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Abstract
From the collision of two protons at the large hadron collider (LHC) massive vector bosons,
W and Z bosons, that are sensitive probes of the electroweak interaction, can emerge and
subsequently decay into lepton pairs. Among the leptons in such collisions, electrons and muons
are efficiently detected by the CMS experiment at the LHC. The determination of the origin of
these leptons is an important target of the event reconstruction.
This thesis describes an approach to lepton identification using Deep Learning techniques that
incorporate the information from all reconstructed particles in the vicinity of the lepton candidate.
This leads to a better identification efficiency, as the surrounding particles contain information
about the leptons origin. Deep neural networks were trained for electron and muon identification
and their performance was evaluated. The training and performance evaluation were done
separately for the LHC data taking periods of the years 2016, 2017, and 2018.
For optimal performance, the fully connected deep neural networks were supplemented by
long-short term memory units. The results show that this approach has a significantly better
classification efficiency than traditional approaches, especially for low pT lepton candidates.
The new classifier is subsequently used to improve the background suppression in a search for
supersymmetry with low-energetic leptons, improving the limit on the masses of superpartners,
on average by about 5 GeV.
Finally, the relative importance of the input variables was determined and the timing and
memory usage of different network configurations were compared.
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Kurzfassung
Bei der Kollision von zwei Protonen am Large Hadron Collider (LHC) können massive Vek-
torbosonen, W- und Z-Bosonen, entstehen, die empfindliche Sonden für die elektroschwache
Wechselwirkung sind und anschließend in Leptonenpaare zerfallen. Unter den Leptonen in
solchen Kollisionen werden Elektronen und Myonen durch das CMS-Experiment am LHC ef-
fizient nachgewiesen. Die Bestimmung des Ursprungs dieser Leptonen ist ein wichtiges Ziel der
Ereignisrekonstruktion.
In dieser Arbeit wird ein Ansatz zur Leptonenidentifikation mit Hilfe von Deep-Learning-
Techniken beschrieben, die die Informationen aller rekonstruierten Teilchen in der Umgebung
des Leptonenkandidaten einbeziehen. Dies führt zu einer besseren Identifikationseffizienz, da
die umgebenden Teilchen Informationen über den Ursprung des Leptons enthalten. Tiefe
neuronale Netze wurden für die Identifizierung von Elektronen und Myonen trainiert und ihre
Leistung wurde bewertet. Das Training und die Leistungsbewertung wurden getrennt für die
LHC-Datenaufnahmezeiträume der Jahre 2016, 2017 und 2018 durchgeführt.
Für eine optimale Leistung wurden die vollständig verbundenen tiefen neuronalen Netze durch
Einheiten mit Langzeit-Kurzzeitgedächtnis ergänzt. Die Ergebnisse zeigen, dass dieser Ansatz
eine deutlich bessere Klassifizierungseffizienz aufweist als herkömmliche Ansätze, insbesondere
für Leptonenkandidaten mit niedrigem pT . Der neue Klassifikator wird anschließend verwendet,
um die Hintergrundunterdrückung bei der Suche nach Supersymmetrie mit niederenergetischen
Leptonen zu verbessern, wobei die Grenze für die Massen der Superpartner im Durchschnitt um
ca. 5 GeV verbessert wird.
Schließlich wurde die relative Bedeutung der Eingabevariablen bestimmt und die Zeit- und
Speichernutzung verschiedener Netzwerkkonfigurationen verglichen.
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Chapter 1

Introduction

Event analyses at the CMS (Compact Muon Solenoid) [1] experiment at the LHC (Large Hadron
Collider) [2] rely heavily on accurate event selection, as minimizing statistical and systematic
errors by reducing background events and increasing signal events improves, in general, the
sensitivity. As the event selection is partly dependent on particle reconstruction and identification,
the various identification and classification methods become very important.
For the purpose of this thesis, I group the reconstructed leptons’ origin into three categories:
Prompt, from the decay of a vector boson that was created at the primary proton-proton
interaction point, non-prompt, from decays of short lived particles that emerged in the hadroni-
sation process, and fake, particles falsely reconstructed as leptons. In most analyses, the prompt
leptons are considered as signal, whereas non-prompt and fake leptons are considered background.
Traditional classification methods range from simple cut-based approaches to machine and DL
techniques. This thesis will cover an improved lepton classifier, leveraging the flexibility of neural
networks with long-short term memory units (LSTM) [3] to use not only the lepton candidate’s
properties, but also the particles in close vicinity of the lepton.
Many traditional approaches in lepton identification show good performance for high momentum
leptons, but recent analyses focus on searches for signals that predict leptons with low momenta.
As these searches often suffer from non-prompt backgrounds with poorly isolated leptons, large
improvements to the background suppression of these analyses can be made. The classifier
developed in this thesis shows big improvements over traditional techniques.
On the technical side, we use the DeepJet framework [4] that was developed for classifying
particle jets instead of leptons.Furthermore, we build on preliminary work on partial datasets [5].
This thesis organises as follows. In Sec. 2 I describe the LHC and the CMS experiment. In Sec.
3 I discuss DL. In Sec. 4 I explain lepton identification and in Sec. 5 I introduce the DeepLepton
algorithm. In Sec. 6 I discuss the results and in Sec. 7 I give a summary and the conclusion of
the thesis.



Chapter 2

Collider and Experiment

2.1 The Large Hadron Collider
The LHC [2] is located at the European Organisation for Nuclear Research (CERN) near Geneva,
Switzerland. It is currently the highest energy particle accelerator and has been in operation
since September 2008. The LHC was built in the 27 km long tunnel that had been built for
the Large Electron Positron Collider (LEP) at a depth of 45 to 170 m underground. It collides
two proton beams, separated into 2800 bunches each, travelling close to the speed of light in
opposite directions in two separate beam pipes which are brought to collision at its four main
experiments. These are:

• ATLAS (A Toroidal Lhc ApparatuS) [6] is a general purpose detector with the aim of
investigating a wide range of physics, ranging from precision measurements of the standard
model (SM) [7] to searches beyond the SM.

• CMS (Compact Muon Solenoid) [1] is a general purpose detector with the additional
design requirement to reconstruct muon tracks with high efficiency. The main differences
between the ATLAS and the CMS detectors are the configurations of the magnet and
muon systems.

• ALICE (A Large Ion Collider Experiment) [8] was built with the goal of studying
the properties of the quark gluon plasma in the collision of heavy nuclei.

• LHCb (Large Hadron Collider beauty) [9] was designed to investigate the decays
that contain b quarks in an attempt to understand the matter-antimatter symmetry and
CP violation.

2.1.1 Accelerator Complex
Before the injection into the LHC, the proton beams are pre-accelerated by a chain of smaller
accelerators. The initial protons from a hydrogen source are accelerated by the Linear accelerator
4 (Linac4) [10] to an energy of 160 MeV to prepare them for the Proton Synchrotron Booster
[11] which accelerates the protons to 2 GeV. They are then further accelerated to 26 GeV by
the Proton Synchrotron (PS) [12] and to 450 GeV by the Super Proton Synchrotron (SPS) [13].
A schematic illustration of the LHC with its pre-accelerators is given in Fig. 2.1. In order to
enable the high beam brightness of the LHC beams, all links of the pre-accelerator chain had to
be upgraded for LHC operation.

2.1.2 Controlling the Proton Beams
The LHC is not perfectly circular. The ring consists of eight straight and eight curved sections,
with the four interaction points located at the straight sections and the two high-luminosity
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Figure 2.1: Schematic drawing of the CERN LHC accelerator complex with its main experiments
and pre-accelerators. Image taken from [14].
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Figure 2.2: A Schematic drawing of the layout of the LHC illustrating the octants and the
relative location of the interaction points and the main experiments. Image taken from [16].

experiments opposite of each other. This is shown in Fig. 2.2. At opposite points, between the
ATLAS and CMS experiments, the proton beams are cleaned, meaning particles in the halo of
the proton beams are removed to reduce the background of the experimental detectors and to
minimize the beam loss in the cryogenic parts of the accelerator. In octant 6 in Fig. 2.2 the
beam can be dumped immediately in case of an emergency such as a vacuum leak [15].
There are 1232 dipole magnets for bending the beam. They produce a magnetic field with
a strength of 8 T at an operating temperature of below 2 K. The beams are focused by 392
quadrupole magnets. The acceleration of the beam to operating energy is handled by eight
radio-frequency (RF) cavities [17] located in octant 4. In addition, the RF cavities also keep the
proton bunches compact by accelerating and decelerating protons such that the difference to the
nominal beam energy is reduced.

2.1.3 Energy and Luminosity
One very important metric of a particle accelerator is the center-of-mass energy

√
s of the

colliding particles. In natural units, with c = 1, this is given with [18]

√
s =
�����( 2∑

i=1 Ei)2 − ( 2∑
i=1 pi)2

(2.1)

where i = 1, 2 labels the protons, Ei denotes the protons’ energies and pi denotes the protons’
three-momenta. The center-of-mass energy of the LHC during Run II operations equals 13 TeV.
Another important metric of a particle accelerator is the instantaneous luminosity L [19], which
defines the rate of proton-proton collisions at an interaction point.Integrated over the data-taking
period, the cross-section σ of the process and the luminosity L are related to the total number
of events by [18]
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N = σ∫ L(t)dt. (2.2)

The instantaneous luminosity is given by

L = frevnbN
2
p

4πσxσy
F (θc, σx, σy) (2.3)

where

frev = 11 245.5 Hz is the bunch revolution frequency,
nb is the number of proton bunches in the machine,
Np is the number of protons per bunch,
σi is the transverse beam widt and

F (θc, σx, σy) is the luminosity reduction due to the beam angle θc.

At design, the LHC’s instantaneous luminosity is in the range of 1034 cm−2 s−1. An often used
parameter is the integrated luminosity

L = ∫ Ldt. (2.4)

It is a measure for the total number of interactions over a given time period and is usually given
for one data taking run. The data recorded by the CMS experiments of the LHC run two, from
2016 to 2018, corresponds to an integrated luminosity of 150 fb−1.

2.1.4 Discoveries
The arguably most important discovery of the LHC in recent years was the Higgs boson in
2012 [20]. This discovery finally completed the particle content of the SM. This discovery also
confirmed the Brout-Englert-Higgs mechanism, which explains how SM particles interact with
the Higgs field and in this way gain their mass [21, 19].
As of March 2021, 59 new hadrons have been discovered at the LHC [22]. Hadrons are composite
particles that are made out of quarks. There are hadrons made out of a quark-antiquark pair
called mesons, and particles made out of three quarks called baryons, such as protons and
neutrons. Among the 59 newly discovered particles are also tetraquarks and pentaquarks that
consist of four and five quarks respectively.
Another discovery was made when quark-gluon plasma [23] was found by the ALICE experiment.
This is the state of matter that is thought to have existed shortly after the Big Bang.

2.1.5 Ongoing Searches
Supersymmetry (SUSY) [24] is an extension to the SM. It offers potential solutions to some of
the SM’s problems, such as the unification of the three fundamental forces. Many analyses at
the LHC focus on the search for SUSY particles and interactions, but until now there has not
been experimental evidence for any of them [19].
Another area of interest is the search for dark matter [25]. As the galaxies seem to be too light
to exist, there has to be something that gives them extra mass. This “matter” is not visible to
us, as it does not interact with the electromagnetic force, therefore it is called dark matter. It is
thought to make up 27% of the universe, whereas 5% are made of normal matter and the other
68% are made of dark energy. The dark matter particles are thought to interact with quarks
and/or gluons and therefore also to be produced by the proton-proton collisions [19, 26, 27].
In the beginning of the universe, matter and antimatter should have been created equally, but
today everything around us is comprised of normal matter. When matter and antimatter come

—– 10 —–



Maximilian Moser DeepLepton

into contact, they annihilate to energy, therefore the universe should only contain leftover energy,
but obviously this is not what is observed. This leads to the conclusion, that there must be a
process that favours matter over antimatter. Therefore, searches are conducted to understand
the difference in behaviour of matter and antimatter [28].

2.2 The CMS Experiment
2.2.1 Introduction
The CMS detector is one of the four detectors at the LHC at CERN [1] located at point 5. It is
used to measure and identify particles from proton-proton collision and its subsystems facilitate
this task. The innermost part, closest to the primary interaction point of the beam, is a silicon
tracker that measures the path of charged particles bent by a superconducting solenoid magnet.
This allows for the reconstruction of the momentum of charged particles. The energy of particles
is independently measured by two calorimeter systems.
An important design requirement was to characterise events that involve the W and Z bosons,
especially in leptonic decay channels, as these are very clean experimental signals. Therefore,
emphasis has been on the efficient reconstruction of these leptons. Additionally, efficient tagging
of hadron jets coming from b quarks and reconstruction of secondary vertices (SVs) were
important design requirements [29]. Figure 2.3 shows a schematic image of the CMS detector
with its sub-detectors.

2.2.2 Detector
Solenoid

For the momentum analysis of charged particles in the CMS detector a 3.8 T magnetic field is
used. This is being provided by the superconducting solenoid magnet, around which the detector
has been built [29]. This high magnetic field strength is achieved with a superconducting solenoid.
The purpose for using such a strong magnetic field is to increase the muon trigger resolution
and momentum tracking accuracy. The cables are made of a strand of the superconductor NbTi
encased in aluminium for mechanical stability [31].
The solenoid has 2168 turns of wire with a length of 12.5 m and an inner diameter of 6.1 m.
With a current of 20 000 A flowing through the cable, this results in

B = µ0µr
NI

L
≈ 4T, (2.5)

with µr = 1 in a vacuum and µ0 = 1.2566 × 10−6 m kg s−2 A−2. The cable is being kept at a
temperature of 4.5 K [19, 31, 32].

Silicon Trackers

In order to calculate the momentum of a particle, its curvature in the magnetic field of the
solenoid is measured. To do this, a silicon detector is being used. It operates similarly to a
digital camera sensor that is stacked and arranged in a barrel with endcaps [29, 33]. The silicon
sub-detector is made of silicon pixels nearest to the interaction point and silicon strips on the
outside, as depicted in Fig. 2.3 [29, 34]. Once a charged particle passes through a pixel, it
creates an electron-hole pair. This signal is then amplified. The silicon pixel detector is made of
three layers of pixels to create a three dimensional track of the particle [35]. There are 65 million
channels, each consuming about 50 µW. In order for the detector not to overheat, these pixels
are mounted on cooling tubes [34]. Figure 2.4 shows a schematic image of a part of a pixel tile.
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Figure 2.3: A schematic image of the CMS detector with its sub-detectors [30].

Figure 2.4: Schematic image of a silicon pixel sensor module [34].
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Figure 2.5: Schematic image of a cross-section cut of the arrangement of the silicon strips and
silicon pixels[35].

The silicon strips work similarly to the silicon pixels. The barrel-part of the detector is layed
out in ten layers as shown in Fig. 2.5, additionally there are nine layers of silicon strips on the
endcaps [29, 35].
In order to reconstruct the tracks of the particles passing through the pixel detector, the
measurements of the silicon trackers are accurate to 10 µm [33].

Calorimetry

The electromagnetic calorimeter (ECAL) [36] measures the energy of charged particles, such as
electrons and photons. This is done with lead-tungstate crystals. They are highly transparent
and scintillate when electrons and photons pass through them [37]. The light emitted by the
crystals is proportional to the energy deposited. This scintillation light is then measured by
silicon avalanche photodetectors.
The front face of the crystals in the barrel part is at a radius of 1.29 m. The crystals have
a front face of 22 mm × 22 mm and a length of 230 mm, which corresponds to 25.8 times the
radiation lengths (X0), the distance at which a high-energy particle’s energy is reduced to 1

e due
to electromagnetic interactions.
The endcaps are made of crystals with a length of 220 mm, corresponding to 24.7 times X0, with
3 X0 from a preshower. In total, there are 61200 crystals in the barrel part, and 15000 crystals
in the endcaps [37]. Figure 2.6 shows the relative energy resolution of the ECAL.
The hadron calorimeter (HCAL) [39, 40] measures the energy of charged and neutral hadrons
and provides an indirect measurement of the presence of particles that interact at most weakly,
because it is nearly hermetic. If an imbalance transverse to the direction of the beam line is
measured, it can be deduced that invisible particles, such as neutrinos, have been produced.
The HCAL is built as a sampling calorimeter, which means that it is built of alternating layers of
absorbing and scintillating materials. The absorber material is brass. The light of the scintillator
plates is collected by optical fibres and measured by photodiodes. In the very forward part of the
detector, where the particle flux is highest, steel absorber plates and quartz fibres as are used.

