
W
IS
(M
ea
n)

PD
W
IS
(C
)

W
IS

PD
IS IS

PH
W
IS

101

102

M
ea
n
A
b
so
lu
te

E
rr
or

Reward Lifetime

TP
DW

IS

PD
W
IS
(M
ea
n)

PD
W
IS
(C
)

W
IS

PD
IS IS

PH
W
IS

101

102

M
ea
n
A
b
so
lu
te

E
rr
or

Reward Minimum Action

TP
DW

IS

PD
W
IS
(M
ea
n)

PD
W
IS
(C
)

W
IS

PD
IS IS

PH
W
IS

101

102

M
ea
n
A
b
so
lu
te

E
rr
or

Reward Checkpoint

Figure 5.9: MAE for our different IS methods and the rewards investigated.

• Termination-aware Per-Decision-Weighted Importance Sampling: Here
we will discuss the performance of the novel TPDWIS estimator.

66

5.2. Performance of Off-policy Evaluation Methods

TP
DW

IS

PD
W
IS
(M
ea
n)

PD
W
IS
(C
)

W
IS

PD
IS IS

PH
W
IS

0

10

20

30

R
eg
re
t@

1

Reward Progress

TP
DW

IS

PD
W
IS
(M
ea
n)

PD
W
IS
(C
)

W
IS

PD
IS IS

PH
W
IS

0

10

20

30

R
eg
re
t@

1

Reward Lifetime

TP
DW

IS

PD
W
IS
(M
ea
n)

PD
W
IS
(C
)

W
IS

PD
IS IS

PH
W
IS

0

10

20

30

R
eg
re
t@

1

Reward Minimum Action

TP
DW

IS

PD
W
IS
(M
ea
n)

PD
W
IS
(C
)

W
IS

PD
IS IS

PH
W
IS

0

10

20

30

R
eg
re
t@

1

Reward Checkpoint

Figure 5.10: R@1 for our different IS methods and the rewards investigated.

Literature

The IS and PDIS estimators perform poorly across most metrics and rewards. The
only exception is the Minimum Action Reward, where PDIS performs better than all
other IS estimators on R@1. Additionally, the SRC for this reward is also close to the
best-performing IS method.

However, the MAE is very high for both these estimators. This is due to the severe
underestimation caused by using the unscaled IS ratio, which becomes very close to zero
after only a few timesteps in our environment.

While WIS improves performance concerning the MAE metric, the SRC remains below
0.31 for all our rewards. Generally, it does not improve on the previous results from IS
and PDIS concerning this metric. In fact, the rank correlation is often negative. The poor
performance appears to be due to the early terminations discussed in Section 4.3.2 and
present in our training dataset. Since the early terminations are not handled explicitly,
the WIS estimator also exhibits severe underestimation of rewards.

The PHWIS estimator was initially designed to address the issue of early terminations.
However, our benchmark shows that, for our environment, the performance of PHWIS
is often comparable to IS and PDIS, and it is consistently outperformed by plain WIS
across the SRC and MAE metrics.

Additionally, we investigated the heuristic PHWIS estimator. However, in our environ-
ment, this estimator yields predictions that are often infinite values in floating point
32. Examining the weight calculation for the heuristic PHWIS estimator, as shown in

67

5. The Real-World F1TENTH Benchmark

Table 5.4: Evaluation of Estimators for different Rewards

Estimator Spearman (↑) Mean Absolute Error (↓) Regret@1 (↓)
Pr

og
re

ss
R

ew
ar

d TPDWIS 0.81 ± 0.00 2.89 ± 0.00 0.00 ± 0.00
PDWIS (Mean) 0.67 ± 0.00 4.90 ± 0.00 0.00 ± 0.00
PDWIS (C) 0.52 ± 0.00 12.62 ± 0.00 8.51 ± 0.00
WIS 0.31 ± 0.00 19.92 ± 0.00 16.46 ± 0.00
PDIS -0.41 ± 0.00 31.90 ± 0.00 21.89 ± 0.00
IS 0.35 ± 0.00 32.45 ± 0.00 16.95 ± 0.00
PHWIS 0.13 ± 0.00 27.02 ± 0.00 16.46 ± 0.00

Li
fe

tim
e

R
ew

ar
d TPDWIS 0.45 ± 0.00 7.23 ± 0.00 0.00 ± 0.00

PDWIS (Mean) 0.31 ± 0.00 11.31 ± 0.00 0.00 ± 0.00
PDWIS (C) 0.03 ± 0.00 28.97 ± 0.00 20.16 ± 0.00
WIS -0.37 ± 0.00 43.02 ± 0.00 20.16 ± 0.00
PDIS -0.09 ± 0.00 74.12 ± 0.00 18.23 ± 0.00
IS 0.07 ± 0.00 77.10 ± 0.00 25.58 ± 0.00
PHWIS -0.54 ± 0.00 64.19 ± 0.00 20.16 ± 0.00

M
in

A
ct

io
n

R
ew

ar
d TPDWIS 0.66 ± 0.00 7.35 ± 0.00 16.95 ± 0.00

PDWIS (Mean) 0.59 ± 0.00 9.65 ± 0.00 16.95 ± 0.00
PDWIS (C) 0.64 ± 0.00 15.98 ± 0.00 16.95 ± 0.00
WIS 0.26 ± 0.00 22.99 ± 0.00 16.95 ± 0.00
PDIS 0.62 ± 0.00 35.50 ± 0.00 10.62 ± 0.00
IS -0.22 ± 0.00 36.91 ± 0.00 20.00 ± 0.00
PHWIS -0.06 ± 0.00 31.10 ± 0.00 16.95 ± 0.00

C
he

ck
po

in
t

R
ew

ar
d TPDWIS 0.70 ± 0.00 4.76 ± 0.00 0.00 ± 0.00

PDWIS (Mean) 0.63 ± 0.00 6.43 ± 0.00 0.00 ± 0.00
PDWIS (C) 0.50 ± 0.00 14.41 ± 0.00 5.04 ± 0.00
WIS 0.26 ± 0.00 22.74 ± 0.00 15.54 ± 0.00
PDIS -0.25 ± 0.00 31.60 ± 0.00 24.01 ± 0.00
IS -0.20 ± 0.00 32.13 ± 0.00 18.33 ± 0.00
PHWIS 0.08 ± 0.00 27.26 ± 0.00 15.54 ± 0.00

Equation 4.9, we notice that the numerator’s value of the weight will generally be very
high, given that a significant number of our trajectories are truncated at 250 timesteps.
Raising these values to the power of 1

250 results in a numerator that is much larger than
our very small denominator, leading to significant overestimations of the true value. To
illustrate, let us consider a concrete example: our dataset contains one trajectory that has
a cumulative IS ratio of 10−100, a value that is higher (and therefore easier for PHWIS)
than realistic values in our setting, as can also be observed in Figure 4.1. Plugging this
value into the heuristic PHWIS:

68

5.2. Performance of Off-policy Evaluation Methods

W h
t = 0.99

10−100 ≈ 1099 (5.6)

If we now consider the rest of the expression in Equation 4.9, for the case of only a single
trajectory the remainder of the equation will equal only the product of our discounts
till timestep 250, hence 0.99250 = 0.08, a value on a completely different scale than our
weight. Even if we have multiple trajectories, the value of the rest of the equation will be
completely dominated by the weight, yielding an unusable estimator for our environment.
Hence, the results for this estimator are not reported in this benchmark.

