
Verbesserung der maschinellen
Verarbeitbarkeit von

strukturierten Forschungsdaten
durch halbautomatisches Ontologie-Mapping von

Datenattributen

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Logic and Computation

eingereicht von

Bugra Altug, BSc
Matrikelnummer 11938259

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.univ.Prof. Dr. Andreas Rauber

Wien, 16. August 2024
Bugra Altug Andreas Rauber

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Increasing the
Machine-actionability of

Structured Research Data
via Semiautomatic Ontology Mapping of Data

Attributes

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Logic and Computation

by

Bugra Altug, BSc
Registration Number 11938259

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.univ.Prof. Dr. Andreas Rauber

Vienna, August 16, 2024
Bugra Altug Andreas Rauber

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Bugra Altug, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 16. August 2024
Bugra Altug

v

Danksagung

Zuallererst möchte ich meinem Betreuer, Andreas Rauber, meinen tiefsten Dank ausspre-
chen. Ohne sein Fachwissen, seine Mitarbeit und sein wertvolles Feedback wäre diese
Arbeit nicht möglich gewesen.

Mein Dank gilt auch Martin Weise, der das Forschungsdatenmanagement-Tool Database
Repository an der Seite meines Betreuers konsequent gepflegt hat.

Außerdem bin ich Ádám Erdélyi für seine unermüdliche Unterstützung seit meiner
Ankunft in Wien dankbar.

Zu guter Letzt möchte ich meiner Familie meine aufrichtige Anerkennung aussprechen.
Meine Mutter, Aslı Altuğ, und mein Vater, Tayfun Altuğ, haben mich immer mit allem
versorgt und mir zur Seite gestanden. Meine geliebte Frau, Fatma Odabaş Altuğ, hat
meinem Leben einen wahren Sinn gegeben.

vii

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisor, Andreas
Rauber. This thesis would not have been possible without his expertise, collaboration,
and invaluable feedback.

I would also like to extend my thanks to Martin Weise, who has consistently maintained
the Database Repository research data management tool alongside my supervisor.

Additionally, I am grateful to Ádám Erdélyi for his unwavering support since my arrival
in Vienna.

Lastly, I want to express my heartfelt appreciation to my family. My mother, Aslı Altuğ,
and my father, Tayfun Altuğ, have always provided me with everything and stood by my
side. My beloved wife, Fatma Odabaş Altuğ, has brought true meaning to my life.

ix

Kurzfassung

Die Optimierung der Verwaltung von Forschungsdaten kann die Effizienz von Wis-
senschaftlern steigern. Ein Datenbank-Repository, das Richtlinien für Auffindbarkeit,
Zugänglichkeit, Interoperabilität und Wiederverwendbarkeit befolgt, spielt dabei eine
zentrale Rolle. Um die maschinelle Verwertbarkeit weiter zu verbessern, muss die Inter-
operabilität von Daten über verschiedene wissenschaftliche Bereiche hinweg gewährleistet
sein. Dies kann durch die Definition der Semantik und der Maßeinheiten der Daten
unter Verwendung mehrerer benutzerdefinierter Objektontologien und einer einheitlichen
Einheitenontologie erreicht werden. Dies ermöglicht es Wissenschaftlern, mit Objekten in
verschiedenen Bereichen zu arbeiten und Berechnungen mit einheitlichen Einheitenbe-
zeichnungen durchzuführen.

Dies erfordert eine halbautomatische Zuordnung von Attributen zu Entitäten aus ei-
ner Objekt- und Einheitenontologie. Während die Zuordnung von Schema-Spalten zu
Ontologie-Entitäten gut erforscht ist, befassen sich die bestehenden Systeme nicht speziell
mit der Herausforderung, wissenschaftliche Daten abzubilden und gleichzeitig Entitäten
zu isolieren, insbesondere bei der Zuordnung von Einheiten.

Wir schlagen daher ein halbautomatisches System vor, das eine Methode zur Berechnung
der Ähnlichkeit von Einheiten, zwei Möglichkeiten zur Beeinflussung der Ergebnisse durch
Benutzereingaben und eine Strategie zur Optimierung des Einsatzes dieser Methoden
bietet.

Unser System ordnet wissenschaftliche Schemadatenspalten mit Kardinalitäten von n : 1
und 1 : 1 auf der Elementebene sowohl Objekt- als auch Unit-Entitäten zu. Es nutzt ein
Texteinbettungsmodell zur Kodierung von Spaltennamen und Entitätsbezeichnungen,
wobei die Kosinusähnlichkeit die Relevanz berechnet. Dieser Ansatz schlägt 89.9% der
korrekten Objektentitäten in den ersten 10% aller Objektentitäten vor (Entity Coverage)
und erreicht einen Mean Reciprocal Rank (MRR) von 0.5259, was alle anderen Ansätze
übertrifft. Ein ähnlicher Kodierungsansatz, der das Schlüsselwort ünit"hinzufügt, wird für
die Ähnlichkeit zwischen Spalten und Einheitsentitäten verwendet, erzielt eine Abdeckung
von 64.4% und einen MRR von 0.1164. Die einheitliche Ähnlichkeitsmetrik für Objekt-
und Einheitenvorschläge ermöglicht zwei neue Methoden zur Verbesserung der Abdeckung
und MRR durch Benutzereingaben während des Mapping-Prozesses.

xi

Abstract

Optimizing the management of research data may increase scientists’ efficiency. The
Database Repository, as a research data management tool, plays a crucial role in achieving
this optimization by following the Findability, Accessibility, Interoperability, and Reusabil-
ity guidelines, which emphasize machine-actionability. However, to further enhance the
machine-actionability of experiments, it is essential to ensure data interoperability across
different scientific domains. Interoperability in scientific data can be achieved by defining
the semantics of what the data represents and the used units of measurement. This
approach involves employing multiple custom object ontologies alongside a unified unit
ontology. This setup enables scientists to interact with objects from various scientific
domains while maintaining the ability to perform calculations using consistent unit
Internationalized Resource Identifiers.

Achieving this requires a semi-automatic mapping of attributes (e.g., columns in a
relational database schema) to entities from both an object ontology and a unit ontology.
While mapping schema columns to ontology entities is a well-established area, existing
systems do not specifically tackle the distinct challenge of mapping scientific data while
isolating units, particularly in the context of unit matching.

Therefore, we propose a semi-automatic system that introduces an approach for calculating
unit similarity, two methods that use user input to influence the outcome of unit similarity
results, and a strategy for utilizing these methods to achieve optimal performance.

Our system maps scientific schema data columns with n : 1 and 1 : 1 element-level
cardinalities to both object and unit entities. It utilizes a text embedding model to
encode column names and entity labels of objects that employ cosine similarity to calculate
relevance. This approach successfully suggests 89.9% of the correct entities within the
first 10% of all entities (entity coverage) and achieves a Mean Reciprocal Rank (MRR)
of 0.5259, outperforming all other approaches. For calculating the similarity between
columns and unit entities, a similar approach is employed with an encoding method that
adds the "unit" keyword at the end of entity labels. This achieves a 64.4% entity coverage
and 0.1164 MRR, also surpassing all other tested approaches. The unified similarity
metric used for object and unit suggestions allows for the application of two new indirect
and direct influencing methods during the mapping process which threats users as an
auxiliary linguistic resource. These methods improve the overall coverage and MRR of
the mapping when used according to our introduced strategies.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Aim of the work . 3
1.3 Contribution . 4
1.4 Outline . 5

2 Related Work 7
2.1 Database Repository . 7
2.2 Ontologies . 8
2.3 Direct Mapping . 11
2.4 OAEI . 14
2.5 Schema-based matching approaches . 17
2.6 Embedding Models . 23

3 System Overview 27
3.1 Objectives . 27
3.2 Architecture & Data Flow . 29

4 Reading the inputs 35
4.1 Reading configurations . 35
4.2 Ontology Parsing . 36
4.3 Embeddings . 46

5 Matching 49
5.1 Constraint Checking . 49
5.2 Similarity Calculation . 55
5.3 Relevance Lists . 56

xv

6 User Interactions 63
6.1 Updating the Schema . 63
6.2 User Feedback . 66
6.3 Reload . 71

7 Implementation 73
7.1 Methodologies . 73
7.2 Architecture . 75
7.3 API Requests . 82
7.4 Table Schema Definition Interface . 85

8 Evaluation 89
8.1 Simulation Tool . 89
8.2 Selected Ontologies . 91
8.3 Selected Data Sets and Grounding . 93
8.4 Selected Approaches . 96
8.5 Results . 98
8.6 System Limitations . 109
8.7 Similarity Calculation Limitations . 110

9 Conclusion and Future Work 111
9.1 Conclusion . 111
9.2 Future Work . 113

List of Figures 115

List of Tables 117

List of Algorithms 119

Acronyms 121

Bibliography 125

CHAPTER 1
Introduction

1.1 Motivation and Problem Statement
In numerous institutions, research teams, and laboratories, databases are essential for
managing data before conducting actual research. Optimizing the management of such
data may boost scientists’ efficiency. FAIR[WDA+16] guideline assures to achieve this by
machine actionability. FAIR contains four main principles. Findability can be achieved
by providing rich metadata that can describe and identify the data. Accessibility by
introducing authentication for the data with always visible metadata. Interoperability by
data being integrateble with other data via metadata of broad knowledge representation
languages and processable by other systems. Lastly reusibility by providing well-described,
domain-relevant data and specifically licenses information. Applying these principles to
a data management system is called FAIRification process.

Research Data Management Tool which is known as Database Repository (Database
Repository (DBRepo)) [WMS+21] [wei22], has effectively addressed these challenges by
providing a repository system. Researchers can use DBRepo to seamlessly integrate
scientific data into (abstracted) external databases. In its current state, the Database
Repository consists of multiple instances of Maria DB, each storing versioned data. All
these database instances are connected to a metadata database that stores schema infor-
mation and column data types. With this ability, findability and accessibility principles
are highly achieved, thereby machine-actionability can be further improved.
Users of DBRepo have the ability to upload their scientific data in CSV format into DB
instances within DBRepo. Subsequently, the table schema definition process takes place.
Figure 1.1 illustrates the table schema definition within the DBRepo, where the value
options of the columns are automatically detected. Additionally, primary key, null, and
unique attributes are automatically suggested. In the newer version of DBRepo, users
can add or remove columns, providing more flexibility.

1

1. Introduction

As DBRepo serves as a research data management tool, it must accommodate a wide
range of study areas while providing the machine-actionability of the FAIR requirements.
Relational schema data, with attributes as freely set column names, can accommodate
data from all scientific fields but requires human interpretation. Mapping a relational
schema from any scientific field to an ontology of the same field will provide machine-
actionability.

Currently, DBRepo allows manual mapping of attribute names to concepts from Wikidata
[VK14] and is limited to the ontology. However, this process can be semi-automated, and
custom object ontologies tailored specifically for scientific needs should be introduced.
This would increase the system’s ontology customization capabilities, improving its utility
for diverse research domains and their requirements.

In addition to mapping the semantics of attribute names, measurement units can also
be mapped to unit ontologies. Attribute mapping to objects and units will enable
interoperability between different object ontologies through the same unit ontology.
For example, two datasets containing meteorology and air quality measurements may
share a common attribute name, "Temperature". The column from the meteorology
dataset will be mapped to the meteorology ontology, while the same column from the
air quality dataset will be mapped to the air quality ontology. These different object
ontologies can define the "Temperature" differently (meteorology ontology [KRK12]
defines "Temperature" as a class meanwhile air quality ontology [Cor19] defines it as
an individual). However, since both columns share the attribute "Temperature", the
measurements will be in either Celsius or Fahrenheit. Thus, a separate mapping will
occur for the columns to Celsius or Fahrenheit. This approach allows "Temperature"
measurements from the meteorology ontology to interoperate with the "Temperature"
measurements from the air quality ontology.

Furthermore, selecting the most suitable ontology from the wide array of domain-specific
ontologies overlapping in scope is also necessary, as the same object can have semantic dif-
ferences in different scientific areas. For instance "Temperature" class in the meteorology
ontology [KRK12] has subclasses such as "RoomTemperature" or "AboveRoomTempera-
ture". Meanwhile, such room temperature distinction does not exist in the water quality
ontology [Cam19].

In summary, the problem being faced is the lack of an efficient solution that guides the
users through the process of mapping the data attributes and their measurement units
to equivalent semantic concepts from object and unit ontologies in order to improve the
machine-readability and actionability of data.

2

1.2. Aim of the work

Figure 1.1: Defining the table schema in DBRepo

1.2 Aim of the work

We propose semi-automated matching between the relational schema of user-provided
scientific data to object and unit ontology. This enhancement provides an object and a
unit relevance list for each column of a given data set. Only the column names and their
data types, calculated by DBRepo, are used. Relevance lists for units are not generated
if the data type is string or datetime. Users have the freedom to select which concept,
object property, data property, data type, or individual to match. The relevance list for a
column is based on similarity score, data-type constraint satisfaction, and ontology name
of the entities. If a desired entity is not included in the relevance list, a keyword-specific
relevance list can be created with the ability to select None to keep matching blank.
Additionally, a list of relevant ontologies is provided to ensure that users select entities
from the correct ontology. Within the relevant ontology list, users can see averaged
similarity scores of the highest-ranked entities and standard deviation. By implementing
this system, users can streamline the process of adding metadata, thereby increasing the
findability, interoperability, and reusability of their data.
Our system also enables administrators to provide Web Ontology Language (OWL),
specifically OWL2 [HKP+09], ontologies from any domain with minimal restrictions.
Furthermore, administrators can specify whether the relevance list includes concepts,
object properties, data properties, data types, or individuals, which will become handy
when dealing with unit ontologies. This way, administrators can fine-tune the metadata
that is broad enough to represent the underlying data while restricting the relevance

3

1. Introduction

list from certain entities to improve relevance. The system can better capture the
rich semantics of diverse scientific domains, thus improving data interoperability and
reducing ambiguity in data interpretation. The ultimate goal is to create a flexible system
that improves machine actionability. The system is running as a stateful Application
Programming Interface (API) where the client states are handled in a caching mechanism.
API ensures easy integration into DBRepo table schema creation process with various
endpoints such as executing the Initial Mapping, keyword search, influencing mechanism,
and adding/removing/editing the columns. Meanwhile, the caching mechanism enables
clients to interact with their initial mapping data. Additionally, our front-end is designed
to require as few user clicks as possible to find correct mappings for the given columns.
To provide such a system, we need to address the following research questions:

1. What are the core requirements for semi-automated scientific relational data schema
to ontology matching?: This research question is addressed in the Related Work
Chapter 2 and System Overview Chapter 3. These chapters discuss the information
provided by DBRepo, the need for unit entities and the importance of separating
them from object entities, various matching approaches, and how to combine these
propositions.

2. To what extent can column names and data types of a scientific relational data
schema be semi-automatically matched with entities of ontologies?: Evaluation is
conducted quantitatively by calculating the Mean Reciprocal Rank (MRR) and
determining whether the ground truth entity is ranked first or falls within the top
5% or 10%. Additionally, a quantitative evaluation assesses our semi-automated
User Interface (UI) by calculating the (required) minimum number of user clicks
for selecting the correct entities and a qualitative evaluation assesses the ease and
requirements for introducing new ontologies.

3. To what extent can ontology relevance be semi-automatically calculated for scientific
relational data schema?: Evaluation is done quantitatively by checking if the winner
object ontology is the ground truth or not.

1.3 Contribution
Our contributions are as follows:

1. Identifying core requirements for semi-automated scientific relational data schema
to ontology matching combined with the DBRepo [wei22][WMS+21] table schema
requirements. In our context, the term semi-automatic entails automatically
presenting the most pertinent ontology (or entity) for the given relational schema
(or column).

2. Providing a semi-automated mapping system that utilizes embedding-based simi-
larity metrics between the relational schema of user-provided scientific data and an
object and unit ontology.

4

1.4. Outline

3. Applying text embedding to calculate similarities between schema column name-
unit entity matches. Furthermore, using user-selected object entities as auxiliary
information to improve unit entity matching results.

As previously mentioned, the system will be evaluated both qualitatively and quantita-
tively using scientific relational datasets. The system’s performance will qualitatively
imply the fulfillment of the core requirements.

1.4 Outline
The thesis begins with the Related Work Chapter 2 which discusses the concept of
DBRepo and potential improvements (Section 2.1), ideas and the types of ontologies that
can be used for scientific schema mapping (Section 2.2), World Wide Web Consortium
(W3C) recommended approach (Section 2.3), ontology alignment evaluation initiative and
ontology alignment systems (Section 2.4), preliminary schema-based matching approaches
(Section 2.5), and state-of-the-art usage of embedding models in node classification.

Chapter 3 elaborates on the design of our system, encompassing the design philosophy
(Section 3.1) and providing an overview of the architecture and data flow (Section 3.2).

Chapter 4 discusses the procedure our system follows when processing inputs. How
administrators can customize input configurations (Section 4.1), the process of reading
the ontology (Section 4.2), and then representing the extracted information as embedding
vectors (Section 4.3).

Chapter 5 dives into how the user-provided schema is matched with ontologies. First,
perform constraint satisfaction checks (Section 5.1). Next, calculate pairwise similarity
scores between columns and entities (Section 5.2). Finally, represent the results as
relevance lists (Section 5.3).

Chapter 6 demonstrates how users can interact with our system. The schema can be
updated(e.g., adding/removing columns) (Section 6.1), indirect or direct influence can be
applied to the match (Section 6.2), and the match can be reloaded in case of a timeout
(6.3).

Chapter 7 provides a detailed explanation of our system’s implementation. It covers the
selected frameworks and libraries (Section 7.1), the implementation of the previously
mentioned algorithms (Section 7.2), communication between the back-end and front-end
(Section 7.3), and the user interface (Section 7.4).

Chapter 8 details the evaluation procedure, starting with the introduction of our simula-
tion tool (Section 8.1), followed by the selected object and unit ontologies (Section 8.2),
datasets (Section 8.3), similarity calculations including metrics, encoding methods, and
influencing techniques (Section 8.4), and provides discussion of the evaluation results
(Section 8.5). The chapter concludes by addressing the limitations of our system in
Section 8.6 and limitations related to similarity calculation in Section 8.7.

5

1. Introduction

Chapter 9 presents the conclusion (Section 9.1) and explores promising future directions
for work (Section 9.2).

6

CHAPTER 2
Related Work

The following chapter discusses the related work for our schema columns to the ontology
entities mapping system and its controlling user interface. Section 2.1 provides a brief
introduction to the DBRepo, which our system is built upon. Next, the need for isolation
in unit ontology is explained, along with an overview of the state-of-the-art unit ontologies
in Section 2.2.

The remaining sections explain the approaches for schema entity-to-column matching.
Section 2.3 presents the W3C recommendation for matching, while Section 2.4 discusses
the state-of-the-art techniques used in the Ontology Alignment Evaluation Initiative.
Section 2.5 showcases the fundamental schema to ontology matching approaches. Finally,
Section 2.6 explores state-of-the-art approaches for using text embedding models in the
schema to ontology matching.

2.1 Database Repository
DBRepo is a repository provides several APIs which can be seen in Figure 2.1. Each
service of the repository operates within Docker containers [Mer14] to offer flexibility. This
system enriches scientific research data by providing metadata mapping, versioning, data
citation, and licensing features [wei22]. The collective goal is to ensure that data complies
with FAIR (Findable, Accessible, Interoperable, and Reusable) principles [WDA+16]
right from the beginning of the research, rather than addressing it later.

Data citation for a specific dataset is crucial. In DBRepo, this is achieved by storing
the time stamps when the data is created (valid from) and when the data is expired or
modified (valid to). This ensures that the data’s temporal validity is captured, allowing
for accurate citation and tracking of changes over time. It is integrated into the system
by using Maria DB (https://mariadb.com/) instances.

7

https://mariadb.com/

2. Related Work

Figure 2.1: DBRepo Services Overview [wei22]

DBRepo supports both static and evolving (continuous) data. Consuming and inspecting
time-series, such as real-time sensor data, is applicable through various APIs. The system
protects the database’s internal representation from the data source and generates SQL
queries using the Query Service (see Figure 2.1). Researchers can also upload data
through a graphical user interface, which communicates directly with the API. This
functionality is introduced to assist users with limited Structured query language (SQL)
expertise.
Research data can be imported into DBRepo as a new table (see Figure 2.2) or into
an already existing table from comma-separated values (CSV) files. Initially, table
information needs to be provided, defining the table name and description. Afterward,
delimiter (comma or semicolon), line termination, and optional NULL, TRUE, and
FALSE placeholders need to be set. Then, a CSV or Tab-separated values (TSV) file is
uploaded. Lastly, the schema definition begins, as shown in Figure 1.1. In this step, any
column can be selected as primary key, enabling null values, and assuring uniqueness.

In the newer version of DBRepo, column names can be edited, new columns can be added,
and existing columns can be deleted. Most importantly, DBRepo suggests a data type
for each column. This suggestion is provided by the Analyse service, and the suggested
data types are MariaDB data types.

In one of the DBRepo publications [WMS+21], authors show their interest in extending
the FAIR support by introducing an "ontology-based metadata mapping" by preserving
the functionality and the intentions of their system.

2.2 Ontologies
The authors of DBRepo have acknowledged the promising possibility of enabling search
across database repositories, spanning various research data from scientific domains.
This can even include statistical calculations (such as min, max, etc.) when semantic
information is provided.

Findability, reusability, and mainly interoperability can be improved in DBRepo by

8

2.2. Ontologies

Figure 2.2: Table Schema Creation in DBRepo

Figure 2.3: I-ADOPT Example [MRS+21]

introducing ontology-based metadata mapping in the schema definition. However, usable
ontologies that satisfy scientific needs have their own requirements.

2.2.1 InteroperAble Descriptions of Observable Property Terminolog
(I-ADOPT)[MRS+21]

In the domain of biodiversity, data management has become increasingly challenging due
to growing data-intensive needs. Different data sources often have different representations,
leading to a lack of standardization, which becomes problematic. I-ADOPT is created
to propose a solution and make the data more FAIR [WDA+16]. It contains high-level
concepts to describe scientific observations, measurements, and derivations. One of the
main goals is ensuring the interconnectivity of various resources, which DBRepo [wei22]
can benefit from in the newer versions. The authors note that the focus of this project is
environmental research; nevertheless, it remains relevant for other domains.

The framework can describe qualitative or quantitative, synthetic or real-world data, which
the authors refer to as variable-centric. Furthermore, it supports encoding information
about what, where, when, and how the data was collected. An example of concepts and
object properties, as seen in Figure 2.3, are defined as follows:

9

2. Related Work

• Variable: Isolated data of observation. The authors do not provide units, measure-
ment methods, and time of observation. They urge to model the units independently
from the variables because of the diversity of quantitative units [MRS+21]. Isolating
the variable creates interoperability with other observations. Utilizing isolation
requires having object and unit ontologies separately. That’s why our system maps
variables to both object and unit ontologies separately to ensure their isolation.

• Property: Characteristic of the object (e.g., concentration).

• Entity: Actor(s) of the observation. It can be an object or process (e.g., endosulfane
sulfate, flesh, ostrea edulis).

• hasObjectOfInterest: Entity whose property is observed (e.g., endosulfane sulfate).

• hasContextObject: Entitiy to for additional background information (e.g., ostrea
edulis).

• hasMatrix : Entity where the object of interest resides in (e.g., flesh).

• Constraint: Limits the scope of the observation (e.g., wet).

Isolating the variable requires two different types of entities: object and unit entities.
Object entities describe the scientific observations of values (similar to how I-ADOPT
describes them at a higher level), while unit entities describe the units of the measured
variable. Using this approach ensures both the ability of statistical calculations for units
and interoperability between different ontologies.

Instead of employing a complete modeling of object information, our system utilizes
multiple object ontologies, each focusing on different domains. This choice allows our
system to expand over time, covering a wide range of scientific fields while maintaining
simplicity. Consequently, the modeling of complex object structures is delegated to
external ontologies and their identifiers are then mapped to the database attributes.

2.2.2 Unit Ontologies
Various object ontologies could be found in DBPedia Archivo [FSG+20]. However,
introducing interoperability between objects requires finding a unit ontology that contains
all of the units of measurement across all of the scientific fields.

A survey by Zhang[ZLZP17] compares popular unit ontologies, which are defined in OWL2
[HKP+09], such as Quantity Unit Dimension Type Ontology (QUDT) [FAI22] that is
created by National Aeronautics and Space Administration (NASA) and Ontology of units
of Measure (OM) [RVAT13] which is using standards such as ones from National Institute
of Standards and Technology (NIST) [Tay95]. Figure 2.4 shows the domains covered
by each unit ontology. However, OM (now called OM2) and QUDT are continuously
updated over time, which expands their coverage to include more domains. One such

10

2.3. Direct Mapping

Figure 2.4: The timeline of units ontologies [ZLZP17]

example would be OM2, which includes biological units such as colony-forming units.
Nevertheless, there is significant diversity among the unit ontologies. Noting that the
unit overlap between OM2 and QUDT is 18.8% [KS19], our system utilizes OM2, QUDT,
and Unified Code for Units of Measure (UCUM) to cover as many units as possible.
Additionally, all of the utilized unit ontologies define units as instances.

Finally, there is a new unit ontology called Digital Representation of Units of Measurement
(DRUM) [dru22] that is about to be released by Committee on Data (CODATA). The main
goal of this ontology is to address the FAIR principles and advance the interoperability of
cross-domain case studies. However, it is not available at the time of writing this thesis.

2.3 Direct Mapping
In 2012, World Wide Web Consortium (W3C) recommended a semi-automatic mapping
approach called Direct Mapping [ABP+12]. This approach takes the relational schema and
instance data as inputs and, in return, materializes an Resource Description Framework
(RDF) graph known as the direct graph. Subsequently, similarity calculation can be
conducted between the direct graph and ontology’s graph structure.

To construct the directed graph, RDF triples are generated using the rows from the
instance data. Each RDF triple of a row contains a subject Internationalized Resource
Identifier (IRI), which is generated from the table name and the value of the primary
key. Additionally, the base IRI and the column name of the primary key can be inserted.
For example, in Figure 2.5, the student "Alice" is represented by the IRI "S01", where
"S" stands for the table name and "01" stands for the primary key value of that specific
row. Tables are represented as classes, while each data attribute is represented as a data
property. RDF triples are generated according to the instance-specific data attributes

11

2. Related Work

Figure 2.5: Direct Mapping [JI20]

and table names. Triple generation is skipped in cases where a data attribute contains a
"NULL" value. On the other hand, range information of the data properties is extracted
from the schema data (e.g., "varchar" is converted into "xsd:string"). Lastly, in simple
terms, foreign keys are converted into RDF triples where the subject is the IRI of the
instance, the predicate is the foreign key column name(s), and the object is the IRI of the
referenced instance. Eventually, foreign keys are object properties, tables are concepts,
data instances (rows) are instances, and data attributes are object properties in the direct
graph.

2.3.1 Automatic mapping generation tools with graphs
A paper by Pieter Heyvaert (2017) [Hey17] proposes the use of existing data, schema,
increasing query workload, and generated mappings (DSQM) for improvement of map-
pings and evaluates semi-automated ontology mappers which produce graphs. Automatic
mapping generation tools can utilize the direct mapping approach to create a direct
graph (bootstrap ontology), from a database, and then apply their algorithms to match
it to a target ontology.

LogMap [JRG11] is one of the most popular matching generation tools for this purpose.
It contains five steps which can be seen in Figure 2.6 and are described as follows:

1. Lexical Indexation: This step converts the label names (and synonyms) of the
classes in each ontology into indexes. An external lexicon, such as WordNet [Mil95],
can be optionally used.

2. Structural Indexation: The ontology hierarchy is treated as two Directed Acyclic
Graph (DAG)s (descendants and ancestors) to separate the descendant and ancestor

12

2.3. Direct Mapping

Figure 2.6: LogMap [JRG11]

relationships. An optimized data structure is used to store these DAGs. Using these
DAGs, the visiting orders for each class (and their children) during a depth-first
traversal are calculated. For each class, two intervals are created based on the
visiting orders of the descendant and ancestor DAGs, where the starting point
is the class’s visiting order and the ending point is the highest visiting order of
its child. These intervals enable efficient querying of the ontology hierarchy (e.g.,
determining if X is a subclass of Y).

3. Initial Calculation of Anchors: This process begins by identifying exact string
matching between the two class labels from the ontologies. Once two identical class
labels are found, their lexical indexes are marked as anchor points. Following this,
the similarity of their neighboring classes is calculated using the ISUB similarity
metric, which measures the length of common substrings. Finally, confidence scores
are assigned to the anchor points based on the calculated neighbor similarities
(principle of locality).

4. Mapping Repair and Discovery: This is an iterative process that begins with the
mapping repair sub-step. It starts by checking the unsatisfiability of the classes
using the Dowling-Gallier algorithm [DG84] when the two ontologies are extended
using the active mappings. Next, the unsatisfiable classes are ordered by their
topological level in the hierarchy. Using this order, for each unsatisfiable class, a
minimal subset of mappings is removed to achieve satisfiability. If there are two
possible repairs for a class, the one with the smallest confidence is chosen and
removed from the mappings.

On the other hand, the discovery sub-step involves creating and expanding con-
texts (lists of classes that belong to the neighborhood of the anchor’s classes) for
each anchor. Then, classes within these contexts are matched in pairs using the
ISUB similarity metric. Upon finding pairwise similarities that exceed a mapping
threshold, these pairs are used to extend the set of mappings.

Overlapping Estimation: LogMap computes two fragments to represent overlaps in
each ontology. Unlike anchors that are used in the previous steps, (weak) anchors in
this step are defined by class-label similarities based on common substrings rather
than exact matches. These weak anchors are then provided to domain experts as
fragments to facilitate the manual creation of missing mappings.

13

2. Related Work

Figure 2.7: Similarity Flooding Example [MGMR02]

Another notable tool is called IncMap [PBKH13] which uses the similarity flooding
algorithm [MGMR02]. Simply put, the initial similarity of any two nodes increases
the similarity of their adjacent nodes. Authors noted that this approach resembles
"flooding" the network when Internet Protocol (IP) packets are broadcast. The algorithm
initially takes two schemas and converts them into directed labeled graphs in which
data instances are converted into vertices and their relationships are represented as
edges. Afterward, two graphs are joined together by some similarity metric. This
final graph is called Pairwise Connectivity Graph (PCG). Afterward, inverse edges and
edge weights are introduced to the PCG and fixpoint computation occurs over the
similarity measurements until a certain threshold is reached. For example in Figure 2.7,
let sim(a, b) be our similarity measurement for a and b. Initial fixpoint computation is
sim0(a, b). Each iteration increases the fixpoint computation for a, b by their neighboring
similarity computations multiplied by the incoming edge weights. Thus sim1(a, b) =
sim0(a, b) + sim0(a1, b1) ∗ 1.0 + sim0(a2, b1) ∗ 1.0. Finally, this similarity is normalized.