—– 13 —–
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Figure 2.6: Relative ECAL energy resolution [38].

Figure 2.7: Illustration of muon drift tubes [42].

Muon System

As muons are able to penetrate several meters of iron without energy loss, the muon system is
placed on the outside of the experiment, where they are likely the only particles left from the
initial interaction [41]. The muon system is interleaved with the iron return yoke plates, which
make up a large portion of the detector’s mass and contain the solenoid’s magnetic field.
The muon system consists of three different trackers. Drift tubes [42], illustrated in Fig. 2.7,
consist of a chamber filled with gas and a stretched wire. When a muon passes through the
chamber, electrons are knocked off the atoms in the gas, guided by the static EM field they end
up at the positively charged wire, where they are detected. The drift tubes not only measure
that a muon has passed through it’s volume, but also the distance to the wire and position along
the length of the wire. One drift tube chamber consists of twelve aluminium layers, these are
arranged in three groups of four, containing up to 60 tubes each.
The next type of muon detector are the cathode strip chambers [43]. These consist of arrays of
positively charged wires with negatively charged copper cathode strips. The wires and strips are
arranged perpendicularly to each other, as illustrated in Fig. 2.8. When a muon passes through
the the gas volume, it knocks off electrons of the gas atoms. The electrons move towards the
anode wires, creating an avalanche of electrons. The positively charged ions move towards the
copper cathode strips and away from the wires, therefore being detected on the strips. Because
of the right angle between the strips and wires, two positional coordinates are obtained for each
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Figure 2.8: Illustration of a cathode strip chamber [43].

Figure 2.9: illustration of a resistive Plate Chamber [44].

passing particle. Additionally, due to the fast detection time, these chambers are suitable for
triggering.
Another detection chamber is the resistive plate chamber [44]. They are fast detectors that are
also used as a muon trigger system. They consist of two parallel plastic plates with a very high
resistivity, these plates are separated by a gas volume. This is illustrated in Fig. 2.9. Once
a muon passes through, the gas atoms in it’s path inside the chamber are ionised. These free
electrons are accelerated towards the anode, causing an avalanche of electrons. This signal is
then picked up by the detection strips after a small, but precise, time delay. The pattern of hits
on the strips gives a quick measure of the muon’s momentum, which is then used by the trigger.
Drift tubes and resistive plate chambers are used in the barrel region, in the endcaps cathode
strip chambers and resistive plate chambers are used [41].

2.2.3 Trigger and Data Acquisition
When the LHC is running at peak instantaneous luminosity, about one billion collisions happen
every second inside the CMS detector. There would not be enough capacity to store this large
amount of data, considering that each event generates 1-2 MB of data. A trigger system reduces
the rate to a few hundred Hz [45, 46].
This poses a challenge, as there are only 25 ns between proton bunch crossings, so new particles
are generated even before the particles from the preceding bunch crossing have left the detector.
The data collected by the subdetectors is, therefore, being stored on tape.
The first trigger stage (L1) is implemented in hardware and reduces the rate to approximately
100 kHz and uses the data from the calorimeters and the muon system. Events that pass through
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Figure 2.10: A sketch of a transverse slice through the CMS detector and how different particles
pass through it [47].

this stage, are subsequently filtered by the high level trigger stage (HLT). The HLT output rate
is, on average, 800 Hz at design, using a simplified version of the nominal event reconstruction.

2.2.4 Reconstruction
To reconstruct particles in the CMS detector, the particle flow (PF) [47] algorithm is used.
With this algorithm, electrons, muons, neutral hadrons, charged hadrons and photons are
reconstructed. It combines the information from all sub-detectors to identify the particles by
using compatible detector signals to determine their type. This data is then used for further
reconstructions and identifications, such as jet reconstruction and identification. Figure 2.10
shows a transverse slice through the detector and how different particles pass through it.

Electrons

Electron reconstruction is based on the combination of measurements from the ECAL with the
inner tracking system [48]. Because of the relatively long distance between the collision point
and the ECAL, some of the electron’s energy is lost through bremsstrahlung. It was shown, that
in a test beam about 97 % of it’s energy were deposited in a 5 × 5 crystal array. Overall about
one third to 86 % of the electron’s energy is lost before it reaches the calorimeter, depending
on the amount of material it passes through. To measure the initial energy accurately, it is
therefore critical to collect all the radiated photons too.
In the barrel region, this is done via the hybrid algorithm. It uses a seed crystal, the crystal with
the most energy deposited in the considered region that is larger than a predefined minimum
ET,seed > Emin

T,seed. Along the transverse directions of the seed crystal arrays of 5 × 1 crystal are
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added in a range of Nsteps, as long as their energy exceeds a minimum energy of Emin
array. These

clusters are then collected into a final global cluster called supercluster.
In the endcaps the multi-5 × 5 algorithm is used. The seed crystal is the crystal with the local
maximal energy of it’s four direct neighbours that again fulfils the requirement of ET,seed > Emin

T,seed.
Around these seed crystals, the energy is collected in 5 × 5 clusters, which may partly overlap.
These clusters are then collected together to superclusters, if their energy exceeds a minimum
[48]. Due to the large radiation losses of the electrons when they are curved in the magnetic
field, the standard procedure of the Kalman filter [49] track reconstruction is not used, but a
special algorithm.
This algorithm starts by “seeding”. It selects the first two or three hits in the tracker, from
where the track can be initiated. Because of the importance of seeding for the reconstruction
efficiency, two complementary algorithms are used for this. One starts from the supercluster
energy and position in the ECAL and estimates the electron track to select the electron seed from
all reconstructed seeds. The other algorithm relies on tracks, that have been reconstructed using
the general algorithm for charged tracks, extrapolates them towards the ECAL and matches
them to a supercluster. Further steps are then taken to increase the efficiency, such as using a
matching-momentum criterion. These selected electron seeds are then used to build the electron
tracks. This is done iteratively - layer by layer - with the energy loss taken into account. In cases
where several hits in a layer might be compatible with those predicted, several possible trajectory
candidates are created. Over the whole track, only one missing hit is allowed. This procedure
provides tracks up to the ECAL, where the fraction of momentum lost inside the tracker is
calculated. Then, the tracks and the ECAL clusters are being associated with each other. There
are criterions in place to obtain the highest reconstruction efficency while minimizing false
positives. This leads to an overall efficiency for electron reconstruction for electrons from Z
decay of ≈93 %.

Muons

To reconstruct muons, the tracks from the muon system and from the inner silicon tracker are
treated separately at first [50]. The inner tracks are reconstructed by an algorithm based on
Kalman-filters [49]. Contrary to electrons, this works for muons because of their much higher
mass and their therefore lower radiation losses through bremsstrahlung. So called “standalone-
muon tracks” are built by using the information from the muon system. Then the tracker muon
tracks, that satisfy a transverse momentum of pT > 0.5 GeV and a total momentum of p > 2.5 GeV,
are reconstructed by extrapolating tracker tracks from the tracker to the muon system. To be
classified as a tracker muon, at least one muon segment has to match the extrapolated track.
Global muons are muons that are built from the outside of the detector to the inside through
the matching of standalone muon tracks of the muon system to inner tracks.
Because of the high efficiency of these reconstructions, about 99 % of muons can be reconstructed
as either tracker or global muons, or both. Generally, muons with a low pT are identified as
tracker muons, as they often only reach the innermost muon segment. Late showering hadrons
that pass the HCAL, might also be detected by the first muon station. Higher pT muons usually
pass through the whole muon system and are reconstructed as global muons.
These muons are then passed to the particle-flow algorithm [47]. There all the information from
all subdetectors is combined. It applies a set of selection criteria to reconstructed candidates.
These criteria are based on the quality parameters of the reconstruction. To calculate the
momentum of the muons, the Tune-P algorithm is used. It selects the pt measurement from
a refit to reduce tails in the momentum resolution distribution caused by bat fits. The inner
track is used if the pt is smaller than 200 GeV, otherwise the track with the lowest χ2 of it’s
fit is chosen. A muon that passes the particle-flow algorithm is excluded from being possibly
reconstructed as another particle.

—– 17 —–



Maximilian Moser DeepLepton

Photons

As illustrated in Fig. 2.10, photons only leave a hit in the ECAL, but no track in the tracker.
Therefore, they are distinguished from electrons by their missing track and a difference in
shower shape. Their energy is calculated similarly to the electrons. Bremsstrahlung photons
are reconstructed and assigned to an electron by back-propagating their track to an electron
trajectory. ECAL deposits with no compatible electron track are reconstructed as isolated
photons if the ECAL cell energy distribution is compatible with the one expected from a photon
shower. As hadrons might also leave some energy in the ECAL, photons are only reconstructed
when there are no matching energy deposits in the HCAL [47].

Hadrons

As illustrated in Fig. 2.10, neutral hadrons do not leave tracks in the silicon tracker, but charged
hadrons do. Both of them deposit most of their energy in the HCAL, but might also deposit
some in the ECAL. Neutral hadrons are therefore reconstructed by the missing track and the
HCAL shower, charged hadrons by their track in the silicon tracker and their energy deposits in
the ECAL and HCAL. To calculate the momentum of charged hadrons, not only their track is
used, but also the position of compatible ECAL and HCAL clusters [47].

Jets

Jets are showers of particles usually contained in a narrow cone. When two quarks are produced
in a high energy collision, they travel in opposite direction in their center of mass frame. As
they separate, the colour field is forming a tube in-between them, with an energy density of
about 1 GeV fm−1. This quickly becomes enough energy stored in the field to create new quark-
antiquark pairs, and therefore break the colour field into smaller “chunks” that are energetically
more favourable [18]. Individually reconstructed particles are clustered together by the anti-kt

jet clustering algorithm [51] with distance parameter R = 0.4.

2.2.5 Simulation
Simulating data for particle physics enables a connection between theoretical predictions and
experimental observations. Data of the CMS experiment is simulated by general-purpose event
generators that implement a Monte-Carlo (MC) simulation [52].
Event generation is split into five steps. First, the hard scatter, which is the process with the
highest momentum transfer of the event, is calculated in perturbation theory. This results in a
probabilistic distribution of the outgoing partons, from input parton distribution functions. In
the next step, the parton shower is simulated. The accelerated colour charges radiate gluons
resulting in a cascade that is modelled. This is done until the energies are too low for the
interactions to be modelled perurbatively [53].
In the third step, called hadronization, the partons from the second step are combined to
colourless hadrons. As secondary interactions can take place in the protons, they can create
secondary particles. These are in addition to the primary hard-scattering process and they form
underlying events. In the fifth step, unstable hadrons that have been formed in the hadronization
process decay [53]. Among the commonly used event generators are PYTHIA [54, 55], POWHEG
[56, 57], HERWIG [58, 59] and MadGraph [60, 61].
To take the detector geometry and material into account, the GEANT4 [62] toolkit is used. This
software also allows to consider the detector electronics by adding noise to the simulation.
The advantage of using simulation data is that we have the truth data of the generated events,
this means that the parent particles of each particle are known. This enables the use of supervised
learning techniques as applied in this thesis.
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Chapter 3

Deep Learning

3.1 Introduction
Machine learning (ML) techniques have been used since the advent of computers [63] in the
1950s and have gained increased popularity since the 1980s and are heavily researched topics.
These techniques involve computers to learn from data to carry out tasks without being explicitly
programmed to do so. This makes many modern technologies like self driving cars possible,
which would be too difficult to program manually. Typically ML techniques and algorithms can
be split into their three main applications [64]:

• Supervised learning: The training data consists of input and output pairs (X, Y),
with X a set of input parameters and Y the known output that the model should learn.
The internal parameters of the model are optimised, by minimizing a figure of merit that
quantifies the difference of the classifiers’ prediction and the training label. Examples
include the classification of images and the prediction of stock prices. Traditional techniques
for supervised learning comprise of boosted decision trees [65], support vector machines
[66] and artificial neural networks (ANN) [67].

• Unsupervised learning: This contains for example clustering, a method where unlabelled
data is grouped to find new, meaningful information about its structure, so that data
points, that share similar properties, are in the same group [68]. Typical examples are
pattern recognition and fraud detection. Commonly used techniques include k-means
clustering [69] and gaussian mixture models [70].

• Reinforcement learning: The model learns to make decisions in order to maximise a
reward function that indicates the quality of the decisions. Therefore, the model learns
the desired behaviour via trial and error. The underlying algorithms are often similar to
the ones used in supervised learning. Popular applications for reinforcement learning are
autonomous driving and path finding [71].

In particle physics supervised ML techniques are often referred to as multivariate analysis (MVA),
because several variables are used simultaneously during the training of these algorithms. DL
is a subgroup of ML and has become increasingly popular in recent years with the increasing
capabilities of modern computing hardware and open source software frameworks such as
tensorflow [72] and Keras [73].
Similarly to ML, DL can also be split into supervised, unsupervised and reinforcement learning.
The key difference between ML and DL is how features get extracted. Typically ML approaches
need to use handmade features and feature extraction techniques like Principle Component
Analysis (PCA) and Recursive Feature Elimination (RFE) [74], as using the raw data as input
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for its algorithms often does not lead to good results in many applications such as the processing
of sound and image data.
Modern DL algorithms use a neural network (NN) architecture. NNs consist of various layers
with different purposes. Some layers specialise in feature extraction while other layers can handle
input data arrays of different length. This makes NNs extremely flexible and therefore they can
be used to perform any tasks traditional ML techniques can with usually much better results.
However, this often comes at the cost of larger computational requirements.
A big challenge in ML is the construction of good and reliable high level features. Thanks
to their usually high capacities are NNs able to perform the feature extraction on their own,
therefore DL enjoys great popularity in areas where feature extraction algorithms are lacking
and impractical, such as in image and sound processing [75].
In this thesis DL was used to differentiate between prompt, non-prompt and fake leptons (see
Sec. 4.2). Because the training data was generated from a MC simulation, the truth labels for
these three classes are known. Therefore, this is a multi-classification problem.

3.2 Layer Types
A NN consists of an arrangement of different layers. This includes an input and an output layer,
and a number of so called hidden layers that handle the processing. Each layer takes the output
of the previous layer as its input.
Generally, the layers contained in a NN define the type. For example a neural network that
contains convolutional layers is called convolutional neural network (CNN) and one that contains
recurrent layers is called a recurrent neural network (RNN) [76]. But with most current DL
frameworks, such as Keras [73], it is possible to combine these layers in almost any configuration.

3.2.1 Dense
A dense layer, also called fully connected layer, is a layer, where every output node is directly
connected to every input node. It is the conceptionally simplest layer and very similar to a
perceptron, that has been first theorised by Frank Rosenblatt in 1958 [67]. A simple perceptron
can be used as a linear binary classifier [77]:

f(�→X) = ⎧⎪⎪⎨⎪⎪⎩1, if �→W ⋅ �→X + b > 0
0, otherwise

(3.1)

Where �→X is the input feature vector, �→W is the weight vector and b is the bias value.
This can be generalised to have more than one output [78]:�→

Y (�→X) =W ⋅ �→X +�→b (3.2)

Where �→X is the input feature vector with a length of m, �→Y is the output vector with a length of
n, W is the weight matrix with a dimensionality of n×m and �→b is the bias vector with a length
of n.
A simple graph for this type of layer is given in Fig. 3.1.
A NN consisting of only one dense hidden layer already has the capacity to learn non-linear
decision regions, which gives them a big advantage over the simple perceptron [79].

3.2.2 Simple RNN
RNNs behave differently than neural networks with only dense or convolutional [80] layers.
Those networks are feed forward networks, as the information only propagates into the direction
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Figure 3.1: A graph that illustrates the dense layer with four input and output nodes.

