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Abstract

The Erdős-Ko-Rado theorem is a well known theorem in the field of combinatorics. It
was discovered in the 1960s [8] and from the 1970s to the 1980s many generalizations
have been proven [6]. In essence it provides an upper bound for the size of certain
intersecting subfamilies of the power set of n elements. Since sets are a very general
construct, that are used by all mathematical fields, it is no surprise that the Erdős-
Ko-Rado theorem has applications outside of the field it was discovered in. This thesis
aims to investigate its consequences in graph theory.

In the first chapter we introduce the modern version of the Erdős-Ko-Rado theo-
rem and provide a short proof, due to Gyula O. H. Katona [18]. We also refer to
Deza and Frankl [6], who gathered further generalizations. Afterwards we recap basic
definitions and theorems for graph theory. Since a big part of this work uses algebraic
graph theory, we define algebraic constructs like groups and homomorphisms and their
applications in graph theory.

The goal of the second chapter is to define Kneser graphs and provide an additional
proof for the Erdős-Ko-Rado theorem. This is done by considering independent sets
on Kneser graphs and subsequently prove that the independence number of Kneser
graphs is bounded by the same bound as the Erdős-Ko-Rado theorem. The proof how-
ever is far more involved and makes use of multiple algebraic graph theoretic concepts.

Chapter 3 is about spectral graph theory. This mathematical field studies the spec-
trum of graphs and can be described as the union of graph theory and linear algebra.
In particular we want to define eigenvalues for graphs and also characterize the spec-
trum of Kneser graphs. There is still a lot of discovery to be made in this field, however
some graph invariants can already be bound by eigenvalues.

In chapter 4 we explore a different application of the Erdős-Ko-Rado theorem, by
defining EKR graphs. These types of graphs obey a bound that can be thought of
as a generalization of the Erdős-Ko-Rado theorem for more complicated structures.
We prove the EKR property for some subfamilies of trees and show closure under
lexicographic products with complete graphs. We end on a conjecture by Holroyd and
Talbot [16] that ensures EKR properties for a big class of graphs, which still has to be
proven or disproven. We also point towards further research that managed to prove
the conjecture for certain graph classes.



Kurzfassung

Das Erdős-Ko-Rado Theorem ist ein bekannter Satz in der Kombinatorik. Es wurde
erstmals in den 1960ern entdeckt [8] und in den 1970ern bis 1980ern wurden einige Ver-
allgemeinerungen bewiesen [6]. Im wesentlichen garantiert es eine obere Schranke für
die Mächtigkeit gewisser schneidender Teilfamilien der Potenzmenge von n Elementen.
Da Mengen ein sehr allgemeines Konstrukt sind, das in praktisch allen mathematischen
Teilgebieten verwendet wird, ist es keine Überraschung, dass das Erdős-Ko-Rado Theo-
rem viele Anwendungen auch außerhalb der Mengentheorie hat. Das Ziel dieser Arbeit
ist die Auswirkungen und Anwendungen auf die Graphentheorie zu untersuchen.

Im ersten Kapitel führen wir die moderne Version des Erdős-Ko-Rado Theorems ein
und beweisen es mittels eines kurzen Beweises, von Gyula O. H. Katona [18]. Wir beru-
fen uns außerdem auf Deza and Frankl [6], die weitere Verallgemeinerungen gesammelt
haben. Danach wiederholen wir grundlegende Definitionen und Sätze der Graphentheo-
rie. Da ein großer Teil dieser Arbeit Algebraische Graphentheorie benutzt, definieren
wir außerdem algebraische Konstrukte wie Gruppen und Homomorphismen und deren
Anwendungen in der Graphentheorie.

Das Ziel des zweiten Kapitels ist Kneser Graphen zu definieren und einen zweiten Be-
weis des Erdős-Ko-Rado Theorems auszuarbeiten. Dafür betrachten wir unabhängige
Mengen in Kneser Graphen und beweisen, dass die Unabhängigkeitszahl von Kneser
Graphen durch dieselbe obere Schranke beschränkt ist, die im Erdős-Ko-Rado Theo-
rem vorkommt. Der Beweis ist allerdings signifikant aufwendiger und benutzt viele
Konzepte aus der Algebraischen Graphentheorie.

Kapitel 3 handelt von Spektraler Graphentheorie. Dieses Gebiet erforscht das Spek-
trum von Graphen und kann als die Vereinigung von Graphentheorie und linearer
Algebra gesehen werden. Wir definieren Eigenwerte von Graphen und charakterisie-
ren das Spektrum von Kneser Graphen. In diesem Gebiet gibt es noch viele For-
schungsmöglichkeiten, jedoch können einige Graphen Invarianten schon durch Eigen-
werte beschränkt werden.

In Kapitel 4 betrachten wir eine andere Anwendung des Erdős-Ko-Rado Theorems,
indem wir EKR Graphen definieren. Diese Graphen erfüllen eine Ungleichung, die als
eine Art Verallgemeinerung des Erdős-Ko-Rado Theorems für komplexere Strukturen
gesehen werden kann. Wir beweisen die EKR Eigenschaft für einige Teilfamilien von
Bäumen und zeigen Abgeschlossenheit bezüglich des lexikographischen Produkts mit
vollständigen Graphen. Wir enden mit einer Vermutung von Holroyd und Talbot [16],
die die EKR Eigenschaft für eine große Klasse an Graphen zeigen würde. Beweis oder
Widerlegung stehen noch aus. Schließlich verweisen wir auf laufende Forschung, die
diese Vermutung schon für einige Klassen von Graphen beweisen konnte.
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1 Preliminaries

This chapter is supposed to provide the foundations and necessary definitions that
are used in this thesis. We start with the Erdős-Ko-Rado theorem, followed by graph
theory and algebraic concepts like groups and homomorphisms.

The Erdős-Ko-Rado theorem provides a bound for intersecting families. Our goal
is to observe its applications in graph theory, since this field is closely related to com-
binatorial structures.

We start by stating some definitions and the modern version of the Erdős-Ko-Rado
theorem. It is assumed that the reader is familiar with basic set theory, mathematical
notation and proof concepts like induction.

1.1 The Erdős-Ko-Rado Theorem

This theorem was originally stated slightly different [8] and over time the lower bound
for n has been improved. We will prove the theorem of Erdős, Ko and Rado, for
intersecting families, using Gyula O. H. Katona’s substantially shorter proof [18]. For
l-intersecting families and other variations we will refer to [6].

We call a set S ⊆ {1, . . . , n} =: Ω with |S| = k a k-set. A family of sets S, where
every two members have non empty intersection is called an intersecting family. Such
a family S is called t-intersecting if for all Si, Sj ∈ S, with Si ̸= Sj, holds |Si∩Sj| ≥ t.
We denote the family of all k-subsets of Ω with

	
Ω
k

�
. Further we define N+ := N \ {0}.

Theorem 1.1 (Erdős-Ko-Rado). Let n, k, l ∈ N with n > 0, k ≤ n
2
and let F ⊆ 	

Ω
k

�
.

If F is intersecting, then

|F| ≤


n− 1

k − 1

�
. (1)

Proof. The proof provided by Katona uses double counting. For i ∈ Ω let Bi ⊆ Ω be
the set of numbers which are congruent to

(i− 1)k + 1, (i− 1)k + 2, . . . , ik mod n.

These sets do not need to be pairwise different. We start by proving that for any
intersecting subset Bi1 , . . . , Bid of the set described above, d ≤ k holds. We may
assume that i1 = 1 by symmetry. For every b ∈ B1 holds that b is congruent to one of
1, 2, . . . , k mod n, thus for k ≤ n/2 we see that B1 = {1, . . . , k}. Now for j > 1 we
have (j − 1)k + 1 > k. Thus B1 ∩Bj ̸= ∅ if and only if either

jk = q1n+ r1 (2)

where 0 ≤ q1 < k and 1 ≤ r1 ≤ k or

(j − 1)k + 1 = q2n+ r2 (3)

1



where 0 ≤ q2 < k and 1 ≤ r2 ≤ k holds. Equation (2) represents the intersection of
the last element of Bj with B1 and equation (3) represents the intersection of the first
element of Bj with B1.
There is at most one pair (j, r1) that satisfies equation (2) for fixed q1 and at most one
pair (j, r2) satisfying equation (3) for fixed q2. If equation (2) holds for some j with
r1 = k, then (j − 1)k + 1 = q1n + 1 and equation (3) can only be satisfied with the
same j. Lets suppose that (2) holds for some j0, with r1 < k. Then (3) holds with
q2 = q1 only if j = j0 + 1, since j0k + 1 = q1n + r1 + 1. But Bj0 ∩ Bj0+1 = ∅, since
2k ≤ n. Therefore for every q there is at most one j with B1∩Bj ̸= ∅, such that either
(2) or (3) holds. Further if q = 0, then j = 1, which proves our first statement.
Let F1, . . . , Fn! be the sequences obtained from F1 = (B1, . . . , Bn), by permuting the
elements of Ω. We denote the elements of F with Ai for i ∈ {1, . . . , |F|}. Now we
count the pairs (Fi, Aj), where Aj is contained in the sequence Fi, in two different
ways. Our first statement guarantees that a fixed Fi can contain at most k different
intersecting Aj. Therefore the amount of pairs has to be less than or equal to n!k.
On the other hand there are k!(n − k)! ways to permute a fixed Br into an Aj, since
|Br| = k, meaning that there are k possible ways to map an element of Br to Aj, while
the other (n− k) elements must not be mapped onto Aj. Thus there are nk!(n− k)!
many Fi, that contain a fixed Aj, since |Fi| = n. Further there are at exactly |F|
many Aj. Therefore we can conclude that

n!k ≥ |F|nk!(n− k)!,

which proves the stated bound of this theorem, since the above equation holds if and
only if

|F| ≤ n!k

nk!(n− k)!
=

(n− 1)!

(k − 1)!(n− k)!
=



n− 1

k − 1

�
.

A natural question would be to ask whether this bound is tight. Lets assume that
F = {F ∈ 	

Ω
k

�
: x0 ⊆ F}, meaning that every set in F has the element x0 in common.

Then any F ∈ F can consist of k − 1 other elements that can be chosen out of n− 1
elements. By construction, F is intersecting and we have

|F| =


n− 1

k − 1

�
.

On the other hand if k < n
2
, then the example above, which is called a trivial family, is

the only family that fulfills equality of the Erdős-Ko-Rado bound. This was shown by
Hilton and Miller [15], however Peter Frankl and Zoltán Füredi constructed a shorter
and easier to read proof [11].

In [6] M. Deza and P. Frankl summarize improvements and generalizations of the
EKR-theorem, which improves their bound for n. For l-intersecting families we get
the following theorem.
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Theorem 1.2 (Erdős-Ko-Rado). Let n, k, l ∈ N with 0 < l < k < n and let F ⊆ 	
Ω
k

�
.

If F is l-intersecting and n is sufficiently larger than k and l, then

|F| ≤


n− l

k − l

�
. (4)

If k < n
2
, then F = {F ∈ 	

Ω
k

�
: x0 ⊆ F} for some x0 ∈ Ω if and only if

|F| =


n− l

k − l

�
. (5)

1.2 Graphs

This section aims to introduce most definitions and corollaries needed for the field of
algebraic graph theory. This includes basic graph theory, some group theory and ho-
momorphisms on graph structures. We will introduce some well known graph classes
like trees and planar graphs and their properties.

There are many books about graph theory, however we will focus on Godsil and Royle’s
Algebraic Graph Theory [12], due to their wide cover of this topic. This introductory
chapter is based on chapter 1, 2 and 6 of [12].

A graph X consists of two sets X = (V (X), E(X)), where V (X) is any nonempty
set, called the vertex set and E(X) ⊆ V (X)× V (X) is called the edge set. We write
n = |V (X)| for the cardinality of the vertex set. If the context is clear we drop the
dependencies and simply write X = (V,E). Due to their simple structure, graphs
are widely applicable. They are used in computer science, chemistry, communication
networks and many more fields [1].
As a side note most authors denote a graph by G = (V,E) [22] [3], but this thesis
is in large parts based on Godsil and Royle’s Algebraic Graph Theory [12]. Group
theory plays a vital role in this subject and groups are usually denoted by G across
mathematics. That is why we will use the slightly uncommon notation defined above
in chapters where groups are considered.

1.2.1 Simple Graphs

We say that an edge e ∈ E connects the vertices it is made of e = (x, y) and we also
write e = xy for this edge. This edge is incident to both vertices x and y. An edge
e = (x, x) connecting a vertex to itself is called a loop. Two vertices are adjacent,
or neighboring, if there exists an edge that connects them and we will denote this
by x ∼ y. A graph is called undirected, if e = xy ∈ E implies yx ∈ E, otherwise
it is called directed. An edge in an undirected graph is also called an arc, to further
distinguish these two classes. A graph is called finite if V is finite.

Throughout this thesis, if not further mentioned, we will assume that X is a finite
simple graph, meaning that X is undirected, finite and loop-free. Sometimes it is
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useful to consider a multigraph, where E is a multiset, which allows multiple distinct
edges connecting the same two vertices.

Two graphs X1 = (V1, E1) and X2 = (V2, E2) are equal if V1 = V2 and E1 = E2.
However this kind of equality is quite restrictive, since graphs tend to be represented
very differently even if they have the same structure. Therefore we define two graphs
X1 and X2 to be isomorphic, if there exists a bijective function f : V1 → V2 such that
∀x, y ∈ V1 holds x ∼ y if and only if f(x) ∼ f(y) in V2. We consider two isomorphic
graphs to be equal, since they only differ in their vertex labels.

Figure 1: Two isomorphic graphs

As shown in Figure 1 two isomorphic graphs can also have different drawings. A
drawing of a graph is usually an embedding of the graph onto the 2D plane, where ver-
tices are represented by distinct dots or circles and edges by (not necessarily straight)
lines. Depending on the context, the vertices or edges can be labeled by their re-
spective elements. Directed graphs are drawn with arrows representing edges, with
e = (x, y) depicted by an arrow going from x to y. Note that in general you can draw
graphs on any surface, but we will only consider drawings on the plane.

Figure 2: An example of a directed graph

1.2.2 Degrees

Let X = (V,E) be a simple graph and x ∈ V , then the neighborhood of x is defined
as the set of all neighboring vertices. It is denoted by N(x). The degree or valency of
a vertex x is the number of neighboring vertices deg(x) = |N(x)|. We also write d(v)
for the degree of vertex v. Note that for directed graphs there is a distinction between
the number of incoming edges d(x)+ and the number of outgoing edges d(x)−. These
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definitions allow the formulation of what many regard the simplest graph theoretical
theorem.

Lemma 1.1 (Handshaking Lemma). Let X = (V,E) be a graph. Then�
v∈V

d(v) = 2|E|. (6)

Proof. The degree of a vertex counts the number of all incident edges for that vertex.
Every edge connects exactly 2 vertices and contributes to two degrees at a time.
Summation over all degrees therefore counts all edges twice.

A graph with at least one vertex, but no edges is called an empty graph En and a
graph with every possible edge E = V × V is called a complete graph Kn, where
n = |V |. A graph is called regular if d(xi) = d(xj) for all xi, xj ∈ V .

1.2.3 Subgraphs

Let X = (V (X), E(X)) be a graph then Y = (V (Y ), E(Y )) is a subgraph of X if
Y is a graph, V (Y ) ⊆ V (X) and E(Y ) ⊆ E(X). We also write Y ⊆ X and call
X the supergraph of Y . Subgraphs are an important concept for graphs and yield
further definitions. A subgraph Y ⊆ X is called an induced subgraph if for every
pair of vertices x1, x2 ∈ V (Y ) holds that x1x2 ∈ E(X) implies x1x2 ∈ E(Y ). Induced
subgraphs basically contain all possible edges of the supergraph. Therefore if Y ⊆ X
is an induced subgraph and V (Y ) = V (X) then Y = X.

v1

v2

v3

v4

v5

v6

Figure 3: The subgraph induced by the vertices v1, v4 and v6

Two important classes of subgraphs are cliques and independent sets. A clique is a
subgraph that is complete and an independant set is an induced subgraph that is
empty. In general a subset of vertices I ⊆ V is called independant if x, y ∈ I implies
x ̸∼ y. We write ω(X) for the size of the largest clique in a graph X. The size of
the largest independent set in X is called the independence number α(X). Especially
α(X) will remain a recurring figure throughout this thesis.
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1.2.4 Connectivity

We will now define connectivity for graphs. Let X = (V,E) be a graph, a path
x = x0, x1, x2, . . . , xr = y of length r from x to y is a sequence of r + 1 distinct
vertices, such that for all i ∈ {0, . . . , r − 1} holds that xixi+1 is an edge. This path
connects the vertices x and y. It is also possible to define such a path as r distinct
edges, such that an end-vertex of an edge, other than y, has to be the start-vertex of
the next edge. The smallest number of edges in a path from vertices x to y is called
the distance from x to y. A graph X is connected if there exists a path between any
two vertices of X. Otherwise X is a disconnected graph.

Induced subgraphs that are maximal, subject to being connected, are called connected
components of X. Every disconnected graph therefore decomposes into connected in-
duced subgraphs and can be reconstructed by their disjoint union.

A cycle is a connected graph, where every vertex has exactly two neighbors. We
write Cn for the cycle with n vertices. The smallest cycle is the complete graph K3.
Usually a cycle of a graph refers to a subgraph, where every vertex has degree two.

Figure 4: K5 with C4 as a subgraph and the cycle K3

1.2.5 Trees

A forest is a graph without cycles and a tree is a connected forest. Thus all forests
can be viewed as a union of trees. Trees are a very important graph class and they
have many well-studied properties. It is easily provable that all paths in a tree are
unique, because they have no cycles, by definition.

Lemma 1.2. Let T = (V,E) be a tree with |V | = n then |E| = n− 1.

Proof. We prove this by induction over n. Assume that the property holds for n and
we have a tree with n+ 1 vertices. Now take any edge e and remove it. Then we get
two disconnected trees each with less than or equal to n vertices, since trees do not
contain cycles. Suppose they have i and j vertices respectively and therefore i−1 and
j − 1 edges by the induction hypothesis. If we add those edges and the single edge we
deleted we get i− 1 + j − 1 + 1 = i+ j − 1 edges. Since i+ j = n+ 1, we have shown
that the tree with n+ 1 vertices has n edges.

6



We call vertices of a tree with degree one leafs and vertices with degree two internal
or inner vertices. A rooted tree is a tree with a designated vertex called the root.
Often rooted trees are drawn with the root at the top layer, its neighbors in the next
layer below and so on, until you end with the leafs. In a rooted tree the parent of a
vertex is the unique neighbor that is closer to the root vertex. All other neighbors are
the children of that vertex. The root has no parent and the leafs have no children.

A k-ary tree is a rooted tree, where each vertex has at most k children. An example
can be seen in Figure 5.

r

l1 l2

l3

l4

Figure 5: A binary tree with root r and leafs li

1.2.6 Planar Graphs

As we have already seen in Figure 1, two isomorphic graphs can always be drawn
in different ways. We want to define a planar graph as a graph that can be drawn
without crossing any of its edges. This formulation leaves some ambiguities however.
Therefore we define a function that, given a graph, maps each vertex onto a distinct
point in the plane and each edge onto a continuous non self-intersecting curve joining
its endpoints. We call this function a planar embedding if the curves corresponding
to incident edges meet only at their common vertex and all other edges do not meet.
A graph is then called planar if and only if it has a planar embedding. A plane graph
is a planar graph together with a fixed embedding.

Given a plane graph, its edges divide the plane into regions, called faces. There is
exactly one unbounded face, called the external face and all other faces are bounded.
Some examples of planar graphs we have already seen include all complete graphs Ki

with i < 5, trees and cycles. We will quickly proof this for forests.

Lemma 1.3. Let X = (V,E) be a forest, then X is planar.

Proof. First we consider that every forest can be written as a union of distinct trees.
Further we can assume that each tree can be drawn arbitrarily far away from the other

7



Figure 6: A planar and a non planar drawing of the K4

trees, meaning we only need to prove that a single tree is planar. We choose any vertex
of this tree and declare it to be a root. Now we start to draw the root on the plane
and draw all of its children in the level below with sufficiently large distance. Let the
distance between the first and the last child be one unit. For the next level, draw the
children of the children of the root, with distance 1

n
from first to last. Since there are

at most n−1 children, there are no intersections of vertices or edges. If we repeat this
process for the other levels, we obtain a planar drawing of our tree.

There is a remarkable connection between vertices, edges and faces for planar graphs,
found by Euler, which has since been proven in a number of different ways [7].

Theorem 1.3 (Euler). Let X = (V,E) be a connected, planar graph and F the set of
faces given by a planar embedding. Then

|V | − |E|+ |F | = 2. (7)

Proof. We will proof this theorem by reducing X to a tree. We start by observing
that a tree satisfies the above condition, since n− (n− 1) + 1 = 2.
Let X be a planar graph. For every cycle in X we remove one edge of this cycle and
iterate this process until X is a tree. In every step we lower the number of edges by
one and lower the number of faces by one, canceling out the effect on the equation.
Since a tree fulfills the equation, the planar graph had to fulfill it as well.

1.2.7 Matchings

A matching M in a graph X is a set of edges such that two edges do not share the
same vertex. The size of a matching is the number of elements it contains. A vertex
incident to an edge of M is covered by M . A matching that covers all vertices of X is
called a perfect matching or a 1-factor. If a graph contains a perfect matching it has
to have an even number of vertices. A maximum matching is a matching containing
the largest number of edges.

1.3 Groups

Groups are a fundamental concept in mathematics and algebraic graph theory explores
the consequences of applying group theory to graphs. We will introduce the basic def-
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initions and use them later on to gain insights into transitive graphs.

A group is a tuple (G, ⋆) of a set G coupled with a binary operation ⋆ : G × G → G
that fulfills the following axioms:

[Associativity] : ∀a, b, c ∈ G : (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c).

[Identity Element] : ∀a ∈ G ∃e ∈ G : e ⋆ a = a.

[Inverse Element] : ∀a ∈ G ∃a−1 ∈ G : a−1 ⋆ a = e.

Typical notation for the identity element is e and the inverse of an element a is
denoted by a−1. We also write f ⋆ g, or simply fg instead of ⋆(f, g), similar to how
we denote addition or multiplication. It is easy to show that the identity and inverse
elements are unique and that they are left- and right-identity or left- and right-inverse
elements respectively [14].

Let G be a group, then H is a subgroup of G if H ⊆ G and H is a group with
the same operation. The left cosets of H in G are defined as gH := {gh : h ∈ H} for
all g ∈ G. The right cosets are similarly defined as Hg := {hg : h ∈ H} for all g ∈ G.

Lemma 1.4. Any two left (or right) cosets are either disjoint or equal.

Proof. Let g1H and g2H be two left cosets. Lets assume that g1H ∩ g2H ̸= ∅. Thus
there exist h1, h2 ∈ H such that g1h1 = g2h2. After multiplying with h−1

2 we get

g1h1h
−1
2 = g2h2h

−1
2 = g2e = g2.

Since H is a group h1h
−1
2 ∈ H and we can find every element of g2H in g1h1h

−1
2 H =

g1H. The last equality holds, since if h ∈ H then h2h
−1
1 h is also in H. To prove the

other inclusion, simply switch the roles of g1 and g2. This works similarly for right
cosets.

The order of a group G is defined as its cardinality, while the order of an element
g ∈ G is the least a such that ga = e, where ga denotes the multiplication of g with
itself a times.

1.3.1 Permutation Groups

Let V be a set. Bijective functions that map V to V are called permutations. The
symmetric group of a set V is the set of all permutations, with function composition
◦ for its group operation. The symmetric group is indeed a group, since the iden-
tity function is a permutation and inverse elements of bijective functions exist and
are unique. We denote the symmetric group by Sym(V ), or Sym(n), if |V | = n. A
permutation group on V is a subgroup of Sym(V ). The image of an element v ∈ V
under a permutation g ∈ Sym(V ) is denoted by vg. Let S ⊆ V , then we define the
image of S under permutation g as Sg = {sg ∈ S : s ∈ S}.

An isomorphism of a graph to itself is called an automorphism. The set of all auto-
morphisms of X is a group called the automorphism group, denoted by Aut(X). The
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name is justified, because the identity function corresponds to the identity element of
the group, for f, g ∈ Aut(X) the composition f ◦g is in Aut(X) and since f is bijective
f−1 exists and also maps to X.

The automorphism group of a graph X is a subgroup of Sym(V (X)). Thus Aut(X)
is a permutation group and can be interpreted as the group of label permutations
of its vertices that satisfy all edge requirements. Automorphisms have the pleasant
property, that they preserve distance, meaning that an automorphism f fulfills that
the distance from x to y is the same as the distance from f(x) to f(y). This can be
seen as the image of an automorphism has to map a path to a path with the same
number of vertices, thus preserving distance.

A permutation representation of a group G is a homomorphism from G into Sym(V )
for some set V . It is also referred to as an action of G on V . We say that G acts on
V . A representation is called faithful if its kernel is the identity group {e}.

If a group G acts on a set V , then it naturally induces other actions. Let S ⊆ V
be a subset of a set V , then for any g ∈ G the translate Sg is also a subset of V . With
Sg we refer to the image of the permutation associated to g, by our group action.
This however yields an action of G on the power set 2V , since each g ∈ G determines
a permutation of the subsets of V . Also |Sg| = |S| holds, because permutations are
bijections. Therefore for any fixed k, the action of G on V also induces an action on
the k-subsets of V . In a similar manner we also get an action of G on the ordered
k-tuples of elements of V .

Let G be a permutation group on the set V , a subset S ⊆ V is called G-invariant
if for all g ∈ G and s ∈ S holds, that sg ∈ S. If S is invariant under G, then each
g ∈ G permutes the elements of S. We denote the restriction of a permutation g to S
by g ↾ S. The mapping g �→ g ↾ S is a homomorphism from G into Sym(V ) and the
image of G under this homomorphism is a permutation group on S. We denote this
image as G ↾ S.

A permutation group G on V is transitive if for every x, y ∈ V there exists g ∈ G,
such that xg = y. A G-invariant subset S of V is called an orbit of G if G ↾ S is
transitive on S. Let x ∈ V , then it is easy to check, that xG := {xg : g ∈ G} is an
orbit of G. If y ∈ xG, then yG = xG and if y /∈ xG, then yG ∩ xG = ∅, so each element
lies in a unique orbit of G. The orbits of G partition V and any G-invariant subset of
V is a union of orbits of G.

Let G be a permutation group on V . We define the stabilizer Gx of x as the set
of all permutations g ∈ G such that xg = x. Now Gx is a subgroup of G, because
the identity is in Gx and for every g, h ∈ Gx it holds that xgh = x. If x1, . . . , xr are
distinct elements of V , then we define the pointwise stabilizer of {x1, . . . , xn} as the
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group

Gx1,...,xr :=
r�

i=1

Gxi
.

If S is a subset of V , then the stabilizer GS of S is the set of all permutations g such
that Sg = S. This is sometimes called the setwise stabilizer, since we do not require
the elements to be fixed points of the permutations. If S = {x1, . . . , xn}, then Gx1,...,xr

is a subgroup of GS.

Lemma 1.5. Let G be a permutation group acting on V and let S be an orbit of G.
If x, y ∈ S then the set {g ∈ G : xg = y} is a right coset of Gx. On the other hand all
elements in a right coset of Gx map x to the same point in S.

Proof. Since G acts transitively on its orbit S, there exists a g ∈ G such that xg = y.
Suppose that there exists h ∈ G with xh = y. Then xg = xh and therefore x = xhg−1

.
Thus hg−1 is in Gx, which implies that h ∈ Gxg. We have shown that all permutations,
that map x to y have to be in the same right coset. For the other implication consider
elements hg of Gxg, for some h ∈ Gx. Since h is in Gx the image xhg equals (xh)g = xg.
Thus every element of Gxg maps x to xg.

1.4 Homomorphisms

Let X and Y be graphs. A homomorphism from X to Y is a mapping f : V (X) →
V (Y ), such that two adjacent vertices x ∼ y with x, y ∈ V (X) are mapped to adjacent
vertices f(x) ∼ f(y) in Y . Note that if x ∼ y then f(x) ̸= f(y), since f(x) ̸∼ f(x)
holds for simple graphs. IfX and Y are directed graphs, then a map f : V (X) → V (Y )
is a homomorphism if for every arc (x, y) in X, the image (f(x), f(y)) is an arc in Y .
Homomorphisms preserve structure and throughout mathematics it proved very fruit-
ful to explore them and their interactions with various objects.

A graph is called bipartite if its vertex set V can be partitioned into two parts
V = V1 ∪ V2 with V1 ∩ V2 = ∅, such that every edge e = xy has one end in V1

and the other in V2. The complete bipartite graph Km,n is a bipartite graph such that
|V1| = m, |V2| = n and all vertices of V1 are adjacent to all vertices of V2. For any
bipartite graph there exists a homomorphism to K2, since you can always map V1 onto
one vertex and V2 onto the other.

Figure 7: A bipartite graph with a homomorphism to K2
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1.4.1 Graph Colorings

Another important example of graph homomorphisms are graph colorings. A proper
coloring of a graph X is a mapping from V (X) into some finite set of colors, such that
two adjacent vertices have different colors. If X can be properly colored with a set of
k colors, then we say that X can be properly k-colored. The chromatic number of
X, denoted by χ(X), is the least value for k such that X can be properly k-colored.
As seen in Figure 7 all bipartite graphs have a chromatic number of two. Vertices
with the same image are said to be in the same color class. Every color class is an
independent set.

Lemma 1.6. The chromatic number χ(X) of a graph X is the least integer r such
that there is a homomorphism from X to Kr.

Proof. Suppose X can be properly colored with r colors. Consider a mapping f :
X → Kr that maps each color class onto a different vertex of Kr. This mapping is
a homomorphism, since the images of adjacent vertices are necessarily adjacent. Lets
now assume that there is a homomorphism from X to Kr. If y ∈ V (Y ), we define the
preimage f−1(y) of y by

f−1(y) := {x ∈ V (X) : f(x) = y}.

Because we have no loops and f is a homomorphism, f−1(y) is an independent set.
Therefore we can assign every preimage a color and we receive r distinct color classes.
Thus we get a proper r-coloring of X, which implies that χ(X) ≤ r.

A retraction is a homomorphism f from a graph X to a subgraph Y ⊆ X such that
the restriction f ↾ Y to V (Y ) is the identity map. If such a retraction from X to Y
exists, then we say that Y is a retract of X. If X has a clique of size k = χ(X), then
any k-coloring of X determines a retraction onto the clique.

When we consider graphs with loops, homomorphisms can behave very differently.
Since the loop vertex x is adjacent to itself all neighbors of x can also be mapped to it.
In this case many of the above derivations are no longer applicable. For example every
graph can be mapped to the trivial graph with one vertex x and a loop xx, as seen in
Figure 8. We will explicitly mention if we allow loops and possible repercussions that
come with this generalization.
If there exists a surjective homomorphism from a graphX to a graph Y and a surjective
homomorphism from Y to X, then it is easy to see that X is isomorphic to Y . Let f
be a homomorphism from X to Y , then the preimages f−1(y) of each vertex y ∈ V (Y )
are called the fibres of Y . The fibres of f determine a partition π of V (X), called the
kernel of f . As we already have seen if Y has no loops, then the kernel is a partition
into independent sets. For a given graph X together with a partition π of V (X) we
define a graph X/π such that the cells of the partition are the vertices and there is an
edge between two cells, if there exists an edge in X with endpoints in those cells. If
there is an edge with endpoints in the same cell, then we have a loop in X/π. There
is a natural homomorphism from X to X/π with kernel π.
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Figure 8: A homomorphism that maps every graph to the trivial graph

1.4.2 Cores

If X, Y and Z are graphs and there exist homomorphisms f from X to Y and g from
Y to Z, then the composition g ◦ f is a homomorphism from X to Z. This motivates
us to define a relation ”→” on the class of all graphs by X → Y if there exists a
homomorphism from X to Y . This relation is transitive and reflexive, because the
identity map is a homomorphism, hence X → X. It is not antisymmetric however.
Consider the example of the complete bipartite graph K3,3 and K2, then K3,3 → K2

and K2 → K3,3 holds, but K3,3 ̸= K2 and even K3,3 ̸∼= K2 . In order to obtain a partial
order we therefore have to define an equivalency on this structure. We say two graphs
X and Y are homomorphically equivalent if X → Y and Y → X. If we consider the
collection of these equivalency classes then ”→” is a partial ordering. We will now
take a closer look at properties of these equivalency classes.

A graph X is a core if any homomorphism from X to itself is a bijection, imply-
ing that any endomorphism is also an automorphism. The simplest examples of cores
are the complete graphs. A subgraph Y of X is a core of X if Y is a core and there is
a homomorphism from X to Y . We will show that every graph X has a unique core,
up to isomorphism, which we will denote by X•. If Y is a core of X and f is a homo-
morphism from X to Y , then f ↾ Y must be an automorphism of Y . Let g : Y → Y
be the inverse of this restriction, thus g ◦ f ↾ Y is the identity on Y . This implies
the existence of a retraction from X to Y , since g ◦ f : X → Y is a homomorphism
and restricted to Y the identity map. Therefore every core of X is a retract. Any
complete graph must be its own core, because there exists no homomorphism to a
proper subgraph.

Lemma 1.7. Let X and Y be cores. Then X and Y are homomorphically equivalent
if and only if they are isomorphic.

Proof. Suppose X and Y are homomorphically equivalent, with homomorphisms f :
X → Y and g : Y → X. Then f ◦ g is a homomorphism from Y to itself and therefore
an automorphism, because Y is a core. Because f ◦ g and g ◦ f are surjective, f and
g have to be surjective, which implies that X and Y are isomorphic. Conversely if X
and Y are isomorphic then they are also homomorphically equivalent.
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Lemma 1.8. Every graph X has a core, which is an induced subgraph and is unique
up to isomorphism.

Proof. Since X is finite and the identity is a homomorphism on X, the family of
subgraphs of X to which X has a homomorphism is finite and nonempty and therefore
has a minimal element with respect to inclusion. This minimal element is a core. It is
also an induced subgraph, because every core is a retract. Suppose that Y1 and Y2 are
cores of X, with the homomorphisms fi : X → Yi. Then f1 ↾ Y2 is a homomorphism
from Y2 to Y1 and f2 ↾ Y1 is a homomorphism from Y1 to Y2, because they are cores
and a restriction of a homomorphism is a homomorphism. Therefore the above lemma
implies that Y1 and Y2 are isomorphic.

The following Lemma explains when two graphs are homomorphically equivalent.

Lemma 1.9. Two graphs X and Y are homomorphically equivalent if and only if their
cores are isomorphic.

Proof. Assume that X and Y are homomorphically equivalent and f : X → Y is a
homomorphism. Then there is a sequence of homomorphisms

X• → X → Y → Y •,

which yields a homomorphism from X• → Y •. Therefore X• and Y • are homomor-
phically equivalent. Conversely if X• and Y • are homomorphically equivalent, then
we have a sequence of homomorphisms

X → X• → Y • → Y,

which yields a homomorphism form X to Y .
Hence two graphs are homomorphically equivalent if and only if their cores are. By
the previous lemma, two cores are homomorphically equivalent if and only if they are
isomorphic, which proves this lemma.

Now we can prove the claims we stated for ”→”.

Corollary 1.1. The relation ”→” is a partial order on the set of isomorphism classes
of cores.

Proof. As stated before ”→” is a transitive and reflexive relation on the set of isomor-
phism classes of graphs. Therefore it is also reflexive and transitive on isomorphism
classes of cores. By Lemma 1.5. homomorphically equivalent cores are isomorphic,
thus ”→” is antisymmetric, reflexive and transitive.

1.5 Products

If X and Y are graphs, we define their product X × Y as a graph with vertex set
V (X) × V (Y ) and (x, y) ∼ (x′, y′) if and only if x ∼ x′ and y ∼ y′. The map that
maps (x, y) to (y, x) is an isomorphism from X×Y to Y ×X, implying commutativity
of the product. Similarly for associativity, there is an isomorphism from (X × Y )×Z
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∼=

Figure 9: K2 × 2K3 is isomorphic to 2C6

to X × (Y × Z). This justifies the name of product. However if X × Y1
∼= X × Y2

it does not follow that Y1
∼= Y2. Consider for example K2 × 2K3

∼= K2 × C6
∼= 2C6:

Both products are isomorphic to 2C6, but unlike ”normal” products, their factors can
be non isomorphic.

∼=

Figure 10: K2 × C6 is also isomorphic to 2C6

Further noteworthy properties include, that for any graph X the product X ×K1 is
always the empty graph, since we do not allow loops, and the product of two connected
graphs is connected if and only if at least one of the factors is not bipartite.
For any x ∈ V (X) the set {(x, y)|y ∈ V (Y )} is always an independent set, therefore
we can define a map

pX : (x, y) �→ x, (8)

which is a homomorphism from X × Y to X. It is called the projection from X × Y
to X. Analogously for Y we can define the projection pY from X × Y to Y .

Theorem 1.4. Let X, Y and Z be graphs. If f : Z → X and g : Z → Y , then there
exists a unique homomorphism ϕ : Z → X × Y such that f = pX ◦ ϕ and g = pY ◦ ϕ.
Proof. Assume there are homomorphisms f : Z → X and g : Z → Y . We define

ϕ : z �→ (f(z), g(z)),

which is a homomorphism from Z to X×Y . Now ϕ fulfills the requirements pX ◦ϕ = f
and pY ◦ ϕ = g. But ϕ is also uniquely determined by f and g, which completes our
proof.

There are many other types of graph products, apart from the (natural) product of
two graphs, that can be defined. In chapter 4 we consider the lexicographic product
and explore its properties and utilities.
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2 Kneser Graphs

In this chapter we describe Kneser graphs and provide an alternative proof of the
Erdős-Ko-Rado theorem. We also cover a wide range of other graph classes with in-
teresting properties. This chapter is based on chapter 3,4 and 7 of [12].

In the first half we start by exploring multiple graph classes and show that Kneser
graphs are regular and transitive, among other properties. We briefly discuss the
Petersen graph, which is probably the most famous Kneser graph, due to its many
appearances as a counter example for certain conjectures. Then we define fractional
colorings and show that Kneser graphs serve a similar purpose in that setting as com-
plete graphs did for regular colorings. We also show that fractional colorings can be
related to the field of linear programming.

The goal of the second half of this chapter is to prove that the independence number
of Kneser graphs has the same bound as stated in the Erdős-Ko-Rado theorem. We
calculate the fractional chromatic number of Kneser graphs and show that the frac-
tional chromatic number is related to the independence number for vertex transitive
graphs.

2.1 J(v, k, i) Graphs

We will start by introducing a family of graphs J(v, k, i), that contains many important
graph classes. They are defined by a combinatoric construction and are therefore
closely related to the mathematical field of combinatorics.

Definition 2.1. Let v, k, i ∈ N, with i ≤ k ≤ v and let Ω be a set with |Ω| = v. We
define J(v, k, i) to be the graph with vertex set V = {S ⊂ Ω : |S| = k}, where two
subsets are adjacent if their intersection has size i.

Vertices of this graph are subsets with size k, thus J(v, k, i) has exactly
	
v
k

�
vertices.

It is also a regular graph with degree
	
k
i

�	
v−k
k−i

�
, since for every i elements in a vertex,

there are k− i out of v− k other candidates for possible vertices. Further J(v, 1, 0) is
the complete graph Kv and J(v, 1, i) with i > 1 is the empty graph Ev.

Lemma 2.1. If i ≤ k ≤ v, then J(v, k, i) ∼= J(v, v − k, v − 2k + i).

Proof. Consider a function that maps a k-subset of Ω to its complement with regards
to Ω. This function is an isomorphism between J(v, k, i) and J(v, v − k, v − 2k + i),
since

	
v
k

�
=

	
v

v−k

�
and thus sets of size k get mapped to sets of size v − k. The images

of two adjacent vertices have to be adjacent again, because they intersect in at least
v−2k elements. They also share i elements and therefore intersect in exactly v−2k+i
elements.

Due to this isomorphism wlog we can assume that 2k ≤ v, otherwise we choose the
isomorphic graph.
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Definition 2.2. Let 2k ≤ v, then we define the Johnson graphs as J(v, k, k− 1) and
the Kneser graphs as J(v, k, 0).

For the rest of this chapter Kneser graphs will be our focus.

Let g be a permutation on Ω, then g also permutes the subsets of Ω and in particular
the subsets of size k. If S ⊆ Ω and T ⊆ Ω, then

|S ∩ T | = |Sg ∩ T g|.
Thus g is an automorphism on J(v, k, i). This leads to the following lemma.

Lemma 2.2. Let v ≥ k ≥ i, then Aut(J(v, k, i)) contains a subgroup isomorphic to
Sym(v).

Proof. Since all permutations g ∈ Sym(Ω) are also automorphisms on J(v, k, i) the
lemma holds.

A question one could ask now is whether Aut(J(v, k, i)) ∼= Sym(Ω). In general this
is not the case, because Aut(J(v, k, i)) is a permutation group acting on a set of size	
v
k

�
, meaning that they do not have to be equal.

2.2 Transitive graphs

A graph X is vertex transitive, or just transitive if its automorphism group acts
transitively on V (X). As a reminder that means that for all x, y ∈ V (X) there exists
an automorphism g ∈ Aut(X) such that xg = y. This is a very strong property that
guarantees a lot of algebraic structure within a graph.

Theorem 2.1. The J(v, k, i) graphs are vertex transitive.

Proof. Let Ω be the underlying set, then all permutations of Sym(v) also permute the
subsets of Ω. There are permutations that map k-subsets to any other k-subset and
thus are valid automorphisms to prove transitivity.

Another family of transitive graphs are the k-cubes. A k-cube Qk is a graph with
vertex set equal to {0, 1}k and two binary k-tuples are adjacent if and only if they
differ in exactly one coordinate position.

Lemma 2.3. The k-cube Qk is vertex transitive.

Proof. Let v be a fixed k-tuple. The map ρv : x �→ x + v, with addition mod 2 in
every coordinate, is a permutation of the vertices of Qk. This mapping is also an
automorphism, because two k-tuples x and y differ in exactly one coordinate position
if and only if x + v and y + v differ in exactly one coordinate position. For every
v ∈ {0, 1}k we obtain an automorphism this way and they form a subgroup H of the
automorphism group Aut(Qk). Now H acts transitively on V , because for any two
x, y ∈ V the automorphism ρy−x ∈ H maps x to y, since

xρy−x = x+ y − x = y.
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(0,0,0)(0,1,0)

(0,1,1) (0,0,1)

(1,0,0)(1,1,0)

(1,1,1) (1,0,1)

Figure 11: The 3-cube Q3

Note that the group H above is not equal to the automorphism group Aut(Qk). As
we have already seen H has size 2k. Any permutation of the k coordinate positions is
an automorphism of Qk. The set of these permutations K is a subgroup of Aut(Qk),
that is isomorphic to Sym(k). Since H and K are both subgroups of Aut(Qk), their
complex product HK is also a subgroup. The size of HK is given by

|HK| = |H||K|
|H ∩K| .

Now H ∩K is the identity group. To see this consider any non trivial element of K
and any non trivial element of H. The image of (0, . . . , 0) under any permutation of
its positions is itself, while no non trivial addition can map (0, . . . , 0) to (0, . . . , 0).
Thus |H ∩K| = 1 and we get |HK| = 2kk!. Since HK is a subgroup of Aut(Qk), we
can conclude, that |Aut(Qk)| ≥ 2kk!.

Another example of a family of transitive graphs are the circulants. With Zn we
denote the additive group of integers modulo n. Let C be a subset of Zn \ {0}, then
we define a directed graph X = X(Zn, C) with vertex set Zn. Two vertices i, j are
an arc (i, j) ∈ E if and only if j − i ∈ C. The graph X(Zn, C) is called a circulant
of order n and C is called its connection set. If C is closed under additive inverses,
then (i, j) is an arc if and only if (j, i) is an arc, in essence providing an undirected
graph. That is because with c ∈ C we get −c ∈ C and therefore (i, j) ∈ C if and only
if j − i ∈ C ⇔ i− j ∈ C which implies (j, i) ∈ C.

The permutation that maps i to i + 1 is an automorphism of X. To see this suppose
that (i, j) is an arc in X. Then j − i ∈ C, but this implies that (j + 1)− (i+ 1) ∈ C.
Thus (i + 1, j + 1) is also an arc in X, proving the homomorphism property of the
permutation. If C is closed under additive inverses, then the permutation that maps i
to −i is also an automorphism. Therefore, if X is undirected, its automorphism group
has to have order at least 2n. Every cycle Cn is isomorphic to a circulant of order n,
with connection set {1,−1}. We map every vertex of Cn to {0, . . . , n− 1}, such that
i is adjacent to j if and only if j − i ≡ ±1 mod n. This is indeed an isomorphism
and we immediately get that C = {1,−1}. The complete and empty graphs are also
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Figure 12: The circulant X(Z8, {1, 2})

circulants, with C = Zn and C = ∅ respectively.

Since the above mentioned permutation, that maps i to i + 1, is an automorphism
we can map any vertex x to y by applying this automorphism a certain number of
times.

2.2.1 Cayley Graphs

Most of the graph examples we have seen so far in this chapter are also members of
a more general family of vertex transitive graphs. Let G be a group and let C be a
subset of G, that is inverse-closed and does not contain the identity. We define the
Cayley graph X(G,C) to be the graph with vertex set G and edge set

E(X(G,C)) = {gh : hg−1 ∈ C}.
If C is an arbitrary subset of G, then we can define a directed graph X(G,C) with
vertex set G and arc set {(g, h) : hg−1 ∈ C}. If C is inverse-closed and does not
contain the identity, then this graph reduces to a Cayley graph.

Theorem 2.2. The Cayley graph X(G,C) is vertex transitive.

Proof. For each g ∈ G the mapping

ρg : x �→ xg

is a permutation of the elements of G, since G is a group. This permutation is also an
automorphism on X(G,C), because

ρg(y)ρg(x)
−1 = (yg)(xg)−1 = ygg−1x−1 = yx−1.

Thus xg ∼ yg if and only if x ∼ y. The set of permutations ρg for all g ∈ G forms a
subgroup of the automorphism group Aut(X(G,C)). To show that the automorphism
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group acts transitively on G, let g, h ∈ G be arbitrary vertices. The automorphism
ρg−1h maps g to h, since ρg−1h(g) = gg−1h = h. Thus for every pair of arbitrary
vertices we have found an automorphism, that maps one to the other.

In the proof above we have shown that we only need elements of G to ensure transi-
tivity, rather than the whole automorphism group.

Corollary 2.1. Let Y = X(G,C) be a Cayley graph. Then a subgroup of Aut(Y )
isomorphic to G is transitive on Y .

The k-cube Qk is a Cayley graph for the abelian group (Z2)
k and a circulant on n

vertices is a Cayley graph for the cyclic group of order n.

2.2.2 Cores of Vertex Transitive Graphs

We will briefly gather a few short facts about cores of vertex transitive graphs.

Theorem 2.3. Let X be a vertex-transitive graph, then its core X• is also vertex-
transitive.

Proof. Suppose x ̸= y are two distinct vertices of X•. Since X is vertex-transitive,
there exists an automorphism that maps x to y. The retraction from X to X• is a
homomorphism, thus composition with this automorphism yields a homomorphism
f : X → X•. Therefore the restriction f ↾ X• is an automorphism of X•, that maps
x to y.

Theorem 2.4. Let X be a vertex-transitive graph, then |V (X•)| divides |V (X)|.
Proof. We show that for any homomorphism f from X to X• the fibres of f , which
are the preimages f−1(v), have the same size. Thus showing, that f maps the same
amount of vertices to every image proving the theorem.
Lets assume that f : X → X is a homomorphism and f(X) =: Y is a core of X. For
every automorphism g ∈ Aut(X), the translate Y g gets mapped onto Y by f . Thus
Y g has one vertex in each fibre of f . Suppose that v ∈ V (X) and let F be the fibre of
f that contains v. Because X is vertex transitive the number of automorphisms that
contain v does not depend on the actual choice of v. Lets call this number N . Now
every image Y g meets F and therefore we get

|Aut(X)| = |F |N.

Since N does not depend on F this shows that every fibre of f has the same size.

2.2.3 Edge Transitive Graphs

A graph X = (V,E) is edge transitive if its automorphism group acts transitively on
E. Meaning that for all e1, e2 ∈ E there exists an automorphism g ∈ Aut(X) such
that eg1 = e2. The image of an edge xy under an automorphism f is to be understood
as f(x)f(y) ∈ E, because the images of adjacent vertices have to be adjacent again.
Edge transitive graphs are not necessarily vertex transitive. Consider the complete
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bipartite graph Km,n where m ̸= n. This graph is not vertex transitive, because a ver-
tex with degree m can not be mapped to a vertex with degree n by an automorphism.
However it is edge transitive, since we can permute any vertex within its degree class.
There are also graphs that are vertex transitive but not edge transitive. We have
already been introduced to a class of graphs that is both vertex transitive and edge
transitive.

Lemma 2.4. The J(v, k, i) graphs are edge transitive.

Proof. As mentioned previously all automorphisms of the set Ω also define automor-
phisms on the set of edges of J(v, k, i) graphs. Let xy ∈ E and ab ∈ E be two distinct
edges of the graph. Because they are edges we know that |x ∩ y| = |a ∩ b| = i. Now
we construct a permutation on Ω by mapping all vertices in the intersection of one
edge to all vertices in the intersection of the other edge. The other k − i elements of
x get mapped to the k − i elements of a and similarly for y and b. All other elements
can be fixed points. This is indeed a permutation on Ω and thus an automorphism on
J(v, k, i), which also maps xy to ab.

We can also prove that all edge transitive graphs that are not vertex transitive are
bipartite.

Lemma 2.5. Let X be an edge transitive graph with no isolated vertices. If X is
not vertex transitive, then Aut(X) has exactly two orbits, and these two orbits are a
bipartition of X.

Proof. Suppose X is edge transitive but not vertex transitive and let xy ∈ E(X). If
w ∈ V (X), then w lies on an edge and there is an element of Aut(X) that maps this
edge onto xy. Thus any vertex of X lies in either the orbit of x under Aut(X), or
the orbit of y. Therefore Aut(X) has to have exactly two orbits. An edge that joins
two vertices in the same orbit cannot be mapped by an automorphism to an edge that
contains a vertex from the other orbit. Since X is edge transitive and every vertex lies
in an edge, there is no edge joining two vertices in the same orbit. Thus X is bipartite
and the orbits are the bipartition for it.

2.2.4 Arc Transitive Graphs

A graph is arc transitive if its automorphism group acts transitively on the set of
arcs. As a reminder an arc is an ordered pair of adjacent vertices. This is in fact a
stronger property than being vertex transitive or edge transitive, meaning that every
arc transitive graph is also vertex and edge transitive. To see this suppose that X is
an arc transitive graph with no isolated vertices. Then X has to be edge transitive,
since any undirected graph can be interpreted as a directed graph with arcs in both
directions. Let x, y ∈ V (X), we have to show that there exists an automorphism
that maps x to y. Since X has no isolated vertices x and y are both part of possibly
different edges. Due to the X being arc transitive, there is an automorphism that
maps the edge with endpoint x to the other edge with endpoint y and thus x to y.

Lemma 2.6. The J(v, k, i) graphs are arc transitive.
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Proof. Consider the vertex {1, . . . , k}. The stabilizer of this vertex contains Sym(k)×
Sym(v − k), since we can permute these k elements and the other v − k elements of
Ω. Any two k-sets meeting the vertex {1, . . . , k} in an i-set can be mapped to each
other by this group. We simply permute the k − i elements from one vertex to the
other.

2.3 Kneser Graphs

The J(v, k, 0) graphs are also known as Kneser graphs. We denote them by Kv:k and
they are the graphs consisting of k-subsets of a set Ω with |Ω| = v, where two vertices
are adjacent if they are disjoint. As we have already seen Kv:1 are the complete graphs
Kv.

The goal of this chapter is to state the Erdős-Ko-Rado theorem for Kneser graphs. We
introduce fractional colorings and use them to prove the theorem. But first we take a
closer look at a certain Kneser graph that has many interesting properties.

2.3.1 Petersen Graph

One of the most famous Kneser graphs is J(5, 2, 0), also known as the Petersen graph.
In the previous chapter we proved that all Kneser graphs are arc transitive and there-
fore edge transitive, vertex transitive and regular. Due to being a J(5, 2, 0) graph,

Figure 13: The Petersen graph J(5, 2, 0)

we know that Sym(5) acts on it and therefore we know that its automorphism group
has order at least 5! = 120. In fact it can be shown that the automorphism group
of the Petersen graph has order exactly 120 [12]. Further the Petersen graph is
distance transitive, a Moore graph and a strongly regular graph, but not a Cayley
graph [12].
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2.3.2 Fractional Colorings

Fractional Colorings are a very important concept, that will help us prove the main
theorem of this chapter. Given by their name, they are closely related to proper graph
colorings.

Let X be a graph. With I(X) we denote the set of all independent sets of X and
with I(X, i) the independent sets that contain the vertex i. A fractional coloring of
a graph X is a non negative function f : I(X) → R such that�

S∈I(X,x)

f(S) ≥ 1

holds for any vertex x. We define the weight of a fractional coloring as the sum of all
of its values and the fractional chromatic number χ∗(X) as the minimum possible
weight of a fractional coloring. A fractional coloring is called regular if for each vertex
x holds �

S∈I(X,x)

f(S) = 1.

We show now that proper colorings are also fractional colorings. If X has a proper
k-coloring, then its color classes V1, . . . , Vk are a partition of V (X). We can define a
function f such that f(Vi) = 1 and f(S) = 0 for all other independent sets S. Then
f is a fractional coloring of X with weight k and thus

χ∗(X) ≤ χ(X)

holds for any graph X.
Suppose now that we have a 01-valued fractional coloring of X with weight k. Then
the support of f consists of k independent sets V1, . . . , Vk whose union is V (X). We
can construct a proper k-coloring by coloring the vertex x with the smallest i such
that x ∈ Vi, to avoid coloring twice. Therefore the chromatic number χ(X) is the
minimum weight of a 01-valued fractional coloring.

Figure 14 shows an example of a fractional coloring f of C5, with vertex set V =
{v1, . . . , v5}. For this example we defined the support of f to be all maximal inde-
pendent sets of C5. These are exactly the sets {v1, v3}, {v1, v4}, {v2, v4}, {v2, v5} and
{v3, v5}. The value of f for these is set to 1/2. This satisfies the definition of a frac-
tional coloring and can be thought of as choosing a distinct color for every maximal
independent vertex set. Since all vertices are in exactly two of these sets, this can be
visualized by each vertex having two colors. The weight of this fractional coloring is
5/2, which is lower than the chromatic number χ(C5) = 3.

Another example to consider is the Kneser graph Kv:r. The r-sets that contain the
element l form an independent set of size

	
v−1
r−1

�
, because l has to be fixed for every

r-set. Since the vertices of Kv:r themselves consist of r elements, each vertex has to
lie in exactly r of those independent sets mentioned above, one for each element. We
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Figure 14: A fractional coloring with weight 5
2

define a function f with f(x) = 1/r for x in these independent sets and zero elsewhere.
This is a fractional coloring of Kv:r with weight�

S∈I(X,x)

f(S) =
�

S∈I(X,x)

1

r
=

v

r
.

Thus we get χ∗(Kv:r) ≤ v/r.

2.3.3 Fractional Cliques

Fractional cliques are a generalization of cliques and we foreshadow that they are dual
to fractional colorings in a way. They will prove to be very useful for us.

A fractional clique of a graph X is a non-negative real-valued function on V such that
the sum of its values on vertices of any independent set is at most one. The weight
of a fractional clique is the sum of its values. The fractional clique number ω∗ of X
is the maximum possible weight of a fractional clique. Given a clique of size k in X,
its characteristic function is a 01-valued fractional clique of weight k and therefore it
holds that

ω(X) ≤ ω∗(X).

Let α(X) be the maximum size of an independent set in X, then we define a function
g := α(X)−11, where 1 : V → R is the function that maps every vertex to 1 ∈ R.
Now g is a fractional clique, because the sum of values of vertices on any independent
set has to be less than or equal to one.

Lemma 2.7. Let X be a graph, then

ω∗(X) ≥ |V (X)|
α(X)

.
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Proof. Since we have already shown, that g defined as above is always a fractional
clique, it follows that the fractional clique number is at least�

x∈V (X)

g(v) =
1

α(X)

�
x∈V (X)

1 =
|V (X)|
α(X)

.

For vertex transitive graphs, we can determine the fractional clique number exactly.

Lemma 2.8. Let X be a vertex transitive graph, then

ω∗(X) =
|V (X)|
α(X)

.

Further α(X)−11 is a fractional clique with this weight.

Proof. Suppose g is a non zero fractional clique of X. Let γ ∈ Aut(X) be an auto-
morphism on X, then we define a function

gγ(x) := g(xγ).

Now gγ is a fractional clique, since independent sets get mapped to independent sets
by automorphisms. Further gγ has the same weight as g. We can now define a function
ĝ, that is also a fractional clique with the same weight as g by

ĝ :=
1

|Aut(X)|
�

γ∈Aut(X)

gγ.

Let x, y ∈ V be a vertices. We will show that ĝ(x) = ĝ(y). Since X is vertex transitive,
we know that there exists an ω ∈ Aut(X) such that xω = y. Because Aut(X) is a
group it follows that

gγ(x) = g(xγ) = g(xγω−1ω) = g(yγω
−1

).

Lastly we have that ω−1Aut(X) = Aut(X) and therefore both sums are equal and ĝ
is constant on the vertices of X. If we consider any constant function c1, then c1 is
a fractional clique if and only if c ≤ α(X)−1, which results in the same weight as our
bound. Thus the weight of g is equal to the weight of ĝ and cannot surpass the bound
of this lemma.

2.3.4 Existence of fractional colorings

Now we show that the fractional chromatic number and the fractional clique number
are well-defined.
Let B be the matrix with rows indexed by the vertices of X and columns indexed by
the characteristic functions of the independent sets of X. We define Bx1,f1 as 1 if x1 is
in the independent set belonging to f1 and 0 otherwise. If f is a non negative vector,
such that Bf ≥ 1, meaning that every coordinate of Bf is at least 1, then such an f
naturally defines a fractional coloring. On the other hand if g is a non negative vector,
such that gTB ≤ 1T , then g defines a fractional clique.
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Lemma 2.9. If a graph X has a fractional coloring f of weight w, then it also has a
fractional coloring f ′ with weight at most w, such that Bf ′ = 1.

Proof. Suppose f is a fractional coloring such that there exists a position j with
(Bf)j = b > 1 while (Bf)i = 1 for all i ̸= j. We want to define a new fractional
coloring, that satisfies our requirements. Let S1, . . . , St be the independent sets that
contain xj and are in the support of f . For each Si we define ai such that

ai ≤ f(Si) and
t�

i=1

ai = b− 1.

We can choose these ai and they exist, because
�t

i=1 f(Si) = b by assumption. Now
we define a function f ′ by

f ′(S) =

��
f(S)− ai, if S = Si,

f(S) + ai, if S = Si \ xj and S ̸= ∅,
f(S), else.

This function is indeed a fractional coloring since

�
S∈I(X,xj)

f ′(S) =
t�

i=1

f(Si)− ai =
t�

i=1

f(Si)− (b− 1) = 1.

If we take the sum of independent sets of other vertices, where Si is an addend then Si\
xj is also an independent set of that vertex, thus canceling out the change. Therefore
f ′ is a fractional coloring with no greater weight than f , satisfying (Bf ′)j = 1 and
(Bf ′)i = (Bf)i for all i ̸= j.
If (Bf)j > 1 for more than one j we simply repeat this construction for those positions.
This yields the proposed fractional coloring.

Theorem 2.5. Any graph X has a regular rational-valued fractional coloring with
weight χ∗(X).

Proof. We start by showing that given a fractional coloring f we can construct a
fractional coloring f ′ such that the columns in B that are in supp(f ′), the support of
f ′, are linearly independent. Further supp(f ′) ⊂ supp(f) and the weight of f ′ is not
greater than the weight of f .
Let B = (bij)

j={1,...,m}
i={1,...,n} be the matrix consisting of characteristic vectors of independent

sets of X, we use f to also denote the numerical vector representing the images of f .
Suppose the columns of supp(f) are linearly dependent and (bil)i={1,...,n} is a linear
combination of some (bij)i={1,...,n},

bl :=

�b1l
...
bnl

� =
�
j∈J

λj

�b1j
...
bnj

� .
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We want to set fl to zero and thus remove bl from supp(f). Let a be the resulting
vector of the multiplication Bf = a,���

b11 b12 · · · b1m
...

. . .
...

...
. . .

...
bn1 bn2 · · · bnm

���
�����

f1
...
fl
...
fm

����� =

���
a1
...
...
an

��� ≥

���
1
...
...
1

��� .

We have to ensure that the value of fl gets compensated by the other columns of the
linear combination of bl. If we consider a1 then we get

a1 =
�
i∈I

b1ifi =
�

i∈I\(J∪l)
b1ifi + b1lfl +

�
j∈J

b1jfj

=
�

i∈I\(J∪l)
b1ifi +

�
j∈J

λjb1jfl +
�
j∈J

b1jfj

=
�

i∈I\(J∪l)
b1ifi +

�
j∈J

b1j(λjfl + fj).

The last term shows that after setting fl to zero we can compensate by adding the
missing amount to fj. Therefore we define f ′ as

f ′(S) :=

��
f(S) + λjfl, if S = Sj and j ∈ J,

0, if S = Sl,

f(S), else.

This function is indeed a fractional coloring of X with no more weight than f and
f ′(Sl) = 0, which implies that supp(f ′) ⊂ supp(f). By iterating this procedure we can
construct a fractional coloring with linearly independent support.
In conjunction with Lemma 2.9 we can transform any fractional coloring such that
Bf ′ = 1 and supp(f ′) is linearly independent. Given a graph we can easily define
a fractional coloring. Therefore the solution space is not empty and we can always
construct solutions on the boundary Bf = 1. Further B contains at least n linearly
independent columns, since every vertex represents its own independent set. Thus if
C is a matrix constructed from n independent columns of B, we get that Cf = 1
has a unique solution. This is essentially equal to a basic feasible solution in linear
programming [2]. Thus the fractional chromatic number exists or is equal to −∞,
but the latter case cannot occur, since minimizing 1Tf , with f ≥ 0 cannot yield −∞.
Construction of a solution involves inverting C which yields rational numbers and thus
χ∗(X) is rational.

As we have already hinted at, an alternative way to obtain χ∗(X) and ω∗(X) is via lin-
ear programming. Let B be the matrix defined as before, then the fractional chromatic
number χ∗(X) is equal to the value of the linear optimization problem:

min1Tf
Bf ≥ 1
f ≥ 0.
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Further the fractional clique number ω∗(X) is the solution of the dual problem:

min gT1
gTB ≤ 1T

g ≥ 0.

Lemma 2.10. Let X be a graph, then ω∗(X) ≤ χ∗(X).

Proof. Suppose that f is a fractional coloring of X and g is a fractional clique of X.
We consider their difference

1Tf − gT1 = 1Tf − gTBf + gTBf − gT1 = (1T − gTB)f + gT (Bf − 1).

Now the term (1T − gTB) is non negative in every coordiante, since g is a fractional
clique. Similarly the term (Bf − 1) is also non negative. Scalar multiplication with a
vector that is non negative yields a number that is non negative as well. Therefore we
are adding two non negative numbers, resulting in 1Tf − gT1 ≥ 0. Finally gT1 ≤ 1Tf
for any fractional coloring f and fractional clique g implies that the solutions of the
optimization problems satisfy ω∗(X) ≤ χ∗(X).

For any fractional coloring and fractional clique, we now obtain the inequality

ω(X) ≤ ω∗(X) ≤ χ∗(X) ≤ χ(X).

Combining the above lemma with the bound we obtained previously for ω∗(X) we
conclude that for any graph X it holds that

|V (X)|
α(X)

≤ ω∗(X) ≤ χ∗(X). (9)

2.3.5 Fractional colorings of vertex transitive graphs

If X is a vertex transitive graph, it turns out that inequality (9) is actually an equality.
To prove this we first state a couple of theorems and lemmata that will help us.

Lemma 2.11. Let X be a graph, x ∈ V a fixed vertex of X and G a group that acts
transitively on V . Then there is a bijection from V to the right cosets of Gx and the
action of G on V matches with right multiplication on the corresponding coset.

Proof. Since G is transitive there exists g ∈ G such that xg = y. Then y corresponds
to Gxg by Lemma 1.5. If we consider the image yv for v ∈ G, then there exists h ∈ G
such that xh = yv and yv corresponds to Gxh. But since xh = yv if and only if
xhv−1

= y, we know that hv−1 ∈ Gxg and that is exactly the case when h ∈ Gxgv.
Therefore the action of G on V translates to right multiplication of the corresponding
right coset.

Theorem 2.6. Let X be a connected vertex transitive graph. Then X is a retract of
a Cayley graph.
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Proof. Suppose X is a connected vertex transitive graph and x ∈ V (X) is a fixed
vertex. We have to show that there exists a Cayley graph Y such that there is a
homomorphism h from Y to X and the retraction h ↾ X is the identity. We start by
defining a group that will be used to construct the Cayley graph. Let G be the group
generated by a certain set of automorphisms

G := ⟨{g ∈ Aut(X) : x ∼ xg}⟩.
Every element of G can be written as a product of elements of its generating set. Now
G acts transitively on V (X), which can be proven by induction over the length of the
longest path in X. Therefore the above Lemma guarantees that there is a bijection
from V (X) to the right cosets of Gx. As a reminder the stabilizer Gx of x is defined
as Gx := {g ∈ G : x = xg}. Let C be the set defined by

C := {g ∈ G : x ∼ xg}.
Now C can be written as a union of right cosets of Gx, since xhg = (xh)g = xg, for
h ∈ Gx and g ∈ G. Further C ∩ Gx = ∅, since x ̸∼ x and right cosets are either
disjoint or equal. If xa ∼ xb, then x ∼ xba−1

if and only if ba−1 ∈ C. Let g ∈ C and
h1, h2 ∈ Gx, then

x = xh1 ∼ xgh1 = xh2gh1 .

Therefore h2gh1 ∈ C, which implies that GxCGx ⊆ C. Since Gx contains the identity
we also get C ⊆ GxCGx and thus C = GxCGx.
We can now define the Cayley graph, that will satisfy our requirements. Let Y be the
Cayley graph X(G,C). The right cosets of Gx partition G = V (Y ) and we can write
every vertex of Y , which is an element of G, as ga for some g ∈ Gx and a ∈ G. Let
g, h ∈ Gx, then the two vertices ga, hb ∈ V (Y ) are adjacent in the Cayley graph if and
only if

hb(ga)−1 = hba−1g−1 ∈ C.

This is exactly the case if ba−1 ∈ C, since C = GxCGx. Thus adjacency in Y translates
to ba−1 ∈ C ⇔ x ∼ xba−1 ⇔ xa ∼ xb. If there exists an edge between two elements
of distinct right cosets of Gx then the subgraph induced by these two sets has to be
a complete bipartite graph. If we assume that two vertices of the same coset are
adjacent, then there exists a ∈ G for h, g ∈ Gx, such that ha(ga)−1 ∈ C which holds
if and only if aa−1 = e ∈ C, but the identity is not in C.
Now we can take a representative of every distinct right coset of Gx and consider the
subgraph Z of Y induced by this set of vertices. Due to the bijection between the
right cosets and V (X), the vertex set V (Z) is isomorphic to V (X). Let y, z ∈ X with
y ∼ z. Since G is transitive on X there exist g, h ∈ G such that y = xg ∼ xh = z,
which is the same adjacency property as in Y . Therefore Z is isomorphic to X and
the map sending vertices of Y , belonging to a certain right coset, to vertices of X that
correspond to this set is a homomorphism.
All that is left to do is to show that X is a retract of Y . Let f : Y → X be the
homomorphism decribed above, where f ′ := f ↾ X is an automorphism. Consider the
function f ′−1 ◦ f : Y → X, which maps x ∈ X to f ′−1 ◦ f(x) = x. This function is a
homomorphism and a witness that X is a retract of Y .
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Corollary 2.2. Let X be a vertex transitive graph and Y = X(G,C) the Cayley graph
as defined in the theorem. Then

|V (X)|
α(X)

=
|V (Y )|
α(Y )

. (10)

Proof. From the retraction that maps Y to X we can see that Y can be constructed by
replacing each vertex in X with a right coset of Gx, such that all new vertices within
a set are independent and if there exists an edge between two distinct right cosets,
they form a complete bipartite subgraph. Therefore the largest independent set of X
generates |Gx| many independent sets in Y . Thus we get

|V (Y )|
α(Y )

=
|V (X)||Gx|
α(X)|Gx| =

|V (X)|
α(X)

.

Let X and Y be graphs, φ : X → Y be a homomorphism and f a fractional coloring
of Y . We define the lift f̂ : I(X) → R of f as the function

f̂(S) :=
�

T :φ−1(T )=S

f(T ).

Lemma 2.12. Let X and Y be graphs, φ : X → Y be a homomorphism and f a
fractional coloring of Y . Then the lift f̂ of f is a fractional coloring of X with the
same weight as f . The support of f̂ consists of the preimages of the independent sets
in the support of f .

Proof. Let T ∈ I(Y ), then the preimage φ−1(T ) is an independent set in X, since φ is
a homomorphism and thus maps adjacent vertices to adjacent vertices. The support
of f : I(X) → R consists of independent sets where f is not zero. The preimages of
these sets are exactly the independent sets in the support of f̂ . Let u ∈ V (X), then�

T∈I(X,u)

f̂(T ) =
�

S:u∈φ−1(S)

f(S) =
�

S∈I(Y,φ(u))
f(S) ≥ 1.

Thus f̂ is indeed a fractional coloring of X. It remains to show that f̂ has the same
weight as f . Let T, U ∈ I(Y ) and suppose that

T ∩ φ(X) = U ∩ φ(X).

Then the preimage φ−1(T ) is equal to the preimage φ−1(U), since the preimage of
the image φ(X) is X. Therefore two independent sets have the same preimage S if
they have the same intersection with φ(X). In the calculation of f̂(S) both S and T
appear and thus every independent set in Y is part of the sum. The sum of f̂ over all
independent sets in X is equal to the sum of f over all independent sets in Y , which
implies that f and f̂ have the same weight.
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Since every fractional coloring of Y allows us to construct the lift, given a homomor-
phism, we get the following corollary.

Corollary 2.3. Let X and Y be graphs and φ : X → Y a homomorphism. Then

χ∗(X) ≤ χ∗(Y ).

Now we can prove equality of the fractional chromatic number and the fractional clique
number for vertex transitive graphs.

Theorem 2.7. Let X be a vertex transitive graph, then

ω∗(X) = χ∗(X) =
|V (X)|
α(X)

.

Proof. We will show that for any vertex transitive graph X holds

χ∗(X) ≤ |V (X)|
α(X)

,

which combined with the previous inequality proves the theorem. We have already
seen that χ∗(Kv:r) ≤ v/r and we will use this as a bound for the chromatic fractional
coloring ofX. By Theorem 2.6 there exists a Cayley graph Y = X(G,C) such thatX is
a retract and |V (Y )|/α(Y ) = |V (X)|/α(X). The resulting homomorphism ensures by
the above corollary that χ∗(X(G,C)) ≤ χ∗(X). There is also a homomorphism from
X to X(G,C), mapping every vertex of X to its corresponding coset representative.
Therefore we get χ∗(X(G,C)) = χ∗(X). We will now show that there also exists a
homomorphism from Y = X(G,C) to the Kneser graph K|V (Y )|:α(Y ).
Let S ⊆ G be an independent set of size α(Y ) in Y and let S−1 := {s−1 : s ∈ S}
denote the set of inverse elements. We define a function φ : V (Y ) → 2V (Y ) by

φ : g �→ (S−1g).

Let g, h ∈ G with g ∼ h, then φ(g)∩φ(h) = ∅. To see this assume that y ∈ φ(g)∩φ(h),
then y = a−1g = b−1h for some a, b ∈ S. This implies that a−1b = hg−1 ∈ C, since
g ∼ h and therefore a ∼ b. But a, b ∈ S and S is an independent set, which leads to
a contradiction. Thus φ(g) ∩ φ(h) = ∅, which means that these sets are fully disjoint
and therefore adjacent in K|V (Y )|:α(Y ). Adjacent vertices in Y get mapped to adjacent
vertices in the Kneser graph, resulting in φ being a homomorphism. Finally we have

|V (X)|
α(X)

≤ ω∗(X) ≤ χ∗(X) = χ∗(X(G,C)) ≤ |V (Y )|
α(Y )

=
|V (X)|
α(X)

.

Lemma 2.13. Let X and Y be vertex transitive graphs such that χ∗(X) = χ∗(Y ) and
let φ : X → Y be a homomorphism from X to Y . If S is an independent set in Y ,
then φ−1(S) is a maximum independent set in X.
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Proof. Theorem 2.7 implies that

|V (X)|
α(X)

=
|V (Y )|
α(Y )

.

Now let f be a fractional coloring of X with weight χ∗(X) and define g := α(X)−11.
As we have already seen in Lemma 2.8, g is a fractional clique of X with weight
ω∗(X) = χ∗(X). From the proof of Lemma 2.10 we can conclude that

(1T − gTB)f = 0,

since the weight of g and f is the same. The sum of g over any independent set of size
less than α(X) is less than 1 and therefore if we assume that |φ−1(S)| < α(X), then
f(φ−1(S)) = 0. But Lemma 2.12 implies that X has a fractional coloring of weight
χ∗(X), that has φ−1(S) in its support. Thus we get |φ−1(S)| = α(X).

2.3.6 Erdős-Ko-Rado

The Erdős-Ko-Rado theorem originates from extremal set theory and provides bounds
for intersecting set families [8]. To provide an additional proof we make use of the
theory we developed up until now. The equivalence to the Erdős-Ko-Rado theorem
can be seen by considering that the elements of an independent set consist of r-subsets
of {1, . . . , n}.

For the proof of this theorem we make use of cyclic interval graphs. Let Ω = {1, . . . , n}
and r ≤ n. Then we define the cyclic interval graph C(v, r) as the graph with cycli-
cal shifts of {1, . . . , r} modulo n as vertices and two vertices are adjacent if they are
disjoint. Since vertices of C(v, r) are r-sets it follows by definition that C(v, r) is a
subgraph of the Kneser graph Kv:r. Note that if v < 2r then all vertices have at least
one element in common, which means that C(v, r) is empty. Therefore we assume
v ≥ 2r, similar to our assumptions for J(v, k, i) graphs and thus Kneser graphs.

Lemma 2.14. Let v ≥ 2r and C(v, r) be a cyclic interval graph. Then the size of any
independent set of C(v, r) is at most r. For every independent set of size r there exists
an element of {1, . . . , n}, such that all vertices contain that element.

Proof. Suppose that S is an independent set in C(v, r). We have already shown that
Kneser graphs are vertex transitive, which implies that C(v, r) is vertex transitive.
Automorphisms of independent sets are independent sets and coupled with vertex
transitivity we can assume that the vertex β = {1, . . . , r} is in S. Let S1 := {s ∈ S :
1 ∈ s} and Sr := {s ∈ S : r ∈ s} be the set of vertices in S that contain the elements
1 and r respectively. Now let j be the least integer, that is in all vertices of Sr. Since
r is in all vertices of Sr, j exists. Therefore the least element of each set in Sr is at
most j. Two distinct vertices of Sr have different least elements, which implies that
|Sr| ≤ j. Each vertex of S1 has to have at least one element in common with every
vertex of Sr, since they are both subsets of S. Now j is the least element that all
vertices of Sr have in common, thus all cyclical shifts in S1 also have to contain j.
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This implies that the size of S1 is at most |S1| ≤ r − j + 1, since there are r possible
vertices in S1, but j has to be contained in every single one. Due to our assumption,
that v ≥ 2r, we know that S1 ∩ Sr = {β}. Because S is independent in C(v, r) and
contains β it follows that

|S| = |S1|+ |Sr| − 1 ≤ (r − j + 1) + j − 1 = r.

If |S| = r, then we know that every vertex in S has to contain j, which there are
exactly r many.

Corollary 2.4. Let v ≥ 2r and C(v, r) be a cyclic interval graph. Then χ∗(C(v, r)) =
v/r.

Proof. Since C(v, r) are vertex transitive graphs, by Theorem 2.7 and the above
Lemma we get

χ∗(C(v, r)) =
|V (C(v, r))|
α(C(v, r))

=
v

r
.

Corollary 2.5. Let v ≥ 2r and Kv:r be the Kneser graph. Then χ∗(Kv:r) = v/r.

Proof. Since C(v, r) is a subgraph of Kv:r, Theorem 2.7 implies that

v

r
= χ∗(C(v, r)) ≤ χ∗(Kv:r) ≤ v

r
.

We are now ready to prove that the independence number of Kneser graphs satisfies
the Erdős-Ko-Rado bound.

Theorem 2.8 (Erdős-Ko-Rado). If v > 2r, then α(Kv:r) =
	
v−1
r−1

�
. An independent

set of size
	
v−1
r−1

�
consists of r-subsets of Ω = {1, . . . , v} that contain a certain element.

Proof. Since Kneser graphs are vertex transitive, Theorem 2.7 implies that

v

r
= χ∗(Kv:r) =

|V (Kv:r)|
α(Kv:r)

=

	
v
r

�
α(Kv:r)

.

This is equivalent to

α(Kv:r) =
r

v



v

r

�
=



v − 1

r − 1

�
.

Now suppose that S is an independent set of size
	
v−1
r−1

�
in Kv:r. For any cyclic ordering

of {1, . . . , n} we can construct the subgraph C of Kv:r, induced by the cyclic shifts of
the first r elements of this ordering. Then C is isomorphic to C(v, r) and there is an
inclusion homomorphism ι : C → Kv:r from C to Kv:r mapping every element to itself.
Further the preimage of S is ι−1(S) = S ∩ V (C) and by Lemma 2.13 it follows that
|S ∩ V (C)| = r. The vertices in S ∩ V (C) are exactly the cyclic shifts of some set of
r consecutive elements in this ordering.

33



Lets consider the natural ordering {1, . . . , n}. Because of vertex transitivity we can
relabel in a way such that we can assume that S contains the cyclic r sets of C of the
form

{1, 2, . . . , r}, {2, 3, . . . , r, r + 1}, . . . , {r, r + 1, . . . , 2r − 1}.
Since S is independent we can conclude that no vertex of the form {x, 1, . . . , r − 1}
with x ∈ {2r, . . . , v} is in S. Note that S contains exactly r cyclic shifts from any
cyclic ordering.
All that is left to do is to show that every vertex of Kv:r that contains r has to be in
S and we do this by varying the cyclic ordering. Let g be a permutation in Sym(v)
that maps the subset {1, . . . , r − 1} to itself. We now consider a cyclic ordering for
x ∈ {2r, . . . , v} that starts with

{x, 1g, 2g, . . . , (r − 1)g, r, (r + 1)g . . . }.

Then by our previous considerations there exists a subgraph isomorphic to a cyclic
interval graph, such that S has to contain β = {1g, 2g, . . . , (r − 1)g, r}, but does not
contain {x, 1g, 2g, . . . , (r − 1)g}. Further S contains all r right shifts of β. For any
r-subset γ, that contains r, there exists a cyclic ordering of the previous form, that
has γ as one of these r cyclic shifts. The only exception is when γ contains all of the
elements {2r, . . . , v}, since then there is no suitable choice for x.
Let y ∈ {r + 1, . . . , 2r − 1}. We now consider the natural ordering with 2r and y
swapped

{1, . . . , r, . . . , y − 1, 2r, y + 1, . . . , 2r − 1, y, 2r + 1, . . . }.
Again β = {1, . . . , r} is in S, but not {x, 1, . . . , r − 1} for x ∈ {y, 2r − 1, . . . , v}, thus
S contains all right shifts of β according to our ordering. With the same argument as
above we conclude that all r-subsets that contain r are in S, except those that contain
all of the elements of {y, 2r+1, . . . , v}. Therefore we only have to consider those that
fulfill both cases and contain all the elements of {y, 2r, . . . , v}. Varying y yields that
if there is any r-subset containing r that is not in S, then it has to contain all of the
elements {r + 1, . . . , v}. But our assumption was that v > 2r, thus these vertices do
not exist.
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3 Spectral Graph Theory

Spectral graph theory is a mathematical field, that considers the spectrum of graphs
and can be thought of as the union of graph theory and linear algebra. It has many
applications in various fields as shown in the references of [21]. In this chapter we
explore eigenvectors of graphs and their corresponding eigenvalues. We start by defin-
ing the adjacency matrix of a graph and its spectrum, but we will also look at other
matrices that can be calculated for graphs.

The goal of this chapter is to classify the eigenvalues of Kneser graphs. It is based on
chapter 8 and 9 of [12]. We will also take a look at the Laplacian of a graph, which is
described in [5].

3.1 Adjacency Matrices

Let X = (V,E) be a directed graph, then the adjacency matrix A(X) of X is the
matrix with rows and columns indexed by vertices of X, where axixj

is equal to the
number of arcs from xi to xj and 0 else. If X is an undirected simple graph, then
A(X) is 0 on the diagonal, symmetric and A(X) ∈ {0, 1}V×V .

Our first observation is that isomorphic graphs may have different adjacency matrices.
However given one adjacency matrix, the other can be easily obtained.

Theorem 3.1. Let X and Y be directed graphs on the same vertex set. Then X ∼= Y
if and only if there exists a permutation matrix P such that P TA(X)P = A(Y ).

Proof. Suppose X ∼= Y , then the isomorphism that maps X to Y describes a permu-
tation π ∈ Sym(|V |). Thus π induces a permutation matrix P ∈ {0, 1}V×V , such that
right multiplication with P permutes the columns. If AP has permuted columns, then
(ATP )T = P TATT

= P TA has permuted rows. Therefore there exists a permutation
matrix P such that P TA(X)P = A(Y ).
Conversely if there exists a permutation matrix with these properties then the corre-
sponding permutation is an isomorphism.

If X ∼= Y then A(X) is similar to A(Y ), since permutation matrices are orthogonal,
P T = P−1. Every square matrixA allows the definition of its characteristic polynomial
ϕA(x) = det(xI − A), where I is the identity matrix. Note that from now on we will
mostly use x to denote variables of polynomials and use u and v for vertices of graphs.

The spectrum of a matrix is a list of eigenvalues coupled with their corresponding
multiplicities. We define the spectrum of a graph X as the spectrum of its adjacency
matrix A(X). Eigenvectors and eigenvalues of X are the corresponding eigenvectors
and eigenvalues of A(X). Since similar matrices have the same eigenvalues, Theorem
3.1 implies that isomorphic graphs have the same spectrum.

Two graphs with the same spectrum are called cospectral, but they do not need to be
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Figure 15: Two cospectral graphs

isomorphic. Consider the graphs in Figure 15. Since they share the same characteristic
polynomial

(x+ 2)(x+ 1)2(x− 1)2(x2 − 2x− 6),

their spectrum has to be equal. Thus the spectrum of both graphs is

{−2,−1(2), 1(2), 1±
√
7}.

This example shows that vertex degree does not have to match for cospectral graphs.
Also planarity can not be determined from looking at spectrums.

Let X be a directed graph, we call a sequence of r vertices with

v0 ∼ v1 ∼ · · · ∼ vr,

a walk of length r in X. This definition is similar to a path, with the difference being,
that walks are allowed to include the same vertices multiple times.

Lemma 3.1. Let X be a directed graph with adjacency matrix A. Then (Ar)uv is
precisely the number of walks from u to v in X with length r.

Proof. Suppose A is the adjacency matrix for a graph X. Let n = 1, then A1
uv is 1

if and only if u and v are adjacent. Suppose now that the theorem holds for n, we
consider An+1 = AnA and denote entries of An as a′ij. Let m = |V |, then

(AnA)uv =
m�
i=1

a′uiaiv.

By our induction hypothesis a′ij denotes the number of walks from i to j of length m
and aij is 1 if i ∼ j and 0 else. Thus we sum over all possibilities to get from u to
i to v for all i ∈ {1, . . . , n}. This equals the number of walks from u to v of length
n+ 1.

The trace of a square matrix A is the sum of its diagonal entries and we denote it by
tr(A). The above Lemma showed that tr(Ar) is the number of walks that start and
end in the same vertex.
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Corollary 3.1. Let X be a graph with |E| edges and t triangles. Let A be the adjacency
matrix of X, then

1. tr(A) = 0,

2. tr(A2) = 2|E|,
3. tr(A3) = t.

Proof. There are no walks of length 1 that start and end in the same vertix for simple
graphs. Walks of length 2 that start and end at the same vertex are all edges counted
twice and similarly triangles are walks of length 3 with this property.

From linear algebra [14] we know that the trace of a matrix is also equal to the sum
of its eigenvalues and that the eigenvalues of Ar are the r-th powers of the eigenvalues
of A. Therefore we can see that the trace of Ar is determined by the spectrum of A,
which implies that the number of edges and triangles are determined by the spectrum
of a graph. However this can not be easily generalized, since the graphs K1,4 and
K1 ∪ C4 are cospectral, but do not share the same number of 4-cycles.

3.2 Symmetric Matrices

This section states many useful theorems regarding symmetric matrices. Many theo-
rems that are stated here can be found in linear algebra books like [14]. If u and v are
vectors of the same dimension, we also denote their scalar product uTv by ⟨u, v⟩.

Let A be a square matrix. Then A is symmetric if AT = A. Symmetric matri-
ces are especially important for graph theory, since adjacency matrices of undirected
graphs are symmetric.

Lemma 3.2. Let A be a real symmetric matrix and u and v be eigenvectors of A with
different eigenvalues. Then u and v are orthogonal, meaning that ⟨u, v⟩ = 0.

Proof. Suppose u and v are eigenvectors with eigenvalues λ, τ , then Au = λu and
Av = τv. Since A is symmetric we have

uTAv = (vTATu)T = (vTAu)T .

Using the eigenvector property we get that

uT τv = (vTλu)T = uTλv,

which has to be 0 for λ ̸= τ . Therefore uTv = ⟨u, v⟩ = 0.

Lemma 3.3. Let A be a real symmetric matrix. Then the eigenvalues of A are real
numbers.

Proof. We have to show that the eigenvalues of A are not in C \ R. Let u be an
eigenvector of A with eigenvalue λ. Thus Au = λu and if we consider the complex
conjugate of this equation we get Aū = λ̄ū, since A is a real matrix. Therefore ū is also
an eigenvector of A and uT ū ≥ 0, because (a+ ib)(a− ib) = a2 + b2 and eigenvectors
are not 0. By the previous Lemma u and ū have the same eigenvalues, thus λ = λ̄.
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Let U be a subspace of Rn and A a square matrix, then U is A-invariant, if Au ∈ U
for all u ∈ U .

Lemma 3.4. Let A ∈ Rn×n be symmetric. If U is an A-invariant subspace of Rn,
then U⊥ := {x ∈ Rn : ⟨x, u⟩ = 0, ∀u ∈ U} is also A-invariant.

Proof. Suppose u, v are vectors in Rn, then

vT (Au) = (AvT )u.

Let u ∈ U and v ∈ U⊥, then Au ∈ U implies that vT (Au) = 0. By the above equation
we get that (AvT )u = 0. Thus Av ∈ U⊥, which shows that U⊥ is A-invariant.

If A is a square matrix, then A has to have at least one eigenvalue, since the polynomial
equation det(xI − A) = 0, must have at least one solution.

Lemma 3.5. Let A ∈ Rn×n be a symmetric matrix and U an A-invariant nonzero
subspace of Rn. Then U contains a real eigenvector of A.

Proof. Since U is a subspace, there is an orthogonal basis that spans U and let R
denote the matrix formed by this basis. Then we can find a square matrix B such that
AR = RB, since A is U -invariant. Because of orthogonality we have RTR = I and

RTAR = RTRB = B.

Thus B is real and symmetric, because BT = RTATR = RTAR = B. Every real
and symmetric matrix has at least one eigenvalue. Let u be an eigenvector of B with
eigenvalue λ, then ARu = RBu = λRu. Now Ru ̸= 0, because u ̸= 0 and all columns
of R are linearly independent. Therefore Ru is an eigenvector of A and since A is
U -invariant we also have that the eigenvector Ru ∈ U .

Theorem 3.2. Let A ∈ Rn×n be a symmetric matrix. Then Rn has an orthonormal
basis consisting of eigenvectors of A.

Proof. Assume {u1, . . . , um}, with m < n is a set of orthonormal eigenvectors of A.
Let M be the supspace spanned by this set, then M is not 0, since A contains at
least one eigenvector. Now M is A-invariant, therefore M⊥ is A-invariant. Elements
of M⊥ are orthogonal to M and by normalizing a vector we obtain um+1 such that
{u1, . . . , um, um+1} is an orthonormal set of m+1 eigenvectors of A. Thus by induction
over n we obtain that we can construct an orthonormal basis of Rn, consisting of
eigenvectors of A.

Corollary 3.2. Let A ∈ Rn×n be a symmetric matrix. Then there exist matrices L
and D such that LTL = LLT = I and LALT = D, and D is a diagonal matrix with
entries equal to the eigenvalues of A.

Proof. Let L be the matrix that represents an orthonormal basis of Rn, where every
row is an eigenvector of A, that exists by the previous theorem. Let l1, . . . , ln denote the
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eigenvectors of A with eigenvalues λ1, . . . , λn, then the second multiplication equates
to

ALT = A(l1|l2| . . . |ln) = (λ1l1|λ2l2| . . . |λnln|).
Thus an entry of LALT has the form

(LALT )ij = λj⟨li, lj⟩,

where ⟨lj, li⟩ = δij, with δij denoting the Kronecker delta, since L is an orthonormal
basis.

3.3 Eigenvectors and Eigenvalues

If we consider the adjacency matrix of a graph X = (V,E), then A(X) is a 01-matrix,
where rows and columns are indexed by the vertex set V . Any vector u of length |V |
can therefore be interpreted as a function f : V → R such that v �→ uv. Thus every
eigenvector can be visualized as a function that adds a label to every vertex of the
graph. Consider a triangle graph T . The adjacency matrix of Figure 16, which in this

v1

v2 v3

Figure 16: The triangle T

case does not depend on the order of vertices, is

A(T ) =

0 1 1
1 0 1
1 1 0

 .

The characteristic polynomial of T is −x3+3x+2 = −(x+1)2(x−2), which leads to the
eigenvalues λ1 = −1(2) and λ2 = 2. An example of an eigenvector is w := (1 − 1 0)T ,

v1

v2 v3

1

−1 0

Figure 17: An eigenvector of T
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depicted by adding labels to the graph which yields Figure 17. Calculating Aw yields
(−1 1 0)T = −w, proving that w is an eigenvector with eigenvalue −1.

There is an easy way to check if a given function is an eigenvector for a graph. Let
f : V → R, then f can be interpreted as a vector of length |V | and the image of Af
of a vertex u is

(Af)(u) =
�
v∈V

Auvf(v).

Now A is a 01-matrix that encodes adjacency and therefore we get

(Af)(u) =
�
v∼u

f(v).

If f is an eigenvector of A, then Af = λf , which results in

λf(u) =
�
v∼u

f(v). (11)

The last equation says that the value of f at u has to be a multiple of the sum of
values of its neighbors. Also any function f that satisfies this equation for all u ∈ V
necessarily has to be an eigenvector of A.

Another example is an eigenvector of the Petersen graph depicted in Figure 18. A
different way to visualize an eigenvector of a graph is to write the value of a vertex as
its vertex label, but we prefer to write the value to the side of the vertices. One can

0

−1

0 0

1
0

−1

1 −1

1

Figure 18: An eigenvector of the Petersen graph J(5, 2, 0)

quickly check that this eigenvector fulfills equation (11).

Let X be a graph, with θmax(X) we denote the largest eigenvalue of A(X) and θmin(X)
denotes the smallest eigenvalue of A(X). Let λ1, . . . , λm be the eigenvalues of a ma-
trix A, then we define the spectral radius ρ of A as ρ(A) := max{|λ1|, . . . , |λm|}. The
spectral radius of a graph is the spectral radius of its adjacency matrix.
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3.3.1 The Laplacian of a Graph

Closely related to the adjacency matrix of a graph is its Laplacian. Its eigenvalues
prove to be very useful for other graph invariants. We follow the notation of Fan R.
K. Chung [5]. Other authors usually refer to what we call Laplacian as normalized
Laplacian of a graph. Let G be a graph and d(v) denote the degree of vertex v, we
begin by defining the matrix L ∈ Rn×n for u, v ∈ V as

L(u, v) =

��
d(v), if u = v,

−1, if u and v are adjacent,

0, else.

Let T denote the diagonal matrix with Tuu := d(u) and A be the adjacency matrix of
G, then we can write L = T − A. We define the Laplacian L ∈ Rn×n of G as

L(u, v) =

����
1, if u = v,

− 1√
d(u)d(v)

, if u ∼ v,

0, else.

By defining T−1
vv := 0 for d(v) = 0, we can write the Laplacian of G as

L = T−1/2LT−1/2.

For easier clarification we will consider an example. Let C5 be the cyclic graph with
5 vertices. We consider its adjacency matrix and Laplacian with their corresponding
eigenvalues. Computing these objects for C5 is comparatively easy.

v1

v5

v4 v3

v2

Figure 19: The cycle graph C5

A(C5) =

����
0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

���� .
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The characteristic polynomial of A is

χA(λ) = −λ5 + 5λ3 − 5λ+ 2,

resulting in a spectrum of

{2,

−1−√

5

2

�(2)

,


−1 +
√
5

2

�(2)

}.

While the Laplacian of C5 is of the form

L(C5) =

����
1 −1

2
0 0 −1

2−1
2

1 −1
2

0 0
0 −1

2
1 −1

2
0

0 0 −1
2

1 −1
2−1

2
0 0 −1

2
1

���� ,

with characteristic polynomial

χL(λ) = −λ5 + 5λ4 − 35λ3

4
+

25λ2

4
− 25λ

16
,

resulting in a spectrum of

{0,


5 +

√
5

2

�(2)

,



5−√

5

4

�(2)

}.

Generally the spectrum of the Laplacian of the cyclic graph Cn is 1 − cos
	
2πk
n

�
for

k = 0, . . . n− 1, also 0 is always an eigenvalue of the Laplacian [5].

3.4 Eigenvalues of Kneser graphs

Now we use the theory of eigenvectors of adjacency matrices, that we developed so
far, to derive the eigenvalues of Kneser graphs. We do this by observing that certain
partitions of the vertex set allow us to calculate eigenvalues for smaller graphs.

3.4.1 Equitable Partitions

LetX be a graph and let π be a partition of V (X) into pairwise disjoint cells C1, . . . , Cr

such that
�

Ci = V (X). A partition is equitable if the neighbors of u ∈ Ci that are in
Cj are a constant bij. Note that bij depends only on the cells and is independent of u.
An equivalent definition is that the subgraph induced by each cell Ci is regular and
the edges joining any two distinct cells form a semiregular bipartite graph, meaning
that it has a proper 2-coloring such that all vertices with the same color have the same
degree.
Such a partition defines a directed graph, where the cells are vertices with bij arcs from
cell Ci to cell Cj. We call this directed graph the quotient of X over π and denote it
with X/π. The adjecency matrix of the quotient of X over π is given by

A(X/π)ij = bij.

Any automorphism group of a graph induces equitable partitions.
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Lemma 3.6. Let X be a graph and G ⊆ Aut(X), then the orbits xG := {xg : g ∈ G}
of G are an equitable partition of V .

Proof. The orbits of G partition V , since if y ∈ xG, then yG = xG and if y ̸∈ xG,
then yG ∩ xG = ∅. Suppose now that there exist vertices u, v ∈ Ci in the same cell,
that have a different amount of neighbors in Cj for some j. Since u and v are in the
same orbit there is an automorphism g that maps u to v. Every automorphism maps
adjacent vertices to adjacent vertices. Thus g has to map all neighbors of u that are
in Cj to vertices in Cj, due to it being an orbit. Therefore u and v cannot have a
different amount of neighbors in Cj.

Consider the group of rotations of order 5 acting on the Petersen graph, see Figure
18. Then the 5 outer vertices are an orbit as well as the 5 inner vertices. Thus this
group defines an equitable partition π1 with adjacency matrix

A(X/π1) =



2 1
1 2

�
.

If π is a partition of V with r cells, then we define the characteristic matrix P ∈
{0, 1}|V |×r of π as the matrix, where columns of P are the characteristic vectors of the
cells of π. Further P TP is a diagonal matrix with entries (P TP )ii = |Ci|. Since π is a
partition Ci ̸= ∅ and therefore P TP is invertible.

Lemma 3.7. Let X be a graph and π be an equitable partition with characteristic
matrix P . Let B := A(X/π), then AP = PB and B = (P TP )−1P TAP .

Proof. We start by considering the uj-entry of AP . Then (AP )uj is the number of
neighbors of the vertex u that lie in cell Cj. If u ∈ Ci then (AP )uj = bij. If we take a
look at PA(X/π), we notice that every vertex can only lie in one cell and thus every
row of PA(X/π) has exactly one 1. Therefore this uj-entry also equals bij and we get

(AP )uj = (PA(X/π))uj.

Thus we have AP = PB and left multiplying this equation with P T yields

P TAP = P TPB.

Since P TP is invertible this holds if and only if

B = (P TP )−1P TAP.

This next theorem will provide the foundation to find the eigenvalues of Kneser graphs.

Theorem 3.3. Let X be a vertex transitive graph, G ⊆ Aut(X) a permutation group
and π the equitable partition defined by orbits of G. If π has a singleton cell {u}, then
every eigenvalue of X is an eigenvalue of the quotient X/π.
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Proof. Let f be a function on V (X) and let g ∈ Aut(X), then we define f g as

f g(x) := f(xg).

Suppose f is an eigenvector of X. If g is an automorphism, then A(X) = A(Xg),
because A(X)ij = 1 if and only if i ∼ j which happens if and only if ig ∼ jg.
Additionally, since X ∼= Xg, we know that there exist permutation matrices, such
that A(X) and A(Xg) are similar. Let Q be the permutation matrix induced by g,
then

Af g = AQf = QAQTQf = QAf = λQf = λf g,

which shows that f g is an eigenvector of X with the same eigenvalue as f .
Now we define f̂ as

f̂ :=
1

|G|
�
g∈G

f g,

which is constant on the cells of π, since they are invariant under G. If f̂ is not zero,
then it is also an eigenvector of X with eigenvalue λ. Suppose that h is an eigenvector
of X with eigenvalue λ. Since h ̸= 0 there exists a vertex v ∈ V (X), such that
h(v) ̸= 0. Let g ∈ Aut(X) such that ug = v and set f = hg. Then f(u) ̸= 0 and we
get

f̂(u) = f(u) ̸= 0.

This shows that f̂ ̸= 0 and f̂ is a candidate for an eigenvector of X/π with eigenvalue
λ.
Let P be the characteristic matrix of π and let v be an eigenvector of A(X/π). Lemma
3.7 implies that AP = PA(X/π) and therefore we get

APv = PA(X/π)v = θPv.

On the other hand, AP = PA(X/π) further implies that the column space of P is
A-invariant [9]. Thus P must have a basis consisting of eigenvectors of A. Now every
eigenvector of A is constant on the cells of P and therefore has the form Pv, with
v ̸= 0. If APv = θPv, then also A(X/π)v = θv, which implies that an eigenvalue of
X is also an eigenvalue of X/π.

Lemma 3.8. The following binomial equation holds,

h�
i=0

(−1)h−i



h

i

�

a− i

k

�
= (−1)h



a− h

k − h

�
.

Proof. We start by defining

f(a, h, k) :=
h�

i=0

(−1)h−i



h

i

�

a− i

k

�
.

We can use a well known recursion for the binomal term in f ,

a− i

k

�
=



a− i− 1

k

�
+



a− i− 1

k − 1

�
, 1 ≤ k ≤ a− i− 1,
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to obtain the following recursion for f ,

f(a, h, k) = f(a− 1, h, k) + f(a− 1, h, k − 1).

Now f(a, h, 0) = 0 if h > 0 holds, because of the symmetry of binomial coefficients.
Further we have f(a, 0, 0) = 1 and f(k, h, k) = (−1)h, since both only sum over i = 0.
Induction over a yields

f(a, h, k) = f(a− 1, h, k) + f(a− 1, h, k − 1)

= (−1)h


a− 1− h

k − h

�
+ (−1)h



a− 1− h

k − 1− h

�
= (−1)h




a− h− 1

k − h

�
+



a− h− 1

k − h− 1

��
= (−1)h



a− h

k − h

�
.

Finally we can characterize the eigenvalues of the Kneser graphs.
Suppose h(i, j) is a function of i and j and 0 ≤ i, j ≤ r, then we define [h(i, j)] as the
(r + 1)× (r + 1) matrix with ij-entry h(i, j).

Theorem 3.4. The eigenvalues of the Kneser graph Kv:r are the integers

(−1)i


v − r − i

r − i

�
, i ∈ {0, 1, . . . , r}.

Proof. Suppose v ≥ 2r and let X be the Kneser graph Kv:r, where vertices are r-
subsets of Ω = {1, . . . , n}. Let α := {1, . . . , r} and let Ci ⊆ 2Ω be the set r-subsets
that meet α in exactly r− i elements. This defines a partition π consisting of the cells
C0, . . . , Cr. Let G ⊆ Sym(Ω) such that g ∈ G fixes α setwise. Then the orbits of G
are the cells Ci, since the elements in the intersection with α of these vertices are the
same. Thus π is an equitable partition, that satisfies the requirements of Theorem 3.3.
Therefore if we can determine the eigenvalues of A(X/π) then we know that all eigen-
values of X also appear. Suppose β ∈ V (Kv:r) and |β ∩ α| = r − i. The ij-entry of
A(X/π) is the number of r-subsets of Ω that are disjoint from β and meet α in exactly
r − j points, since π is an equitable partition. Thus we get

A(X/π)ij =



i

r − j

�

v − r − i

j

�
, 0 ≤ i, j ≤ r.

Let D be the diagonal matrix with entries

Dii := (−1)i


v − r − i

r − i

�
.

We will prove the following equality:�
(−1)i−j



i

j

��
A(X/π)

�

i

j

��
= D

�

r − i

r − j

��
. (12)
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If we assume that equation (12) holds, then A is similar to the product D[
	
r−i
r−j

�
], since�

(−1)i−j



i

j

��−1

=

�

i

j

��
.

Now [
	
r−i
r−j

�
] is an upper triangle matrix, with diagonal entries equal to 1 and therefore

the eigenvalues of A(X/π) have to be the diagonal entries of D.
All that is left to do is to prove equation (12). If we consider the ik-entry ofA(X/π)[

	
i
j

�
],

we get 
�

i

r − j

�

v − r − i

j

���

i

j

���
ik

=
r�

j=0



v − r − i

j

�

i

r − j

�

j

k

�
.

Using a binomial identity,

a

c

�

a− c

b− c

�
=

a!(a− c)!

c!(a− c)!(b− c)!(a− c− b+ c)!
· b!
b!

=



a

b

�

b

c

�
, (13)

we can calculate for the sum above:

r�
j=0



v − r − i

j

�

j

k

�

i

r − j

�

=
r�

j=0



v − r − i

k

�

v − r − k − i

j − k

�

i

r − j

�

=



v − r − i

k

� r�
j=0



v − r − k − i

j − k

�

i

r − j

�
.

We apply Vandermonde’s identity

a+ b

n

�
=

n�
j=0



a

j

�

b

n− j

�
,

and an index shift, to simplify the last term of the equation to

v − r − i

k

�

v − r − k

r − k

�
.

With this partial solution we can calculate that the hk-entry of the product�
(−1)i−j



i

j

��
A(X/π)

�

i

j

��
equals 


v − r − k

r − k

� r�
i=0

(−1)h−i



h

i

�

v − r − i

k

�
.
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Lemma 3.8 implies that the sum is equal to

(−1)h


v − r − k

r − k

�

v − r − h

k − h

�
,

which can be simplified, using (13) and setting a = v− r−h, b = r−h and c = k−h,
to

(−1)h


v − r − h

r − h

�

r − h

r − k

�
.

But this is equal to 

D

�

r − i

r − j

���
hk

.
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4 EKR-Graphs

In this chapter we explore graphs that satisfy a certain Erdős-Ko-Rado property. We
define what it means for a graph to be EKR, by generalizing the inequality of the
Erdős-Ko-Rado Theorem. This chapter is based in large parts on the work of Holroyd
and Talbot [16].

As we have already seen the sizes of independent sets on Kneser graphs are bounded
by theorem 1.1. In this chapter the Erdős-Ko-Rado theorem will appear in a different
context. Rather than looking at the largest independent set, we will look at the num-
ber of certain independent sets that all have a fixed size. We start by declaring more
definitions that help us talk about these concepts.

Let G be a graph and k ∈ N+, then I(k)(G) denotes the family of independent sets of

G of size k. If v ∈ V , then I(k)
v (G) denotes the family of independent sets of size k

that contain the vertex v. The family I(k)
v (G) is called a k-star, or just star, where

the vertex v is called its center.

Definition 4.1. A graph G is k-EKR if no intersecting subfamily of I(k)(G) is bigger
than the largest star.

G is strictly k-EKR if every maximum size intersecting subfamily of I(k)(G) is a
k-star. This definition does indeed correlate with the Erdős-Ko-Rado Theorem, since
the empty graphs are k-EKR.

Corollary 4.1. The empty graph En is k-EKR for 2k ≤ n.

Proof. The empty graph En = (V, ∅) is isomorphic to the set Ω = {1, . . . , n}. Every
subset of V is also an independent set, thus independent sets in I(k)(G) are translated
to k-subsets of Ω. To construct a largest star of En simply fix one out of n elements
and choose k − 1 other elements to generate a member. Thus the size of the largest
star equals the bound of the Erdős-Ko-Rado Theorem 1.1. Now we can apply the
theorem to see that every intersecting independent set has to be smaller than or equal
to the size of the largest star.

The empty graph being k-EKR can be seen as the baseline Erdős-Ko-Rado Theorem
for sets. Thus being k-EKR is in a way a generalization of the Erdős-Ko-Rado Theorem
to more complicated structures. To better understand this definition, we now consider
some basic facts about k-EKR graphs.

Lemma 4.1. Every graph is 1-EKR.

Proof. Since there are no intersecting independent 1-sets, other than a trivial single
element set, the condition is fulfilled.

For bigger k this quickly becomes non-trivial. For k = 2 however there still is an
easy way to calculate whether a graph is 2-EKR or not. Recall that the independence
number α(G) is the size of the largest possible independent set for a graph G.
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Theorem 4.1. Let G be a non-complete graph, with minimum degree δ and |V | = n.

1. If α(G) = 2, then G is strictly 2-EKR.

2. If α(G) ≥ 3, then G is 2-EKR if and only if δ ≤ n − 4. G is strictly 2-EKR if
and only if δ ≤ n− 5.

Proof. Let A ⊆ I(2)(G) be a family, that is not a subfamily of any star. We assume
that the cardinality of A is at least 3, meaning that A contains at least 3 2-sets of
independent vertices. If we denote them by vi we know that {v1, v2}, {v1, v3} and
{v2, v3} ∈ A. However no other 2-set can be in A, since it has to intersect all of the
other 3 2-sets. Therefore we know that |A| = 3.
If we assume that α(G) = 2, then an independent set of size 3 does not exist. If we
assume α(G) ≥ 3, then families, that are not subfamilies of a star have size 3. However
for any vertex v a star centered at v has a size of

|I(2)
v (G)| = n− 1− d(v),

which proves the theorem.

Next we will look at non-trivial examples of EKR graphs and also prove that lexico-
graphic products of EKR graphs and complete graphs are again EKR graphs.

4.1 Trees and Claws

In this section we will prove EKR properties for a subfamily of trees. The complete
bipartite graph K1,3 is also called the claw graph, while K1,n is called a claw. An
elongated claw is a rooted tree, where no non-root vertex has degree greater than 2.
A depth-two claw is an elongated claw where the distance between every leaf to the
root is 2. A maximal independent set of G is an independent set, that is not itself a
proper subset of an independent set. We define µ(G) as the minimum size of a max-
imal independent set of G, some authors call it the minimax independence number
of G. Note that these sizes can be equal, but in general µ(G) ≤ α(G) holds.

Figure 20: The claw graph K1,3 and an elongated claw.

We will prove that if a graph G is a depth-two claw, then G is k-EKR and strictly

49



k-EKR, if 2k < µ(G). Further if G is an elongated claw with n leaves and at least one
leaf is adjacent to the root and 2k ≤ n, then G is k-EKR. This result is based on the
work from Feghali, Johnson and Thomas [10].

We start with some easier observations about claws.

Theorem 4.2. Let n, k ∈ N+, then the claw K1,n is k-EKR, if 2k ≤ n and strictly
k-EKR if 2k < n.

Proof. Independent sets of claws are easy to characterize. If the root is contained,
then no other vertex can be contained. Otherwise independent sets can consist of up
to n leafs. Any largest star therefore has to have a leaf as the center. Further we can
delete the root vertex, since it cannot be part of any intersecting independent family,
other than the set consisting of just this vertex. We get n vertices with no edges,
which is isomorphic to the empty graph En.

As we have seen, proving that certain graph classes are k-EKR usually amounts to
finding a largest star.

4.1.1 Depth-two Claws

We again start by proving a few lemmata, which will help us with the final proof. A
path from the root to a leaf is called a limb and we call it short limb if it only contains
one edge.

Lemma 4.2. Let G be an elongated claw and let k ∈ N+. Then there exists a largest
k-star of G, with a leaf as the center.

Proof. Let v ∈ V be a vertex that is not a leaf and let L be the limb of G that contains
v. In case v is the root, L can be any limb. Assume x is the unique leaf in L, we show
that

|I(k)
v (G)| ≤ |I(k)

x (G)|,
which proves this lemma. We do this by constructing an injection f : I(k)

v (G) →
I(k)
x (G). Assume w is the unique neighbor of the leaf x and let A ∈ I(k)

v (G). Then
construct f as follows.

1. If x ∈ A define f(A) := A.

2. If x /∈ A and w /∈ A, then define f(A) := (A \ {v}) ∪ {x}.
3. If x /∈ A and w ∈ A, then let X := {x = x1, x2, . . . , xm = v} be the set of

vertices of L from x to v. We define Y := A ∩X and denote its elements with
Y = {xi1 , . . . , xij}, for some 1 ≤ j < m. Let Z = {xi1−1, . . . , xij−1}. Then
|Y | = |Z| and x ∈ Z, since w ∈ Y and w was defined to be the unique neighbor
of the leaf x. Then we define f(A) := (A ∪ Z) \ Y .
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Let us now consider f(A1) and f(A2) for distinct A1, A2 ∈ I(k)
v (G). If they fall into

the same case, then it is easy to verify that their images also have to be distinct. If
they are part of different cases, then note that case 1 always contains v and x. Case 2
does contain x but never v, or any of its neighbors, because they could not have been
in A originally. Images from case 3 do not contain v, but at least one neighbor of v.
Thus the images of A1 and A2 have to be distinct, proving that f is injective. Also f
maps independent sets to independent sets.

This is a very useful theorem, since it allows us to assume that the center of a largest
star is at a leaf, simplifying the calculation of its size.

Figure 21: A depth-two claw with 6 leafs.

Lemma 4.3. Let k, n ∈ N+ with k ≤ n and let G be a depth-two claw with n leaves.
Then the largest k-star of G has size


n− 1

k − 1

�
2k−1 +



n− 1

k − 2

�
,

and is centered at a leaf.

Proof. The previous lemma guarantees us that a largest star centered at a leaf can be
found. Since limbs in depth-two claws are isomorphic, we can assume that the star
is centered at any leaf. Let v be a leaf of G and let r be the root of G. We define a
partition of I(k)

v (G) into B = {A ∈ I(k)
v (G) : r /∈ A} and C = {A ∈ I(k)

v (G) : r ∈ A}.
Now we can calculate that

|B| =


n− 1

k − 1

�
2k−1,

since each set in B contains v and intersects k−1 of the n−1 other limbs. For each of
those k − 1 limbs there are 2 possible choices to add a vertex, because the root is not
contained. Every set in C has to contain v and the root r, thus we can choose k − 2
leafs out of the n− 1 possible leafs. Therefore we can calculate the size of C to be

|C| =


n− 1

k − 2

�
.
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Next we state a theorem that will help us prove what we proposed. Let A be a family
of sets and s ∈ N+, then the s-shadow of A is defined as

∂sA := {S : |S| = s, ∃A ∈ A ∧ S ⊆ A}.
Lemma 4.4 (Katona [19]). Let a, b ∈ N+ and let A be a family of sets of size a such
that |A ∩ A′| ≥ b ≥ 0 for all A,A′ ∈ A. Then |A| ≤ |∂a−bA|.
This lemma is actually a special case of Theorem 2 in [19]. To see this set g = l − k.
Then, using Katona’s notation, we get

|A| ≤
	
2l−k
l−k

�	
2l−k
l

� |Al−k| = |Al−k|.

With this we can prove the proposed theorem about depth-two claws.

Theorem 4.3. Let k ∈ N+ and let G be a depth-two claw, with µ(G) ≥ 2k− 1. Then
G is strictly k-EKR.

Proof. Let r denote the root of G and assume that G has n leafs and µ(G) ≥ 2k − 1.
Now n = µ(G), since a maximal independent set can be constructed by taking the
unique neighbor of every leaf. This set is maximal and any other maximal set cannot be
smaller, since then you could add a vertex of a missing limb. Thus we have n ≥ 2k−1.
Let A ⊆ I(k)(G) be any intersecting family. We define a partition, similarly to Lemma
4.3, of A into B := {A ∈ A : r /∈ A} and B := {A ∈ A : r ∈ A}.
Now any vertex v ∈ A ∈ B has to be either a leaf or a neighbor of a leaf. Since every
set in B has k elements, it intersects exactly k distinct limbs. Thus for B ∈ B we can
define MB as the set of k leafs that either belong to B or are adjacent to a vertex
in B. We say that MB represents B and define M := {MB : B ∈ B}. Since B is
intersecting we have that M is also intersecting. Note that any MB can represent
multiple different B, since we have two choices of vertices to include for each limb. In
theory any MB can represent 2k many distinct B, however since B is an intersecting
family the number of B ∈ B that are represented by MB is at most 2k−1. Let sM be
the number of sets in B represented by M . Since M is an intersecting family where
every set consists of exactly k elements, the Erdős-Ko-Rado Theorem implies that
|M| ≤ 	

n−1
k−1

�
. Thus we get the inequality

|B| =
�
M∈M

sM ≤


n− 1

k − 1

�
2k−1.

To find a bound of C, we first define NB to be the set of n − r leafs that are neither
in B nor adjacent to a vertex in B for B ∈ B. Then MB and NB form a partition of
the leafs of our graph G. Let N := {NB : B ∈ B}. Since M is intersecting we know
that MB1 and MB2 also have non-empty intersection for any B1, B2 ∈ B. Therefore
we get |MB1 ∪MB2 | ≤ 2k− 1. All leafs not in this union are members of NB1 and NB2

and there are at least n − (2k − 1) > 0 many of them. This implies that N is also
intersecting and we can apply Lemma 4.4 with a = n− r, b = n− (2k − 1) to get

|N | ≤ |∂k−1N|.
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Every set S ∈ ∂k−1N is a collection of sets of k − 1 leafs such that S ⊆ NB, for some
B ∈ B. Thus S is disjoint to MB and also disjoint to B.
Let C ∈ C. Since the root vertex r ∈ C and |C| = k, we know that C contains k − 1
leafs. Because A is intersecting we know that C has non-empty intersection with every
B ∈ B. By our above observation C is not a member of ∂k−1N . This yields an upper
bound of

|C| ≤



n

k − 1

�
− |∂k−1N|.

Since |N | ≤ |∂k−1N| we get

|C| ≤



n

k − 1

�
− |N |.

We already showed that every B ∈ B defines MB and NB, which partition the leafs of
G. Therefore we have |M| = |N |, which results in

|C| ≤



n

k − 1

�
− |M|.

Finally we can add our bounds, to get an upper bound for |A|.

|A| = |B|+ |C|
≤ |M|2k−1 +



n

k − 1

�
− |M|

≤


n− 1

k − 1

�
2k−1 +



n

k − 1

�
−


n− 1

k − 1

�
=



n− 1

k − 1

�
2k−1 +



n− 1

k − 2

�
.

Note that strict inequality applies if n > 2k. If we apply Lemma 4.3 we get that the
size of an independent set is always less than or equal to the size of the largest k-star
of G, which is what we wanted to prove.

One of our assumptions was that n = µ(G) ≥ 2k− 1. For k = n, we will show that G
is not n-EKR, by constructing an intersecting family of independent sets, with bigger
size than the largest n-star of G. Let r be the root of G then G′ := G− r is the graph
obtained from G by removing the root. Thus G′ is isomorphic to n copies of K2. Now
G′ contains 2n independent sets of size n, that can be partitioned into complementary
pairs. For each such pair we choose the independent set that contains more leafs. If a
pair has an equal number of leafs, then we choose one arbitrarily. We define B to be
the family of exactly these sets. We picked exactly half of the independent sets, thus
we know that |B| = 2n−1. Further B has to be an intersecting family, since every set
contains n vertices and more than n/2 leafs, while the leaf partitioning partner is not
contained. But B is not a star. Now we define C = {C ∈ I(n)(G) : r ∈ C}. Every
C ∈ C contains the root and therefore contains n− 1 leafs. Therefore |C| = 	

n
n−1

�
= n
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and for every C ∈ C and B ∈ B we have C ∩B ̸= ∅ and B ̸= C. Let A = B ∪ C, then
A is intersecting and

|A| = |B|+ |C| = 2n−1 + n.

But this is larger than the largest n-star of G which, by Lemma 4.3, has size equal to

n− 1

n− 1

�
2n−1 +



n− 1

n− 2

�
= 2n−1 + n− 1.

4.1.2 Elongated Claws with Short Limbs

In this section we consider elongated claws. Contrary to depth-two claws, a limb can
now consist of more than two vertices, making the proofs slightly more complex. Our
goal is to show that an elongated claw with a short limb is k-EKR, if n ≥ 2k.

Let G = (V,E) be a graph and v ∈ V , we define G − v to be the graph obtained
by deleting v and all of its incident edges from G. We define G ↓ v to be the graph
obtained by deleting v and all of its adjacent vertices from G with all of their incident
edges.

Figure 22: An elongated claw with a short limb.

We start by stating some lemmata that will help us with the main theorem.

Lemma 4.5. Let k ∈ N+ and let G = (V,E) be a graph. Let v ∈ V and let u be a
vertex of G ↓ v. Then

|I(k)
u (G)| = |I(k)

u (G− v)|+ |I(k−1)
u (G ↓ v)|.

Proof. We define a partition of I(k)
u (G) into B = {A ∈ I(k)

u (G) : v /∈ A} and C = {A ∈
I(k)
u (G) : v ∈ A}. This is in fact a partition. But now we get that B = I(k)

u (G−v). On

the other hand |C| = |I(k−1)
u (G ↓ v)|, since no neighbor of v can be in the independent

set and v is fixed. Thus we get |I(k)
u (G)| = |B|+ |C|.
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Lemma 4.6. Let k ∈ N+ and let G = (V,E) be an elongated claw with a short limb
and root r. If x ∈ V is a leaf that is adjacent to r, then x is the center of a largest
k-star of G.

Proof. Let v ∈ V be a non-leaf that is adjacent to r. We have to show that |I(k)
v (G)| ≤

|I(k)
x (G)|. Suppose v = r, then these sizes are equal since you could swap r and v to

get the other independent set.
Otherwise let L be the limb of G that contains v. We will now construct an injection
f : I(k)

v (G) → I(k)
x (G), which proves the statement. Let A ∈ I(k)

v (G), then we define
the image of A as:

1. If x ∈ A, then f(A) := A.

2. If x /∈ A and r /∈ A, then f(A) := (A \ {v}) ∪ {x}.
3. If x /∈ A and r ∈ A, let X = {v = x1, . . . , xm} be the set of vertices from v to

xm, the unique neighbor of r in L. Let Y = A ∩ X = {xi1 , . . . , xij}, for some
1 ≤ j < m. Let Z = {xi1+1, . . . , xij+1}. Then |Y | = |Z| and Y ∩ Z = ∅. We
define f(A) := (A ∪ Z ∪ {x}) \ (Y ∪ {r}).

This function is indeed an injection, which proves the lemma.

Now we can prove the proposed theorem for elongated claws with short limbs.

Theorem 4.4. Let n, k ∈ N+, 2k ≤ n and let G be an elongated claw with n leafs and
a short limb. Then G is k-EKR.

Proof. Let r be the root of G. Let A ⊆ I(r)(G) be any intersecting family. We have
to show that the size of A is less than or equal to the size of the largest k-star. We do
this by induction over k. For k = 1 this holds trivially, since an intersecting family,
where every member is a single element set, can only have a single member.
Suppose now the theorem holds for k − 1, we want to show that it also holds for k.
Again we use induction over the number vertices |V | of G. Suppose G = K1,n is a
claw. By Theorem 4.2 the claw K1,n is k-EKR if 2k ≤ n. Thus let |V | ≥ n + 2 and
suppose that the result is true for elongated claws with fewer vertices.
Let x be a leaf adjacent to the root r and v be a leaf not adjacent to r. Let w denote
the unique neighbor of v and z the other neighbor of w.
The situation is depicted in Figure 23. Now we define a function f : A → I(k)(G) that
maps each A ∈ A to

f(A) =

�
(A \ {v}) ∪ {w}, if v ∈ A, z /∈ A, (A \ {v}) ∪ {w} /∈ A,

A, else.

This function effectively swaps v with w for an independent set, if independence is
preserved. Note that |A| = |f(A)|, since f is injective by construction. Now we define
three families:

❼ A′ := {f(A) : A ∈ A},

55



r

...

z

w

v

x
. . .

Figure 23: G with both leafs v and x and their unique neighbors.

❼ B := {A : v /∈ A,A ∈ A′},
❼ C := {A \ v : v ∈ A,A ∈ A′}.

By the definition of these families and f we get

|A| = |A′| = |B|+ |C|. (14)

Lemma 4.7. Both B and C are intersecting families.

Proof. Our claim is that both families B and C are intersecting. We start by defining a
partition of B into B1 := {B ∈ B : B ∈ A} and B2 := {B ∈ B : (B \ {w})∪ {v} ∈ A}.
This is indeed a partition, since every member of B1 is a fixpoint of f that does not
contain v and every member of B2 represents a set that is not a fixpoint of f . Now
B1 is an intersecting family, because A is intersecting and every member of B2 has
to contain w, thus B2 is also intersecting. We want to show that B is intersecting.
Therefore let B1 ∈ B1 and B2 ∈ B2. Since B1 and (B2 \{w})∪{v} are both in A, they
intersect. But v is not part of that intersection, because v is not in B1. Thus we get

∅ ≠ B1 ∩ ((B2 \ {w}) ∪ {v}) ⊆ B1 ∩B2,

showing that B1 and B2 intersect, which proves that B is intersecting.
Now we show that C is intersecting. Let C ∈ C, then C ∪ {v} ∈ A′ by definition and
also C ∪ {v} ∈ A, since every A ∈ A′ that contains v has to be a fixpoint of f . Now
either C∪{w} is in A or z has to be in C. Let C1, C2 ∈ C, then there are the following
cases. Either both contain z or both contain {w} or one contains the element that
is not in the other. Applying the previous consideration and assuming C1 does not
contain z, then C1∪{w} is in A. But C2∪{v} is also in A, which is intersecting. Thus
we get that C1 ∪ {w} and C2 ∪ {v} have non-empty intersection. Since all members
in A are independent, this intersection contains neither v nor w. Therefore we get

∅ ≠ (C1 ∪ {w}) ∩ (C2 ∪ {v}) = C1 ∩ C2,

which proves that C is also intersecting.
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Coming back to the proof, we note that G− v is an elongated claw with a short limb,
fewer vertices than G and still n leafs. Since every set in A consists of k independent
vertices, we know that every member of B contains k vertices of G − v and B is
intersecting, by the lemma above. Using the induction hypothesis on G − v, we get
that G− v is k-EKR, implying that the largest intersecting families are k-stars. Also
Lemma 4.6 guarantees that I(k)

x (G− v) is a largest k-star of G− v rooted at the leaf
x. Therefore we get

|B| ≤ |I(k)
x (G− v)|. (15)

Similarly G ↓ v is an elongated claw with a short limb, fewer vertices than G and either
n or n − 1 leafs. Each member of C now contains k − 1 vertices of G ↓ v and by the
previous lemma, we know that C is also intersecting. Using the induction hypothesis
again yields that G ↓ v is (k−1)-EKR and the largest intersecting families are (k−1)-

stars. Applying Lemma 4.6, we know that I(k−1)
x (G ↓ v) is a largest (k − 1)-star of

G ↓ v. Thus we get
|C| ≤ |I(k−1)

x (G ↓ v)|. (16)

Now we combine equations (14), (15) and (16) to obtain

|A| = |B|+ |C| ≤ |I(k)
x (G− v)|+ |I(k−1)

x (G ↓ v)|.

Using Lemma 4.5 we can finish the proof with

|A| ≤ |I(k)
x (G− v)|+ |I(k−1)

x (G ↓ v)| = |I(k)
x (G)|.

4.2 Lexicographic Products with Complete Graphs

This section is based on the work of Fred Holroyd and John Talbot [16]. We will
show that the lexicographic product of a k-EKR graph with a complete graph is again
k-EKR.

v4 v3

v2v1

y

x

Figure 24: The square graph Q4 and K2

Let G and H be graphs, then the lexicographic product G[H] is defined as the graph
with vertex set V (G[H]) = V (G) × V (H), where (v, w) ∼ (x, y) if and only if either
v ∼ x in G or v = x and w ∼ y in H. This definition is inspired by the lexicographic
ordering, where you order pairs by the first entry and only if these are equal, then
order by the second entry. The resulting graph can be thought of as a copy of G where
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v4, x

v4, y

v1, x

v1, y

v3, x

v3, y

v2, x

v2, y

Figure 25: The lexicographic product Q4[K2]

every vertex g ∈ V (G) is replaced by a copy of H.

An example is given in Figure 24. We start with the square Graph Q4 and K2.
Then the lexicographic product Q4[K2] is depicted in Figure 25. We color the edges
of every copy of the right graph of the product to better distinguish the construction
of the edge set.

A natural question to consider is whether the lexicographic product is commutative.
In general this is not the case, as illustrated by the product K2[Q4] as seen in Figure
26.

v4, x

v1, x

v3, x

v2, x

v1, y

v4, y v3, y

v2, y

Figure 26: The lexicographic product K2[Q4]
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If we redraw Figure 26 and place one square graph inside the other, then we obtain
Figure 27. This way it is easier to see, that the lexicographic product of two graphs

v4, x

v4, y

v1, x

v1, y

v3, x

v3, y

v2, x

v2, y

Figure 27: An isomorphic drawing of K2[Q4]

is not commutative. Thus in general G[H] ̸∼= H[G]. An easier way to verify this is
by considering the number of edges of the product. This calculation can be broken
down into two cases. Let G = (V1, E1), H = (V2, E2) and (v, x) be a vertex in the
product G[H]. If we fix the first coordinate v and only consider vertices such that
(v, x) ∼ (v, y), then we get a copy of H. In this case we get |E2||V1| many edges, since
for every vertex in V1 we get a copy of H. For the second case, (v, x) ∼ (w, y) if and
only if v ∼ w in G, we get that every copy of H is fully connected to every other copy
of H, as long as the respective first coordinates are adjacent in G. Thus for every edge
in G we get |V2|2 many new edges. Therefore the total amount of edges in G[H] is

|E(G[H])| = |E1||V2|2 + |E2||V1|.
Since this is not symmetric in general we have G[H] ̸∼= H[G].

It can be useful to allow an even more general definition of the lexicographic product.
Instead of replacing every vertex with the same copy of a graph, we can allow certain
vertices to be replaced by different graphs. For example let G, J and H be graphs,
then

G[v1, . . . , vk : H;w1, . . . wq : J ]

denotes the lexicographic product of G, where all vertices v1, . . . , vk are replaced by
H and all vertices w1, . . . wq are replaced by J . With this definition we can write the
disjoint union of the graphs G1, . . . , Gn as En[G1, . . . , Gn]. Since the vertices of En are
interchangeable, we will not mention them specifically.
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We start by introducing two lemmata, that help us deal with k-centers in lexico-
graphic products. A family of subsets of a set S is called a q-covering of S if each
element of S is contained in exactly q sets of the family.

Lemma 4.8. Let F be a family of k-subsets of S and let Γ ⊆ P(F) be a family of
subfamilies of F . Let x ∈ S. If for some q the following holds

❼ Γ is a q-covering of F ;

❼ x is a k-center for each G ∈ Γ,

then x is a k-center of F .

Proof. Let A be any intersecting subfamily of F and suppose that Γ is a q-covering of
F . Then Γ is also a q-covering of A, which implies

q|A| =
�
G∈Γ

|A ∩ G|. (17)

Since this holds for any intersecting subfamily, it also holds for Fx := {A ∈ F : x ∈ A}.
Therefore we have

q|Fx| =
�
G∈Γ

|Fx ∩ G| =
�
G∈Γ

|Gx|. (18)

The last equality holds, because x is a k-center for each G ∈ Γ. For an intersecting
subfamily A of F and G ∈ Γ we get that A∩G is an intersecting subfamily of G. Thus
we get

|A ∩ G| ≤ |Gx|. (19)

Using the equations (17), (18) and (19), we get

q|A| =
�
G∈Γ

|A ∩ G| ≤
�
G∈Γ

|Gx| = q|Fx|.

For any intersecting subfamily A of F we get

|A| ≤ |Fx|,
proving, that x is a k-center of F .

Lemma 4.9. Let v be a k-center of a graph G and let m ∈ N+. Then each vertex of
the form (v, x), with x ∈ V (Km) is a k-center of the lexicographic product G[Km].

Proof. We will assume that m > 1, since for m = 1 the statement is trivial. To
make our life easier for this proof, we will identify the vertices of G with the elements
{1, . . . , n} and the vertices of Km with the elements of the cyclic group Zm. Let F be
the family of functions f : {1, . . . , n} → Zm. There are |F| = mn many such functions.
Then for each X ∈ I(k)(G) and f ∈ F , we define

X ◦ f := {(v, f(v)) : v ∈ X}.

60



We now define an equivalence relation ∼ on our family of functions F , by identifying
f ∼ g, if there exists a z ∈ Zm, such that f(v) = g(v)+ z for all v ∈ {1, . . . , n}. Let Ψ
be the family of equivalence classes of this relation. For each ψ ∈ Ψ we define Iψ as

Iψ := {X ◦ f : X ∈ I(k)(G), f ∈ ψ}.
This is a subfamily of I(k)(G[Km]), since X ◦ f is an independent set for X ∈ I(k)(G).
Let y ∈ I(k)(G[Km]), then |y| = k. Further since y is independent we know that for all
(v1, x1), (v2, x2) ∈ y we have v1 ̸= v2. Thus we can represent y as X ◦ f for exactly one
X ∈ I(k)(G) and exactly mn−k functions f . This is because we have to fix k elements
and we can map the other vertices freely, also we can choose these functions from
distinct equivalence classes. Therefore the family {Iψ : ψ ∈ Ψ} is a mn−k-covering of
I(k)(G[Km]). Our goal is to use Lemma 4.8, meaning we have to show that each (v, x)
is a k-center of Iψ, for each ψ ∈ Ψ.

Let A be an intersecting subfamily of Iψ, for some ψ ∈ Ψ. We define

B := {X ∈ I(k)(G) : X ◦ f ∈ A for some f ∈ ψ}.

Then B is an intersecting subfamily of I(k)(G) and also |B| ≤ |I(k)
v (G)|. If X ∈ I(k)(G)

and f ̸= g are in ψ, then X ◦f ∩X ◦g = ∅. But A is intersecting, thus any two distinct
elements of A correspond to distinct elements of B. Therefore we get |A| = |B|. Since
we have already shown the inequality for B, we get

|A| ≤ |I(k)
v (G)|.

Let x ∈ Zm and let (v, x) be a vertex in G[Km]. For each ψ ∈ Ψ and X ∈ I(k)(G), we

have (v, x) ∈ X ◦ f , for some f ∈ ψ if and only if X ∈ I(k)
v (G) and there is exactly

one f that satisfies this condition. This can be seen by considering, that (v, x) ∈ X
has to hold for all X and secondly that there are no two functions f in the same
equivalency class that both map v �→ x. Thus for (Iψ)(v,x), which is also a subfamily
of I(k)(G[Km]), we get

|(Iψ)(v,x)| = |I(k)
v (G)|.

Using our above result we can conclude, that for any intersecting subfamily A of Iψ,
we have

|A| ≤ |(Iψ)(v,x)|,
which shows that each (v, x) is a k-center of Iψ. Now we can apply Lemma 4.8, to
obtain the result that each vertex (v, x) is a k-center of the lexicographic product
G[Km].

With these tools we can prove the theorem, all we need to do is to assemble the proof.

Theorem 4.5. If G is k-EKR and m ≥ 1, then G[Km] is also k-EKR.

Proof. Since G is k-EKR, we know that no independent set is larger, than the largest
k-star. Let v be that k-center. By Lemma 4.9, we know that (v, x) is a k-center for
G[Km], which proves the theorem.
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4.3 Further Developments

There have been a number of additional proofs that certain types of graphs are in fact
EKR graphs. We will give a brief summary of additional discoveries.

Theorem 4.6 (Borg and Holroyd). Let G be a disjoint union of complete multipartite
graphs, copies of mnd graphs, powers of cycles, modified powers of cycles, trees and
at least one singleton. Let k ≤ µ(G)/2, then G is k-EKR.

This theorem by Borg and Holroyd [4] proves that a large number of graph classes are
EKR. However they require the existence of a singleton vertex. The reason for that is
that it simplifies stars, since a singleton is a natural choice for the center of a star.

Another result is from Hurlbert and Kamat [17] that explores chordal graphs.

Theorem 4.7. Let G be a disjoint union of chordal graphs, including at least one
singleton. If k ≤ µ(G)/2, then G is k-EKR.

We end this chapter with a conjecture by Holroyd and Talbot [16], that inspired a lot
of researchers to expand the current list of EKR graphs and so far has held true.

Conjecture 4.1 (Holroyd and Talbot). Let G be a graph and 1 ≤ k ≤ µ(G)/2, then
G is k-EKR and strictly k-EKR if 2 < k < µ(G)/2.

One way to gain insights for this bound is to analyze α(G), since we know that µ(G) ≤
α(G). But calculating α(G) for a general graph G is a well-known strongly NP-
complete problem [20]. However a computationally easier bound to consider is from a
rather recent paper by J. Harant and S. Richter [13]. Let m = |E| be the size of the
graph G, dv be the degree of vertex v and δ be the minimum degree of G. For any
graph G the (normalized) Laplacian is defined as the matrix L = (lij) ∈ Rn×n, with
lij = 1 if i = j, lij = − 1√

didj
if ij ∈ E and lij = 0 else. Let σ be the largest eigenvalue

of the L of G. Then

µ(G) ≤ α(G) ≤ 2σ − 2

σδ
. (20)

Thus if the conjecture turns out to be true, it provides us with an upper bound for a
graph to be k-EKR that is significantly easier to compute, although also more lenient.
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[11] Peter Frankl and Zoltán Füredi. Non-trivial intersecting families. Journal of
Combinatorial Theory, Series A, 41(1):150–153, 1986.

[12] Chris Godsil and Gordon F Royle. Algebraic graph theory, volume 207. Springer
Science & Business Media, 2001.

[13] Jochen Harant and Sebastian Richter. A new eigenvalue bound for independent
sets. Discrete Mathematics, 338(10):1763–1765, 2015.

[14] Hans Havlicek. Lineare Algebra für Technische Mathematiker. Heldermann Ver-
lag, 2012.

[15] Anthony JW Hilton and Eric C Milner. Some intersection theorems for systems
of finite sets. The Quarterly Journal of Mathematics, 18(1):369–384, 1967.

[16] Fred Holroyd and John Talbot. Graphs with the erdős–ko–rado property. Discrete
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