In conclusion, these approaches involve creating a graph from a schema and then applying
graph algorithms for similarity assessment. While these methods provide various solutions
for calculating similarity, they are not suitable for our purposes. We do not need to convert
single-table relational data into a graph (with a single class); instead, we aim to describe
simple string attributes (columns) using ontology concepts. Since the input consists of
only a single table, there will be only one class (node) in the direct graph (or bootstrap
ontology). This means that a single class (table) will be aligned to some ontology classes,
rather than aligning the data properties (attributes). Therefore, alternative methods must
be explored for semi-automated matching between the relational schema of user-provided
scientific data and an object and unit ontology within the DBRepo framework.

2.4 Ontology Alignment Evaluation Initiative (OAEI)
In 2004, an international initiative called OAEI[oae] was founded. Its main aim is to
evaluate ontology alignment methods under the same circumstances and create consensus
on the right direction. Every year, they provide multiple challenges from various fields
and offer test sets for evaluation purposes. This initiative has played a crucial role in
advancing research in ontology alignment by providing standardized benchmarks and

14

2.4. OAEI

increasing collaboration among researchers. Each year, there are various challenges, or
tracks as they are referred to, in the OAEI.

The 2020 edition [PAA+20] consisted of 12 tracks with 36 different test cases. These
tracks can be classified into the following categories:

• Schema matching: Problems of matching between ontologies.

• Instance Matching: Problems of matching between individuals in the ontologies.

• Instance and Schema Matching

• Complex Matching: Introduces harder problems in-between entities from different
ontologies.

• Interactive: Semi-automated matching problems that assess the impact of user
interactions.

However, these tracks are not applicable for our use case in DBRepo. For instance, the
Schema Matching track requires multiple ontologies, which cannot be created due to
the constraints of the provided input, as described in section 2.3. Additionally, other
tracks require the instance data, which, in our case described in section 2.3, is unavailable.
Thus, possible solutions for such problems are also not applicable. Therefore, alternative
approaches need to be explored to address the unique challenges posed by DBRepo.
There is a special track in the OAEI called Semantic Web Challenge on Tabular Data
to Knowledge Graph Matching (SemTab) [oxf]. This track started in 2019 and focuses
on CSV files as input, which can be interpreted as a single table. Their main goal is to
improve data analytics and knowledge discovery, ultimately improving the FAIRification
process as explained in the initial section 1. This track appears to be a suitable fit for our
use case in DBRepo by improving the automation of Knowledge Base (KB) construction.
Additionally, this problem requires matching elements of the table to Wikidata [VK14]
and DBpedia [ABK+07] entities.
SemTab has three relevant tasks for our use case can be visualized in Figure 2.8:

• Cell Entity Annotation (CEA): Matching each cell with a Wikidata or DBpedia
entity.

• Column Type Annotation (CTA): Matching each column with a Wikidata or
DBpedia class.

• Column Property Annotation (CPA): Finding object properties which can describe
subject column(s) with their property column(s).

Meanwhile, there is a new task called Topic Detection which was introduced in 2023
[HAE+23]. This task focuses on the problem of matching the entire table to an entity.

15

2. Related Work

Figure 2.8: SemTab Tasks [DCF22]

This task will occur again in 2024 challenge [oxf].

When some of the famous systems are inspected, such as JenTab[AS21], MantisTable
[AC21], and SemTex [HKN+23] (2023 SemTab CEA, CTA, and CPA best performer
[HAE+23]) follow the somewhat similar steps. At first, the table is pre-processed with
subject column prediction services. Then all of them perform CEA followed by the CTA
and CPA. It is important to note that CTA and CPA tasks depend on the outcome of the
CEA [DCF22]. Thus common approach for all such systems is first attempt to map cells
to entities or at least analyze similarities in-between. Afterward, using the aggregated
knowledge, map entire columns to a Wikidata or DBpedia class.
Another example is KGCODE-TAB [LWZ+22] (2022 SemTab accuracy track co-winner
[ACC+22]). KGCODE-TAB also has a subject column prediction service which assumes
the table would have at least one subject column and the rest will be related properties.
Service relies on spaCy [HMVLB20] for Named Entity Recognition (NER) to classify a
cell is an entity (e.g., PERSON, LOC, ORG, ...) or not (e.g., DATE , TIME, PERCENT,
...). A column is classified as an entity if half of its cells are classified as entities. Then
an entity column with the most entity diversity is selected as a subject column. This
process is named table structure analysis. Column headers are ignored like LOD4ALL
[CDPRS20], MantisTable[AC21] does. However, for CTA, instead of waiting for CEA,
various similarity metrics are applied between all subject cells and all types of entities in
the existing Knowledge Graph (KG). For example, one of the applied similarity metrics
is levenshtein distance. Winner type proposes a similar subject entity for each subject
cell which is then used for calculating the types of the properties cells.
The proposed approaches in SemTab challenges are important for us. However, they often
rely on APIs such as the MediaWiki Action API(https://www.mediawiki.org/w/
api.php) [HKN+23]. Utilizing such APIs enables them to obtain annotations for each
cell, thereby broadening the domain knowledge. In our case, the schema definition in

16

https://www.mediawiki.org/w/api.php
https://www.mediawiki.org/w/api.php

2.5. Schema-based matching approaches

Figure 2.9: General architecture [RB01]

DBRepo is not dependent on a third-party API (see section 2.1).

Another problem with these approaches is that they include the cells of the table and
the individuals of the ontology in the column-matching process (CTA). However, in our
case (scientific research data), the cells mostly contain numerical data, whereas the cells
in SemTab challenge generally contain string information. This indicates that we need
to focus on the column headers (e.g., attribute names) rather than the cells themselves.
In conclusion, approaches relying on external APIs and cell-level information are not
suitable for our use case.

2.5 Schema-based matching approaches
In this section, more general approaches will be discussed. The main idea of these
approaches is that they take two schemas as input, namely source and target schemas,
and then create a mapping between them. Furthermore, schema types vary from approach
to approach, such as relational schema, Extensible Markup Language (XML), and ontology.
As indicated in sections 2.1 and 2.2, our requirements specify taking inputs of a relational
schema and ontologies. Various surveys attempt to categorize and summarize these
approaches. These surveys provide valuable insights into the different methods used for
schema mapping and alignment.

2.5.1 A survey of approaches to automatic schema matching
The authors of a paper which is called A survey on approaches to automatic schema
matching [RB01] highlight that schemas can differ significantly in terms of structure and
terminology, especially when they originate from different domains. This is particularly
relevant in our case, as we are dealing with schemas from various scientific domains.

The first step in handling the structure and terminology variation is understanding the
inner relationships of different schemas and unifying them accordingly. In Figure 2.9,
one such system design can be seen. Multiple schemas can be parsed into a unified

17

2. Related Work

Figure 2.10: Schema Matching Approaches by Erhard Rahm [RB01]

representation. External libraries can be introduced to extend the metadata information.
Afterward, matching can occur between these unified representations.

Since this design can handle multiple schemas, it provides the ability to introduce various
ontologies from diverse scientific fields. Furthermore, customizable unified representations
and global libraries offer flexibility in choosing matching approaches. Therefore, our
system provides customization options for administrators, allowing them to flexibly read
specific entity types from ontologies. For example, administrators can choose to read
only individuals (measurement units) from unit ontologies to restrict the search space
(see Section 2.2). Also, embedding models are utilized as global libraries (see Section
2.6). These approaches ultimately improve findability, interoperability, and flexibility in
managing research data within DBRepo.

In Figure 2.10, the approaches are categorized based on whether they focus on Element-
level or Structure-level. Matchers that focus on the element level solely consider entities,
while matchers that focus on the structure level focus on analyzing the relationships
among multiple entities. Similarity metrics are determined by combining Linguistic or
Constraint-based approaches with Element or Structure level matching. This classification
helps in understanding the various strategies employed in schema matching and alignment.
Linguistic approaches are as follows:

• Name similarity involves calculating similarity based on the displayed names. One
example is using the direct equivalence or Levenshtein distance. However, many
pre-processing steps can be introduced. These include removing redundant prefix

18

2.5. Schema-based matching approaches

Figure 2.11: Schema Reuse [RB01]

and suffix symbols and generating synonyms, hypernyms, or even pronunciations.
Nevertheless, pre-processing steps such as synonyms and hypernyms often require
external data sources. Additionally, users can provide feedback on name equality
or inequality to improve similarity calculations. This user feedback, specifically
providing name equality, will be used in our influencing algorithm.

• Description similarity, on the other hand, utilizes annotations of the data elements.
However, utilizing this approach would be limited in the DBRepo schema definition
since the input is a CSV or TSV, which results in relying on the target ontology
annotations. However, not every ontology has annotations.

Next, we discuss the Constraint-based approach which uses the structure information.
Similarity can be assessed by checking whether the data types are equivalent or not.
Conversion between the data types can also be satisfied (e.g., an integer can be converted
to float, and data types between two enumeration types can be matched with each other).
Using primary and foreign key relationships further relevant data types can be found.
Constraint-based approach is also utilized within DBRepo using the column data types,
data properties, and object properties. However, this approach can be combined with
graph matching algorithms like similarity flooding algorithm [MGMR02] which was
previously described in Section 2.3. Additionally, one-to-one relationship information
can be used to constrain sources matching to the same target when there are multiple
tables in the relational schema.

Another approach, known as schema reuse, is illustrated in Figure 2.11. The authors
suggest that if a matching between S and S2 already exists, the mapping could be reused
for S1 and S2. The requirement is that S1 needs to be similar to S. Since our system
will have one source as a relational data schema which is coming from the user and
two separate target ontologies, namely object and unit ontologies (see section 2.2), our
influencing procedure can utilize this approach with user feedback. In this approach,
the user can select an object entity, and it can then be matched with unit entities.
Subsequently, the matching between the object entity and unit entities can be reused

19

2. Related Work

Figure 2.12: Match Cardinality Examples [RB01]

for the source column to unit entities. Performance regarding the schema reuse for such
usage can be seen in the Evaluation Chapter 8.

Schema-matching approaches involve four possible cardinalities, which can occur at either
the element level or the schema level. When matching happens between elements within
the same schema, it’s referred to as element-level matching. Conversely, when matching
occurs between elements in different schemas, it’s called schema-level matching. For the
element level cardinalities (see Figure 2.12), when a source entity is matched with a target
entity, it is called a 1 : 1 cardinality. When 1 : n corresponds to a source entity matching
with multiple target entities. Consecutively, n : 1 occurs when multiple source entities
are matched to a single entity. Lastly, n : n represents source entities matching with
multiple target entities. In terms of DBRepo, there will be a single schema which means
our system will support only element-level matching. Due to the provided User Interface
(UI) which can be seen in Figure 1.1, DBRepo does not yet support 1 : n element level
cardinality. Thus only n : 1 and 1 : 1 element level cardinalities are being supported.

2.5.2 A Survey of Schema-Based Matching Approaches

Schema matching involves techniques that attempt to utilize implicitly defined information
within the schemas, while ontology matching tries to utilize explicitly defined knowledge
in the ontologies. However, schema-based matching can occur between both. A Survey
of Schema-Based Matching Approaches[SE05] classifies such matching according to the
inputs, matching process, and outputs.

Inputs can vary from XML, relational schema, ontology, etc. The matching process
has two different characteristics. The first one is the similarity metrics, which can be
syntactic, external, or semantic (see Figure 2.13). The other characteristic is whether
exact or approximation algorithms are used for these metrics.

Output classification is based on multiple characteristics, such as post-processing re-
quirements like match fine-tuning, matching cardinality (such as n : 1), output of each
match (confidence, probability, or an exact answer), and the match type, whether it is
equivalence (=), subsumption (⊑), or something else [RB01].

20

2.5. Schema-based matching approaches

Figure 2.13: A Survey of Schema-Based Matching Approaches by Pavel Shvaiko [SE05]
Utilized approaches are marked with red.

Accordingly, our system can be classified as taking one relational schema and two OWL
ontologies (see Section 2.2). We employ syntactic and partially external similarity metrics
with approximation algorithms (discussed in Chapter 5). The output requires fine-tuning,
which will be further elaborated in the Similarity Calculation Limitations Section 8.7
and in the Future Work Section 9.2. The produced mappings are of types n : 1 and 1 : 1,
and the match type is equivalence (=).

In Figure 2.13, the top layer is the Granularity layer, which identifies how the input is
used, containing three different similarity metric categories. Syntactic similarity metrics
take inputs in their initial form, external resources use inputs to gather additional data,
and semantic metrics utilize reasoning with the inputs.

The bottom layer is the Basic Techniques Layer, which identifies how the input is treated.
Semantics treats its inputs as logical models, structural metrics treat them as structures,
and terminological metrics treat them as strings. From this layer, we utilize terminological
(specifically linguistic) and structural (specifically internal) similarity metrics.

21

2. Related Work

The middle layer in Figure 2.13 is called Element level similarity metrics. String-based
metrics are as follows:

• Prefix: Detects if the second word is starting with the first one (e.g., temp and
temperature).

• Suffix : Detects if the second word is ending with the first one.

• Edit distance: Calculates the number of edits required between two words for them
to be equal.

• N-gram: Detects whether consecutive N characters are equal or not between two
words.

Language-based metrics employ Natural Language Processing (NLP) for tasks like
tokenization. These metrics are often described as a standard pre-processing step before
applying string-based metrics. However, in our approach, we exclusively utilize language-
based metrics with the assistance of embedding models, which already contain their
tokenizers. This approach is further elaborated on in Section 2.6 of the thesis.

Linguistic resources primarily leverage common or domain-specific knowledge to generate
synonyms or hypernyms based on natural language inputs. In our system, the user-
selected prefix, suffix, synonym, or hypernym information, represented as an embedding
vector of an ontology entity, is automatically combined with the column name, also
represented as an embedding vector. This combination process is crucial in our influencing
step, which is why linguistic resources are utilized and will be elaborated in Chapter 6.

Taxonomy metrics rely on graph algorithms to assess the similarity between two entities
by comparing their supersets and subsets. Similarly, model-based metrics begin with a
graph-matching problem and transform it into a series of node-matching problems, often
checking for unsatisfiability using SAT solvers. However, these metrics are not suitable
for application within DBRepo due to the nature of user-provided input, which consists
solely of a relational schema with a straightforward structure. Even if a direct mapping
approach is employed (refer to Section 2.3), it is not feasible to construct applicable
supersets or subsets.

A repository of structures is employed to accelerate the matching process. Upon the
arrival of a new schema, its similarity with pre-existing structures in the repository is
assessed. If a relevant structure is found, a more detailed matching process can occur, or
existing alignments can be reused. The same reuse procedure illustrated in Figure 2.11
can be applied. However, such structures are currently not utilized and will be discussed
in the Future Work chapter (see Future Work Section 9.2).

22

2.6. Embedding Models

2.5.3 Combination Match (COMA)++
COMA/COMA++ [DR02] [ADMR05] is state-of-the-art ontology matching tool [ABM15]
[Mat19] except the ones that are already discussed in OAEI Section 2.4 or in direct
mapping [ABP+12] Section 2.3.

COMA++ [ADMR05] is a tool that can handle XML, relational schemas, and OWL
ontologies. It utilizes ontology-based matching approaches as a hybrid matcher, employing
string, language, data type, and auxiliary thesaurus metrics. Users can select which
similarity metrics to use for automating the mapping. COMA++ can generate a DAG
using foreign key relationships to execute matching, meanwhile user feedback can introduce
biases. Although it utilizes graph-based approaches, it is not a necessity but a choice
to use this metric. However, COMA++ does not convert different data types between
different data models and performs constraint-based matching by analyzing all data
instances of all elements (both schema and ontology) [EM07]. Additionally COMA only
focuses on 1 : 1 element-level matching cardinalities (see Figure 2.12) [Mat19].

The schema definition process in DBRepo includes the possibility of 1 : n element-level
matching cardinalities. Furthermore, our goal is to consume the already predicted data
type information from the DBRepo, which only uses the data instances of the user-
provided schema. Using this information, we will then match the predictions with RDF
data types from ontologies. Lastly, a similarity metric for calculating the overall relevance
of each ontology is required since our system will support multiple object ontologies.

2.6 Embedding Models
Embedding models take high-dimensional data, such as words, and encode it into a vector
in a lower-dimensional embedding space. These models learn mappings from training
data. In terms of NLP, similar words are encoded closer together. Their closeness can be
determined by, for example, cosine similarity scoring. String-based similarity metrics,
such as edit distance, can be applied between column names and object entities. However,
these metrics will fail when unit entities are introduced. For example, the similarity of
the "temp" column to the "Temperature" object can be detected with edit distance, but
"Fahrenheit" will not be detected. This highlights the limitation of solely relying on string-
based metrics for matching when dealing with units. Auxiliary dictionaries can be used
to find such information, but covering all scientific areas would be unrealistic. Instead,
having a text embedding model that produces dense embeddings that can be fine-tuned
or completely replaced by another model provides flexibility to our system. Furthermore,
the multilingual performance and the ability to represent synonyms, hypernyms, and
canonical names in the embedding models can also be utilized. Additionally, averaging
column and object embeddings can be used as auxiliary information in our influencing
mechanism. Introducing an embedding model is beneficial for our system because it
provides a more flexible and accurate way to represent entities and their relationships.
There are various approaches to construct node embeddings for node classification such
as Instance Neighbouring by using Knowledge (INK) method [SVW+22], relational graph

23

2. Related Work

convolution network [SKB+18], and rdf2vec [RP16]. The problem is that all of these
approaches usually require training a new model. Since we do not have such resources
and have time restrictions, utilizing a pre-trained word embedding model is ideal. In
the research by Chen et al. [CHG+23], the authors utilized a pre-trained Bidirectional
Encoder Representations from Transformers (BERT) [DCLT18] embedding model and
fine-tuned it to classify ontology subsumption which is referred to as BERTSubs. They
provided three different templates for name subsumption: isolated class, path context, and
breadth-first context. The isolated class template does not consider class relationships,
whereas the path context and breadth-first context templates do consider ancestors
and descendants. Path context often outperforms all of the other templates and other
state-of-the-art approaches in the inter-ontology named subsumption task [CHG+23].
The success of this template lies in the possibility of BERT to understand contextual
information, such as graph paths. In more detail, BERT is a transformer architecture
used in text encoding. Unlike the rest of the architectures, BERT can be trained on
bidirectional representations by conditioning each token to both left and right contexts.
This means the relationship between a vertex and its ancestors/descendants can be trained
by representing the ancestors, the vertex itself, and the descendants bidirectionally.

BERT converts sequential text into tokens, and each token is then converted into an
embedding vector. For this conversion from tokens to embeddings, the self-attention
architecture [VSP+17] is used, rather than recurrence or convolution. In simple terms,
self-attention converts each token, combined with its positional information, into three
different vectors: query, key, and value. Attention scores for a token are computed
by taking the dot product of its query vector with the key vectors of all other tokens.
The final embedding (output) of a token is computed as a weighted sum of the value
vectors, where the weights are the attention scores. Self-attention enables the model to
effectively capture both local dependencies (by providing positional information) and
global dependencies (by taking the dot product of key-query pairs) in the sequence.

Furthermore, the design of BERT provides symbols for pre-training or fine-tuning
[DCLT18]. These symbols can be used to indicate a classification task ([CLS]), hiding
some words for prediction ([MASK]) or separating distinct sentences ([SEP]). For the
ontology subsumption [CHG+23], specifically the path context template, authors used a
pre-trained BERT model and fine-tuned it to ontology subsumption downstream task
between c1 and c2 by representing the descendent paths of c1 and ancestor paths of c2
as classes with "[SEP]" tokens (e.g., label of class1 [SEP] label of class1A). They also
tried using a custom token ([SUB]) rather than the [SEP] token. However, it gave worse
results since the pre-trained model is already trained with [SEP] token. Furthermore,
they used [CLS] token to indicate the classification task and added a classification layer
(softmax layer) to output the probability of subsumption.

As previously mentioned, the BERTSubs path context template outperforms all competi-
tors for inter-ontology named subsumption, achieving a Mean Reciprocal Rank of 0.707.
However, the isolated class template, which relies solely on label names and annotation
properties for synonyms, follows closely with a score of 0.695 [CHG+23]. Our approach

24

2.6. Embedding Models

to calculating the similarity between (user-provided) column names and entity labels
follows a methodology similar to the isolated class template of BERTSubs. However,
in the Future Work Section 9.2, we will discuss the incorporation of annotations and a
variation of the path context template.
Currently, there are various BERT-based pre-trained embedding models which produce
dense embeddings. BGE M3-Embedding [CXZ+24] has state-of-the-art performance
with multilingual and cross-lingual support, and it’s capable of processing different input
granularities (from short inputs to passages) into embedding vectors. This means that a
small or large amount of sentences can be fed into the model, allowing for the possibility
of fine-tuning the model with sequential relationships without even changing the model
itself. Overall this model is being used in our system for its performance in Massive Text
Embedding Benchmark (MTEB) [MTMR22] Semantic Textual Similarity benchmark
meanwhile concerning the memory usage, multilingual capabilities, and capability to
represent various semantic relationships.

25

CHAPTER 3
System Overview

The following chapter will explore our design philosophy in constructing a semi-automated
mapping tool. It will demonstrate how our overall ideas are shaped by the requirements of
the DBRepo and the related work we have covered. Section 3.1 starts with what are the
main objectives by giving reasons. Afterward, section 3.2 will demonstrate a high-level
view of how the data flows from two different perspectives: when new ontologies are
introduced and when the user initiates the mapping.

Our system is called Schema-ontology (SO) Mapper, which takes a relational schema and
calculates the similarities between the schema and object ontologies, as well as schema
and unit ontologies. The produced outputs are relevance lists, which can be searched and
influenced by users. Administrators can introduce new ontologies as well as remove them
from the system. SO Mapper will be used within the DBRepo table schema definition
interface to aid users by semi-automating the process of mapping columns with object
and unit entities.

3.1 Objectives
Seamless integration of SO Mapper into DBRepo is achieved by converting it into a
stateful API. Since DBRepo contains multiple APIs running in docker containers (see
Figure 2.1), following the same approach will ensure compatibility. Additionally, user
states, which include initial mapping results, are cached into files for further usage in
case clients want to interact with them.

One of the design philosophies of DBRepo is to make the data FAIR (Findable, Accessible,
Interoperable, and Reusable) right from the beginning of the research, rather than
addressing it later [wei22]. This is why SO Mapper is integrated into the table schema

27

3. System Overview

creation process (see Figure 2.2) while retaining the overall workflow. This is achieved
by utilizing SO Mapper in the table schema definition step, as visualized in Figure 3.1.

The interface in the table schema step of DBRepo involves multiple functionalities such
as adding and removing columns, and updating column names or data types. These
functionalities are reflected in the SO Mapper. For example, when a user adds a new
column, SO Mapper will include the new column in the schema information, calculate the
data type satisfaction and name similarity, and re-calculate the overall ontology relevance
scores.

Start

Table Information Step

Metadata Step

Import Data Step

Table Schema Step

End

Upload CSV/TSV

Set Table Name/Description

Select Separator/Placeholder

Upload File

Interact with SO Mapper

Figure 3.1: Workflow: DBRepo Table Schema Creation Process

Since DBRepo is a multi-user environment, SO Mapper must comply with it. This is
achieved by introducing specific hashes for each user. For instance, there can be multiple
users who are simultaneously working on the table schema creation process. When the
front-end initiates the initial connection with SO Mapper, it receives a specific hash.
Each user can use their hash to edit or influence their schema, which will be reflected
individually to the SO Mapper. Note that these caches are thread-safe.

28

3.2. Architecture & Data Flow

Our system contains two separate lists of ontologies, namely object and unit ontologies
to make the underlying data FAIR. Administrators can introduce new ontologies to
the system by simply putting the OWL2 files into specific file paths. Afterward, an
Hypertext Transfer Protocol (HTTP) load request to the API needs to be sent. SO
Mapper can load these new ontologies by identifying them, parsing the ontology data,
encoding the display names, and finally appending them to their respective object or
unit ontology list. Similarly, ontologies can be removed by deleting the files (deleting
from file-system) and sending a removal request (deleting from memory). Furthermore,
different ontologies can be parsed differently based on their specific modeling, such as
using a reasoner or restricting the entity types. For example, the use of a reasoner is not
needed for unit ontologies since some do not provide data types (e.g., units Vocabulary
of QUDT [FAI24]) and others indirectly define data types through object properties
(e.g., OM2). Additionally, the utilized unit ontologies define units as individuals which
means parsing only the individuals is enough. All of these requests can be executed in
run-time to give administrators flexibility in managing ontologies. Further information
about the unit ontology data type definitions can be found in the Data Flow Section 3.2
and configuration options can be found in the Reading Configurations Section 4.1.

The back-end is designed to provide flexibility and be open to various approaches.
Ontology information extraction can be configured to include only specific entity types
or run the reasoner. The underlying embedding model can be changed efficiently, and
new encoding methods can be introduced. Encoding methods for object ontologies, unit
ontologies, and schema ontologies can be separated. Lastly, different scoring methods
can be introduced for calculating the similarity scores, and object ontologies and unit
ontologies can utilize different scoring methods.

Introducing semi-automation for mapping requires utilizing user feedback. In SO mapper,
such feedback is handled by using a small number of user interactions. Ultimately will
ease the usability by reducing the user effort and also increasing the quality of results.
After the Initial Mapping finishes, SO Mapper front-end automatically maps each column
to the most similar object and unit entity among all ontologies. The most suitable object
and unit ontology is also automatically selected. In case the mappings are not perfect,
users can select a specific object ontology to use. Then each column will be automatically
mapped to the most relevant entities from the selected ontology. Furthermore, this
selection will be used as auxiliary information and affect the similarities of unit entities.
We call this indirect influence. However, users can also select an object entity which will
change the similarities of unit entities. This enhancement is called direct influence.

3.2 Architecture & Data Flow
The SO Mapper comprises two main data flows. When administrators provide an OWL
file that contains an object ontology Oobji

or a unit ontology Ouniti , reading configurations
Confobj/unit∗ for object or unit ontologies and then trigger our loading process, our system
locates the file and sends it to the ontology parsing process. The Entity Discovery and

29

3. System Overview

Extraction (discovery_extraction) algorithm extracts ontology information OIobj/uniti

which can be defined as:

discovery_extraction(Oobj/uniti
, Confobject,uniti

) = OIobj/uniti
= {ei1, ..., eim} (3.1)

Where m is the number of entities within the ontology Oobj/uniti
and eiy is the y’th

entity information that contains relationships and ranges (e.g., data type, subclass), IRI,
and label name (also data types in case an object ontology is provided). Our parsing
algorithms can be seen in Chapter 4.

The ontology information OIobj/uniti
is then forwarded to the encoding process, where an

encoding method enc returns string stry for each entity information eiy (e.g., label names
of the entities can be returned). Subsequently, a text embedding model emb converts the
strings into dense vector embeddings Eobj/uniti

.

Eobj/uniti
= {v1, ..., vm} , where

vy = emb(enc(eiy)) y ∈ {1, .., m}

enc(eiy) = stry =
�

label(eiy), if ey belongs to an object ontology
label(eiy) + " unit", if ey belongs to an unit ontology

(3.2)

Lastly, our system generates logs to track the parsing and encoding processes for future
reference and analysis. An illustration of such flow can be seen in Figure 3.2. Further
information about the components is given in the Implementation Chapter 7.

Another crucial aspect of understanding the architecture is exploring the user-initiated
data flow, which involves examining the processes behind the architecture that SO utilizes.
This flow, called Initial Mapping, begins with the user uploading a relational table as
a CSV or TSV file to DBRepo. The DBRepo analysis service then processes the given
schema columns and suggests data types D = {d1, ..., dn} for each column by examining
the data instances. The SO front-end map initialization processes the schema columns
and data types, excluding certain data types from the unit mapping (e.g., x’th column
cx is excluded for the unit mapping if dx is a string). Subsequently, the column names
C = {c1, ..., cn} and data types are sent to the SO mapper to represent the user schema
data in the back-end.

Afterward, the encoding process starts which utilizes the same encoding method enc and
the text embedding model emb converts each column name C into a set of dense vector
embeddings EC .

EC = {v1, ..., vn} s.t.
vx = emb(enc(cx)) x ∈ {1, ..., n},

enc(cx) = label(cx)
(3.3)

30

3.2. Architecture & Data Flow

Figure 3.2: Data flow of new ontologies in SO Mapper

At this point, our system employs multi-threading for object and unit mapping. Note
that for the sake of simplicity, the asterisk (*) symbol will be used to indicate all of the
object or unit ontologies. First, Fields F C,Oobj/unit∗ are generated between the schema
columns and all the ontologies (∀OIi ∈ OI∗). They can be defined as:

F C,Oobj/unit∗ = {F C,Oobj/unit1 , ...}

F C,Oobj/uniti =
�

{C, D, OIobji
, ST C,obji , CSC,obji}, if Oi is object ontology

{C, D, OIuniti , ST C,uniti}, otherwise
(3.4)

More information about the Fields can be found in Section 5.1. Fields are used to store
following data structures:

• SourceTarget matrix ST C,obj/uniti : Holds column names C and entity labels in OIi.
It is initially defined as:

ST C,obj/uniti
x,y = (name(cx), label(ei_y)) ∀x ∈ {1, ..., n} ∀y ∈ {1, ..., m}, where

n is the number of columns in C,

m is the number of entities in OIobj/uniti

(3.5)

31

3. System Overview

• Constraint Satisfaction matrix CSC,obji : Holds the data type compatibility results
between the columns and entities within the ST C,obji . It can be defined as as:

DataConstSat(F C,obji) = CSC,obji , where
CSC,obji

x,y = csx,y ∀x ∀y ∈ ST C,obji and

csx,y =
�

true, if dx ∈ GetDataTypes(eiy)
false, otherwise

(3.6)

During the Field generation, the SourceTarget matrix gets created, and then constraint
satisfaction constraint_sat starts. Only the object ontologies are checked for data
type compatibility since unit ontologies do not provide any data types such as Units
Vocabulary of QUDT [FAI24]. Meanwhile in some other unit ontologies, such as OM2
[HKP+09], indirectly define data types for certain units such as prefixed units (e.g.,
"centigram") through object properties (e.g., "hasUnit") of other classes (e.g., base units
such as "gram"), which requires a specific algorithm for each new unit ontology. This
restricts the systems’ flexibility when new unit ontologies are provided, so using only the
data type definitions in the object ontology is chosen to give visual information to the
users.