Figure 3.2: Loop structure of a RNN cell[82].

of the predicted output. An RNN feeds its output back into itself, whereas ANNs and CNNs
only feed the information from the input towards the output. Therefore, its strength lies in its
ability to process variable-length sequential data. Typical applications are in text analysis or
weather forecasting [81]. In this case, they are used to sequentially read the particles near our
lepton candidate.
The aim of RNNs is to store the information of an element and to reuse it as another feature for
later elements in the sequence.
A single RNN cell works by feeding back information into itself for every input sequence, as
illustrated in Fig. 3.2.
The Simple RNN is the simplest recurrent layer, as it simply combines the previous time steps
output with the current time steps input, as shown in Fig. 3.3.
Because of their simple architecture, these simple RNNs suffer from the vanishing gradient
problem, which will be explained in Sec. 3.5. This is due to a previous time steps input being
only weakly correlated to a later time steps output, which means that the information of an
earlier element is lost quickly and has only little impact on the processing of later elements.
LSTMs and GRUs solve this problem with their more complicated cell architectures.

3.2.3 Long-Short term memory
The LSTM was proposed by Sepp Hochreiter in 1997 [3] and solves the problems of the simple
RNN, as they were designed to avoid long-term dependency problems. They are based on the
same principle as the simple RNN, but with a more complicated internal structure and an
additional cell state, that is also passed from one time step to the next.
The following step-by-step explanation has been taken from [85] and uses the notation of Fig.
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Figure 3.3: Schematic representation of a RNN cell [83].

Figure 3.4: LSTM architecture[84].
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Figure 3.5: GRU architecture [85].

3.4:
First xt and ht−1 are concatenated, then a decision is made on what information from the cell
state is thrown away:

ft = σ(Wf ⋅ [ht−1, xt] + bf) (3.3)

Then the information of what will be updated into the new cell state is calculated:

it = σ(Wi ⋅ [ht−1, xt] + bi) (3.4)

C̃t = tanh(WC ⋅ [ht−1, xt] + bC) (3.5)

So the new cell state becomes:
Ct = ft ⋅Ct−1 + it ⋅ C̃t (3.6)

Finally, the output will be:
ot = σ(Wo ⋅ [ht−1, xt] + bo) (3.7)

ht = ot ⋅ tanh(Ct) (3.8)

Ct and ht are then passed onto the next cell, and ht is also used as input by the next layer.

3.2.4 Gated recurrent unit
The gated recurrent unit (GRU) has been proposed in 2014 [86]. Its operation principles are
similar to the LSTMs, but it lacks the hidden memory state and also has some small changes
that can be seen in Fig. 3.5:
According to the original paper [86] the performance of the GRU is comparable to the LSTM
with a lower cost on system resources.
Following the same explanation as in the LSTM section, the GRU works as follows:

zt = σ(Wz ⋅ [ht−1, xt] + bz) (3.9)

rt = σ(Wr ⋅ [ht−1, xt] + br) (3.10)
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h̃t = tanh(W ⋅ [rt ⋅ ht−1, xt] + br) (3.11)

ht = (1 − zt) ⋅ ht − 1 + zt ⋅ h̃t (3.12)

3.2.5 Bidirectional Wrapper
In Keras, there is the possibility to wrap the recurrent layer into the bidirectional layer. This
wrapper trains the recurrent layer with the sequence in the positive and negative direction,
afterwards the outputs of the forwards and backwards directions are typically concatenated and
used as inputs for the next layer [87]. This was shown to lead to better results [88].

3.2.6 Batch Normalisation
Batch normalisation was proposed in 2015 by Sergey Ioffe and Christian Szegedy [89] in order to
accelerate the training of a deep neural network. It works by applying a linear transformation
to the ouput of the preceding layer, so that the mean output of a node becomes 0 and the
standard deviation 1. This is done during training for every mini-batch. A mini batch is a
small part of the training data that is evaluated and then used to update the networks internal
parameters (see Sec. 3.5). Batch normalisation addresses the change in the distribution of each
layer’s inputs during training, which requires a much lower learning rate. Therefore, by using
batch normalisation, the learning rate can be much larger and thus the training takes fewer
training steps to complete. In the example given in the original paper [89], training with batch
normalisation speeds up the training of a network by a factor of 5-14 for their image classification
tasks and also improves the performance of these networks.
During the prediction, where the batch size might be one, normalising a layers output in this
way would not be reasonable, therefore a moving average over the normalisation parameters of
the last training batches is calculated and then used for the linear transformation [90].

3.2.7 Droput
Dropout layers have first been theorized in 2014 [91] and are widely used as a simple, yet effective
regularisation technique. A dropout layer randomly deactivates predefined amount of output
nodes of the preceding layer, which is illustrated in Fig. 3.6. This results in the NN learning not
to rely too much on individual neurons which often increases their performance on new data [92].

3.3 Activation Functions
Neural networks use activation functions on the output of each layer to introduce non-linearities.
This is important as a dense NN would otherwise be a series of vector-matrix multiplications
that could be simplified to be a linear function. Therefore, it would not have the capacity to
perform the tasks for which they are used [93].
Traditionally, sigmoid activation functions have been used in hidden layers. These are functions
that are similar to the hyperbolic tangent. As networks grow larger they often suffer from the
vanishing gradient problem described in Sec. 3.6.2. To solve this, the ReLU function (rectified
linear unit) is often used. It has the advantage that during training ReLU’s gradient is very
efficient to calculate, as the gradient is always either 0 or 1 [93]. One variation of the RelU
function is the exponential linear unit (ELU), which is defined as

f(x) = ⎧⎪⎪⎨⎪⎪⎩x if x > 0
ex, otherwise

. (3.13)
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(a) Neural network without dropout. (b) Neural network with dropout.

Figure 3.6: Illustration of a neural network with (a) and without (b) dropout activated.

3.3.1 Softmax
The softmax [94, 95] function is applied to the output of a NN for multiclassification tasks. It
non-linearly transforms the output in a way that the per-class confidence scores add to one.
This allows the final output to be interpreted as a probability:

s(�→v )i = evi∑T
t=1 evj

for i = 1, ..., T (3.14)

Where �→v is the predicted network output before softmax and T is the number of output classes.

3.4 Cross-entropy Loss
In order to evaluate the output of a network a loss function is needed. The loss function gives a
quantitative measure on how much the predicted output of the network differs from the ground
truth. The most commonly used loss function for classification in DL is the cross-entropy loss,
defined in Eq. 3.15.

H(�→u ,�→v ) = − T∑
t=1 ut ln vt (3.15)

Where �→u is a vector with the binary truth labels, �→v is a vector with the softmax ouput and T
is the number of output classes. Depending on the intended use of the neural network, other
loss functions have to be used, for example the mean squared error for regression tasks [96].

3.5 Gradient Descent
A NN is trained by minimising a suitable loss function. This is done via gradient descent, an
iterative minimisation algorithm. The gradient for all internal parameters, weights and biases,
is calculated with the backpropagation algorithm, which will be described in the next section.
These parameters are then updated by a fraction of their gradient. This fraction is defined by
the so-called learning rate. These steps are repeated until the gradient becomes small, which
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means that a local minimum of the loss function was found. In practice the algorithm can also
be stopped after a maximum number of iterations is reached [97].
One improvement on the standard gradient descent is the ADAM (adaptive moment estimation)
[98] optimizer. During the training process the learning rate for each individual parameter is
dynamically adapted by scaling their gradients inversely proportional to the L2 norm of their
past and current gradients. This leads to a convergence of the gradient descent algorithm with
fewer iterations.

3.6 Backpropagation
There are two main ways to calculate the gradient of the loss function. Numerically by adding a
small � to each internal parameter of the network and revaluating it. In praxis, the analytical way,
which is called back propagation, is much more computationally efficient, as many calculations
can be stored and reused. This method was invented in 1976 by Seppo Linnainmaa [99]. It
allows for the calculations to be distributed over many processing cores, as can be found in
modern GPUs. This enables the training of very large NNs for various tasks such as self driving
cars or the identification of leptons at the CMS experiment.
The calculation of the gradient via the backpropagation algorithm consists out of three main
steps:

• Forward pass: In the forward pass the network is evaluated and all the intermediate
values are stored.

• Calculation of local gradients: All local gradients are calculated independently.

• Backward pass: Local gradients are aggregated using the chain rule of derivation.

The backpropagation algorithm is the most integral part of DL, as it enables the training of
large state of the art NNs. To give a better understanding of how this algorithm works, a
minimal example for an arbitrary network of additions and multiplications, the operations found
in NNs, is given in Figures 3.7-3.9. The blue cells represent the inital input values, the green
cells represent internal operations. The goal is to calculate the gradient of the final cell h in
dependence of the input values a − d.

Figure 3.7: The layout of an arbitrary network for the minimal backpropagation example. The
blue cells represent the input values, the green cells represent internal operations.

The network is evaluated and the intermediate results are stored:
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Figure 3.8: Forward pass: The network is evaluated and the intermediate values are stored.

The local gradients are calculated independently:

Figure 3.9: Calculation of local gradients: The local gradients are calculated independently
(orange boxes).

Finally the local gradients are aggregated in the backward pass:

∂h

∂a
= ∂h

∂g
⋅ ∂g

∂e
⋅ ∂e

∂a
= 21

∂h

∂b
= ∂h

∂g
⋅ ∂g

∂e
⋅ ∂e

∂b
+ ∂h

∂f
⋅ ∂f

∂b
= 25

∂h

∂c
= ∂h

∂f
⋅ ∂f

∂c
= 11

∂h

∂d
= ∂h

∂g
⋅ ∂g

∂d
= 7

(3.16)

3.6.1 Training
To train a network the data set is split into training and validation sets. The network is then
trained on the training data set and after each iteration, also called epoch in this context, the
network is evaluated with the validation data to validate that the training is converging. An
example for the two resulting loss curves is shown in Fig. 3.10.
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Figure 3.10: The training and validation loss curves of a typical training of the DeepLepton
classifier. The network was trained for 24 hours and shows good convergence. The blue line
represents the training loss and the orange line represents the validation loss.

3.6.2 Vanishing and Exploding Gradient
When the back propagation algorithm propagates away from the output layer, the gradients
might get smaller and eventually approach zero. This leaves the weights of these layers almost
unchanged. A possible cause is the sigmoid function being used as an activation function, as
their gradients for large values are very small [100]. Alternatively, it could also be caused by the
input having little correlation with the output, as it is often the case with simple RNN layers
[101, 102]. As a consequence, the NN takes a lot longer to train.
The opposite effect is called exploding gradient. It happens when the aggregated gradients
become very large, which causes the gradient descent algorithm to diverge and is often caused
by the ReLU activation function, but can easily be solved by using a batch normalisation layer
after each computational layer [100].
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Chapter 4

Lepton Identification

4.1 Important processes with lepton final states
4.1.1 Drell-Yan process
The Drell-Yan process is the creation of a lepton pair in hadron collisions via an intermediate
vector boson [103].This process was described by Sidney Drell and Tung-Mow Yan in 1970.
A quark-antiquark pair from the initial state annihilate to a virtual photon γ∗ Fig. 4.1 (a) or a Z
boson Fig. 4.1 (b). The Z boson has a probability of 10.1% to decay into a lepton-antilepton pair
(e+e−, µ+µ− and τ+τ− in equal parts) [104]. Alternatively the Z boson can decay into various
hadrons with a probability of 69.9%. The branching ratio into neutrinos is 20%.
In Fig. 4.2 the dimuon invariant mass distribution for events recorded in 2017 and 2018 at
the CMS experiment is shown. An important feature of this spectrum are the peaks due to
mass resonances with SM particles. The invariant mass peak corresponding to the Z boson
mass is located at 91.2 GeV. This “standard candle” can be easily reconstructed even in dense
proton-proton environments and is used for the calibration of particle detectors [105, 106].
In addition to being important for the detector calibration, this process also has a high significance
for searches of new physics beyond the SM and for quantifying SM parameters. Due to the DY
process having a clean final state, it is measured with high efficiency [106, 107]. Therefore the
DY process is important for the accurate measurements of the production rates and masses of
the Z and W bosons, as well as measuremts of the protons’ parton distribution functions [18].

q̄

q

l+

l−
γ∗

(a)

q̄

q

l+

l−
Z

(b)

Figure 4.1: Feynman diagrams of the Drell-Yan process with the exchange of a virtual photon
(a) and with a Z boson (b).
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Figure 4.2: The dimuon invariant mass distribution for events recorded in 2017 and 2018 at the
CMS experiment [108].

4.1.2 Top quark pair production
Another important process is top quark pair production. These are events where a tt̄ pair is
produced in the initial proton-proton collision through an interaction of the strong force. Leading
order (LO) Feynman diagrams are shown in Fig. 4.3. A tt̄ pair can be produced through the
annihilation of a quark-antiquark pair (a) or through gluon-gluon fusion (b, c, d) [110]. The top
quark is the heaviest fundamental particle with an invariant mass of 172.76 GeV [104]. It was
discovered in 1995 at the Tevatron particle accelerator at Fermilab [111]. Due to its high mass
and short lifetime of 4 × 10−25 s it decays before travelling a significant distance and before it
hadronizes [112].
The top quark decays almost exclusively into a W+ boson and a bottom quark. It could in
principle decay into a down or strange quark, but these decays are suppressed by the very
small values of the corresponding matrix elements of the Cabibbo-Kobayashi-Maskawa (CKM)
[113, 114] matrix ∣Vtd∣ and ∣Vtd∣, given in Eq. 4.1 with the most current values revised in March
2020 [115], compared to the large value of ∣Vtb∣. The CKM matrix is a unitary matrix that
indicates the strength of interaction of the up, charm and top quarks with the down, strange
and bottom quarks via the W boson. Due to the GMI mechanism [116] decays of the top quark
via the Z boson are also suppressed.

∣VCKM ∣ = ⎡⎢⎢⎢⎢⎢⎣
∣Vud∣ ∣Vus∣ ∣Vub∣∣Vcd∣ ∣Vcs∣ ∣Vcb∣∣Vtd∣ ∣Vts∣ ∣Vtb∣

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣
0.97370 ± 0.00014 0.2245 ± 0.0008 0.00382 ± 0.00024

0.221 ± 0.004 0.987 ± 0.011 0.041 ± 0.0014
0.008 ± 0.0003 0.0388 ± 0.0011 1.013 ± 0.030

⎤⎥⎥⎥⎥⎥⎦ (4.1)

The bottom quark hadronises, which leads to a jet in the subsequent event. The W boson decays
into either a lepton and a neutrino with a probability of about 33% or into a hadron with a
probability of 67% [104]. Therefore a top-antitop quark pair can either decay dileptonically
(l+νl and l−ν̄l) with a probability of about 11%, into a single lepton (l+νl or l−ν̄l and qq̄′) with a
probability of about 44% or into two quark-antiquark pairs with a probability of about 45%.This
results in a minimum of either two, three or four hadron jets in an event.
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Figure 4.3: Four LO processes of top quark production, one by quark-antiquark annihilation (a)
and the other three by gluon-gluon fusion (b, c, d). Diagrams after [109].

4.2 Lepton Classes
We classify leptons into three categories: Prompt, non-prompt and fake leptons. Prompt leptons
are the signal category, while non-prompt and fake leptons are considered as background. This
was also done in this thesis. Differentiating these theree classes with a high efficiency is important
for many analyses to do accurate measurements with a high statistical significance.
Prompt leptons emerge from the primary interaction point from the decay of the vector bosons Z
and W in processes. In this thesis leptons originating from DY and tt̄ are considered as prompt.
Non-prompt leptons originate from a secondary vertex (SV). This is an interaction point that
occurs due to the decay of relatively long lived particles that travelled a significant distance
in the detector. Often these are B-mesons that decay leptonically, or pions and kaons that
decay before hitting the calorimeters [117]. As non-prompt leptons originate from SVs that are
displaced from the primary vertex (PV), they differ from prompt leptons in their distributions
of the impact parameter and isolation. The impact parameter is a lepton feature, that is the
shortest distance of the reconstructed track from the primary vertex. A histogram plot for the
impact parameter dz is shown in Fig. 4.4. Another important feature for differentiating prompt
and non-prompt leptons is the isolation. It provides a measure on the number of other particles
in the vicinity around the lepton. The isolation number is usually high for lepton candidates
produced inside hadronic jets and much smaller for prompt leptons. The relative isolation is
defined as the pT -sum of all tracks within a cone Rcone = √Δη2 +Δφ2, centered on the lepton,
divided by the lepton transverse momentum pTlep [118]:

Irel = ∑N
i=1 pT,i

pT , lep
(4.2)

η is the pseudorapidity, a measure of angle along the beam axis, and φ is the polar angle
perpendicular to the beam axis.
Fake leptons are lepton candidates that have been misidentified by the CMS detector and
reconstruction software as leptons [119]. Therefore, these are in a separate category. Their
defining feature is the absence of a lepton candidate at the generator level. Fake leptons have
the following sources.
As electron reconstruction is based on the particle tracks in the silicon tracer and the corre-
sponding energy deposits in the ECAL, the track of a charged hadron can be falsely linked with
an ECAL shower caused by a photon. The distributions of the energy deposited by electrons
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Figure 4.4: Distribution of the longitudinal impact parameter dz in the electron channel using
the DeepLepton training data from the year 2016.

Figure 4.5: Histogram of the relative isolation distribution for Rcone = 0.3. The underlying data
comes from the training data for electrons of the year 2016 in tt̄ processes.
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electron muon
dxy < 0.02 dxy < 0.02
dz < 0.1 dz < 0.1
η < 2.5 η < 2.4

if pT ≤ 25:
Irel⋅ pT < 5 Irel⋅ pT < 5

if pT > 25:
Irel < 0.02 Irel < 0.02

candidate is particle flow muon
candidate is global muon

Table 4.1: Prompt electron and muon requirements used in the cut-based lepton ID for the stops
compressed search.

and photons is very similar, but the so called shower shape is a parameter that can be used to
differentiate them. As electrons have a low mass, they radiate bremsstrahlung photons tangential
to their track in the magnetic field of the solenoid. This results in a different shower shape for
electrons and photons [48].
The muon reconstruction is based on the tracks in the muon system in combination with a
matching track in the silicon tracker. Almost all hadrons are absorbed by the HCAL. Some
particles manage to “puch through” the HCAL and cause hits in the muon system. Additionally
a track in the muon system can be linked to an inner track by chance. A parameter that is
commonly used to differentiate these fake muons from prompt and non-prompt muons is the
segment compatibility, a measure for the match of hits in the individual muon chambers.

4.3 Cut-based lepton identification
The stops compressed cut based lepton ID is a cut-based lepton identifier used in a search for
events that contain decays of the top squark [120], the supersymmetric partner of the top quark.
One important part of the event selection of this search is the existence of exactly one low pT

electron or muon. In addition to this the lepton has to satisfy further criteria. For a current (at
the time of writing) version of this search they are listed in Tab. 4.1 for electrons. In the results
section these cuts will be used as a lepton selection to compare the performance of the isolation
cut with the DeepLepton classifier to determine the theoretical improvements the usage of the
DeepLepton classifier would bring.

4.4 A conventional multivariate lepton ID
A ML based approach to prompt lepton identification is the TTH lepton MVA. It was originally
developed and used for the discovery of the tt̄H process [121]. It is implemented as a lepton
feature in the analysis data framework and assigns every lepton a scalar value between 0 and 1
that can be interpreted as a confidence to differentiate between prompt and not-prompt leptons.
The underlying architecture is based on BDTs and uses the same global lepton features as the
classifier developed in this thesis.
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DeepLepton

The DeepLepton identification algorithm, that has been developed in this thesis, is based on the
DeepJet framework [4], which is used to identify high pT hadron jets. DeepLepton exploits the
information of particles in the vicinity of the lepton. Both use TensorFlow [72] with the Keras
[73] API as a frontend interface and the Python programming language as a basis. The training
process i.e. prediction and backpropagation can be highly parallelised, therefore TensorFlow
has the option of training the DL networks directly on a graphics processing unit (GPU). The
GPU training is enabled by CUDA [122] which was developed by NVIDIA. The GPU used for
training is a NVIDIA Tesla V100-GPU.

5.1 Overview and usage of Particle Flow Candidates
Lepton classification gradually improved during the course of the last decade. These approaches
range from simple cut-based IDs to algorithms using ML and DL, such as the TTH lepton MVA.
However, none of the previous techniques use the information of the other reconstructed particles
in the vicinity of the lepton, the PF candidates, except for the isolation parameters.
Technically, the lepton candidate is represented by a list of features. The features of the PF
candidates are exploited by also feeding them into the network. This poses a challenge, as not
all leptons have the same amount of particles in their vicinity, which cannot be handled easily
by ML techniques or DL without recurrent layers. Therefore, recurrent sub-networks are used,
with lists of features for the PF candidates that are fed sequentially into these sub-networks.
The output of these sub-networks is then concatenated with the output of a sub-network that
processed the global lepton features. This forms the input for the final sub-network that outputs
a probability for each lepton class. A more detailed discussion of the network’s architecture can
be found in Sec. 5.5.
The usage of the PF candidates gives the DeepLepton classifier an advantage in performance
over previous algorithms, which will be shown in Sec. 6.1.

5.2 Training features
This section will discuss important features of lepton candidates that are often used for the
classification of leptons. Additionally, features of hadrons, photons and secondary vertices will
be explained, as the DeepLepton classifier implemented in this thesis also uses the particles in
the vicinity of the lepton in an effort to gain more information about the lepton’s creation. The
detailed functionality will be explained in Sec. 5.1 and a full list of all features used for training
with a short description can be found in Sec. 5.1, Sec. 5.2, Sec. 5.3 and Sec. 5.4.
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(a) (b)

Figure 5.1: Distributions of pT (a) and η (b) in the electron channel using the DeepLepton
training data from the year 2016.

5.2.1 Electron and muon features
Electrons and muons are treated differently during reconstruction, resulting in slightly different
lepton candidate features. I begin with discussing the features that are common to both lepton
classes.
The most important features are pT and η, the lepton candidate’s transverse momentum and
the pseudorapidity, which is defined as

η = − ln(tan(θ
2
)) , (5.1)

where θ is the lepton candidate’s angle to the beam axis. A key advantage of η over θ is, that a
angular difference Δη between two particles is Lorentz invariant if their masses are negligible.
Distributions of these two parameters are shown in Fig. 5.1.
A group of important features is related to the impact parameter d. They are shown in Fig. 5.2.
dxy represents the closest distance of the reconstructed track to the PV perpendicular to the
proton beams and dz is the closest distance parallel to the proton beam. The parameters dxy Err

and dz Err correspond to their respective uncertainties. The 3D impact parameter Ip3d gives the
closest distance of the fitted track to the PV. The unit for these parameters is cm. Additionally,
the significance of the 3D impact parameter sIp 3d is also used. In general, the distributions of
these parameters are sharper for prompt leptons, while they are broader for non-prompt and
fake leptons.
A second group of parameters that is important in lepton classification are the measures of
the lepton isolation. The relative isolation is defined as the pT -sum of all tracks within a cone
Rcone = √Δη2 +Δφ2, centered on the lepton candidate !, divided by the lepton candidate’s
transverse momentum pT,� [118]:

Irel = ∑N
i=1 pT,i

pT , !
(5.2)

There are versions of this parameter with a Rcone = 0.3 and Rcone = 0.4, with all particles
in the vicinity of the lepton Irel all and with only charged particles in the vicinity of the
particle Irel charged. And "mini" versions of the isolation, Irel mini all and Irel mini charged, which were
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Distributions for the lepton variables related to the impact parameter d in the
electron channel using the DeepLepton training data from the year 2016.
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introduced to improve the efficiency of IDs based on isolation for very high pT muons. These
function by varying the cone size Rcone between 0.2 and 0.05 as a function of pT between 50
and 200 GeV. Similar to the isolation are the relative momentum of the lepton to the closest
jet pt reljet and the relative isolation in the matched jet Irel jet. Examples for the distribution
of these variables are given in Fig. 5.3. The distributions for prompt leptons are less broad
than the distributions of non-prompt and fake leptons, except for the distribution of the pT rel jet

variable, where the opposite is true. This is to be expected, as non-prompt and fake leptons are
mostly found within jets.

5.2.2 Electron Features
Other important electron features are related to the ECAL shower shape of the electron, such as
σiηiη [123] and R9, which correspond to the width and shape of the ECAL shower respectively.
R9 is defined as the ratio of energy deposits within ECAL crystal areas

R9 = E3×3
Esupercluster

, (5.3)

where E3×3 is the energy deposited in a 3×3 crystal array and Esupercluster is the energy deposited
in the local supercluster [124]. Their distributions are shown in Ref. 5.4. These are especially
useful when segregating prompt from fake electrons.
Furthermore, features corresponding to the electrons energy are used. Their distributions are
given in Fig. 5.5, H/E is the fraction of the HCAL energy deposit over the ECAL energy deposit
and ΔηSC is the difference in pseudorapidity between the electron and the local supercluster. The
variable ECorr gives the ratio of the calibrated energy over the miniAOD energy and E−1 − p−1

represents the difference of the inverse energy and the inverse momentum. The energy error Eerr
is the error of the cluster-track combination. A common feature of these five distributions is
that the shapes for prompt and non-prompt are mostly very similar while the distributions for
fake electrons are noticeably broader.
The features IDcut Based and IDnoIso are both identifiers introduced in 2017 and are a cut-based
boolean selector and based on a MVA respectively. IDnoIso does not use the isolation parameters.
Their distributions are shown in Fig. 5.6.
The electron lepton feature of note is the number of lost hits Nhits lost in the tracker. The
distribution of this feature is given in Fig. 5.7. As it can be expected, fake electrons have more
lost hits than prompt and non-prompt electrons.

5.2.3 Muon Features
Further muon features of note include the two IDs IDlowpT and IDmedium. IDlow pT is an MVA
ID with the aim of identifying prompt leptons with high efficiency and IDmedium is a cut-based
muon ID that requires the muon to be reconstructed as either a global-muon or as an arbitrated
tracker-muon and satisfies additional track quality requirements. It was designed to be an
efficient selector for prompt muons [125]. Distributions for these two features are shown in Fig.
5.8.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Distributions for the lepton variables Irel charged (a), Irel all (b), Irel mini all (c),
Irel mini charged (d), pT rel jet (e) and Irel jet (f) in the electron channel using the DeepLepton
training data from the year 2016.
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(a) (b)

Figure 5.4: Distributions for the lepton variables σiηiη (a) and R9 (b) in the electron channel
using the DeepLepton training data from the year 2016.

(a) (b)

Figure 5.8: Distributions for the lepton variables IDmedium (a) and IDlow pT (b) in the muon
channel using the DeepLepton training data from the year 2016.

As muons are detected inside the silicon tracker and in the muon system, parameters regarding
the track fit quality and compatibility of the inner and outer track are used to separate fake
leptons. These include the so called segment compatibility, a measure of the compatibility of hits
in the individual muon chambers. Additionally, the number of matched muon stations Nstations
and the number of tracker layers with hits Ntracker layers are used. These numbers are typically
higher for non-fake leptons. pT err represents the uncertainty of the transverse momentum of the
muon track. The distributions of these variables are shown in Ref. 5.9.

5.2.4 Particle Flow Candidate Features
As mentioned before, the PF candidates form an integral part of the DeepLepton classifier. They
share many of the features of the leptons with some additional features. PF candidates only

—– 39 —–



Maximilian Moser DeepLepton

(a) (b)

(c) (d)

(e)

Figure 5.5: Distributions for the lepton variables H/E (a), ΔηSC (b), ECorr (c), E−1 − p−1 (d)
and Eerr (e) in the electron channel using the DeepLepton training data from the year 2016.
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(a) (b)

Figure 5.6: Distributions for the lepton variables IDcut Based (a) and IDnoIso (b) in the electron
channel using the DeepLepton training data from the year 2016.

Figure 5.7: Distribution for the lepton variable Nhits lost in the electron channel using the
DeepLepton training data from the year 2016.
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(a) (b)

(c) (d)

Figure 5.9: Distributions for the lepton variables segment compatibility (a), Nstations (b),
Ntracker layers (c) and pT err (d) in the muon channel using the DeepLepton training data from
the year 2016.
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Feature Description
φ polar angle
charge electric charge
dxy perpendicular impact parameter, in cm
dz longitudinal impact parameter, in cm
dxy Err dxy uncertainty, in cm
dz Err dz uncertainty, in cm
Ip3d 3D impact parameter, in cm
sIp 3d 3D impact parameter significance
Irel all 0.3 relative isolation ΔR = 0.3, all particles
IDrel charged 0.3 relative isolation ΔR = 0.3, charged particles
Irel mini all mini relative isolation, all particles
Irel mini charged mini relative isolation, charged particles
Irel jet relative isolation in matched jet
pT rel jet relative momentum of the lepton with respect to the closest jet after subtracting the lepton
IDPDG PDG code assigned by the event reconstruction (not by MC truth)
IDcut Based cut-based ID Fall17 V2
IDno Iso mva ID without isolation
R9 ECAL shower shape
σiηiη ECAL shower width
H/E ratio of HCAL and ECAL energy deposit
ΔηSC η difference between electron and local supercluster (SC)
ECorr ratio of the calibrated energy/miniaod energy
E−1 − p−1 difference of the inverse energy and momentum
Eerr energy error of the cluster-track combination
Nhits lost number of missing tracker hits
convVeto pass conversion veto
vidNestedWPBitmap VID compressed bitmap
dr03EcalRecHitSumEt non-PF ECAL isolation within a ΔRcone of 0.3 with electron pT > 35 GeV
dr03HcalDepth1TowerSumEt non-PF HCAL isolation within a ΔRcone of 0.3 with electron pT > 35 GeV
dr03TkSumPt non-PF track isolation within a delta ΔRcone of 0.3 with electron pT > 35 GeV

Table 5.1: Electron training features.

features include the so called PUPPI weights, the pileup per particle identification weights. They
indicate the probability of the particle being from pileup, which means the particle originates
from another collision in the same bunch crossing. Furthermore, χ2 measures of the track fit of
the charged types of PF candidates, electrons, muons and charged hadrons, are used.
Two features that are used by all types of PF candidates are the absolute of the relative transverse
momentum and the absolute of the angular difference of the PF candidate to the lepton in
question. These features are also used for the SVs, which also use the position of the vertex, the
pointing angle of the decays, the decay length and the number of degrees of freedom of the fit as
features.
The multiplicities of PF candidates and SVs in the vicinity of the lepton are shown in Fig. 5.10.
These distributions show a big similarity to the distributions of the relative isolation parameters
and the prompt leptons have a lot fewer particles in their vicinity.

5.2.5 Training Feature Lists
The following tables, Tab. 5.1, Tab. 5.2, Tab. 5.3, Tab. 5.4 and Tab. 5.5, show the full lists of
training features, the most important ones have been discussed in the previous sections. The
explanations have been taken from [126] and from the nanoAOD ROOT-branch descriptions.
Plots for the electron and muon input variables for all trainings are given in Appendix B.

5.3 Selection of MC Data Samples
For the generation of training data, MC samples were used. These contain data from the years
2016, 2017, and 2018, by using the samples from the RunIISummer16miniAODv3, RunIIFall17miniAODv2
and RunIIAutumn18miniAODv1 campaigns.
The data is taken for two types of training. One type will take prompt leptons from DY samples
and non-prompt and fake leptons from QCD samples. These training data sets will be referred to
as DYvsQCD. The other training data sets are comprised of samples that include events with top
quark pair production and will be referred to as tt̄. In these samples all leptons corresponding
to their class are used. A summary for all training samples can be found in Tab. 5.6. Networks
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(a) (b)

(c) (d)

(e) (f)

Figure 5.10: Distributions for the PF candidate multiplicities of charged hadrons (a), neutral
hadrons (b), electrons (c), muons (d) and photons (e) in the electron channel using the DeepLepton
training data from the year 2016.
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Feature Description
φ polar angle
charge electric charge
dxy perpendicular impact parameter, in cm
dz longitudinal impact parameter, in cm
dxy Err dxy uncertainty, in cm
dz Err dz uncertainty, in cm
Ip3d 3D impact parameter, in cm
sIp 3d 3D impact parameter significance
Irel all 0.3 relative isolation ΔR = 0.3, all particles
Irel charged 0.3 relative isolation ΔR = 0.3, charged particles
Irel all 0.4 relative isolation ΔR = 0.4, all particles
Irel mini all mini relative isolation, all particles
Irel mini charged mini relative isolation, charged particles
Irel jet relative isolation in matched jet
Irel tk tracker-based relative isolation ΔR = 0.3 for high pT
pT rel jet relative momentum of the lepton with respect to the closest jet after subtracting the lepton
pT rel tuneP relative pT , tuneP pT /pT
pT err pT Error of the muon track
Ntracker layers number of layers in the tracker
Nstation number of matched stations with default arbitration (segment & track)
segment compatibility compatibility of inner and outer muon track
IDmedium cut-based ID, medium WP
IDlow pT low pt muon ID score

Table 5.2: Muon training features.

Feature Description
pT transverse momentum
η pseudorapidity
phi polar angle
charge charge
m mass
pT rel absolute difference in transverse momentum to lepton candidate
ΔR angular difference to lepton candidate
d0 distance to PV
d0 Err error of d0
dz longitudinal impact parameter
dz Err error of dz
PUPPIweight pileup per particle identification weight
PUPPIweight no,
 pileup per particle identification weight without the lepton
χ2

trk normalized χ2 of the track fit
χ2

vtx χ2 of the vertex fit
Nhits lost lost inner hits
pvAssocQuality primary vertex association quality
trkQuality track quality mask

Table 5.3: Charged hadron, electron and muon PF candidate training features.

Feature Description
pT transverse momentum
η pseudorapidity
phi polar angle
pT rel absolute difference in transverse momentum to lepton candidate
ΔR angular difference to lepton candidate
PUPPIweight pileup per particle identification weight
PUPPIweight no,
 pileup per particle identification weight without the lepton

Table 5.4: Neutral hadron and photon PF candidate training features.

Feature Description
pT transverse momentum
η pseudorapidity
phi polar angle
m mass
pT rel absolute difference in transverse momentum to lepton candidate
ΔR angular difference to lepton candidate
x secondary vertex X position, in cm
y secondary vertex Y position, in cm
z secondary vertex Z position, in cm
Dlen decay length in cm
sD len decay length significance
Dxy 2D decay length in cm
sD xy 2D decay length significance
Pangle pointing angle, i.e. arccos(PSV ∗ (PSV −PPV))
χ2 reduced χ2, i.e. χ/Ndof
Ndof number of degrees of freedom

Table 5.5: SV PF candidate training features.
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Year Particle Training Sample Table Signal/Background
2016 electron DYvsQCD Tab. A.1 Signal
2016 electron DYvsQCD Tab. A.3 Background
2016 electron tt̄ Tab. A.4 Signal+Background
2016 muon DYvsQCD Tab. A.1 Signal
2016 muon DYvsQCD Tab. A.2 Background
2016 muon tt̄ Tab. A.4 Signal+Background
2017 electron DYvsQCD Tab. A.5 Signal
2017 electron DYvsQCD Tab. A.7 Background
2017 electron tt̄ Tab. A.8 Signal+Background
2017 muon DYvsQCD Tab. A.5 Signal
2017 muon DYvsQCD Tab. A.6 Background
2017 muon tt̄ Tab. A.8 Signal+Background
2018 electron DYvsQCD Tab. A.9 Signal
2018 electron DYvsQCD Tab. A.11 Background
2018 electron tt̄ Tab. A.12 Signal+Background
2018 muon DYvsQCD Tab. A.9 Signal
2018 muon DYvsQCD Tab. A.10 Background
2018 muon tt̄ Tab. A.12 Signal+Background

Table 5.6: Training sample summary.

for each year, training type and lepton flavour are trained separately. In total, 12 networks were
trained.

5.4 Data Preprocessing
5.4.1 Data Processing with CRAB
The CMS Remote Analysis Builder (CRAB)[127] is an utility to process data and MC samples of
the CMS experiment. It enables the use of computational resources that are linked to the CMS
experiment and are located around the world. With this tool the samples for the preprocessing
are generated.

5.4.2 Step 1 - Selection
Step 1 is the internal name for the first preprocessing step, after the samples have been generated
with CRAB. The data that is input into this step is event-based, which means that all particles
of the event are saved. Therefore step 1 consists of two main loops. The first one iterates through
all events and finds the leptons. The second loop then writes out all particles in the vicinity, the
PF candidates, and secondary vertices (SV) in a ΔR-cone of 0.5 around the lepton and sorts
them into prompt, non-prompt and fake data files.

5.4.3 Step 2 - Mix and Sort
In classification tasks with Deep Learning it is important that the training data is relatively
balanced in the amount of entries per class. For slightly unbalanced data re-weighting the loss
function can be a solution. In this thesis we are interested in the network performance of prompt
versus non-prompt and fake leptons. Therefore the number of prompt leptons is chosen to be
equal to the number of non-prompt and fake leptons. This is achieved by randomly selecting a
lepton of one of the three classes until one class runs out of leptons, so that the number matched
Nprompt = Nnon−prompt +Nfake.
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variable bins
pT 3.5, 4.35, 5.42, 6.74, 8.4, 10.45, 13.02, 16.20, 20.17, 25.10, 31.24

38.89, 48.40, 60.24, 74.99, 93.34, 116.18, 144.61, 180.01, 224.05, 278.88
347.13, 432.07, 537.8, 669.40, 833.22, 1037.11, 1290.91, 1606.80, 2000

η -2.5, -2, -1.5, -1, -0.5, 0.5, 1, 1.5, 2, 2.5

Table 5.7: Bins for normalisation.

In addition to this, the PF candidates are sorted by their relative transverse momentum to the
lepton and the secondary vertices are sorted by the angular distance to the particle. This sorting
is important, as the recurrent layers of the deep neural network need their inputs ordered to
perform their task of extracting information.

Conversion

As Keras, the deep learning framework used in this thesis, needs numpy [128] arrays as training
input, the ROOT [129] files, that have been used until this point, need to be converted. This is
done with the DeepJetCore [4] repository. In addition to converting the data from ROOT to
numpy, it also zero-pads the data of the particles around the lepton.
DeepJetCore was developed for the identification of hadron jets and the datastructure of jets
with their individual particles and leptons with their vicinity particles is very similar. Both
consist of global variables and sorted lists of different flavour particles, therefore, a lot of the
pre-existing code can be reused.
Because the distributions of the lepton variables pT and η vary between the three lepton classes,
they are normalised to a reference class. The reference class was chosen to be the prompt class.
To get similar distributions for each class, the leptons were put into pT and η bins (see Tab.
5.7). Then leptons are discarded from the other two classes, so that the ratio of the number of
particles in its bins matches the one of the reference class. This is done, so that the network
does not learn to discriminate based on these variables.

5.5 Network Layout and Training settings
The DeepLepton classifier makes use of a large NN with LSTMs and dense layers. The NN
architecture is given in Fig. 5.11. The integers in the blue boxes stand for a dense layer with
that amount of nodes. The numbers in front of LSTM indicate the number of cells in the LSTM
layers. They were used in conjunction with the bidirectional wrapper. Because it usually is
good practice to normalize the input data, as this often mitigates training problems and usually
leads to higher training accuracies, a batch normalisation layer has also been placed as a first
layer to normalise the input data. For regularisation dropout layers with a dropout rate of 50%
were placed after each dense layer. To accelerate the training a batch normalisation layer is also
placed after each dropout layer. The ELU function was used as an activation function for the
dense layers. For the training the cross-entropy loss was used and the ADAM [98] optimiser was
used to accelerate the training further.
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Figure 5.11: The standard DeepLepton neural network layout with LSTM as recurrent cells. The
numbers in the boxes indicate the number of nodes per dense layer, and the numbers in front
of LSTM indicate the number of parallel cells. Additionally batch-normalisation and dropout
layers were used after each dense and recurrent layer of the figure to improve convergence.
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Chapter 6

Results and Discussion

While no preselection was applied to the leptons used for the training of the networks, one is
applied to all leptons used for evaluation of the DeepLepton classifier, which is defined in Tab.
6.1. One area of improvement of the DeepLepton classifier is over lepton isolation cuts.

6.1 Network performance
6.1.1 Discriminator shapes
Discriminator shapes show the distribution of the network’s predicted output for a certain output
class with respect to the true input class. The lepton classes are provided by a MC simulation, as
per the requirement of supervised learning. Therefore, the discriminator shapes can be plotted
for each of the three true classes. An example for the 2016 muon DYvsQCD training is shown
in Fig. 6.1. These discriminator histograms show that there is a good separation between
the classes. The discriminator histogram plots for all trainings can be found in the appendix
Appendix C.

6.1.2 ROC and Efficiency
To give a measure of quality of a classifier, receiver operating characteristics (ROC) [130] curves
are used. They allow for a clear comparison between classifiers. The ROC gives the true positive
rate as a function of the false positive rate of the classifier. They are defined as:

TPR = Ntrue positive
Ntrue positive +Nfalse negative

(6.1)

FPR = Nfalse positive
Nfalse positiveNtrue negative

(6.2)

An example, that compares the ROCs of the DeepLepton classifier with the TTH lepton MVA
and the stops compressed cut based lepton ID’s isolation cut is given in Fig. 6.2.

electron muon
dxy < 0.02 dxy < 0.02
dz < 0.1 dz < 0.1
η < 2.5 η < 2.4

candidate is particle flow muon
candidate is global muon

Table 6.1: Prompt electron and muon requirements used in the preselection for the evaluation of
the DeepLepton classifier.



Maximilian Moser DeepLepton

(a) (b)

(c)

Figure 6.1: Discriminator value histograms of the 2016 muon DYvsQCD training from a prediction
on the DYJetsToLL_M50_LO, DYJetsToLL_M50_LO_ext2 samples and samples in Tab. A.2. They
are shown for the prompt (a) non-prompt (b) and fake (c) classes.
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Figure 6.2: ROC of the 2016 muon DYvsQCD training from a prediction on the
DYJetsToLL_M50_LO, DYJetsToLL_M50_LO_ext2 samples and samples in Tab. A.2 for the pT -bin
3.5-7.5 GeV.

A ROC curve also allows for the selection of the working point. This means, that it is possible
to choose a desired false positive rate and receive the corresponding true positive rate. The true
positive rate is then referred to as signal efficiency, the amount of signal leptons that are correctly
classified as signal. Whereas the false positive rate is referred to as background efficiency, the
amount of background leptons that are falsely classified as signal. Ideally, the signal efficiency is
close to one, whereas the background efficiency stays close to zero.
The corresponding signal and background efficiencies are calculated for each individual pT bin.
As an example the resulting efficiency curves for the 2016 muon DYvsQCD training are shown
in Figure 6.3 for 1%, 2% 5% and 10% targeted background efficiency, once for the low pT range
from 3.5 to 30 GeV and once for the high pT range up to 300 GeV.

6.1.3 Permutation Variable Importance
The permutation variable importance [131] is a conceptually simple way to compare the relative
importances of input features. In principle this works by shuffling the input data column of one
variable at a time to make sure that the shuffled column has the same distribution as before,
but is decorrelated from the rest of the data. Then the classifiers performance is re-evaluated
and the increase in loss compared to the baseline is calculated. This increase is interpreted
as a measure for the importance of this variable. The differences are then linearly scaled to a
maximum of one.
The permutation variable importance was measured for the data year 2016 for all 4 trainings.
Figure 6.4 and Fig. 6.5 show the permutation importance of all training variables for electrons
and muons. To achieve these plots, 20000 leptons were taken from the training sample, the
preprocessing step 2 output, and input into the network to calculate the loss difference per
shuffled variable. With 20000 leptons the evaluation took about 24 hours per image.
For the electron trainings the variable IDno Iso is clearly the most important feature. This is due
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(a)

(b)

Figure 6.3: Efficiency curves of the 2016 muon DYvsQCD training from a prediction on the
DYJetsToLL_M50_LO, DYJetsToLL_M50_LO_ext2 samples and samples in Tab. A.2 for the pT

ranges 3.5-30 (a) and 3.5-300 (b) GeV. The background efficiencies of the DeepLepton classifier
are locked to 1%, 2% 5% and 10%. The working point of the TTH MVA is set to 0.9, as per the
recommendation on CERN’s internal wiki page.
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(a) DYvsQCD.

(b) Top.

Figure 6.4: Permutation importance for 2016 electron DYvsQCD and tt̄ trainings.
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(a) DYvsQCD.

(b) Top.

Figure 6.5: Permutation importance for 2016 muon DYvsQCD and tt̄ trainings.
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to it being MVA variable that was trained on the other features, meaning it already contains
their information. Therefore, most of the information of the DeepLepton identifiers gain likely
comes from the inclusion of the PF candidates. For the electron Top training the significance of
the impact parameter to the event vertex sIp 3d is also of relative high importance. This is due
to the tt̄ samples containing much more non-prompt leptons and this variable being suitable for
this separation.
For the both muon trainings in Fig. 6.5 the six most important features are the same. The
IDlow pT , a MVA trained for the identification of muons with a low pT , the impact parameter
dxy, the segment compatibility of the muon system, the relative isolation in a cone of ΔR = 0.3
for charged particles Irel mini charged and the cut-based medium working point muon ID IDmedium.
This leads to the conclusion that a combination of these variables should be considered in new
cut-based muon Ids. On the contrary, it is interesting, that although the perpendicular impact
parameter dxy is of relative high importance, the three dimensional impact parameter Ip3d is
not.

6.1.4 Comparison between LSTM, GRU, Simple RNN
The LSTMs form an integral part of the NN. Therefore, it is important to use the most
suitable recurrent cell architecture. Therefore, the comparison between different recurrent cell
architectures was made. For this the LSTMs of the standard NN used in this thesis Fig. 5.11 are
exchanged with GRUs and simple RNN cells, otherwise the network and training settings are
kept the same. In addition to this, a training without the recurrent blocks of the network gives
a good estimation of the information that is gained through the inclusion of the PF candidates.
First, the average time of evaluating a single lepton was measured by predicting each lepton with
each network, logging these times and averaging them. The average times over 10000 muons are
shown in the second column of Tab. 6.2. This table also shows the space that the trained model
takes up in RAM rounded to 100 KiB. Due to limitations of the CMS software environment the
leptons were predicted on a CPU.

Celltype prediction time [s] memory usage [KiB]
LSTM 0.07787 164500
GRU 0.07668 136000
Simple RNN 0.07284 49900
No Cands 0.06643 4500

Table 6.2

The time to predict does not change a lot for each type of recurrent cell, but is unsurprisingly
lower for the network without the recurrent block. In terms of memory consumption, the network
with LSTM cells is the largest followed by the network with GRU cells.
ROC comparisons for the four trained networks for pT bins from 3.5 to 25 GeV are shown in Fig.
6.6, additionally this also shows the comparison with the ROC of the TTH MVA and the single
cut-based working point of the stops compressed search. These figures show that the network
with LSTMs is marginally better than the network with GRUs and the network with simple
RNN cells does not perform better than the network that does not use the PF candidates, both
show a very similar performance to the TTH MVA. This leads to the conclusion that the gated
architectures of the LSTM and GRU are essential for extracting the extra information out of
the PF candidates.
A comparison between LSTM and GRU can also be found in [132, 133]. Both come to the
conclusion, that given a large enough training dataset, the LSTM performs better at the cost of
a longer runtime. Due to the recurrent cells being an important but computationally small part
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(a) pT bin 3.5 − 7.5 (b) pT bin 7.5 − 12.5

(c) pT bin 12.5 − 17.5 (d) pT bin 17.5 − 25

Figure 6.6: ROC comparison between networks with LSTM, GRU simple RNN cells and no
recurrent block, the TTH MVA and the single stops compressed working point.
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pT bin TPR stops FPR DeepLepton FPR FPR factor
muon

3.5-5 0.848 0.212 0.135 0.637
5-12 0.868 0.126 0.065 0.516
12-20 0.873 0.071 0.032 0.451
20-30 0.884 0.048 0.018 0.375
30-50 0.926 0.053 0.012 0.226
50-∞ 0.965 0.079 0.010 0.127

electron
5-12 0.911 0.192 0.099 0.516
12-20 0.913 0.143 0.064 0.447
20-30 0.917 0.134 0.049 0.366
30-50 0.945 0.217 0.079 0.364
50-∞ 0.972 0.460 0.169 0.367

Table 6.3: Ratio of the DeepLepton and stops compressed FRPs for the fixed stops compressed
TPR for each pT bin, evaluated on a top quark pair production sample from the year 2016
(TT_pow).

pT bin FPR improvement factor
3.5-5 0.637
5-12 0.516
12-20 0.451
20-30 0.375
30-50 0.364
50-∞ 0.367

Table 6.4: Conservative summary of the improvements of the DeepLepton classifier over the
stops compressed isolation cut for each pT bin.

of the network, the slight performance increase of the LSTMs is worth the marginally longer
runtime of the network.

6.2 Improvements of the Stops Compressed Search
In order to gauge the improvements the usage of the DeepLepton classifier would bring to a real
search on the ongoing version of the stops compressed search [120] a background estimation is
performed. To achieve this task, the relative improvements on the background efficiency, the
FPR, for electrons and muons for each pT bin needs to be measured. These are shown in Tab.
6.3. The improvement in FPR lies in the range of 0.637 to 0.127.
The algorithm used in the stops compressed search to measure the exclusion limits does not
consider the background efficiencies of electrons and muons separately. In order to achieve a
conservative estimate of the improvements, the worse background factor was chosen for each pT

bin. This summary is shown in Tab. 6.4.
By scaling the number of non-prompt background events with these numbers the effect of the
DeepLepton classifier can be estimated. As a comparison, Fig. 6.7 shows the exclusion limit
for the chargino mediated decay of the stop squark as a function of the stop mass mt̃ and the
stop-neutralino mass difference Δm for the stops compressed search at a 95% confidence level
for the default stops compressed lepton selection with the isolation cut (a) and the DeepLepton
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classifier (b). The observed/expected limits are represented by the solid black/dashed red lines.
These were derived from the expected stop squark pair production cross section whereas the
thin lines represent the variations due to theoretical/experimental uncertainties and the thick
lines represent the central values.
In short, all possible combinations of mt̃ and Δm left of the thick lines can be excluded.
By comparing the limits in Fig. 6.8 a shift of the limit lines by 5 to 10 GeV to the right can be
observed. This is an improvement as more combinations of mt̃ and Δm could be excluded by
the usage of the DeepLepton classifier.
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Figure 6.7: The exclusion limit for the chargino mediated decay of the stop squark as a function
of the stop mass mt̃ and the stop-chargina mass difference Δm for the stops compressed search
at a 95% confidence level for the default stops compressed lepton selection with the isolation
cut (upper) and the DeepLepton classifier (lower) instead of the isolation cut. The observed/
expected limits are represented by the solid black/dashed red lines. These were derived from the
expected stop squark pair production cross section. The thin lines represent the variations due
to theoretical/experimental uncertainties and the thick lines represent the central values.
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Figure 6.8: A comparison of the exclusion limits of Fig. 6.7 superimposed. The magenta and
green lines represent the observed and expected limits for the isolation cut, the black and red
lines represent the observed and expected limits for the limits of the DeepLepton classifier. For
better visibility the variation lines for the limits of the DeepLepton classifier are not shown.
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Chapter 7

Summary and Conclusion

In this thesis I trained and evaluated the novel lepton classification algorithm DeepLepton for
two types of training, namely DYvsQCD and tt̄ for the MC data years 2016, 2017 and 2018 for
electrons and muons. In total, twelve networks were trained. The addition of particles in the
vicinity of the lepton candidate increased the classifier’s efficiency over traditional methods. This
was shown in the improved exclusion limits for the stops compressed search by the DeepLepton
classifier due to the improvement in the suppression of non-prompt backgrounds. Furthermore,
the permutation variable importance was calculated for each training of the 2016 data year.
The results show the reliance on the IDno Iso variable of the electron networks and the relative
similarities between the DYvsQCD and tt̄ trainings in variable importance.
To evaluate the impact of the LSTM layers and to compare them with alternative recurrent
layers, networks where the LSTM layers were swapped with GRUs and Simple RNN layers
were trained. Additionally, a network without the recurrent block was trained. The results
showed, that the LSTMs outperform their alternatives and that their computational cost during
prediction due to their complicated internal structure is minimal.
The DeepLepton classifier shows that the inclusion of more information into the algorithm
increases it’s performance. This leads to the conclusion that future searches should focus on the
use of ML and DL techniques and to exploit all data available to train these algorithms.
In the future, analyses and searches should move away from statistically limited approaches to
methods that can effectively exploit more information that are therefore only systematically
limited. These ML based techniques will be able to effectively use more data and will unify
across multiple objects such as leptons and jets. This will lead to an improved understanding of
rare and complicated events.
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Appendix A

Samples

Short Name Sample name
DYJetsToLL_M50_LO DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8
DYJetsToLL_M50_LO_ext2 DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8
DYJetsToLL_M50_ext2 DYJetsToLL_M-50_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8
DYJetsToLL_M10to50_LO DYJetsToLL_M-10to50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8
DYJetsToLL_M10to50 DYJetsToLL_M-10to50_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8
DYJetsToLL_M5to50_HT70to100 DYJetsToLL_M-5to50_HT-70to100_TuneCUETP8M1_13TeV-madgraphMLM-pythia8
DYJetsToLL_M5to50_HT100to200 DYJetsToLL_M-5to50_HT-100to200_TuneCUETP8M1_13TeV-madgraphMLM-pythia8
DYJetsToLL_M5to50_HT100to200_ext DYJetsToLL_M-5to50_HT-100to200_TuneCUETP8M1_13TeV-madgraphMLM-pythia8
DYJetsToLL_M5to50_HT200to400 DYJetsToLL_M-5to50_HT-200to400_TuneCUETP8M1_13TeV-madgraphMLM-pythia8
DYJetsToLL_M5to50_HT200to400_ext DYJetsToLL_M-5to50_HT-200to400_TuneCUETP8M1_13TeV-madgraphMLM-pythia8
DYJetsToLL_M5to50_HT400to600 DYJetsToLL_M-5to50_HT-400to600_TuneCUETP8M1_13TeV-madgraphMLM-pythia8
DYJetsToLL_M5to50_HT400to600_ext DYJetsToLL_M-5to50_HT-400to600_TuneCUETP8M1_13TeV-madgraphMLM-pythia8
DYJetsToLL_M5to50_HT600toInf DYJetsToLL_M-5to50_HT-600toInf_TuneCUETP8M1_13TeV-madgraphMLM-pythia8
DYJetsToLL_M50_HT70to100 DYJetsToLL_M-50_HT-70to100_TuneCUETP8M1_13TeV-madgraphMLM-pythia8
DYJetsToLL_M50_HT100to200_ext DYJetsToLL_M-50_HT-100to200_TuneCUETP8M1_13TeV-madgraphMLM-pythia8
DYJetsToLL_M50_HT200to400 DYJetsToLL_M-50_HT-200to400_TuneCUETP8M1_13TeV-madgraphMLM-pythia8
DYJetsToLL_M50_HT400to600 DYJetsToLL_M-50_HT-400to600_TuneCUETP8M1_13TeV-madgraphMLM-pythia8
DYJetsToLL_M50_HT400to600_ext DYJetsToLL_M-50_HT-400to600_TuneCUETP8M1_13TeV-madgraphMLM-pythia8
DYJetsToLL_M50_HT600to800 DYJetsToLL_M-50_HT-600to800_TuneCUETP8M1_13TeV-madgraphMLM-pythia8
DYJetsToLL_M50_HT800to1200 DYJetsToLL_M-50_HT-800to1200_TuneCUETP8M1_13TeV-madgraphMLM-pythia8
DYJetsToLL_M50_HT1200to2500 DYJetsToLL_M-50_HT-1200to2500_TuneCUETP8M1_13TeV-madgraphMLM-pythia8
DYJetsToLL_M50_HT2500toInf DYJetsToLL_M-50_HT-2500toInf_TuneCUETP8M1_13TeV-madgraphMLM-pythia8

Table A.1: Samples for 2016 DY.
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Short Name Sample name
QCD_Mu_pt20to30 QCD_Pt-20to30_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8
QCD_Mu_pt30to50 QCD_Pt-30to50_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8
QCD_Mu_pt50to80 QCD_Pt-50to80_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8
QCD_Mu_pt80to120 QCD_Pt-80to120_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8
QCD_Mu_pt80to120_ext1 QCD_Pt-80to120_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8
QCD_Mu_pt120to170 QCD_Pt-120to170_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8
QCD_Mu_pt170to300 QCD_Pt-170to300_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8
QCD_Mu_pt170to300_ext1 QCD_Pt-170to300_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8
QCD_Mu_pt300to470 QCD_Pt-300to470_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8
QCD_Mu_pt300to470_ext1 QCD_Pt-300to470_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8
QCD_Mu_pt470to600 QCD_Pt-470to600_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8
QCD_Mu_pt470to600_ext1 QCD_Pt-470to600_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8
QCD_Mu_pt600to800 QCD_Pt-600to800_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8
QCD_Mu_pt600to800_ext1 QCD_Pt-600to800_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8
QCD_Mu_pt800to1000 QCD_Pt-800to1000_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8
QCD_Mu_pt800to1000_ext1 QCD_Pt-800to1000_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8
QCD_Mu_pt1000toInf QCD_Pt-1000toInf_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8
QCD_Mu_pt1000toInf_ext1 QCD_Pt-1000toInf_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8

Table A.2: Samples for 2016 QCD muons.

Short Name Sample name
QCD_EMEnriched_pt20to30 QCD_Pt-20to30_EMEnriched_TuneCUETP8M1_13TeV_pythia8
QCD_EMEnriched_pt30to50 QCD_Pt-30to50_EMEnriched_TuneCUETP8M1_13TeV_pythia8
QCD_EMEnriched_pt30to50_ext1 QCD_Pt-30to50_EMEnriched_TuneCUETP8M1_13TeV_pythia8
QCD_EMEnriched_pt50to80 QCD_Pt-50to80_EMEnriched_TuneCUETP8M1_13TeV_pythia8
QCD_EMEnriched_pt50to80_ext1 QCD_Pt-50to80_EMEnriched_TuneCUETP8M1_13TeV_pythia8
QCD_EMEnriched_pt80to120 QCD_Pt-80to120_EMEnriched_TuneCUETP8M1_13TeV_pythia8
QCD_EMEnriched_pt80to120_ext1 QCD_Pt-80to120_EMEnriched_TuneCUETP8M1_13TeV_pythia8
QCD_EMEnriched_pt120to170 QCD_Pt-120to170_EMEnriched_TuneCUETP8M1_13TeV_pythia8
QCD_EMEnriched_pt120to170_ext1 QCD_Pt-120to170_EMEnriched_TuneCUETP8M1_13TeV_pythia8
QCD_EMEnriched_pt170to300 QCD_Pt-170to300_EMEnriched_TuneCUETP8M1_13TeV_pythia8
QCD_EMEnriched_pt300toInf QCD_Pt-300toInf_EMEnriched_TuneCUETP8M1_13TeV_pythia8
QCD_bcToE_pt15to20 QCD_Pt_15to20_bcToE_TuneCUETP8M1_13TeV_pythia8
QCD_bcToE_pt20to30 QCD_Pt_20to30_bcToE_TuneCUETP8M1_13TeV_pythia8
QCD_bcToE_pt30to80 QCD_Pt_30to80_bcToE_TuneCUETP8M1_13TeV_pythia8
QCD_bcToE_pt80to170 QCD_Pt_80to170_bcToE_TuneCUETP8M1_13TeV_pythia8
QCD_bcToE_pt170to250 QCD_Pt_170to250_bcToE_TuneCUETP8M1_13TeV_pythia8
QCD_bcToE_pt250toInf QCD_Pt_250toInf_bcToE_TuneCUETP8M1_13TeV_pythia8

Table A.3: Samples for 2016 QCD electrons.

Short Name Sample name
TTTo2L2Nu_noSC_pow TTTo2L2Nu_noSC_TuneCUETP8M2T4_13TeV-powheg-pythia8
TTTo2L2Nu_pow_CP5 TTTo2L2Nu_TuneCP5_PSweights_13TeV-powheg-pythia8
TTTo2L2Nu_pow TTTo2L2Nu_TuneCUETP8M2_ttHtranche3_13TeV-powheg-pythia8
TTToSemilepton_pow TTToSemilepton_TuneCUETP8M2_ttHtranche3_13TeV-powheg-pythia8
TTToSemilepton_pow_CP5 TTToSemiLeptonic_TuneCP5_PSweights_13TeV-powheg-pythia8
TT_pow TT_TuneCUETP8M2T4_13TeV-powheg-pythia8
ST_schannel_4f_NLO ST_s-channel_4f_leptonDecays_13TeV-amcatnlo-pythia8_TuneCUETP8M1
ST_schannel_4f_CP5 ST_s-channel_4f_leptonDecays_TuneCP5_PSweights_13TeV-amcatnlo-pythia8
ST_tchannel_antitop_4f_pow ST_t-channel_antitop_4f_inclusiveDecays_13TeV-powhegV2-madspin-pythia8_TuneCUETP8M1
ST_tchannel_antitop_4f_pow_CP5 ST_t-channel_antitop_4f_InclusiveDecays_TuneCP5_PSweights_13TeV-powheg-pythia8
ST_tchannel_top_4f_pow ST_t-channel_top_4f_inclusiveDecays_13TeV-powhegV2-madspin-pythia8_TuneCUETP8M1
ST_tW_antitop_NoFullyHad_5f_pow ST_tW_antitop_5f_NoFullyHadronicDecays_13TeV-powheg_TuneCUETP8M1
ST_tW_antitop_5f_pow_ext1 ST_tW_antitop_5f_inclusiveDecays_13TeV-powheg-pythia8_TuneCUETP8M1
ST_tW_antitop_5f_pow ST_tW_antitop_5f_inclusiveDecays_13TeV-powheg-pythia8_TuneCUETP8M2T4
ST_tW_antitop_5f_pow_CP5 ST_tW_antitop_5f_inclusiveDecays_TuneCP5_PSweights_13TeV-powheg-pythia8
ST_tW_top_NoFullyHad_5f_pow ST_tW_top_5f_NoFullyHadronicDecays_13TeV-powheg_TuneCUETP8M1
ST_tW_top_NoFullyHad_5f_pow_ext ST_tW_top_5f_NoFullyHadronicDecays_13TeV-powheg_TuneCUETP8M1
ST_tW_top_5f_pow_ext1 ST_tW_top_5f_inclusiveDecays_13TeV-powheg-pythia8_TuneCUETP8M1
ST_tW_top_5f_pow ST_tW_top_5f_inclusiveDecays_13TeV-powheg-pythia8_TuneCUETP8M2T4
ST_tW_top_5f_pow_CP5 ST_tW_top_5f_inclusiveDecays_TuneCP5_PSweights_13TeV-powheg-pythia8
ST_tWll_5f_LO ST_tWll_5f_LO_13TeV-MadGraph-pythia8
ST_tWnunu_5f_LO ST_tWnunu_5f_LO_13TeV-MadGraph-pythia8
THQ_LO THQ_Hincl_13TeV-madgraph-pythia8_TuneCUETP8M1
THW_LO THW_Hincl_13TeV-madgraph-pythia8_TuneCUETP8M1
tZq_ll_NLO tZq_ll_4f_13TeV-amcatnlo-pythia8
tZq_nunu_NLO tZq_nunu_4f_13TeV-amcatnlo-pythia8_TuneCUETP8M1
TTTT_NLO TTTT_TuneCUETP8M2T4_13TeV-amcatnlo-pythia8
TTWW_NLO TTWW_TuneCUETP8M2T4_13TeV-madgraph-pythia8
TTWZ_NLO TTWZ_TuneCUETP8M2T4_13TeV-madgraph-pythia8
TTZZ_NLO TTZZ_TuneCUETP8M2T4_13TeV-madgraph-pythia8
TTW_LO ttWJets_13TeV_madgraphMLM
TTWJetsToLNu_NLO TTWJetsToLNu_TuneCUETP8M1_13TeV-amcatnloFXFX-madspin-pythia8
TTWJetsToQQ_NLO TTWJetsToQQ_TuneCUETP8M1_13TeV-amcatnloFXFX-madspin-pythia8
TTZToLLNuNu_NLO_ext2 TTZToLLNuNu_M-10_TuneCUETP8M1_13TeV-amcatnlo-pythia8
TTZToLLNuNu_NLO_ext3 TTZToLLNuNu_M-10_TuneCUETP8M1_13TeV-amcatnlo-pythia8
TTZToLL_M1to10_NLO TTZToLL_M-1to10_TuneCUETP8M1_13TeV-madgraphMLM-pythia8
TTZToQQ_NLO TTZToQQ_TuneCUETP8M1_13TeV-amcatnlo-pythia8
ttZJets_LO ttZJets_13TeV_madgraphMLM-pythia8
ttHToNonbb_pow ttHToNonbb_M125_TuneCUETP8M2_ttHtranche3_13TeV-powheg-pythia8
ttHTobb_pow ttHTobb_M125_13TeV_powheg_pythia8
TGG TGGJets_leptonDecays_13TeV_MadGraph_madspin_pythia8

Table A.4: Samples for 2016 tt̄.
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Short Name Sample name
DYJetsToLL_M10to50_LO DYJetsToLL_M-10to50_TuneCP5_13TeV-madgraphMLM-pythia8
DYJetsToLL_M4to50_HT100to200_LO DYJetsToLL_M-4to50_HT-100to200_TuneCP5_13TeV-madgraphMLM-pythia8
DYJetsToLL_M4to50_HT100to200_LO_ext1 DYJetsToLL_M-4to50_HT-100to200_TuneCP5_13TeV-madgraphMLM-pythia8
DYJetsToLL_M4to50_HT200to400_new_pmx_LO DYJetsToLL_M-4to50_HT-200to400_TuneCP5_13TeV-madgraphMLM-pythia8
DYJetsToLL_M4to50_HT200to400_LO DYJetsToLL_M-4to50_HT-200to400_TuneCP5_13TeV-madgraphMLM-pythia8
DYJetsToLL_M4to50_HT200to400_LO_ext1 DYJetsToLL_M-4to50_HT-200to400_TuneCP5_13TeV-madgraphMLM-pythia8
DYJetsToLL_M4to50_HT400to600_LO DYJetsToLL_M-4to50_HT-400to600_TuneCP5_13TeV-madgraphMLM-pythia8
DYJetsToLL_M4to50_HT400to600_LO_ext1 DYJetsToLL_M-4to50_HT-400to600_TuneCP5_13TeV-madgraphMLM-pythia8
DYJetsToLL_M4to50_HT600toInf_LO DYJetsToLL_M-4to50_HT-600toInf_TuneCP5_13TeV-madgraphMLM-pythia8
DYJetsToLL_M4to50_HT600toInf_LO_ext1 DYJetsToLL_M-4to50_HT-600toInf_TuneCP5_13TeV-madgraphMLM-pythia8
DYJetsToLL_M50_NLO DYJetsToLL_M-50_TuneCP5_13TeV-amcatnloFXFX-pythia8
DYJetsToLL_M50_LO DYJetsToLL_M-50_TuneCP5_13TeV-madgraphMLM-pythia8
DYJetsToLL_M50_LO_ext1 DYJetsToLL_M-50_TuneCP5_13TeV-madgraphMLM-pythia8
DYJetsToLL_M50_HT70to100_LO DYJetsToLL_M-50_HT-70to100_TuneCP5_13TeV-madgraphMLM-pythia8
DYJetsToLL_M50_HT100to200_LO DYJetsToLL_M-50_HT-100to200_TuneCP5_13TeV-madgraphMLM-pythia8
DYJetsToLL_M50_HT100to200_LO_ext1 DYJetsToLL_M-50_HT-100to200_TuneCP5_13TeV-madgraphMLM-pythia8
DYJetsToLL_M50_HT200to400_LO DYJetsToLL_M-50_HT-200to400_TuneCP5_13TeV-madgraphMLM-pythia8
DYJetsToLL_M50_HT200to400_LO_ext1 DYJetsToLL_M-50_HT-200to400_TuneCP5_13TeV-madgraphMLM-pythia8
DYJetsToLL_M50_HT400to600_LO DYJetsToLL_M-50_HT-400to600_TuneCP5_13TeV-madgraphMLM-pythia8
DYJetsToLL_M50_HT400to600_LO_ext1 DYJetsToLL_M-50_HT-400to600_TuneCP5_13TeV-madgraphMLM-pythia8
DYJetsToLL_M50_HT600to800_LO DYJetsToLL_M-50_HT-600to800_TuneCP5_13TeV-madgraphMLM-pythia8
DYJetsToLL_M50_HT800to1200_LO DYJetsToLL_M-50_HT-800to1200_TuneCP5_13TeV-madgraphMLM-pythia8
DYJetsToLL_M50_HT1200to2500_LO DYJetsToLL_M-50_HT-1200to2500_TuneCP5_13TeV-madgraphMLM-pythia8
DYJetsToLL_M50_HT2500toInf_LO DYJetsToLL_M-50_HT-2500toInf_TuneCP5_13TeV-madgraphMLM-pythia8

Table A.5: Samples for 2017 DY.

Short Name Sample name
QCD_Mu_pt15to20 QCD_Pt-15to20_MuEnrichedPt5_TuneCP5_13TeV_pythia8
QCD_Mu_pt20to30 QCD_Pt-20to30_MuEnrichedPt5_TuneCP5_13TeV_pythia8
QCD_Mu_pt30to50 QCD_Pt-30to50_MuEnrichedPt5_TuneCP5_13TeV_pythia8
QCD_Mu_pt50to80 QCD_Pt-50to80_MuEnrichedPt5_TuneCP5_13TeV_pythia8
QCD_Mu_pt80to120 QCD_Pt-80to120_MuEnrichedPt5_TuneCP5_13TeV_pythia8
QCD_Mu_pt120to170 QCD_Pt-120to170_MuEnrichedPt5_TuneCP5_13TeV_pythia8
QCD_Mu_pt170to300 QCD_Pt-170to300_MuEnrichedPt5_TuneCP5_13TeV_pythia8
QCD_Mu_pt300to470 QCD_Pt-300to470_MuEnrichedPt5_TuneCP5_13TeV_pythia8
QCD_Mu_pt470to600 QCD_Pt-470to600_MuEnrichedPt5_TuneCP5_13TeV_pythia8
QCD_Mu_pt600to800 QCD_Pt-600to800_MuEnrichedPt5_TuneCP5_13TeV_pythia8
QCD_Mu_pt800to1000 QCD_Pt-800to1000_MuEnrichedPt5_TuneCP5_13TeV_pythia8
QCD_Mu_pt1000toInf QCD_Pt-1000toInf_MuEnrichedPt5_TuneCP5_13TeV_pythia8

Table A.6: Samples for 2017 QCD muons.

Short Name Sample name
QCD_EMEnriched_pt20to30 QCD_Pt-20to30_EMEnriched_TuneCP5_13TeV_pythia8
QCD_EMEnriched_pt30to50 QCD_Pt-30to50_EMEnriched_TuneCP5_13TeV_pythia8
QCD_EMEnriched_pt50to80 QCD_Pt-50to80_EMEnriched_TuneCP5_13TeV_pythia8
QCD_EMEnriched_pt80to120 QCD_Pt-80to120_EMEnriched_TuneCP5_13TeV_pythia8
QCD_EMEnriched_pt120to170 QCD_Pt-120to170_MuEnrichedPt5_TuneCP5_13TeV_pythia8
QCD_EMEnriched_pt170to300 QCD_Pt-170to300_EMEnriched_TuneCP5_13TeV_pythia8
QCD_EMEnriched_pt300toInf QCD_Pt-300toInf_EMEnriched_TuneCP5_13TeV_pythia8
QCD_bcToE_pt20to30_new_pmx QCD_Pt_20to30_bcToE_TuneCP5_13TeV_pythia8
QCD_bcToE_pt20to30 QCD_Pt_20to30_bcToE_TuneCP5_13TeV_pythia8
QCD_bcToE_pt30to80 QCD_Pt_30to80_bcToE_TuneCP5_13TeV_pythia8
QCD_bcToE_pt80to170 QCD_Pt_80to170_bcToE_TuneCP5_13TeV_pythia8
QCD_bcToE_pt170to250 QCD_Pt_170to250_bcToE_TuneCP5_13TeV_pythia8
QCD_bcToE_pt250toInf QCD_Pt_250toInf_bcToE_TuneCP5_13TeV_pythia8

Table A.7: Samples for 2017 QCD electrons.
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Short Name Sample name
ST_schannel_4f_NLO ST_s-channel_4f_leptonDecays_TuneCP5_13TeV-amcatnlo-pythia8
ST_schannel_4f_NLO_PS ST_s-channel_4f_leptonDecays_TuneCP5_PSweights_13TeV-amcatnlo-pythia8
ST_tchannel_antitop_4f_incl_pow ST_t-channel_antitop_4f_inclusiveDecays_TuneCP5_13TeV-powhegV2-madspin-pythia8
ST_tchannel_top_4f_incl_pow ST_t-channel_top_4f_inclusiveDecays_TuneCP5_13TeV-powhegV2-madspin-pythia8
ST_tchannel_antitop_5f_pow_PS ST_t-channel_antitop_5f_TuneCP5_PSweights_13TeV-powheg-pythia8
ST_tchannel_antitop_5f_pow_PS_old_pmx ST_t-channel_antitop_5f_TuneCP5_PSweights_13TeV-powheg-pythia8
ST_tchannel_top_5f_pow_old_pmx ST_t-channel_top_5f_TuneCP5_13TeV-powheg-pythia8
ST_tchannel_top_5f_pow ST_t-channel_top_5f_TuneCP5_13TeV-powheg-pythia8
ST_tW_antitop_NoFullyHad_5f_pow_PS ST_tW_antitop_5f_NoFullyHadronicDecays_TuneCP5_PSweights_13TeV-powheg-pythia8
ST_tW_antitop_incl_5f_pow ST_tW_antitop_5f_inclusiveDecays_TuneCP5_13TeV-powheg-pythia8
ST_tW_antitop_incl_5f_pow_PS ST_tW_antitop_5f_inclusiveDecays_TuneCP5_PSweights_13TeV-powheg-pythia8
ST_tW_top_NoFullyHad_5f_pow ST_tW_top_5f_NoFullyHadronicDecays_TuneCP5_13TeV-powheg-pythia8
ST_tW_top_NoFullyHad_5f_pow_PS ST_tW_top_5f_NoFullyHadronicDecays_TuneCP5_PSweights_13TeV-powheg-pythia8
ST_tW_top_incl_5f_pow ST_tW_top_5f_inclusiveDecays_TuneCP5_13TeV-powheg-pythia8
ST_tW_top_incl_5f_pow_PS ST_tW_top_5f_inclusiveDecays_TuneCP5_PSweights_13TeV-powheg-pythia8
ST_tWll_5f_LO ST_tWll_5f_LO_TuneCP5_PSweights_13TeV-madgraph-pythia8
ST_tWnunu_5f_LO ST_tWnunu_5f_LO_TuneCP5_PSweights_13TeV-madgraph-pythia8
TTJets_NLO TTJets_TuneCP5_13TeV-amcatnloFXFX-pythia8
TTJets_LO TTJets_TuneCP5_13TeV-madgraphMLM-pythia8
TTJets_semilepFromT_LO TTJets_SingleLeptFromT_TuneCP5_13TeV-madgraphMLM-pythia8
TTJets_semilepFromTbar_LO TTJets_SingleLeptFromTbar_TuneCP5_13TeV-madgraphMLM-pythia8
TTJets_dilep_LO TTJets_DiLept_TuneCP5_13TeV-madgraphMLM-pythia8
TTJets_semilepFromT_genMET150_LO TTJets_SingleLeptFromT_genMET-150_TuneCP5_13TeV-madgraphMLM-pythia8
TTJets_semilepFromTbar_genMET150_LO TTJets_SingleLeptFromTbar_genMET-150_TuneCP5_13TeV-madgraphMLM-pythia8
TTJets_dilep_genMET150_LO TTJets_DiLept_genMET-150_TuneCP5_13TeV-madgraphMLM-pythia8
TTTo2L2Nu_pow TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8
TTTo2L2Nu_pow_PS TTTo2L2Nu_TuneCP5_PSweights_13TeV-powheg-pythia8
TTToSemiLeptonic_pow TTToSemiLeptonic_TuneCP5_13TeV-powheg-pythia8
TTToSemiLeptonic_pow_PS TTToSemiLeptonic_TuneCP5_PSweights_13TeV-powheg-pythia8
TTHH_LO TTHH_TuneCP5_13TeV-madgraph-pythia8
TTZH_LO TTZH_TuneCP5_13TeV-madgraph-pythia8
TTWH_LO TTWH_TuneCP5_13TeV-madgraph-pythia8
TTWW_LO TTWW_TuneCP5_13TeV-madgraph-pythia8
TTWZ_LO TTWZ_TuneCP5_13TeV-madgraph-pythia8
TTZZ_LO TTZZ_TuneCP5_13TeV-madgraph-pythia8
TTJets_HT600to800_LO TTJets_HT-600to800_TuneCP5_13TeV-madgraphMLM-pythia8
TTJets_HT800to1200_LO TTJets_HT-800to1200_TuneCP5_13TeV-madgraphMLM-pythia8
TTJets_HT1200to2500_LO TTJets_HT-1200to2500_TuneCP5_13TeV-madgraphMLM-pythia8
TTJets_HT2500toInf_LO TTJets_HT-2500toInf_TuneCP5_13TeV-madgraphMLM-pythia8

Table A.8: Samples for 2017 tt̄.

Short Name Sample name
DYJetsToLL_M50_NLO DYJetsToLL_M-50_TuneCP5_13TeV-amcatnloFXFX-pythia8
DYJetsToLL_M50_LO DYJetsToLL_M-50_TuneCP5_13TeV-madgraphMLM-pythia8
DYJetsToLL_M10to50_LO DYJetsToLL_M-10to50_TuneCP5_13TeV-madgraphMLM-pythia8
DYJetsToLL_M4to50_HT70to100_LO DYJetsToLL_M-4to50_HT-70to100_TuneCP5_PSweights_13TeV-madgraphMLM-pythia8
DYJetsToLL_M4to50_HT100to200_LO DYJetsToLL_M-4to50_HT-100to200_TuneCP5_PSweights_13TeV-madgraphMLM-pythia8
DYJetsToLL_M4to50_HT200to400_LO DYJetsToLL_M-4to50_HT-200to400_TuneCP5_PSweights_13TeV-madgraphMLM-pythia8
DYJetsToLL_M4to50_HT400to600_LO DYJetsToLL_M-4to50_HT-400to600_TuneCP5_PSweights_13TeV-madgraphMLM-pythia8
DYJetsToLL_M4to50_HT600toInf_LO DYJetsToLL_M-4to50_HT-600toInf_TuneCP5_PSWeights_13TeV-madgraphMLM-pythia8
DYJetsToLL_M50_HT70to100_LO DYJetsToLL_M-50_HT-70to100_TuneCP5_PSweights_13TeV-madgraphMLM-pythia8
DYJetsToLL_M50_HT100to200_LO DYJetsToLL_M-50_HT-100to200_TuneCP5_PSweights_13TeV-madgraphMLM-pythia8
DYJetsToLL_M50_HT200to400_LO DYJetsToLL_M-50_HT-200to400_TuneCP5_PSweights_13TeV-madgraphMLM-pythia8
DYJetsToLL_M50_HT400to600_LO DYJetsToLL_M-50_HT-400to600_TuneCP5_PSweights_13TeV-madgraphMLM-pythia8
DYJetsToLL_M50_HT400to600_LO_ext2 DYJetsToLL_M-50_HT-400to600_TuneCP5_PSweights_13TeV-madgraphMLM-pythia8
DYJetsToLL_M50_HT600to800_LO DYJetsToLL_M-50_HT-600to800_TuneCP5_PSweights_13TeV-madgraphMLM-pythia8
DYJetsToLL_M50_HT800to1200_LO DYJetsToLL_M-50_HT-800to1200_TuneCP5_PSweights_13TeV-madgraphMLM-pythia8
DYJetsToLL_M50_HT1200to2500_LO DYJetsToLL_M-50_HT-1200to2500_TuneCP5_PSweights_13TeV-madgraphMLM-pythia8
DYJetsToLL_M50_HT2500toInf_LO DYJetsToLL_M-50_HT-2500toInf_TuneCP5_PSweights_13TeV-madgraphMLM-pythia8

Table A.9: Samples for 2018 DY.

Short Name Sample name
QCD_Mu_pt15to20 QCD_Pt-15to20_MuEnrichedPt5_TuneCP5_13TeV_pythia8
QCD_Mu_pt20to30 QCD_Pt-20to30_MuEnrichedPt5_TuneCP5_13TeV_pythia8
QCD_Mu_pt30to50 QCD_Pt-30to50_MuEnrichedPt5_TuneCP5_13TeV_pythia8
QCD_Mu_pt50to80 QCD_Pt-50to80_MuEnrichedPt5_TuneCP5_13TeV_pythia8
QCD_Mu_pt80to120 QCD_Pt-80to120_MuEnrichedPt5_TuneCP5_13TeV_pythia8
QCD_Mu_pt80to120_ext1 QCD_Pt-80to120_MuEnrichedPt5_TuneCP5_13TeV_pythia8
QCD_Mu_pt120to170 QCD_Pt-120to170_MuEnrichedPt5_TuneCP5_13TeV_pythia8
QCD_Mu_pt120to170_ext1 QCD_Pt-120to170_MuEnrichedPt5_TuneCP5_13TeV_pythia8
QCD_Mu_pt170to300 QCD_Pt-170to300_MuEnrichedPt5_TuneCP5_13TeV_pythia8
QCD_Mu_pt300to470 QCD_Pt-300to470_MuEnrichedPt5_TuneCP5_13TeV_pythia8
QCD_Mu_pt300to470_ext1 QCD_Pt-300to470_MuEnrichedPt5_TuneCP5_13TeV_pythia8
QCD_Mu_pt470to600 QCD_Pt-470to600_MuEnrichedPt5_TuneCP5_13TeV_pythia8
QCD_Mu_pt470to600_ext1 QCD_Pt-470to600_MuEnrichedPt5_TuneCP5_13TeV_pythia8
QCD_Mu_pt600to800 QCD_Pt-600to800_MuEnrichedPt5_TuneCP5_13TeV_pythia8
QCD_Mu_pt800to1000 QCD_Pt-800to1000_MuEnrichedPt5_TuneCP5_13TeV_pythia8
QCD_Mu_pt1000toInf QCD_Pt-1000toInf_MuEnrichedPt5_TuneCP5_13TeV_pythia8

Table A.10: Samples for 2018 QCD muons.

—– 66 —–



Maximilian Moser DeepLepton

Short Name Sample name
QCD_EMEnriched_pt20to30 QCD_Pt-20to30_EMEnriched_TuneCP5_13TeV_pythia8
QCD_EMEnriched_pt30to50 QCD_Pt-30to50_EMEnriched_TuneCP5_13TeV_pythia8
QCD_EMEnriched_pt50to80 QCD_Pt-50to80_EMEnriched_TuneCP5_13TeV_pythia8
QCD_EMEnriched_pt80to120 QCD_Pt-80to120_EMEnriched_TuneCP5_13TeV_pythia8
QCD_EMEnriched_pt120to170 QCD_Pt-120to170_EMEnriched_TuneCP5_13TeV_pythia8
QCD_EMEnriched_pt170to300 QCD_Pt-170to300_EMEnriched_TuneCP5_13TeV_pythia8
QCD_EMEnriched_pt300toInf QCD_Pt-300toInf_EMEnriched_TuneCP5_13TeV_pythia8
QCD_bcToE_pt15tp20 QCD_Pt_15to20_bcToE_TuneCP5_13TeV_pythia8
QCD_bcToE_pt20to30 QCD_Pt_20to30_bcToE_TuneCP5_13TeV_pythia8
QCD_bcToE_pt30to80 QCD_Pt_30to80_bcToE_TuneCP5_13TeV_pythia8
QCD_bcToE_pt80to170 QCD_Pt_80to170_bcToE_TuneCP5_13TeV_pythia8
QCD_bcToE_pt170to250 QCD_Pt_170to250_bcToE_TuneCP5_13TeV_pythia8
QCD_bcToE_pt250toInf QCD_Pt_250toInf_bcToE_TuneCP5_13TeV_pythia8

Table A.11: Samples for 2016 QCD electrons.

Short Name Sample name
ST_schannel_LO ST_s-channel_4f_leptonDecays_TuneCP5_13TeV-madgraph-pythia8
ST_tchannel_antitop_4f_pow ST_t-channel_antitop_4f_InclusiveDecays_TuneCP5_13TeV-powheg-madspin-pythia8
ST_tchannel_top_4f_pow ST_t-channel_top_4f_InclusiveDecays_TuneCP5_13TeV-powheg-madspin-pythia8
ST_tW_antitop_pow ST_tW_antitop_5f_NoFullyHadronicDecays_TuneCP5_13TeV-powheg-pythia8
ST_tW_top_pow ST_tW_top_5f_NoFullyHadronicDecays_TuneCP5_13TeV-powheg-pythia8
ST_tWll_LO ST_tWll_5f_LO_TuneCP5_PSweights_13TeV-madgraph-pythia8
ST_tWnunu_LO ST_tWnunu_5f_LO_TuneCP5_PSweights_13TeV-madgraph-pythia8
TGJets_lep_NLO TGJets_leptonDecays_TuneCP5_13TeV-madgraph-pythia8
TT_LO TTJets_TuneCP5_13TeV-madgraphMLM-pythia8
TT_dilep_NLO TT_DiLept_TuneCP5_13TeV-amcatnlo-pythia8
TTTo2L2Nu_pow TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8

Table A.12: Samples for 2018 tt̄.

—– 67 —–



Appendix B

Input Variable Plots



Maximilian Moser DeepLepton

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

(10) (11) (12)

Figure B.1: Input feature plots before conversion 2016 electron DYvsQCD (1/4).
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Figure B.2: Input feature plots before conversion 2016 electron DYvsQCD (2/4).
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Figure B.3: Input feature plots before conversion 2016 electron DYvsQCD (3/4).
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Figure B.4: Input feature plots before conversion 2016 electron DYvsQCD (4/4).
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Figure B.5: Input feature plots before conversion 2017 electron DYvsQCD (1/4).
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Figure B.6: Input feature plots before conversion 2017 electron DYvsQCD (2/4).
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Figure B.7: Input feature plots before conversion 2017 electron DYvsQCD (3/4).
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Figure B.8: Input feature plots before conversion 2017 electron DYvsQCD (4/4).

—– 76 —–



Maximilian Moser DeepLepton

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

(10) (11) (12)

Figure B.9: Input feature plots before conversion 2018 electron DYvsQCD (1/4).
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Figure B.10: Input feature plots before conversion 2018 electron DYvsQCD (2/4).
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Figure B.11: Input feature plots before conversion 2018 electron DYvsQCD (3/4).
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Figure B.12: Input feature plots before conversion 2018 electron DYvsQCD (4/4).
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Figure B.13: Input feature plots before conversion 2016 electron tt̄ (1/4).
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Figure B.14: Input feature plots before conversion 2016 electron tt̄ (2/4).
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Figure B.15: Input feature plots before conversion 2016 electron tt̄ (3/4).
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Figure B.16: Input feature plots before conversion 2016 electron tt̄ (4/4).
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Figure B.17: Input feature plots before conversion 2017 electron tt̄ (1/4).
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Figure B.18: Input feature plots before conversion 2017 electron tt̄ (2/4).

—– 86 —–



Maximilian Moser DeepLepton

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

(10) (11) (12)

Figure B.19: Input feature plots before conversion 2017 electron tt̄ (3/4).
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Figure B.20: Input feature plots before conversion 2017 electron tt̄ (4/4).
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Figure B.21: Input feature plots before conversion 2018 electron tt̄ (1/4).
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Figure B.22: Input feature plots before conversion 2018 electron tt̄ (2/4).
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Figure B.23: Input feature plots before conversion 2018 electron tt̄ (3/4).
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Figure B.24: Input feature plots before conversion 2018 electron tt̄ (4/4).
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Figure B.25: Input feature plots before conversion 2016 muon DYvsQCD (1/3).
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Figure B.26: Input feature plots before conversion 2016 muon DYvsQCD (2/3).
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Figure B.27: Input feature plots before conversion 2016 muon DYvsQCD (3/3).
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Figure B.28: Input feature plots before conversion 2017 muon DYvsQCD (1/3).
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Figure B.29: Input feature plots before conversion 2017 muon DYvsQCD (2/3).
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Figure B.30: Input feature plots before conversion 2017 muon DYvsQCD (3/3).
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Figure B.31: Input feature plots before conversion 2018 muon DYvsQCD (1/3).
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Figure B.32: Input feature plots before conversion 2018 muon DYvsQCD (2/3).
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Figure B.33: Input feature plots before conversion 2018 muon DYvsQCD (3/3).
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Figure B.34: Input feature plots before conversion 2016 muon tt̄ (1/3).

—– 102 —–



Maximilian Moser DeepLepton

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

(10) (11) (12)

Figure B.35: Input feature plots before conversion 2016 muon tt̄ (2/3).
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Figure B.36: Input feature plots before conversion 2016 muon tt̄ (3/3).
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Figure B.37: Input feature plots before conversion 2017 muon tt̄ (1/3).
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Figure B.38: Input feature plots before conversion 2017 muon tt̄ (2/3).
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Figure B.39: Input feature plots before conversion 2017 muon tt̄ (3/3).
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Figure B.40: Input feature plots before conversion 2018 muon tt̄ (1/3).
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Figure B.41: Input feature plots before conversion 2018 muon tt̄ (2/3).
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Figure B.42: Input feature plots before conversion 2018 muon tt̄ (3/3).
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Appendix C

Discriminator histograms

(a) (b) (c)

Figure C.1: Discriminator value histograms of the 2016 muon DYvsQCD training from a
prediction on the DYJetsToLL_M50_LO, DYJetsToLL_M50_LO_ext2 samples and samples
in Table A.2. They are shown for the prompt (a) non-prompt (b) and fake (c) classes.
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(a) (b) (c)

Figure C.2: Discriminator value histograms of the 2017 muon DYvsQCD training from a
prediction on the DYJetsToLL_M50_LO, DYJetsToLL_M50_LO_ext1 samples and samples
in Table A.6. They are shown for the prompt (a) non-prompt (b) and fake (c) classes.

(a) (b) (c)

Figure C.3: Discriminator value histograms of the 2018 muon DYvsQCD training from a
prediction on the DYJetsToLL_M50_LO, DYJetsToLL_M50_NLO samples and samples in
Table A.10. They are shown for the prompt (a) non-prompt (b) and fake (c) classes.

(a) (b) (c)

Figure C.4: Discriminator value histograms of the 2016 electron DYvsQCD training from a
prediction on the DYJetsToLL_M50_LO, DYJetsToLL_M50_LO_ext2 samples and samples
in Table A.3. They are shown for the prompt (a) non-prompt (b) and fake (c) classes.
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(a) (b) (c)

Figure C.5: Discriminator value histograms of the 2017 electron DYvsQCD training from a
prediction on the DYJetsToLL_M50_LO, DYJetsToLL_M50_LO_ext1 samples and samples
in Table A.7. They are shown for the prompt (a) non-prompt (b) and fake (c) classes.

(a) (b) (c)

Figure C.6: Discriminator value histograms of the 2018 electron DYvsQCD training from a
prediction on the DYJetsToLL_M50_LO, DYJetsToLL_M50_NLO samples and samples in
Table A.11. They are shown for the prompt (a) non-prompt (b) and fake (c) classes.

(a) (b) (c)

Figure C.7: Discriminator value histograms of the 2016 muon tt̄ training from a prediction on
the TT_pow sample. They are shown for the prompt (a) non-prompt (b) and fake (c) classes.
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Figure C.8: Discriminator value histograms of the 2017 muon tt̄ training from a prediction on
the TTJets_LO sample. They are shown for the prompt (a) non-prompt (b) and fake (c) classes.

(a) (b) (c)

Figure C.9: Discriminator value histograms of the 2018 muon tt̄ training from a prediction on
the TTWJets_LO sample. They are shown for the prompt (a) non-prompt (b) and fake (c)
classes.

(a) (b) (c)

Figure C.10: Discriminator value histograms of the 2016 electron tt̄ training from a prediction on
the TT_pow sample. They are shown for the prompt (a) non-prompt (b) and fake (c) classes.
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Figure C.11: Discriminator value histograms of the 2017 electron tt̄ training from a prediction
on the TTJets_LO sample. They are shown for the prompt (a) non-prompt (b) and fake (c)
classes.

(a) (b) (c)

Figure C.12: Discriminator value histograms of the 2018 electron tt̄ training from a prediction
on the TTWJets_LO sample. They are shown for the prompt (a) non-prompt (b) and fake (c)
classes.
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Efficiency
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Figure D.1: Efficiency curves of the 2016 muon DYvsQCD training from a prediction on the
DYJetsToLL_M50_LO, DYJetsToLL_M50_LO_ext2 samples and samples in Table A.2.

Figure D.2: Efficiency curves of the 2017 muon DYvsQCD training from a prediction on the
DYJetsToLL_M50_LO, DYJetsToLL_M50_LO_ext1 samples and samples in Table A.6.
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Figure D.3: Efficiency curves of the 2018 muon DYvsQCD training from a prediction on the
DYJetsToLL_M50_LO, DYJetsToLL_M50_NLO samples and samples in Table A.10.

Figure D.4: Efficiency curves of the 2016 electron DYvsQCD training from a prediction on the
DYJetsToLL_M50_LO, DYJetsToLL_M50_LO_ext2 samples and samples in Table A.3.
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Figure D.5: Efficiency curves of the 2017 electron DYvsQCD training from a prediction on the
DYJetsToLL_M50_LO, DYJetsToLL_M50_LO_ext1 samples and samples in Table A.7.

Figure D.6: Efficiency curves of the 2018 electron DYvsQCD training from a prediction on the
DYJetsToLL_M50_LO, DYJetsToLL_M50_NLO samples and samples in Table A.11.
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Figure D.7: Efficiency curves of the 2016 muon tt̄ training from a prediction on theTT_pow
sample.

Figure D.8: Efficiency curves of the 2017 muon tt̄ training from a prediction on the TTJets_LO
sample.
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Figure D.9: Efficiency curves of the 2018 muon tt̄ training from a prediction on the TTWJets_LO
sample.

Figure D.10: Efficiency curves of the 2016 electron tt̄ training from a prediction on the DYJet-
sToLL_M50_LO, DYJetsToLL_M50_LO_ext2 samples and samples in Table A.3
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Figure D.11: Efficiency curves of the 2017 electron tt̄ training from a prediction on the TTJets_LO
sample.

Figure D.12: Efficiency curves of the 2018 electron tt̄ training from a prediction on the
TTWJets_LO sample.
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