Lastly, let us consider the PDWIS estimator. This estimator, even in its Constant
extension form previously encountered in the literature, generally outperforms or produces
similar results to the best other methods in the literature. The improvement is especially
significant for the SRC metric and the MAE. For R@1, an improvement is only present
for the Progress and Checkpoint Reward.

We can further improve the performance of PDWIS by extending it with the mean, as
described in Section 4.3.4. This consistently improves performance across almost all our
metrics and rewards, sometimes significantly. The only major exception is the Minimum
Action Reward, where both the SRC and R@1 are not improved but remain similar or
equal to the PDWIS (C) estimator.

Termination-aware Per-Decision-Weighted Importance Sampling

The novel TPDWIS estimator significantly outperforms all other IS methods investigated.
The previously best-performing estimator from the literature can be considered the
PDWIS (C) estimator, as it is debatable whether the mean extension method has been
previously utilized. TPDWIS is the only estimator that yields a SRC significantly
above 0 for the Lifetime Reward when considering only methods from previous literature.
Furthermore, the performance concerning SRC is improved by 55%, 3 %, and 40% for
Progress, Minimum Action, and Checkpoint Reward, respectively.

Similar significant improvements can be observed for the MAE metric. Regarding R@1,
the performance improvement is less clear, but the results are still among the best-
performing IS estimators, with only small differences, as in the case of the Checkpoint
Reward. The only instance where the TPDWIS estimator produces a notably worse result
than other estimators is the Minimum Action Reward, as measured by the R@1 metric.
As this metric can be heavily skewed by a few outliers, and the TPDWIS estimator
exhibits significant improvements across all other rewards and metrics, we conclude that
the TPDWIS estimator is the generally best-performing IS estimator investigated.

5.2.4 Doubly Robust
The results for the investigated DR methods are reported in Table 5.5. Figures 5.11, 5.12
and 5.13 visualize these results and show the performance of FQE-DD and the respective
IS methods for the different rewards.

69

5. The Real-World F1TENTH Benchmark

Generally, for IS and PDWIS, as the IS ratios for these methods are vanishingly small, we
recover the FQE-DD estimate for the DR method. For WIS, we observe that utilizing DR
instead of plain FQE-DD generally decreases the performance of the estimator. However,
considering that the original WIS estimator exhibits significantly worse behavior than
FQE-DD, it is perhaps surprising how slight the performance degradation is in some
cases, like the Lifetime Reward and the Minimum Action Reward. While this requires
more investigation, we hypothesize that this is because FQE-DD produces similar value
estimates for trajectories that depend only slightly on the concrete starting states.

For the DR version of TPDWIS, we observe similar performance degradation for the
Lifetime and Minimum Action Rewards. However, interestingly, for the Checkpoint
Reward, we see a significant improvement in both SRC and MAE for the DR estimator,
compared to both the FQE-DD and TPDWIS estimators separately. This result should
be taken cautiously, as the standard deviation for this estimator is quite large and was
calculated with only three available seeds from FQE-DD.

In general, except for the Checkpoint Reward, DR performs slightly worse than FQE-
DD alone. However, in many situations, utilizing DR instead of plain FQE does not
significantly decreases performance, even if the IS method performs much worse.

TP
DW

IS
(D
R)

W
IS
(D
R)

PD
IS
(D
R)

IS
(D
R)

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

S
p
ea
rm

an
C
or
re
la
ti
on

Reward Progress

DR IS FQE (DD)

TP
DW

IS
(D
R)

W
IS
(D
R)

PD
IS
(D
R)

IS
(D
R)

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

S
p
ea
rm

an
C
or
re
la
ti
on

Reward Lifetime

DR IS FQE (DD)

TP
DW

IS
(D
R)

W
IS
(D
R)

PD
IS
(D
R)

IS
(D
R)

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

S
p
ea
rm

an
C
or
re
la
ti
on

Reward Minimum Action

DR IS FQE (DD)

TP
DW

IS
(D
R)

W
IS
(D
R)

PD
IS
(D
R)

IS
(D
R)

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

S
p
ea
rm

an
C
or
re
la
ti
on

Reward Checkpoint

DR IS FQE (DD)

Figure 5.11: SRC for different DR methods, including the performance of the FQE and
IS methods they are based on.

70

5.2. Performance of Off-policy Evaluation Methods

TP
DW

IS
(D
R)

W
IS
(D
R)

PD
IS
(D
R)

IS
(D
R)

101

102

M
ea
n
A
bs
ol
ut
e
E
rr
or

Reward Progress

DR IS FQE (DD)

TP
DW

IS
(D
R)

W
IS
(D
R)

PD
IS
(D
R)

IS
(D
R)

101

102

M
ea
n
A
bs
ol
ut
e
E
rr
or

Reward Lifetime

DR IS FQE (DD)

TP
DW

IS
(D
R)

W
IS
(D
R)

PD
IS
(D
R)

IS
(D
R)

101

102

M
ea
n
A
bs
ol
ut
e
E
rr
or

Reward Minimum Action

DR IS FQE (DD)

TP
DW

IS
(D
R)

W
IS
(D
R)

PD
IS
(D
R)

IS
(D
R)

101

102

M
ea
n
A
bs
ol
ut
e
E
rr
or

Reward Checkpoint

DR IS FQE (DD)

Figure 5.12: MAE for different DR methods, including the performance of the FQE and
IS methods they are based on.