When the Fields between S and all ontologies OIobj/uniti
are ready (SourceTarget and

Constraint Satisfaction matrix are computed), Similarity Calculation (sim_calc) occurs
for the column-entity pairs in the SourceTarget matrices ST C,obj/unit∗ which returns
similarity scores RC,obj/unit∗ between column names and entities from ontologies. Again,
note that an asterisk (*) symbol will be used to indicate all of the object or unit ontologies.

RC,obj/uniti ∈ RC,obj/unit∗ , where
RC,obj/uniti = sim_calc(F C,obj/uniti , EC , Eobj/uniti

)
RC,obj/uniti

x,y = cosine_sim(vx, vy) ∀x ∀y ∈ ST C,obj/uniti

(3.7)

Our data type comparison and similarity calculation algorithms can be seen in Chapter 5.
New similarity measurements (such as changing sim_calc, enc, emb) can be introduced
to our system.

Once both unit and object processes are completed object and unit similarity scores
RC,obj/unit∗ , Fields F C,obj/unit∗ , and schema column embeddings EC are stored in a
cache. Our system utilizes such caching to handle user interactions. For instance, one
user interaction would be changing the data type of a column which changes the initial
constraint satisfaction results within the Fields. All the supported user interactions can
be seen in User Interactions Chapter 6.

Afterward, using the column names C, Fields F C,obj/unit∗ , and similarity scores RC,obj/unit∗

two types of relevance list are created for the Initial Mapping:

32

3.2. Architecture & Data Flow

Figure 3.3: Data flow of schemas in SO Mapper Initial Mapping

• Entity level relevance lists: ∀x ∈ C const_ent_rl(x, F C,obj/unit∗ , RC,obj/unit∗) =
RLx,obj/unit∗

• Ontology level relevance list: const_ont_rl(F C,obj/unit∗ , RC,obj/unit∗) = RLo

Further information about the relevance lists can be seen in Section 5.3.

Finally, the relevance lists are sent back to the SO front-end and displayed to the user.
This data flow is also illustrated in Figure 3.3.

33

CHAPTER 4
Reading the inputs

The following chapter explains how the SO mapping tool extracts and processes infor-
mation from the provided schemas and ontologies. This task is crucial for our system
because our data type checking, similarity metrics, and the entire mapping process rely
on it. The first section 4.1 will discuss the customization of reading and representing
ontologies. The second section 4.2 will explore our system’s capabilities in extracting
entity information, data types, and relationships. In the last section 4.3, we will discuss
how text embedding models encode entities of ontologies and columns of user-provided
schema data.

4.1 Reading configurations
Our system provides the following configuration capabilities:

• Entity Types: Parsing individuals, classes, objects, or data properties. By default,
all of the entity types are parsed. This functionality is important because, in some
ontologies, targets can be certain entity types. This is particularly common in
unit ontologies. One such example is OM2 [HKP+09] or QUDT. These ontologies
represent units only as individuals. In OM2 and the QUDT Units Vocabulary
[FAI24], no domain information about the units is provided. For instance, "biology"
information is not provided for the Colony-forming unit. For such cases, our system
provides a configuration option for what to include when extracting information
from the ontologies. It allows administrators to specify entity types depending
on the ontology structure. Our system currently uses this feature to extract only
individuals from unit ontologies, while object ontologies extract all entity types.

• Reasoner : Enabling or disabling the Pellet [SPG+07] reasoner. By default, the
reasoner is enabled. A reasoner can deduce anonymous ancestor relationships

35

4. Reading the inputs

which can only be inferred through the axioms of ontology. This functionality
can be applied to both object and unit ontologies. However, our system mainly
utilizes anonymous ancestor relationships to extract data types in object ontologies
rather than unit ontologies. Since the utilized unit ontologies do not provide data
type information or indirectly define data types and represent units as individuals,
parsing anonymous ancestor relationships is unnecessary. More information about
the data types in unit ontologies can be found in Data Flow Section 3.2.
Configuring the entity types and reasoner can be advantageous when administrators
want to reduce the entity types for the search space (e.g., parsing only the individual
entity types) or reduce computational demand by ignoring additional data type
constraints (e.g., disabling the reasoner).

• Encoding Method enc: Changing the generation of strings (e.g., using label names,
relationships, etc.) that are used to represent entities.Default encoding methods
are described in Section 4.3. In our system, various encoding approaches can
be utilized, such as encoding labels of classes and super-classes into the same
embedding representation.

• Embedding Model: Changing the text embedding model that converts strings that
represent entities into vector embeddings. The default embedding model is given
in Section 4.3.
The goal of enabling the encoding method and embedding model configuration is
to ensure SO mapper can incorporate advancements in encoding methodologies
and use different text embedding models.

Entity type and reasoner configurations can be applied on the run-time of our system to
customize reading new object or unit ontology Oobj/uniti

. For this, a JavaScript Object
Notation (JSON) literal Confobj/uniti

must be added into the object or unit configuration
file Confobj/unit∗ .

Confobj/uniti
= i : {include:inc, use_reasoner:ur} s.t.

name of the ontology i, list of unit types inc, and boolean ur
(4.1)

On the other hand, the encoding method enc and embedding model emb require restarting
the system to compute all the embedding vectors. There are currently two encoding
methods and one embedding model in our system which are addressed in Section 4.3.
Administrators can use our components to introduce new embedding methods and
encoding models. Our components can be found in Implementation Chapter 7.

4.2 Ontology Parsing
SO mapper parses ontologies for extracting the IRIs, display names, and data types for
the constraint satisfaction step. Parsing can be customized as shown in section 4.1. Our

36

4.2. Ontology Parsing

system relies on OwlReady2 to discover range and equivalence information. OwlReady2
is a newer version of the library OwlReady [Lam17] which supports OWL [WMS04]
and OWL2 [mot12][GWPS09]. Further information about OwlReady2 is given in the
Implementation chapter (see Chapter 7).
Our discovery and extraction algorithm takes an ontology Oi and returns the ontology
information OIi. Initially, the discovery part starts to find entities, relationships, equiva-
lence definitions and ranges with or without using the reasoner. In each iteration, when
a new entity ey is discovered, entity information eiy is created which contains IRI of the
entity and label name. The extraction part (ExtractRange and ExtractEquivalence)
takes place if entity ey includes a range, super-class, or indirect equivalence definition. In
such cases, enumerated classes (e.g., oneOf) logical constructs (e.g., A or B), class, and
property restrictions (e.g., cardinality, quantification restrictions) are stripped away from
the ranges and definitions. Finally, the ranges and relationships with only IRIs or data
types are returned to fill eiy in OIi.

Figure 4.1 shows a small portion of three separate ontologies. Entities of the ontologies
can be seen in Table 4.1, 4.2, and 4.3. Our discovery algorithm will detect all of these
entities.

Class Object property Data property
Building containsArea hasAverageNumberOfFloorsValue

Area containsSurface hasSurfaceTypeValue
Surface containsRectangularGeometry hasNativeValue

RectangularGeometry containsHeight hasUnitValue
Height

Custom Data type Rdf schema data type
surfaceTypeEnum Ceiling

ExteriorWall

Table 4.1: Portion of entities in Building Information [KIVK13]

Class Object
property

business entity fuel type
organization

person
engine specification
quantitative value

text value

Table 4.2: Portion of entities in Vehicle Core (VC) [veh21]

Class individual
Air Quality Property benceno

dioxidoDeAzufre

Table 4.3: Portion of entities in Calidad-aire [KRK12]

37

4. Reading the inputs

Figure 4.1: Small portion of the Building Information [KIVK13], VC [veh21], and Calidad-
aire [KRK12] ontologies as object ontology examples

This discovery is carried out in the following cases:

• Individuals: Discover the IRI of each individual and the corresponding classes it
belongs to (e.g., "benceno" has a class definition of "Air Quality Property" in the
Calidad-aire ontology).

• Classes: Discover the IRI of each class, along with their super-class relationships,
equivalence definitions, and equivalence definitions from anonymous ancestors
(e.g., "Height" class is a subclass of "(hasNativeValue exactly 1 xsd:decimal) and
(hasUnitValue max 1 xsd:string)" in building information ontology).

• Object Properties: Discover the IRI of each object property and the range classes
associated with it (e.g., the "containsSurface" object property has a definition
related to the "RectangularGeometry" class in building information ontology).

• Data Properties: Discover the IRI of each data property and the range of data types
it is associated with (e.g., the "hasSurfaceTypeValue" data property has a definition
related to the "surfaceTypeEnum" data type in building information ontology).

• Data Types: Discover the IRI of each datatype and their respective definitions (e.g.,
"surfaceEnum" includes definitions such as "Ceiling" and "ExteriorWal").

38

4.2. Ontology Parsing

Our entity discovery and extraction process is outlined in Algorithm 4.1. OwlReady2
provides several functions to fetch information from the ontology such as:

• GET_CLS fetches all classes.

• GET_OP fetches all object properties.

• GET_DP fetches all data properties.

• GET_IRI takes an entity and returns the IRI of it.

• GET_CLASSES takes an individual and returns fetches classes of it.

• GET_ALL_EQV takes a class and fetches equivalencies (including anonymous
ancestors).

• GET_SUBCLS takes a class and returns descendants of it.

• GET_RANGES takes an entity and returns ranges of it.

• TY PE fetches super-classes of a class or classes of an individual.

Furthermore, we introduced the SparqlFetchDatatypes algorithm to gather all data type
definitions. It queries the RDF triples through OwlReady2. Output is being retrieved
row by row. The executed SPARQL query is as follows:

SELECT ?dataproperty ?datatype
WHERE {

?dataproperty rdf:type owl:DatatypeProperty.
?dataproperty rdfs:range ?range.
?range owl:equivalentClass ?datatype.

}

The discovery part of the algorithm ensures that all relevant information about entities
is collected from an OWL2 ontology. However, an extraction is necessary because object
properties, data properties, and data types can contain complex ranges. Such cases are
handled with the ExtractRange algorithm. Additionally, class equivalences and super-
class definitions can contain complex definitions using the object and data properties.
They are handled with the ExtractEquivalence algorithm.

For instance, while parsing the example portion of VC ontology, since object property
"fuel type" has a range that is a logical combination, IRIs from the range will be extracted
using ExtractRange. Similarly, ExtractEquivalence will extract the IRIs from the
("subClassOf" or "equivalentClass") definitions of "Building", "Height", and "Area" classes
in Building Information ontology, the "business entity" class in VC ontology, and the "Air
Quality Property" class in Calidad-aire ontology.

39

4. Reading the inputs

Algorithm 4.1: Entity Discovery and Extraction (discovery_extraction)
Input : ontology: Ontology Oi that is initially parsed by OwlReady2 (with or

without the reasoner).
Input : conf : Configuration Confobject,uniti

that determines which entity types
to discover. Options are Individual, Class, Objects, or Data properties.

Output : ontologyData: Ontology information data OIi. Contains all IRIS,
Class-Individual (CI), Class-Subclass (CS), Class-Data type (CD),
Object property-Class (OC), Data property-Data type (DD), and Data
type-Range (DR) relationships.

1 ontologyData ← []
2 if individuals ∈ conf.EntityTypes then
3 for individual IN GET_IND(ontology) do
4 ontologyData.CI ← GET_IRI(individual), GET_CLASSES(individual)
5 end
6 end
7 if classes ∈ conf.EntityTypes then
8 for class IN GET_CLS(ontology) do
9 identifiedEqv ← []

10 for equivalence IN GET_ALL_EQV(class) do
11 property, range ← ExtractEquivalence(equivalence)
12 identifiedEqv.APPEND(property,ExtractRange(range))
13 end
14 ontologyData.CS[GET_IRI(class)] ← GET_SUBCLS(class) ∪

identifiedEqv.subCls
15 ontologyData.OC ← identifiedEqv.objectProperty
16 ontologyData.CD ← identifiedEqv.dataProperty
17 end
18 end
19 if objectProperties ∈ conf.EntityTypes then
20 for objectProperty IN GET_OP(ontology) do
21 identifiedRanges ← []
22 for range IN GET_RANGES(objectProperty) do
23 identifiedRanges.APPEND(ExtractRange(range))
24 end
25 ontologyData.OC[GET_IRI(objectProperty)] ← identifiedRanges
26 end
27 end
28 if dataProperties ∈ conf.EntityTypes then
29 for dataProperty IN GET_DP(ontology) do
30 identifiedRanges ← []
31 for range IN GET_RANGES(dataProperty) do
32 identifiedRanges.APPEND(ExtractRange(range))
33 end
34 ontologyData.DD[GET_IRI(dataProperty)] ← identifiedRanges
35 end
36 for dataType IN SparqlFetchDatatypes(ontology) do
37 ontologyData.DR[dataType] ← ExtractRange(dataType)
38 end
39 end
40 return ontologyData

40

4.2. Ontology Parsing

The first extraction algorithm ExtractRange is used to extract the following IRIs/data
types for complex ranges object properties, data properties, and data types:

• Enumeration of Literals/Individuals (owl:OneOf): Each IRIs in the "OneOf" defini-
tion can be extracted.

• Classes (owl:Class): Class IRIs can be extracted from object properties.

• Data types: XML Schema Definition (XSD) data types are converted into python
data types (int, float, bool, str, datetime.date, etc.) implicitly using Owlready2.

• Constrained data types (ConstrainedDataType): Data types can be extracted within
their constraints such as "xsd:float[>= 180.0f]".

• RDF Schema [BG14] data types (rdf-schema.Datatype): Custom enumerated data
types can be extracted.

• Cardinality restrictions (owl:Restriction): IRIs in the "min", "max", etc. restrictions
can be extracted.

• Quantification (owl:Restriction): IRIs in the universal ("all") and existential ("some")
quantification can be extracted.

• Logical combinations (LogicalClassConstruct): IRIs in the nested logical expressions
can be extracted.

Note that complement definitions (owl:inverseOf) are provided (discovered) implicitly by
Owlready2 when the reasoner is running.

Since ranges can contain nested logical combinations, extracting them requires recursion.
For instance, in the VC ontology, "engine specification" has an object property "fuel
type" with the complex range "some (qualitative value or text value)". OwlReady2 treats
such input as a whole, named "owl:Restriction". When ExtractRange encounters this
complex range, it initially removes the quantification, leaving "(qualitative value or text
value)", and recursively calls itself. During the recursion, since the current input is a
LogicalClassConstruct, the logical connectives are stripped away, leaving two parts:
"qualitative value" and "text value". The algorithm will recursively call itself for each
part (owl:Class) to extract the IRIs. Once the algorithm completes, "fuel type" is marked
as compatible with the data types of "qualitative value" and "text value" classes. Note
that, in our example, the data types are not specified for these classes for the sake of
simplicity.

The ExtractRange algorithm can be seen in Algorithm 4.2. Line 1 detects whether
the incoming data is a XSD data type (e.g., "xsd:decimal"). Line 4 detects whether
the incoming range information is an enumerated data type from RDF Schema (e.g.,
"Ceiling" and "ExteriorWall" in Building information ontology). Constrained data types
(e.g., "xsd:float[>= 180.0f]") are detected in line 7. Line 10 detects the enumeration of

41

4. Reading the inputs

literals (e.g., assume "someObjectProperty {benceno, dioxidoDeAzufre}" in Calidad-aire
ontology). Line 17 detects whether the incoming construct is a class or not. Additionally,
cardinality restrictions (e.g., "containsArea exactly 1 Area"), existential quantification,
and universal quantification (e.g., "some (qualitative value or text value)") are covered in
line 20. Since object and unit properties can contain complex definitions with logical
operators, this is covered in line 23.

Algorithm ExtractEquivalence can extract the property-complex range pairs from com-
plex class equivalence and super-class relationship definitions. Extraction will occur
for both classes and their anonymous ancestors. Such complex definitions can be the
combination of properties using the following:

• Enumeration of Individuals (owl:OneOf)

• Classes (owl:Class)

• Cardinality restrictions (owl:Restriction)

• Quantifications (owl:Restriction)

• Logical combinations (LogicalClassConstruct)

Since properties in the equivalence/superclass definitions can contain logical combinations,
extracting them requires recursion. There are four extraction examples from the ontologies
in Figure 4.1):

• The "Area" and "Height" classes in the Building Information Ontology are sub-
classes of "(hasNativeValue exactly 1 xsd:decimal) and (hasUnitValue max 1
xsd:string)". OwlReady2 treats this complex definition as LogicalClassConstruct.
The ExtractEquivalence algorithm will be called twice for both inputs. In each
call, the logical connectives are stripped away, leaving two parts: "hasNativeValue
exactly 1 xsd:decimal" and "hasUnitValue max 1 xsd:string", and then recursively
calls itself for each part. Since the inputs are now an "owl:Restriction", the recur-
sions will return "(hasNativeValue, decimal)" and "(hasUnitValue, string)". Once
algorithms are complete, the "Area" and "Height" classes are marked as compatible
with "decimal" and "string." Furthermore, the data properties "hasNativeValue" and
"hasUnitValue" are marked as compatible with "decimal" and "string" respectively.

• The "Building" class in the Building information ontology is a subclass of "(... or
(hasAverageNumberOfFloorsValue max 1 xsd:decimal) or (containsArea exactly
1 Area))". OwlReady2 treats this complex definition as "LogicalClassConstruct".
When ExtractEquivalence encounters this complex definition, logical connectives
will be removed, leaving two parts: "(hasAverageNumberOfFloorsValue max 1
xsd:decimal)" and "(containsArea exactly 1 Area)". The algorithm will recursively
call itself for each part. Since the inputs are "owl:Restriction", the recursions will

42

4.2. Ontology Parsing

Algorithm 4.2: Extract Range
Input : construct: Target(s) of the range. It can be from object property, data

property, and data type.
Output : List of IRIs: These IRIs can be classes, data types, and data type

definitions.
1 if construct IS XSD data type then
2 return [GET_IRI(construct)]
3 end
4 else if construct IS rdf-schema.Datatype then
5 return [GET_IRI(construct)]
6 end
7 else if construct IS ConstrainedDatatype then
8 return [GET_IRI(BASE_DATATYPE(construct))]
9 end

10 else if construct IS owl:OneOf then
11 tmp ← []
12 for instance IN construct.instances do
13 tmp.APPEND(GET_IRI(instance))
14 end
15 return tmp
16 end
17 else if construct IS owl:Class then
18 return [GET_IRI(construct)]
19 end
20 else if construct IS owl:Restriction then
21 return [GET_IRI(construct.value)]
22 end
23 else if construct IS LogicalClassConstruct then
24 tmp ← []
25 for part IN SPLIT(construct) do
26 tmp ← CONCAT(tmp, ExtractRange(part))
27 end
28 return tmp
29 end
30 else
31 return []
32 end

43

4. Reading the inputs

return "(hasAverageNumberOfFloorsValue, decimal)" and "(containsArea, Area)".
Once the algorithm completes, the "Building" class and "hasAverageNumberOf-
FloorsValue" data property will be marked as compatible with the "decimal" data
type. Furthermore, the "containsArea" object property will be marked as compatible
with the data types of the "Area" class (in our case, "decimal" and "string"). The
reasoning behind this is that when a column is mapped to an object property
("containsArea") it is mapped to one of the ranges of that object property (such as
"Area").

• The "business entity" class in the VC ontology is equivalent to "organization or per-
son". Once again, the OwlReady2 treats this definition as "LogicalClassConstruct".
ExtractEquivalence will remove the logical connectives, leaving the "organiza-
tion" and "person" parts. Two recursions will occur for these parts that return
"(super-class of organization, organization)" and "(super-class of person, person)"
classes. Note that since these classes have no object property, their super-classes
are returned but not utilized in our algorithms. Once the ExtractEquivalence
algorithm is completed, "business entity" is marked as compatible with the data
types of "organization" and "person" (data types are not specified for these classes
for the sake of simplicity).

• The "Air Quality Property" in Calidad-aire ontology has the instances of "{benceno,
dioxidoDeAzufre}". OwlReady2 treats the definition as OneOf thus ExtractEquivalence
will return "[(Air Quality Property, benceno), (Air Quality Property, dioxido-
DeAzufre)]". Once the algorithm is completed, "benceno" and "dioxidoDeAzufre"
are marked as compatible with the compatible data types of "Air Quality Property".

ExtractEquivalence can be seen in Algorithm 4.3. Line 1 detects cardinality restrictions,
existential quantification, and universal quantification. Furthermore, it uses recursion to
extract property-value pairs from nested object properties. Line 9 detects the logical class
constructs, removes the logical connectives, and uses recursion to extract property-value
pairs. Line 16 detects class relationships that do not have the object property relationship
and returns superclass-class pairs. Line 20 detects instance definitions and returns a
superclass of individual-individual pairs.

Even though ExtractEquivalence can extract properties from complex definitions, their
ranges can be complex. For example, when "objectProperty only (xsd:int and xsd:float)"
is provided as an input, ExtractEquivalence will return "objectProperty"-"(xsd:int and
xsd:float)" pair where the range is still complex (contains a logical combination). This is
why when the ExtractEquivalence is completed, ranges of the output are provided to
the ExtractRange algorithm as input (see line 12 in algorithm 4.1).

On completion of ExtractRange and ExtractEquivalence, entity labels and ranges from
the properties, equivalences, and super-classes are stored in 2-dimensional dictionaries
with their respective IRIs as follows (also see algorithm 4.1):

44

4.2. Ontology Parsing

Algorithm 4.3: Extract Equivalence
Input : classConstruct: Equivalent definition of a class.
Output : List of property-value pairs: A list of properties and their value pairs

are extracted from a definition.
1 if classConstruct IS owl:Restriction then
2 return [(classConstruct.property, classConstruct.value)]
3 end
4 else if classConstruct IS LogicalClassConstruct then
5 tmp ← []
6 for part IN classConstruct.Split do
7 tmp ← CONCAT(tmp, ExtractEquivalence(part))
8 end
9 return tmp

10 end
11 else if classConstruct IS owl:Class then
12 return [(TYPE(classConstruct), classConstruct)]
13 end
14 else if classConstruct IS OneOf then
15 tmp ← []
16 for instance IN classConstruct.instances do
17 tmp.APPEND((TYPE(classConstruct), instance))
18 end
19 return tmp
20 end

• Class-Individual (CI): Holds the class and individual relations.

• Class-Subclass (CS): Holds the class and subclass relations.

• Class-Data type (CD): Holds the class and all possible data types.

• Object property-Class (OC): Holds the object property and class relations.

• Data property-Data type (DD): Holds the data property and data type relations.

• Data type-Range (DR): Holds the custom data type (enum) and value relations.

Additionally, our system employs two additional dictionaries. The first one is used to
hold the type of the entities (e.g. Table 4.1, 4.2, and 4.3). The second one is used to
convert IRIs to label names and vice versa.

For the ontologies in Figure 4.1, Ontology information data (OIi) are as follows:

45

4. Reading the inputs

• Building information ontology OIbuilding :

– Class-Data type (CD) = {Building ← {decimal}, Area and Height ← {decimal,
string}}

– Object property-Class (OC) = {containsArea ← {Area}, containsSurface ←
{Surface}, containsRectangularGeometry ← {RectangularGeomerty}, contain-
sHeight ← {Height}}

– Data property-Data type (DD)= { hasAverageNumberOfFloorsValue ← {deci-
mal}, hasSurfaceTypeValue ← {surfaceTypeEnum}, hasNativeValue ← {deci-
mal}, hasUnitValue ← {string}}

– Data type-Range (DR) = {surfaceTypeEnum ← {Ceiling, ExteriorWall}}

Where the Class-Individual (CI) and Class-Subclass (CS) dictionaries are empty.

• VC ontology OIvc :

– Object property-Class (OC) = {fuel type ← {qualitative value, text value}}
– Class-Subclass (CS) = {business entity ← {organization, person}}

Where the Class-Data type (CD), Data property-Data type (DD), and Class-
Individual (CI) dictionaries are empty.

• Calidad-aire ontology OIcalidad :

– Class-Individual (CI) = {Air Quality Property ← {benceno, dioxidoDeAzufre}}

Where the Class-Data type (CD), Data property-Data type (DD), Object property-
Class (OC), and Class-Subclass (CS) dictionaries are empty.

In summary, the SO mapper utilizes Extract Range (Algorithm 4.2) to remove complexities
(cardinality restrictions, constrained data types, quantifications, and logical combinations)
from ranges and Extract Equivalence (Algorithm 4.3) to remove complexities between
the properties. These two algorithms are used inside Entity Discovery and Extraction
discovery_extraction (Algorithm 4.1) which ultimately extracts the data type values
of all entities. Classes will have all possible data types. Data properties will use their
ranges as data types. Object properties will use the data types of all their relatable
classes. Individuals will use the data type of their corresponding classes.

4.3 Embeddings
Computing embeddings is the final step before fully representing the inputs in the SO
mapper back-end. User-provided columns C directly reach this step without needing
parsing. Similarly, the parsed ontology information data OIi also progresses to this step.
Our encoding method enc takes all column names cx in C or all entity information eiy in

46

4.3. Embeddings

OIi and returns the column names or entity labels as strings (strx or stry). However, if the
entities belong to a unit ontology, we construct the strings as stry = label(eiy) + " unit".
This approach is influenced by prompt engineering and has improved the results in the
test datasets (see Chapter 8).

When the strings are ready, our embedding model emb takes them as input and computes
the embedding vectors. Column vectors EC are stored in a user-specific cache whereas
entity vectors Eobj/uniti

are stored in the file system. Furthermore, entity vectors are
saved in Hierarchical Data Format version 5 (HDF5) format [The]. This file format offers
greater efficiency when reading large amounts of data [FHK+11] and provides flexibility
for adding more information (e.g., introducing new entities) into the same file.

SO mapper can switch between encoding methods enc and embedding models emb while
maintaining the saved embeddings from other methods or models. For instance, if the
text embedding model emb is utilizing a BERT-based transformer architecture [DCLT18]
to transform bi-directional textual information into numerical representations, ontology
information data OIx can provide ancestor information for each class and individual. This
auxiliary information can be combined with the entity labels to include the representation
of class relationship information in the strings. However, this method would require
fine-tuning the utilized embedding model to understand these representations.

Moreover, different encoding methods for schema, object, or unit ontologies can be used.
These options are introduced to enable the SO mapper to evolve and be open to various
approaches. Such flexibility ultimately leads administrators to experiment with different
encoding strategies tailored to the specific characteristics of ontological data.

SO mapper currently utilizes BGE M3-Embedding [CXZ+24] as a text embedding model
emb. The reason for selecting this model is the performance which is explained in Section
2.6. Nevertheless, new text embedding models can be easily introduced. This introduction
capabilities will be further discussed in the Implementation chapter (see Chapter 7).

For our previous example from the shown ontologies in Figure 4.1, labels of all entities in
the OIbuilding, OIV C , and OIcalidad (e.g., Building, containsSurface, , surfaceTypeEnum,
benceno, etc.) are converted to embedding vectors and then stored as Ebuilding, EV C ,
and Ecalidad.

In conclusion, our system creates ontology information data OI∗ for all of the ontologies
O∗. The Entity Discovery and Extraction (discovery_extraction) algorithm takes an
ontology Oi as input and returns the ontology information data Oi which contains the
IRIs, label names, and relationships of the entities {ei1, ...}. The Entity Discovery and
Extraction (discovery_extraction) algorithm can be customized using the configuration
file Confobject,unit. Customization options are disabling the reasoner or extracting only
certain entity types.

Afterward, encoding method enc takes all entity information eiy in OIi, and returns entity
labels as strings. Next, an embedding model emb takes the strings as input and computes
the embedding vectors Ei. Finally, the ontology information OIi and embedding vectors

47

4. Reading the inputs

Ei are stored in the file system. For the schema column names C, only the embedding
vectors are computed EC and stored in the cache.

48

CHAPTER 5
Matching

The following chapter explains how the extracted entity data types and their embeddings
are compared with the columns and their data types. Section 5.1 will discuss how the
data types are compared to verify compatibility. Section 5.2 will demonstrate how the
embedding similarity is calculated. Finally, the last section, 5.3, will explain how the
winners are determined and the relevance lists are created. Altogether this chapter
discusses the whole mapping process.

5.1 Constraint Checking
When the user provides the columns C, and our encoding method and embedding model
convert them into vector embeddings EC , the Initial Mapping begins. The first step in
the Initial Mapping is creating Fields F C,Oobj/unit∗ between the schema columns C and
all ontologies OI∗. There is only one Field between the schema columns and an ontology.
A Field F C,Oobj/uniti serves two purposes:

1. Storing the column names as sources and their candidate entities as targets in a
SourceTarget matrix ST C,Oobj/uniti . Initially, the SourceTarget matrix contains all
columns from the schema (as sources) and all entities from the ontology information
OIi (as targets).

2. Checking the data type constraint compatibility (DataConstSat) between the
source columns and target entities in the SourceTarget matrix and storing the similar-
ity scores in the Constraint Satisfaction matrix CSC,Oobj/uniti . In the CSC,Oobj/uniti ,
column-entity pairs where the data types are not compatible are marked as false,
and cases where the data types are compatible are marked as true. Initially, the
Constraint Satisfaction matrix is empty and requires the SourceTarget matrix and
execution of the Data Constraint Compatibility Check (DataConstSat) Algorithm
5.1.

49

5. Matching

The data type satisfiability check is utilized just to provide further insights to the user
about entity types. The reasoning behind it could be summarized as follows:

• Suggested data types: User-provided schema data might contain columns with null
cells, which is supported in DBRepo. In return, the DBRepo analyzer service can
suggest incorrect data types to the Initial Mapping of the SO mapper. Nevertheless,
users can change the suggested data types from the table schema definition interface
of DBRepo, and this can be reflected in the SO mapping back-end.

• Enumerations: There are two different cases for the enumeration satisfaction:

1. Satisfaction of enumerated data type to enumerated data type: For instance, a
column in a building schema [Dat22] contains an enumeration type "Multi-
family Housing" that can be satisfied by the "Multifamily" enumeration type
in the building ontology of TU Wien [KIVK13]. Therefore, a text similarity
calculation must be made between "Multifamily Housing" and "Multifamily".

2. Satisfaction of data type (which is not an enumeration) to enumerated data: For
example, in the previously mentioned building ontology, the "densityUnitEnum"
enumeration has an enumeration type called "GramsPerCubicCm," which
implicitly indicates and therefore can be satisfied by the float data type of a
column. Thus, another similarity calculation must be made.

Although the SO mapping parser can extract each custom enumerated data type from the
entities, the free-form naming conventions require a similarity metric to check satisfaction.
Handling such similarity checks presents unique challenges beyond this thesis’s scope and
will be addressed in the Similarity Calculation Limitations Section 8.7 and the Future
Work Section 9.2.

Table 5.1 shows a portion of the building schema used in our evaluation as an example.
The remaining column in the schema is not displayed here to reduce complexity in the
Building Information Ontology example in Table 4.1 and the Initial Mapping examples
provided later.

Column name cx Column data type dx

Area decimal
Height decimal

Num_Floors integer

Table 5.1: Portion of building relational schema [Red24] as example

After the vector embeddings for the columns of the Building schema are computed,
the Fields are created between Building schema and Building Information, VC, and
Calidad-aire ontologies (F Cbld,O∗ = {F Cbld,Obuilding , F Cbld,OV C , F Cbld,Ocalidad}). Afterward,
the SourceTarget matrices are created inside the Fields. The SourceTarget matrix between
the building schema columns and building ontology contains sources as Area, Height,

50

5.1. Constraint Checking

Num_Floors and each source has targets as all of the entities (Building, containsArea,
hasAverageNumberOfFloorsValue, Area, containsSurface, hasSurfaceTypeValue, Surface,
containsRectangularGeometry, hasNativeValue, RectangularGeometry, containsHeight,
hasUnitValue, Height).

When the creation finishes, the Data Constraint Compatibility Check (DataConstSat)
Algorithm 5.1 starts. Schema columns are separated based on their data types. For each
data type, the first column is selected as a sample. The reasoning behind using only one
column for each data type is that if two columns have the same data type, their data
type compatibilities will be the same. Thus, the data type compatibilities (satisfactions)
of one column can be used for the other columns with the same data type.

The target entities of the sample column are collected from the SourceTarget matrix ST .
Their data types are checked for compatibility with the sample source using the ontology
information data OI. Finally, the data type constraint satisfaction results are stored
for the sample column and all the columns with the same data type in the Constraint
Satisfaction matrix. Note that if an entity does not have any data type, the constraint
satisfaction result will be false by default.

For the previously given ontologies, a Constraint Compatibility Check (DataConstSat)
Algorithm will be executed for each Field. Since "Area" and "Height" have decimal data
type, the "Area" column is selected as a sample. For "Area", all of the target entities
(e.g., for the Building Information ontology "Height", "containsArea", ...) are collected.
Ontology information data OIbuilding, OIV C , and OIcalidad are then used to check the
data type constraint satisfaction such as:

• Class-data type (CD) dictionary of OIbuilding will provide "{decimal, string}" data
types for the "Height" class. Since "Area" has the "decimal" data type, CS

Cbld,Obuilding

Area,Height

will be true.
Note that the Class-data type dictionary stores all possible data types of all entities.
Further information about the dictionaries in ontology information data can be
seen in Section 4.2.

• Data property-range (DR) of OIbuilding will provide a "string" data type for the
"hasUnitValue" data property. Thus CS

Cbld,Obuilding

Area,hasUnitV alue will be false.

• Object property-Class (OC) and Class-Data type (CD) will provide "surfaceType-
Enum" data type for the "containsSurface" object property thus CS

Cbld,Obuilding

Area,containsSurface

will be false.

When the satisfaction results are computed for the "Area" column, the same results will
be used for the "Height" column (CS

Cbld,Obuilding

Area,y = CS
Cbld,Obuilding

Height,y ∀y ∈ OIbuilding).

Our Data Constraint Compatibility Check (DataConstSat) Algorithm 5.1 takes a Field
and a boolean remove as inputs. Between line 2 and 12, the list distinctT is filled

51

5. Matching

to store columns that are separated by their data types. Note that the columns from
the SourceTarget matrix are being used in line 3. For each distinct data type within
distinctT , a sample column is selected in line 14. Get Data Types (GetDataTypes)
Algorithm 5.2 is executed for all of the target entities in line 16. If an entity has a data
type as the sample column then lines 17 − 19 are executed which sets the constraint
satisfaction to true for the sample column and all of the columns with the same data
type. However, if an entity does not have any data type same as the sample column,
lines 22 − 28 are executed. If the boolean remove is true, then the entities that do not
have any compatible data types are removed from the SourceTarget matrix which means
they are removed from the similarity calculation. Otherwise, they are marked as false
in the Constraint Satisfaction matrix.

5.1

The Get Data Types (GetDataTypes) Algorithm 5.2 uses the dictionaries in ontology
information data OIobji

(see Section 4.2 for dictionaries). to provide data types of
an entity to the Data Constraint Compatibility Check (DataConstSat) Algorithm. It
provides the data types according to the input entity’s type:

• Class entities: Provides the data types from the sub-class, equivalence, and data
property definitions that are stored in the Class-data type (CD) dictionary of
ontology information data OIobji

. Occurs between lines 3 − 5.

• Individual entities: Collects classes of the individual that are stored in Class-
Individual (CI) dictionary. Finally provides data types of the related classes.
Occurs between lines 6 − 10.

• Object Property entities: Collects range classes of the object property that are
stored in the Object property-Class (OC) dictionary. Finally provides data types
of the related classes. Occurs between lines 11 − 15.

• Data Property entities: Provides the data types from their ranges that are stored
in the Data property-Data type (DD) dictionary. Occurs between lines 16 − 18.

When the Field between building schema columns and Building Information ontology is
provided to the Data Constraint Compatibility Check Algorithm 5.1 as an input, the
Constraint Satisfaction matrix output is shown in Table 5.2.

Note that when the SourceTarget and Constraint Satisfaction matrices are computed for
a Field, it is then stored in a cache. Furthermore, Fields (SourceTarget and Constraint
Satisfaction matrices) have the capability of concatenating or removing column data.
This capability is used when users interact with our system (see Chapter 6). For instance,
when the user adds a new column cnew to the schema C, temporary Fields F Ccnew,O∗

are created between the new column and ontologies. SourceTarget and Constraint
Satisfaction matrices are computed. Finally Fields of the initial schema columns F C,O∗

52

5.1. Constraint Checking

Algorithm 5.1: Data Constraint Compatibility Check (DataConstSat)
Input : field (F C,obji): Field which contains columns C, column data types D,

object information OIi, and SourceTarget matrix ST C,obji .
Input : remove: Boolean whether to remove unsatisfied entities or not. false

by default.
Output : CS (CSC,Oobji): Constraint Satisfaction matrix that holds pairwise

compatibility information between column and entity data types.
1 CS ← []
2 distinctT ← []
3 for column IN field.ST do
4 CS[column] ← []
5 columnT ← field.D[column]
6 if columnT IN distinctT then
7 distinctD[columnT].APPEND(column)
8 end
9 else

10 distinctT[columnT] ← [column]
11 end
12 end
13 for type IN distinctT do
14 sampleColumn ← distinctT[type][0]
15 for entity IN field.ST [sampleColumn] do
16 if type IN GetDataTypes(entity, field.OIobji

) then
17 for column IN distinctT[type] do
18 CS[column][entity] ← true
19 end
20 end
21 else
22 for column IN distinctT[type] do
23 if remove IS TRUE then
24 DELETE(field.ST [column][entity])
25 end
26 else
27 CS[column][entity] ← false
28 end
29 end
30 end
31 end
32 end
33 return CS

53

5. Matching

Algorithm 5.2: Get Data Types (GetDataTypes)
Input : entity: Name of the entity.
Input : OI (OIobji

): Ontology information data which contains the Class-Data
type (CI), Class-Individual (CI), Object property-Class (OC), and
Data property-Data type (DD) relations.

Output : dataTypes: Possible data types of the entity.
1 dataTypes ← []
2 entityType ← OI.Type[entity]
3 if entityType IS owl:class then
4 dataTypes ← OI.CD[entity]
5 end
6 else if entityType IS Individual then
7 for class IN GetClasses(OI.CI, entity) do
8 dataTypes.APPEND(OI.CD[class])
9 end

10 end
11 else if entityType IS owl:ObjectProperty then
12 for class IN OI.OC(entity) do
13 dataTypes.APPEND(OI.CD[class])
14 end
15 end
16 else if entitytype IS owl:DatatypeProperty then
17 dataTypes ← OI.DD[entity]
18 end
19 return dataTypes

and the temporary Fields F Ccnew,O∗ are concatenated from their Columns C, SourceTarget
matrices ST C,obj/uniti and Constraint Satisfaction matrices CSC,obji as:

C = C ∪ Cc_new,
ST C,obj/uniti = ST C,obj/uniti ∪ ST Cc_new,obj/uniti ,
CSC,obji = CSC,obji ∪ CSCc_new,obji s.t.
∀F C,Oobj/uniti ∈ F C,Oobj/unit∗

F C,Oobj/uniti =
�

{C, D, OIobji
, ST C,obji , CSC,obji}, if Oi is object ontology

{C, D, OIuniti , ST C,uniti}, otherwise

(5.1)

More information about the list of interactions can be seen in User Interactions Chapter
6.

54

5.2. Similarity Calculation

Constraint Satisfaction matrix
CSCbld,Obuilding

Area
(decimal)

Height
(decimal)

Num_Floors
(integer)

Area (decimal, string) true true false
hasUnitValue (string) false false false

hasNativeValue (decimal) true true false
Building (decimal, string) true true false

containsArea (decimal, string) true true false
hasAverageNumberOfFloorsValue

(decimal) true true false

containsSurface
(surfaceTypeEnum) false false false

hasSurfaceTypeValue
(surfaceTypeEnum) false false false

Surface (surfaceTypeEnum) false false false
containsRectangularGeometry () false false false

RectangularGeometry () false false false
containsHeight (decimal, string) true true false

Height (decimal, string) true true false

Table 5.2: Constraint Satisfaction matrix between building schema columns and building
ontology examples

5.2 Similarity Calculation
Calculating similarity is another crucial aspect of our system. This is because the
creation of relevance lists relies on the accuracy of similarity scores when sorting the
entities. Currently, similarity calculation is based on the embeddings produced by the
state-of-the-art BGE M3-Embedding model [CXZ+24]. These embeddings are vector
representations of extracted labels from object and unit entities, as well as user-provided
column names.

SO mapper currently utilizes cosine similarity. Fundamentally it calculates the cosine
angle between two vectors, such as the cosine angle between the label of an object entity
vector and the column name vector. The intuition behind cosine similarity is that an
embedding model represents similar objects, such as "vehicle" and "car", as two vectors
that are closer to each other than other objects such as "airplane". Nevertheless, our
system is capable of utilizing different scoring mechanisms, including scoring metrics that
are not necessarily based on embedding models. For instance, instead of relying on text
embedding models, the Levenshtein distance can be utilized as a similarity metric.

In this last step, our Similarity Calculation (sim_calc) Algorithm 5.3 is executed which
takes three inputs: all of the Fields F C,Oobj/unit∗ , ontology embeddings Eobj/unit∗ , and
column embeddings EC . In return, outputs the column name-entity label similarity
scores. This algorithm runs separately for object and unit ontologies.

Initially, the algorithm iterates through ontologies. For each ontology, a list of ontology
embeddings is called in line 2. Then, for each column, the column’s embedding (line

55

5. Matching

4) and its target entity embeddings (lines 5 − 6) are collected. Following this, in line 7,
pairwise cosine similarity is computed for the collected embeddings, and the similarity
scores are returned.

Algorithm 5.3: Similarity Calculation for Embedding-based Represen-
tations (sim_calc)

Input : fields (F C,Oobj/unit∗): List of object or unit ontology fields.
Input : sEmbedding (EC): Embedding representations of each column name.
Input : oEmbeddings (Eobj/unit∗): Embedding representations of each object or

unit entity label.
Output : sims (RC,obj/unit∗): Similarity scores between column names and

entities from ontologies
1 for field IN fields do
2 oEmbedding ← oEmbeddings[field.name]
3 for column IN field.SourceTarget.sources do
4 columnEmbedding ← sEmbedding[column]
5 entities ← field.SourceTarget[column]
6 entityEmbeddings ← oEmbedding[entities]
7 sims[field.name][column] ← COSINE_SIMILARITY(columnEmbedding,

entityEmbeddings)
8 end
9 end

10 return sims

The outputs of the Similarity Calculation (sim_calc) algorithm for our previously defined
example schema 5.1 and ontologies 4.1 can be seen in Table 5.3 for Building Information
ontology, Table 5.4 for VC ontology, and Table 5.5 for Calidad-aire ontology.

5.3 Relevance Lists
Once the Similarity Calculation (sim_calc) algorithm completes, resulting similarity
scores RC,O∗ are processed to construct relevance lists RL. There are three types of
relevance lists:

• Entity level relevance list (RL
C,obj/unit∗
x for a column x): It is a list of rows where

each row contains the data of an entity with the highest similarity score within
its ontology. Data of a row contains the label name, similarity score, belonging
ontology, and constraint satisfaction result of the entity. Rows in the list are sorted
by similarity scores in descending order.
Construct Entity level relevance list (const_ent_rl) Algorithm 5.4 is responsible
for the construction of an entity level relevance list. For each Field, F C,obj/uniti , line

56

5.3. Relevance Lists

Similarity Scores RCbld,Obuilding Area Height Num_Floors
Area 1.0 0.536 0.491

hasUnitValue 0.467 0.506 0.474
hasNativeValue 0.437 0.436 0.421

Building 0.60 0.601 0.571
containsArea 0.66 0.434 0.469

hasAverageNumberOfFloorsValue 0.472 0.488 0.703
containsSurface 0.466 0.457 0.498

hasSurfaceTypeValue 0.476 0.440 0.443
Surface 0.531 0.499 0.521

containsRectangularGeometry 0.421 0.461 0.421
RectangularGeometry 0.479 0.477 0.460

containsHeight 0.421 0.707 0.438
Height 0.536 1.0 0.487

Table 5.3: Example similarity scores for the Building schema and Building Information
ontology using Algorithm 5.3 and BGE M3-Embedding model [CXZ+24]

Similarity Scores RCbld,OV C Area Height Num_Floors
business entity 0.551 0.469 0.434

height 0.541 0.917 0.496
organization 0.566 0.514 0.426

person 0.617 0.642 0.5
vehicle 0.560 0.544 0.431

quantitative value float 0.358 0.403 0.428

Table 5.4: Example similarity scores for the Building Schema and VC ontology using
Algorithm 5.3 and BGE M3-Embedding model [CXZ+24]

Similarity Scores RCbld,Ocalidad Area Height Num_Floors
Air Quality Property 0.5 0.48 0.479

benceno 0.393 0.392 0.345
dioxidoDeAzufre 0.34 0.344 0.348

Table 5.5: Example similarity scores for the Building schema and Calidad-aire ontology
using Algorithm 5.3 and BGE M3-Embedding model [CXZ+24]

3 collects the similarity scores between the column name x and entities of ontology
information data OIi, and line 4 finds the highest similarity score in that list. Line
5 collects the name of the entity with the highest similarity score. Constraint
satisfaction of the entity is collected from the Constraint Satisfaction matrix in line
6. The name of the ontology i is collected in line 7. Finally, the data of the entity
with the highest similarity score is stored in entity level relevance list in line 8.

• Entity level relevance list on search (RL
C,obj/unit∗
x,t for a column x with search term

t): It is a list of rows where each row contains the data of an entity that starts
with the search term t. Data of a row is the same as entity level relevance list and

57

5. Matching

Algorithm 5.4: Construct Entity level relevance list (const_ent_rl)
Input : column (cx): Name of a column.
Input : fields (F C,Oobj/unit∗): List of object or unit ontology fields.
Input : sims (RC,obj/unit∗): Similarity scores.
Output : eRl (RLC,obj/unitx): Entity level relevance list for the column x.

1 eRl ← []
2 for field IN fields do
3 entitySims ← sims[field.OI.name][column]
4 eHighestSim ← MAX(entitySims)
5 eName ← entitySims.GET_NAME(eHighestSim)
6 eSat ←field.CS[column][eName]
7 ontName ←field.ontologyName
8 eRl.APPEND([eName,eHighestSim,eSat,ontName])
9 end

10 return eRl

rows are sorted in the same order.
Construct Entity level relevance list on search (const_ent_rl_s) 5.5 is responsible
for constructing this list type. For each Field F C,obj/uniti , line 3 collects the
similarity scores between the column x and entities of ontology information data
OIi. Line 4 collects the entity names that start with the given search term t. For
each collected entity that starts with the search term t, their label names, similarity
scores, constraint satisfactions, and ontology names are stored in the relevance list.

• Ontology level relevance list (Ro): It is a list of rows where each row contains the
data of an ontology. Data of a row contains the ontology name, the average similarity
score of the first-ranking entity for each column, and the standard deviation of the
average similarity score.
Construct Ontology level relevance list (const_ont_rl) is responsible for construct-
ing this list type. For each Field F C,obj/uniti , lines 4−5 collect the highest similarity
scores for each column in C and entities in ontology information data OIi. After-
ward, line 7 calculates the mean value, and line 8 calculates the standard deviation.
Finally, the data is stored in the list in line 9.

Furthermore, these relevance lists are created in the following cases:

• Initial Mapping: When the user initially uploads a relational table as a file to the
DBRepo. An example of such a case is given in the Data flow of schemas in SO
Mapper Figure 3.3. Two types of relevance lists are created. Entity level relevance

58

5.3. Relevance Lists

Algorithm 5.5: Construct Entity level relevance list on search
(const_ent_rl_s)

Input : column (cx): Name of a column.
Input : term (t): Search term. By default none.
Input : fields (F C,Oobj/unit∗): List of object or unit ontology fields.
Input : sims (RC,obj/unit∗): Similarity scores
Output : eRlS (RL

C,obj/unit∗
x,t): Entity level relevance list on search for the

column x and search term t.
1 eRlS ←[]
2 for field IN fields do
3 entitySims ← sims[field.OI.name][column]
4 entityNames ← field.OI.LabelsStartWith(t)
5 for eName IN entityNames do
6 eSim ← entitySims[eName]
7 eSat ←field.CS[column][eName]
8 ontName ←field.ontologyName
9 eRlS.APPEND([eName,eSim,eSat,ontName])

10 end
11 end
12 return eRlS

Algorithm 5.6: Construct Ontology level relevance list (const_ont_rl)
Input : fields (F C,Oobj∗): List of object ontology fields.
Input : sims (RC,obj∗): Similarity scores
Output : oRl (Ro): Ontology level relevance list. Only used for the object

ontologies.
1 oRl ←[]
2 for field IN fields do
3 population ← []
4 for column IN sims[field.OI.name] do
5 population.APPEND(MAX(sims[field.OI.name][column]))
6 end
7 mean ← SUM(population) / SIZE(sims[field.OI.name])
8 std ← CALCULATE_STD(population,mean)
9 oRl.APPEND([field.ontologyName,mean,std])

10 end
11 return oRl

59

5. Matching

list RL
C,obj/unit∗
x for each column x in the schema columns C and an Ontology level

relevance list for the object ontologies Roo.

• User search: After the Initial Mapping, since columns and their respective Entity
level relevance lists are provided to the users, they can search entities for a column
x using a search term t (see Figure 7.6 where t = ”TotalOrganic”). In this case an
Entity level relevance list on the search RL

C,obj/unit∗
x,t is created.

• User Interactions: After the Initial Mapping, users can update the schema and
provide feedback for the similarity calculation using our UI. These interactions
change the data within Fields and Similarity Calculations. The details of such
interactions can be seen in Chapter 6. Their relevance lists are as follows:

– Removing columns: After the user clicks on the "Remove" button of a column in
our UI (see 8 in Figure 7.4). A new Ontology level relevance list is dispatched.

– Setting column(s) as primary key: After the user clicks on the "Primary Key"
checkbox in our UI (see 5 in Figure 7.4). A new Ontology level relevance list
is dispatched.

– Introducing new columns: After the user clicks on the "Add Column" button
at the bottom of our UI. A new Ontology level relevance list and a new Entity
level relevance list (RL

C,obj/unit∗
new_column) are dispatched.

– Changing the column name: After the user changes the name of a column
by typing to the textbox in our UI (see 3 in Figure 7.4). A new Ontology
level relevance list and a new Entity level relevance list (RL

C,obj/unit∗
changed_name) are

dispatched.
– Changing the data type of column: After the user changes the data type of a

column using the dropdown in our UI (see 4 in Figure 7.4). A new Ontology
level relevance list and a new Entity level relevance list are dispatched.

– Direct influencing: After the user selects an entity from the Object Match
dropdown in our UI (see 6 in Figure 7.4). A new Entity level relevance list is
dispatched.

– Indirect influencing: After the user selects an object ontology from the Object
Ontology dropdown in our UI (see 1 in Figure 7.4). New Entity level relevance
lists are dispatched for all columns.

Note that more information about our UI is given in Section 7.4 and user interactions in
Chapter 6.

For example, using the previously defined Building schema columns Cbld, Building
Information ontology OIbuilding, VC ontology OIV C , and Calidad-aire ontology OIcalidad.
Initial Mapping will produce Entity level relevance lists for all of the columns ("Area",
"Height", and "Num_Floors") and an Ontology level relevance list for object ontologies
(Building Information, VC, and Calidad-aire ontologies). Note that in the examples

60

5.3. Relevance Lists

we do not have any unit ontologies, thus only one Ontology level relevance list will be
produced. The Entity level relevance list for the column "Num_Floors" is in Table 5.6
and the Ontology level relevance list is in Table 5.7.

Entity Name Score Constraint Sat. Ontology
hasAverageNumberOfFloorsValue 0.703 false Building Information

person 0.5 false VC
Air Quality Property 0.479 false Calidad-aire

Table 5.6: Example Entity level relevance list for column Num_Floors

Ontology
Average of

first-ranking entity
scores

Standard deviation of
first-ranking entity scores

Building Information 0.901 +/-0.140
VehicleCore 0.678 +/- 0.175
Calidad-aire 0.486 +/- 0.009

Table 5.7: Ontology level relevance list of Building schema

Lastly, when the user searches for an entity for the "Height" column using the term "h",
an Entity level relevance list on search will be produced which is given in Table 5.8.

Entity Name Score Constraint Sat. Ontology
Height 1.0 true Building Information
height 0.917 false VC

hasUnitValue 0.506 false Building Information
hasAverageNumberOfFloorsValue 0.488 true Building Information

hasSurfaceTypeValue 0.440 false Building Information
hasNativeValue 0.436 true Building Information

Table 5.8: Entity level relevance list on search for column Height with search term "h"

In conclusion, when the Initial Mapping occurs, Fields F C,O∗ are created between
column names C and ontology information data OI∗. Furthermore, the Data Constraint
Compatibility Check (DataConstSat) algorithm is executed for the Fields of object
ontologies. These satisfaction checks utilize the ontology information data OIi to find
data types of the entities. Afterward, Similarity Calculation for Embedding-based
Representations (sim_calc) is executed for all of the Fields. Finally, similarity scores
from the sim_calc algorithm are used to produce the Entity level relevance lists for
all columns and an Ontology level relevance list for object ontologies. This concludes
the Initial Mapping. The cache contains the Fields F C,O∗ , Similarity scores RC,O∗ , and
column embeddings EC . Now users can search for entities for a column using a search
term. This will create an Entity level relevance list on search.

61

CHAPTER 6
User Interactions

The following chapter will explain how the user can interact with the SO mapper back-end
(specifically the Fields and Similarity Calculations). In section 6.1, handling the addition,
removal, or update operations for schema columns will be discussed. Thereafter, section
6.2 will explain how user feedback is utilized as an influencing mechanism. Lastly, section
6.3 will showcase how the SO mapper front-end can handle cache time-outs.

6.1 Updating the Schema
DBRepo[wei22] front-end provides various schema manipulationsto the users. Since
our system is built to cooperate with DBRepo, we must comply with such schema
manipulations. Compliance is achieved by integrating the SO mapper front-end into
the table schema definition interface, which sends API requests to SO mapper back-end.
Further information about the API requests can be found in Section 7.3.

For the schema manipulations, SO mapper back-end utilizes the previously defined Fields
F C,Oobj/unit∗ , Embeddings E∗, and Similarity Scores RC,obj/unit∗ and executes the Add
Column Algorithm 6.1 or Remove Column Algorithm 6.2. This implies that an Initial
Mapping (see Figure 3.2) is required before users can reflect their interactions to the SO
mapper. When Initial Mapping is done, SO mapper front-end will receive a schema key.
Using this key, SO mapper back-end can identify which schema is being manipulated.

DBRepo table schema definition interface provides the following schema manipulations:

• Removing columns(see 8 in Figure 7.4): SO mapper back-end will receive the
schema key and the column name. Afterward, Remove Column Algorithm 6.2 will
be executed.

63

6. User Interactions

• Setting column(s) as primary key (see 5 in Figure 7.4): The same procedure with
the "Removing columns" will be executed. The reason behind this is that a primary
column (e.g., "id") cannot be mapped to an object or unit entity.

• Introducing new columns: SO mapper back-end will receive the schema key, a
column name, and a data type. Add Column Algorithm 6.1 will be executed.

• Changing the column name(see 3 in Figure 7.4): SO mapper back-end will receive
the schema key, the new column name, and the data type. Remove Column
Algorithm 6.2 and then the Add Column Algorithm 6.1 will be executed.

• Changing the data type of column(see 4 in Figure 7.4): SO mapper back-end will
receive the schema key, the column name, and the new data type. Remove Column
Algorithm 6.2 and then the Add Column Algorithm 6.1 will be executed.

The Add Column algorithm can be seen in Algorithm 6.1. It takes a schema key for the
schema columns, the name of the column that will be added (c), the data type of the
column (d), Ontology information data of the object and unit ontologies (OIobj/unit∗),
embeddings of the object and unit ontologies (Eobj/unit∗) the cache of our SO mapper
back-end, and directive data (dir).

Our system supports users in providing feedback on the mapping for units. The directive
data is used to apply the previous feedback to the new columns. Two types of feedback
can occur:

• User selecting the correct object entity for a column: In this case, the Direct
Influence (DirectInfluence) Algorithm 6.3 is executed to apply the user feedback.
Directive data contains the column name (c), the name of the correct object entity
(ex), and the name of the ontology (i) of the correct object entity.

• User selecting the correct object ontology: For this case, the Indirect Influence
(IndirectInfluence) Algorithm 6.4 is executed to apply the user feedback. Directive
data contains the column names (C) of the schema and the correct ontology name
(i).

When the Add Column algorithm is executed, a check is performed to ensure that the
Initial Mapping for the schema (see Figure 3.3) has been completed and not expired. If
this is not the case, the SO mapper will return a "HTTP 404" not found message, and
the SO mapper front-end will request a reload, as discussed further in the Reload section
6.3.

However, if the Initial Mapping has been completed beforehand, then the cache contains
the Fields F C,Oobj/unit∗ , Similarity Scores RC,obj/unit∗ , and Column embeddings EC , and
the algorithm will proceed.

64

6.1. Updating the Schema

Algorithm 6.1: Add Column
Input : key: Id of the user-provided schema in SO mapper back-end.
Input : dir : Directive data for user feedback.
Input : column (c): Name of the new column.
Input : datatype (d): Data type of the new column.
Input : objOIs (OIobj∗): Ontology information data for object ontologies.
Input : unitOIs (OIunit∗): Ontology information data for unit ontologies.
Input : oEmbeddingObj (Eobj∗): Embeddings of object entities.
Input : oEmbeddingUnit (Eunit∗): Embeddings of unit entities.
Input : cache: SO mapper cache which holds the Fields, Column embeddings,

and Similarity scores.
Output : eRlObj (RLC,objc): Object Entity level relevance lists for the column.
Output : eRlUnit (RLC,unitc): Unit Entity level relevance lists for the column.
Output : oRL (RLo): Ontology level relevance list.

1 if EXISTS(cache[key]) IS FALSE then
2 return HTTP 404
3 end
4 tmp ← Initial_Match(column, datatype, objOIs, unitOIs, oEmbeddingObj,

oEmbeddingUnit)
5 if dir.direct IS true then
6 tmp.Unit.sims ← DirectInfluence(dir.direct.data, tmp.Column.Emb,

oEmbeddingObj, oEmbeddingUnit, tmp.Unit.sims, unitOIs)
7 end
8 else if dir.indirect IS true then
9 tmp.Unit.sims ← IndirectInfluence(dir.indirect.data, tmp.Column.Emb,

tmp.Object.sims, oEmbeddingObj, oEmbeddingUnit)
10 end
11 for field IN cache[key].Object.Fields do
12 field ← Concatenate(field, tmp.Object.Fields[field.OI.name])
13 cache[key].Object.sims[field.OI.name][column] ←

tmp.Object.sims[field.OI.name][column]
14 end
15 for field IN cache[key].Unit.Fields do
16 field ← Concatenate(field, tmp.Unit.Fields[field.OI.name])
17 cache[key].Unit.sims[field.OI.name][column] ←

tmp.Unit.sims[field..OI.name][column]
18 end
19 eRlObj ← const_ent_rl(column, cache[key].Object.Fields,

cache[key].Object.sims)
20 eRlUnit ← const_ent_rl(column, cache[key].Unit.Fields, cache[key].Object.sims)
21 oRL ← const_ont_rl(cache[key].Object.Fields, cache[key].Object.sims)
22 return eRlObj, eRlUnit, oRL

65

6. User Interactions

In line 4, an Initial Mapping (only the SO mapper back-end) occurs using the column c
and data type d. The data flow of the Initial Mapping can be seen in Figure 3.3) which
uses the algorithms that are previously defined. Note that instead of saving the Column
embeddings, Fields, and Similarity stores to cache, they are used in the variable tmp.
Between the lines 5 − 7 and 8 − 10, user feedback is applied using the previously defined
directive data.

All object Fields (F C,Oobji) and new Fields in the tmp are concatenated between lines
11 − 14. This concatenation is defined in the Equation 5.1. The same procedure occurs
for the unit Fields between lines 15 − 18.

Lastly, two Entity level relevance lists (RLc,obj∗ and RLc,unit∗ for the new column c) and
an Ontology level relevance list are created and then sent to the SO mapper front-end
(between lines 19 − 22).

Our Remove Column can be seen in Algorithm 6.2. It takes a schema key for the schema
columns C, the name of the column that will be removed, and the cache of our SO
mapper back-end. Initial lines (1 − 3) are the same as Add Column Algorithm 6.1.

Fields, Similarity scores, and column embeddings from the Initial Mapping are collected
between the lines of 4 − 8. Afterward, data of column c is deleted from each object
Field F C,Oobji between lines 9 − 11. Column data consists of targets in the SourceTarget
matrix (ST

C,Oobji
column) and constraint satisfactions in the Constraint Satisfaction matrix

(CS
C,Oobji
column). Furthermore, Similarity scores of the column c are deleted from all of the

object ontologies in line 12. Note that each Field contains an ontology information data
OI and the ontology name can be collected using field.OI.name (see Field definition in
Section 3.2).

The same delete process occurs for the unit ontologies between the lines 14 − 18. Next,
embedding of the column is deleted from the Column embeddings EC in line 19. Fields,
Similarity scores of object and unit ontologies, and Column embeddings are saved to the
cache in line 20. Finally, an Ontology level relevance list is created using the previously
defined Algorithm 5.6, and the output is sent to the SO mapper front-end.

The reason behind changing column names and data types is using the Remove Column
Algorithm 6.1 and Add Column Algorithm 6.1 is Data Constraint Compatibility Check
(DataConstSat) Algorithm can remove the unsatisfied entities using a boolean remove
(see Section 5.1). The unsatisfied constraints are not removed by default. However, this
functionality can be utilized by the administrators by changing the default value and
continue using the aforementioned algorithms.

6.2 User Feedback
After the Initial Mappinging finishes, users can provide feedback on the mapping for units.
This feedback changes the Similarity scores between column(s) and unit entities. There
are two types of feedback. The first one is called Direct Influencing (DirectInfluence).

66

6.2. User Feedback

Algorithm 6.2: Remove Column
Input : key: Schema key of the user-provided schema in SO mapper back-end.

Key represents the id of schema.
Input : column (c): Name of a column that will be removed from the schema C.
Input : cache: SO mapper cache which stores Fields F C,Oobj/unit∗ , Similarity

Scores RC,obj/unit∗ , and Column embeddings EC .
Output : oRl (RLo): Ontology level relevance list. Only used for the object

ontologies.
1 if EXISTS(cache[key]) IS FALSE then
2 return HTTP 404
3 end
4 oFields ← cache[key].F C,Oobj∗

5 oSims ← cache[key].RC,Oobj∗

6 uFields ← cache[key].F C,Ounit∗

7 uSims ← cache[key].RC,Ounit∗

8 embeddings ← cache[key].EC

9 for field IN oFields do
10 DELETE(field.ST [column])
11 DELETE(field.CS[column])
12 DELETE(oSims[field.OI.name][column])
13 end
14 for field IN uFields do
15 DELETE(field.ST [column])
16 DELETE(field.CS[column])
17 DELETE(uSims[field.OI.name][column])
18 end
19 DELETE(embeddings[column])
20 cache[key] ← oFields, oSims, uFields, uSims, embeddings
21 oRl ← const_ont_rl(oFields, oSims)
22 return oRl

67

6. User Interactions

When the user selects an object entity (ey) from the ontology for a column (cx), both
the object entity and the column will participate in the similarity calculation (sim_calc)
for the unit entities. Participation is defined as averaging the embeddings of the object
entity and column such as:

vavr
x,y = vx + vy

2 , where

vx is the embedding of the column,
vy is the embedding vector of the object entity

(6.1)

Although only the selected object entity can calculate the similarity scores for unit entities,
the column name can be a synonym or contain the unit abbreviation. Enabling both
the column and object entity to participate in similarity calculation provides broader
information.

For instance, if the column name is WindAvgMPH and the user maps to an object
entity such as Wind. Embedding of the column name (vW indAvgMP H) and embed-
ding of the object entity label names (vW ind) are averaged (vavr

W indAvgMP H,W ind =
vW indAvgMP H + vW ind

2). Subsequently, the cosine similarity between the averaged em-
bedding and the unit entity embedding from each unit ontology is calculated using the
previously defined Similarity Calculation (sim_calc) Algorithm 5.3. In this way, the user
can provide feedback to the mapping for units (such as Mile per Hour for the example
above).

The Direct Influence Algorithm 6.3 begins by taking the column name (cx) and embedding,
the label name of the selected object entity (ex), the ontology name of the object entity
(i), Column Embeddings EC , object and unit Embeddings (Eobj/unit∗), unit Similarity
scores (RC,unit∗), and the Ontology information data (OIunit∗) of each unit ontology. The
Algorithm starts by computing the average embedding using column name embedding
and label name embedding in line 1. Afterward, temporary Fields are created between
the column name and unit ontologies (F c,unit∗). This occurs between lines 2 − 6. In
line 7, the Similarity Calculation (sim_calc) algorithm is executed using the temporary
Fields, averaged embedding, and unit ontology Embeddings. The output is the influenced
Similarity scores (Rcx,unit∗) between the averaged embedding (column name and object
entity label name) and unit embeddings. Lastly, for each unit ontology, new unit Similarity
Scores are saved and returned (line 8 − 11).

The second interaction the SO front-end provides is called Indirect Influence (Indirect-
Influence). It is initiated when the user selects an object ontology (i).For each column,
both the column (cx) and the object entity with the highest Similarity score in the
selected object ontology (ey s.t. RC,obji

x,y = max(RC,obji
x)) will participate in the similarity

calculation (sim_calc) for unit entities. In contrast to the Direct Influence, participation
is defined as weighted averaging embeddings of the object entity and column such as:

68

6.2. User Feedback

Algorithm 6.3: Direct Influence (DirectInfluence)
Input : column (cx): Column name.
Input : object (ey): Label name of the object entity that influences the unit

results of the column.
Input : ontology (i): Ontology name of the object.
Input : cEmbeddings EC : Column Embeddings.
Input : oEmbeddingObj (Eobj∗): Embeddings of entities in object ontologies.
Input : oEmbeddingUnit (Eunit∗): Embeddings of entities in unit ontologies.
Input : unitSims (RC,unit∗): Unit Similarity scores of each unit ontology.
Input : unitOIs (OIunit∗): Ontology information data of unit ontologies.
Output : unitSims (RC,unit∗): Updated unit results for each unit ontology.

1 averagedEmbedding[column] ← (cEmbeddings[column] +
oEmbeddingObj[ontologyName][object])/2

2 tmpFields ← []
3 for unitOI IN unitOIs do
4 tmpField ← Field(column, unitOI)
5 tmpFields.APPEND(tmpField)
6 end
7 influencedSims ← sim_calc(tmpFields, averagedEmbedding, oEmbeddingUnit)
8 for unitOI IN unitOIs do
9 unitSims[unitOI.name][column] ←

influencedSims.Unit.sims[unitOI.name][column]
10 end
11 return unitSims

vwAvr
x,y = vx ∗ 1 + vy ∗ w

1 + w
, where

w = RC,obji
c,y ,

vx is the embedding vector of the column, and
vy is the embedding vector of the object entity

(6.2)

For example, the similarity between the column WindAvgMPH and the object entity
Wind is 0.647. When the user selects the ontology of Wind entity, the embeddings between
WindAvgMPH and Winde are weighted averaged, where the weight of WindAvgMPH is 1
and the weight of Wind is 0.647.

The Indirect Influence can be seen in Algorithm 6.4. For each column, the embedding of
the object entity with the highest similarity score from the selected object ontology is
collected between lines 2 − 4. Embedding of the column is collected in line 5. Afterward,

69

6. User Interactions

the collected embeddings are weighted averaged in line 6. When the new embeddings are
computed for each column, the algorithm will proceed to line 8. For each unit ontology,
the Similarity Calculation (sim_calc) Algorithm will be executed using the new column
embeddings between the lines 8 − 13. Finally, the new similarity scores are saved and
returned between lines 14 − 17.

Algorithm 6.4: Indirect Influence (IndirectInfluence)
Input : columns: Column names.
Input : ontologyName (i): Name of the object ontology.
Input : cEmbeddings (EC): All of the column embeddings.
Input : objectSims (RC,obj∗): Object and unit similarity scores for each unit

ontology.
Input : oEmbeddingObj (EC,obj∗): All of the embeddings from all of the object

ontologies.
Input : oEmbeddingUnit (EC,unit∗): All of the embeddings from all of the unit

ontologies.
Input : unitOIs (OIunit∗): Ontology information data for unit ontologies.
Output : results: Updated unit results for each unit ontology.

1 for column IN columns do
2 eHighestSim ← MAX(objectSims[ontologyName][column])
3 eNname ← objectSims[ontologyName].GET_NAME(eHighestSim)
4 eEmbedding ← oEmbeddingObj[ontologyName][eNname]
5 columnEmbedding ← cEmbeddings[column]
6 wAveragedEmbeddings[column] ←

((eHighestSim*eEmbedding)+columnEmbedding)/(1+eHighestSim)
7 end
8 fields ← []
9 for unitOI IN unitOIs do

10 field ← Field(columns, unitOI)
11 fields.APPEND(field)
12 end
13 influencedSims ← sim_calc(fields, wAveragedEmbeddings, oEmbeddingUnit)

14 for unitOI IN unitOIs do
15 unitSims[field.OI.name] ← influencedSims.Unit.sims[field.OI.name]
16 end
17 return unitSims

An additional remark is that cosine similarity uses the orientation of each vector rather
than considering their magnitudes. However, in the Indirect Influence Algorithm 6.4,

70

6.3. Reload

we change the magnitudes of the vectors but then add them together. This weighted
addition impacts the direction of the vectors, which changes the orientation. Thus,
cosine similarity can calculate the reflected changes. Furthermore, division operations
are executed in case the previously defined Similarity Calculation for Embedding-based
Representations (sim_calc) Algorithm 5.3 is changed by the administrators to use
another vector similarity calculation metric such as Euclidean distance.

Our system is also capable of utilizing the unit entities for influencing. However, designing
the front-end would make the interface harder to use for users. Since DBRepo is designed
to be a user-friendly platform, we are not utilizing this functionality.

6.3 Reload
The SO mapper front-end communicates with the back-end using schema hash keys.
Our back-end saves the schema-ontology results of the user and these schema hash keys
are used to identify which schema-ontology results are related to which user. More
information regarding the caching mechanism and overall service architecture is given in
the Implementation Chapter 7.

However, schema-ontology results are deleted from the back-end after some time. When
this occurs while the user is still using the DBRepo table schema interface, SO mapper
front-end requests multiple reloads. These reloads contain the Initial Mappinging as well
as applied Indirect Influencing and Direct Influencing if there were any.

Our back-end provides reloads one by one rather than executing all at once. Mainly
there are three reloads that can occur:

• Reloading the Initial Mapping: Restart the Initial Mappinging in the back-end and
then save the results.

• Reloading the indirect influence: Applies Indirect Influence using the selected object
ontology, and then updates the results. The most important feature of this reload
is that it excludes already selected object entities and unit entities.

• Reloading the direct influence: Applies multiple Direct Influences by using the
selected entities of each column. That means all of the direct influences will occur
in one reload.

Note that since Indirect Influence excludes the already selected object entities, Indirect
and Direct influence will not intervene with each other’s Similarity scores. Thus the
whole integrity of the results is being secured.

71

CHAPTER 7
Implementation

The upcoming chapter elaborates on how the stateful API architecture is designed to
ensure resilience and flexibility while providing control for scalability. Each section will
offer insights into both the front-end and back-end. The first section 7.1 discusses the
underlying programming language, libraries, and frameworks utilized to operate our
system. Meanwhile, the second section 7.2 explains the implementation of the previously
mentioned algorithms into services that construct the overall architecture. Section 7.3
provides details about how the communication is being done between the back-end and
front-end, while the last section 7.4 describes our proposed user interface.

7.1 Methodologies
DBRepo is deployed through Docker [Mer14] containers, each containing various APIs,
communicating through HTTP requests. These APIs are depicted in Figure 2.1. Since
the SO mapper must work synchronously with the DBRepo table schema definition
interface, our system needs to be integrated into the same environment. Therefore, the
SO mapper back-end is created as an API. The underlying programming language is
Python 3 [VRD09] for several reasons. It provides an intuitive syntax which promotes
programmers to easily understand and change the underlying code for future works.
However, most importantly, Python contains continuously supported, easy-to-use, and
well-documented libraries and frameworks for our use cases when it comes to constructing
the API, parsing ontologies, or utilizing text embedding models.

To build the API using Python, we utilize the Flask micro web framework [Gri18]. The
reasoning behind this choice is that Flask is a lightweight framework, saving resources
while enabling faster development for our system. Additionally, we incorporate the
Flask-Caching extension. This caching mechanism stores schema-ontology mapping data
in temporary files. Administrators can control the system’s scalability by restricting the
maximum number of simultaneous cache files and defining a timeout period for their

73

7. Implementation

deletion. Another extension used for the API is Flask-Cors, which enables communication
using Cross Origin Resource Sharing (CORS).

One of the fundamental mechanisms in our system is parsing OWL ontologies. Several
Python libraries exist for this purpose, such as RDFLib [Boe18], which is one of the most
popular library for parsing RDF data models. RDFLib supports various serialization
formats such as RDF/XML, Turtle, N-Triples, etc. However, it does not directly parse
OWL 2 vocabulary. For example, when "class A and class B" is being read, RDFLib
constructs an intermediate node called a Blank Node (BNode). Subsequently, "class A"
is linked with the BNode, which contains the information of "and" and "class B". This
limitation is not feasible for our use case, so we are not utilizing RDFLib.

NetworkX [HSSC08] is another Python module capable of extracting information from
the structure of complex networks. However, it requires Open Biomedical Ontologies
(OBO) vocabulary, meaning OWL2 vocabularies must be converted to be compatible
with NetworkX. It’s important to note that RDFLib can convert the given graphs into
NetworkX graphs. However, the OWL2 vocabulary is still not being parsed directly, and
issues such as blank nodes persist.

Owlready2 [Lam17] is another well-known Python module mainly used for parsing OWL2
vocabularies, especially in biomedical ontologies. It can convert classes, instances, object
properties, and data properties into Python objects, enabling fetching the relations of
entities. Additionally, it introduces reasoning capabilities through HermiT [GHM+14]
and Pellet [SPG+07] reasoners for OWL 2 DL with queriying capabilities of inferred
classification (e.g., getting the equivalences for a class). Supported formats include
RDF/XML, N-Triples, and OWL/XML. Lastly, it features a dedicated SPARQL engine
with better performance than RDFlib. Due to these capabilities and native support for
OWL2, our system utilizes this library for parsing the given ontologies.

Our similarity metrics come from various libraries and frameworks, divided into two
categories for name similarity. The first category, although not utilized in our current
system, uses string-based approaches from the textdistance library [lif17]. It supports
metrics such as Levenshtein distance, Hamming distance, etc., and can be extended
to support phonetic-based techniques as well. The second category is based on text
embedding models, which convert texts into embedding vectors. There are two frameworks
based on PyTorch [PGM+19] that offer a large collection of pre-trained state-of-the-
art text embedding models. These frameworks are Sentence Transformers [Reite] and
FlagEmbedding [Fla23]. They are currently being used and provide the ability to flexibly
change from one embedding model to another by simply changing the model name.
Furthermore, PyTorch is used for vector addition, division, and multiplication. The
Sentence Transformers framework is utilized for cosine similarity scoring.

SO mapper pre-encodes entity names into vector representations and saves these repre-
sentations locally. This design choice allows us to compute embeddings only once and
then repeatedly use them when similarity calculations are needed. These vectors are
saved in HDF5 format using the Python library h5py [Col13], which is a de facto data

74

7.2. Architecture

management standard capable of easily reading and writing large amounts of numerical
data [The], making it suitable for storing vector representations of thousands of entities.
Furthermore, h5py enables us to set attributes as metadata, which is used to tag which
ontology, embedding model, or encoding method is being used. Conversely, the native
Python module called pickle [VR20] is used to serialize the Python objects that contain
extracted information from the ontologies. This is suitable for our use case since the
resulting pickles are less than 100KB, even for the largest ontology we utilize, namely
QUDT. This indicates that advanced storage techniques are not necessary.

Several other Python 3 modules are utilized in our system. These include the regex
module for searching entities by a given keyword, the logging module for diagnosing the
system in case a bug is encountered, the hashlib module for generating schema-ontology
specific hash keys, and the threading module to introduce multi-threading for calculating
the object and unit similarity scores concurrently.

Lastly, our system also needs to update the old table schema creation interface in DBRepo,
as depicted in Figure 1.1. This interface requires enhancement to introduce users to
freely selecting the mapped entities, especially in cases where the SO mapper fails to find
the correct object or unit entities. Therefore, the SO mapper front-end is built on top of
the DBRepo schema definition interface. Since the DBRepo front-end is developed using
the Vue.js 2.0 [Vue24] JavaScript framework, our front-end utilizes the same framework.

7.2 Architecture
Our architecture is divided into two parts: the back-end is responsible for mapping
relevant entities, while the front-end is used for manipulating the schema and interacting
with the back-end. The front-end implementation of the SO mapper consists of several
components designed to introduce visualization and interaction capabilities. The Table
schema definition interface from the DBRepo is utilized for integration into the overall
DBRepo system. Our design principles aim to provide new interactions and a user-friendly
interface. More details about these interactions can be found in the User Interactions
Chapter 6. Additionally, the SO mapper front-end component diagram can be seen in
Figure 7.1. Apart from the interface, there are mainly three different components used as
services: SO Interaction service, SO Communication service, and SO Extraction service.

SO Interaction service is responsible for storing various information as well as requesting
API calls from SO communication service. The stored information is as follows:

• Schema hash key: This key is used to communicate with the SO mapper back-end.
Without this key, our system cannot identify which schema-result pairs are being
interacted with.

• Column names and data types: These are used in manipulating the schema data
and reflecting such changes to our back-end. In case the user updates the name or
data type of a column, or adds or removes a column, these changes are stored.

75

7. Implementation

Figure 7.1: SO mapper front-end components

• Primary keys: Users can set columns as primary keys. In such cases, these columns
are flagged, and their names are sent to the back-end.

• Ignored Columns: Columns with "string" data types are detected and ignored for
unit mapping.

• Mapped Entities: User-selected and auto-suggested schema-entity pairs are stored
separately. Note that when a user selects an entity, direct influencing is applied by
design. By storing auto-suggested and user-selected pairs separately, our system
can distinguish when to apply direct influencing.

• Mapped ontologies: Auto-suggested and user-selected ontology selections are also
stored. Indirect influencing can be applied by identifying the user-selected object
ontology.

The SO Communication service is responsible for executing the HTTP API requests to
communicate with our back-end. We utilize two functionally separate API call types.
The first type occurs when the user initially uploads the file, and the DBRepo analyzer
service provides the data types. Subsequently, this service collects column names and
their data types from the SO Interaction service and executes the Initial Mapping API
call. In return, SO mapper back-end responds with a schema hash key and relevance
lists.

76

7.2. Architecture

The second type of API call occurs when the Initial Mapping is done, and the user
interacts with the schema or mapped entities. This call is made by retrieving the schema
hash key and relevant information for the interaction through the SO Interaction service.
Finally, the SO mapper back-end responds with relevance lists. For both types of calls,
once the schema hash key and relevance lists are received, the SO Interaction service is
updated accordingly.

The last service for our front-end is the SO Extraction service which reads the relevance
lists from SO Interaction service and passes them to the underlying JavaScript framework.
In our case, Vue.js 2.0 combo-boxes (marked as 6 and 7 in Figure 7.4) are populated with
entity data are the object and unit entities with the highest similarity scores from each
ontology or entities from the keyword search. Further information about the relevance
list data can be seen in Relevance Lists Section 5.3.

Meanwhile, the SO mapper back-end consists of several components, all of which are
services except the cached data (Fields, Similarity scores, and column embeddings), object
and unit Ontology information data (OIobj/unit∗), and their embeddings (Eobj/unit∗).
Nevertheless, all these services utilize algorithms described in previous chapters. Our
component diagram is depicted in Figure 7.2.

SO mapper back-end provides various configuration options for the initial start-up. These
options are namely:

• Directory locations of Object and unit ontologies: The object and unit ontologies are
stored in separate directories. Each directory contains multiple folders representing
different ontologies. Inside each folder, there is an OWL2 file along with parsed
object ontology data and computed embeddings generated by our system.

• OWL/XML (".owx") and RDF/XML (".rdx") syntax can be used for reading the
ontologies. By default, both of them are enabled.

• Location of the object and unit ontology reading configurations Confobj/unit∗ : Set-
tings for reading object or unit ontologies can be configured using two separate
JavaScript Object Notation (JSON) files. Each file contains multiple objects with
their corresponding ontology name, specification of which entity type(s) should
be used during parsing, and whether to use the reasoner or not. By default, all
of the entity types are parsed and the reasoner is enabled. The location of the
configurations can be changed. For further information refer to Section 4.1.

• Text embedding model (emb): Administrators have the option to change the used
embedding model. However, vector embeddings from the previous model will still
be stored, necessitating manual removal if desired. By default, BGE M3-Embedding
[CXZ+24] text embedding model is being used. However, the nasa-smd-ibm-st-v2
[NAS24] text embedding model can be used.

• Schema, object, and unit encoding methods (enc): Encoding methods convert
the entity information (label name, relationships) into strings. Afterward, the

77

7. Implementation

Figure 7.2: SO mapper back-end components

embedding model converts the string to entity embedding. Schema columns,
object entities, or unit entities can use different encoding methods; however, the
underlying embedding model will remain the same for each of them. By default, the
encoding method that is used for the schema columns and object ontology entities
is converting the label names into strings. The encoding method that is used for
the unit ontologies is converting the entity label names into strings and adding "
unit" term at the end of each string. For further information refer to Section 5.2.
New encoding methods can implemented into the system such as converting the
entity label and label of its ancestor into a string.

• Object and unit similarity metric: Used similarity metric within the similarity
calculation (sim_calc) can be changed, and they can differ for column-object
entities and column-unit entities. By default, cosine similarity is used to calculate
similarities between column-object entity embeddings and column-unit entity em-

78

7.2. Architecture

beddings. Options are using Levenshtein, JaroWinkler, Jaccard, Longest Common
Subsequence similarity to calculate column name-entity label name similarities (see
Section 8.4).

• Cache configurations: Our system utilizes the Flask-Caching extension, and these
configurations are also exposed to the administrators. Cache data can be stored data
in the file system, memory, or Redis. If stored as files, the directory location of the
cache files can also be modified. When a cache is not accessed for a certain amount
of time, a timeout occurs and the cache gets automatically deleted. Cache timeout
value can be configured or timeout can be disabled. Similarly, the maximum number
of concurrent cache files can also be configured. By default, caches are stored as files
in the file system, cache timeout is set to 10 minutes, and the maximum number of
concurrent caches is set to 50.

The SO mapper starts with the Initialization service. It reads the previously defined
back-end configurations and provides this information to start other services. The Load
service is started by receiving directory locations and reading configuration (Confobj/unit∗)
locations for both object and unit ontologies. The Embedding service is initiated with
the embedding model (emb) and encoding methods (enc) for schema, object, or unit
ontologies. Finally, the Match service is initiated with the type of scoring methods (e.g.,
cosine similarity) for the object or unit ontologies. The main responsibility of this service
is to read configurations and start other services.

The Load service loads the schema data and ontologies. For loading the object and unit
ontologies into the memory, the service first loads the reading configurations Confobj/unit

and then loads the ontologies accordingly. This load operation can involve either loading
the Ontology information data (OIi) and ontology embeddings from the file system or
parsing the OWL files and computing the embeddings.

In the following cases, the ontology file will be parsed (using Owlready2 and the En-
tity Discovery and Extraction (discovery_extraction) Algorithm 4.1), and ontology
embeddings are computed:

• Ontology information data (OIi) does not exist: If a new ontology file is placed
into the SO mapper object or unit ontology directory, it will not have an Ontology
information data in the file system. Thus the ontology file will be parsed (Algorithm
4.1) and embeddings will be computed. Finally, the Ontology information data
and the ontology embeddings will be saved to the file system, in the same folder as
their respective OWL file. An example data flow can be seen in Figure 3.2.

• Entity types (e.g., individual, class, ...) in the Ontology information data (OIi)
are not equal to the Entity types in the reading configuration Confi: The ontology
will be parsed (using the new entity types as input to the Algorithm 4.1) and
embeddings will be computed. Old Ontology information data and the ontology

79

7. Implementation

embeddings are replaced with the new ones in the file system in the same folder as
their respective OWL file.

Further information about the reading configurations can be found in Section 4.1 and
information about the Ontology information data can be found in Section 4.2.

In cases where the Ontology information data exists (OIi) and the parsed entity types
are the same with the reading configurations Confi, Ontology information data and the
ontology embeddings will be loaded from the file system.

Conversely, the schema data is provided to the Field service when schema column names
(C) and their data types (D) are received from the client. This transaction occurs when
a user initiates the Initial Mapping call. Subsequently, the schema data is received by
the Load service and then forwarded to the Field and Embedding services.

The second service initiated by the Initialization component is the Embedding service.
This component is responsible for controlling the embeddings of both schemas columns
(EC) and ontologies (Eobj/unit∗). It contains a text embedding model (emb), encoding
methods (enc), and object or unit entity vector embeddings (Eobj/unit∗).

A similar load mechanism occurs for the entity embeddings: they can be either read
from a previously saved file or new computations can occur. In cases where there is no
embedding file in the file system, utilized embedding model or encoding method changes,
new embeddings (Eobj/unit∗) will be computed using the encoding method (enc) and
embedding model (emb). These embeddings are then stored as HDF5 in the same folder
as their respective Ontology information data. Note that an ontology can have multiple
embedding files that use different embedding models and encoding methods. The utilized
embedding model and encoding method will be written in the file name.

The schema data comes to the Embedding component through the Load service. Upon
arrival, their embeddings are computed and then sent to the Cache component for future
use and the Match component to execute the Similarity Calculation (sim_calc) algorithm
5.3.

Another responsibility of this service is manipulating the schema embeddings. Such
cases occur when the user interacts with the SO mapper front-end. Updating column
names causes their respective embeddings to be recomputed and replaced. Likewise,
removing columns causes removing the column’s embedding. When the Indirect Influence
(IndirectInfluence) Algorithm 6.4 is executed, this service computes the weighted averaging
between embeddings. Similarly, averaging between embeddings in the Direct Influence
(DirectInfluence) Algorithm 6.3 is computed in this service.

Field service controls Ontology information data from all object and unit ontologies
(OIobj/unit∗). New Ontology information data (OIobj/uniti

) can be added to this dataset
by executing the Load API request. Furthermore, ontologies can be removed by executing
the Remove ontology API request. However, it is important to note that removing
an Ontology information data OIi from the memory does not delete OWL, Ontology

80

7.2. Architecture

information data, and ontology embeddings in the file system. Further information about
the API requests is given in Section 7.3.

The Field service is used for constructing Fields (F C,Oobj/uniti) between the column names
(C) and all object and unit ontologies (Oobj/uniti

) (see Field definition in Equation 3.4).
This service is also responsible for executing the Data Constraint Compatibility Check
(DataConstSat) Algorithm 5.1 which computes the Constraint Satisfaction matrix that
holds pairwise compatibility information between column and entity data types.

Furthermore, Field concatenation in the Add Column Algorithm 6.1 and deleting column
data from the Field in the Remove Column Algorithm 6.2 are handled by this service.

Lastly, when the user initiates the Direct Influencing Algorithm 6.3, Field service is
responsible for creating a temporary Fields (F cx,unit∗) between the column (cx) and
entities of each unit ontology. Similarly, for the Indirect Influencing Algorithm 6.4, Field
service is responsible for creating temporary Fields (F C,unit∗) between columns (C) and
entities of each unit ontology. More information about the Fields can be found in the
Ontology Parsing Section 4.2.

Once the Field service provides all Fields (F C,Oobj/uniti) between the schema and object or
unit ontologies, Embedding service provides the column embeddings and entity embeddings
(Eobj/unit∗) then the Match service is responsible for executing the Similarity Calculation
for Embedding-based Representations (simcalc) Algorithm 5.3. The output of the
algorithm is Similarity scores between columns and all entities from object or unit
ontologies (RC,obj/unit∗). Note that two Similarity calculations occur, one for object
ontologies and another one for unit ontologies.

Furthermore, when the user initiates the Direct or Indirect Influencing, the Match
service is responsible for executing the Similarity Calculation for Embedding-based
Representations (simcalc) Algorithm 5.3 using the temporary Fields that are coming
from the Field service.

The Results service controls the Similarity Scores RC,obj/unit∗ . This service has the
responsibility to find the entity with the highest similarity score in the Similarity scores
Rcx,obj/unit∗ for a column cx. This is utilized in the Construct Entity level relevance
list (const_ent_rl) Algorithm 5.4 and Construct Entity level relevance list on search
Algorithm 5.5.

Furthermore, this service filters Similarity scores for entity label names using the given
search term. This is utilized to enable users to search entity names in our front-end.

The last responsibility of this service is adding (or removing) the Similarity scores of
a column Rcx,obj/unit∗ to the Similarity scores of schema columns RC,obj/unit∗ . These
abilities are utilized in the Add Column Algorithm 6.1 and in the Remove Column
Algorithm 6.2.

The Cache service stores and updates the Fields (F C,Oobj/unit∗), schema embeddings
(EC), and Similarity scores (RC,obj/unit∗). Additionally, it generates a random but unique

81

7. Implementation

schema hash key for users to access their cached data. This key is requested from the
users for each interaction to ensure correct data is being accessed. Once the Fields,
schema embeddings, and Similarity scores are cached for a user, Fields and Similarity
scores are sent to the Relevance List service.

The Relevance List service can generate three types of relevance lists: Entity relevance
list (Algorithm 5.4), Entitly level relevance list on search (Algorithm 5.5), and Ontology
level relevance list (5.5). More details about these relevance lists can be found in Section
5.3. This component constructs these lists and subsequently dispatches them to our
front-end.

7.3 API Requests
Clients can communicate with SO mapper using HTTP requests. Our system employs
different types of requests for default users, who are either initiating or manipulating
their schema-ontology mapping results. Default user requests are as follows:

• Initial mapping: This is a HTTP POST request that occurs on the initial com-
munication from the client to our SO mapper back-end. The JSON request body
contains the schema name, schema columns along with their data types, and names
of the columns that will be removed from the unit mapping process. The rationale
for ignoring these columns is that columns with string data types typically lack
units, hence unit entity mapping should not apply to them. In return, our back-end
provides a schema hash key as well as entity-level and ontology-level relevance lists
for both object and unit ontologies. More information for the relevance lists can be
found in the Relevance Lists Section 5.3.

• Keyword search: This action involves a HTTP GET request that occurs when the
user initiates a search interaction in our front-end interface by entering a keyword
in the column’s object or unit suggestions drop-down. The front-end sends the
schema key, the corresponding column name, and the entered keyword. In response,
the SO mapper sends a relevance list containing entity names that begin with the
provided keyword.

• Indirect Influence: When the user selects an object ontology, a HTTP POST request
is sent to the server, containing a JSON request body with the schema hash key,
the selected object ontology, and the columns that will be ignored in the Indirect
Influencing. This decision is based on the rationale that if the user selects an object
entity for a column, indirect influence will not be applied on top of the direct
influence. Subsequently, the SO mapper will return a new unit entity relevance
list for each column that is not being ignored, as well as the new unit ontology
relevance list. Since new entities with the highest similarity score can emerge from
the output of Indirect Influencing, the overall unit ontology similarities can change.

82

7.3. API Requests

• Direct Influence: Direct influence takes place when the user selects an object entity
for a specific column. Subsequently, the schema hash key, column name, influencer
entity for that column, and the entity’s ontology are sent to the back-end through
a HTTP POST request. The SO mapper will then respond with a new unit entity
relevance list and a new unit ontology relevance list. It is important to note that
a single API request can handle multiple columns that are influenced by entities
belonging to the same object ontology.

• Remove column(s): When a user deletes a column, an HTTP POST request is sent
to the back-end, which includes the schema hash key and the name of the deleted
column. In return, the front-end receives new object and unit ontology relevance
lists.

• Add column(s): When a user introduces a column, another HTTP POST request
will be sent. The request body will include the schema hash key, name, and data
type of the new column, as well as any Indirect or Direct influences if they were
applied. Following this, the back-end processes the request and returns object and
unit entity relevance lists for the new column, along with new object and unit
relevance lists.

• Reload: Finally, a reload occurs when a user sends one of the previously defined
requests, which contains a schema hash key. If the cached user data is expired in
the SO mapper back-end, the front-end will receive a 404 "schema key not found"
error. Subsequently, multiple reload requests will be sent to the back-end one by
one. Each reload request contains a directive, which will be in the following order:
"initial mapping", "indirect influence" if applied, and multiple "direct influences" if
there are any. Additionally, each "direct influence" directive can contain multiple
influencer entities belonging to the same object ontology. Upon receiving each
reload directive, the back-end returns a success message. If there are no more
waiting reload requests left in the client, the client will automatically send the
pending API request.

The sequence diagram illustrating these default user requests can be seen in Figure
7.3. These communications ensure that the system updates and synchronizes its data
effectively, maintaining consistency between the front-end and back-end for each user.

Another type of communication is designed for administrators, with two different possi-
bilities of requests that are done to the SO mapper. Both requests are HTTP POST.
The first one is for introducing new ontologies. This request has an empty JSON body
and is sent to the "/load/ontologies" API endpoint. This action prompts the SO mapper
to automatically load object or unit ontologies that do not exist within the system but
are present in the ontology directories.

The second administrator communication is for removing a certain ontology. The body of
this request requires the ontology name and needs to be sent to the "/remove/ontology"

83

7. Implementation

Figure 7.3: SO mapper User API call sequences

API endpoint. Subsequently, the SO mapper will remove the object or unit ontology
that has the provided name. This ensures that administrators can manage ontologies
efficiently within the system.

84

7.4. Table Schema Definition Interface

Figure 7.4: New table schema definition interface

7.4 Table Schema Definition Interface
Our front-end is built on top of the DBRepo table schema definition interface. We are
introducing two new dropdown lists on top of the interface to present the object and
unit Ontology level relevance lists. Additionally, two new dropdown lists are added next
to each column, representing unit and object entity mappings for each column. Our
interface can be seen in Figure 7.4.

In our front-end, when the user selects an object or unit entity, this selection is treated
as verified mapping. These mapping verifications are ignored for the Direct Influencing
API request.

Our object and unit Ontology level relevance list in the front-end can be seen in Figure
7.5. When the user manually selects a certain object ontology. An Indirect Influence API
request will be executed. This request will ignore the columns with verified object or
unit entity mapping.

Our Entity level relevance list based on the keyword search in the front-end can be seen
in Figure 7.6. Users can type search terms, and our front-end will execute the Keyword
search API request that will display the object or unit entities starting with the search
term. The order of the listed entities is based on descending similarity scores.

Direct Influencing API request will occur when an object entity has been verified. That
entity will directly influence the respective column’s unit ontology similarity scores.
However, if the user has verified a unit entity mapping, the Direct and Indirect Influence
will not occur. It is important to note that if the column has already been Indirectly
Influenced, Direct Influence can still occur on the Initial Mapping similarity scores rather

85

7. Implementation

Figure 7.5: Ontology level relevance list

Figure 7.6: Entity level relevance list on search

than being applied on top of each other.

Our interface is designed to minimize the required user interactions for achieving correct
mappings between all schema columns to object or unit entities. This is done by
automatically mapping each column (that does not have a verified object or unit mapping)
to the object and unit entity with the highest similarity score. If a column has an entity
with a higher similarity score than the automatically mapped entity, the label of the
automatically mapped entity will have an asterisk symbol.

Our interface is designed to minimize user interactions needed to achieve correct mappings
between schema columns and object or unit entities. It automatically maps each column
(without a verified object or unit mapping) to the (object and unit) entity with the

86

7.4. Table Schema Definition Interface

highest similarity score. If a column has an entity with a higher similarity score than the
automatically mapped entity, the label of the automatically mapped entity will include
an asterisk.

For each user interaction, our front-end will memorize the semi-automatically mapped
object and unit entities for each column. If a reload is needed, this information is provided
to the SO mapper back-end. Once the mappings are finished, the column-object entity
and column-unit entity pairs are persisted in the DBRepo metadata database, updating
the corresponding schema information. This ensures that the mappings established by
the user are recorded and stored for future use within the DBRepo.

87

CHAPTER 8
Evaluation

The following chapter provides an evaluation of the SO mapper. A custom simulation
tool was created for the evaluation environment, which is described in Section 8.1.
Subsequently, the selected unit and object ontologies are detailed in Section 8.2. Similarly,
the datasets targeting the selected ontologies and their grounding methods are described
in Section 8.3. Before the actual evaluation, the applied similarity metrics, embedding
models, and encoding methods are presented in Section 8.4. The quantitative evaluation
results for the object and unit mappings are shown in Section 8.5. The current limitations
of our system are discussed in Section 8.6, and the limitations of our selected similarity
calculation approach are given in Section 8.7.

8.1 Simulation Tool
The SO mapper has been evaluated by a custom simulation tool. This tool is capable of
running the services and algorithms that are previously defined. It uses the previously
defined SO mapper back-end services and can simulate user clicks using the relevance
list outputs. This enables thorough testing of the SO mapper’s functionality in various
scenarios, showcasing its reliability and performance.

At first, each sample table schema data with its ground truth must be stored in separate
folders. When our tool is started, it will automatically detect all of the sample scenarios
and extract the table schema data using the Load service. Ground truths will also be
read separately.

Once all of the sample scenarios are loaded, the simulation tool starts by calling the
Initialization service and sets the configuration parameters as previously described.
Afterward, sample columns that do not possess a ground truth can be deleted. This is
utilized to mimic user behavior in case the user removes the column rather than mapping
it to a special None target. Since this is an optional user behavior, we will provide a

89

8. Evaluation

separate evaluation result for such cases when the absence of a relevant object entity is
assured.

Subsequently, initial match, indirect influence, and direct influences occur one after
another. They all utilize the Embedding, Field, and Match services for executing the
mappings, and Results and Relevance List services to generate the relevant output
information.

The Initial Match does not rely on any ground truth data. In contrast, both Indirect
and Direct influences utilize the object ontology ground truths. Indirect influence uses
the ground truth of object ontology to mimic user interaction, Indirectly affecting the
unit entity similarity scores. This behavior assesses the performance of Indirect influence
when the user sets the correct object ontology. Similarly, Direct influence utilizes the
ground truths of object entities to mimic user interactions, directly affecting unit entity
similarity scores. This behavior measures the overall performance of direct influences
when correct object entities are set by the user.

Overall, the Initial Match will assess the accuracy of the mappings of object and unit
entities, as well as determine whether the correct object ontology is identified. In contrast,
the Indirect and Direct influences will solely measure the accuracy of the mappings of
unit entities.

At the end of the Initial Match, Indirect or Direct influence, results are measured in
various ways using the ground truths. Firstly, a measurement is conducted to determine
whether the suggested object ontology matches the ground truth or not. Then, the
mapped object or unit entities are checked to see if they are the ground truth entities or
fall within the first 5% or 10%. Furthermore, Mean Reciprocal Rank (MRR) scores are
measured to determine the quality of the ranked lists for entities. Finally, the minimum
number of user interactions required to achieve the correct mapping of each column-object
entity pair and column-unit entity pair is calculated.

The minimum number of user interactions for a column-entity pair is determined by
simulating our front-end functionalities. The ontology with the highest similarity score
in the ontology-level relevance list is automatically selected, costing zero clicks. However,
users can change this selection, which will cost one click.

Similarly, entities with the highest score in entity-level relevance lists are automatically
selected for mapping. Additionally, when an ontology is automatically or manually
selected, the automatic selection of entities is limited to those within the same ontology.
This means that if the correct ontologies and all of the correct entities have the high-
est similarity scores, the system will function fully automatically without any human
interference. However, if the correct ontologies are not automatically selected, this will
cost zero clicks. Our simulation will always select the correct object ontology if it is not
automatically selected and exists within the list of object ontologies.

If the correct entities do not have the highest scores in the Entity-level relevance lists,

90

8.2. Selected Ontologies

users need to expand the drop-downs, which costs one click each, and proceed to search.
Searching can be done by typing into the drop-downs and hitting enter, which costs the
number of characters typed by the user and an additional key-press to initiate the search.
Subsequently, Entity-level relevance lists for search results are received. Each drop-down
displays six entities (if expanded) at no cost, and each mouse wheel movement displays
two new entities, costing one interaction each.

If a correct entity resides in the list with the highest similarity score (also residing in
the selected ontology), it will be automatically selected. If that’s not the case, users can
continue the search by typing additional characters or scrolling down the relevance list.

Each entity search is simulated by typing the first character of the correct entity, and
then recursively continuing the search by either scrolling down or continuing to type.
When a search simulation ends, the search combination that costs the minimum number
of user clicks is used.

When the correct entity is found, users can select it to map, which costs one click. In
cases where there is no correct entity for a column, users have the option to open the
drop-down and select the special "None" mapping. This functionality is also reflected in
our simulation for entities without ground truths, which directly costs two interactions.

It is important to note that several unit ontologies are being utilized within the system.
Some of these ontologies have semantically similar (overlapping) entities, all of which are
correct unit entities in certain scenarios. This is why, all of the overlapping units are used
and the manual selection of a certain unit ontology is not utilized in our simulations.

8.2 Selected Ontologies
Since sample object and unit ontologies are necessary for the evaluation, we searched
ontologies on the internet. It is important to note that finding ontologies alone is not
sufficient; we also need to find datasets that can appropriately fit into these ontologies.

For our evaluation, we use OM2, QUDT, and UCUM for the unit ontologies. More
information about these ontologies can be found in the Ontologies Section 2.2.

For the object ontologies, we employ six different ontologies from the fields of environmen-
tal sciences, meteorology, architecture, mechanical engineering, and nutritional sciences.
The specific ontologies used are as follows:

• Calidad-aire ontology [Cor19]: The domain of this ontology is environmental
sciences. It references air pollutants from the European Environment Agency
thesaurus and uses properties from the W3C Sensor, Observation, Sample, and
Actuator (SOSA) within the Semantic Sensor Network Ontology [JHC+19] to
represent air quality data. It can represent individual pollutants such as PM10,
NO2, and O3. There are 44 distinct entities (concept, individual, object, and data
properties) within the ontology. Distinctness refers to having a unique IRI within

91

8. Evaluation

the same ontology. Additionally, unlike the rest of the ontologies, entity names in
Calidad-aire are in Spanish.

• Weather ontology [KRK12]: This ontology originates from TU Wien and is an
ontology in the meteorology domain. Its main purpose is to represent weather
properties for smart home systems. It can represent weather states, reports,
conditions (e.g., cloud, fog, rain), and phenomena (e.g., air pollution, precipitation,
humidity, temperature). Unlike the Calidad-aire ontology, which extensively covers
air quality, this ontology focuses on general weather phenomena and exterior
conditions. For instance, this ontology represents air pollution as a European Air
Quality Index value instead of individual pollutants. There are 162 distinct entities
within the ontology.

• The Doce water quality ontology [Cam19]: This ontology, originating from the
domain of environmental sciences, is used to represent the water quality of the
Doce River Basin. For example, it includes individuals such as concentrations of
aluminum, organic carbon, and sodium. The ontology contains 179 distinct entities.

• Building Information Ontology [KIVK13]: This is another ontology from TU Wien,
with its application domain in architecture and partially civil engineering. We use
it to represent the building context, including attributes such as area, height, age,
energy, and emissions. There are 694 distinct entities within the ontology.

• The Vehicle Core (VC) ontology [veh21]: Produced by the Enterprise Data Manage-
ment Council, this ontology focuses on the structure, configuration, and emission of
various vehicle types. VC incorporates concepts from other vehicle ontologies, such
as the Car Ontology [ZIMS15] from Toyota and the Vehicle Emissions Ontology
(VEO) [NJT14]. Its domain is mechanical engineering, specifically automotive
engineering. VC contains 375 distinct entities such as model type, fuel consumption,
CO2 emission, engine power, etc.

• Ontology of Fast Food Facts (OFFF) [AOL+21]: The original aim of this ontology
is to standardize knowledge of fast food, fast food chains, and nutritional data for
analysis. OFFF includes concepts such as fat, sodium, sugar, calcium, and calories.
Its domain is nutritional sciences. OFFF contains 478 distinct entities.

In total, there are 1, 932 object entities and 3, 811 unit entities utilized for evaluation
purposes. Among the employed object ontologies, as well as among the unit ontologies,
numerous entities semantically overlap. For instance, the "gram" unit from the OM2
unit ontology overlaps with the "Gram" unit in QUDT unit ontology. In our evaluation,
the overlaps in unit ontologies are not considered since we are not using the units but
rather evaluating the column-to-unit mapping capabilities of SO mapper (Initial Macth,
Indirect, and Direct influencing). For each column-to-unit mapping, in case the unit
ground truth overlaps with a unit from another ontology, the overlapped entity is also
considered a unit ground truth. A unit evaluation is based on the ground truth that

92

8.3. Selected Data Sets and Grounding

has the highest similarity score. For example the column "Trans Fat (g) " has the unit
ground truths "gram" and "Gram". During the Initial Mapping, similarity scores between
the column and unit entities are "0.443" and "0.446" respectively. Then the "Gram" unit
entity is used in the Initial Mapping column-to-unit entity mapping evaluation. Note
that differences such as " kg

cm2 " and g
cm2 are not considered as unit overlap.

For the overlapping object entities, only the entity that belongs to the correct object
ontology ground truth is considered as object ground truth. However, overlapping object
entities cause having multiple potentially correct column-to-object entity mappings. This
allows us to demonstrate how the schema-to-ontology mapping determines the most
representative ontology. Take, for example, the weather ontology from TU Wien and
the Calidad-aire ontology, both contain a temperature entity. However, while the former
primarily addresses weather conditions, the latter concentrates specifically on pollutants.
The presence of such overlapping object entities allows us to evaluate our system’s
schema-to-ontology mapping ability.

8.3 Selected Data Sets and Grounding
Upon discovering the ontologies, we proceeded to search for datasets. Following this,
ground truth data for each dataset is manually created. This ground truth data includes
the correct object ontology name for the overall table data (object ontology ground truth),
the correct object and unit entity name for each column (object/unit entity ground truth),
and the data type result for each column.

We conduct two evaluation rounds to measure the effectiveness of object and unit
suggestions. In the first round, various approaches are evaluated (see Section 8.4). The
best-performing approach is then evaluated once more in the second round with different
datasets. Each round consists of ten datasets, with at least one dataset for each object
ontology. These datasets, along with their manually created ground truth data, are
provided to our simulation tool for evaluation. The specific details regarding the datasets
are as follows:

• First round: In this round, two air quality datasets [Vit16][Poh23] are grounded
to the Calidad-aire ontology. Similarly, two meteorology datasets [Mis23] [Gru17]
are grounded to the weather ontology from TU Wien. Two water quality datasets
[Kad21][Ver23] are grounded to the Doce water quality ontology. Additionally, two
nutrition datasets [Arv23] [Sin10] are grounded to the OFFF ontology, and one
building dataset [Dat22] is grounded to the Building Information Ontology from
TU Wien. Lastly, one automation dataset [Qui93] is grounded to the VC ontology.
In total, there are 137 columns, out of which 107 columns contain target object
entities and 86 columns contain target unit entities. Columns that do not have any
target object or unit entities either provide auxiliary information (e.g., id) or lack a
semantically similar entity within the target object ontology (e.g., the Calidad-aire

93

8. Evaluation

ontology does not include an entity for absolute humidity) or unit ontology (e.g.,
the city column does not have a measurement unit).

Dataset Domain # data
columns

#
auxiliary
columns

Unit names
in columns

Air Quality [Vit16] Environmental
sciences 14 2 No

Air Quality Index in Jakarta
(2010 - 2021)[Poh23]

Environmental
sciences 8 3 No

The Scientific Investigation of
Weather in Istanbul[Mis23] Meteorology 25 7 No

Historical temperature,
precipitation, humidity, and

windspeed for Austin,
Texas[Gru17]

Meteorology 16 4 Yes

Drinking water
potability[Kad21]

Environmental
sciences 8 2 No

Water Quality Testing[Ver23] Environmental
sciences 5 1 Yes

McDonald’s Nutrition[Arv23] Nutrition 11 2 Yes
Starbucks Nutrition Facts[Sin10] Nutrition 5 3 No

Manhattan NYC Building
Energy Data[Dat22] Architecture 8 3 Yes

Auto MPG [Qui93] Automotive 7 2 No

Table 8.1: First round datasets

• Second round: As in the first round, each ontology has at least one corresponding
dataset to be mapped. One air quality dataset[Gup23] is grounded to the Calidad-
aire ontology. Two meteorology datasets [Wer22] [Dey18] are grounded to the
weather ontology from TU Wien. Additionally, two water quality datasets [Zub23]
[Agr20] are grounded to the Doce water quality ontology, and two building datasets
[Red24][Ade21] are grounded to the Building Information Ontology from TU Wien.
Two automation datasets [Pod20] [EE24] are grounded to the VC ontology. Lastly,
one nutrition dataset [Nem21] is grounded to the OFFF ontology. In total, there are
136 columns, out of which 112 columns have target object entities and 87 columns
have target unit entities.

Grounding for each table is performed manually by searching for semantically equivalent
entities within the respective ontology for each column and marking which entity it needs
to map to. Many of the authors of the selected datasets [Vit16], [Kad21], [Ver23], [Sin10],
[Gup23], [Wer22], [Zub23], [Agr20], [Pod20], [EE24] provide additional information about
each column. This information offers further insight into the column names and, at times,
their unit types. For example, a column from one of the air quality datasets [Vit16] is called
"CO(GT)." The authors provided further details for this column, such as "True hourly

94

8.3. Selected Data Sets and Grounding

Dataset Domain # data
columns

#
auxiliary
columns

Unit names
in columns

Air Quality in Hyderabad:
Pollution Analysis[Gup23]

Environmental
sciences 8 2 Yes

Historical London weather data
from 1979 to 2021[Wer22] Meteorology 10 0 No

Jaipur Weather
Forecasting[Dey18] Meteorology 13 0 No

Telangana Ground Water
Quality Data[Zub23]

Environmental
sciences 16 11 No

Water Quality Measurement
Data[Agr20]

Environmental
sciences 10 1 No

Fast Food Chains - Nutrition
Values[Nem21] Nutrition 14 1 Yes

Building Dataset for predicting
the price[Red24] Architecture 6 1 No

Location and characteristics
data for buildings in the City of

Philadelphia[Ade21]
Architecture 6 6 No

CO2 Emission by
Vehicles[Pod20] Automotive 11 1 Yes

Real-world CO2 emissions from
new cars and vans, reporting

year 2022[EE24]
Automotive 18 1 Yes

Table 8.2: Second round datasets

averaged concentration CO in mg/m3 (reference analyzer)." Thus, "monoxidoDeCarbono"
is marked as the ground truth in the Calidad-aire ontology, and "milligram per cubic
metre" is marked as the ground truth in the OM2 unit ontology.

Furthermore, in some datasets [Dat22][Ver23][Arv23] [Gru17] [Gup23][Pod20] [EE24]
[Nem21] unit types are written in the column names (e.g., column "Turbidity (NTU)" has
unit type "Nephelometry Turbidity Unit"). These same unit types are used in the ground
truth assignment to the respective unit entities in the unit ontologies. If there are special
characters in column names, they are manually removed. For instance "æ" is converted
to "ae". It is also worth noting that all of the utilized datasets contain real-world data,
except for one water quality dataset [Kad21], which is synthetically created by the author.
Since we do not deal with the data itself and only read the column names, the synthetic
nature of this dataset can be disregarded.

In cases where the authors do not explicitly provide information about the measurement
units, the cell values are first evaluated to infer the correct unit (e.g., Celsius cannot
be 90◦ as a weather temperature for some province, and 100, 000 millibars of sea level
pressure is highly unlikely compared to 100, 000 pascals of sea level pressure). Unit
assignments are done as follows:

95

8. Evaluation

• Air quality datasets: Only one air quality dataset [Poh23] did not contain any unit
information. The remaining datasets [Vit16] [Gup23] are used to assign the same
units to the same objects.

• Water quality datasets: Two datasets [Zub23][Agr20] did not contain any unit infor-
mation. The remaining datasets [Kad21] [Ver23] are used to assign the same units to
the same objects. Additionally in one dataset [Agr20], the unit "milligram per litre"
is assigned to "BOD" (biological oxygen demand), and the unit "colony forming unit
per millilitre" is assigned to "TOTAL_COLIFORM" and "FECAL_COLIFORM".

• Automotive datasets: One dataset [Qui93] did not contain any unit information.
Furthermore, it contains an "mpg" column (miles per gallon). This indicates that
the units in this dataset are in the imperial system. The remaining vehicle datasets
[Pod20] [EE24] are used to assign the imperial system equivalents of the same units
to the same objects.

• Building datasets: Two datasets [Red24] [Ade21] did not contain the unit informa-
tion. For the first one [Red24], "square metre" unit assigned to the "Area" column,
"metre" assigned to the "Height" column, and "Year" assigned to the "Age" column.
The second one [Ade21] was coming from Philadelphia, indicating the units should be
in the imperial system. "Foot" unit is assigned to the columns "BASE_ELEVATION",
"APPROX_HGT", "MAX_HGT" and "Shape__Length". "Square Foot" unit is
assigned to the "Shape__Area".

• Meteorology datasets: Two datasets [Mis23][Dey18] did not contain any unit informa-
tion. The remaining datasets [Gru17][Wer22] are used to assign the metric system
equivalents of the same units to the same objects. In one weather dataset [Mis23]
"Kilowatt hour per square metre" unit is assigned to the column "solarenergy".

Lastly, the "okta" unit which is used to describe the amount of cloud cover, and the
"miles per gallon" unit do not exist in our utilized unit ontologies.

8.4 Selected Approaches
Various similarity calculations and influence techniques are selected for the evaluation of
object and unit suggestions. Approaches for the initial matching focus on calculating
the similarity scores between schema columns and entities. The similarity calculations
vary by the underlying similarity metric, text embedding models (emb), and encoding
methods (enc). The tested similarity metrics are as follows:

• Edit distance: Also known as Levenshtein distance, measures the number of edits
needed to transform one string into another. An N-gram approach is also utilized,
which splits the string into n-sized segments and calculates the number of edits
within these segments.

96

8.4. Selected Approaches

• Jaro-winkler :Calculates similarity based on the formula (m

|s1| + m

|s2| + m − t

m
) ∗ 1

3,
where m is the total number of matching characters, s1 and s2 are the lengths of
the strings, and t is the number of transpositions.

• Jaccard index: Also known as Intersection-Over-Union, it calculates similarity by
dividing the number of intersecting characters by the total number of characters,
regardless of their order.

• Longest common subsequence: Finds the longest common subsequence between
two strings and divides its length by the geometric mean of the lengths of the two
strings.

• Cosine similarity: Measures the cosine of the angle between two text embedding
vectors. Further information can be found in the Embedding Models section 2.6.

Edit distance and Jaro-Winkler are edit-based similarity metrics that focus on individual
characters. In contrast, the Jaccard index treats the entire word as a token and calculates
similarity accordingly. The longest common subsequence captures sequences of characters
between two words. As discussed in the Related Work Chapter 2, these similarity metrics
have limitations because column and object names might be synonyms or hyponyms.
Additionally, they cannot calculate the similarity of unit entities. External knowledge
thesauri can help mitigate this issue to some extent, but finding or creating a thesaurus
for each scientific domain is a challenging task. Therefore, cosine similarity combined
with text embedding models is also utilized in the evaluation. We primarily focus on two
state-of-the-art text embedding models. The first is the BGE M3-Embedding [CXZ+24]
(see Section 2.6). It has been chosen because of its performance in MTEB [MTMR22]
Semantic Textual Similarity benchmark with respect to its memory usage. It uses a
multi-lingual subword tokenizer XLM-RoBERTa [CKG+20]. The second is nasa-smd-
ibm-st-v2 [NAS24], which is trained by the datasets from the NASA Science Mission
Directorate. These datasets contain data from various scientific research in areas such as
the biological sciences, physical sciences, earth science, and applied sciences. It uses an
English subword tokenizer RoBERTa [LOG+19].

Furthermore, two encoding methods (enc) are evaluated. The first method involves
converting the column or entity names into the string and then using the embedding
model to create embeddings. The second method appends the "unit" keyword at the end
of each unit entity name, inspired by prompt engineering.

For influencing, three different techniques are evaluated. The first two are described in
the User Interactions Chapter 6 (namely Direct and Indirect Influence), which involves
averaging the embeddings of the column and the selected object entity and then calculating
the similarity. The third technique is a variation of schema reuse (see Section 2.5). In
our variation, when the user selects the correct object entity, instead of averaging column
name and object entity label name embeddings (Direct Influencing), we execute two
separate similarity calculations: the first between column names and unit entity labels,

97

8. Evaluation

and the second between selected object entities label names and unit entity label names.
Finally, for each unit, the highest similarity score from the column-unit or selected
object-unit similarity score is used as the final similarity score.

8.5 Results

Two evaluation rounds are conducted with different datasets. The first evaluation round
covers all of the previously mentioned approaches. Datasets in the first round are used as
validation sets to explore these different approaches and select the best-performing one
as a default for object and unit suggestions. The second evaluation round covers only
the best-performing approaches. Hence datasets in the second round are used as test
sets to evaluate the performance of our systems’ final form.

Five evaluation criteria are based on the suggestions through entity-level relevance lists.
When the ground truth entities fall within the top 10% of the respective column’s
entity-relevance list, they are marked as covered. Since our system currently utilizes
a total of 1, 932 object entities and 3, 811 unit entities, the ground truth must have as
high similarity score as to be within the top 193 object entities or 381 unit entities.
Furthermore, if the ground truth of a column has the highest similarity score in the
respective entity-level relevance list, it is marked as 1st. Otherwise, the ground truth can
be ranked between 1st and 5%, or between 5% and 10%. Additionally, MRR evaluation
metric is calculated to showcase the overall quality of our entity suggestion ranking
system. Note that the MRR is highly dependent on the number of first-placing entities
however within our front-end users have the option to search keywords which means the
importance of entities that reside within the first 10% is not well reflected with the MRR
scores. Our measurements use micro-averaging, which gives equal weight to each column,
rather than macro-averaging, which gives equal weight to each dataset. The rationale
behind this approach is that, with macro-averaging, datasets with fewer columns would
end up giving more weight to each column compared to datasets with more columns.
Micro-averaging, on the other hand, eliminates this imbalance and offers a more precise
evaluation of our system’s overall performance. However, results from the macro average
are still shown to provide further information.

Another evaluation criteria is related to the ontology-level relevance lists which examine
the total number of correct ontology suggestions. Lastly, the final evaluation criteria is
for measuring the performance of our front-end which examines the required minimum
number of user clicks for selecting the correct entities. These two evaluation criteria are
treated separately due to the nature of our front-end. When a (ground) correct ontology
is selected, the highest-scoring entities within that ontology are likely to be (ground)
correct. Since our front-end automatically selects the highest-scoring entities, the number
of clicks will correspondingly decrease.

98

8.5. Results

8.5.1 Object Mapping Results
Object suggestions are evaluated solely by the initial matching, as indirect and direct
influencing does not affect the object relevance lists. Table 8.3 shows the entity-level
coverage results. Edit distance, Jaro-Winkler, Jaccard index, and longest common
subsequence demonstrate relatively good total coverage. These methods perform well
because some columns in our datasets have slightly different name variations, allowing
these techniques to achieve relatively good results. However, certain column names, such
as "T" (which corresponds to "Temperature"), cannot be accurately matched using these
techniques. Conversely, cosine similarity with text embedding models achieves much
higher scores. The nasa-smd-ibm-st-v2 model [NAS24] is the best-performing approach
for total coverage, achieving a score of 91.7.

Our goal is to achieve the highest total coverage possible as well as achieve high coverage
in the top-ranked results to enable full automation which significantly impacts the MRR
score. The embedding model from NASA achieves the highest total coverage, but 5.6% of
the entities have similarity scores between 5% and 10%. This indicates that the similarity
predictions provide relatively lower precision.

In contrast, the BGE M3-Embedding model [CXZ+24] performs differently. It has the
highest correct entity coverage in the top rank, with 43.5% of the entities being correctly
identified which is also reflected in the total MRR score as 0.5259 being the highest
among the rest of the approaches. It also has the second-highest total coverage at 89.8%,
and one of the smallest percentages of entities with similarity scores between 5% and
10%.

Approach
Total

Coverage
(%)

1st (%) 1st - 5% (%) 5% - 10%
(%) Total MRR

Edit distance n = 1 75.9 26.9 40.7 8.3 0.3441
Edit distance n = 2 74.1 27.8 45.4 0.9 0.3776

Jaro–winkler 67.6 26.9 34.3 6.5 0.3363
Jaccard index 71.3 13.9 47.2 10.2 0.1857

Longest common
subsequence 70.4 21.3 42.6 6.5 0.2624

Cosine Similarity
with BGE
[CXZ+24]

89.8 43.5 45.4 0.9 0.5259

Cosine Similarity
with Nasa-SMD

[NAS24]
91.7 40.7 45.4 5.6 0.5093

Table 8.3: First round object entity coverage with micro average

Table 8.4 shows the results of the same evaluation when the macro average is being used.
The best-performing approaches are the same as the ones from micro averaging.

Table 8.5 displays the results for the average number of clicks and the number of correctly

99

8. Evaluation

Approach
Total

Coverage
(%)

1st (%) 1st - 5% (%) 5% - 10%
(%) Total MRR

Edit distance n = 1 74.9 +-/ 5.4 32.3 +/- 8.3 35.2 +/- 3 7.3 +/- 0.5 0.384 +/-
0.077

Edit distance n = 2 73.8 +/- 7 33 +/- 8.2 39.5 +/- 5.3 1.3+/- 0.1 0.407 +/-
0.075

Jaro–winkler 68 +/- 9.3 32.4 +/- 9.2 31 +/- 5.5 4.6 +/- 0.4 0.377 +/-
0.089

Jaccard index 71.1 +/- 6.4 17.4 +/- 5.7 43.4 +/- 5.3 10.4 +/- 1.2 0.223 +/-
0.071

Longest common
subsequence 69.1 +/- 6.5 26.2 +/- 7.8 37.1 +/- 6.3 5.8 +/- 0.4 0.304 +/-

0.074
Cosine Similarity

with BGE
[CXZ+24]

90.5 +/- 1.3 51.4 +/- 9.8 37.9 +/- 7.4 1.3 +/-0.1 0.593 +/-
0.077

Cosine Similarity
with Nasa-SMD

[NAS24]
92.7 +/- 0.6 43.9 +/- 4.4 42.7 +/- 1.7 6.1 +/- 0.9 0.538 +/-

0.044

Table 8.4: First round object entity coverage with macro average and standard deviation

selected ontologies from the ontology-level relevance lists. It is important to note that the
average character length of the correct object entities in the first round is 13.4 characters.

This evaluation was conducted twice: first, without removing columns that do not have
any ground object entities, and second, with such columns removed. A crucial point in
this evaluation is that when columns that do not belong to any ontology are included in
the match, they can confuse the similarity calculation process by producing misleading
entity similarities (e.g., hallucination).

Edit, token, or sequence-based approaches are, generally, not affected when misleading
columns are removed. This indicates that while they seem to be robust for hallucination
(e.g., edit distance is not affected), these approaches are unable to understand the
underlying semantic meaning necessary to detect any changes within the schema.

When users remove misleading columns, the number of correct ontologies identified by
the text embedding models increases. The nasa-smd-ibm-st-v2 model achieves a perfect
score, correctly identifying all ten ontologies. However, the BGE M3-Embedding model
generates a lower average number of clicks, which is expected given that it achieves
more first-place rankings in the relevance lists, as shown in Table 8.3. This increase in
user clicks indicates that our system can be approximately ten times faster than users
manually typing entity names.

In more detail, the nasa-smd-ibm-st-v2 model produces lower values when column-object
entity similarities are difficult to identify. These challenging similarities often occur in
air quality datasets that are targeted at the Calidad-aire ontology which means the
main problem is due to the model using the RoBERTa [LOG+19] which is trained in an

100

8.5. Results

Without removal With removal

Approach
(Micro)
Average
Clicks

(Macro)
Average
Clicks

Correct
Ontology

(Micro)
Average
Clicks

(Macro)
Average
Clicks

Correct
Ontology

Edit distance n = 1 1.98 1.998 +/-
0.639 6/10 1.98 2.044 +/-

1.024 6/10

Edit distance n = 2 2.06 2.097 +/-
1.15 6/10 2.07 2.168 +/-

1.814 6/10

Jaro–winkler 2.38 2.197 +/-
1.003 6/10 2.38 2.3 +/-

1.589 6/10

Jaccard index 2.69 2.598 +/-
0.712 5/10 2.88 2.856 +/-

1.29 4/10

Longest common
subsequence 2.35 2.328 +/-

0.781 5/10 2.44 2.49 +/-
1.341 5/10

Cosine Similarity
with BGE
[CXZ+24]

1.51 1.379 +/-
0.393 7/10 1.36 1.17 +/-

0.676 9/10

Cosine Similarity
with Nasa-SMD

[NAS24]
1.54 1.537 +/-

0.356 8/10 1.4 1.408 +/-
0.545 10/10

Table 8.5: First round user clicks and ontology coverage with micro average

English dataset. One example would be a column labeled "NMHC," meaning "Nonmethane
hydrocarbons," which is defined in the Calidad-aire ontology as "hidrocarburosNoMetano."
When these hard similarity calculations arise, the nasa-smd-ibm-st-v2 model generates
lower similarity scores. However, the model also incorrectly selects the VC ontology
for one of the air quality datasets, with the average of the highest scoring entities from
the VC ontology being 0.296, compared to 0.282 for the Calidad-aire ontology. On the
other hand, the BGE M3-Embedding model tends to produce much higher values for
column-object entity similarities. It incorrectly selects two air quality datasets, with the
average of the highest scoring entities from the VC ontology being 0.617, compared to
0.591 for the Calidad-aire ontology.

When the user does not remove misleading columns, the lower similarity scoring behavior
of the nasa-smd-ibm-st-v2 model results in more correct ontologies overall. This is because
it assigns low confidence to difficult column-entity similarities and misleading columns, so
the similarity values of these "hallucinations" are not high enough to affect the selection
of the correct ontology. Consequently, the nasa-smd-ibm-st-v2 model achieves better
overall accuracy in our evaluations. In contrast, the higher similarity scoring behavior
of the BGE M3-Embedding model exacerbates hallucination problems. This results in
the BGE M3-Embedding model identifying one less correct ontology compared to the
NASA-SMD-IBM-ST-v2 model.

In summary, the lower confidence of the nasa-smd-ibm-st-v2 model increases the system’s
resilience against misleading or harder-to-detect similarities. In contrast, the higher

101

8. Evaluation

confidence of the BGE M3-Embedding model leads to higher similarity values for correct
column-entity pairs. Consequently, the BGE M3-Embedding model is preferred for
ranking higher correct object entities, bringing us one step closer to a fully autonomous
mapping system. Another factor favoring the selection of the BGE M3-Embedding model
is its performance in unit suggestions and its use of a single embedding model for both
object and unit embeddings, which facilitates influence purposes.

In the second round, the average length of the object entities is 14.402. When the
misleading columns are not removed, BGE M3-Embedding model achieves 88.4% total
coverage (89.8 +/- 2.1 using macro) with first, top 1st - 5%, and top 5% - 10% results
as 41.1% (41.0 +/- 11.4), 45.5% (47.0 +/- 8.6), and 1.8% (1.7 +/- 0.1) respectively.
Achieved MRR score is 0.486 (0.49 +/- 0.09) which is lower than the first round. The
reason behind this difference is that the entities between top 1st - 5% are ranked lower
than before. A minimum of 1.779 (1.603 +/- 0.987) average object clicks must be made
to achieve perfect mapping. Lastly, 7/10 cases achieved correct ontology identification.
In case the misleading columns are removed, the average number of user clicks decreases
to 1.723 (1.6 +/- 0.980) and correct object ontology identification increases to 8/10 cases.

8.5.2 Unit Mapping Results
Entity-level and ontology-level unit relevance lists are initially produced by the initial
matching. However indirect or direct influencing can occur and change the results of the
initial matching. That is why unit mappings are evaluated by initial matching, initial
matching combined with indirect influencing, and initial matching combined with direct
influencing.

In the unit evaluation, unit information provided in the domain-specific object ontologies
is disregarded since units are not acting differently from different domains. For instance,
the behavior of the same object can change from scientific domain to domain but units
are universal. For this reason, only the unit entities in the unit ontologies are evaluated.
Additionally, if a column does not have any object entities, for that column, unit entities
are not evaluated.

Note that the average character length of units is 14.26 in the first round. In Table
8.6, it is evident that the BGE model [CXZ+24] achieves the best coverage results,
specifically when the encoding method is changed into adding the "unit" keyword at the
end of each unit entity. This approach attains 64.4% entity coverage and has the highest
percentage of first-place entities at 6.9%. Without using the unit keyword encoding
method, the total coverage for the BGE model [CXZ+24] drops by 2.3%, indicating that
this method provides a performance boost. Conversely, the nasa-smd-ibm-st-v2 model
[NAS24] achieves 57.5% unit entity coverage. Meanwhile, the edit distance method has
the lowest total coverage at 31%.

In terms of the MRR score, the BGE model [CXZ+24] with the unit encoding method
achieves the highest score among all tested approaches. However, as previously mentioned,
a higher MRR score does not necessarily indicate a better suggestion system. The nasa-

102

8.5. Results

Approach
Total

Coverage
(%)

1st(%) 1st-
5%(%)

5%-
10%(%)

Average
user

clicks

Total
MRR

Edit distance
n = 2 31 6.9 16.1 8 5.77 0.0839

Nasa-SMD
[NAS24] 57.5 1.1 50.6 5.7 6.23 0.0615

BGE
[CXZ+24] 62.1 5.7 41.4 14.9 5.781 0.1049

BGE
[CXZ+24] +
unit keyword

64.4 6.9 47.1 10.3 5.745 0.1164

Table 8.6: First round unit entity mapping results by approaches.

smd-ibm-st-v2 model [NAS24] has a lower MRR score than the edit distance model, but
its overall coverage is significantly better.

The reason edit distance has a higher MRR score is that it achieves one of the highest
percentages of first-ranking entities. This is because some column names are directly or
partially named as unit types (e.g., calories, year built, etc.). Since our text embedding
models use subwords in the tokenization, they do not compare the strings as a whole
like text distance. Thus the text distance tends to perform better in such exact string
matches.

For the average user clicks, the winner is the same but the situation is rather different.
BGE model [CXZ+24] with unit keyword encoding leads with 5.745 clicks, followed by
the edit distance method with 5.77 clicks. This behavior occurs because of the nutrition
datasets [Arv23] [Sin10], where many columns use the "gram" unit. In the OM2 and
QUDT unit ontologies, there are approximately 258 unit types that start with the "gram"
keyword (e.g., "gram per centilitre"). When users search the "gram" keyword in our
UI, the BGE model [CXZ+24] tends to favor units that start with the "gram" keyword
(e.g., gram per day) rather than the "gram" unit itself, which are usually ranked between
the 1st and 10% positions. This often forces users to scroll down the drop-down menu,
requiring many clicks to select the correct unit entity (see standard deviation in the Table
8.9). Conversely, the edit distance method prioritizes shorter character lengths, causing
the "gram" entity to rank higher in the search relevance list. Excluding the nutrition
datasets, the BGE model [CXZ+24] achieves the best average minimum user clicks with
4.793, while the edit distance method achieves an average minimum of 5.819 user clicks.

Table 8.7 shows the results of the same unit evaluation when the macro average is being
used. The best-performing approaches are similar to the ones from micro averaging.
However, there is a high spike in the standard deviation of the minimum number of user
clicks. The reason behind this is due to the previously explained behavior. For instance,
in case the same nutrition datasets [Arv23] [Sin10] are removed from the evaluation,
BGE [CXZ+24] with unit keyword performs 4.843 macro average user clicks with 1.933

103

8. Evaluation

standard deviation. Meanwhile, the edit distance performs 5.818 macro average user
clicks with a 2.015 standard deviation.

Approach
Total

Coverage
(%)

1st(%) 1st-
5%(%)

5%-
10%(%)

Average
user

clicks

Total
MRR

Edit distance
n = 2 33.5 +/- 7.1 7.3 +/-

0.9
16.3 +/-

3.1
10.0 +/-

1.6
5.667 +/-

2.454
0.092 +/-

0.008
Nasa-SMD
[NAS24] 58.6 +/- 8.7 2.0 +/-

0.4
51.4 +/-

7.5
5.2 +/-

0.5
6.272 +/-

8.705
0.077 +/-

0.006
BGE

[CXZ+24] 60.2 +/- 3.8 8.6 +/-
0.9

36.8 +/-
4.5

14.9 +/-
1.4

5.984 +/-
14.75

0.118 +/-
0.01

BGE
[CXZ+24] +
unit keyword

64.9 +/- 6.7 9.2 +/-
0.9

46.0 +/-
2.7

9.7 +/-
1.7

5.791 +/-
12.236

0.13 +/-
0.012

Table 8.7: First round unit entity mapping results by approaches with macro average
and standard deviation.

In conclusion, because of the performance comparison which is shown in the Table 8.6,
cosine similarity using the BGE [CXZ+24] text embedding model with unit keyword en-
coding approach has been chosen as the default approach. However, further improvement
can be achieved with influencing mechanisms.

Table 8.8 compares each influencing method. Influencing is applied to each column.
For example, if direct influencing is being evaluated, all columns are directly influenced.
Cosine similarity using the BGE [CXZ+24] text embedding model with unit keyword
encoding is referred to as initial matching which is also presented in Table 8.8 for
comparison.

When users initiate our Indirect Influence method, both the percentage of total coverage
and the number of first-ranking unit entities decrease by 1.2% as well as a decrease
happens for the MRR. This indicates that the indirect approach reduces overall results.
On the other hand, when our direct influencing method is utilized, total coverage increases
by 3.4%, while the number of first-ranking entities decreases. Ultimately MRR continues
to decrease to 0.1047. This means that direct influencing causes certain correct entities
to move into the top 10% while pushing others back. The reason for this behavior is
that when the embeddings of column names and object labels are averaged, the encoded
information behind the vectors is also combined. This results in both new information
and information loss. For instance, in certain datasets [Dat22][Ver23][Arv23][Gru17], unit
types are specified in the column names (e.g., the column "Dissolved Oxygen (mg/L)" has
the unit type "milligram per liter"). When the evaluation occurs only in those datasets,
the initial match scores are 86.1% entity coverage with 11.1% first-ranking entities (0.1973
MRR). Indirect influencing scores 75% entity coverage with 8.3% first-ranking entities and
0.1777 MRR score due to the weighted averaging technique. However, direct influencing
has the same coverage but a significant decrease in first-ranking entities, with only
2.8% which further decreases the MRR to 0.1656. The main reason Indirect Influence

104

8.5. Results

Method
Total

Coverage
(%)

1st(%) 1st-
5%(%)

5%-
10%(%)

Average
user

clicks

Total
MRR

initial 64.4 6.9 47.1 10.3 5.745 0.1164
indirect 63.2 5.7 44.8 12.6 5.803 0.111
direct 67.8 3.4 51.7 12.6 5.774 0.1047

influence
with schema

reuse
63.2 5.7 41.4 16.1 5.81 0.1057

initial +
influence

with schema
reuse

67.8 6.9 44.8 16.1 5.774 0.1131

initial +
indirect 67.8 6.9 47.1 13.8 5.752 0.1192

initial +
direct 72.4 4.6 52.9 14.9 5.723 0.1128

Table 8.8: First round unit entity mapping results by influencing methods and case-
by-case combinations with micro average. BGE [CXZ+24] model with unit keyword
encoding method is utilized.

experiences a decrease is that some object entities with the highest similarity scores are
incorrect. As a result, when their embeddings are automatically weighted and averaged,
the similarity scores of the correct unit entities decrease.

If we examine another part of the dataset where unit types are not added to the column
names, the initial match scores show 49% entity coverage and a MRR of 0.0592. With
indirect influencing, the scores increase to 54.9% entity coverage and an MRR of 0.0639.
Direct influencing yields an even higher entity coverage of 62.7%, with a lower MRR
than indirect influencing at 0.0616, but still higher than the initial match. Notably, all
methods show the same percentage of top-ranking entities at 3.9%.

The significant impact of column names on unit mappings highlights why our front-end
is designed to make influencing methods optional. Users have the option to choose which
influencing method to use or to opt out of using any influencing methods altogether.

For the influencing method with the variation of schema reuse where the embeddings of
a column name and its selected object entity are used to calculate two similarity scores
and the highest similarity score is being used (see Section 8.4 for more information). In
the first round, it achieves the worst performance. Although it has similar total coverage
to our indirect influence, it falls short in the percentage of entities ranked between 5%
and 10% which is reflected in its MRR score. In more detail, when only the datasets
where columns contain the unit names are evaluated, the influence with schema reuse
achieves 8.3% first-ranking entities and 0.169 MRR which is once again lower than the
indirect influence. Furthermore, in the evaluation of the datasets with columns that do
not contain any unit names, this method achieves the same top-ranking entities (3.9%),

105

8. Evaluation

the same entity coverage with indirect influence (54.9%) with 0.0607 MRR which is lower
than both indirect and direct influence methods.

As previously mentioned, our front-end is designed to make influencing methods optional,
allowing for combinations of initial, indirect, and direct influencing, as well as initial
matching with schema reuse. These combinations are applied on a case-by-case basis,
and the results are also shown in Table 8.8. For instance, one nutrition dataset might use
the results of initial matching, which offers higher total coverage, while another dataset
from meteorology might use directly influenced results to achieve higher total coverage.

When initial matching and direct influencing are optimally chosen, they achieve the
best total coverage at 72.4%, with the lowest number of user clicks at 5.723. For the
optimal combination of initial matching with indirect influencing, we observe a lower
total coverage score of 67.8%, but one of the highest numbers of first-ranking entities at
6.9% and the highest MRR score.

Notably, in both combination tests, influenced results are preferred in the same eight out
of ten datasets in terms of total coverage. However, initial matching is preferred for the
other two datasets [Ver23][Arv23], which contain columns with unit names.

Finally, the combination of initial matching and schema reuse has the same percentage
of total coverage and first-placing entities as the combination of initial and indirect
influencing. However, the main issue with this approach is that the total coverage is
achieved by a higher number of entities ranked between 5% and 10%. In contrast, the
combination of initial and indirect influencing achieves total coverage with entities ranked
within the top 1% to 5%. This is evident in their MRR score difference. The combination
of Initial Matching and schema reuse achieves 0.1131 meanwhile Initial Matching and
indirect influence achieve 0.1192.

The macro average results of the same unit evaluation can be seen in Table 8.9. Best
performing methods are the same with similar results.

In conclusion, direct influencing yields the best overall results but is prone to losing some
column information therefore having a lower MRR score. On the other hand, indirect
influencing aims to balance this information loss (by weighted averaging) and produce a
better MRR but is less effective when used alone (since it automatically selects the first-
ranking object entities). Therefore, our front-end allows for a combination of influencing
mechanisms on a case-by-case basis. If a column contains essential information, such as
unit types, users can bypass the direct influence mechanism by pre-selecting the mapped
units. Additionally, our system supports influence combinations within the same dataset
(column-by-column combination). Users can select unit entities for some columns in a
dataset through initial matching, then apply indirect and direct influencing to further
discover new unit entities for the rest of the columns. In our tests, total entity coverage
is 64.4% for the initial match, with an additional 3.4% from indirect influencing and
another 8.0% from direct influencing can be discovered. This results in a total coverage of
75.8% when influencing methods are applied consecutively to each dataset. Furthermore,
the total MRR becomes 0.139 when the correctly mapped first placing entities from

106

8.5. Results

Method
Total

Coverage
(%)

1st(%) 1st-
5%(%)

5%-
10%(%)

Average
user

clicks

Total
MRR

initial 64.9 +/-
6.7

9.2 +/-
0.9

46.0 +/-
2.7

9.7 +/-
1.7

5.791 +/-
12.236

0.13 +/-
0.012

indirect 60.6 +/-
3.6

6.7 +/-
0.7

44.5 +/-
2.1

9.4 +/-
1.7

5.92 +/-
11.9

0.11 +/-
0.01

direct 64.4 +/-
3.0

5.4 +/-
0.7

47.9 +/-
3.1

11.0 +/-
1.3

5.9 +/-
12.003

0.106 +/-
0.009

influence
with schema

reuse

62.2 +/-
3.3

6.7 +/-
0.7

41.1 +/-
1.9

14.4 +/-
1.8

5.904 +/-
11.744

0.106 +/-
0.009

initial +
influence

with schema
reuse

67.4 +/-
5.6

9.2 +/-
0.9

43.8 +/-
2.3

14.4 +/-
1.8

5.803 +/-
12.22

0.127 +/-
0.011

initial +
indirect

67.4 +/-
5.6

9.2 +/-
0.9

46.3 +/-
2.4

11.9 +/-
1.8

5.803 +/-
12.081

0.133 +/-
0.011

initial +
direct

71.2 +/-
4.6

7.9 +/-
1.0

48.8 +/-
3.3

14.4 +/-
1.7

5.784 +/-
12.181

0.128 +/-
0.01

Table 8.9: First round unit entity mapping results by influencing methods and case-by-
case combinations with macro average and standard deviation. BGE [CXZ+24] model
with unit keyword encoding method is utilized.

the Initial Match are selected, and then direct influencing is applied for the rest of the
columns.

Approach
Total

Coverage
(%)

1st(%) 1st-
5%(%)

5%-
10%(%)

Average
user

clicks

Total
MRR

initial 60.9 14.9 31 14.9 6.162 0.1861
indirect 64.4 10.3 40.2 13.8 6.243 0.1455
direct 73.6 3.4 51.7 18.4 6.471 0.0882

initial +
indirect 66.7 10.3 40.3 16.1 6.243 0.1444

initial +
direct 78.2 3.4 52.9 21.8 6.493 0.0821

initial +
indirect +

direct
79.3 3.4 52.9 23 6.485 0.0866

Table 8.10: Second round unit entity mapping results by influencing method case-by-case
combinations with micro average. BGE [CXZ+24] model with unit keyword encoding
method is utilized.

Table 8.10 shows the evaluation results for testing the performance of the selected
influencing methods in the second round. Note that the average character length of unit

107

8. Evaluation

entities is 14.552. It can be seen that when initial matching, indirect influencing, or direct
influencing are optimally used for different cases, a total of 79.3% unit coverage can be
achieved. However, the highest MRR score comes from the initial match which has a
total coverage of 60.9. The reason behind this difference is the same as before; a lower
number of first-ranking entities causes lower MRR. Similarly, when direct influencing is
applied to all columns in all cases, 73.6% unit coverage can be achieved, but with a poor
MRR score.

Similarly to the first round, we have four datasets [Gup23][Pod20][EE24][Nem21] where
the unit types are included in the column names. In our influencing combination
evaluations, direct influencing is preferred in terms of total entity coverage for eight out
of ten datasets. The remaining two datasets[Gup23][Nem21] contain unit types in their
names. Furthermore, indirect influencing achieves the best total coverage in one [Gup23]
and the initial match achieves the best total coverage in the other [Nem21] dataset. This
shows that the combination of the influencing methods is crucial for achieving the best
performance. This combination heavily depends on the given information in each column.

This assumption becomes evident once again when we evaluate only the datasets with
unit types added to the column names. The same decreasing trend observed in the first
round continues: initial, indirect, and direct influence achieve total entity coverage of
92.5% (0.3901 MRR), 90% (0.3007 MRR), and 82.5% (0.1733 MRR), respectively. This
decrease is due to lost information. Furthermore, if we examine the part of the dataset
where unit types are not added to the column names, the trend reverses. Without unit
type information, the initial match starts with 34% entity coverage (0.0124 MRR), which
increases to 42.6% with indirect influence (0.0134 MRR), and further increases to 66%
with direct influence (0.0157 MRR).

Lastly, if the influencing methods are optimally applied on a column-by-column basis (e.g.,
some columns from a single dataset are affected by indirect and the other columns are
affected by direct influencing), the initial match provides 60.9% total coverage. Indirect
Influence adds 9% more, and Direct Influence adds another 19.5%. In total, our system
can achieve 89.3% coverage. Furthermore, the total MRR becomes 0.203 when the first
placing entities of the initial match are selected, and then the direct influence is applied.

The table 8.11 displays the results of macro averaging. The best approaches are the same
as before.

In conclusion, unit mappings can be generated using a text embedding model, and unit
encoding method, and further increased by our influencing methods. Our system also
provides the possible strategy of selecting the correctly mapped first-placing entities
from the Initial Match and then utilizing the Influencing methods to secure high MRR
meanwhile discovering new correct entities. The optional utilization of these influencing
methods provides performance boosts. However, users need to consider the information
embedded in column names. If the unit type is provided in the column name, initial
matching will yield better results; otherwise, influencing methods will enhance the correct
unit discovery of our system. Lastly, our front-end offers correct unit entity selection that

108

8.6. System Limitations

Approach
Total

Coverage
(%)

1st(%) 1st-
5%(%)

5%-
10%(%)

Average
user

clicks

Total
MRR

initial 62.2 +/-
11.5

14.0 +/-
6.6

33.7 +/-
6.7

14.4 +/-
2.6

6.029 +/-
17.612

0.177 +/-
0.075

indirect 65.7 +/-
9.6

8.8 +/-
2.1

43.9 +/-
8.8

13.0 +/-
2.1

6.085 +/-
17.12

0.139 +/-
0.033

direct 74.1 +/-
4.3

2.3 +/-
0.3

56.1 +/-
11.0

15.7 +/-
3.0

6.23 +/-
16.483

0.086 +/-
0.007

initial +
indirect

67.3 +/-
10.2

8.8 +/-
2.1

43.9 +/-
8.8

14.6 +/-
2.7

6.085 +/-
17.12

0.138 +/-
0.033

initial +
direct

78.6 +/-
3.4

2.3 +/-
0.3

56.9 +/-
10.6

19.4+/-
3.1

6.26 +/-
16.472

0.078 +/-
0.007

initial +
indirect +

direct

80.0 +/-
3.4

2.3 +/-
0.3

56.9 +/-
10.6

20.8 +/-
3.6

6.25 +/-
16.474

0.084 +/-
0.006

Table 8.11: Second round unit entity mapping results by influencing method case-by-case
combinations with macro average and standard deviation. BGE [CXZ+24] model with
unit keyword encoding method is utilized.

has an average of 2.2 times faster compared to manually typing out the full entity names.

8.6 System Limitations
The primary limitation of our system arises from the use of Owlready2 [Lam17] and
Python. Owlready2 converts OWL2 entities to Python classes, and if the provided
ontology includes an inheritance schema that is not permitted by Python (e.g., A is a B,
B is a C, C is an A), a "metaclass conflict" error occurs. This prevents our system from
parsing the ontology.

Another limitation is the lack of support for enumeration data types. Currently, we treat
enumeration data types of the user-provided schema as string data types, even though
the elements inside such enumerations can be satisfied with the elements of enumerations
within OWL ontologies, our system currently does not support it (e.g., enumeration
type "Multifamily Housing" [Dat22] can be satisfied with "Multifamily" enumeration
type [KIVK13]). Furthermore, in certain cases, categorical enumerations in the ontology
data types implicitly indicate a numerical data type (e.g., the float data type can be
satisfied with "GramsPerCubicCm" [KIVK13]). While these two functionalities can be
easily implemented in our system, a similarity calculation must be used for such cases
which should be determined and evaluated. This is why it has not been implemented
and will be discussed in Future Work Section 9.2.

Regarding the unit ontologies, I-ADOPT [MRS+21], discussed in the Related Work
Chapter 2, suggests the isolation of a single unit ontology to enhance functionality,
such as enabling statistical calculations. However, in our system, we use multiple unit

109

8. Evaluation

ontologies because there currently does not appear to be any single ontology that is
comprehensive enough in terms of unit completeness.

Lastly, in terms of constraint checks, our system does not support "Not" data property
declarations. For instance, if a concept has a property "Not string," our system will not
capture this behavior. However, such detection is not necessary for us because if our
system does not recognize a unit (e.g., string) in the data property deceleration, it is
implicitly marked as "not."

8.7 Similarity Calculation Limitations
Our system utilizes the BGE [CXZ+24] text embedding model with a unit keyword
encoding approach. In the Evaluation Chapter 8, the performance of object and unit
mappings is examined. Although object entity mappings achieve a good MRR score, unit
entity mappings have a lower MRR score. Furthermore, the MRR scores are inconsistent
across different entities.

This inconsistency is due to the varying rankings of entities. For instance, a well-known
entity like Celsius from Meteorology is likely to be suggested within 1st − 5%, while a
lesser-known entity like oktas is more likely to be suggested within the 5%-10% range
or not covered at all. This discrepancy is due to the dataset on which the underlying
text embedding model was trained. Therefore, training for a downstream task is a viable
solution to minimize these inconsistencies and increase the average MRR scores. However,
the training will require column-to-unit mapping datasets from different fields. This topic
will be discussed further in the Future Work Section 9.2.

Finally, users can combine our influence methods on a column-by-column basis (e.g.,
selecting unit entities for some columns in a dataset through Initial Mapping, then
applying indirect and direct influencing to discover new unit entities for the remaining
columns) to ensure a high Mean Reciprocal Rank (MRR) score meanwhile having extensive
coverage, this process is not automated. Currently, the best strategy involves manually
selecting the top-ranking entities during the Initial Mapping and then applying direct
influencing.

110

CHAPTER 9
Conclusion and Future Work

This chapter concludes the thesis by summarizing our approaches and the overall system.
Finally, potential ideas for further improving our system are presented.

9.1 Conclusion
In this work, we discuss the Schema Column to Ontology Entity Mapping System,
referred to as the SO Mapper. This system includes a user interface that operates on
top of DBRepo [wei22][WMS+21], where the back-end is built as an API for seamless
integration.

The schema column mapping is designed to meet scientific data requirements by mapping
columns to both an object and a unit entity simultaneously. By isolating unit ontologies
[MRS+21] from multiple object ontologies, it becomes possible to perform statistical
calculations across different ontologies (e.g., identifying trends influenced by temperature
across various environmental science domains).

Administrators can easily introduce new ontologies to the system or remove existing ones
without interrupting its operation. The system allows for optional use of a reasoner when
parsing newly introduced ontologies, enabling the identification of constraints or limiting
entity types. Further information about the ontology parsing configurations can be seen
in the Reading Configurations Section 4.1.

Our user interface is built on top of the DBRepo table schema creation interface. Once
a user schema is imported into DBRepo and the DBRepo analysis service predicts the
column data types, the SO Mapper utilizes the column names and the predicted data
types for each column. Then, an initial similarity calculation is performed between each
column and every entity within each ontology in the system as well as automatically
checking the satisfiability between column data types and entity data types. Further

111

9. Conclusion and Future Work

information regarding the constraint satisfiability check can be seen in Contraint Checking
Section 5.1.

The SO Mapper generates two entity-level relevance lists for each column, sorted in
descending order by similarity scores: one list for object entities and another for unit
entities. Each entry in these lists includes the English entity label (or the entity IRI if
no English label exists), the similarity score, the corresponding ontology, and the result
of constraint satisfaction between the column and the entity. Additionally, the system
provides users with ontology-level relevance lists, which include the ontology name, the
average similarity scores of the top-ranked entities, and the standard deviation of these
scores for each column. Detailed information on the relevance lists can be found in the
Relevance Lists Section 5.3.

Users can interact with our interface in various ways. For example, they can select an
ontology or an entity as correct. Selecting an ontology causes the first-ranking entities to
be automatically chosen for the columns that the user has not yet selected. Selecting
an entity marks it as a mapping between the column and the entity. A full list of user
interactions can be found in the User Interactions Chapter 6.

Administrators can configure our system to optionally remove entities with unsatisfied
constraints from similarity calculation. Additionally, they can easily customize the
similarity metrics for column-object entity and column-unit entity similarity calculations
as well as introduce new text embedding models and encoding methods.

We have also proposed a unified approach to calculate similarity between column-object
and column-unit entities using a text embedding model called BGE M3-Embedding
[CXZ+24] with cosine similarity. Additionally, we have increased the similarity calculation
performance for column-unit entities by introducing a new encoding method that simply
adds the keyword "unit" at the end of each unit entity.

Cosine similarity with the BGE M3-Embedding model outperformed all other similarity
metrics for unit suggestions across all aspects, including MRR, the average number of
user clicks required for a full column-unit entity mappings, and covering the correct
entities within the top 10%. For object suggestions, our approach also excelled in MRR
and the average number of user clicks required for a full column-unit entity mappings,
with only a slight reduction in performance for covering the correct entities within the
top 10% compared to another text embedding model.

Due to our unified approach for suggesting object and unit entities, we have been able to
propose two new methods for improving unit entity suggestions using user-provided input
as an auxiliary linguistic resource. The first method, indirect influencing, outperforms
an existing method called schema reuse in terms of MRR and the average number of
user clicks required for a fully correct match. The second method, direct influencing,
surpasses schema reuse in covering the correct entities within the top 10% and in the
average number of user clicks required for a fully correct match.

Lastly, our front-end allows the combination of initial matching with indirect and/or

112

9.2. Future Work

direct influencing on a column-by-column basis. Within the same schema, some columns
can be mapped to entities using initial matching, while indirect or direct influencing can
be applied to the remaining columns. Due to this flexibility in our interface, selecting
the first-ranking correct unit entities from the initial match and then applying direct
influencing to the rest of the columns outperforms every other approach in terms of MRR
while sharing the same amount of highest coverage of the correct entities within the top
10%.

9.2 Future Work
Both the front-end and back-end of our system can be further improved. Additionally,
the existing embedding model can be fine-tuned, and a new matching approach can be
introduced.

The minimum number of user clicks for selecting the correct entities can be further
reduced in our front-end. As explained in the Unit Suggestion Results Section 8.5.2,
the higher number of required user clicks is primarily due to the BGE model [CXZ+24]
favoring composite units over singular units (e.g., "gram per day" instead of "gram").
Since our front-end search functionality returns entities starting with the given keyword,
a user searching for a singular unit like "gram" might be presented with composite units
ranked higher than the singular unit.

To address this issue, an additional similarity metric can be implemented, such as
Levenshtein distance, to refine the results when similarity scores are close enough to a
certain threshold. This would help display the correct entities more accurately.

Our back-end can be improved by utilizing a vector database for storing text embedding
vectors, rather than storing them in HDF5 files. This would increase the maintainability
of our system in general.

Another improvement for our system would be introducing constraint satisfaction check
for enumeration data types. As addressed in the Constraint Checking Section 5.1, there
are two cases. First one is checking the constraint satisfaction between column enumerated
data type and entity enumerated data types (e.g., enumeration type "Multifamily Housing"
[Dat22] can be satisfied with "Multifamily" enumeration type [KIVK13]). This case can
be handled by utilizing a text embedding model (e.g., BGE M3-Embedding [CXZ+24])
for text similarity calculation. However there needs to be a threshold for the similarity
results to improve accuracy. Other case is checking the constraint satisfaction between
column data type (that is not a enumeration) and entity enumerated data types (e.g.,
float data type can be satisfied with "GramsPerCubicCm" [KIVK13]). For such cases, a
text embedding model should be trained to a downstream task to calculate similarity
between a text and a data type.

In terms of introducing a new matching approach, certain ontologies include entity
annotations that provide additional descriptions of the entities. To leverage this, users

113

9. Conclusion and Future Work

can provide separate descriptions for their columns. Similarity can then be calculated
between these user-provided descriptions and the entity annotations.

A more straightforward matching approach that can be introduced is a variation of
repository of structures [SE05]. When a user provides schema, it can first be matched
with previously matched schemas using similarities between their ontology-level relevance
scores. Subsequently, schema reuse can be employed, existing column-entity mappings
from the most similar previously matched schema can be suggested to the users.

Additionally, the currently utilized text embedding model [CXZ+24] provides inconsistent
similarity scores when the target entity occurs less frequently in its training dataset. For
instance, the "oktas" unit is more likely to be suggested in the lower ranks. This issue
can be resolved by fine-tuning the model for the column-object/unit similarity task. Our
system can be used to collect manually selected user mappings to form scientific column-
object or column-unit datasets for training. The use of such custom domain-specific
training datasets, which are not collected from the web, is also emphasized by OAEI as
an interesting approach [HAE+23].

Lastly, the utilized text embedding model can be fine-tuned similarly to the ontology
subsumption approach [CHG+23]. User-provided schema columns can be encoded by
combining the schema name and column name with the "[SEP]" token. Similarly, entities
can be encoded by combining entity names with the names of their descendants.

114

List of Figures

1.1 Defining the table schema in DBRepo . 3

2.1 DBRepo Services Overview [wei22] . 8
2.2 Table Schema Creation in DBRepo . 9
2.3 I-ADOPT Example [MRS+21] . 9
2.4 The timeline of units ontologies [ZLZP17] 11
2.5 Direct Mapping [JI20] . 12
2.6 LogMap [JRG11] . 13
2.7 Similarity Flooding Example [MGMR02] 14
2.8 SemTab Tasks [DCF22] . 16
2.9 General architecture [RB01] . 17
2.10 Schema Matching Approaches by Erhard Rahm [RB01] 18
2.11 Schema Reuse [RB01] . 19
2.12 Match Cardinality Examples [RB01] . 20
2.13 A Survey of Schema-Based Matching Approaches by Pavel Shvaiko [SE05]

Utilized approaches are marked with red. 21

3.1 Workflow: DBRepo Table Schema Creation Process 28
3.2 Data flow of new ontologies in SO Mapper 31
3.3 Data flow of schemas in SO Mapper Initial Mapping 33

4.1 Small portion of the Building Information [KIVK13], VC [veh21], and Calidad-
aire [KRK12] ontologies as object ontology examples 38

7.1 SO mapper front-end components . 76
7.2 SO mapper back-end components . 78
7.3 SO mapper User API call sequences . 84
7.4 New table schema definition interface . 85
7.5 Ontology level relevance list . 86
7.6 Entity level relevance list on search . 86

115

List of Tables

4.1 Portion of entities in Building Information [KIVK13] 37
4.2 Portion of entities in VC [veh21] . 37
4.3 Portion of entities in Calidad-aire [KRK12] 37

5.1 Portion of building relational schema [Red24] as example 50
5.2 Constraint Satisfaction matrix between building schema columns and building

ontology examples . 55
5.3 Example similarity scores for the Building schema and Building Information

ontology using Algorithm 5.3 and BGE M3-Embedding model [CXZ+24] . 57
5.4 Example similarity scores for the Building Schema and VC ontology using

Algorithm 5.3 and BGE M3-Embedding model [CXZ+24] 57
5.5 Example similarity scores for the Building schema and Calidad-aire ontology

using Algorithm 5.3 and BGE M3-Embedding model [CXZ+24] 57
5.6 Example Entity level relevance list for column Num_Floors 61
5.7 Ontology level relevance list of Building schema 61
5.8 Entity level relevance list on search for column Height with search term "h" 61

8.1 First round datasets . 94
8.2 Second round datasets . 95
8.3 First round object entity coverage with micro average 99
8.4 First round object entity coverage with macro average and standard deviation 100
8.5 First round user clicks and ontology coverage with micro average 101
8.6 First round unit entity mapping results by approaches. 103
8.7 First round unit entity mapping results by approaches with macro average

and standard deviation. 104
8.8 First round unit entity mapping results by influencing methods and case-

by-case combinations with micro average. BGE [CXZ+24] model with unit
keyword encoding method is utilized. 105

8.9 First round unit entity mapping results by influencing methods and case-
by-case combinations with macro average and standard deviation. BGE
[CXZ+24] model with unit keyword encoding method is utilized. 107

8.10 Second round unit entity mapping results by influencing method case-by-case
combinations with micro average. BGE [CXZ+24] model with unit keyword
encoding method is utilized. 107

117

8.11 Second round unit entity mapping results by influencing method case-by-case
combinations with macro average and standard deviation. BGE [CXZ+24]
model with unit keyword encoding method is utilized. 109

118

List of Algorithms

4.1 Entity Discovery and Extraction (discovery_extraction) 40

4.2 Extract Range . 43

4.3 Extract Equivalence . 45

5.1 Data Constraint Compatibility Check (DataConstSat) 53

5.2 Get Data Types (GetDataTypes) 54

5.3 Similarity Calculation for Embedding-based Representations (sim_calc) 56

5.4 Construct Entity level relevance list (const_ent_rl) 58

5.5 Construct Entity level relevance list on search (const_ent_rl_s) 59

5.6 Construct Ontology level relevance list (const_ont_rl) 59

6.1 Add Column . 65

6.2 Remove Column . 67

6.3 Direct Influence (DirectInfluence) 69

6.4 Indirect Influence (IndirectInfluence) 70

119

Acronyms

API Application Programming Interface. xvi, 4, 7, 16, 17, 27, 29, 63, 73–77, 80, 82–85,
111, 115

BERT Bidirectional Encoder Representations from Transformers. 24, 25, 47

BNode Blank Node. 74

CEA Cell Entity Annotation. 15, 16

CODATA Committee on Data. 11

COMA Combination Match. 23

CORS Cross Origin Resource Sharing. 74

CPA Column Property Annotation. 15, 16

CSV comma-separated values. 8, 15, 19, 30

CTA Column Type Annotation. 15–17

DAG Directed Acyclic Graph. 12, 13, 23

DBRepo Database Repository. 1–5, 7–9, 14, 15, 17–20, 22, 23, 27, 28, 30, 50, 58, 63,
71, 73, 75, 76, 85, 87, 111, 115

DRUM Digital Representation of Units of Measurement. 11

HDF5 Hierarchical Data Format version 5. 47, 74, 80, 113

HTTP Hypertext Transfer Protocol. 29, 73, 76, 82, 83

I-ADOPT InteroperAble Descriptions of Observable Property Terminolog. 9, 10, 109,
115

INK Instance Neighbouring by using Knowledge. 23

121

IP Internet Protocol. 14

IRI Internationalized Resource Identifier. 11, 12, 30, 36–41, 43–45, 47, 91, 112

JSON JavaScript Object Notation. 36, 77, 82

KB Knowledge Base. 15, 75

KG Knowledge Graph. 16

MRR Mean Reciprocal Rank. 90, 98–100, 102–110, 112, 113

MTEB Massive Text Embedding Benchmark. 25, 97

NASA National Aeronautics and Space Administration. 10

NER Named Entity Recognition. 16

NIST National Institute of Standards and Technology. 10

NLP Natural Language Processing. 22, 23

OAEI Ontology Alignment Evaluation Initiative. xv, 14, 15, 23, 114

OBO Open Biomedical Ontologies. 74

OFFF Ontology of Fast Food Facts. 92–94

OM Ontology of units of Measure. 10, 11, 29, 32, 35, 91, 92, 95, 103

OWL Web Ontology Language. 3, 10, 29, 37, 74, 77, 79, 80

PCG Pairwise Connectivity Graph. 14

QUDT Quantity Unit Dimension Type Ontology. 10, 11, 29, 32, 35, 75, 91, 92, 103

RDF Resource Description Framework. 11, 23, 39, 74

SemTab Semantic Web Challenge on Tabular Data to Knowledge Graph Matching.
15–17, 115

SO Schema-ontology. 27–31, 33, 35, 36, 46, 47, 50, 55, 58, 63–68, 71, 73–80, 82–84, 89,
92, 111, 112, 115

SOSA Sensor, Observation, Sample, and Actuator. 91

SQL Structured query language. 8

122

TSV Tab-separated values. 8, 19, 30

UCUM Unified Code for Units of Measure. 11, 91

UI User Interface. 20, 60, 103

VC Vehicle Core. 37–39, 41, 44, 46, 47, 50, 56, 57, 60, 61, 92–94, 101, 115, 117

VEO Vehicle Emissions Ontology. 92

W3C World Wide Web Consortium. 11, 91

XML Extensible Markup Language. 17

XSD XML Schema Definition. 41, 43

123

Bibliography

[ABK+07] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard
Cyganiak, and Zachary Ives. Dbpedia: A nucleus for a web of open data.
In international semantic web conference, pages 722–735. Springer, 2007.

[ABM15] Fatima Ardjani, Djelloul Bouchiha, and Mimoun Malki. Ontology-alignment
techniques: survey and analysis. International Journal of Modern Education
and Computer Science, 7(11):67, 2015.

[ABP+12] Marcelo Arenas, Alexandre Bertails, Eric Prud’hommeaux, Juan Sequeda,
et al. A direct mapping of relational data to rdf. W3C recommendation,
27:1–11, 2012.

[AC21] Roberto Avogadro and Marco Cremaschi. Mantistable v: A novel and
efficient approach to semantic table interpretation. In SemTab@ ISWC,
pages 79–91, 2021.

[ACC+22] Nora Abdelmageed, Jiaoyan Chen, Vincenzo Cutrona, Vasilis Efthymiou,
Oktie Hassanzadeh, Madelon Hulsebos, Ernesto Jiménez-Ruiz, Juan Se-
queda, and Kavitha Srinivas. Results of semtab 2022. Semantic Web
Challenge on Tabular Data to Knowledge Graph Matching, 3320, 2022.

[Ade21] Adebayo Adejare. Location and characteristics data for buildings in the
City of Philadelphia, 2021. Dataset.

[ADMR05] David Aumueller, Hong-Hai Do, Sabine Massmann, and Erhard Rahm.
Schema and ontology matching with coma++. In Proceedings of the 2005
ACM SIGMOD international conference on Management of data, pages
906–908, 2005.

[Agr20] Utcarsh Agrawal. Water Quality Measurement Data, 2020. Dataset.

[AOL+21] Muhammad "Tuan Amith, Chidinma Onye, Tracey Ledoux, Grace Xiong,
and Cui Tao. The ontology of fast food facts: conceptualization of nutritional
fast food data for consumers and semantic web applications. BMC Medical
Informatics and Decision Making, 21, 11 2021.

125

[Arv23] Joakim Arvidsson. McDonald’s Nutrition, 2023. Dataset.

[AS21] Nora Abdelmageed and Sirko Schindler. Jentab meets semtab 2021’s new
challenges. In SemTab@ ISWC, pages 42–53, 2021.

[BG14] Dan Brickley and R.V. Guha. RDF Schema 1.1 - W3C Recommendation
25 February 2014, February 2014.

[Boe18] Carl Boettiger. rdflib: A high level wrapper around the redland package for
common rdf applications, 2018.

[Cam19] Patricia Marçal Carnelli Campos. Designing a Network of Reference On-
tologies for the Integration of Water Quality Data. Master’s thesis, 2019.

[CDPRS20] Marco Cremaschi, Flavio De Paoli, Anisa Rula, and Blerina Spahiu. A fully
automated approach to a complete semantic table interpretation. Future
Generation Computer Systems, 112, 05 2020.

[CHG+23] Jiaoyan Chen, Yuan He, Yuxia Geng, Ernesto Jiménez-Ruiz, Hang Dong,
and Ian Horrocks. Contextual semantic embeddings for ontology subsump-
tion prediction. World Wide Web, 26(5):2569–2591, 2023.

[CKG+20] Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary,
Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke
Zettlemoyer, and Veselin Stoyanov. Unsupervised cross-lingual represen-
tation learning at scale. In Dan Jurafsky, Joyce Chai, Natalie Schluter,
and Joel Tetreault, editors, Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 8440–8451, Online, July
2020. Association for Computational Linguistics.

[Col13] Andrew Collette. Python and HDF5. O’Reilly, 2013.

[Cor19] Oscar Corcho. Vocabulario sobre calidad del aire, 2019.

[CXZ+24] Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and
Zheng Liu. Bge m3-embedding: Multi-lingual, multi-functionality, multi-
granularity text embeddings through self-knowledge distillation. arXiv
preprint arXiv:2402.03216, 2024.

[Dat22] NYC Open Data. Manhattan NYC Building Energy Data, 2022. Dataset.

[DCF22] Anastasia Dimou and David Chaves-Fraga. Declarative description of knowl-
edge graphs construction automation: Status & challenges. In Proceedings of
the 3rd International Workshop on Knowledge Graph Construction (KGCW
2022) co-located with 19th Extended Semantic Web Conference (ESWC
2022), volume 3141, 2022.

126

[DCLT18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

[Dey18] Rajat Dey. Jaipur Weather Forecasting, 2018. Dataset.

[DG84] William F Dowling and Jean H Gallier. Linear-time algorithms for testing
the satisfiability of propositional horn formulae. The Journal of Logic
Programming, 1(3):267–284, 1984.

[DR02] Hong-Hai Do and Erhard Rahm. Coma—a system for flexible combination
of schema matching approaches. In VLDB’02: Proceedings of the 28th
International Conference on Very Large Databases, pages 610–621. Elsevier,
2002.

[dru22] Digital representation of units of measurement. Chemistry International,
44(3):30–31, 2022.

[EE24] European Environment Agency and European Environment Agency. Real-
world co2 emissions from new cars and vans, reporting year 2022, 2024.

[EM07] Daniel Engmann and Sabine Massmann. Instance matching with coma++.
In BTW workshops, volume 7, pages 28–37, 2007.

[FAI22] FAIRsharing.org. FAIRsharing.org: QUDT; Quantities, Units, Dimensions
and Types. https://doi.org/10.25504/FAIRsharing.d3pqw7,
2022. Last Edited: May 6th, 2022, Last Accessed: April 24th, 2024.

[FAI24] FAIRsharing.org. QUDT - Quantities, Units, Dimensions and Data Types -
Units Vocabulary, 2024.

[FHK+11] Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robinson.
An overview of the hdf5 technology suite and its applications. In Proceedings
of the EDBT/ICDT 2011 workshop on array databases, pages 36–47, 2011.

[Fla23] FlagOpen. Flagembedding: Source code for the flagembedding project,
2023.

[FSG+20] Johannes Frey, Denis Streitmatter, Fabian Götz, Sebastian Hellmann, and
Natanael Arndt. Dbpedia archivo - a web-scale interface for ontology
archiving under consumer-oriented aspects. In Semantic Systems. The
Power of AI and Knowledge Graphs, volume 16 of Lecture Notes in Computer
Science. Springer, 2020.

[GHM+14] Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoilos, and Zhe Wang.
Hermit: an owl 2 reasoner. Journal of automated reasoning, 53:245–269,
2014.

127

https://doi.org/10.25504/FAIRsharing.d3pqw7

[Gri18] Miguel Grinberg. Flask web development: developing web applications with
python. " O’Reilly Media, Inc.", 2018.

[Gru17] GrubenM. Historical temperature, precipitation, humidity, and windspeed
for Austin, Texas, 2017. Dataset.

[Gup23] Manav Gupta. Air Quality in Hyderabad: Pollution Analysis, 2023. Dataset.

[GWPS09] Christine Golbreich, Evan K Wallace, and Peter F Patel-Schneider. Owl
2 web ontology language new features and rationale. W3C working draft,
W3C (June 2009) http://www. w3. org/TR/2009/WD-owl2-new-features-
20090611, 2009.

[HAE+23] Oktie Hassanzadeh, Nora Abdelmageed, Vasilis Efthymiou, Jiaoyan Chen,
Vincenzo Cutrona, Madelon Hulsebos, Ernesto Jiménez-Ruiz, Aamod Khati-
wada, Keti Korini, Benno Kruit, et al. Results of semtab 2023. In CEUR
Workshop Proceedings, volume 3557, pages 1–14, 2023.

[Hey17] Pieter Heyvaert. Ontology-based data access mapping generation using
data, schema, query, and mapping knowledge. In Proceedings of the 14th
Extended Semantic Web Conference: PhD Symposium, May 2017.

[HKN+23] Emil G Henriksen, Alan M Khorsid, Esben Nielsen, Adam M Stück, An-
dreas S Sørensen, and Olivier Pelgrin. Semtex: A hybrid approach for
semantic table interpretation, 2023.

[HKP+09] Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F Patel-Schneider,
Sebastian Rudolph, et al. Owl 2 web ontology language primer. W3C
recommendation, 27(1):123, 2009.

[HMVLB20] Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane Boyd.
spaCy: Industrial-strength Natural Language Processing in Python. 2020.

[HSSC08] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network struc-
ture, dynamics, and function using networkx. Technical report, Los Alamos
National Lab.(LANL), Los Alamos, NM (United States), 2008.

[JHC+19] Krzysztof Janowicz, Armin Haller, Simon JD Cox, Danh Le Phuoc, and
Maxime Lefrançois. Sosa: A lightweight ontology for sensors, observations,
samples, and actuators. Journal of Web Semantics, 56:1–10, 2019.

[JI20] Hee-Gook Jun and Dong-Hyuk Im. Semantics-preserving rdb2rdf data trans-
formation using hierarchical direct mapping. Applied Sciences, 10(20):7070,
2020.

[JRG11] Ernesto Jiménez-Ruiz and Bernardo Grau. Logmap: Logic-based and
scalable ontology matching. pages 273–288, 10 2011.

128

[Kad21] Aditya Kadiwal. Drinking water potability, 2021. Dataset.

[KIVK13] Mario Kofler, Felix Iglesias Vazquez, and Wolfgang Kastner. An ontology
for representation of user habits and building context in future smart homes.
In Proceedings EG-ICE 2013, pages 1–10, 2013.

[KRK12] Mario J Kofler, Christian Reinisch, and Wolfgang Kastner. An ontological
weather representation for improving energy-efficiency in interconnected
smart home systems. 2012.

[KS19] Jan Martin Keil and Sirko Schindler. Comparison and evaluation of ontolo-
gies for units of measurement. Semantic Web, 10(1):33–51, 2019.

[Lam17] Jean-Baptiste Lamy. Owlready: Ontology-oriented programming in python
with automatic classification and high level constructs for biomedical on-
tologies. Artificial intelligence in medicine, 80:11–28, 2017.

[lif17] life4. Textdistance - python library for comparing distance between two or
more sequences by many algorithms, 2017.

[LOG+19] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
Roberta: A robustly optimized bert pretraining approach, 2019.

[LWZ+22] Xinhe Li, Shuxin Wang, Wei Zhou, Gongrui Zhang, Chenghuan Jiang,
Tianyu Hong, and Peng Wang. Kgcode-tab results for semtab 2022. In
SemTab@ ISWC, pages 37–44, 2022.

[Mat19] Sahil Nakul Mathur. Automatic generation of relational to ontology mapping
correspondences. Thesis, 2019.

[Mer14] Dirk Merkel. Docker: lightweight linux containers for consistent development
and deployment. Linux journal, 2014(239):2, 2014.

[MGMR02] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity flooding:
A versatile graph matching algorithm and its application to schema matching.
In Proceedings 18th international conference on data engineering, pages
117–128. IEEE, 2002.

[Mil95] George A Miller. Wordnet: a lexical database for english. Communications
of the ACM, 38(11):39–41, 1995.

[Mis23] Ruken Missonnier. The Scientific Investigation of Weather in Istanbul, 2023.
Dataset.

[mot12] Owl 2 web ontology language. structural specification and functional-style
syntax (second edition). 2012.

129

[MRS+21] Barbara Magagna, Ilaria Rosati, Maria Stoica, Sirko Schindler, Gwenaelle
Moncoiffe, Anusuriya Devaraju, Johannes Peterseil, and Robert Huber. The
i-adopt interoperability framework for fairer data descriptions of biodiversity.
arXiv preprint arXiv:2107.06547, 2021.

[MTMR22] Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and Nils Reimers. Mteb:
Massive text embedding benchmark. arXiv preprint arXiv:2210.07316, 2022.

[NAS24] NASA-IMPACT. nasa-smd-ibm-st-v2 (revision d249d84), 2024.

[Nem21] Deniz Nemli. Fast Food Chains - Nutrition Values, 2021. Dataset.

[NJT14] Bojan Najdenov, Milos Jovanovik, and Dimitar Trajanov. Veo: an ontology
for co2 emissions from vehicles. 09 2014.

[oae] Ontology alignment evaluation initiative (oaei) 2023. https://oaei.
ontologymatching.org/2023/. Accessed on April 22, 2024.

[oxf] Semantic web challenge on tabular data to knowledge graph matching.

[PAA+20] Mina Abd Nikooie Pour, Alsayed Algergawy, Reihaneh Amini, Daniel Faria,
Irini Fundulaki, Ian Harrow, Sven Hertling, Ernesto Jiménez-Ruiz, Clement
Jonquet, Naouel Karam, et al. Results of the ontology alignment evaluation
initiative 2020. In 15th International Workshop on Ontology Matching (OM
2020), volume 2788, pages 92–138. CEUR Proceedings, 2020.

[PBKH13] Christoph Pinkel, Carsten Binnig, Evgeny Kharlamov, and Peter Haase.
Incmap: pay as you go matching of relational schemata to owl ontologies.
In OM, pages 37–48, 2013.

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. Pytorch: An imperative style, high-performance deep learning
library. Advances in neural information processing systems, 32, 2019.

[Pod20] Debajyoti Podder. CO2 Emission by Vehicles, 2020. Dataset.

[Poh23] Taufiq Pohan. Air Quality Index in Jakarta (2010 - 2021), 2023. Dataset.

[Qui93] R. Quinlan. Auto MPG. UCI Machine Learning Repository, 1993. DOI:
https://doi.org/10.24432/C5859H.

[RB01] Erhard Rahm and Philip A Bernstein. A survey of approaches to automatic
schema matching. the VLDB Journal, 10:334–350, 2001.

[Red24] R Kiran Kumar Reddy. Building Dataset for predicting the price, 2024.
Dataset.

[Reite] Nils Reimers. Sentence transformers, No date.

130

https://oaei.ontologymatching.org/2023/
https://oaei.ontologymatching.org/2023/

[RP16] Petar Ristoski and Heiko Paulheim. Rdf2vec: Rdf graph embeddings for data
mining. In The Semantic Web–ISWC 2016: 15th International Semantic
Web Conference, Kobe, Japan, October 17–21, 2016, Proceedings, Part I 15,
pages 498–514. Springer, 2016.

[RVAT13] Hajo Rijgersberg, Mark Van Assem, and Jan Top. Ontology of units of
measure and related concepts. Semantic Web, 4(1):3–13, 2013.

[SE05] Pavel Shvaiko and Jérôme Euzenat. A survey of schema-based matching
approaches. In Journal on data semantics IV, pages 146–171. Springer,
2005.

[Sin10] Utkarsh Singh. Starbucks Nutrition Facts, 2011-03-10. Dataset.

[SKB+18] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg,
Ivan Titov, and Max Welling. Modeling relational data with graph con-
volutional networks. In The semantic web: 15th international conference,
ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, proceedings 15,
pages 593–607. Springer, 2018.

[SPG+07] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and
Yarden Katz. Pellet: A practical owl-dl reasoner. Journal of Web Semantics,
5(2):51–53, 2007.

[SVW+22] Bram Steenwinckel, Gilles Vandewiele, Michael Weyns, Terencio Agozzino,
Filip De Turck, and Femke Ongenae. Ink: knowledge graph embeddings for
node classification. Data Mining and Knowledge Discovery, 36(2):620–667,
2022.

[Tay95] Barry Taylor. Guide for the use of the International System of Units (SI):
The metric system. DIANE Publishing, 1995.

[The] The HDF Group. Hierarchical Data Format, version 5.

[veh21] Vehiclecore ontology, 2021.

[Ver23] Shreyansh Verma. Water Quality Testing, 2023. Dataset.

[Vit16] Saverio Vito. Air Quality. UCI Machine Learning Repository, 2016. DOI:
https://doi.org/10.24432/C59K5F.

[VK14] Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative
knowledgebase. Communications of the ACM, 57(10):78–85, 2014.

[VR20] Guido Van Rossum. The Python Library Reference, release 3.8.2. Python
Software Foundation, 2020.

[VRD09] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. Cre-
ateSpace, Scotts Valley, CA, 2009.

131

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. Advances in neural information processing systems, 30, 2017.

[Vue24] Vue.js. Vue.js 2.0, 2024.

[WDA+16] Mark D Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle
Appleton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten,
Luiz Bonino da Silva Santos, Philip E Bourne, et al. The fair guiding
principles for scientific data management and stewardship. Scientific data,
3(1):1–9, 2016.

[wei22] DBRepo: A Semantic Digital Repository for Relational Databases. Zenodo,
June 2022.

[Wer22] Emmanuel F. Werr. Historical London weather data from 1979 to 2021,
2022. Dataset.

[WMS04] Chris Welty, Deborah L McGuinness, and Michael K Smith. Owl web
ontology language guide. W3C recommendation, W3C (February 2004)
http://www. w3. org/TR/2004/REC-owl-guide-20040210, 48, 2004.

[WMS+21] Martin Weise, Cornelia Michlits, Moritz Staudinger, Kirill Stytsenko, and
Andreas Rauber. FDA-DBRepo: A Data Preservation Repository Sup-
porting FAIR Principles, Data Versioning and Reproducible Queries, July
2021.

[ZIMS15] Lihua Zhao, Ryutaro Ichise, Seiichi Mita, and Yutaka Sasaki. An ontology-
based intelligent speed adaptation system for autonomous cars. In Semantic
Technology: 4th Joint International Conference, JIST 2014, Chiang Mai,
Thailand, November 9-11, 2014. Revised Selected Papers 4, pages 397–413.
Springer, 2015.

[ZLZP17] Xiaoming Zhang, Kai Li, Chongchong Zhao, and Dongyu Pan. A survey on
units ontologies: architecture, comparison and reuse. Program, 51(2):193–
213, 2017.

[Zub23] Sadiya Zubair. Telangana Ground Water Quality Data, 2023. Dataset.

132

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and Problem Statement
	Aim of the work
	Contribution
	Outline

	Related Work
	Database Repository
	Ontologies
	Direct Mapping
	OAEI
	Schema-based matching approaches
	Embedding Models

	System Overview
	Objectives
	Architecture & Data Flow

	Reading the inputs
	Reading configurations
	Ontology Parsing
	Embeddings

	Matching
	Constraint Checking
	Similarity Calculation
	Relevance Lists

	User Interactions
	Updating the Schema
	User Feedback
	Reload

	Implementation
	Methodologies
	Architecture
	API Requests
	Table Schema Definition Interface

	Evaluation
	Simulation Tool
	Selected Ontologies
	Selected Data Sets and Grounding
	Selected Approaches
	Results
	System Limitations
	Similarity Calculation Limitations

	Conclusion and Future Work
	Conclusion
	Future Work

	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography

