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Abstract

Motivation: Digital Image Correlation (DIC) allows non-contact measurement of
mechanical strain fields. Various factors affect its accuracy, necessitating validation
for surface strain fields. This work aims to test the applicability of DIC to measure
linear gradient strain fields. Despite its advantages, DIC’s accuracy validation and
filter parameter optimization remains essential, especially for linear gradient strain
fields.

Goals: The primary goal of this thesis is to assess the feasibility of measuring
linear gradient strain fields at both macroscopic and microscopic scales using DIC.
To achieve this main goal, the following sub-goals have been defined: (1) investigate
filtering methods for simulated noisy constant strain fields, and simulated noisy
linear and quadratic gradient strain fields, (2) experimentally apply DIC to measure
linear gradient strain fields on a novelly designed sample at the macroscopic scale
(using cortical bone as a case study), and (3) investigate the application of DIC to
measure surface strain fields of trabecular bone at the microscopic scale based on
the findings of the preceded studies.

Methodological approach: To achieve the first aim, a study was designed
to examine various filtering strategies and DIC measuring parameters. Three filter-
ing strategies were applied to determine the optimal filtering parameter suitable for
both constant strain fields and gradient strain fields across different strain window
sizes. The second aim was pursued by designing an innovative specimen shape
capable of exhibiting two pre-defined linear gradient strain fields and a constant
strain field region. Finally, the third aim was addressed by utilizing a camera
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equipped with a high-resolution telecentric lens. Global and local trabecular strains
were investigated.

Main results: The first study demonstrated that employing an optimal filtering
strategy reduced noise in simulated constant strain fields and linear gradient strain
fields. Gaussian low-pass filtering emerged as the optimal choice, resulting in a
significant reduction in error between 60% and 77% for linear and quadratic gradi-
ent strain fields for different strain window sizes. The second study revealed the
reliability of DIC strain measurements on a novel specimen shape, showcasing two
linear gradient strain fields and a constant strain field. DIC accuracy with respect
to strain gauges measurements was confirmed in the constant strain field region.
Gaussian low-pass filtering enhanced the detection of strain gradients in both
biological and engineering samples. The surface strain fields in the measurement
area of the specimens exhibited qualitative similarity to results of finite element
analyses. The third study showed that employing a telecentric lens enabled the
measurement of surface strain fields at the microscopic scale on the surface of
trabeculae. At this scale, pure bending states were detected and results showed an
8-fold increase in strain at the edge of the trabeculae compared to the center of the
trabeculae. This longitudinal trabecular strain showed no magnification compared
to the global strain.

Conclusion: In this thesis, it was found that optimal filtering parameters are
necessary to improve the accuracy of DIC measured strains. The effectiveness of the
filtering strategies in reducing noise without significantly affecting the measurement
data must be tested, similar filters can generate different results. DIC can measure
constant strain fields with high accuracy with respect to strain gauges, however,
it can measure linear gradient strain fields with certain accuracy. Validating con-
stant strain fields of DIC against strain gauges gives a very good indication of
the accuracy of the DIC measurements. Measuring local trabecular strain and
investigating bending states of trabeculae at the microscopic scale was possible due
to a high-resolution telecentric lens, which counted for out-of-plane movements.



Kurzfassung

Motivation: Die Digital Image Correlation (DIC) ermöglicht die berührungslose
Messung mechanischer Dehnungsfelder. Verschiedene Faktoren beeinflussen ihre
Genauigkeit, was eine Validierung für Oberflächendehnungsfelder erforderlich macht.
Diese Arbeit zielt darauf ab, die Anwendbarkeit von DIC zur Messung linearer
Gradientendehnungsfelder zu testen. Trotz ihrer Vorteile bleibt die Validierung der
Genauigkeit von DIC und die Optimierung der Filterparameter, insbesondere für
lineare Gradienten-Dehnungsfelder, unerlässlich.

Ziele: Das Hauptziel dieser Arbeit ist es, die Machbarkeit der Messung linearer
Gradientendehnungsfelder sowohl im makroskopischen als auch im mikroskopischen
Maßstab unter Verwendung von DIC zu bewerten. Zur Erreichung dieses Hauptziels
wurden folgende Teileziele definiert: (1) Untersuchung von Filtermethoden für simu-
lierte, verrauschte konstante Dehnungsfelder sowie simulierte, verrauschte lineare
und quadratische Gradientendehnungsfelder, (2) Experimentelle Anwendung von
DIC zur Messung linearer Gradientendehnungsfelder an einer neuartigen Proben-
form im makroskopischen Maßstab (unter Verwendung von kortikalem Knochen
als Fallstudie), und (3) Untersuchung der Anwendung von DIC zur Messung von
Oberflächendehnungsfeldern des Trabekelknochens im mikroskopischen Maßstab
auf Basis der Ergebnisse der vorangegangenen Studien.

Methodischer Ansatz: Für das Erreichen des ersten Zieles, wurde eine Studie
entworfen, um verschiedene Filterstrategien und DIC-Messparameter zu untersu-
chen. Drei Filterstrategien wurden angewendet, um den optimalen Filterparameter
für konstante Dehnungsfelder und Gradientendehnungsfelder über verschiedene
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Dehnungsfenstergrößen hinweg zu bestimmen. Das zweite Ziel wurde verfolgt, indem
eine innovative Probenform entworfen wurde, die in der Lage ist, zwei vordefinierte
lineare Gradientendehnungsfelder und eine konstante Dehnungszone aufzuweisen.
Schließlich wurde das dritte Ziel durch die Verwendung einer Kamera mit hochauf-
lösender telezentrischer Linse angegangen. Globale und lokale Trabekeldehnungen
wurden untersucht.

Hauptergebnisse: Die erste Studie zeigte, dass die Verwendung einer optima-
len Filterstrategie das Rauschen in simulierten konstanten Dehnungsfeldern und
linearen Gradientendehnungsfeldern reduzierte. Die Gauß-Tiefpassfilterung erwies
sich als optimale Wahl und führte zu einer signifikanten Reduzierung des Fehlers
zwischen 60% und 77% für lineare und quadratische Gradientendehnungsfelder
bei unterschiedlichen Dehnfenstergrößen. Die zweite Studie enthüllte die Zuver-
lässigkeit von DIC-Dehnungsmessungen an einer neuartigen Probenform, die zwei
lineare Gradientendehnungsfelder und eine konstante Dehnungszone aufwies. Die
DIC-Genauigkeit im Vergleich zu Dehnungsmessstreifen wurde in der konstanten
Dehnungszone bestätigt. Die Gauß-Tiefpassfilterung verbesserte die Erkennung
von Dehnungsgradienten in biologischen und künstlichen Proben. Die Oberflächen-
dehnungsfelder im Messbereich der Proben zeigten eine qualitative Ähnlichkeit
zu den Ergebnissen von Finite-Elemente-Analysen. Die dritte Studie zeigte, dass
die Verwendung einer telezentrischen Linse mit hoher Auflösung die Messung von
Oberflächendehnungsfeldern im mikroskopischen Maßstab auf der Oberfläche von
Trabekeln ermöglichte. In diesem Maßstab wurden reine Biegezustände sowie eine
8-fache Zunahme der Dehnung am Rand der Trabekel im Vergleich zum Zentrum
festgestellt. Diese longitudinale Trabekeldehnung zeigte keine Vergrößerung im
Vergleich zur globalen Dehnung.

Fazit: In dieser Arbeit wurde herausgefunden, dass optimale Filterparameter
erforderlich sind, um die Genauigkeit der von DIC gemessenen Dehnungen zu ver-
bessern. Die Wirksamkeit der Filterstrategien bei der Reduzierung von Rauschen,
ohne die Messdaten signifikant zu beeinträchtigen, muss vorab getestet werden,
da ähnliche Filter unterschiedliche Ergebnisse liefern können. DIC kann konstante
Dehnungsfelder mit hoher Genauigkeit im Vergleich zu Dehnungsmessstreifen mes-



sen, jedoch kann es lineare Gradientendehnungsfelder nur mit einer bestimmten
Genauigkeit messen. Die Validierung konstanter Dehnungsfelder von DIC gegen
Dehnungsmessstreifen gibt einen sehr guten Hinweis auf die Genauigkeit der DIC-
Messungen. Die Messung lokaler trabekulärer Dehnungen und die Untersuchung
der Biegezustände der Trabekel im mikroskopischen Maßstab waren aufgrund einer
hochauflösenden telezentrischen Linse möglich, die Bewegungen außerhalb der
Bildebene berücksichtigte.
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CHAPTER 1
Introduction

” and God, increase my knowledge.”
Quran (20:114)

1.1 Motivation

This section shows the possibilities and challenges of measuring inhomogeneous
strain fields in biological samples, especially bones. Inhomogeneous strain fields
are characterized by varying strain values across the measured surface, rather than
being constant. In this thesis, particular attention is devoted mainly to linear
gradient strain fields, where the strain experienced by a material varies linearly
along a specific dimension.

Digital image correlation (DIC) was introduced as an alternative method for
measuring strain in the 1980s [1]. Full-field strain measurements on the surface
of specimens became possible by capturing images during deformation. Due to
its advantages in measuring surface strains on specimens with irregular shape and
different sizes with a relatively easy sample preparation procedure, this method
is being increasingly employed to measure the surface strain of engineering and
biological materials in different experimental setups [2, 3, 4, 5]. DIC was employed
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1. Introduction

to measure homogeneous and inhomogeneous strain fields [6], as well as strain
gradients [7, 8, 9]. However, many studies have found that the noise in the DIC
strain measurements is considerably high, reaching a few hundred to thousands
of micro-strains [10, 11, 12, 13, 14, 15], making the accuracy of this method ques-
tionable. Since the strain fields are quantities derived from the displacement, the
noise in the original displacement measurements is amplified in the strain fields;
in some cases, this does not allow for accurate strain computation [16, 17, 18, 19].
Therefore, measuring small-magnitude strain fields using a DIC technique is chal-
lenging due to the signal-to-noise ratio in the strain fields, making noise one of
the main limitations for reliable DIC measurements. Further research is needed
to explore the reliability of DIC in measuring strain on the surface of irregularly
shaped samples where strain gradients are expected and to effectively reduce noise
through systematic filtering.

The accuracy of DIC strain measurements can be validated against another, more
accurate, method. The DIC strain measurement can either be verified against
measurements made with another device, such as strain gauges or extensome-
ters [20, 6, 21, 22], which is limited to one measurement point and does not allow
for a full-field strain comparison [23, 15, 24], or using finite element (FE) mod-
els [13, 14, 25], which can predict full-field strain measurements. Using parameters
such as the geometry, material behaviour and boundary conditions, FE models are
suitable for evaluating strain inhomogeneity [25, 26, 27]; thus, these can - under
certain considerations - be compared to methods used to perform full-field DIC
strain measurements.

Verifying the accuracy of the DIC measurement is not always feasible, because
attaching a strain gauge or an extensometer to a sample is not possible, for instance,
when measuring the surface strain on the superior neck of human femurs [28, 29].
Here, the noise can be estimated by making a zero-load measurement of strain,
which indicates the noise level. Filtering the strain fields plays an important role in
noise reduction, but creates a trade-off between losing information and removing
noise. Baldoni et al. [13] explored different filtering strategies to reduce the noise
while minimizing the loss of information in the DIC strain fields.
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Filtering can be applied to the captured images [30, 31, 13], and/or the dis-
placement fields [17, 32, 19, 33, 34, 35], or even to the computed strain fields [13].
Filtering offers the possibility to reduce this noise. However, filters must be carefully
chosen, as they predominantly affect areas of strain gradients, and filtering the
DIC-captured image has proved to be an ineffective strategy [13, 36, 37]. An
optimal filtering parameter that is independent of the load level, strain field size,
and the degree of strain concentration has not yet been found. Furthermore, little
is known about the accuracy or the effectiveness of the filtering strategies when
the deformed specimen results in a linear gradient or inhomogeneous strain fields.

Despite the apparent limitations of the DIC method in measuring the surface
strain of engineering materials, it remains a crucial tool for gaining insights into the
strain deformation of biological materials, especially at the microscopic scale. Due
to their nature, shape, size, and material compositions, biological materials pose
greater challenges for strain measurements. For instance, hard tissues such as bone
are structurally complex and hierarchically designed, exhibiting multifunctionality
and strength. Due to the significant morphological differences in bone, it is divided
into cortical and trabecular bone. In terms of mechanical properties, the strength of
bone depends on its type, anatomical location, and load-bearing capacity, resulting
in cortical bone being stiffer than trabecular bone but more brittle [38, 39]. In
contrast to cortical bone, trabecular bone is porous and composed of different
individual trabeculae, which are divided into rods and plates [40, 41]. The thickness
and separation of these rods and plates significantly contribute to the mechanical
properties of trabecular bone.

Different methods have been employed to investigate strains of trabecular bone
specimens, see Figure 1.1. Conventional strain measurement techniques such as
strain gauges and extensometers, as will be explained later, are not practical for
such a measurement because of the sample architecture and porosity which does
not allow for an easy clamping, nevertheless, Acciaioli et al [15] managed to clamp
an extensometer to a trabecular bone cylinder. The cross-head movement of the
testing machine or a clamp-to-clamp can be taken for the displacement and strain
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measurement, however, it was found earlier that strains computation based on the
relative displacements of the two loading platens, always underestimate apparent
modulus of bone samples [42]. DIC and digital volume correlation (DVC) are among
the most effective methods for full-field strain analysis. Both methods could be
employed to obtain full-field strain of the surface or volumetric strain measurements,
for DIC and DVC respectively, as well as using a virtual extensometer for the
global strain measurements. DIC was employed to measure full-field surface strain
of trabecular bone at a resolution of 10 µ × 10 µm [43], and, DVC was employed
for strain measurements at a voxel resolution of 39 µm × 39 µm × 39 µm [44],
24.6 µm × 24.6 µm × 24.6 µm [45], 3.6 µm × 3.6 µm × 3.6 µm [46], and Palanca
et al. 1.6 µm × 1.6 µm × 1.6 µm [47]. Despite the numerous advantages and the
new insights these techniques can provide, they suffer from some drawbacks that
could compromise the strain measurements. In contrast, DIC has an easy sample
preparation procedure, can measure full-field strain, and the measurement can be
performed while the sample is still hydrated, overcoming the limitation of DVC
which risks changing the material properties due to dehydration of the sample.
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1.1. Motivation

Figure 1.1: Overview of strain acquisition methods of trabecular bone structures
where strain gradients are expected. (a) The cross-head movement of the testing
machine or an extensometer is used to obtain the global strain of a trabecular
structure, this method does not offer strain measurements at single trabeculae,
(b) DIC allows for full-field surface strain of trabecular bone structures at the
microscopic scale, the measurement is limited to the surface in 2D, details of single
trabeculae can be obtained depending on the resolution of the cameras, (c) DVC
allows for full-field strain in 3D of the structure at the microscopic scale as well,
depending on the voxel resolution, and (d) FE results in strain analysis of the
trabecular structure based on specific boundary condition and material properties
fed into the FE model.
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To reduce the costs of physically testing biological tissues, strain can be obtained
from FE analysis. FE models are based on segmented microcomputer tomography
(CT) images of trabecular bone. This segmentation is usually based on a global
threshold that directly influences bone volume fraction and trabecular connection.
Thin trabeculae might get lost in this process, especially if the image resolution is
low. High image resolution (voxel size is less than one-fourth of the trabecular thick-
ness [48]) and mesh density and type play a crucial role in the accuracy of the FE
models of trabecular bone, mainly when strain and stresses are investigated. Addi-
tionally, FE models suffer under the material assignment of trabecular bone, which
in many cases is assumed to be linearly elastic and homogeneous [49, 50, 51, 52],
even though the apparent modulus of bone ranges between 12 and 25 GPa. FE
models that considered trabecular bone as heterogeneous had a lower apparent
modulus than specimen-specific homogeneous models, regardless of the volume
fraction of the investigated bone and the source of the image for the FE model [53].
Additionally, FE models often lack proper validation of the local strain.

Considering the possibilities and challenges associated with various methods for de-
termining strain in irregular structures, it is scientifically relevant to investigate the
DIC method in more detail to obtain reliable full-field surface strain measurements
at different length scales, especially at a microscopic scale.

1.2 Goals

The primary goal of this thesis is to assess the feasibility of measuring linear
gradient strain fields at both macroscopic and microscopic scales using DIC. To
achieve this goal, the following sub-goals were defined:

• investigate filtering methods for simulated noisy constant strain fields, and
simulated noisy linear and quadratic gradient strain fields

• experimentally apply DIC to measure linear gradient strain fields on a novelly
designed sample at the macroscopic scale (using cortical bone as a case study)
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• investigate the application of DIC to measure surface strain fields of trabecular
bone at the microscopic scale based on the findings of the preceded studies.

Based on these tasks, this thesis work is composed of three studies which are
graphically summarized in Figure 1.2.
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1. Introduction

Figure 1.2: Overview of this thesis work. (a) To reduce the noise in DIC fields,
filtering options were applied to noisy simulated constant strain fields, and to linear
and quadratic gradient strain fields. The optimal filter parameters were applied
to experimentally constant DIC strain fields from a steel specimen. (b) To test
the application of DIC beyond constant strain fields, a novel specimen shape was
designed to investigate the accuracy of DIC strain measurements for measuring
linear gradient fields experimentally at the macroscopic scale. (c) A special DIC
system with a telecentric lens was used to investigate the applicability of using
DIC to measure surface strain at the microscopic scale of trabeculae.
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1.3. Thesis outline

1.3 Thesis outline

This section gives an overview of the content of the different chapters of this thesis.

Chapter 2 provides a literature review of DIC applications in bone strain analysis.

Chapter 3 provides relevant background information. The following topics are
addressed: strain measurement methods applied in this thesis work (section 3.1),
providing detailed information about the working principle of strain gauges (sec-
tion 3.1.1), extensometers (section 3.1.2), and DIC (section 3.1.3), the accuracy
and precision of strain measurement (section 3.2), and different filtering approaches
applied to DIC strain measurements (section 3.3).

Chapter 4 describes a study carried out to investigate the potential for using
different filtering options, namely, simple mean filtering, Gaussian mean filtering,
and Gaussian low-pass filtering (LPF) methods, to reduce noise in simulated strain
fields while maintaining the full-field information based on constant strain fields,
and linear and quadratic gradient strain fields. The findings were then applied to
experimentally constant DIC strain fields for steel specimens.

Chapter 5 describes a study on strain gradient fields. In this study, a novel
specimen shape showed two linear gradients (high- and low-gradients) under de-
formation. This novel specimen was used to investigate the accuracy of DIC
strain measurements for measuring strain gradients. Strains were obtained globally
(full-field) and locally (at strain gauges positions). The optimal filtering option
described in Chapter 4 was applied to reduce the noise in the full-field DIC strain
for engineering and biological materials.

Chapter 6 describes a study in which a special DIC system with a telecentric
lens was employed to investigate the applicability of using DIC to measure surface
strain at the microscopic scale for individual trabeculae within their trabecular
structure. As well, evaluating the strain magnification between the global sample
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strain and the longitudinal trabecular strains of different trabeculae.

Chapter 7 summarizes the main findings, providing concluding remarks and
suggestions for future research.

1.4 List of appended papers

In the course of this thesis three peer-reviewed publications were published.

Amraish, N., Reisinger, A., Pahr, D.H. Robust Filtering Options for Higher-Order
Strain Fields Generated by Digital Image Correlation. Appl. Mech. 2020, 1,
174-192. https://doi.org/10.3390/applmech1040012

Amraish, N., Reisinger, A., Pahr, D. A novel specimen shape for measurement of
linear strain fields by means of digital image correlation. Sci Rep 11, 17515 (2021).
https://doi.org/10.1038/s41598-021-97085-x

Amraish, N., Pahr, D. High-resolution local trabecular strain within trabecular
structure under cyclic loading. JMBBM (2023) https://doi.org/10.1016/
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CHAPTER 2
Literature review of DIC

applications in bone strain
analysis

Biomechanics is a multidisciplinary field that investigates the forces, stresses, strains,
motions, and mechanical properties of biological tissues to gain insights into their
behaviour and characteristics. These insights contribute to a better understanding
of the mechanical response of biological tissues, with the potential to advance
the research for treatments and interventions to improve the quality and function
of these tissues. One of the tissues of interest in biomechanics is bone, which is
particularly susceptible to forces, stresses, and strains, and exhibits responses to
mechanical loading.

This section provides an overview of studies that have utilized DIC to measure
strain fields on bone tissue, since cortical and trabecular bone specimens were
employed as an example in this thesis to assess the applicability of DIC for mea-
suring linear gradient strain fields. A homogeneous strain field is one where the
strain is constant for all points on a surface. This condition can be achieved if the
specimen has a simple geometry and the deformation remains within its elastic
range. For instance, engineering materials such as steel or aluminum, with standard
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2. Literature review of DIC applications in bone strain analysis

geometrical forms like a dog-bone shape, exhibit homogeneous strain fields in the
gauge region when loaded below their yield points. The yield point marks the onset
of plastic deformation in the specimen. In such cases, DIC may not be the optimal
choice for strain measurement since strain can be accurately measured using strain
gauges or extensometers. Homogeneous strain fields can be utilized to verify the ac-
curacy of DIC strain fields for standard specimens such as aluminum [54, 30, 13, 15]
or steel [55] with a constant cross-section. For these samples, strain gauges or
extensometers can be employed to estimate the error in DIC strain measurements.
In contrast to homogeneous strain fields, inhomogeneous (or heterogeneous) fields
do not exhibit constant strain values at all points; instead, the strain fields vary
in terms of strain magnitude across the surface. Engineering and many biological
materials often demonstrate a non-uniform distribution of plastic strain. Strain
gradients may be present in specimens with irregular shapes [56] or in specimens
composed of composite materials [57, 58]. Unlike specimens with homogeneous
strain fields, strain gradients cannot be measured using a single strain gauge or an
extensometer.

For engineering materials, many studies have applied DIC to measure inhomo-
geneous strain fields. Heterogeneity in the strain fields can occur due to various
factors, such as the loading condition, as observed when a rubber-like material is
subjected to biaxial loading [59, 60], or due to strain localization resulting from
different deformation temperatures [61, 36], or even due to the material composition
itself. Examples of the latter include fiber-reinforced composites [62], talc- and
elastomer-modified polypropylene compounds [63], carbon-carbon composite mate-
rials [57], and thin and flat steel specimens [64]. Furthermore, complex geometry
can lead to inhomogeneous deformation measurements in specimens containing
pores [65, 66, 67] or complex structures [68, 69, 70]. DIC measurement is an
advantageous method not only for measuring inhomogeneous strain fields but also
for measuring strain gradients [7, 8, 9, 58], as well as strains beyond the yielding
point of a material [71].

Heterogeneity in the strain fields predominates in non-engineering materials, partic-
ularly in biological tissues, which exhibit complex geometrical forms and material
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compositions [72, 6, 73]. Bone, one of the tissues in the human body subject
to mechanical loading, is structurally complex and hierarchically designed, pos-
sessing multifunctionality and strength. It can endure significant compression
loads, serving as the load-bearing component of the human skeleton [74]. Bone
tissue facilitates movement and shields vital organs, with its mechanical proper-
ties being crucial for its functionality. Deterioration in these properties due to
aging and/or disease can lead to severe consequences, such as hip fractures, which
contribute to both mortality and morbidity [75]. Cortical and trabecular bone
represent two distinct types, each exhibiting significant morphological differences.
Therefore, comprehensively understanding the mechanical behavior of bone is
intricate, given the intricate interplay among bone physical loading, material defor-
mation, and mechanical response. This complexity is reflected in the strain fields,
which are best assessed using a contactless optical measurement device such as DIC.

In recent years, DIC has been employed often to measure full-field surface strain in
bone specimens, see table 2.1.

The noise in DIC strain measurements is non-negligible. However, most studies
that have measured DIC strain on macroscopic scale bone samples, such as the
femoral bone, have focused on validating DIC strain measurements and/or reducing
the noise in the DIC strain fields. For microscopic scale bone samples, noise in the
DIC strain was not systematically reported or reduced.

At a macro-scale, DIC measurements of strain were obtained for human femoral
bone tested in a configuration resembling a single stance [6, 14] and a fall to
the side [87, 28, 29]. In the stance configuration, Hensley et al. [14] verified the
DIC strain locally with strain gauges in cadaveric and composite femurs. The
authors found an average relative difference between DIC and strain gauges for
cadaveric specimens of 74±95 µstrain for maximum and 52±31 µstrain for mini-
mum principal strains respectively, with half of the difference found in composite
femurs. Variability in strain gauge application and measurement on hard tissues
related to bone temperature and surface features such as micro holes, protuber-
ances, and wrinkles contributed to the variation seen in the cadaveric femurs [89, 14].
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2. Literature review of DIC applications in bone strain analysis

Table 2.1: Overview of publications that measured strain on bone specimens using
DIC.

Bone sample n Loading DIC Noise [µε] Strain field
Bull trabeculae [76] 31 tensile 2D NA yes
Bovine trabeculae [77] 30 tensile/bending 2D NA no
Human trabecular [43] 30 compression 3D NA no
Human trabecular [78] 10 wedge splitting 2D NA yes
Bovine trabecular [79] 7 wedge splitting 2D NA no
Swine trabecular [52] 10 compression 2D NA yes
Bovine trabecular [80] 20 compression 2D NA yes
Human vertebrae [81] 6 compression 3D NA no
Porcine vertebrae [82] 10 compression 3D 500 yes
Porcine vertebrae [83] 8 compression 3D NA no
Porcine vertebrae [84] 3 compression 3D 140 yes
Porcine vertebrae [85] 3 compression 3D 180 yes
Murine tibia [58] 4 compression 3D 300 yes
Mouse forearm [21] 3 compression 3D 2000 yes
Bovine femora [86] 10 tensile 3D NA yes
Human femora [6] 3 compression/stance 3D 659 yes
Human femora [14] 4 compression/stance 3D 169 yes
Human femora [87] 20 compression/fall 3D 375 yes
Human femora [28] 12 compression/fall 3D NA yes
Human femora [29] 10 compression/fall 3D 200 yes
Human femora [88] 5 compression/fall 3D 137 yes

Grassi et al. extensively studied the human femur [20, 6, 90, 28]. In one study [20],
they used DIC to validate FE models on six composite femurs, and the root-mean-
square error varied between approximately 600 µstrain and 1700 µstrain. Composite
femurs were used as an example of complex geometry to test the feasibility of
DIC to accurately measure strain in such structures [91, 92, 93, 14]. In another
study [6], the authors obtained full-field strain measurements in three human femurs
at physiologically relevant strain rates. A control plate was used to evaluate the
noise, and the average major principal strain on the control plate while the machine
was turned on but not operating was less than 50 µstrain, with a maximum value of
361 µstrain. During testing, the noise increased, and the maximum recorded major
principal strains during the test were slightly below 700 µstrain [6]. Nevertheless,
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strain localization was detected in the full-field strain data on the femoral neck.
Subsequently, Grassi et al. [90] validated a subject-specific FE model with DIC
strain fields in three specimens in a single-leg-stance configuration. The results
indicate that the subject-specific FE model could predict the strain response and
fracture load. The accuracy of the measurements was evaluated by pooling all
the DIC strain data and comparing it with the FE strain data for the same area,
resulting in a determination coefficient (R2) of 0.94, regression slope of 0.96, and
intercept of 133 µstrain [90].

The femur was not only tested in the stance configuration but also in a fall-
to-the-side configuration. Gilchrist et al. [87] measured DIC strain fields on the
bones of 20 femoral necks and validated the DIC measurements against those
measured with strain gauges. The results indicate that the minimum principal
strains were accurate to 127±239 µstrain [87], with no filtering applied to the
strain fields or the collected DIC images. Likewise, Grassi et al. [28] tested twelve
cadaveric femurs, but these authors employed a bilateral DIC system to measure
strains on the medial and lateral sides of the femoral neck. Strain localizations
were detected in the DIC strain fields near the cortical pores [28]. Not all studies
reported the accuracy of the strain measurement or followed a systematic approach
to reduce noise. Indeed, few studies followed a systematic approach to validate
strain in femoral bone. For instance, DIC strains were compared to strain gauges
to quantitatively assess the validity of FE models [14, 24]. Additionally, DIC mea-
surements provided insights into the influence of implants on the femur. The use of
DIC enabled strain-shielding zones to be identified due to the hip implant [94, 88],
and different strain pattern distributions were detected for different implants [95].

Bone from different animal models has also been investigated using DIC. Sztefek et
al. [58] measured the full-field surface strain of a murine tibia during compressive
loading, and the strain fields showed a local strain response that could not be
obtained with another measurement method. A mouse forearm was also studied
using three strain measurement methods: strain gauges, DIC, and FE. The FE and
DIC results differed by 3-14%, while the strain gauge values and the FE results
differed between 37-56% [21]. Different factors contributed to these variations in
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the strain measurements; the FE strain is influenced by bone geometry, and the
attachment of the strain gauges to the bone specimens artificially stiffens the bone
and restricts its deformation [21]. Gustafsson et al. [86] studied bovine cortical bone
of different lengths with DIC and small/wide-angle X-ray scattering to link the local
deformations at the tissue and nanoscales. These authors found that the strain
magnitude at all lengths was influenced by the orientation of the microstructure
relative to the tensile loading [86].

The vertebrae have also been subjected to strain analysis using DIC. Due to
the heterogeneity and complex geometry of vertebrae, strain cannot be measured
with a single strain gauge. Spera et al. [82] applied 3D DIC on a fresh porcine
functional spine unit loaded under anterior, posterior, and lateral compression. An
analysis of the DIC strain fields revealed detailed information about local variations
in the structural response when the load was applied to different regions of the
porcine intervertebral disc [82]. High-speed 3D DIC was used to make surface strain
measurements of porcine cervical spinal specimens subjected to high-speed impacts
applied using a falling mass of 12.86 kg [83]. Subsequently, strain distributions
were obtained across the lateral and frontal views of a vertebral body, and on the
intervertebral discs and ligaments of four vertebrae extracted from a porcine spine
using 3D DIC [84]. An analysis of strain fields showed that the intervertebral disc
had higher strain values (i.e., tens of thousands of microstrain) than the vertebral
body (i.e., below 2000 µstrain) [84], and these results were confirmed by Palance
et al. [85], who also detected strain gradients in a DIC analysis of spine segments.

Trabecular bone, at the micro-scale, is also of interest for DIC strain analysis.
This type of bone is porous and composed of thin rods and plates of bone tissue; it
is typically found at the ends of long bones such as the femur. Trabecular bone
undergoes morphological changes due to age and/or disease, which can weaken
it and make it susceptible to fracture. Characterizing trabecular bone is more
challenging than cortical bone due to its highly inhomogeneous geometry and the
difficulties associated with sample preparation and displacement measurement in
such a porous structure. Only five studies have investigated trabecular bone strain
fields using DIC, as shown in Table 2.1.
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In the work of Acciaioli et al. [43], despite using a 3D DIC system, it was not
possible to conduct a local strain investigation of the surface of single trabeculae due
to the presence of large pores in some regions of the trabecular bone. Nevertheless,
a good agreement was found between the apparent elastic modulus from DIC and
the physical extensometer. Bokam et al. [79, 78] employed 2D DIC on bovine
and human bone with cement. In their first study [79], a bovine trabecular bone
was subjected to a wedge-splitting test to precisely define crack tip positions and
measure crack opening displacement. Although this study reports full-field strain
for a 15 ×15 mm2 surface area, it does not provide information on the local strain
fields of single trabeculae, and no differentiation between pores and trabeculae
was made. Their second study [78] investigated the fracture behavior of cancellous
bone and the cancellous bone-poly methyl methacrylate (PMMA) bone cement
interface. Similar to the first study, neither local strain fields at single trabeculae
nor differentiation between pores and trabeculae were addressed. Tsirigotis et
al. [80] and Belda et al. [52] employed a 2D-DIC system to measure the deformation
of trabecular bone under a compression test. Belda et al. [52] accompanied their
measurements with micro-CT scans at a 22 µm spatial resolution, which was used
for the FE model. The authors found that the equivalent strain was the best
predictor of the compression fracture pattern for both methods, DIC and FE. It
is worth noting that Belda et al. did not apply speckle patterns to the sample,
but instead relied on the irregular microstructure of the trabecular bone. The
full-field strain reported in this study was interpolated, and the strain of single
trabeculae was not identified. However, a crack region could be identified, and
the peak strain differences between FE and DIC ranged from 10-24% [52]. Tsirig-
otis et al. [80], on the other hand, showed interpolated surface strain fields with
steep strain gradients; however, no local strain analysis was conducted in their study.
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Figure 2.1: Schematic representation of DIC noise versus bone sample size. As the
size of the test sample decreases, a loss of spatial resolution will lead to increased
uncertainties in DIC measurements.

The literature review of DIC applications in bone strain analysis provides valuable
insights. Researchers have extensively used DIC to assess full-field surface strain
in femoral bone specimens, detecting strain localizations within DIC strain fields.
Validation studies have compared DIC measurements to strain gauges, revealing
variations across different femoral bone configurations, including cadaveric and
composite specimens. Studies examining full-field strain measurements in human
femurs have highlighted noise levels during testing. However, it is notable that not
all studies, especially those focusing on trabecular bone, reported the accuracy of
strain measurements or employed systematic approaches to reduce noise. While it’s
true that strain gauges cannot be attached to bone samples at the microstructure
level, there are approaches to investigate the noise level in DIC strain measure-
ments, such as at zero load. It is known that the noise of DIC strain measurements
increases for small-scale measurements, as schematically represented in Figure 2.1.
Some studies systematically validated strain measurements in femoral bone using
DIC, with a few comparing DIC strains to strain gauges for quantitative assessment.
These findings highlight the importance of both rigorous validation of DIC strain
measurements and systematic approaches to ensure accurate results.

In the next chapter, a theoretical background is provided on the strain measurement
methods applied in this thesis work, including the accuracy and precision of DIC,
as well as some filtering approaches to reduce noise in DIC strain measurements.
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CHAPTER 3
Theoretical background

This chapter explains the experimental strain measurement methods applied in this
thesis work, including strain gauges, extensometers, and DIC. Explanations are
provided for their working principles, with special attention given to the accuracy
of DIC measurements. Different filtering options to improve DIC accuracy for
strain measurements are also presented.

3.1 Strain measurement methods

Strain is a measure of the deformation undergone by a material subjected to
external forces. In this section, three strain measurement methods are explained.

3.1.1 Strain gauges

Strain gauges, invented almost a century ago, can be used to measure the localized
deformation of materials. They usually consist of fine wire or foil assembled in a
grid pattern, as shown in Figure 3.1(a). In principle, they are constructed from a
single wire wound back and forth. When a compression or tensile force is applied,
the electrical resistance in the wires decreases or increases, respectively. This
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change in resistance can be measured and used to calculate the strain ε using the
following formula:

ε = ∆R

R

1
Ks

(3.1)

where R is the resistance of the conductor in the non-deformed state, ∆R is the
change in resistance, and Ks is the gauge factor, which expresses the sensitivity
of the strain gauge. Multiple strain gauges can be combined to measure strain in
different directions, forming what are called strain gauge rosettes, as illustrated
in Figure 3.1. A biaxial rosette utilizes two strain gauges mounted perpendicular
to each other, as shown in Figure 3.1(b). The term "biaxial" indicates that a 2D
analysis of strain is performed in the xy-plane. In a triaxial rosette, the strain
gauges are oriented at 0°-45°-90° angles relative to each other, as depicted in
Figure 3.1(c), or at 0°-60°-120° angles. Strain gauges are considered the gold
standard for strain measurement due to their high accuracy. However, applying
a uniaxial strain gauge is less complicated than using biaxial or triaxial rosettes.
Depending on the strain being investigated, a uniaxial gauge might be sufficient.
For instance, Cristofolini and Viceconti [96] compared the use of uniaxial and
triaxial gauges for investigating stress-shielding on the femur and concluded that
uniaxial gauges are sufficient, simplifying the experimental setup compared to when
a triaxial rosette is used.
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Figure 3.1: Strain gauges are made of fine wire (in blue) which their resistance
change when force is applied. A single strain gauge can be used to measure strain as
in (a), or a combination of strain gauges can be used to measure strain in multiple
directions as in the biaxial or triaxial rosette, (b) and (c), respectively.

Each strain gauge measures strain in only one direction; thus, two gauges, forming
a biaxial rosette, are needed to determine strain in the x and y directions. However,
shear strain cannot be directly measured by a strain gauge. In Figure 3.1(b), the
strain measured by strain gauge 1 is equal to the strain measured in the x direction
(ε1 = εx), and the same applies for the y direction (ε2 = εy). While the same is
true for ε1 and ε2 in Figure 3.1(c) (a triaxial rosette), the shear strain γxy can be
computed as γxy = 2ε3 − (ε1 + ε2).

The bonding of the strain gauge to the specimen highly influences the accuracy of
the measured strain. To achieve a good bond, a clean and rough specimen surface
is needed. Unlike engineering materials that can be easily cleaned and roughened if
needed, biological specimens pose more challenges. The main disadvantage of using
strain gauges is that they can only measure strain where they are applied, meaning
that many strain gauges must be applied to the material’s surface to capture a
representative strain distribution [97, 98, 99]. In 1966, Roberts [100] developed
a procedure for applying strain gauges to bone samples, where strain gauges are
glued to the surface using cyanoacrylate glue or epoxy resins, then waterproofed
using a sealant [100, 98, 101]. This process is challenging because the bone surface
must be thoroughly cleaned to remove soft tissues and degreased using acetone,
which could introduce variations in strain measurements [89, 14]. Nevertheless, the
root-mean-square noise of the minimum and maximum principal strain signals of
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a strain gauge rosette attached to porcine vertebrae can be as small as 1 µstrain [23].

Due to their accuracy, strain gauges have been increasingly applied to investi-
gate strain in bone samples. Kim et al. [98] investigated the influence of hip
implants on the strain distribution of proximal human cadaver femora by applying
ten strain-gauge rosettes to the surface of six femora. As described by Roberts [100],
the site of strain gauge application was cleaned from soft tissues, smoothed with
sandpaper, degreased using acetone, and then dried in an O2 stream. Finally, before
bonding the strain gauge, an etchant was applied to the application site and rinsed
with saline. After drying, the strain gauges were bonded using a two-component
poly methyl methacrylate (PMMA) adhesive and covered with a waterproof epoxy
sealant [98]. However, strain gauge coatings have not proven effective in other
studies by Begonia et al. [102, 21], where strain gauges were applied to the medial
forearm surface of mice bones. Strain gauges have been applied not only in vitro
but also in vivo [103, 104]. Lanyon et al. [105] applied a triaxial strain gauge
rosette to the anteromedial aspect of the tibial midshaft of a man. The preparation
steps included surgery to gain access to the strain gauge site, tissue infiltration
with a local anesthetic solution, careful wiping of the strain gauge site, treatment
with a surface activator, application of adhesive to the underside of the gauge,
pressing the gauge into position, suturing the wires of the gauge to the periosteum,
and closing the wound, leaving the wires to emerge from the proximal end of the
incision [106, 105].

Due to the challenges in applying strain gauges to cadaver bone samples, many
researchers have opted to use composite bones, which do not significantly differ
from cadaver bone samples [107], to study the influence of various parameters on
strain distribution. Composite bones mitigate variations in the material itself and
allow for the study of strain distribution based on factors such as inclination angle,
implants, or loading conditions [108, 93, 109]. In the case of composite femora,
strain gauges are bonded to the surface using adhesive glue [109], eliminating the
need for surface treatment.

Application of strain gauges to specific locations on the measured surface is benefi-
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cial not only for measuring local strain but also for validating strain measured by
other, less accurate techniques [107, 23]. Applying strain gauges to the surface of the
human femur has been beneficial for validating finite element models [97, 110, 111].
However, the strain measured by strain gauges can also be underestimated due to
the stiffness of the gauges when applied to thin materials [112, 89]. In conclusion,
strain gauges are widely used for mechanical strain measurement on bone tissue.
However, their application is limited to local strain measurement on the surface of
tissues, and their accuracy depends largely on the quality of the gauges themselves
and their attachment to the surface.

3.1.2 Contact extensometers

An extensometer is a device used to measure changes in the length of an object.
The strain can then be calculated as the change in length divided by the original
length. Contact extensometers, such as clip-on extensometers, are mounted directly
onto the specimen, which is usually flat with a constant thickness, as shown in
Figure 3.2. Extensometers provide accurate measurements because no relative
movement occurs between the specimen and the extensometer due to the short
and stiff mechanical parts that transfer the extension from the specimen to the
internal transducer. The main disadvantage of using contact extensometers is that
their measurement range is limited to a few millimeters, they can only measure
in one direction, the measurement accuracy can be impaired for small or delicate
specimens, the thickness of the measured area has to be uniform, and the pins
of the clip-on extensometer can mechanically interact with the specimen, causing
significant creep indentation, which, in turn, results in an overestimation of the
specimen’s transverse strain [71].
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Figure 3.2: An illustration of a contact extensometer. When the sample is deformed
under an external force, the extensometer measures a change in the length ∆L.
The strain can then be calculated as the change in length divided by the gauge
length.

The strain ε can be simply calculated using the following formula:

ε = ∆L

L
(3.2)

where L is the original length of the extensometer, and ∆L is the length change
due to the elongation or shortening of the sample. Extensometers are more accu-
rate than measurements based on the motion of the testing machine’s cross-head
because they are mounted directly on the sample. There are a variety of commer-
cially available extensometers that differ in shapes, sizes, measuring capacities,
and temperature ratings. The advantages of extensometers over strain gauges lie
in their reusability, making them very cost-effective. For engineering materials,
extensometers are used to accurately measure material properties, which are ho-
mogeneous and require specimen preparation according to ASTM International
guidelines for the respective material. However, extensometers are not the first
choice when measuring strain in biological tissues due to their limitations regarding

24



3.1. Strain measurement methods

the shape of the specimens. Nevertheless, modified extensometers have been applied
to gain more information from the sample under test. For instance, Acciaioli et
al. [43] used a four-extensometer technique to measure local axial displacements of
cylindrical human trabecular bone specimens. The four-extensometer technique
involves attaching two extensometers simultaneously to the specimen using four
rubber bands. Initially, two extensometers are positioned vertically at 0° and 180°
along the generatrix of the cylindrical specimen, and then they are re-positioned
vertically at 90° and 270° [43], allowing for four strain measurements on the surface
of the specimen.

As well, Boyd et al. [113] measured uniaxial strain of cylindrical cancellous bone
cores extracted from canine femoral condyles during a uniaxial compression test.
In this study, the researchers compared the extensometer measurements to the
cross-head movement of the testing machine and a clamp-to-clamp measurement
using a linear potentiometer between the two loading platens. A good correlation
was found between the clamp-to-clamp and cross-head displacement measures,
which was not found between the extensometer and both other methods [113].
Earlier studies have found that strain computations based on the relative displace-
ments of the two loading platens always underestimate Young’s modulus of bone
samples [114, 42].

Extensometers were also used in in vivo applications to measure strain rate and/or
magnitude. Perusek et al. [115] measured global strain and strain rates in human
calcaneus bone during physiological activity. The applied extensometer incorpo-
rated two capacitive sensors mounted to intraosseous pins, allowing for strain
measurement due to bending in the plane of the extensometer, in addition to
uniaxial compression or tension strain measurement [115]. The application of
extensometers in vivo is less invasive compared to strain gauges and requires less
surface preparation.
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3.1.3 DIC

Even two decades ago, DIC was being employed to measure strains on the surface of
a wide range of materials [1]. DIC systems use a series of sequential digital images
to determine the surface deformation and strain of objects. These systems can
identify features of an object and track their relative movement across the sequential
images. By tracking deformation across the surface, full-field measurements can be
obtained, overcoming limitations imposed by strain gauges, which require many
gauges to be glued to the specimen’s surface for a complete strain distribution
picture. This advantage of DIC over other measuring techniques has allowed
researchers to track surface deformation and characterize highly anisotropic and
inhomogeneous biological samples [6, 23, 116].

Camera systems. DIC systems operate in both two (2D) and three dimensions
(3D), as depicted in Figure 3.3. The distinction between these systems lies in the
number of cameras or lenses used to capture images. A 2D DIC system utilizes a
single camera with one lens, which can be either standard or telecentric, while a
3D DIC system employs two cameras for stereo vision.
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Figure 3.3: DIC measurements can be performed in 2D or 3D using a single camera
or stereo cameras, respectively.

The accuracy associated with the camera system helps to determine the DIC
system used for surface strain measurement. This accuracy varies between 3D and
2D DIC systems. The former uses two cameras in stereo vision to capture the
object from different angles, so that no pseudo strain measurements are detected
when the object moves in or out of the focal plane, resulting in more accurate
strain measurements [117]. In contrast, a 2D DIC system with a standard lens
can be more inaccurate due to out-of-plane movements which cause in-plane strain
measurement errors. This limitation of the 2D DIC system can be partly overcome
when a telecentric lens is used; due to its working principle, this lens is less sensitive
to out-of-plane movement [117]. Figure 3.4 shows the difference between a standard
and a telecentric lens.
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Figure 3.4: Schematic illustration of (a) standard and a (b) telecentric lens, showing
the effect of out-of-plane movement. In a standard lens, the out-of-plane movement
will result in the object appearing smaller or bigger in the image plane, where the
magnification is constant for objects within the telecentric depth when a telecentric
lens is used.

A standard lens refracts light from objects and focuses it at a single point called the
focal point, where the principal ray (in red) is angled with respect to the optical
axis in both the image and object space, as depicted in red in Figure 3.4(a). The
principal rays define the angular field of view and travel through the centre of the
aperture stop, while the marginal rays define the image position and travel through
the edge of the aperture stop, limiting the amount of light able to pass through the
lens. In these lenses, the magnification depends on the distance of the object from
the lens and its position in the field of view. If the object moves out of the focal
plane, it will appear smaller (in green) in the image plane, potentially resulting in
pseudo strain measurements.

Unlike standard lenses, the principal ray (in red) on the object side is paral-
lel to the optical axis in a telecentric lens, as depicted in red in Figure 3.4(b).
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Because the aperture stop is moved to the focal plane of the lens, and the principal
ray has to travel through the centre of the focal point in the middle of the aperture,
it must be focused at infinity, meaning that black and green arrows appear at the
same magnification regardless of their distance from the lens, because the field
of view does not change. This constant magnification reduces errors caused by
object movement or tilting on the surface. Sutton et al. [117] studied the effect of
out-of-plane movement on strain analysis and concluded that strain errors can be
reduced from 1250 µstrain per mm of out-of-plane motion to 25 µstrain per mm.

Speckle patterns. To use a DIC system to successfully track deformation, the
surface of the material has to be sprayed with randomly distributed speckle patterns,
ideally with a balanced white-to-black ratio of 50%. Speckle patterns can be applied
using a black spray can or, preferably, professional airbrushes. The size of the
patterns should be large enough to be resolved by the camera. Additionally, they
should be small enough to be distinguished for evaluation. Researchers have found
that the optimal size of the speckle pattern is 3-5 pixels. The surface pattern
should not be reflective, as differences in brightness between the two cameras can
prevent accurate computation in the areas affected by reflection. Figure 3.5 shows
examples of different speckle patterns.

Figure 3.5: Speckle pattern size and distribution influence the accuracy of the
DIC measurements. (a) Unsuitable low-contrast speckle pattern with small speckle
size, (b) suitable-contrast speckle pattern, and (c) unsuitable low-contrast speckle
pattern with large speckle size.

Speckle patterns help to allocate pixels in the camera images by dividing the
surface into square areas known as facets. Facets are unique correlation areas,
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usually ranging in size from 5 to 20 square pixels, and play a crucial role in
the accuracy of DIC measurements. Facets, rather than individual pixels, are
selected for tracking movement, as they contain varying grey levels that make them
unique and distinguishable from other facets. A facet should contain at least three
distinct speckle patterns (see Figure 3.6), and the centre of the facet serves as
the measurement point. Larger facets may result in less accurate capture of local
effects, while smaller facets offer finer detail but may require more computational
resources. The step size determines the density of measurement points and the
amount of overlap between adjacent facets. Smaller step sizes increase measurement
point density but also prolong computational time, while larger step sizes reduce
density but expedite processing.

Figure 3.6: The measurement surface is divided into facets, and the centre of the
facet is called a measurement point. The distance between two measurement point
is known as the step size.

Prior to analysis, system calibration is required. This calibration process establishes
an operational area (for 2D) or volume (for 3D) within which the centre point
of the facets can be accurately measured. Calibration is achieved by moving a
calibration object through a predefined range of motions within the designated
area or volume where the measurements will occur.

Triangulation. In a 3D DIC system employing two cameras in a stereo con-
figuration, the images captured by the left and right cameras are divided into
facets, each characterized by unique pixel patterns. The centers of these facets
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(i.e., the measurement points) are paired with each other, and the 3D coordinates
of these measurement points can be obtained through triangulation [118]. This
process requires calibration of the stereo cameras using image coordinates where
the measurement points are known in both images.

Figure 3.7 explains the triangulation method, which is applied to determine the
location of an unknown point P (x, y, z) in space. The 2D coordinates of the
measurement points in the left- and right-hand image are defined as P1(x1, y1) and
P2(x2, y2). The coordinates (x, y, z) of the point P can be calculated as following:

z = f ∗ B

x2 − x1
(3.3)

where B is the distance between the image planes of the two cameras, f is the focal
length, and x2 − x1 is known as the disparity of the point P . After determining z,
x and y can be calculated:

x = x1 ∗ z

f
and y = y1 ∗ z

f
(3.4)
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Figure 3.7: Stereo vision is a technique used to create a 3D description of a scene
from two different viewpoints. The 3D coordinates of the point P (x, y, z) can be
determined if the focal length f , the distance between the image planes B, and the
2D coordinates of the measurement points in the left- and right-hand images are
defined.

The stereo camera system has to be calibrated in order to successfully assign the
measurement points using a calibration panel before the measurement is made.
During the calibration of a 3D DIC system, the distance of the cameras, the angle
of the cameras to each other, lens focus, and distortion are determined. The
calibration panel has distinct reference points for which the 3D coordinates are
calculated from the left- and right-hand cameras. These 3D coordinates for the
reference points from the calibration panel are used to calculate the calibration
deviation (intersection error), namely, by calculating their 2D coordinates in the
left- and right-hand camera images. Correct calibration requires an intersection
error between 0.01 and 0.04 pixels to be achieved. The average intersection error
of all 3D points should not be larger than 0.1 pixel [119].

Correlation algorithm. The location of a reference facet of (n, m) dimension
centred at point P (x, y) in a reference image can be determined in the deformed
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image (see Figure 3.8). Using a correlation algorithm, the degree of similarity
between the facet in the reference and deformed images can be determined. The
correlation criteria as found in the literature can be categorized into two groups,
namely the cross-correlation (CC) and sum-squared difference (SSD), where the
latter is simply defined as the Euclidean distance between two templates. Either
way, the position of the facet in the deformed image is determined once a peak in
the correlation coefficient distribution has been found. The cross-correlation and
the sum-squared difference criteria can be determined as follows:

CC(x, y) =
n


i=1

m

j=1

f(x + i, y + j)S(i, j) (3.5)

SDD(x, y) =
n


i=1

m

j=1

[f(x + i, y + j) − S(i, j)]2 (3.6)

where (n, m) are the dimensions of the facet S, and f(x, y) is the reference image
of dimensions N × M .

Figure 3.8: Illustration of a facet in the reference and deformed image in 2D. To
determine the new location of a point P (x, y), the facet S is compared between
the reference and the deformed images using CC or SSD. The point P moves from
its original location (x, y) in the reference image to a new location at (x′

, y
′) in the

deformed image, this movement can be determined by the displacement ux and uy

in x− and y−directions, respectively.

If equation 3.6 is expanded, it becomes obvious that the term CC is included in the

33



3. Theoretical background

SDD already. Both the CC and SSD correlation criteria are sensitive to lighting
fluctuations, making them undesirable for determining the position of the facet in
the deformed images. Therefore, the CC or the SSD equations are normalized to
eliminate the influence of brightness and contrast. The normalized cross-correlation
(NCC) equation can be written as:

NCC(x, y) =

n�
i=1

m�
j=1

f(x + i, y + j)S(i, j)�
n�

i=1

m�
j=1

[f(x + i, y + j)]2
�

n�
i=1

m�
j=1

[S(i, j)]2
(3.7)

Similarly, the normalized sum-of-squared-differences (NSSD) can be written as:

NSSD =
n


i=1

m

j=1

 f(x + i, y + j)�
n�

i=1

m�
j=1

[f(x + i, y + j)]2
− S(i, j)�

n�
i=1

m�
j=1

S(i, j)]2


2

(3.8)

Both NCC or NSSD provide the corresponding maximum similarity for each facet
or minimum grey value differences, respectively. They are insensitive to the linear
scale in illumination lighting, but are sensitive to offsets in the lighting. This issue
can be solved by subtracting the local mean (mean of search area) and mean of
the facet, making NCC and NSSD more efficient. This modification of the NCC is
called zero-normalized cross-correlation (ZNCC) and can be written as:

ZNCC(x, y) =

n�
i=1

m�
j=1

[f(x + i, y + j) − f̄ ][S(i, j) − S̄]�
n�

i=1

m�
j=1

[f(x + i, y + j) − f̄ ]2
�

n�
i=1

m�
j=1

[S(i, j) − S̄]2
(3.9)

where f̄ is the mean of the image f(x, y) or a subimage of dimension (n, m) and S̄

is the mean of the facet. Similarly, the zero-normalized sum of squared differences
(ZNSSD) can be written as:
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ZNSSD =
n


i=1

m

j=1

 f(x + i, y + j) − f̄�
n�

i=1

m�
j=1

[f(x + i, y + j) − f̄ ]2
− S(i, j) − S̄�

n�
i=1

m�
j=1

[S(i, j) − S̄]2


2

(3.10)

ZNCC or ZNSSD correlation criteria are insensitive to the offset and linear scale in
illumination lighting [120]; therefore, these are the most common methods used to
determine the position of a facet in deformed images. The commercial DIC system
used to compute the strain in the experiments conducted as part of this thesis work
uses the normalized sum-of-squared-differences to find the minimum grey value
differences between the facets in the deformed and reference images. Values of NCC
and ZNCC vary between −1 and 1, i.e. the worst- and best-matching, respectively.

Displacement and strain computation. On an image of a test surface, pat-
terns are recognized by projecting facets onto the image. Each facet is defined
by its 2D or 3D coordinates and the distribution of gray-scale intensity within
it. Following deformation, the pattern is re-recognized under the assumption that
the gray-scale intensity distribution within the facet remains unchanged during
deformation. Changes in the border coordinates surrounding each facet point are
observed to analyze the alterations in the gray-scale intensity distribution. The
2D or 3D displacement gradient tensor field (∇u) is computed at every facet point
based on these observations. The following equations explain how the deformation
of a line element between the reference and the deformation stage is computed.

Figure 3.9 shows an image in the reference X and deformation x stage. The
location of point P in the deformed stage x can be defined as the distance between
the origin O and the point P , which can be computed as follows:

x + dX = X + dX + u(X + dX) (3.11)

Here, u(X) is the displacement vector function that relates the displacement of the
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particle in the reference and deformed stages, defined as:

u(X) = x − X (3.12)

Figure 3.9: Illustration of a reference rectangular facet (in green) in the reference X
and deformed x stages. The length between the two points P and Q is determined
by dX and dx in the reference and deformed stages, respectively. The displacement
function between P and P

′ is denoted by u(X).

The above equation 3.12 can be rearranged to define the displacement in terms of
the change in length of two points in the deformed stage, dx, as follows:

dx = dX + u(X + dX) − u(X) (3.13)

The term u(X + dX) − u(X) in the equation above is defined as the displacement
gradient tensor field ∇u:

dx = dX + ∇udX (3.14)

The displacement gradient tensor field ∇u is defined by the spatial derivatives of
the displacement components with respect to the spatial coordinates:
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∇u = ∂ui

∂Xj

(3.15)

The calculation of DIC strain essentially involves computing the derivative of
displacement. The variation of subset measurement points in space can be expressed
by the gradient matrix F , which represents the change in length between two points
before and after deformation. This is formulated as follows:

F = dx

dX
(3.16)

The deformation gradient tensor F relates the reference and deformed states of a
material. It’s a tensor that characterizes how infinitesimal line elements change
between these two states. F can be written in terms of the displacement gradient
tensor field ∇u:

F = (I + ∇u) (3.17)

As strain is the change in length due to deformation, the relationship between dX

and dx can be determined by dotting the equation dx = FdX by itself:

dx.dx = FdX.FdX ⇒ ||dx||2 = dX(F TF )dX (3.18)

The difference between the squared magnitudes of the infinitesimal changes in the
deformed and reference configurations.

||dx||2 − ||dX||2 = dXT(F TF − 1)dX (3.19)

F T F is known as the right Cauchy-Green tensor C, from which the Green strain
tensor EG can be determined, which characterizes the strain without accounting
for rotations, equation 3.19 is divide by 2:
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EG = 1
2(F TF − I) (3.20)

DIC algorithms usually use triangulation as a method to compute strain, where a
set of constant strain triangles are defined, figure 3.10. The nodal coordinates and
displacement of the triangles are used to derive the Green strain tensor. For a 2D
displacement, the deformation gradient tensor F can be defined as a function of u

and v which are the components of the displacement vector:

F =
 ∂x

∂X
∂x
∂Y

∂y
∂X

∂y
∂Y

 = I +
 ∂u

∂X
∂u
∂Y

∂v
∂X

∂v
∂Y

 (3.21)

Figure 3.10: Representation of a constant strain triangular element in its unde-
formed state. The nodal coordinates are displaced by ui,j,k and vi,j,k along the x−
and y−direction.

After all facets were matched, and their new positions were known in all the
deformed images, the displacements vectors (u, v) in x− and y−directions can
be obtained from the element shape functions Ni, Nj, Nk and the displacement
components at each node, ui,j,k, vi,j,k:

u

v

 =
Niui + Njuj + Nkuk

Nivi + Njvj + Nkvk

 (3.22)

The shape functions for every node can be determined by the following equations:
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Ni = 1
2A

[xiyk − xkyj + (yj − yk)X + (xk − xj)Y ] (3.23)

Nj = 1
2A

[xjyi − xiyk + (yk − yi)X + (xi − xk)Y ] (3.24)

Nk = 1
2A

[xiyj − xjyi + (yi − yj)X + (xj − xi)Y ] (3.25)

where A is the area of the triangular element. From the displacements vectors
u and v, the deformation gradient tensor F can be determined and the Green
strain tensor EG can be calculated as a function of the nodal coordinates and
displacements.

The computation of displacement and strain relies on accurately determining
the centre points of the facets (or measurement points) in both the right- and
left-hand images (for 3D DIC), and subsequently, in the reference and deformed
images. The precision of DIC in capturing local deformations influences the accu-
rate localization of strain. Any inaccuracies or discrepancies in the facet allocation
directly impact the measured displacements and strains. The size and spacing
of the subsets play a crucial role in determining the accuracy of displacement
measurements and the resultant strain values. Larger facets reduce noise in uni-
formly deformed regions but can smooth out strain gradients, making smaller
facet sizes more suitable [121, 70, 18]. Despite DIC being widely used for strain
measurement, particularly in cases of uniform displacement fields, it’s necessary
to assess its accuracy in capturing local non-uniform deformations. The following
section provides an overview of the accuracy and precision of DIC in surface strain
measurements.
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3.2 Accuracy and precision of DIC strain
measurements

This section discusses the accuracy and precision of DIC strain measurements with
reference to factors influencing these parameters.

Accuracy and precision serve as distinct indicators of error. Accuracy refers
to the closeness of a measured value to the true value, and precision relates to
the consistency or reproducibility of repeated measurements. Strain measurement,
like any measurement technique, is prone to noise which could lead to erroneous
strain results. Strain gauges and extensometers are more accurate than DIC strain
measurements since they are directly glued or attached to the sample [15]. Strain
gauges or extensometers may yield inaccurate results when applied to small or
delicate specimens, or when they mechanically interfere with the specimen [71]. In
DIC measurements, various factors contribute to noise, including the size of the
speckle pattern, which can be either too coarse or too fine [10, 122, 11, 123, 12],
the camera resolution being non-optimal or not matching the measured surface,
or wrongly selected facet or step sizes [70, 18, 124, 12]. The algorithm used to
match facets between the deformed and reference images is critical for ensuring the
accuracy of DIC measurements [1, 17, 125, 126, 127, 128]. Therefore, DIC systems
must undergo optimization, and a thorough assessment of noise is necessary to
evaluate the accuracy of the results. One method to evaluate DIC strain measure-
ments involves comparing them with results from another measurement technique,
such as strain gauges or extensometers. However, this approach is applicable only
to homogeneous strain fields.

Accuracy can be defined as the difference in bias between the mean DIC strain
measurement and the measurement obtained using strain gauges (or any other
reference strain), while precision is represented by the standard deviation (random
error) of the measurements. The quality of the image forms the foundation for
accurate strain computation. The quality of the speckle pattern contributes to the
image quality. Speckles should be stochastic, so that each facet is unique from its
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neighbouring facets. Lecompte et al. [129] studied different speckle patterns and
evaluated the displacement error. They found that using small speckles with a
limited scatter of speckle sizes led to more accurate displacement computation, and
that using larger facets resulted in a larger random error. The use of the airbrush
has proved to be more accurate than the use of a spraying device, because the
speckle sizes can be controlled by adjusting the paint and airflow [130, 70, 11].
The accuracy and precision associated with the speckle pattern can be readily
assessed under zero-load conditions, where several images of the sample are cap-
tured without any applied load. Subsequently, displacement and strain values are
computed [131]. Alternatively, accuracy can be assessed by numerically deforming
the images and comparing the computed displacements against the numerically
imposed displacement [129, 130, 132].

Other parameters that influence the accuracy and precision of DIC and that
are also related to the speckle pattern, are the facet size and step size [120, 130, 15].
Larger facets reduce the number of measured points on a surface and hide strain
gradients [13]. Smaller facets can increase the error radically if the speckle patterns
are not optimal. An optimal speckle pattern size typically ranges from 3 to 5 pix-
els [1, 12]. The step size is the distance between two consecutive facets. "Smaller
step sizes can increase the difficulty of locating facets between the deformed and
reference images, leading to a higher likelihood of errors [15], and bigger step sizes
result in fewer measurement points. The optimal ratio between facet and step size
can be determined under zero-load conditions. By keeping the facet size fixed and
varying the step size, the optimal parameter is identified as the one with the lowest
pseudo-strain in a theoretically zero-strain field.

Another important factor that affects the accuracy of the strain measurement
is whether a 3D or 2D DIC systems are used. Out-of-plane motion of the test spec-
imen can occur in 2D DIC, in contrast to 3D DIC [117, 120]. Strain measurements
are more sensitive to noise compared to displacements. The accuracy and precision
of the displacement are on the order of 0.01 to 0.04 pixels [122]. Regarding strain,
the reported accuracy in the literature varies between a few tens to hundreds of
microstrains [23] and up to thousands of microstrains [15, 20].
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Strain gauges outperform DIC in terms of accuracy for zero-strain readings, with
readings smaller than 4 µstrain, compared to DIC where the noise for zero-strain
readings is smaller than 10 µstrain [15]. The DIC strain measurements can be
improved by improving the sample preparation, choosing suitable facet and step
sizes, employing a high-resolution camera suitable for the target measurement,
and applying suitable filtering parameters. In some cases, the DIC measurements
outperform the strain gauges measurements; the accuracy of strain gauges suffers
due to increased loading, particularly in cases of non-linear deformation or strain
concentration in localized regions, such as on samples with complex geometries
like the curvilinear surfaces of human femurs or vertebrae [23]. Strain gauges
measurement can be inaccurate for soft materials, including bone, due to their
contribution to the load-bearing capacity, leading to a systematic underestimation
of the actual strain distribution [112]. DIC measurements on femoral samples
were higher than the strain gauges measurements with an average difference of
83 µstrain, this is due to the attachment of the strain gauges to the femur, where
bone is stiffened, and its deformation is restricted [109].

Regarding precision, the DIC method has some limitations, as mentioned ear-
lier, where various factors can influence surface strain measurements, leading to
peak values of up to 70 µstrain at zero-strain readings [15]. Furthermore, the
precision of DIC did not deteriorate with increasing strain levels but remained at
the same level of the zero-strain. Strain gauges exhibit higher precision because
measurements can be repeated with low random error, a feature not guaranteed
with DIC. This can be tested by repeatedly loading and reloading the same sample
within the elastic limit for small strain levels. In contrast, DIC faces challenges
when a sample is loaded and reloaded within the elastic limit, as the surface of
the sample with speckle patterns deforms, making it difficult to reproduce the
same results on the same sample. However, DIC can measure strain with relative
accuracy in locations such as the femoral neck, where the average root-mean-square
error and the standard deviation were 127 µstrain and 239 µstrain, respectively [87].

The evaluation of strain measurements on samples that exhibit strain gradients
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or inhomogeneous strain fields is more challenging. This is because the true value
of the strain cannot be easily verified with another measurement method. Due to
limitations in camera resolution, residual noise is always present even when using
optimized experimental setups. Various authors have investigated the accuracy
and precision of DIC systems and suggested methods to reduce the noise, either by
improving the sample preparation, measurement parameters, correlation algorithms
or by filtering. Filters can be applied to the captured images [30, 31, 13] and/or the
displacement fields [17, 32, 19, 33, 34, 35], or the computed strain fields [13, 133].
Filtering offers the possibility to reduce this noise. However, filters must be carefully
chosen as they predominantly affect areas of strain gradients. In the next section,
filtering strategies that can be applied to DIC measurements are explained.

3.3 Filtering approaches

Filtering has proved to be an effective method for reducing noise in DIC measure-
ments. Filters vary in their degree of attenuation and whether they are applied
locally or globally. However, filtering has a significant limitation when it comes to
smoothing gradients, which is crucial for measuring linear gradients or inhomoge-
neous strain fields, such as those expected in bone. In the case of homogeneous
deformation observed on the surface of engineering materials, where there are no
changes in the specimen’s dimensions, noise can be reduced by applying a simple
average filter to the DIC field. In contrast, when dealing with inhomogeneous
deformation, such as in irregular bone specimens with areas of high-strain gradients,
average filters can be applied to smooth the gradient. Although a localized filter is
preferred to minimize information loss, it often leads to noisier results [70]. Hence,
finding an optimal filtering parameter capable of reducing noise in DIC strain fields,
regardless of the applied load, strain window size, or strain field type, is essential.

In this section, an overview of the different types of filters applied to DIC strain
measurements or DIC images is presented.

Simple mean filter. Mean or average filters are used to calculate the statistical
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average of a filter mask. The mask is applied to each measurement point (or a pixel)
in a measurement field (or image), and each measurement point is replaced with
the average value of neighbouring measurement points in the mask, including the
measurement point itself. The average filter is a built-in filter in the DIC commercial
software, which is applied to the strain or displacement fields. Depending on how
the DIC measurement points are organized in the field, the shape of the filter can
vary. For the DIC data obtained in this thesis work, the DIC data are represented
by a hexagonal grid, so the shape of the filter is also hexagonal. The points in the
filter mask are usually weighted equally. Along the boundary, the strain points can
be extrapolated by reflecting the boundary rows and columns, depending on the
size of the filter. Figure 3.11 shows a filter h(x, y) with size s = 1, where all points
that are adjacent to the measurement point in a strain distribution f(x, y) will be
averaged together and saved in a new filtered strain distribution g(x, y). The size
of the filter can vary, and three sizes; s =1, 2, and 3 are shown in Figure 3.11.

Figure 3.11: Simple mean filter h(x, y) applied to a strain field f(x, y) where the
arrangement of the measurement points is a hexagonal grid. The filtered strain
distribution is saved in g(x, y). Figure adapted from [133].

If the size of the filter is large, the loss of information is even higher [134]. This
filter results in a loss of information, especially when smoothing an image with
impulsive noise. Sztefek et al. [58] applied three iterations of a 3 × 3 facet average
filter to strain distribution across the surface of a mouse tibia loaded up to 12 N
under compression. This filter smoothed the strain field and resulted in a reduction
in the standard deviation of the error from 0.05% to 0.03% [58].
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Gaussian mean filter in the spatial domain. In the spatial domain, like the
mean filter, Gaussian mean filters replace the value of each measurement point
in a field plane f(x, y) with the mean value of its neighbours, including the point
itself [135] (see Figure 3.12). The shape of the filter h(x, y) weights the pixels based
on their distance from the measured point.

h(x, y) = 1
2πσ2 exp− x2+y2

2σ2 (3.26)

where (x, y) are the coordinates of a measurement point in a 2D strain distribution,
and σ is the standard deviation of a Gaussian function. The filtering is applied via
convolution g(x, y) = f(x, y) ∗ h(x, y).

f(x, y) ∗ h(x, y) = 1
MN

M−1

m=0

N−1

n=0

f(m, n)h(x − m, y − n) (3.27)

where M and N are the dimensions of the image f(x, y).

Figure 3.12: the Gaussian mean filter h(x, y) weights the points based on their
distance from the measured point, applied to a strain field f(x, y). The filtered
strain distribution is saved in g(x, y). Figure adapted from [133].

For the attenuation of strain noise, Rajan et al. [18] applied Gaussian-weighted
filtering to DIC strain measurements; however, the strain gradients were compro-
mised. Schreier et al. [136] demonstrated that a 3 × 3 binomial filter is effective.
In contrast, Zhou et al. [137] applied a pre-filtering step to the obtained images
prior to the correlation, and the results show that the systematic error reduced
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but the random error increased, especially for images with a speckle pattern that
contained substantial high-frequency components.

Filtering in the frequency domain.

Filtering in the frequency domain is usually done by transforming a measurement
point’s distribution from the spatial domain (x, y) into the frequency domain (u, v).
This transformation is done via discrete Fourier transform (DFT). High, low, or
band frequencies can be filtered. The filtered distribution can be transformed back
into the spatial domain with the inverse Fourier transform (IFT) method. The
frequency in the Fourier transform can be associated with a pattern of variation
intensity in a measurement field. At the origin of the transform, a low frequency
corresponds to slowly varying components in an image. At a point further away
from the origin of the transform, a higher frequency corresponds to faster and faster
grey level changes in the images. High-frequency components are usually the edge
of an object in an image, as well as abrupt changes in the grey level such as noise.
Low-pass filters allow only low frequencies to pass through and attenuate high
frequencies. They are known as smoothing filters as well. Conversely, high-pass
filters allow only high frequencies to pass and attenuate low frequencies. They
are known as sharpening filters, as the edges become more pronounced in the
filtered image or field. Band reject filters attenuate frequencies within the range
of a certain frequency and allow frequencies below a certain threshold and above
another threshold to pass through. Bandpass filters only allow frequencies within
a certain band to pass through and attenuate the frequencies below a threshold,
and allow frequencies above another threshold to pass through. Since the noise in
the DIC measurement field is represented by a high-frequency component [135, 13],
low-pass filters are discussed in detail. More information about other filtering
strategies can be found in [135].

The basic filtering steps used in the frequency domain are illustrated in Figure 3.13:

(a) The DIC measurement distribution f(x, y) of M × N size is transformed
from the spatial domain into the frequency domain, F (u, v), using a discrete
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Fourier transform (DFT) equation which is given by:

F (u, v) = 1
MN

M−1

x=0

N−1

y=0

f(x, y) exp−j2π( ux
M

+ vy
N

) (3.28)

where u and v are the frequency variables, and x and y are the spatial
variables. The Fourier amplitude spectrum or magnitude is given by:

F (u, v) =
�

[R2(u, v) + I2(u, v)] (3.29)

where R and I are the real and imaginary parts of F (u, v), respectively.

(b) Before the application of the filter, f(x, y) is commonly multiplied by (−1)x+y,
to locate the low-frequency peaks at the centre of the M × N area, shifting
the F (u, v) to frequency coordinates (M/2, N/2).

(c) A filter H(u, v) with a certain cut-off frequency D0 is multiplied by the centred
spectrum F (u, v). This multiplication is defined on an element-by-element
basis.

G(u, v) = H(u, v) · F (u, v) (3.30)

(d) Using the inverse Fourier transform (IFT), G(u, v) is transformed back into
the spatial domain g(x, y), and the real part of this inversion is shifted again
by (−1)x+y. The IFT is given by:

f(x, y) = 1
MN

M−1

u=0

N−1

v=0

F (u, v) expj2π( ux
M

+ vy
N

) (3.31)
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Figure 3.13: An illustration of a Gaussian low-pass filter where the measurement
points are converted from the spatial domain f(x, y) into the frequency domain
F (u, v). A low-pass filter H(u, v) with a certain cut-off frequency D0 is multiplied
with the transformed measurement point F (u, v) resulting in a filtered field in
the frequency domain G(u, v), which is finally inversely transformed into the
spatial domain resulting in g(x, y). In this thesis work, filtering was done on the
measurement points, and the full-fields are shown for visualization purposes only.
Figure adapted from [133].

Sharp transitions of grey values appear as high-frequency content in the Fourier
transform, which usually comes from sharp edges or noise. Smoothing the high-
frequency (sharp) features can be achieved by applying a low-pass filters. In this
section, a brief overview of the low-pass (ideal, Butterworth and Gaussian) filters
is given.

Butterworth LPF. Like the ideal LPF, this filter removes high-frequency noise
from an image and preserves low-frequency components, but creates a smooth
transition. The filter function H(u, v) of order n is given by:

H(u, v) = 1
1 +

�
D(u,v)

D0

�2n (3.32)
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Figure 3.14: An illustration of a Butterworth LPF. (a) Perspective plot of a
Butterworth LPF transfer function. (b) Filter displayed as an image. (c) Filter
radial cross-section for different orders n. Figure adapted from Gonzales, 1992 [135].

Butterworth LPF does not have a sharp discontinuity. It smooths the transition in
blurring as a function of increasing cut-ff frequency (see Figure 3.14). The function
is reduced to 50% of its maximum value when D(u, v) = D0. A Butterworth LPF of
the order 1 or 2 does not suffer from ringing artefacts due to the smooth transition
between the low and high frequencies; however, ringing can become an issue at
higher orders [135]. As the order of the Butterworth LPF increases, it becomes
closer to an ideal LPF, and thus takes on its characteristics.

Applying a Butterworth filter to DIC-captured images is recommended for error
reduction due to its flexibility of pass-band selection and the maximal preservation
of the allowed frequencies. It reduced the systematic error more efficiently than
the Gaussian spatial filter when applied to the same images [137].

Gaussian LPF. The filter function H(u, v) is defined by the following equation:

H(u, v) = exp
−D2(u,v)

2D02 (3.33)

where, in this case, D0 is the cut-off frequency of the filter that controls the shape of
the Gaussian (see Figure 3.15) function. When D(u, v) = D0, the filter is reduced
to 0.667 of its maximum value. Like the Butterworth LPF, the Gaussian LPF has
no ringing effect.
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Figure 3.15: An illustration of a Gaussian LPF. (a) Perspective plot of a Gaussian
LPF transfer function. (b) Filter displayed as an image. (c) Filter radial cross-
section for different values of D0. Figure adapted from Gonzales, 1992 [135].

Baldoni et al. [13] reduced the noise by 70% without excessive loss of information
when a Gaussian low-pass filtering step was applied to the strain distributions. In
contrast, applying a Gaussian LPF to the DIC captured images prior to displacement
and strain calculation have proved to be ineffective. For high-frequency speckle
patterns, Zhou et al. [137] applied a pre-filtering step to the images prior to the
correlation, and the low-pass filters (binomial, Gaussian and Butterworth) slightly
increased the random error, because the desired image gradients were attenuated.
Likewise, Pan et al. [138] applied a 5 × 5 pixel Gaussian low-pass filter prior to
correlation analysis to smooth the speckle images, which resulted in a reduction in
the bias error in measured displacements. It is worth mentioning that filtering the
DIC images prior to displacement and strain computation was found to be effective
when the speckle patterns are well-defined in their shape, size and spacing [37].

Bandpass filter. This filter allows frequencies with certain range to pass through
and attenuates all other frequencies. The benefit of this filter is that it can be
used to denoise images and, at the same time, reduce low-frequency artefacts
such an uneven illumination. Bandpass filters can be used to find image features
such as blobs and edges. As in an ideal LPF, in an ideal bandpass filter, the
frequencies within the given range are passed through without attenuation and
frequencies outside the given range are completely removed (see Figure 3.16). With
a Butterworth bandpass filter, frequencies at the centre of the frequency band are
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unattenuated and frequencies at the edge of the band are attenuated by a fraction
of the maximum value. As mentioned earlier, using the Butterworth filter does
not result in sharp discontinuities between frequencies that are passed and filtered.
The Gaussian bandpass filter function H(u, v) is defined as:

H(u, v) = exp
−1
2

�
D2(u,v)−D2

0
D(u,v)W

�2

(3.34)

where D0 is the centre of the frequency band, and W is the width of the frequency
band, D = D(u, v) is the distance between a point (u, v) in the frequency domain
and the centre of the frequency rectangle.

Figure 3.16: An illustration of (a) an ideal, (b) a Butterworth and (c) a Gaussian
bandpass filter. Figure adapted from Gonzales, 1992 [135].

The opposite to a Gaussian bandpass filter is a Gaussian band reject filter, which
can be given by:

H(u, v) = 1 − exp
−1
2

�
D2(u,v)−D2

0
D(u,v)W

�2

(3.35)

One application of this filter in DIC is to eliminate the influence of the black-body
radiation from high-temperature objects on the intensity of captured images, which
is necessary to be able to compare the deformed DIC images at high temperature
with the undeformed DIC image at room temperature. [139].

Gaussian notch filter. This filter is a special kind of band reject filter, it rejects
only selective frequencies within a specified neighbourhood of a certain centre
frequency. It is useful for filtering a specific noise and can be thought of as a
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combination of LPF and HPF, where low and high frequencies both pass through,
while one specific frequency is blocked. This filter can be applied to the DIC image,
as it can effectively improve image quality due to its efficacy in removing periodic
noise. To apply this filter, the coordinates of the centre of the area to be filtered
(u0, v0) must be identified, and the filter function is defined as following:

H(u, v) = 1 − exp
−1
2

�
D1(u,v)D2(u,v)

D2
0

�
(3.36)

where D0 is the cut-off frequency of the Gaussian term, and D1 and D2 represent the
distance from the centre of the spectrum of the points (u0, v0) or the width of the
notch. If, u0 = v0 = 1 then, the notch-reject filter becomes a high-pass filter, and the
notch-pass filter becomes a low-pass filter. Notch filters have been used to eliminate
noise in DIC images, but the effect was counterintuitive as it increased the noise [13].

The next Chapter shows a systematic study exploring the possibility to find
an optimal filtering parameter for simulated noisy constant strain fields, and linear
and quadratic gradient strain fields.
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CHAPTER 4
Optimal filtering parameters for

noise reduction in DIC strain
fields

4.1 Related publications and declaration of
contributions

Results of the presented work (text, tables, figures) were published in the ’Journal of
Applied Mechanics’ in 2020, entitled ’Robust filtering options for higher-order strain
fields generated by digital image correlation’, and co-authored by A. Reisinger and
D. H. Pahr.

Authors contribution The first author and the author of this thesis, Nedaa
Amraish, wrote the manuscript, performed the experiments, data analysis and
interpretation. A. Reisinger contributed to the methodology and reviewed the
manuscript. D. H. Pahr supervised the work of Nedaa Amraish, contributed
to the conceptualization, methodology, reviewed and edited the manuscript, and
supported the interpretation of the results.

53



4. Optimal filtering parameters for noise reduction in DIC strain fields

As mentioned in Chapter 3, filtering of the strain fields plays an important role
in noise reduction, but it is a trade-off between losing information and removing
noise. In this Chapter, a systematic study exploring the possibility to find an
optimal filtering parameter for simulated noisy constant and gradient strain fields
is presented.

4.2 Introduction

DIC was introduced as an alternative method for measuring strains in the 1980s [1].
It has the potential to measure surface strain optically by capturing images of the
sample during deformation and thereby overcoming limitations such as attaching
strain gauges to the sample or the size of measured area. For tracking the displace-
ment on the surface of the sample using a DIC system, the surface of test samples
has to be sprayed with random speckle patterns. The surface is divided into facets
of pixels, each facet has unique pixel patterns, and the centres of these facets are
known as measurement points. The displacement and strain are calculated for
the measurement points of each facet between the deformed and non-deformed
images [1, 140, 58].

Unlike strain gauges, DIC has advantages in measuring surface strains on samples
with irregular shape and different sizes with a relatively easy sample preparation
procedure, but the accuracy of strain gauges is one order of magnitude higher
than that of DIC, especially for DIC systems with a moderate lens resolution or
for testing on irregular geometries such as a whole bone tissue [23, 14, 15]. The
root-mean-square error (RMSE), which is the square root of the mean of the square
of all the error, for the strain gauge rosette (1 µstrain) was significantly different
compared to DIC on vertebrae, where the error exceeded 25 µstrain [23]. In another
study by Acciaioli et al., the intra- and inter-specimen repeatability of strain gauge
measurements was 5 and 2.5 times better than DIC [15]. Nevertheless, for soft
materials, strain gauges induce perturbation in the results due to their contribution
to the load-bearing capacity, leading to a systematic underestimation of the actual
strain distribution [112]. DIC has been used recently to measure strains on the
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surface of engineered materials as well as biological tissues, however, DIC has
limitations, because the results are influenced by different parameters that lead to
unavoidable noise, and need optimization.

Previous work showed that noise in the calculated DIC strain fields is non-negligible
if the measuring parameters were not optimized [10, 122, 70, 18, 124, 11, 123, 12].
Noise sources that can be controlled and optimized are related to the operator in
the case of speckle patterns preparation, hardware parameters such as camera reso-
lution, and software parameters such as the size of the strain window, facet and step
size. Optimal parameters are not known a priori and can change according to the
sample size, strain window and the expected strain concentration. Larger facets and
strain window sizes reduce the noise for homogeneously deformed regions, whereas
for inhomogeneous strain fields, the higher the strain gradients are, the smaller
the optimal facet and strain window sizes [121, 70, 18]. Additionally, hardware
parameters such as vibrations in the DIC system or in the testing machine can be
reduced, but cannot be eliminated permanently. Even with optimized parameters,
noise can still be present in the DIC strain and displacement fields and can become
critical in regions with high stress concentration [32].

Numerous literature showed that the accuracy of a DIC algorithm depends on the
way in which the algorithm is employed to identify the facets for the matching
process between the deformed and non-deformed images. [1, 17, 126, 127, 128]. For
displacement calculation, DIC algorithm can follow a local DIC approach, where
the reference facet centred at each measurement point is traced along the deformed
images, or a global DIC approach, where the position of all the measurement points
are traced simultaneously [126, 127]. Most commercial DIC software follows a local
DIC approach for displacement calculation, which is prone to more uncertainties in
the displacement computation compared to a global DIC approach [126] for small
facet size. Wang and Pan showed that local DIC outperforms its global counterpart
when facet size is no less than 11 pixels [127]. Additionally, since the strain fields
are derived quantities from the displacement, the noise in the original displacement
measurements gets amplified in the strain fields, which in some cases, does not allow
for accurate strain computation [16, 17, 18, 19], especially where measurement
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errors are high in the case of discontinuous displacement fields [141, 32, 19].

Different approaches have been followed in the literature to filter the noise, either
by filtering, the displacement fields [17, 32, 19, 33, 34] or the strain fields [13],
or by filtering the DIC images prior to correlation computation [30, 31, 37, 13].
While all the above-mentioned filtering approaches are important, for practical
reasons, this chapter is dedicated to data processing and noise filtering of strain
fields computed by a commercial DIC system, without introducing other methods
for strain computation.

Filtering of the strain fields plays an important role in noise reduction, but it
is a trade-off between losing information and removing noise. Baldoni et al. ex-
plored different filtering strategies to reduce the noise, while minimizing the loss of
information in the DIC strain fields. In the first strategy, they filtered DIC images
using a median adaptive LPF and notch filters; these methods increased the noise
rather than reducing it. In the second strategy, they applied a Gaussian LPF on a
linear strain field. Only when an optimal cut-off frequency was selected for each
stage—load level—the noise was reduced without excessive loss of information [13].
There are two limitations to this approach. First, the cut-off frequency changes for
each stage, which means each captured strain field at each load level needs to be
filtered with a different cut-off frequency. Ideally, an optimal cut-off frequency is
advantageous; that is, independent of the load level, strain field size and the degree
of strain concentration, which is explored in this chapter. Second, in their study,
Baldoni et al. computed the residual noise as the root-mean-square error (RMSE)
of the filtered DIC strain in the unstrained condition, however, we propose to com-
pute the residual noise for each stage (load level) and not against the zero-load stage.

While the focus in the literature is on filtering the displacement field or im-
proving the correlation algorithm, few studies focus on filtering the strain fields.
This chapter follows a systematic approach to find optimal filter parameters for
filtering strain fields exported directly from a commercial DIC software (ARAMIS
v6.3.1; GOM, Braunschweig, Germany). The primary objective of this study is
to show how the noise can be reduced for different strain window sizes (number
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of measurement points) and strain field types (linear, quadratic, constant), using
three practical filters (simple mean, Gaussian mean, Gaussian LPF) and how the
total error changes when filter parameters change. The secondary objective is to
apply the filter parameters—independent of the load level—on experimental data
from a DIC system and to demonstrate the practical applicability of the theoretical
findings.

4.3 Materials and methods

4.3.1 Simulated strain fields

In order to test the viability of the filtering options and to compute optimal filter
parameters, three simulated strain fields were created, showing linear, quadratic, and
constant strain changes. These fields were created for three different strain windows
with measurement points of 6 × 5 (smallest, DIC systems require minimum 5–6
facets to calculate strain), 12×11 (extensometer gauge region), and 26×17 (typical
for biological samples). Figure 4.1 shows these strain measurement points Refεi

(a), the simulated strain fields Refεi without noise (b1, b2 and b3). The advantage
of using simulated fields is that the values of the measurement points and the
measurement random error are known, and one can evaluate the residual noise and
the loss of information precisely. All three functions were created using Python
SciPy and plotted with Scipy plt.image function. First, the coordinates’ system
(x, y) for a 2D plane was created and the strain fields are computed simply from the
analytical function. Second, values were assigned (mapped) to the measurement
points. For the constant field, the measurement points at the respected (x, y) were
assigned with one single value. For the linear and quadratic fields, the values were
assigned using a linear and a quadratic equation, respectively. Linear and quadratic
fields are ranging from 0–1000 µstrain and the constant fields show a value of
500 µstrain which corresponds to the elastic regime of many engineering materials.
Each of these simulated strain measurement points was subjected to a random
noise with standard deviation of 300 µstrains. The standard deviation value of the
noise was obtained from experimental findings, as described in Section 4.3.2. The
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noise was imposed on the simulated fields using a Gaussian random generator in
Python SciPy, since the noisy data points are typical—normally distributed—DIC
outcome and are referred to as sDICεi (s for simulated, ε for strain). For a better
visualization, these data points were interpolated using Python SciPy to give the
strain fields sDICε, as shown in Figure 4.1c1–c3.

Figure 4.1: Simulated strain distribution: (a) Discrete strain distribution showing
measured points at the facets centre for three strain windows with 6 × 5, 12 ×
11 and 26 × 17 points which corresponds to a 4.5 × 4 mm2, 9.6 × 9.2 mm2, and
20.8 × 13.6 mm2 area, respectively. (b1–b3) Two-dimensional representation of
linear, quadratic and constant simulated strain fields respectively. (c1–c3) strain
distributions with imposed Gaussian noise obtained from DIC measured data
points.

4.3.2 Experimental strain fields

Ten steel samples (mild steel 1.0037) were prepared according to ASTM guidelines
for metallic materials (E8) [142] for tensile tests, as in Figure 4.2. The Samples
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were machined from a steel plate of 1 mm thickness using a numerically controlled
machine (CNC Router BZT PFX 700, BZT Maschinenbau GmbH, Leopoldshöhe,
Germany). Speckle patterns were applied to the steel samples’ surface using a
high precision airbrush (Profi-AirBrush, Wiesbaden, Germany). The airbrush
settings were adjusted (air pressure of 200 kPa, 3 turns of the airbrush opening,
and 9 cm distance between the airbrush and the sample) to obtain a speckle size of
3–5 pixels [10] with a random distribution (coverage 45–50%). The samples were
mounted on a Zwick (Z030) machine (ZwickRoell GmbH, Ulm, Germany). ARAMIS
3D commercial system (ARAMIS 150/6M/Rev.02, GOM GmbH, Braunschweig,
Germany) was set up with two CCD cameras. The cameras were positioned
perpendicular to the sample at 35 cm distance, see Figure 4.3a. A universal
extensometer (ZwickRoell GmbH, Germany) was attached to the samples in the
gauge region (25 mm in length), from which the uniaxial global strain was obtained.

Figure 4.2: Detailed dimensions of an ASTM flat steel sample.

The noise-floor of the DIC measurement was evaluated by capturing 10 images of
each sample, at 1 Hz and 8 ms exposure time, while the sample was mounted on
the testing machine without any load applied (zero-strain). The strain window
corresponding to the measurement area between the extensometer has 12 × 11
measurement points for a facet size of 19 × 19 pixels with a facet step of 16 pixels
(50% overlapping); these parameters are recommended by ARAMIS for 6 Megapixel
CCD cameras [119], see Figure 4.3b in red as the region of interest (ROI). This
pre-test was used to obtain reasonable noise levels for the simulated noise. The
maximum noise at zero-load was less than 800 µstrain, the average noise ranged
from 140–210 µstrain and the standard deviation ranged from 200–270 µstrain for
the 10 captured images (a value of 300 µstrain was taken as a worst case scenario and
imposed on the simulated strain fields). The histograms of the strain measured were
similar to Figure 4.3c. Finally, the steel samples were subjected to a uniaxial tensile
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load along the vertical direction with cross-head movement of 5 mm.min−1 until
fracture. A universal extensometer (ZwickRoell GmbH, Germany) was attached to
the samples in the gauge region (25 mm in length), from which the uniaxial global
strain was obtained and referred to as reference strain (Refεi). The strain fields
were subsequently exported from the ARAMIS Professional software (ARAMIS
v6.3.1; GOM) as .csv file containing the node number, x−, y−, z−coordinates, and
the measured strain values for plotting and post-processing with Python SciPy.

Figure 4.3: (a) Tensile test setup. Steel samples were mounted on Z030 machine, an
extensometer was attached to the sample and ARAMIS DIC system was capturing
images of the test. ROI is the region of interest for DIC measurement points. (b)
Facets and grid sizes. (c) Histogram of a strain field distribution at zero-strain for
a facet size of 19 × 19 pixels and a facet step of 16 pixels.

4.4 Filtering approach

Filtering approaches were explained in detailed in section 3.3. Here a brief review
of the three filters applied in this chapter is presented. In order to find an optimal
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filtering parameter that can reduce the noise in the DIC strain fields regardless
of the load applied or the size of the strain window, a systematic approach was
followed. In this approach, three filters and three strain window sizes were selected.
This approach was applied to three simulated strain fields showing constant, linear
and quadratic strain fields. More details on the different strain fields and windows
can be found in section 4.3.1.

The three filtering approaches that were applied to the strain fields are (1) simple
mean filter which is also used in the DIC commercial software (ARAMIS v6.3.1;
GOM), (2) Gaussian mean filter in the spatial domain, which is used in Python
SciPy. (3) A self-written script that implements Gaussian LPF in the frequency
domain. In the following section, the difference between these filters is explained,
as depicted in Figure 4.4. All three filters are in-house implementations.

The three filters have a similar working principle since the simple mean and
Gaussian mean filtering perform convolution in the spatial domain and differ only
in two aspects; (a) the shape of the filter is ideal or Gaussian distributed, and (b)
the shape of the kernel (hexagonal or square). Gaussian mean and Gaussian LPF
are well alike, since convolution in the spatial domain is equivalent to multiplication
in the frequency domain and vice versa [135]. Despite the similar working principle
of these filters, differences in the results are observed.
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4. Optimal filtering parameters for noise reduction in DIC strain fields

Figure 4.4: Overview of the three filter approaches. (a) Simple mean filter, all
measurement points at a specific distance are averaged together. (b) Gaussian mean
filter, each measurement point is replaced with the mean value of its neighbours.
(c) Gaussian low-pass filtering (LPF), by converting the measurement points into
the frequency domain, an LPF can reduce the noise by eliminating high-frequency
components. Filtering is done on the measurement points, and fields are shown for
visualization purposes only.

4.4.1 Simple mean filter

This filter follows the implementation of an ARAMIS average filter and is imple-
mented in Python 2.7. According to ARAMIS/GOM guidelines [128], if the size (s)
of the filter h(x, y) is 1, all points that are adjacent to the measurement point in
a strain distribution f(x, y) will be averaged together and saved in a new filtered
strain distribution g(x, y), see Figure 4.4a for s = 1, 2, 3. Since DIC data are
represented by a hexagonal grid, the shape of the filter is also hexagonal, and all
points are weighted equally. At the boundary, the strain points were extrapolated
by reflecting the last three rows and columns.
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4.5. Error reduction of full-field strain evaluation

4.4.2 Gaussian mean filter in the spatial domain

Gaussian mean filtering replaces the value of each pixel in an image plane f(x, y)
with the mean value of its neighbours, including the pixel itself [135], see Figure 4.4b.
The shape of the filter h(x, y) weighs the pixels based on their distance to the
measured point.

h(x, y) = 1
2πσ2 exp− x2+y2

2σ2 (4.1)

where (x, y) are the coordinates of a measurement point in a 2D strain distribution,
and σ is the standard deviation of a Gaussian function. The filtering is applied
via convolution g(x, y) = h(x, y) ∗ f(x, y). During optimization, a Gaussian mean
filter was applied with σ = 0.1 to 10 with 0.1 increments using a built-in function
in Python.

4.4.3 Gaussian LPF in the frequency domain

Filtering in the frequency domain is recommended since the noise is represented
by a high-frequency component [13]. In this study, a Gaussian LPF [135], H(u, v),
was applied:

H(u, v) = exp−
D2

(u,v)
2D02 (4.2)

where D(u,v) is the distance of the point (u, v) from the centre of the spectrum, and
D0 is the cut-off frequency of the filter that controls the shape of the Gaussian.

4.5 Error reduction of full-field strain evaluation

The filtering efficiency is measured by two terms of error; the loss of information
and the residual noise. The loss of information is the amount of true signal
lost when the reference strains at measurement points (Refεi) were filtered (Ref′

εi)
Equation (4.3). The residual noise is the distance between each reference point
(Refεi) and filtered noisy point (sDIC′

εi) for each stage (see Equation (4.4) and
Figure 4.5). The total error is the square-root of the sum of the quadratic of both
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error terms, Equation (4.5) [13]. The reference strain is either null in the case of
zero-strain or the simulated strain field without noise imposed, or is the global
strain determined from the extensometer in case of the loaded steel samples. The
error was calculated as the RMSE with the following equations.

RMSEloss of info =
�

1
n

Σn
i=1

	
Refεi − Ref′εi


2
(4.3)

RMSEresidual noise =
�

1
n

Σn
i=1

	
Refεi − sDIC′εi


2
(4.4)

Total error =
�

RMSE2
loss of info + RMSE2

residual noise (4.5)

where n is the number of local strain measurement points (i), e.g., computed by
ARAMIS, Refεi is the value of the reference strain, Ref′

εi is the value of the filtered
reference strain, and sDIC′

εi is the value of the filtered noisy point. Smaller RMSE
means better denoising. The error reduction is described by how good the noise
elimination is and was calculated as following:

Error reduction = Imposed noise − Total error
Imposed noise × 100% (4.6)

where the imposed noise is 300 µstrains for simulated cases. Ideally, the total error
is zero and the error reduction is at its maximum. The error reduction increases
with decreasing total error.

The optimal specific filter parameters s∗, σ∗, D∗
0 were found as the filter parameter

that had the minimum total error for each strain window size. The overall optimal
filter parameters s̄∗, σ̄∗, D̄∗

0 were calculated as the mean of the optimal specific filter
values s∗, σ∗, D∗

0 from the linear and quadratic fields, as per the following equation:

σ̄∗ =
Σ3

j=1
linearσ∗ + Σ3

j=1
quadraticσ∗

6 (4.7)

where j is the number of strain windows. Parameters obtained from constant strain
fields are neglected because finding an optimal filter in such cases is not meaningful
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for higher-order strain fields.

Figure 4.5: Overview of the RMSE calculations. Fields are only shown for vi-
sualization; calculations are done by using the measurement points. The loss of
information is defined as the difference between the reference field and the filtered
reference field (top row). The residual noise is defined as the difference between
the reference field and the filtered noisy field.

4.6 Results

4.6.1 Simulated strain fields

Figures 4.6–4.8 show the influence of filtering on the loss of information, residual
noise and total error, respectively. The loss of information increases with changing
the filter size for both the simple means and the Gauss mean filtering, while it
decreases for Gauss LPF, as depicted in Figure 4.6c,c1. The residual noise increases
for the simple mean filtering for the smallest window size, and it increases sharply
for Gauss mean filtering and mildly for Gauss LPF, as depicted in Figure 4.7b–
c1. The optimal filtering parameters were found based on the total error curve,
as depicted in Figure 4.8; the opaque pink bar shows the range of the optimal
filtering parameters, which was determined where the total error had a minimum
for each strain window and field type. Figure 4.9 shows the corresponding linear
and quadratic strain fields with the specific filtering parameters for each strain
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window and the overall optimal filtering parameter.

The simple mean filter shows a considerable influence of the size s for differ-
ent strain window sizes and types (Figure 4.8a,a1). Graphically, this is also visible
in Figure 4.9a. A good compromise is found with s̄∗ = 2, with an error reduction
of 38, 69 and 73% for linear fields and 32, 66 and 74% for the quadratic fields for
the different sizes of the strain windows.
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Figure 4.6: Curves of loss of information for different strain window sizes for linear
and quadratic strain fields. The unit of the kernel size (s), standard deviation (σ),
and cut-off frequency (D0) is measurement points.
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Figure 4.7: Curves of residual noise for different strain window sizes for linear and
quadratic strain fields. The unit of the kernel size (s), standard deviation (σ), and
cut-off frequency (D0) is measurement points.
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Figure 4.8: Curves of total error for different strain window sizes for linear and
quadratic strain fields. The opaque pink bar shows the range of the optimal filtering
parameters.The unit of the kernel size (s), standard deviation (σ), and cut-off
frequency (D0) is measurement points.
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4. Optimal filtering parameters for noise reduction in DIC strain fields

Figure 4.9: Two-dimensional visualization of (1) linear and (2) quadratic strain
fields (a) Simple mean filter for s = 1, 2, and 3, (b) Gaussian mean filter with σ∗

for each strain window and σ̄∗ = 1.7, (c) Gaussian LPF with D∗
0 for each strain

window and D̄0
∗ = 2.5.

The range of the specific filter parameter σ∗ for Gaussian mean filtering was
from 1 to 2.9 for the linear fields and from 0.9 to 2.5 for the quadratic fields as
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depicted in Figure 4.8b,b1 with overall filtering parameter σ̄∗ = 1.7. The corre-
sponding strain fields (Figure 4.9b), for σ∗ and σ̄∗ show less error compared to
simple mean filtering and Gaussian LPF, except for the 6 × 5 quadratic field when
σ̄∗ = 1.7 was applied. Applying σ̄∗ = 1.7, Gaussian mean filtering reconstructed
the linear fields with error reduction of 45, 74 and 79%, and the quadratic fields
with error reduction of 37, 72 and 80% for the different sizes of the strain windows.

Gaussian LPF had D0 between 2.1 and 2.7 for linear fields and between 2.6
and 2.8 for the quadratic fields; see Figure 4.8c,c1 with overall filtering parameter
D̄∗

0 = 2.5. Applying D̄∗
0 = 2.5, Gaussian LPF reconstructed the linear fields with

error reduction of 60%, 69% and 77%, and the quadratic fields with error reduction
of 59%, 69% and 77% for the different sizes of the strain windows. Figure 4.9 shows
a 2D visualization of the filtered strain fields.

The application of s̄∗ = 2, σ̄∗ = 1.7, and D̄∗
0 = 2.5 to the constant simulated

strain fields are summarized in Figure 4.10, where the error reduction for different
strain window sizes is shown. Regardless of the size of the strain windows, Gaussian
mean filtering performs best (error reduction 73–81%) whereas for a window size
of 6 × 5 and 12 × 11, Gaussian LPF performs at least with error reduction of 55%.
For a window size of 26 × 17, all filters achieved a similar level of error reduction.
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Figure 4.10: Error reduction achieved for simulated constant strain fields (a)
Percentage of error reduced for the different sizes of the strain windows and the
filters, (b) Two-dimensional visualization of the filtered constant strain fields.

An overview of error reduction achieved for a selected strain window of 12×11 points
is summarized in Table 4.1.

Table 4.1: Achieved error reduction for simulated strain fields and filtering ap-
proaches for a 12×11 strain window.

Filter/Field Quadratic Linear Constant
Simple mean (s̄∗ = 2) 66% 69% 67%
Gaussian mean (σ̄∗ = 1.7) 72% 74% 75%
Gaussian LPF (D̄∗

0 = 2.5) 69% 69% 66%

4.6.2 Experimental strain fields

For samples deforming under tensile load, the size of the strain window was about
12 × 11 measurement points and the noise had an RMSE amplitude of 234.23 ±
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60.06 to 302.50 ± 45.64 µstrain independent of the load level. The reference strain
measurements, DIC strain measurements and its standard deviation for the four
load levels are presented in Table 4.2.

The overall optimal filters (s̄∗ = 2, σ̄∗ = 1.7, D̄∗
0 = 2.5) were applied on the

strain windows from the steel samples. The total error and the error reduction
level are depicted in Figure 4.11a at four loading steps 500, 1500, 2000 and 3000 N
load, Figure 4.11b shows the corresponding 2D interpolated strain fields overlaid
with the discrete measurement points. The total error was reduced by 50% when
applying the three overall optimal parameters, without any remarkable difference
with regard to the load level.

Figure 4.11: (a) Total error and accuracy of filtering a 12 × 11 stain window of
steel samples. (b) Two-dimensional interpolated strain fields overlaid with the
discrete measurement points. Both presented at 500, 1500, 2000, and 3000 N load
steps. No Filter is the raw DIC measurement points.
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Table 4.2: Reference strain (measured by the extensometer) vs. DIC strain and
standard deviation measured on the surface of steel samples under tensile load.
Strain values are in µstrains.

Load [N] Reference Average Strain ± Std
500 288.42 267.64 ± 217.76
1500 689.11 610.85 ± 281.87
2000 1068.57 997.15 ± 266.51
3000 1448.31 1394.57 ± 234.39

4.7 Discussion

The goal of this study was to examine three practical filtering approaches, to
compare their effectiveness on three simulated strain fields (linear, quadratic, and
constant) where the ’True’ reference strain is known, to find optimal filter parame-
ters with minimum compromising between residual noise and loss of information,
and to apply such filters to experimental strain fields. A simple mean with s̄∗ = 2,
a Gaussian mean with σ̄∗ = 1.7, and a Gaussian LPF with D̄∗

0 = 2.5 were identified
as the overall optimal filter parameters for the examined strain window size and
strain field type. These filters give at least an error reduction above 32%, 37%
and 59% for simulated fields and an error reduction above 47%, 46% and 50% for
experimental fields.

On the one hand, the Gaussian mean filtering is outstanding in terms of er-
ror reduction for constant strain windows (Figure 4.10). On the other hand, for
linear and quadratic strain windows (Figure 4.8), the shape of the total error curve
shows high gradients around the minimum point, which implies a sharper increase
in the total error when deviating from the specific optimal σ∗. The increase in
total error (Figure 4.9) from when σ∗ to σ̄∗ was applied is around 75 µstrain for
the smallest (6 × 5) strain window size, and about 12 µstrain for the other strain
window sizes. The same can be seen for the loss of information and residual noise
Figure 4.6b,b1 and Figure 4.7b,b1, respectively.

The Gaussian LPF behaved based on the shape of the strain window rather
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than the size. For homogeneous/constant strain field, the noise can be filtered using
a D0 < 0.5, by letting only the smallest frequency pass and blocking all higher
frequency components, as this might work well for homogeneous/constant fields.
This does not work for linear and quadratic fields and will result in a corrupted
strain distribution, as confirmed as well by Baldoni et al. [13] with total error, in
our case, higher than the original noise (Figure 4.8c,c1). As well, when applying
filtering on the speckled DIC image prior to the correlation calculation, Butterworth
LPF produced the lowest random error [31]. The Gaussian LPF was the only filter
where the loss of information was reduced with increased cut-off frequency. This is
because the reference strain—in case of the simulated fields—is noiseless, and when
increasing the cut-off frequency, the whole signal passed, allowing the filtered field
to be identical to the original field. However, for the residual noise, with increasing
the cut-off frequency, the noise remaining in the filtered field is increasing mildly,
as depicted in Figure 4.7c,c1.

These three overall optimal parameters that reduced the noise in both the simulated
and the experimental fields can be used, for comparable strain window sizes, when
no prior information is available on the strain field. Simple mean filtering is handy
since it is a built-in function that usually comes with commercial DIC systems, but
for the smallest strain window 6 × 5 points (Figure 4.9, top, left)—if the optimal
filter size was not used—a serious compromise of the results can occur, with noise
reduction from 300 to 287 µstrains. If the overall optimal parameter was used,
the noise reduction is limited to 38% and 32% for the linear and quadratic fields,
respectively.

It was demonstrated here how the size of the strain window influences the noise
reduction, better denoising is achieved for bigger strain window sizes [143, 121, 144],
which is expected, since for bigger stain windows, more facets can be calculated and
the signal-to-noise ratio is higher than for smaller strain windows. This can be seen
clearly in the total error curves in Figure 4.8, where the minimum and maximum
total error were reached for the 26 × 17 and 5 × 6 strain windows, respectively.
Filtering, either on the displacement field, the strain fields or the speckled images,
helps to reduce noise in DIC fields [17, 18, 31, 13], but the optimization of other

75



4. Optimal filtering parameters for noise reduction in DIC strain fields

factors that influence the noise is necessary, such as facet and step size. For facet
size; a bigger facet size results in better identification of the facets and is favoured
for the correlation algorithm [129, 121, 145]. Other studies showed that the error
can be largely reduced by increasing the facet size [146, 15]. However, since we seek
to improve DIC measurements for inhomogeneous specimens or for specimens with
geometry that allow strain concentration, choosing a bigger facet size is not ideal and
would lead to hide the strain concentrations. For our case, with a fixed dimension of
the strain fields between the extensometer, more data points can be measured with
smaller facet size and/or step, but at the cost of more noise which was confirmed
by other studies [70, 127, 15, 130]. When the facet size was set to be 13 × 13 pixels
with 11 × 11 pixels facet step, the RMSE doubled from 300 to 600 µstrains with
maximum apparent strain exceeding 1000 µstrains, thus, when inhomogeneous
strain concentration is expected, a good compromise is needed between a larger
facet size to suppress the noise and a smaller one to capture the strain concentration.

As a general DIC filtering guideline, filters available by the DIC commercial
software or by a computational software such as Python can be useful in reducing
the noise in DIC fields. However, as demonstrated above, the selection of the filter
parameter should be based on an optimization process to ensure the minimum
loss of information and the preservation of the strain gradient. The concept of
the total error as a combination of the loss of information and residual noise is a
powerful tool to see the influence of each filter on the DIC measured data points.
When applying filters provided by a commercial DIC software, it is important to
keep in mind the relation between the filter parameter and the size of the strain field.

The limitations of this study are that specific-simulated strain fields were tested, and
the experimental results represent only homogeneous strain fields. In future, it has
to be proven that the presented approach works also for real measured higher-order
strain fields. Only strain window sizes up to 26 × 17 points (20.8 × 13.6 mm) are
considered, since smaller strain windows sizes are influenced by higher noise. One
length scale of the noise was investigated in this study, which was obtained from
the experimental findings. Additionally, filtering was applied directly on strain
field measurement points obtained from the software i.e. no filtering on displace-
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ment fields, no investigation on different strain computation methods, or different
correlation algorithms, such as global and local DIC approaches, were investigated
in this study. Finally, optimal filtering parameters presented here might not be
optimal for other applications with different DIC systems or at different length
scales.

4.8 Conclusion

DIC offers a method for capturing full-field deformation on the surface of the
samples, regardless of their size, shape or material. With appropriate analysis
parameters, DIC can capture the strain on the surface of tested samples. The
present study has illustrated that strain computed by DIC commercial software
(ARAMIS v6.3.1; GOM) is comparable to strains obtained from a high precision
extensometer attached to the same sample. The DIC noise was stable over the
different load levels in the elastic deformation region of the material.

However, DIC measurement cannot be taken for granted without checking the
noise-floor; thus, preliminary tests at zero-strain can give an idea on the noise-floor
of the measurement due to software or hardware parameters. Few studies focus
on filtering the strain fields, in this study a procedure to select an optimal filter
parameters has been presented. The results found in this study show that opti-
mal filtering can have a positive effect on reducing the noise, but at the cost of
losing information, especially for simple mean and Gauss mean filters. Optimal
Gauss LPF proved to be effective in reducing the noise without excessive loss of
information. This effect can only be shown by using simulated strain fields where
a noiseless reference strain field is known. When filtering DIC measurement on
sample with irregular shape or inhomogeneous material such as bone, practical
filtering guidelines as given in this study can be very helpful.
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CHAPTER 5
Linear gradient strain fields can

be measured using DIC

5.1 Related publications and declaration of
contributions

Results of the presented work (text, tables, figures) were published in the ’Journal
Scientific Reports’ in 2021, entitled ’A novel specimen shape for measurement of
linear strain fields by means of digital image correlation’, and co-authored by A.
Reisinger and D. H. Pahr.

Authors contribution The first author and the author of this thesis, Nedaa
Amraish, wrote the manuscript, performed the experiments, data analysis and
interpretation. A. Reisinger reviewed the manuscript. D. H. Pahr supervised the
work of Nedaa Amraish, conceptualized the geometry of the novel sample, and
provided the data for the normalized strain gradient computation on the femur’s
neck, reviewed and edited the manuscript and supported the interpretation of the
results.

After identifying optimal filtering parameters that successfully reduced the noise in
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simulated noisy strain fields, an experimental study is presented here measuring
linear gradient strain fields using DIC on a macroscopic scale of engineering and
biological materials.

5.2 Introduction

DIC measures full-field strain on the surface of specimens by capturing images
during mechanical testing. Due to its main advantage in measuring full-field surface
strains on specimens with irregular shape and different sizes, 2D and 3D DIC
systems have been used to characterize a wide range of materials under different
experimental setups [2, 3, 4, 5]. Despite the advantages of using DIC systems to
capture full-field strain distributions, noise in DIC strain measurements is non-
negligible [10, 11, 12, 13, 14]. DIC measuring parameters, like facet and step sizes,
can be optimized to reduce the noise of the full-field data. However, in case of
measuring on a surface where inhomogeneous strain fields are expected, the typical
optimized DIC parameters might have a counter effect because the risk of losing
information is higher, specially at locations of higher strain gradients [121, 70, 25].
Additionally, different filtering techniques can be applied to reduce the noise in DIC
measurements, which, if not carefully applied, can have an effect of over smoothing
leading to loss in information [18, 13], filtering can be powerful when the true strain
distribution is known a priori.

For homogeneous strain fields, such as fields expected on regular aluminium [30,
13, 15] or steel [55, 133] specimens with constant cross-section, DIC measurements
can be verified using strain gauges or extensometers. However, for inhomogeneous
strain fields, such as strains found on complex structures [68, 66, 69, 147, 91, 70]
or biological tissues like, the human femur [87, 6, 14], bone from different animal
models [148, 58, 21, 86], the vertebrae [82, 83, 84, 85, 52], or soft tissues [149, 116],
verifying the full-field DIC strain measurements can become challenging.

Various studies examined the accuracy of DIC strain measurements and showed
that the strain on the measured surfaces can be overestimated [87, 21, 14, 15].
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The precision of DIC measurements is acceptable when specimens are deforming
in the linear-elastic region, but after yielding, the standard deviation increases
vastly [150, 71]. Two options could be employed for investigating the accuracy of
DIC strain measurements, either by verifying the measurement at the position
of measurement device [20, 6, 23, 21, 22], or by means of FE models for the full-
field strain distribution [13, 14, 25]. Despite the high accuracy of strain gauges
and extensometers, their measurement is limited to a single point, and can be
compared to DIC measurements only by averaging the full-field data over the
strain gauge area [23, 15, 24], which is only advantageous for homogeneous strain
fields. In contrast, FE models can give accurate prediction of the full-field strain
measurements, but it is important to know the geometry, material behaviour and
boundary conditions. With knowledge of these parameters FE models are a suitable
way to evaluate strain inhomogeneity [25, 26, 27]. For example, Liu et al. [25],
investigated experimentally the strain concentration on hydrogel specimens in the
presence of large strain gradients, they found a very good agreement between the
FE results and the measured DIC full-field strain, however, 2D DIC was employed
which is less useful for objects with curvatures, like the human femur.

Inhomogeneous strain fields were measured on the surface of biological tissues [6,
21, 151, 73]. For example, on the neck of the human femur, the normalized strain
gradient changes by about 7% per mm on average (more in the next section). DIC
measurements is advantageous not only for measuring inhomogeneous strain fields,
but also for measuring strain gradients [7, 8, 9]. Various studies reported DIC
full-field strains without reporting the accuracy of the measurement or validating
it against another method, Tsirigotis et al. [80] found that the surface strain, on
bovine cancellous bone under compression load, showed steep strain gradients. Like-
wise, Palanca et al. [29] and Grassi et al. [28] measured full-field surface strain on
the superior neck of human femurs. However, the strain results were not validated
against another measurement method, and Tsirigotis et al. [80] used 2D DIC. Many
DIC strain measurements on different bone models were verified using strain gauges
only, and were used to verify FE models [91, 152, 20, 153, 21]. Despite the numerous
studies on the accuracy of DIC measurements, only one study, Baldoni et al. [13],
verified linear experimental full-field DIC strain measurement, the verification was
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against the theoretical solution and not against another measurement technique,
and the strain gradient was not analysed.

Other studies focused on testing the accuracy of DIC numerically. For instance,
Wang et al. [70], tested the accuracy of 2D DIC for inhomogeneous strains of numer-
ically deformed images, they found that the uncertainty of DIC increases around
the strain concentration regions, here the reference images were also captured by
one camera only (2D DIC), and numerically deforming the images excludes the
errors originated from the experiment’s environment. A verification of 3D DIC mea-
surements for linear strain fields and strain gradients experimentally is still missing.
To verify inhomogeneous strain fields measured by DIC, the strain gradients on the
specimen’s surface must be known. Inhomogeneous strain fields such as linear or
quadratic strain fields are good candidates since the analytical (theoretical) solu-
tion can be calculated beforehand. This study is focusing only on linear strain fields.

The objective of this study is to design a novel specimen shape where a well-
defined linear gradient field can be measured and to investigate the accuracy of
DIC full-field strain measurement globally and locally. This is the first study to
systematically evaluate and validate inhomogeneous DIC strain measurements on
surfaces where strain gradients are expected on biological and engineering materials.
Measurements are done with a 3D DIC system and the noise in the DIC strain
fields is reduced by applying Gauss low-pass filtering with optimal cut-off frequency.
strain gauges are used to measure the experimental strain at pre-defined positions,
which was compared to the DIC strain measurement locally. Summarizing, this
work aims at verifying whether DIC measurements can capture gradient fields
and local normalized strain gradients at specific positions in case of bone and for
comparison purposes on typical engineering materials (aluminium and polymer).
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5.3 Materials and methods

5.3.1 Normalized strain gradient

To explore the capability of a DIC system to measure linear strain fields on the
surface of the test specimens, it is necessary to design a specimen shape where
the strain on the surface of the specimen changes linearly during deformation.
Different options are available to design such a specimen, either by changing the
width or the thickness of the test specimen. In this study, it is intended to measure
strain gradient magnitudes similar to that found on a surface of a proximal human
femur. For this purpose, a load and size independent measured value - a normalized
strain gradient - is defined. This is based on a normalized strain εnorm which is
the difference between the strain at two points divided by their average quantity
(Equation (5.1)). The gradient is obtained by dividing this normalized strain by
the distance of these two points (Equation (5.2)).

εnorm = |εp1 − εp2|
εp1+εp2

2
(5.1)

εnorm grad = εnorm

d
[ 1
mm] (5.2)

where εp1 and εp2 in this work are equivalent strains εeq which are measured at two
locations p1 and p2 on the femur, and d is the distance between the two points,
see Figure 5.1 shows a strain energy density (SED) map of a proximal femoral
under physiological load [154].
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Figure 5.1: Strain energy density map from which the equivalent strain was
computed and was employed for the computation of the normalized strain gradient.

The equivalent strain εeq is obtained from the local SED and elastic modulus
(10 GPa) as follows:

εeq =
�

2SED

E
(5.3)

For the human femur, the normalized strain gradient is about 3.5 and 7.2% per
mm on average in the head and neck regions, respectively, see Table 5.1. This work
aims to design a specimen shape which under deformation gives a linear strain
field, and where two normalized strain gradients of around 3.5 and 7% per mm
(regardless of the load applied) can be found on the surface.
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Table 5.1: Normalized strain gradient computed from the equivalent strain, all
strain values are in µstrain.

εp1 εp2 |εp1 − εp2| εp1+εp2
2 d[mm] [ %

mm ]
1288 860 428 1074 3.27 12.16
1483 1311 171 1397 3.05 4.03
1655 1378 276 1516.5 3.26 5.60
1342 1039 302 1190.5 3.50 7.26

Average normalized strain gradient - neck region 7.26 [ %
mm ]

948 989 41 968.5 3.27 1.30
748 848 100 798 3.05 4.12
860 761 98 810.5 3.26 3.73
1010 848 161 929 3.5 4.96

Average normalized strain gradient - head region 3.53 [ %
mm ]

5.3.2 Analytical strain and specimen shape

A linear field in a tensile specimen can be generated by a specific specimen shape.
In the following derivations, we calculate the specimen shape. The exact strain
distributions for comparison with DIC are determined by means of FE.

In the following uniaxiality is assumed, w(x) is the width (shape) of the specimen,
and ε(x) is the strain along x, see Figure 5.2(a and b). A one-dimensional linear
strain field can be written as:

ε(x) = a + bx (5.4)

where a is a point on the specimen where the strain shows the far field value, b

is the slope of the linear strain and x is a position along the specimen’s axis, see
Figure 5.2. Solving for a and b at the positions 0 and L gives:

at x = 0: ε(0) = a (5.5)

at x = L: ε(L) = ε(0) + b · L = ε(0) · k (5.6)
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where the maximum strain ε(L) can be linked to the far field strain ε(0) by a
concentration factor k. Solving for the slope of the linear equation, b:

b = ε(0)
L

· (k − 1) (5.7)

the strain at any point between a and L can be calculated via inserting a and b in
Equation (5.4):

ε(x) = ε(0) + ε(0)
L

· (k − 1) · x = ε(0)
	

1 + (k − 1) · x

L



(5.8)

Due to the asymmetric specimen shape as shown in Figure 5.2, two different strain
gradients can be realized. For example, if ε(0), L and k are prescribed, the strain
function and the normalized strain gradient (Equation (5.2)) along the specimen’s
length can be computed. The normalized strain gradient changes between 4.4 and
22% per mm, and between 3 and 14% per mm for specimen’s length of 18 and 27
mm, respectively. Two positions were selected relatively close to the middle of the
specimen for the normalized strain gradients investigation. These are the nearest
values to the two normalized strain gradients found on the surface of the human
femur (3.5 and 7.3% per mm), which are 3.6 and 6.9% per mm for a specimen’s
length of 18 and 27 mm, respectively.

The unknown width of the specimen w(x) follows from the equilibrium i.e. the
force experienced along the specimen’s length is constant at one loading stage:

F (0) = F (x) (5.9)

therefore, the equation can be rewritten in terms of stress (σ(x) = E · ε(x)) and
cross-sectional area (A = 2w(0) · t):

E · ε(0) · 2w(0) · t = E · ε(x) · 2w(x) · t (5.10)

where t is the thickness of the specimen (which is constant), w(0) is the half-width
of the specimen and equals 12.5 mm, see Figure 5.2(a). Equation (5.10) can be
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rewritten as:
w(x) = ε(0) · w(0)

ε(x) (5.11)

solving for w(x):

w(x) = ε(0) · w(0)

ε(0)
	

L+(k−1)·x
L


 = w(0)
1 + (k − 1) · x

L

(5.12)

Figure 5.2(a) shows the specimen’s geometry for k=5 by plotting w(x) from
Equation (5.12) for two lengths, in red and blue, in Figure 5.2(a). The size
limitation in this work was on the one hand the specimen width of 25 mm for
bone and on the other hand the specimen width of 5 mm in SG2 ROI for the
application of SG2. The overall length of the specimen was 193 mm for aluminium
and polymer specimens and was 73 mm for bovine bone specimens. The length of
the Region of Interest (ROI) is 53 mm and is divided into three regions (L1, L2
and L3). L1 is 18 mm long (high-gradient ROI, showing 6.9% per mm normalized
strain gradient), L2 is 8 mm long (constant strain, no gradient), and L3 is 27 mm
long (low-gradient ROI, showing 3.6% per mm normalized strain gradient). In
these three regions, three strain gauges are applied at specific locations. Three
ROIs are investigated in this study: the high- and low-gradient ROIs and the strain
gauges ROIs. Figure 5.2(b) shows the linear strain (in red and blue) along the
shape of the specimen.
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Figure 5.2: (a) Specimen’s geometry derived from Equation (5.12), w(x) shows how
the curvature of the specimen changes; in red and blue the high- and low-gradient
ROIs are shown, respectively. L1 is the high-gradient ROI and where SG1 is placed.
L2 is a neutral ROI connecting the high-gradient ROI with the low-gradient ROI,
L2 shows constant strain and where SG2 is placed. L3 is the low-gradient ROI and
where SG3 is placed. (b) The theoretical strain distribution along the specimen’s
length. The high- and low-strain gradients are shown in red (steeper curve) and
blue, respectively. Constant strain (in green) connects both gradient regions.

5.3.3 strain gauges strain

Strains were recorded with one-element, 120-ohm rectangular strain gauge (K-
CLY4-0030-1-120-3-020, HBM, Darmstadt, Germany). The strain in the loading
direction was recorded (acquisition frequency 5 Hz) using a QuantumX data acqui-
sition (HBM, Darmstadt, Germany).

The positions of the three strain gauges are depicted in Figure 5.2. SG2 was
applied at L2 where the strain is constant. This strain was used to calibrate the FE
models, as described below for the FE model. SG1 and SG3 were applied where
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the normalized strain gradient is 6.9 and 3.6% per mm, which as explained above
can be found on the surface of the femoral neck and head, respectively.

5.3.4 Numerical strain (FE model)

The analytical strain field from Equation (5.8) does not consider the Poisson effect.
To check the analytical model and verify the accuracy of the DIC measured strains,
FE models were generated to provide accurate strains. The FE models were created
for each specimen using an open source Calculix solver (PrePoMax, v0.6.0). The
specimens’ geometry are as shown in Figure 5.2(a). The specimens were meshed
with tetrahedral (C3D10) second-order elements of the size 0.8 mm, see Figure 5.3.
To scale the FE strain to the strain measured by SG2, 1 mm displacement (ux)
was imposed on the specimen, simulating a uniaxial tensile test in the x-direction.
The obtained FE strain was scaled so that the FE strain is equal to the strain in
SG2. This is possible because of the linear elastic system.
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Figure 5.3: FE model including boundary conditions and mesh. The displacement
was applied on the top of the specimen, while the bottom was constrained to
mimic the experimental conditions. No material parameters (Elastic modulus)
were assigned to the specimens because only strains were calculated and the FE
simulation is displacement control. A poisson’s ratio of 0.3 was assigned for all
specimens.

5.3.5 DIC strain measurements

DIC computes full-field strain on the surface of the specimen. More information is
available here [133] on how DIC computes strain. For this study, the surface strain
was computed with a facet (subset) size of 19×19 pixels and a facet step of 16 pixels
(50% overlapping), these parameters are recommended by the manufacturer for
6 Megapixel CCD cameras. The strain in the loading direction were exported from
the ARAMIS Professional software (v6.3.1; GOM GmbH, Germany) along the node
number (> 600 measurement points) and x−, y−, z−coordinates, for plotting and
post-processing with Python SciPy.
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5.3.6 Sample preparation

The specimen shape was produced in aluminium (ALMG3 (AW-5754)) (n=5),
polymer (Polyacetal POM-Copolymer) (n=5) and Bovine bone (n=5). Aluminium
and polymer specimens were manufactured by means of a numerical controlled
machine (CNC Router BZT PFX 700, BZT Maschinenbau GmbH, Leopoldshöhe,
Germany) from aluminium and polymer plates of 1.5 mm and 4 mm thickness,
respectively.

For bovine bone, two fresh compact femurs of bovines (18-24 months old) were
obtained from the local butcher. The mid-diaphysis of the femur was cut, and the
hollow cylinder of the femur shaft was then cut into rough rectangular beams using
a hand saw. After that, the beams were embedded into an epoxy mould which was
then fixed into a CNC machine to obtain the shape of the specimen. Finally, using
a low-speed diamond band saw (Exakt 300 CL Band System, EXAKT Advanced
Technologies GmbH, Norderstedt, Germany), longitudinal specimens were sliced
(thickness of 2 mm), see Figure 5.4(a). During the whole preparation steps and
until testing, the bone specimens were kept wet with phosphate buffered-saline
(PBS) solution, and when not used, the specimens were preserved in a -20 oC freezer.
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Figure 5.4: Preparation steps of the bovine bone specimens. (a) Bone specimens
were sliced using a slow band saw, (b) SG1, SG2 and SG3 were applied on the
specimen’s back, (c) mechanical test setup, (c1) the bone specimen was fixed to
external clamps, and (c2) speckle patterns were applied on the specimen’s front.

Three strain gauges were applied on one face of the test specimens as in Fig-
ure 5.4(b), while the other face was covered with paper tape to protect it against
any glue resins during the strain gauges’ application. First, using a light microscope,
the position of the strain gauge was precisely marked on the surface of the specimen.
Second, two components glue (Methyl methacrylate, HBM, Darmstadt, Germany)
were mixed and applied on the bone surface, and then each strain gauge was
carefully applied. A similar procedure was followed for the aluminium and polymer
specimens; only another glue (Cyanoacrylate, HBM, Darmstadt, Germany) was
applied to fix the strain gauges on the specimens’ surface as recommended by the
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manufacturer of the strain gauges.

The bone specimen was then fixed to external clamps by glueing the specimen
to 3D printed parts using two components glue for 5 minutes (Fiber-reinforced
composite, Waldenbuch, Germany) as in Figure 5.4(c1). Finally, the strain gauges
cables were welded to an adaptor (full-bridge) which was connected to a QuantumX
DAQ device (HBM, Darmstadt, Germany) for data acquisition. Before the starting
of the mechanical load, the specimens were clamped to the tensile testing machine
and were exposed to the blue light for the DIC system, see Figure 5.4(c).

5.3.7 Mechanical tests

The test specimens were mounted on a Zwick (Z030) machine (ZwickRoell GmbH,
Germany) with force cell up to 30 kN. 3D DIC system (ARAMIS 150/6M/Rev.02,
GOM, Braunschweig, Germany) was set up with two CCD cameras. The cameras
were positioned perpendicular to the specimen at 35 cm distance. The strain
gauges cables were welded to an adaptor (full-bridge) which was connected to a
QuantumX DAQ device (HBM, Darmstadt, Germany) for data acquisition. Finally,
the specimens were subjected to a uniaxial tensile load along the vertical direction
(displacement control) with cross-head movement of 0.5 mm.min−1 till fracture.
The acquisition rate was synchronized between the strain gauges and the DIC
system at 5 Hz.

5.4 Data evaluation

In this study, the strain measurements were defined over three ROIs: high- and
low-gradient ROI, and strain gauges ROIs, see Figure 5.5. The scaled full-field
strain obtained from the FE model is considered as the reference strain. At the
high- and low-gradient ROIs, the accuracy of the DIC strain measurements and
the analytical strain computation are evaluated by means of the RMSE. At the
strain gauges ROIs, the two experimental strains from DIC and the strain gauges
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are compared statistically, and the normalized strain gradients (6.9 and 3.6% per
mm) are computed and compared to the reference obtained from FE.

Figure 5.5: RMSE computational method. (a and b) FE and DIC full-field data
analysis respectively, (a1 and b1) the full-field surface strain from FE and DIC, (a2
and b2) cropping of the linear regions excluding the boundary nodes, (a3 and b3)
a 53 mm × 5 mm mesh grid for aligning the measurement points into a regular
grid, (a4 and b4) the high- and low-gradient ROIs from the middle line along the
specimen’s length were extracted, (a5 and b5) strain gauges ROIs were cropped at
SG1 and SG3.

Figure 5.5 shows the computational method of the RMSE:

• The full-field strain (Figure 5.5(a1 and b1)) obtained from both FE and DIC,
respectively. They were cropped horizontally and vertically based on the x-
and y- coordinates.

• The cropped fields were interpolated into a regular mesh grid of (53 mm × 5
mm) points, see Figure 5.5(a3 and b3) to be able to compare values.

• The middle line of the interpolated fields was exported into a 1D matrix, see
Figure 5.5(a4 and b4) for line plots along the centre of the specimen.
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• The positions of the three strain gauges were cropped from the (53 mm ×
5 mm) mesh grid for strain gauge’s size of 3 mm × 2 mm, see Figure 5.5(a5
and b5) to compare values inside the strain gauge’s region.

• The RMSE was calculated for the high- and low-gradient ROIs.

The RMSE equation is:

RMSEMethod =
�

1
n

Σn
i=1

	
FEεi − Methodεi


2
(5.13)

where RMSEMethod refers to the RMSE computed for each method, i.e. RMSEDIC

is the RMSE of the DIC strain measurements compared to FE strains, n is the
number of strain measurement points (i) in a ROI, FEεi is the value of the reference
strain (FE), εi is the value of the analytical or DIC strains.

The RMSE was evaluated at two deformation stages, hereinafter referred as (Stage1

and Stage2). Stage1 is at approximately 500 µstrain, a low strain level similar to the
noise level of the DIC measurement. Stage2 is at approximately 1750 µstrain level
which is found during normal ambulation and is comparable for bone deformation
under physiological load [155]. Because the exact values of 500 and 1750 µstrain
were not found in all the measurements of SG2 for all the test specimens, the
nearest measurement points to 500 or 1750 µstrain were selected which were about
496 and 1698 µstrain, respectively. The nearest point had a difference of less than
3% to 500 or 1750 µstrain.

To answer the question of how well the local strain gradient can be captured
with DIC compared to FE, the two normalized strain gradients (6.9 and 3.6% per
mm) are computed as in Equation (5.2). Basically, along the specimen’s axis, first
the normalized strain (Equation (5.1)) is computed by dividing the difference in
strain measurement between two measurement points by their average quantity.
Then, the normalized strain gradient is computed by dividing the normalized strain
by the distance between the two measurement points, 2 mm.
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5.4.1 Noise reduction

Gaussian LPF with cut-off frequency of 2.5, which was found as the optimal cut-off
frequency in our previous study [133], was applied to the DIC full-field strain
measurements to reduce the noise in the DIC strain measurements. The same
cut-off frequency was applied on all stages, independent of the load applied.

5.5 Results

5.5.1 Mechanical testing

The stress-strain curves of all tested specimens (five of each material), with strain
obtained from SG2 (constant strain) are shown in Figure 5.6. The two vertical
dashed lines show the deformation stages (Stage1 and Stage2) at which the results
were evaluated.

Figure 5.6: Stress-strain curve of all tested specimens. Aluminium in red, bovine
bone in green and polymer in blue. The error evaluation was done at two deforma-
tion stages, approximately at 500 µstrain and 1750 µstrain. Five specimens were
tested from each material.
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From the stress-strain curve, the elastic modulus was computed for the tested
materials and it was on average 71.37±2.03, 3.24±0.25, and 16.92±0.61 GPa for
aluminum, polymer, and bovine bone, respectively, see Table 5.2 lists the elastic
modulus for all specimens. For bovine bone, results of the elastic modulus are in
agreement with values found in the literature for cortical bone [156, 157, 158]). For
aluminium and polymer specimens, the measured values are in agreement with the
manufacturer.

Table 5.2: Elastic modulus obtained from SG2 for each of the tested specimens.

Specimen # Aluminium Polymer Bovine bone
Elastic Modulus [GPa]

1 68.57 3.12 17.69
2 73.99 3.60 16.44
3 71.02 2.98 17.51
4 70.74 3.10 16.54
5 72.52 3.41 16.45

5.5.2 RMSE for the high- and low-gradient ROIs.

The RMSE was evaluated for the high- and low-gradient ROIs, as shown in
Figure 5.5(c1 and c2). Figure 5.7 shows the two ROIs plotted along the specimen’s
length at two deformation stages (Stage1 and Stage2). For aluminium and polymer,
there is a good agreement between the FE strain, the analytical strain and the
filtered DIC strain. For bovine bone, the DIC strain overestimated the strain in
the high-gradient ROI at both deformation stages, in contrast to the low-gradient
ROI where DIC strain underestimated the strain in comparison to FE strain. In
all curves, the LPF successfully reduced the noise (the fluctuations) in the DIC
strain measurements.
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Figure 5.7: Full-Field linear strains at the two deformation stages, for (a) aluminium,
(b) polymer, and (c) bovine bone. The strain is plotted along the specimen’s ROI
(53 mm), the strain was obtained from the high- and low-gradient ROIs, as in
Figure 5.6(a4 and b4). The FE, analytical, DIC and DIC filtered strain are plotted
in blue, magenta, light-green and dark green, respectively. DIC-LPF refers to the
DIC strain fields after Gaussian LPF was applied.

Figure 5.8 depicts the RMSE for the linear strain gradients ROIs at Stage1 and
Stage2 for the three tested materials. The RMSEanalytical deviated by less than
60 µstrain from the reference FE strain for all the tested materials. The RMSEDIC

was about 400 µstrain when compared with the FE strain. Filtering of the DIC
fields had a positive effect on the RMSE where it was reduced on average by 63%
at Stage1 and by 34% at Stage2.
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Figure 5.8: RMSE for the linear strain gradients ROIs at the two deformation
stages for the three tested materials.

Two-dimensional visualization of the full-field strains from FE and DIC are depicted
in Figure 5.9 for (a) one polymer and (b) one bovine bone specimens (The results
of all the tested specimens are shown in Appendix Figure 5.10). Linear changes in
the strain field cannot be recognized at Stage1. On the contrary, at Stage2, the
linear strain field can be recognized, but corrupted with noise, which was then
reduced when Gaussian LPF was applied. It is worth noting that the DIC strain
fields shown in Figure 5.9 are the raw data from the ARAMIS software without
the application of any filtering, neither when the surface component was created,
nor when the strain was calculated. The DIC-LPF fields are the DIC fields after
the application of the Gaussian LPF using an in-house algorithm.
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Figure 5.9: Two-dimensional visualization of the DIC full-field strain measurements
of one polymer and one bovine bone specimens. At both deformation stages; the
reference strain from the FE model for this specific specimen, the DIC strains
(original and filtered) are shown.

Full-field FE reference strain and DIC (original and filtered) full-field strain mea-
surements are shown in Figure 5.10.
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Figure 5.10: 2D visualization of the DIC full-field strain measurements of all tested
specimens. At Stage2; the reference strain from the FE model, the DIC strains
(original and filtered) are shown.
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5.5.3 Normalized strain gradient at strain gauges ROIs.

At the positions of the strain gauges, the corresponding FE and DIC strains
were cropped as shown in Figure 5.5(a5 and b5). Figure 5.11 shows the normal-
ized strain gradient at the positions of SG1 (6.9% per mm) and SG3 (3.6% per mm).

At SG1 (high-gradient), the DIC normalized strain gradient fails severely (with
maximum difference to 6.9% per mm exceeding 90%) at Stage1 and fails moderately
(with maximum difference to the reference of 25%) at Stage2. After applying the
Gaussian LPF (depicted in dark green), the normalized strain gradients were suc-
cessfully retrieved for most of the cases (maximum difference is 20% for aluminium
and bovine bone).

In contrast, at SG3 (low-gradient), the average DIC normalized strain gradient and
the standard deviation were closer to the reference strain for Stage1 and Stage2,
except for bovine bone at Stage1. As well, Gaussian LPF improved the detection of
the normalized strain gradients (with maximum difference to the reference of 12%).
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Figure 5.11: The normalized strain gradients at SG1 (6.9% per mm) and SG3 (3.6%
per mm) is plotted for two deformation stages for aluminium, polymer, and bovine
bone. The normalized strain gradient was calculated according to Equation (5.2).

Finally, the two experimental strain measurements obtained from DIC and strain
gauges were compared. Table 5.3 lists the average strain obtained from DIC (at the
strain gauge’s position) and the strain gauge’s recorded strain at Stage1 and Stage2.
The average of the standard deviations exceeded 50% for DIC measurements at
Stage1 where the signal-to-noise ratio is lowest. One aluminium sample had a
very low reading of SG1 at Stage1 which resulted in a high standard deviation. A
paired-specimens t-test (α = 0.05) was conducted to compare the strain recorded by
the strain gauges and their average corresponding area from DIC. For the majority
of the measurements, no significant difference was found between the strain gauges
and the DIC measurements (Statistical summary of the Shapiro-wilk and the t-test
can be found in Appendix Table 5.4 and 5.5,). Additionally, the precision of the
DIC strain measurement did not change largely and remained between 190 µstrain
and 360 µstrain for the different deformation stages.
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Table 5.3: Average strain measurements ± standard deviation for the DIC and
strain gauges at the three strain gauges’ positions. All listed values are in µstrain.
The standard deviation for the DIC measurements is the average of the different
standard deviations for the measured specimens. ∗ indicates a significance difference
in the mean.

SG Stage Aluminium Polymer Bovine bone
SG DIC SG DIC SG DIC

SG1
Stage1

217±215 314±193 358±32 260±143 440±115 298±229
SG2 494±7 484±270 497±5 496±172 489±3 544±302
SG3 369±62 459±280 416±54 376±214 472±69 429±203
SG1

Stage2

979±398 1055±252 1224±106 1212±236 1329±399 1058±362
SG2 1748±16 1764±224 1743±6 2157±186∗ 1745±5 1774±276
SG3 1306±147 1503±247 1438±162 1594±227 1775±88 1513±187

Statistical summary of the normality shapiro-wilk test and paired t-test for Stage1

and Stage2 are listed in Supplementary Table 5.4 and 5.5, respectively. In the
majority of the cases the specimens were normally distributed and no significant
difference in the means were found between the DIC averaged strain and the strain
gauges readings.
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Table 5.4: Statistical analysis of strain gauges and DIC data at Stage1. The p value
is listed for both the Shapiro-Wilk test and the t-test for normality and different
means, respectively.

Material SG Shapiro-Wilk test t-test
SG DIC

Aluminium
SG1 0.392 0.107 0.480
SG2 0.593 0.971 0.912
SG3 0.311 0.99 0.307

Polymer
SG1 0.479 0.203 0.116
SG2 0.842 0.172 0.981
SG3 0.308 0.324 0.595

Bovine bone
SG1 0.133 0.635 0.448
SG2 0.982 0.99 0.446
SG3 0.131 0.970 0.602

Table 5.5: Statistical analysis of strain gauges and DIC data at Stage2. The p value
is listed for both the Shapiro-Wilk test and the t-test for normality and different
means, respectively. ∗ indicates a significant difference.

Material SG Shapiro-Wilk test t-test
SG DIC

Aluminium
SG1 0.970 0.148 0.771
SG2 0.234 0.344 0.925
SG3 0.278 0.993 0.264

Polymer
SG1 0.084 0.205 0.812
SG2 0.691 0.621 0.006∗

SG3 0.618 0.987 0.264

Bovine bone
SG1 0.043∗ 0.467 0.509
SG2 0.213 0.375 0.906
SG3 0.967 0.110 0.212
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5.6 Discussion

The main goals of this study were to examine the capability of a 3D DIC system
to measure a linear strain field on the surface of a newly designed gradient test
specimen, with and without filtering.

Two strain measurement (strain gauges and DIC) and two strain computational
(analytical and FE) methods were employed in this study. The RMSE was evaluated
for the high- and low-gradient ROIs at two deformation stages, and the gradient
was verified by a newly defined normalized strain gradient measure.

Due to the noise in the DIC strain measurement, the DIC strain deviated (RMSEDIC

< 500 µstrain) from the FE strain - the gold standard in this study - for both
the high- and low-gradient ROIs. Gaussian LPF successfully reduced the noise in
the DIC full-field strain measurements for all the tested materials. However, the
overall reduction in noise can be seen as reduction of the fluctuations of each field
rather than reducing the overall measurement values. At Stage1 and Stage2, the
RMSEDIC was reduced on average by 63% and 34%, respectively. In total, filtering
reduced the RMSE to less than 200 µstrain which is in line with values reported in
the literature [91, 130, 13, 85].

The main interest in this work is to examine the capability of DIC to measure
strain gradients. For this, two engineering materials, stiffer (aluminium) and softer
(polymer) than bone, were chosen for this investigation. At the location of high
normalized strain gradient (6.9% per mm), only with applying Gaussian LPF
the normalized strain gradient was retrieved. In contrast, at the location of low
normalized strain gradient (3.6% per mm), the normalized strain gradient was
measured accurately for all cases except for bovine bone, which was then improved
when the LPF was applied. The normalized strain gradient is an indicator for
how good can the DIC strain measurements measure local variation in the strain
fields. In the examined cases, the accuracy of such a value was demonstrated to
be higher for low strain concentrations. This can be helpful for measuring strain
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concentration on the surface of the human femur. However, one should be aware
that to decide whether such a value is accurately measured or not, a reference value
or an idea of the strain concentration must be known.

Taking a closer look at these analyses, one could look at the DIC full-field strain
measurements (see Figure 5.10). Linear strain fields were not recognized on the
surface of all tested specimens. For engineering materials, the deviation from the
reference FE was less evident than for the bovine bone specimens, where shifts in
the linear strain fields were observed. These shifts can be attributed to the local
variations of material and structural properties of bone i.e. the orthotropy of the
material or the bone texture. During bone specimen preparation, pores (holes)
were visible under the light microscope on the test surface. These holes, originated
from blood vessels canals or trabecular bone, influenced the DIC measurements.
It might be helpful to reduce the surface roughness by grinding the specimens,
however, with grinding, pores might disappear or increase in size and new pores
might appear. The inhomogeneity in the measured strain on bone surface was
detected by Grassi et al. [28] who showed that DIC measured strain localization in
proximity of cortical pores of the proximal femur. As well as Katz et al. [24] who
showed that holes affected the strain pattern in the DIC measurements and that
FE models should consider these holes. This inhomogeneity in the material besides
the anisotropic nature of bone contributed to the variations in the DIC strain
measurements. It would be useful for future studies to include pores in the FE
analysis or create FE models based on geometries obtained from scanned specimens.

There was no significant difference in means between the averaged DIC strain
measurement over the strain gauge’s locations and the strain gauges strain for
the majority of the cases. However, no significant difference does not necessarily
mean accurate, no clear over- or underestimation were recognized of the DIC
measurements. Similar results were found in the literature that validated DIC
measurements with strain gauges or FE models [91, 87, 14, 15]. All these studies
suggest that DIC strain measurement should be examined for accuracy. It is obvious
that non-consistent errors were found in the DIC measurements, which empathizes
the need for validation and optimization to maintain the error at minimum levels.
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In summary, this study provided an unprecedented insight into the measurement
accuracy of linear strain fields on the surface of different materials by means of
DIC. A new innovative specimen shape with two gradients was presented which
can be further developed and adapted for different strain gradients and tests with
different DIC systems. With the normalized strain gradient, it was possible to
measure and verify local strain concentrations, which are due to the specimen shape
their magnitude were known a priori. This study showed that DIC systems can be
optimized for inhomogeneous strain fields, such as strains found on the surface of
many biological tissues and structures. The normalized strain gradient is essential
to understand the range of strain changes per unit mm on the surface of bone.
Finally, the common practice of averaging the strain measured on bone surface is
not optimal, since many strain concentration locations get homogenized.

Limitations of this study are, only one facet and grid size were used as recommended
by the DIC software, changing the facet and the grid size to smaller ones would
definitely increase the density of the DIC measured points, but at the cost of more
noise [70, 130, 127, 15]. Optimal filter parameter found in our previous study [133]
was applied, however, other filter strategies might be useful to reduce the error
in DIC strain measurements such as pre-filtering of the speckled images [30, 37].
Finally, the strain gradients values were evaluated for one human proximal femur
at physiological load, it might be useful to evaluate strain concatenations beyond
the physiological load.

5.7 Conclusion

The normalized strain gradient found on the proximal femur under physiological
load was the basis for designing the specimens tested in this work. It was possible
to capture such gradients with DIC. Gaussian low-pass filtering reduced the noise
found in the DIC measurements and highly improved the detection of the normalized
strain gradients. The outcome was better for 1) a lower normalized strain gradient,
2) higher strain level, 3) engineering materials. Beside this finding, the study
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provides a new specimen design and methodological approach for investigating
inhomogeneous full-field strains with DIC on engineering but also hard biological
tissues like bone.
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CHAPTER 6
High-resolution local trabecular

strain within trabecular structure

6.1 Related publications and declaration of
contributions

Results of the presented work (text, tables, figures) were published in the ’Journal of
the Mechanical Behavior of Biomedical Materials’ in 2024, entitled ’High-resolution
local trabecular strain within trabecular structure under cyclic loading’, and co-
authored by D. H. Pahr.

Authors contribution The first author and the author of this thesis, Nedaa
Amraish, conceptualized the methodology, wrote the manuscript, performed the
experiments, data analysis and interpretation. D. H. Pahr supervised the work of
Nedaa Amraish and supported the interpretation of the results.

In the previous chapter it was shown that DIC can with relative accuracy measure
experimental linear gradient strain fields on engineering and biological samples
at the macroscopic scale making it possible to explore the potential of DIC in
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measuring strain states and fields at the microscopic scale. For this trabeculae
within their trabecular structure are tested.

6.2 Introduction

Trabecular bone is the primary load-carrying component in the human skeleton [74].
Due to bone remodelling and diseases, this porous material loses density and
connectivity, which leads to a reduction in strength [159, 160, 49, 161, 151]. With
decreased volume, the strength gets decreased dramatically due to the relation
between trabecular density and strength, which is governed by the power law [162].
Bone volume to total volume (BV/TV) and degree of anisotropy are among the most
commonly quantified parameters in trabecular studies. Various studies examined
the relation between bone material properties and bone density or BV/TV. For
example, Stauber et al. [163] found that BV/TV is the best single predictor for
Young’s modulus and can explain 89% of the variance in Young’s modulus. This
strong correlation between bone material properties or strength and density was
confirmed in other studies as well [164, 165, 166, 167, 168, 169, 170]. Despite
the strong correlation, bone density is a poor predictor for patient-specific bone
strength [159, 171, 172, 52] or for fracture sites [173, 174, 175, 52]. Individual
trabeculae are usually divided into rods and plates in the trabecular network [40, 41].
Local morphometry factors such as trabecular thickness and trabecular separation
contribute substantially to the mechanical properties of trabecular bone, showing
the importance of local analysis of individual trabecula.

The reduction in BV/TV is simply a thinning of many trabeculae within a trabec-
ular network. This thinning in the dimension of the trabecula leads to a higher
slenderness ratio, which could cause the trabecula to fail under buckling if it reaches
a critical value [176, 177, 178, 179]. Slenderness is the ratio between the length
and the width or thickness of struts. It was confirmed that the slenderness of
trabecular bone increases with age [180, 40, 181, 182]. Strain analysis is crucial
to understanding the deformation of trabecular bone. Nonlinear Finite Element
(FE) analyses showed that local yielding in the trabecular bone can occur even
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at small apparent strains [183]. Not only does slenderness influence the strain
response in trabeculae but also the orientation, since there are more longitudinal
trabeculae than transverse trabeculae in a trabecular structure independent of the
density [184], and longitudinal trabeculae are thinned more than the transverse
trabeculae [185], which was confirmed as well by Fields et al. where they suggested
that variation in vertebral strength is due primarily to variations in the bone
volume fraction of longitudinal trabeculae [186].

Numerical methods, such as micro-FE, use high-resolution images of trabecular
bone to create a 3D voxel grid from which mechanical properties can be computed.
With this method, it is possible to obtain 3D stress and strain fields. However, a
number of assumptions in the models influence the results, especially when voxels
representing marrow are deleted [187], or when the whole trabecular structure
gets assigned to elastic properties corresponding to a full-filled trabecular bone
sample [188] or based on cortical bone [189, 161], or when different element types
are used [189], making it difficult to accurately derive conclusions if no proper
validation is done, which is challenging for trabecular bone at high local strains.

Two experimental methods were employed to measure local strain on trabecular
bone. Digital image and volume correlation (DIC and DVC) are among the most
used methods because of their contactless approach to measuring full-field strain.
DVC allows for 3D full-field measurements, which is very beneficial to gaining
in-depth measurements of the sample, while DIC can only deliver strain fields on
the surface of the sample. Both methods rely on capturing images of samples
under deformation. However, the accuracy and precision of both methods could be
influenced, among other factors, by the resolution and the noise of the obtained
images, the optimal way to reduce the noise of the image is by optimising the
experimental setup such as light exposure, as it was confirmed that image filtering
before strain computation has a counter effect of the accuracy of the strain fields [13].
Recently, Turunen et al. [46] used high resolution (voxel size of 3.6 × 3.6 × 3.6
µm3) DVC images and confirmed that strain can be highly underestimated due to
the resolution of the measurement device. As well, Fernandez et al. [190] applied
DVC to trabecular bone with a pixel resolution of 6.5 µm, unfortunately, strain
measurements were not obtained at the tissue level but at the whole trabecular
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thickness. Despite the great advantages of DVC, x-ray radiation could influence
the mechanical properties of bone specimens due to the required time to produce
high-resolution images, which leads to dehydration of bone specimens. Frank et
al. [76] found that dehydration of single trabecula results in increasing Young’s
modulus, yield stress, and failure stress by a factor of 2 and decreasing the failure
strain by a factor of 3. Barth et al. [191, 192] reported that high exposures to
synchrotron x-ray radiation caused a reduction in strength, ductility, and toughness
of bone as a consequence of collagen matrix degradation.

On the other hand, DIC can obtain high-resolution images of bone in a considerably
short time; the time of the mechanical test, but the results are limited to the surface
of the specimen only. Acciaioli et al. [43] proved that it was possible to measure
global 3D DIC strain on human cylindrical specimens (average length of 26 mm)
obtained from distal femoral epiphyses. In this study, virtual DIC extensometer
measurements were verified with a four-extensometer technique. However, in
many studies (DVC and DIC) [170, 43, 79, 46], it was not possible to obtain
full-field measurements of single trabecula within the trabecular network, except
for Turunen et al. Various numerical studies [193, 194, 183, 172] showed local
strain maps but lack experimental validation. Experimental studies at the tissue
level [195, 196, 43, 79, 52] determined the material properties of trabecular bone,
but lacked the determination of the local strain analysis. Moreover, experimental
studies on single trabecula [49, 76] do not reflect the deformation of a single
trabecula within the trabecular network.

Quantitative assessment of trabecular strain within the trabecular structure provides
valuable insights for understanding the relationship between trabecular architecture
and its response to external loads. The main objective of this study is to analyze the
strain states (pure bending, tensile, compression, or a combination) of individual
trabeculae within their trabecular structure. This involves assessing the longitudinal
strain of the trabeculae at both the middle and near the edge regions. The second
objective is to evaluate the local surface strain of trabeculae, enabling visualization
of the heterogeneous strain distribution and allowing the computation of strain
magnification between the globally applied strain and the locally resulting strain on
the trabecular surface. Lastly, the third objective is to investigate the correlation
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between longitudinal trabecular strain and the orientation and slenderness of the
trabeculae.

6.3 Materials and methods

Trabecular bone specimens were cut from the distal femoral epiphyses of one bovine
bone. First, a rough cut was performed to obtain bone slices parallel to the main
axis of the femur. Second, using a low-speed diamond band saw (Exakt 300 CL
Band System, EXAKT Advanced Technologies GmbH, Norderstedt, Germany),
cubic specimens (n=4) were sliced (about 10 × 10 × 10 mm3), the exact dimensions
of each specimen are listed in Tab. 6.1. Third, to clean and remove the bone marrow,
the specimens were placed into an ultrasound device (Bandelin Sonorex, CarlRoth,
Graz, Austria) at 30° C with water and a commercial soap (1:200) for about four
hours. Bone specimens were kept wet with phosphate buffered-saline (PBS) solution
during preparation and when not used, the specimens were preserved in a -20° C
freezer.
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Table 6.1: Width, length, and angle of each selected trabeculae of B1, B2, B3 and
B4

Trabeculae Width [mm] Length [mm] Angle[°]
B1 (10 × 10 mm2)

T1 0.14 0.62 29.39
T2 0.10 0.72 18.77
T3 0.21 1.5 12.43
T4 0.19 0.72 70.94
T5 0.20 0.94 1.11
T9 0.14 0.69 79.14

B2 (9.7 × 10 mm2)
T1 0.12 0.69 21.40
T2 0.12 0.82 0.00
T3 0.14 0.52 52.17
T5 0.16 0.62 2.82
T8 0.19 0.40 84.49
T12 0.24 0.66 66.32

B3 (11.9 × 10.5 mm2)
T2 0.21 0.60 25.25
T3 0.12 0.86 22.16
T4 0.16 1.1 19.95
T6 0.16 0.72 27.91
T8 0.12 0.41 27.59
T9 0.14 0.67 29.09

B4 (11 × 10.2 mm2)
T1 0.12 0.48 30.39
T3 0.22 0.61 34.44
T4 0.13 0.36 47.16
T5 0.09 0.45 5.91
T6 0.14 0.46 42.41
T8 0.14 0.71 80.65

An industrial camera (Mercury2 USB3.0, China) with a telecentric lens (LCM-
TELECENTRIC-1X-WD110-1.1-NI, China) were used to capture images during
the mechanical test, images were captured using a GigE software (Daheng Galaxy
Viewer software), see Figure 6.2. The camera and lens specifications are listed
in 6.2. Speckle patterns were applied on the surface of the specimens using a
high precision airbrush (Profi-AirBrush, Germany) with the following settings; air
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pressure of 450 kPa, 3 turns of the airbrush opening, and 15 cm distance between
the airbrush and the specimen. The obtained images were evaluated using ARAMIS
Professional software (v6.3.1; GOM GmbH, Germany). The optimal facet size was
25 × 25 pixels and the optimal step size was 15 pixels (distance between facets).

The noise was evaluated for the first stages at zero-load. To find the optimal facet
and step size, different combinations of facet and step sizes were selected. Figure 6.1
shows that the least noise was measured for facet size of 25×25 pixels and step
size of 15 pixels.
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Figure 6.1: For different facet and step sizes, the zero-strain load was evaluated for
one sample. Facet size of 25×25 pixels and step size of 15 pixels show the lowest
noise.
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Figure 6.2: Mechanical testing setup. A camera with a telecentric lens was employed
to capture images during specimen’s deformation, the camera was connected to a
computer for image visualization. The specimen was carefully placed and aliened
perpendicular to the lens plane. A light source was used to illuminate the specimen.
On the right, a speckled specimen ready for testing is shown.
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Table 6.2: Specification of the telecentric lens system.

Specification Value
Lens LCM-TELECENTRIC-

1X-WD110-1.1-NI
Camera type and sensor MER2-2000-19U3M
Camera sensor Sony IMX183
Shutter time 12 µs
Camera resolution 5496 × 3672 Pixels
Image resolution 2.4 µm
Scale factor 416 Pixel/mm
Working distance 110 mm
Magnification x1
Aperture F7
Analysis resolution 0.04 Pixel
Field of view 14.2×10.4 mm
Depth of field ± 0.3 mm

The specimens were subjected to a cyclic (ramp and hold) compression load using
a Zwick Z030 machine (ZwickRoell GmbH, Germany). To test the accuracy of the
measured strain, a sequence of at least five images was captured of each specimen
at zero-strain. The cyclic compression test was applied by loading and unloading
the specimen, where each phase was followed by a holding phase for five seconds
for five cycles; by reaching the fifth cycle, the displacement of the loading plate
was 0.7 mm. Figure 6.3 shows the testing protocol of one specimen. This loading
protocol was chosen because the bone is subjected to repetitive cyclic loading
during daily activities, and the results can be examined in the hold phases.
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Figure 6.3: Mechanical test protocol: a cyclic ramp and hold compression test.

6.4 Data analysis

This study differentiated between three types of strain computations:

1. an average global sample strain εG, which is the engineering strain obtained
from three virtual extensometers along the length of the sample.

2. three longitudinal trabecular strains; one in the middle εL1 and two close to
the edge of the trabeculae εL2 and εL3, which are computed as the length
change of individual trabeculae divided by their original lengths.

3. a transformed local surface strain of trabeculae εy
′ , which is the facet-points

strain transformed in the direction of the trabecular axis.

The first type of strain the average global sample strain was analyzed as following;
for each specimen, three global sample strains were identified using virtual exten-
someters, as depicted in Figure 6.4, which shows three virtual extensometers (in
black) created on the surface of one specimen. For each virtual extensometer, a
facet and a direction (y-axis in this case) were defined in the reference stage. The
facet must be a valid facet that could be traced along the deformation stages. If
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the chosen facet was invalid because speckles could not be tracked (as shown in
red in Figure 6.4), no extensometer could be created. The global sample strain εG

was computed via the change in length of the virtual extensometer divided by its
original length, engineering strain.

εG = dL

L
(6.1)

Since three virtual extensometers were created on the surface of each sample, the
average of these three virtual extensometers, hereafter called average global sample
strain εG, was used for further analysis.
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Figure 6.4: Strain analysis. The global sample strain εG (in black) was computed
as the length change of the virtual extensometer divided by its original length. The
longitudinal trabecular strain in the middle of the trabecula εL1 was calculated as
the length change of each trabecula divided by its original length (along y

′). Local
surface strain of the trabecula εy is the facet-points strain of the surface in the
y−direction, which was then transformed onto a new axis y

′ which is inclined from
the original y-axes at an angle ϕ.

The second type of strain includes three longitudinal trabecular strains; one in
the middle (in blue) εL1 and two close to the edge of the trabeculae εL2 (in red)
and εL3 (in green) as shown in Figure 6.5. εL2 and εL3 were used to investigate
the bending states as they were created parallel and at an equal distance to the
trabecula’s length (blue in Figure 6.5).
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Figure 6.5: An example of how the trabecula’s length and width were determined.
First, after a surface component with facet size of 25 and step size of 15 was
created covering the surface of the trabeculae, two distances (w1 and w2 in orange)
were created at the extremities and close to the edge of each trabecula, these two
distances were manually selected at the end of the gauge length of the trabecula
and before the starting curvature. Second, a longitudinal distance was created (in
blue) connecting the middle points of w1 and w2, which was used for computing the
longitudinal trabecular strain εL1. And finally, a third horizontal normal distance
w3 was created (in magenta). The width of the trabecula was calculated as the
average of the three (w1, w2 and w3) normal distances. For the longitudinal
trabecular strain close to the edge of the trabeculae, two additional longitudinal
distances (in green and red) were created to investigate εL2 and εL3 close to the
edge of the trabeculae.

In general, εL1, εL2 and εL3 were computed in the same manner. The length was
determined by computing the trabecula’s length L from the vector coordinates:
AB = (x2 − x1, y2 − y1) where L = |AB|, and the longitudinal trabecular strain
was then computed as follows for each stage:

εL = Lstage − L

L
(6.2)

where L is the original length (in green, blue or red in Figure 6.5) at stage zero
before loading and Lstage is the length after deformation.

The width of every single trabecula was determined at three locations; as shown in
Figure 6.5 for w1, w2 and w3, the average of these three values w was taken as the
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width of the trabecula. A detailed table of the dimensions of each trabecula can
be found in 6.1. For each trabecula, the slenderness ratio λ was computed, which
equals the length L of every single trabecula divided by its average width w:

λ = L

w
(6.3)

The third type of strain in this study is the transformed local surface strain of
trabeculae. The local surface strains εy, εx, and εxy of the facet-points were
computed in the global coordinate system [133]. Since trabeculae were inclined and
deviated by an angle ϕ from the main loading axis (y-axis), a strain transformation
was done as given in the following Eqn.:

εy′ = εx + εy

2 − εx − εy

2 cos(2ϕ) − εxysin(2ϕ) (6.4)

y
′ is the longitudinal axis of the trabecula, εy′ is the local transformed (facet-point)

strain, and ϕ is the angle at which a single trabecula deviated from the loading
direction (y-axis), and it was computed by the inverse cosine of the ratio between
the length of the trabecula in the y-direction Ly and the actual length of the
trabecula L (see Figure 6.4).

ϕ = cos−1
	

Ly

L



(6.5)

The transformed local surface strain εy′ was averaged arithmetically over the length
of the trabecula, between w1 and w2 as in Figure 6.5. This gives the average
transformed local surface strain εy′ , which can be compared to the longitudinal
trabecular strain εL1.

For sensitivity analysis, five images were captured at zero-load, which were used
to evaluate the sensitivity of the average global sample strain, the longitudinal
trabecular strain, and the transformed local surface strain. Finally, a Gaussian filter
was applied to smooth the strain signals with a standard deviation of the Gaussian
function of 2.5 which was thoroughly investigated in our previous work [133, 197],
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where further information on the influence of the filter size on the strain field can
be found.

6.5 Results

6.5.1 Sensitivity of the DIC method

To assess the sensitivity of the DIC method, the strain deviation at zero-load was
examined. The strain deviation for the average global sample strain εG (in black)
and the longitudinal trabecular strain εL1 (in colours) is shown in Figure 6.6 for all
test samples. The measured strain for both the longitudinal trabecular strain and
the average global sample strain was less than 0.05%, with values of 0.03% and
0.01%, respectively.
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Figure 6.6: Strain sensitivity for the first five stages at zero-load. The longitudinal
trabecular strain εL1 (in colours) and the global sample strain (in solid black) for
each specimen. Trabeculae are coloured, indicating the inclination angle ϕ [°] of
the trabeculae from the main loading axis.

The longitudinal trabecular strain εL1 was compared to the average transformed
local surface strain εy′ of the same trabecula. Figure 6.7(a) shows a very good
agreement between both strains. However, this agreement was not observed for some
trabeculae, as shown in Figure 6.7(b), due to non-aligned strains. Consequently,
these trabeculae were excluded from the analysis. The number of measurement
points along the width of the trabeculae ranged from 7 to 12 measurement points
(facets).
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Figure 6.7: (a) Longitudinal trabecular strain εL1 (in blue) and average transformed
local strain εy′ (in green). (b) non-matching strains for curved trabeculae. The
colour bar on the side refers to the average transformed local (facet-points) strain
εy′ . Only trabeculae where the difference between both strain measurements is less
then 20% were included in the analysis.

6.5.2 Longitudinal trabecular strains

Bending of trabeculae were investigated by measuring longitudinal trabecular strains
εL2 and εL3 close to the edge of the surface of the trabecula which was compared to
the longitudinal trabecular strains εL1 along the middle of the trabecula. Figure 6.8
shows 8 trabeculae, each with three distances selected on its surface, where the blue
distance is at an equidistant to the red and green distances. The differences between
the left, right, and middle (in blue) longitudinal strains indicate bending inside
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the trabeculae. The longitudinal strain plots show a pure compression (trabeculae
a and b), and a bending (trabecula c, d, f, g, and h) state or mixed state of the
trabecular strain. In case of a bending state, the strain magnification increases
with increasing load and reaches, for the shown trabeculae, a maximum of 8-folds
(trabecula d).
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Figure 6.8: Longitudinal trabecular strain close to the edges of the trabeculae.
Three distances in blue εL1, red εL2, and green εL3 were created on the surface of
the trabeculae. For each distance, a longitudinal trabecular strain was computed
as per Eqn. 6.2, and plotted along the deformation stages.

6.5.3 Local transformed surface strain of trabeculae

Local full-field surface strain measurements were obtained for trabeculae on the
surface of each of the four specimens. The figure below depicts selected trabeculae
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of specimen B2 at two different loading steps (images 50 and 200 at 0.2 mm and 0.6
mm respectively). The local full-field strain, denoted as εy′ and was transformed
according to Eqn.6.4, is superimposed on each specimen’s surface. As the load
increases, the heterogeneity of the deformation becomes more evident, with some
trabeculae exhibiting tension and/or compression strain. Inclined trabeculae, such
as B2T3, B2T8, and B2T12, displayed a bending state, while trabeculae aligned
along the loading direction, as in B2T2 and B2T4, showed compression strain at
the centre of the trabecula, which is thinner at this location in both cases. Finally,
B2T1 displayed tensile strain. For full-field surface strain measurements of the
other three specimens, please refer to6.5.3. The strain magnification increases
with increasing load and reaches, for the shown trabeculae, a maximum of 8-folds
(trabecula B2T2, B2T8, and B2T12), which is inline with strain values found in
the literature, Morgan et al .[183].
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Figure 6.9: Local transformed full-field surface strain for six trabeculae in specimen
B2. The blue line is the trabecular longitudinal strain εL1, and the green lines show
the maximum and minimum of the local surface strain εy′ of the trabeculae. The
local transformed full-field surface strain showed at least four and nine measurement
points across the width of the trabeculae, for width of at least 0.12 mm and 0.24
mm, respectively.

Similar to specimen B2, in B1, increasing load caused trabeculae to bend, resulting
in strain concentration that exceeded the longitudinal strain of the trabeculae.
Trabeculae B1T1 and B1T3 exhibited a bending state, with blue areas indicating
softer locations that underwent more deformation compared to the rest of the
trabecula. Here too, the strain magnification increases with increasing load and
reaches a maximum of 4-folds (trabecula B1T4).
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Figure 6.10: Local transformed full-field surface strain for six trabeculae in specimen
B1. The blue line is the trabecular longitudinal strain εL1, and the green lines
show the maximum and minimum of the local transformed surface strain εy′ of the
trabeculae. The local transformed full-field surface strain showed at least four and
nine measurement points across the width of the trabeculae, for width of at least
0.10 mm and 0.21 mm, respectively.

The figures below show the different selected trabeculae of the specimens B3 and
B4. The full-field strain (transformed according to Eqn. 6.4) is superimposed on
each of the trabecula’s surface. The heterogeneity of the deformation can be seen,
where some trabeculae show tension and/or compression strain.
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Figure 6.11: Local transformed full-field surface strain for six trabeculae in specimen
B3. The blue line is the trabecular longitudinal strain εL1, and the green lines
show the maximum and minimum of the local transformed surface strain εy′ of the
trabeculae.
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Figure 6.12: Local transformed full-field surface strain for six trabeculae in specimen
B4. The blue line is the trabecular longitudinal strain εL1, and the green lines
show the maximum and minimum of the local transformed surface strain εy′ of the
trabeculae.
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6.5.4 Correlation between orientation/slenderness and the
longitudinal trabecular strain

Figure 6.13 shows the longitudinal trabecular strain values along the different
(a) inclination angles and (b) slenderness ratios of the selected trabeculae. No
significant correlation was found between the strain magnitude and the inclination
angle or the slenderness ratio, p = 0.302 and 0.672, respectively.

Figure 6.13: The longitudinal trabecular strain values along (a) the different
inclination angles, and (b) the slenderness ratio of the selected trabeculae.

The figure below shows the longitudinal trabecular strains according to the slen-
derness ratio of each measured trabeculae.
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Figure 6.14: The longitudinal trabecular strains (in colours) and the average global
sample strain (in black) for each specimen. Trabeculae are coloured, indicating
their slenderness ratio.

6.5.5 Global strain versus longitudinal trabecular strain

The average global sample strain εG obtained from three virtual extensometers
is plotted in Figure 6.15 (in black); the standard deviation of the three virtual
extensometers are plotted in 6.16. The ramp and hold phases of all four specimens
followed the loading profile, as depicted by the different colours indicating the
trabeculae’s inclination angle ϕ from the main loading axis. Compression strains
were observed in many trabeculae following the loading profile and the average
global strain. However, some trabeculae, especially in specimens B2 and B4, showed

137



6. High-resolution local trabecular strain within trabecular structure

Figure 6.15: The longitudinal trabecular strain εL1 (in colours) and the average
global sample strain εG (in black) for each specimen. Trabeculae are coloured,
indicating the inclination angle ϕ [°] of the trabeculae from the main loading axis.

tensile strains. Notably, the longitudinal trabecular strain was generally lower in
magnitude than the average global sample strain, as seen in the difference between
the black line and the other coloured lines. More information about the selected
trabeculae and their locations within the trabecular network can be found in 6.5.3.
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Figure 6.16: The average and standard deviation of the global sample strain from
three virtual extensometers created on the surface of each sample.

The ratio between the longitudinal trabecular strain and the average global sample
strain, for the fourth hold-phase around (image 160), is depicted in Figure 6.17 for
all the investigated trabeculae (n=38). The red line indicates “equal” longitudinal
trabecular and average global strains in tension and compression. Overall, the
longitudinal trabecular strain was not higher than the average global sample strain,
but the opposite, the ratio was between 0.008 and 0.81. In most cases, the average
global sample strain was 2-folds the longitudinal trabecular strain. Interestingly,
we see that the ratios are around 0.5. This means we apply an average global
sample strain of “1” and see a longitudinal trabecular strain of “0.5”. An exception
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however can be seen at sample B1 and B2 where for three trabeculae the ratio is
between 1.5 and 2, showing that the strain of the trabeculae can exceed the overall
global strain applied to the sample. The difference can be related to the position
of the trabeculae, where they were not highly loaded to show a magnification of
the average global sample strain.

Figure 6.17: Strain ratio between the trabecular longitudinal strain and the global
sample strain. These values are for the third hold-phase for each evaluated trabecula
(n = 38) in each specimen.

6.6 Discussion

In this study, four specimens of trabecular bone were tested to analyze strains of
individual trabeculae within their trabecular structure. The overall aim of this
study was to gain a better understanding of the trabecular strain response within its
network. Bending state of individual trabeculae within their trabecular structure
was investigated by assessing the longitudinal strain of the trabeculae at both the
middle and near the edge regions. High-resolution local surface strain of trabeculae
were analyzed near the cutting surface of cubical samples. The influence of a
trabecula’s alignment and slenderness were presented as well as the magnification
between the global sample strain and the longitudinal trabecular strain.

The applied force causes deformation in the trabecular network, resulting in
compressive or tensile strains in individual trabeculae. While few studies [46]
have shown full-field strain maps from experimental data that reveal both the
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trabecular network and the strains in individual trabeculae, many other studies
have focused solely on full-field strain analysis [80, 43, 52, 79] without detailed
strain information on the surface of the trabeculae. The use of a telecentric lens
allowed for highly accurate measurement of full-field strain maps, with a local
(facet-point) strain error of only 0.04%±0.05% at zero-load and the ability to track
the movement of a trabecula’s endpoints. This level of accuracy was not achieved
using a standard Sony camera, which had a facet-point strain error of approximately
0.3%. Investigation of longitudinal trabecular strain showed that the strain in a
trabecula matched the average local surface strain (εy′ ) for non-curved trabeculae.
A minor difference was observed between the average transformed local strain and
the longitudinal trabecular strain, which is expected since the overall change in the
length of trabeculae is approximately equal to the average transformed local strain
of the same trabecula.

Previous studies have focused either on single trabeculae, mostly rods, or on the
trabecular structure/network as a whole. Experimental studies that tested single
trabeculae extracted from their trabecular network reported ultimate strains of
5.1% [49], 20.2% [198], and 11.0% [76] under tensile load, and 8.2% [49] and
12.0% [199] under a three-point bending load of 60 N. However, these results
provide no insights into strain magnification and cannot be compared to the
strains experienced by trabecular bone within its trabecular network because
trabeculae have different orientations and connections to other trabeculae, resulting
in different strains when loaded within the network. The ratio between the
longitudinal trabecular strain in the centre of the trabeculae and the global sample
strain was less than one for most trabeculae at a global deformation of 0.6 mm,
indicating no trabecular-level strain magnification. However, when the longitudinal
trabecular strains near the edge of the trabeculae were considered, they showed
pure compression, bending, or a mixed state of trabecular strain. In the case of a
bending state, the strain magnification increased with increasing load and reached
a maximum of 8-fold for the selected trabeculae, in line with the strain values
reported in the literature by Morgan et al. [183] for maximum principal strains.
Bayraktar et al. [196] and Odgaard et al. [195] reported a tissue yield strain between
0.6–1.0% at 0.8% global strain, corresponding to 1.25 magnification, and local
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ultimate strains of 3.7% at 2.7% global strain, corresponding to 1.37 magnification,
for human femoral neck trabecular bone and proximal tibiae trabecular bone,
respectively. These results indicate that local yielding in trabecular bone occurs at
a very small global strain which can be discovered experimentally by investigating
the full-field surface strain of trabeculae within its trabecular network.

To the best of the authors’ knowledge, no previous study has reported full-field
surface strain measurements on the surface of trabeculae within their trabecular
structure at a resolution of 2.4 µm. The results of this study indicate that the
heterogeneity of deformation becomes more prominent with increasing load, as
some trabeculae exhibit tension and/or compression strain. Inclined trabeculae
were found to exhibit bending states, while trabeculae aligned along the loading
direction showed compression strain at the centre of the trabecula where it is
thinner, and finally, tensile strain was also present.

Finally the last objective of this study was to investigate the relation between
the trabecula’s orientation (and trabecula’s slenderness) and the longitudinal
trabecular strain. Even though it is counterintuitive not to find a relation between
the orientation angle or the slenderness and the strain magnitude, this was the
case for 38 trabeculae ranging between 0°and 90°inclination from the loading axis,
with a slenderness ratio between 0 and 10. Nevertheless, it is important to study
the trabecular bone network with regard to their architecture, since trabecular
bone from the human vertebra is rod-like and from the femoral neck and head
is plate-like [200, 201]. In our study, the longitudinal trabecular strain was less
than 1% for trabeculae oriented between 35°and 55°. And it was less than 1%
for trabeculae with a slenderness ratio greater than 6.5 and less than 2.5. This
low maximum strain magnitude for slender trabeculae is associated with buckling
rather than yielding, as confirmed by Kopperdahl and Keaveny [202] and Nagaraja
et al. [51]. Slenderness helps in understanding buckling behaviour and fracture of
trabecula within its trabecular network. As confirmed decades ago by Müller et
al. [203] that a rod-like architecture failure was initiated by the buckling of the
trabecula followed by the collapse of the overloaded structure.

This study provided high-resolution full-field strain maps and quantified the longi-
tudinal trabecular strain of trabecular bone. However, there are some limitations
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that need to be mentioned. First, only one DIC camera with a telecentric lens was
used to track the deformation, which limited the analysis of the 3D deformation
of the surface. Nevertheless, the local strain deformation was reliable due to the
working principle of telecentric lenses, which are less sensitive to out-of-plane
movement and the magnitude of the facet strain error was on average less than
0.09%. Moreover, the optimal facet size of 25 × 25 pixels was chosen based on the
matching between the facet strain on a trabecula and the longitudinal trabecular
strain. While a smaller facet size could be chosen, it would lead to higher noise,
which would compromise the accuracy of the results. Additionally, the width of
the trabeculae must be slightly higher than the reported values because cylindrical
rods were projected onto the image plane. Despite these limitations, the presented
results demonstrated that it was possible to evaluate the strain state (pure bending,
tensile, compression, or a mixture) in single trabeculae with this setup, which was
previously unobtainable for trabeculae within their trabecular structure.

6.7 Conclusion

This study demonstrated that high-resolution imaging can be used to obtain
strain maps of trabeculae within the trabecular network, allowing for a relatively
precise measurement of longitudinal trabecular strains and the local strains. These
strains provide valuable insight into the ratio between globally applied strain and
strain along the trabecular length within the network. Furthermore, utilizing a
combination of the measurement method with another telecentric lens and camera
would allow for deformation measurement of the trabecular surface from two sides.
These strain maps can provide valuable information to expand our understanding
of how individual trabeculae respond to load and support the overall structure of a
trabecular network.
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CHAPTER 7
Synthesis and outlook

7.1 Synthesis

The previous Chapters 4 to 6 contained the original research published in peer-
reviewed journals during this dissertation. In the following, the main findings of
the original contributions are summarized.

• The first study [133] provided a method for finding an optimal filtering
parameter that can filter strain fields regardless of their strain nature being
constant or with gradients, window size, and the applied load. Filtering can
have a positive effect on reducing the noise, but the information lost needs
to be evaluated; for instance, the simple mean and Gauss mean filters had a
higher loss of information than that of Gauss LPF.

• A novel sample shape showing a strain field with two linear gradients is
introduced [197]. It was possible to measure the linear gradient strain fields
experimentally using DIC for engineering and biological materials at the
macroscopic scale. The accuracy of DIC was high (less than 10 µstrain
difference) with respect to the measurement of the strain gauges in the
location of the constant strain field. In contrast in the linear gradient fields,
due to the size of the strain gauges an evaluation of accuracy was not feasible.
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However, it was shown that filtering was essential for the accurate detection of
the normalized strain gradient, which was better for polymer and aluminium
than for bone specimens.

• The third study [204] showed that it was possible to measure local strain
using DIC at microscopic scale. The strain error at zero-load was less than
0.05% (500 µstrain) due to the high-resolution 2.4 µm/pixel of the used
telecentric lens which counted for out-of-plane movements.

• With optimal DIC parameters and test setup, strain measurement on the
surface of trabeculae was achievable. It was demonstrated that at least
four and nine measurement points were obtainable across the width of the
trabeculae, for width of at least 120 µm and 240 µm, respectively. From
these measurement points, detailed high-resolution strain maps were gener-
ated [204].

• At the microscopic scale, linear gradients (pure bending states) were detected
at the outermost edge of the trabeculae. Resulting in a distinctive increase
in strain magnification reaching up to eight times the strain detected at the
center of the trabeculae [204].

7.2 Future outlook

This thesis work aimed to evaluate the capability of DIC measurement systems to
assess linear gradient strain fields at both macroscopic and microscopic scales. The
findings of these studies offer promising prospects for future research in DIC as a
measurement system and its application in the field of biomechanics.

For DIC as a measurement system, this thesis introduced methodological ap-
proaches that can be adopted for scrutinizing and validating the strain fields
obtained from DIC systems. The filtering strategies and the novel specimen shape
can be used as a reference to determine the accuracy of DIC systems and to improve
it accordingly.
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7.2. Future outlook

For the field of biomechanics, studying the mechanical response of single tra-
beculae within the trabecular structure to loading will open up new possibilities
for studying trabecular bone mechanics and will help in understanding the factors
contributing to the mechanical properties of trabeculae. It would be interesting to
apply the findings of this dissertation in utilizing DIC to obtain strain fields on a
variety of trabecular bone and loading conditions. These findings would lead to a
deeper comprehension of how individual trabeculae contribute to the stability of
the trabecular bone structure.
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