71

5. The Real-World F1TENTH Benchmark

TP
DW

IS
(D
R)

W
IS
(D
R)

PD
IS
(D
R)

IS
(D
R)

0

5

10

15

20

25

30

R
eg
re
t@
1

Reward Progress

DR IS FQE (DD)

TP
DW

IS
(D
R)

W
IS
(D
R)

PD
IS
(D
R)

IS
(D
R)

0

5

10

15

20

25

30

R
eg
re
t@
1

Reward Lifetime

DR IS FQE (DD)

TP
DW

IS
(D
R)

W
IS
(D
R)

PD
IS
(D
R)

IS
(D
R)

0

5

10

15

20

25

30

R
eg
re
t@
1

Reward Minimum Action

DR IS FQE (DD)

TP
DW

IS
(D
R)

W
IS
(D
R)

PD
IS
(D
R)

IS
(D
R)

0

5

10

15

20

25

30

R
eg
re
t@
1

Reward Checkpoint

DR IS FQE (DD)

Figure 5.13: R@1 for different DR methods, including the performance of the FQE and
IS methods they are based on.

72

5.2. Performance of Off-policy Evaluation Methods

Table 5.5: Evaluation of Estimators for different rewards.

Estimator Spearman (↑) Mean Absolute Error (↓) Regret@1 (↓)

Progress Reward

TPDWIS (DR) 0.81 ± 0.03 3.62 ± 0.47 1.92 ± 0.00
WIS (DR) 0.62 ± 0.07 5.67 ± 0.13 11.01 ± 6.67
PDIS (DR) 0.76 ± 0.00 3.89 ± 0.42 1.92 ± 0.00

IS (DR) 0.76 ± 0.01 3.89 ± 0.41 1.92 ± 0.00

Lifetime Reward

TPDWIS (DR) 0.59 ± 0.02 7.19 ± 0.43 10.27 ± 8.68
WIS (DR) 0.61 ± 0.05 10.31 ± 1.21 8.07 ± 6.06
PDIS (DR) 0.66 ± 0.06 7.08 ± 0.51 10.27 ± 8.68

IS (DR) 0.66 ± 0.06 7.12 ± 0.51 10.27 ± 8.68

Min. Action Reward

TPDWIS (DR) 0.85 ± 0.02 4.11 ± 0.46 10.91 ± 0.41
WIS (DR) 0.87 ± 0.06 5.92 ± 0.28 10.62 ± 0.00
PDIS (DR) 0.84 ± 0.03 5.60 ± 0.17 10.62 ± 0.00

IS (DR) 0.84 ± 0.04 5.55 ± 0.12 10.62 ± 0.00

Checkpoint Reward

TPDWIS (DR) 0.81 ± 0.11 3.92 ± 0.72 7.05 ± 7.75
WIS (DR) 0.57 ± 0.06 5.75 ± 0.56 15.19 ± 1.87
PDIS (DR) 0.68 ± 0.08 4.74 ± 0.14 3.31 ± 0.00

IS (DR) 0.70 ± 0.07 4.74 ± 0.29 3.31 ± 0.00

73

5. The Real-World F1TENTH Benchmark

5.3 Cross-Method Comparison and Influence of Reward
Figures 5.14, 5.15, and 5.16 show the performance of the methods that perform best within
their OPE family. For MB, we show both the performance of ADM (5), as it is clearly
the best-performing method, and DM (LL) (5), as it is close on some metrics. For FQE,
we show the performance of both versions. For IS, we show the performance of TPDWIS
as it is the best-performing IS method, with only a few outliers outperforming it in the
more variable R@1 metric. For DR, we elect to show the performance of the respective
TPDWIS and PDIS, as these two DR methods show the best performance, except for a
single reward and metric: the Minimum Action Reward, where their performance is very
close to the best-performing WIS (DR). By selecting these methods we believe that a fair
comparison between the best performing methods across rewards and different metrics
can be made.

AD
M
(5
)

DM
(5
)

TP
DW

IS

FQ
E
(D
D)

FQ
E
(L
2)

TP
DW

IS
(D
R)

PD
IS
(D
R)

−0.5

0.0

0.5

1.0

S
p
ea
rm

an
R
an
k
C
or
re
la
ti
on

Reward Progress

AD
M
(5
)

DM
(5
)

TP
DW

IS

FQ
E
(D
D)

FQ
E
(L
2)

TP
DW

IS
(D
R)

PD
IS
(D
R)

−0.5

0.0

0.5

1.0

S
p
ea
rm

an
R
an
k
C
or
re
la
ti
on

Reward Lifetime

AD
M
(5
)

DM
(5
)

TP
DW

IS

FQ
E
(D
D)

FQ
E
(L
2)

TP
DW

IS
(D
R)

PD
IS
(D
R)

−0.5

0.0

0.5

1.0

S
p
ea
rm

an
R
an
k
C
or
re
la
ti
on

Reward Minimum Action

AD
M
(5
)

DM
(5
)

TP
DW

IS

FQ
E
(D
D)

FQ
E
(L
2)

TP
DW

IS
(D
R)

PD
IS
(D
R)

−0.5

0.0

0.5

1.0

S
p
ea
rm

an
R
an
k
C
or
re
la
ti
on

Reward Checkpoint

Figure 5.14: SRC for our different OPE methods and the rewards investigated

Progress Reward: The best methods from all OPE families perform very well on the
Progress Reward, with similarly high results around ∼ 0.8 SRC, < 4.0 MAE, and < 2.0
R@1. Across these metrics, FQE appears to perform the worst, albeit with only a small
margin. It is noteworthy that the best methods from previous literature, namely PDWIS
(C) for IS and AM for MB, attain significantly worse results than the methods presented
in the figures of this section.

Lifetime Reward: Concerning the SRC, the Lifetime Reward appears to be the most
challenging reward for our OPE methods to solve, this is perhaps unsurprising as its
both sparse and considers a long-time horizon. The best-performing method ADM (5),
only achieves a mean SRC of 0.71. FQE and DR achieve similar mean SRC values of 0.67

74

5.3. Cross-Method Comparison and Influence of Reward

and 0.66, respectively, lagging only slightly behind our MB method. However, TPDWIS
significantly lags behind these results with a notably lower SRC of 0.45. One potential
reason for this significantly lower performance might be the inability of IS to perform
estimation from any initial state and requiring the evaluation approach described in
Section 4.3.6.

On the other hand, all methods perform very comparably on the MAE metric, and
TPDWIS significantly outperforms all other methods on the R@1 metric. To summarize,
considering that the R@1 metric is significantly influenced by outliers, ADM (5) appears
to be the best-performing method for this reward.

AD
M
(5
)

DM
(5
)

TP
DW

IS

FQ
E
(D
D)

FQ
E
(L
2)

TP
DW

IS
(D
R)

PD
IS
(D
R)

101

102

M
ea
n
A
bs
ol
ut
e
E
rr
or

Reward Progress

AD
M
(5
)

DM
(5
)

TP
DW

IS

FQ
E
(D
D)

FQ
E
(L
2)

TP
DW

IS
(D
R)

PD
IS
(D
R)

101

102

M
ea
n
A
bs
ol
ut
e
E
rr
or

Reward Lifetime

AD
M
(5
)

DM
(5
)

TP
DW

IS

FQ
E
(D
D)

FQ
E
(L
2)

TP
DW

IS
(D
R)

PD
IS
(D
R)

101

102

M
ea
n
A
bs
ol
ut
e
E
rr
or

Reward Minimum Action

AD
M
(5
)

DM
(5
)

TP
DW

IS

FQ
E
(D
D)

FQ
E
(L
2)

TP
DW

IS
(D
R)

PD
IS
(D
R)

101

102

M
ea
n
A
bs
ol
ut
e
E
rr
or

Reward Checkpoint

Figure 5.15: MAE for our different OPE methods and the rewards investigated

Minimum Action Reward: The performances of the best FQE, MB, and DR methods
are very similar on this reward. Concerning the SRC, FQE-L2 slightly outperforms the
other methods, but ADM (5) exhibits the best mean scores in R@1 and Mean Squared
Error.

The only method that performs significantly worse than the others is TPDWIS, exhibiting
significantly worse SRC, the worst scores on MAE and R@1.

Checkpoint Reward: Concerning the SRC, ADM (5) and TPDWIS (DR) perform
best on this metric with scores of 0.77 and 0.81, respectively. While TPDWIS and FQE
only attain scores of 0.7 and 0.73. On MAE TPDWIS and TPDWIS (DR) perform best,
while on R@1 TPDWIS and ADM (5) perform best. The overall performance of the
methods is very similar concerning this reward.

Overall, the dense Progress Reward is handled well by all our OPE methods. In contrast,

75

5. The Real-World F1TENTH Benchmark

AD
M
(5
)

DM
(5
)

TP
DW

IS

FQ
E
(D
D)

FQ
E
(L
2)

TP
DW

IS
(D
R)

PD
IS
(D
R)

0

10

20

30
R
eg
re
t@
1

Reward Progress

AD
M
(5
)

DM
(5
)

TP
DW

IS

FQ
E
(D
D)

FQ
E
(L
2)

TP
DW

IS
(D
R)

PD
IS
(D
R)

0

10

20

30

R
eg
re
t@
1

Reward Lifetime

AD
M
(5
)

DM
(5
)

TP
DW

IS

FQ
E
(D
D)

FQ
E
(L
2)

TP
DW

IS
(D
R)

PD
IS
(D
R)

0

10

20

30

R
eg
re
t@
1

Reward Minimum Action

AD
M
(5
)

DM
(5
)

TP
DW

IS

FQ
E
(D
D)

FQ
E
(L
2)

TP
DW

IS
(D
R)

PD
IS
(D
R)

0

10

20

30

R
eg
re
t@
1

Reward Checkpoint

Figure 5.16: R@1 for our different OPE methods and the rewards investigated.

the sparse Checkpoint Reward presents more of a challenge for all OPE methods, as
indicated by lower performance metrics. The long-horizon sparse Lifetime Reward proves
to be the most difficult, with all estimators yielding relatively low SRC. Additionally,
while all other estimators perform well on the Minimum Action Reward, our IS method
struggles with this metric. Again, we hypothesise that the reason might be the evaluation
procedure we had to adopt for IS.

5.4 Which OPE method should be use?
We will give a short summary of OPE selection criteria concerning the following four
metrics:

• Performance

• Ease of Use

• Required Compute

• Interpretability

At the end of this section, we will summarize our recommendations for selecting an OPE
method.

76

5.4. Which OPE method should be use?

Performance: Generally, ADM (5) appears to perform best across most of our rewards
and metrics. This is closely followed by the FQE and DR methods. However, employ-
ing DR in our setting results in very similar outcomes to plain FQE, with significant
performance increases only for the sparse Checkpoint Reward and slight decreases in per-
formance in many other cases. TPDWIS performs competitively across most metrics and
rewards, except for the Minimum Action Reward, where it is significantly outperformed
by all other methods. One reason for this underperformance might be the evaluation
procedure we adopt for our IS estimators.

Ease of use: IS methods can be considered the easiest to use, as they do not require any
engineering effort specific to the dataset. Given a dataset of transitions, we simply need
trajectories with annotated rewards for each transition and the probabilities associated
with the actions taken in the trajectory. In contrast, both FQE and MB methods have
a much larger design space, as neural network architecture, loss function, and hyper-
parameters must be decided. Overall, the design space is larger and more complicated
for MB methods. Methods directly taken from the literature yield worse results in
our benchmark than FQE, and only specific engineering efforts enable MB to become
competitive and outperform FQE.

Required compute: IS methods require very little compute, as we only need to calculate
the IS-ratio for each evaluation agent. This is followed by MB methods, where we perform
one training run with our behavior dataset and then can perform rollouts and reward
estimation with one trained model for all our evaluation agents. FQE requires the most
compute by a significant margin, as we need a separate training run for each evaluation
agent.

Interpretability: It can be argued that MB methods are the most interpretable,
eventhough they employ a black-box neural network, as their trajectory rollouts can be
visualized, as is commonly done in simulation. In IS, we can identify trajectories that
are similar to our target agent, enabling a certain degree of interpretability as well. FQE
suffers from the worst interpretability, as it provides a singular performance estimate for
one starting point without any insights into how this estimate was derived.

To sum up, for the F1TENTH environment, MB methods require the highest amount
of engineering effort. Still, they typically result in the best-performing techniques,
with high interpretability and low compute requirements. FQE methods require less
engineering effort and yield well-performing methods but suffer from low interpretability
and high compute requirements. IS methods require virtually no engineering effort,
result in generally good-performing estimators, offer some interpretability, and have very
low compute requirements. DR methods offer little advantage over plain FQE in our
environment but come with all the associated drawbacks.

77

CHAPTER 6
Conclusion

In the future, OPE methods are envisioned to reduce the required resources to develop
autonomous systems and increase the safety of deployed systems. By applying OPE
to a real-world robotics scenario, this thesis bridges a crucial gap between previous
investigations of OPE in simulation environments and practical real-world robotics
applications, bringing this vision closer to reality. Specifically, utilizing the F1TENTH
racing environment, this thesis introduces the first real-world robotics OPE benchmark.
This novel benchmark is not only a significant step toward validating OPE methods in
real-world settings but also provides a framework for evaluating the effectiveness of novel
OPE methods in general.

The specific contributions made through this thesis include the following:

1. F1TENTH Offline RL Dataset: A novel real-world dataset with 55 unique
autonomous racing policies, exhibiting a wide variety of behaviors, is introduced.

2. Benchmark and Adaption of OPE Methods: We provide a comprehensive
benchmark of over 20 OPE methods, adapting these methods to our novel dataset
as necessary. By utilizing and modifying techniques from existing literature, we
demonstrate how high-performing MB methods can be designed. Specifically, the
combination of AM with DM results in a significant improvement in performance.

3. Novel Estimator: We introduce the Termination-aware Per-Decision-Weighted
Importance Sampling (TPDWIS) estimator, the only IS estimator competitive with
MB and FQE methods, and formally prove its consistency. The good performance
of TPDWIS is due to the explicit handling of early termination trajectories.

4. Analysis of OPE Performance: We show that different rewards affect OPE
performance and identify the best-performing methods across multiple metrics.
Furthermore, we provide guidelines for selecting OPE methods depending on

79

6. Conclusion

the use case, specifically for the F1TENTH environment, with expected (partial)
transferability to other environments.

Despite significant contributions, some limitations remain: First, in relation to our
investigated setting, we only study a single racing track and one mobile robot, limiting
the transferability of findings to other robots or configurations. Since our research is
focused on a single environment, the examination of the novel TPDWIS estimator is
limited, restricting our ability to make broader comparisons with previous approaches that
take early terminations into account. Furthermore, we assumes relatively dense support
in the training set, which may not be representative of all potential use cases. Secondly,
we do not investigate the impact of our evaluation procedure on the performance of
IS, a potential reason for IS generally being outperformed by other estimators. Last, a
low number of seeds used in evaluating FQE methods may affect the robustness of the
findings in relation to this method.
We identify the following interesting future research directions:

1. Real-World Benchmarking Framework: We envision a plug-and-play frame-
work for investigating and benchmarking the performance of novel OPE methods
across multiple real-world environments. Such a benchmarking framework, in the
contrast to the current one, should include the following: First, as previous studies
have shown that the specific environment has a significant impact on the perfor-
mance of specific OPE methods, additional datasets and environments should be
provided in the framework. One such environment could be the existing real-world
Trifinger dataset [WWG+21]. Second, the framework should include well tuned MB
and FQE-based methods for all environments. Third, the user should be provided
with control over the sparsity of the off-policy data presented to the OPE algorithm.
Finally, the framework should be easily extensible to new methods.

2. Cross-Robot Transferability: To generalize findings across different robots of
the same kind, the framework should include datasets and ground truths from
multiple units of the same robot type. This approach will help assess how OPE
methods handle variations within the same category of robots, such as manufacturing
inconsistencies, differing sensor noise, and wear. Hopefully, the availability of such
datasets will enable OPE methods to give performance estimates not just for specific
robots, but generalize across robots of the same kind. This focus on cross-robot
transferability will enhance the practical applicability of OPE techniques, ensuring
they remain effective even when utilized in real-world scenarios and datasets of the
particular robot are not available.

In conclusion, this study demonstrates how OPE can be applied to real-world robotics
platforms, potentially enabling safer and less expensive deployments. We not only
introduce the first real-world robotics benchmark for OPE but also presents the novel
and performant TPDWIS estimator. Our findings will inform the future development
and deployment of safer robotics algorithms in real-world applications.

80

List of Figures

1.1 The process of OPE involves estimating the performance (V π) of a policy π
given historic off-policy data collected in the real world. Figure inspired by
[FNN+21]. 2

2.1 Depiction of an MDP. The environment provides the state st, reward rt and
termination signal dt. Based on this, the agent emits an action at+1, which is
again applied to the environment. 6

2.2 The figure presents the initial distribution of f , represented by a solid line,
derived from samples taken from pb, denoted as f(xpb

). This distribution
is modified using the IS ratio to align with the target distribution f(xpt),
illustrated by a dashed line. Regions labeled with > 1 and < 1 indicate areas
where the IS ratio exceeds or falls below one, respectively. 13

2.3 Example environments from previous OPE benchmarks. This depiction aims
to show the approximate evolution of OPE benchmarks, culminating in the
real-world OPE benchmark introduced in this thesis. However, it needs to be
pointed out that there is some overlap in the tasks of previous benchmarks, and
OPE techniques might have already been applied to the shown environments
earlier than depicted. 16

3.1 A F1TENTH racing vehicle, equivalent to the one employed in this thesis.
Image minimally adapted from [GB24]. 20

3.2 ROS2 architecture for real-world data-collection. The left part of the diagram,
in the ’Real World’ category, shows the F1TENTH software stack to run the
vehicle. The Agent Wrapper, on the right side, implements a unified interface
for our agent and controls real-world dataset collection. 21

3.3 Our map as inferred by LIDAR-based SLAM. The driving direction is always
clockwise. White areas indicate areas where driving is possible. Black areas
are outside of the x/y state space. 22

3.4 Delta-time between state estimation and action emission in seconds vs.
timestep for one sample trajectory rollout. The spikes visible in the fig-
ure are large time delays between state estimation and action emission. As we
are on a non-real-time computing platform these might occure due to factors
such as high congestion on the system. 24

81

3.5 A visualization of FTG. The blue car is driving along a track and detects two
gaps above and below an obstacle drawn in black. The algorithm picks the
larger gap and steers towards its middle. 28

3.6 A visualization of PP. The blue car is driving along a track and directly steers
towards the first raceline point after the lookahead distance. This visualization
shows α as the steering angle for simplicity and visual clarity. 30

3.7 Different racelines used for PP agents. The driving direction is clockwise. 30
3.8 Visualization of evaluation and training rollouts in the x/y observation space.

Terminations are marked with a ∆. Different colors represent different agents. 33
3.9 Our map with starting points. 33
3.10 Performance as measured by the discounted sum of the Progress Reward with

γ = 0.99. The left figure shows evaluation agents; the right figure training set
agents. 33

3.11 Performance as measured by the discounted sum of the Lifetime Reward with
γ = 0.99. The left figure shows evaluation agents; the right figure training set
agents. 34

3.12 Performance as measured by the discounted sum of the Minimum Action
Reward with γ = 0.99. The left figure shows evaluation agents; the right
figure training set agents. 34

3.13 Performance as measured by the discounted sum of the Checkpoint Reward
with γ = 0.99. The left figure shows evaluation agents; the right figure training
set agents. 34

4.1 Cumulative IS ratios across trajectories. Note the logarithmic scale on the
y-axis. Each × marks the end of a trajectory, representing the final cumulative
IS ratio of the trajectory. Different colors denote trajectories from different
agents. 46

5.1 Scatter plot depicting multiple agents with varying SRC values. Each blue
dot represents a distinct agent πi, with the Ground Truth Performance on
the x-axis and the corresponding OPE estimate on the y-axis. The red line
indicates the expected results for a perfect OPE method. 56

5.2 SRC for our different MB OPE methods and the rewards investigated. . . 58
5.3 R@1 for our different MB OPE methods and the rewards investigated. . . 58
5.4 MAE for our different MB OPE methods and the rewards investigated. . 59
5.5 Scatter plot of simulation estimates vs. ground truth performance for our

evaluation agents. Each dot represents one agent. Red dots indicate PP
agents with a short lookahead distance. Yellow dots signify a subset of very
fast FTG agents. 62

5.6 Both figures show a comparison of the recorded real-world rollouts versus
their simulated rollouts, starting from the same initial state. The left figure
depicts a PP agent with a short lookahead distance. The right figure shows a
fast FTG agent. 62

82

5.7 SRC for FQE-DD (blue) and FQE-L2 (red) over the training timesteps. The
averaged result is plotted with solid lines, while individual runs are shown
with transparency. 65

5.8 SRC for our different IS methods and the rewards investigated. 66
5.9 MAE for our different IS methods and the rewards investigated. 66
5.10 R@1 for our different IS methods and the rewards investigated. 67
5.11 SRC for different DR methods, including the performance of the FQE and IS

methods they are based on. 70
5.12 MAE for different DR methods, including the performance of the FQE and

IS methods they are based on. 71
5.13 R@1 for different DR methods, including the performance of the FQE and IS

methods they are based on. 72
5.14 SRC for our different OPE methods and the rewards investigated 74
5.15 MAE for our different OPE methods and the rewards investigated 75
5.16 R@1 for our different OPE methods and the rewards investigated. 76

83

List of Tables

3.1 The observation dictionary provided to each agent. 22
3.2 Adaptable parameters for different FTG agents. 28
3.3 Adaptable parameters for different PP agents. 29
3.4 Composition of the Real-World F1TENTH dataset. 32

4.1 Overview of the models and employed loss functions investigated in this thesis.
The Ensemble Model can be combined with any of the other models to enhance
performance. 36

4.2 The observations provided to our MB dynamics method. 37

5.1 Benchmark results for MB methods. Best results are highlighted, in case
the ensemble model is the best-performing method, second-best results are
additionally highlighted. 60

5.2 Evaluation of ensemble estimators for different rewards. 61
5.3 Evaluation of estimators for different rewards. 64
5.4 Evaluation of Estimators for different Rewards 68
5.5 Evaluation of Estimators for different rewards. 73

85

List of Algorithms

2.1 Simplified FQE training, code adapted from [LVY19]. 12

4.1 Autoregressive Model Prediction . 40

4.2 Autoregressive Model Update Step . 41

87

Acronyms

ADM Autoregressive Delta Model. 40, 41, 57, 63, 74, 75, 77

AM Autoregressive Model. 17, 40, 41, 57, 63, 74, 79

DM Delta Model. 39–41, 63, 79

DM (LL) Delta Model (Log-Likelihood). 57, 74

DM (MSE) Delta Model (Mean-Squared-Error). 57, 63

DR Doubly Robust Estimator. 16, 17, 35, 52, 69–72, 74, 75, 77, 83

F1TENTH F1TENTH. xi, xiii, xv, 3, 19–21, 23, 25, 27, 32, 33, 35, 45, 55, 56, 58, 60,
62, 64, 66, 68, 70, 72, 74, 76, 77, 79–81, 85

FQE Fitted-Q-Evaluation. 9, 11, 15–17, 27, 35, 42–44, 52, 63–65, 70–72, 74, 75, 77, 79,
80, 83

FQE-DD Fitted-Q-Evaluation with discrete distribution. 17, 43, 52, 63, 65, 69, 70, 83

FQE-L2 Fitted-Q-Evaluation with L2 loss. 17, 42, 43, 63, 65, 75, 83

FTG Follow-the-Gap. 26–29, 32, 37, 45, 59, 60, 62, 82, 85

IS Importance Sampling. xi, xiii, xv, 9, 11–17, 27, 35, 44–52, 65–72, 74–77, 79–83

LL Log-Likelihood. 35, 38–41, 63

MAE Mean Absolute Error. 57, 59, 63, 66, 67, 69–71, 74, 75, 82, 83

MB Model-based. 9, 11, 15, 17, 35, 37, 39, 42, 44, 57–60, 74, 75, 77, 79, 80, 82, 85

MDP Markov Decision Process. 5–7, 11, 13, 14, 19, 21, 23, 24, 45, 81

MSE Mean-Squared-Error. 35, 37–39, 41, 63

NM (LL) Naive Model (Log-Likelihood). 57

89

NM (MSE) Naive Model (Mean-Squared-Error). 57, 63

OPE Off-Policy Evaluation. xi, xiii, xv, 2, 3, 5, 7–11, 13, 16, 17, 19, 22, 24–26, 31, 35,
38–40, 52, 55–59, 74–77, 79–83

PDIS Per-Decision Importance Sampling. 14, 15, 17, 45, 47, 52, 65, 67, 74

PDWIS Per-Decision-Weighted Importance Sampling. 17, 44, 47–50, 65, 69, 70, 74

PHWIS Per-Horizon Weighted Importance Sampling. 44, 46–48, 50, 65, 67, 68

PP Pure Pursuit. 26, 29, 30, 32, 45, 59, 62, 82, 85

R@1 Regret@1. 56–58, 63, 67, 69, 72, 74–76, 82, 83

RL Reinforcement Learning. xi, xiii, 1, 2, 11, 17, 19, 26, 40, 42, 43, 79

SRC Spearman Rank Correlation. 56–58, 63–67, 69, 70, 74–76, 82, 83

TPDWIS Termination-aware Per-Decision-Weighted Importance Sampling. xi, xiii, 3,
35, 44, 45, 47, 49–52, 66, 69, 70, 74, 75, 77, 79, 80

WIS Weighted Importance Sampling. 15, 17, 45–47, 51, 52, 65, 67, 70, 74

90

Bibliography

[ACML18] Kavosh Asadi, Evan Cater, Dipendra Misra, and Michael L. Littman.
Towards a simple approach to multi-step model-based reinforcement learning.
arXiv preprint arXiv:1811.00128, 2018.

[AN04] Pieter Abbeel and Andrew Ng. Learning first-order markov models for
control. Advances in Neural Information Processing Systems, 17, 2004.

[BB20] Varundev Suresh Babu and Madhur Behl. f1tenth. dev-an open-source ros
based f1/10 autonomous racing simulator. In 2020 IEEE 16th International
Conference on Automation Science and Engineering (CASE), pages 1614–
1620. IEEE, 2020.

[BBB+22] Axel Brunnbauer, Luigi Berducci, Andreas Brandstátter, Mathias Lechner,
Ramin Hasani, Daniela Rus, and Radu Grosu. Latent imagination facilitates
zero-shot transfer in autonomous racing. In 2022 International Conference
on Robotics and Automation (ICRA), pages 7513–7520. IEEE, 2022.

[BCP+16] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

[BDM17] Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional
perspective on reinforcement learning. In International Conference on
Machine Learning, pages 449–458. PMLR, 2017.

[BMHB+18] Gabriel Barth-Maron, Matthew W. Hoffman, David Budden, Will Dabney,
Dan Horgan, TB Dhruva, Alistair Muldal, Nicolas Heess, and Timothy
Lillicrap. Distributed distributional deterministic policy gradients. In
International Conference on Learning Representations, 2018.

[BZL+22] Johannes Betz, Hongrui Zheng, Alexander Liniger, Ugo Rosolia, Phillip
Karle, Madhur Behl, Venkat Krovi, and Rahul Mangharam. Autonomous
vehicles on the edge: A survey on autonomous vehicle racing. IEEE Open
Journal of Intelligent Transportation Systems, 3:458–488, 2022.

91

[CCML18] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine.
Deep reinforcement learning in a handful of trials using probabilistic dy-
namics models. Advances in Neural Information Processing Systems, 31,
2018.

[CLW+07] Stefano Carpin, Mike Lewis, Jijun Wang, Stephen Balakirsky, and Chris
Scrapper. Usarsim: a robot simulator for research and education. In Pro-
ceedings 2007 IEEE International Conference on Robotics and Automation,
pages 1400–1405. IEEE, 2007.

[DTB18] Shayan Doroudi, Philip S. Thomas, and Emma Brunskill. Importance
sampling for fair policy selection. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI-18, pages
5239–5243. International Joint Conferences on Artificial Intelligence Orga-
nization, 2018.

[EEJ21a] Benjamin Evans, Herman A Engelbrecht, and Hendrik W Jordaan. Learning
the subsystem of local planning for autonomous racing. In 2021 20th
International Conference on Advanced Robotics (ICAR), pages 601–606.
IEEE, 2021.

[EEJ21b] Benjamin Evans, Herman A Engelbrecht, and Hendrik W Jordaan. Reward
signal design for autonomous racing. In 2021 20th International Conference
on Advanced Robotics (ICAR), pages 455–460. IEEE, 2021.

[F1T23] F1TENTH Foundation. Build your own f1tenth car. https://f1tenth.
org/build.html, 2023. Accessed: 2024-03-18.

[Far23] Farama Foundation. Highwayenv: An environment for au-
tonomous driving and tactical decision-making tasks. https:
//github.com/Farama-Foundation/HighwayEnv/blob/master/
scripts/parking_model_based.ipynb, 2023. Accessed: 2024-07-16.

[FKN+20] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine.
D4rl: Datasets for deep data-driven reinforcement learning. arXiv preprint
arXiv:2004.07219, 2020.

[FNN+21] Justin Fu, Mohammad Norouzi, Ofir Nachum, George Tucker, Ziyu Wang,
Alexander Novikov, Mengjiao Yang, Michael R Zhang, Yutian Chen, Aviral
Kumar, et al. Benchmarks for deep off-policy evaluation. arXiv preprint
arXiv:2103.16596, 2021.

[GB24] Radu Grosu and Andreas Brandstätter. Autonomous racing cars, 2024.
Course Number 191.119, TU Wien.

[GBD92] Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and
the bias/variance dilemma. Neural computation, 4(1):1–58, 1992.

92

https://f1tenth.org/build.html
https://f1tenth.org/build.html
https://github.com/Farama-Foundation/HighwayEnv/blob/master/scripts/parking_model_based.ipynb
https://github.com/Farama-Foundation/HighwayEnv/blob/master/scripts/parking_model_based.ipynb
https://github.com/Farama-Foundation/HighwayEnv/blob/master/scripts/parking_model_based.ipynb

[GWN+20] Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Thomas Paine, Sergio
Gómez, Konrad Zolna, Rishabh Agarwal, Josh S Merel, Daniel J Mankowitz,
Cosmin Paduraru, et al. Rl unplugged: A suite of benchmarks for offline
reinforcement learning. Advances in Neural Information Processing Systems,
33:7248–7259, 2020.

[Hok15] Hokuyo Automatic Co., Ltd. UST-10LX Scanning Laser Rangefinder
Specifications, 2015.

[JL16] Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for
reinforcement learning. In International Conference on Machine Learning,
pages 652–661. PMLR, 2016.

[JWH+13] Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, et al. An
introduction to statistical learning, volume 112. Springer, 2013.

[KN20] Ilya Kostrikov and Ofir Nachum. Statistical bootstrapping for uncertainty
estimation in off-policy evaluation. arXiv preprint arXiv:2007.13609, 2020.

[LKTF20] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline
reinforcement learning: Tutorial, review, and perspectives on open problems.
arXiv preprint arXiv:2005.01643, 2020.

[LVY19] Hoang Le, Cameron Voloshin, and Yisong Yue. Batch policy learning
under constraints. In International Conference on Machine Learning, pages
3703–3712. PMLR, 2019.

[MBJ17] Thomas M Moerland, Joost Broekens, and Catholijn M Jonker. Learning
multimodal transition dynamics for model-based reinforcement learning.
arXiv preprint arXiv:1705.00470, 2017.

[MBP+23] Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker,
et al. Model-based reinforcement learning: A survey. Foundations and
Trends® in Machine Learning, 16(1):1–118, 2023.

[MJ21] Steve Macenski and Ivona Jambrecic. Slam toolbox: Slam for the dynamic
world. Journal of Open Source Software, 6(61):2783, 2021.

[Ott19] N. Otterness. The "disparity extender" algorithm, and
f1/tenth. https://www.nathanotterness.com/2019/04/
the-disparity-extender-algorithm-and.html, 2019. Accessed:
2024-03-27.

[OZKM20] Matthew O’Kelly, Hongrui Zheng, Dhruv Karthik, and Rahul Mangharam.
F1tenth: An open-source evaluation environment for continuous control
and reinforcement learning. Proceedings of Machine Learning Research, 123,
2020.

93

https://www.nathanotterness.com/2019/04/the-disparity-extender-algorithm-and.html
https://www.nathanotterness.com/2019/04/the-disparity-extender-algorithm-and.html

[PPM+20] Tom Le Paine, Cosmin Paduraru, Andrea Michi, Caglar Gulcehre, Kon-
rad Zolna, Alexander Novikov, Ziyu Wang, and Nando de Freitas. Hy-
perparameter selection for offline reinforcement learning. arXiv preprint
arXiv:2007.09055, 2020.

[PSS00] Doina Precup, Richard S Sutton, and Satinder P Singh. Eligibility traces for
off-policy policy evaluation. In Proceedings of the Seventeenth International
Conference on Machine Learning, pages 759–766, 2000.

[QCG+09] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, Andrew Y Ng, et al. Ros: an open-source robot
operating system. In ICRA workshop on open source software, volume 3,
page 5. Kobe, Japan, 2009.

[QZG+22] Rong-Jun Qin, Xingyuan Zhang, Songyi Gao, Xiong-Hui Chen, Zewen Li,
Weinan Zhang, and Yang Yu. Neorl: A near real-world benchmark for
offline reinforcement learning. Advances in Neural Information Processing
Systems, 35:24753–24765, 12 2022.

[SB18] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. The MIT Press, second edition, 2018.

[SFMP21] Erica Salvato, Gianfranco Fenu, Eric Medvet, and Felice Andrea Pellegrino.
Crossing the reality gap: A survey on sim-to-real transferability of robot
controllers in reinforcement learning. IEEE Access, 9:153171–153187, 2021.

[SG12] Volkan Sezer and Metin Gokasan. A novel obstacle avoidance algo-
rithm:“follow the gap method”. Robotics and Autonomous Systems,
60(9):1123–1134, 2012.

[SMGDV21] Simon P Shen, Yecheng Ma, Omer Gottesman, and Finale Doshi-Velez.
State relevance for off-policy evaluation. In International Conference on
Machine Learning, pages 9537–9546. PMLR, 2021.

[Spa19] SparkFun Electronics. 9dof razor imu m0 firmware and documentation.
https://github.com/sparkfun/9DOF_Razor_IMU, 2019. Accessed:
2024-02-15.

[Sta12] Problem with unbiased but not consistent estimator.
https://math.stackexchange.com/questions/119461/
problem-with-unbiased-but-not-consistent-estimator,
2012. Accessed: 2024-03-31.

[TB16] Philip S. Thomas and Emma Brunskill. Data-efficient off-policy policy
evaluation for reinforcement learning. CoRR, abs/1604.00923, 2016.

[Tho15] Philip Thomas. Safe Reinforcement Learning. PhD thesis, University of
Massachusetts Amherst, 2015.

94

https://github.com/sparkfun/9DOF_Razor_IMU
https://math.stackexchange.com/questions/119461/problem-with-unbiased-but-not-consistent-estimator
https://math.stackexchange.com/questions/119461/problem-with-unbiased-but-not-consistent-estimator

[TUM23] TUMFTM. Global race trajectory optimization. https://github.com/
TUMFTM/global_racetrajectory_optimization, 2023. Accessed:
2024-07-16.

[US21] Masatoshi Uehara and Wen Sun. Pessimistic model-based offline rein-
forcement learning under partial coverage. In International Conference on
Learning Representations, 2021.

[VLA+21] Cameron Voloshin, Hoang M Le, AI Argo, Nan Jiang, and Yisong Yue.
Empirical study of off-policy policy evaluation for reinforcement learning.
2021.

[WK18] Corey H Walsh and Sertac Karaman. Cddt: Fast approximate 2d ray
casting for accelerated localization. In 2018 IEEE International Conference
on Robotics and Automation (ICRA), pages 3677–3684. IEEE, 2018.

[WST+85] Richard S Wallace, Anthony Stentz, Charles E Thorpe, Hans P Moravec,
William Whittaker, and Takeo Kanade. First results in robot road-following.
In IJCAI, volume 2, pages 1089–1095, 1985.

[WWG+21] Manuel Wuthrich, Felix Widmaier, Felix Grimminger, Shruti Joshi, Vaibhav
Agrawal, Bilal Hammoud, Majid Khadiv, Miroslav Bogdanovic, Vincent
Berenz, Julian Viereck, et al. Trifinger: An open-source robot for learning
dexterity. In Conference on Robot Learning, pages 1871–1882. PMLR, 2021.

[ZPN+21] Michael R Zhang, Thomas Paine, Ofir Nachum, Cosmin Paduraru, George
Tucker, Mohammad Norouzi, et al. Autoregressive dynamics models for
offline policy evaluation and optimization. In International Conference on
Learning Representations, 2021.

[ZQW20] Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. Sim-to-real
transfer in deep reinforcement learning for robotics: a survey. In 2020 IEEE
Symposium Series on Computational Intelligence (SSCI), pages 737–744,
2020.

95

https://github.com/TUMFTM/global_racetrajectory_optimization
https://github.com/TUMFTM/global_racetrajectory_optimization

	Kurzfassung
	Abstract
	Contents
	Introduction
	Outline

	Background and Related Work
	Markov Decision Processes
	The Off-Policy Evaluation Problem
	Statistical Estimators
	Off-policy Evaluation Methods
	Off-Policy Evaluation Benchmarks

	Experimental Setup
	f110 Platform
	Agent Design and Parameterization
	Real-world Dataset Collection Protocol
	Real-World f110 Offline Dataset

	Deep Off-Policy Evaluation for Autonomous Racing Cars
	Model-based
	Fitted Q-Evaluation
	is Methods
	Doubly Robust Estimator

	The Real-World f110 Benchmark
	Evaluation Protocol
	Performance of Off-policy Evaluation Methods
	Cross-Method Comparison and Influence of Reward
	Which ope method should be use?

	Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography

