
Erkennung verwandter Smart
Contracts anhand des Bytecodes

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Tan Yücel, BSc
Matrikelnummer 01525681

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dr. Gernot Salzer
Mitwirkung: Ass.Prof. Dr. Monika di Angelo

Wien, 20. April 2022
Tan Yücel Gernot Salzer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Identifying Related Smart
Contracts by their Bytecode

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Tan Yücel, BSc
Registration Number 01525681

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dr. Gernot Salzer
Assistance: Ass.Prof. Dr. Monika di Angelo

Vienna, 20th April, 2022
Tan Yücel Gernot Salzer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Tan Yücel, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 20. April 2022
Tan Yücel

v

Acknowledgements
“I haven’t actually seen further, but standing on the giants’ shoulders was fun
anyways.”

— Tan Yücel, 2022

vii

Kurzfassung

Das wachsende Interesse an Smart Contracts (Blockchain Programmen), die stetig
steigende Zahl von Teilnehmern im Crypto-Ökosystem, sowie neuartige Geschäftsideen
tragen dazu bei, dass das Gesamtsystem immer komplexer wird. Da nur wenige Entwickler
den Quellcode ihrer Smart Contracts offenlegen, kann die Identifizierung von funktionalen
Ähnlichkeiten zwischen Smart Contracts nützlich sein, insbesondere der Vergleich von
quelloffenen Contracts mit solchen, die es nicht sind. Dabei stellt die automatisierte
Analyse von Programmen, die nur als Maschinenprogramm vorliegen, ein immer noch
aktives Forschungsgebiet dar.

Die vorliegende Arbeit untersucht ein Verfahren zum Erkennen von Ähnlichkeiten zwischen
Smart Contracts, die als Maschinenprogramm vorliegen. Sie baut auf einer Publikation
von Huang et al. [HHY+21] auf, die Methoden des Machine Learning, Taint-Analyse und
simulierte Bytecode-Ausführung kombiniert. Ausgehend von Codesegmenten, die eine
Sicherheitslücke enthalten, extrahieren die Autoren sogenannte Slices und repräsentieren
sie als numerische Vektoren. Durch den Vergleich dieser mit analog kodierten Smart
Contracts gelingt es, ähnliche Sicherheitslücken in anderen Programmen zu identifizieren.

Unser primäres Ziel ist es, die Arbeit von Huang et al. nachzuvollziehen und mit eigenen
Datensätzen zu überprüfen. Eine Schwierigkeit besteht dabei darin, dass Huang et al.
ihr Verfahren nur lückenhaft beschreiben und ihre Daten nicht öffentlich verfügbar
sind. Unsere Ergebnisse sind daher nicht direkt vergleichbar, unsere Experimente liefern
aber Anhaltspunkte dafür, dass unsere Rekonstruktion weitgehend dem ursprünglichen
Verfahren entspricht. Weiters schlagen wir eine Reihe von Verbesserungen vor.

Ein weiteres Ziel unserer Arbeit ist die Erweiterung des Verfahrens von Huang et al.,
um die Ähnlichkeiten zwischen Smart Contracts als Ganzes zu bestimmen. Die zu
diesem Zweck entwickelte heuristische Matching-Methode vergleichen wir mit etablierten
Metriken wie dem Jaccard Index der Funktionssignaturen der Contracts. Versuche, die
mittels Datensätzen bestehend aus Wallet-Contracts durchgeführt wurden, zeigen auf,
dass eine mittelgroße Korrelation zwischen diesen Ähnlichkeitsmaßen besteht.

ix

Abstract

Smart contracts (blockchain programs) have now attracted significant interest, and the
growing number of participants in the ecosystem as well as refined business cases add
layers of complexities to the system. Automated tools quickly reach their limits when
trying to make sense of closed source smart contracts. As only a small proportion of live
smart contracts provide their source openly, it can be helpful to automatically determine
the functional similarity between smart contracts, especially with open and closed source.

In this thesis, we attempt to identify related smart contracts by extending the work
of [HHY+21] who tried to detect vulnerabilities in smart contracts using a combination
of machine learning techniques, taint analysis and simulated bytecode execution. By
extracting segments of bytecodes into so-called slices and calculating their numerical
vector representations, the authors were able to compare parts of smart contracts with
each other. Applying this on a set of vulnerable contracts allowed for the detection of
priorly unknown vulnerabilities in other smart contracts.

The primary goal of this work is to create suitable datasets and verify the methods
deployed by [HHY+21]. While our results do not reach the levels of [HHY+21], we believe
that they show that our implementation of the method works as intended. Based on
our findings, we compile a list of suggestions for substantial improvements in future
iterations.

The second goal of this thesis is to extend the above-mentioned method so that it can
also detect similarities between contracts as a whole. We deploy a scalable heuristic
method of matching several slices of different contracts with each other. By comparing
our computed similarity score with existing metrics, e.g. the Jaccard index over function
signatures between two contracts, we try to argue in favor of our extension of the original
method. Experiments conducted over a dataset consisting of wallet contracts show that a
moderately high correlation between our method and the Jaccard index can be achieved.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Research Questions . 2
1.4 Related Work . 3

2 Background 5
2.1 Blockchain Technologies . 5
2.2 Ethereum . 6
2.3 Smart Contracts . 6
2.4 Ethereum Virtual Machine . 8
2.5 Common Types of Contracts . 10
2.6 Smart Contract Skeletons . 11
2.7 Control Flow Graphs . 11
2.8 Neural Networks and Embeddings . 11

3 Approach 17
3.1 Obtaining Bytecodes . 19
3.2 Generating the Control Flow Graphs 19
3.3 Preprocessing & Slicing . 20
3.4 Graph Embedding . 29
3.5 Similarity Measurement . 29
3.6 Hypotheses . 34
3.7 Contributions . 35

4 Evaluation 37
4.1 Data Recency . 37
4.2 Test Unit Specification . 37

xiii

4.3 1-to-1 Slice Matching . 39
4.4 N-to-M Slice Matching . 45

5 Discussion 69
5.1 1-to-1 Matching . 69
5.2 N-to-M Matching . 81
5.3 Research Questions . 87

6 Conclusion 89
6.1 Future Work . 89
6.2 Limitations . 91
6.3 Closing Thoughts . 92

List of Figures 95

List of Tables 97

Glossary 99

Acronyms 101

EVM Opcodes 103

Bibliography 105

CHAPTER 1
Introduction

1.1 Motivation
The rise in popularity of blockchain technologies in the last decade has spawned many
interesting research areas. Smart contracts (blockchain programs) in particular have
attracted significant interest, as advocates claim revolutionary innovations for the financial
sector by eliminating the need for trust from business processes. The ability of smart
contracts to interact with each other, as well as the growing number of participants in
the ecosystem, pave the way for increasingly refined business cases which add layers
of complexities to the system that become increasingly difficult to unravel. Existing
automated tools often reach their limits when trying to make sense of closed source smart
contracts.

The nature of smart contracts on the Ethereum blockchain makes understanding their
semantics quite a difficult task when the source code is not available. While some
developers cooperate by allowing external audits, or by disclosing the source code of their
dApp (and thereby putting their business model at risk), most smart contract creators
do not act in such good faith. As previous work has shown, source codes are only directly
available for 11 % of the smart contracts [dAS19b]. But even with source code available,
it remains a non-trivial task to detect functional similarities automatically on a large
scale.

Another dimension is added to this problem by the most widespread compiler, Solidity
Compiler (solc)1, which offers different levels of gas cost optimization. This fact, combined
with the continuous evolution of the compiler over the last 7 years, makes it difficult to
relate smart contracts to each other without relying on information from outside the
blockchain (e.g. the contract source code).

1https://docs.soliditylang.org/en/v0.4.21/installing-solidity.html

1

https://docs.soliditylang.org/en/v0.4.21/installing-solidity.html

1. Introduction

We hope that this work will help paint a clearer picture of the smart contract landscape
on Ethereum blockchain. Our findings may prove relevant to people who want to know
more about how, where and which contract code is re-used, and at which scale it is
happening on the Ethereum blockchain.

1.2 Problem Statement
Huang et al. [HHY+21] describe a promising method for detecting vulnerabilities in
smart contracts by combining machine learning algorithms, taint analysis and other
techniques to extract information out of contract bytecodes. By doing so, they claim that
they were able to automatically detect vulnerabilities that were previously undiscovered.

The aim of our work is two-fold. On the one hand, we want to reproduce the findings
of [HHY+21], in order to confirm the suitability of the proposed methods for vulnerability
detection. The difficulties herein lie in the fact that the authors have neither published
any source code, nor any of the datasets they operate on. This means, a software
prototype needs to be implemented, and suitable datasets created according to their
description. In addition, many assumptions have to be made at places where the original
paper lacks in detail. By establishing a working software pipeline and selecting adequate
datasets, we verify their method.

On the other hand, we want to investigate whether the methods used by [HHY+21] can
be leveraged to relate entire contracts to one another. Our reasoning is that if their
work can be used to identify vulnerable bytecode within bodies of contracts, it should be
adequate for the detection of similarities between contracts as a whole. In summary, our
second goal is to measure how well the methods that we modelled after [HHY+21] are
suited to detect semantic similarities between smart contracts en masse.

1.3 Research Questions
The term related contract in the title leaves room for interpretation. One possible
understanding is the sense of contracts belonging together, e.g. smart contracts that can
only act out a certain process when they are combined, and use each other to process a
transaction. Related in the more traditional sense could also imply contracts that are
literal “offsprings” of other contracts, as is observable with breeder contracts [dAS19b].
The thesis will focus on a third interpretation: Related contracts in the sense of contracts
sharing (parts of) the same semantics. More precisely, we will focus on related contracts
in the context of the following research questions.

RQ1: Can we verify that the method of [HHY+21] performs as described when
used on our dataset?
By creating a prototypical implementation of their described method and using
comparable datasets, we aim to verify whether their methods are expedient or not.

2

1.4. Related Work

RQ2: How well can semantic similarities between smart contracts be detected
by extending the method of [HHY+21]?
By extending their method of comparing individual slices, we want to relate entire
contracts to each other. For this we make use of known to be similar contracts like
the Ethereum Request for Comment (ERC) token suite, or wallet contracts that
were previously classified by [dAS20d]. We regard the function signatures of smart
contracts as points of orientation when determining the quality of our results.

1.4 Related Work
To a large extent, our work is based on the findings of [dAS19b], who investigated the
similarity of contracts based on their function interfaces.

EtherSolve — a tool developed by Contro et al. [CCCP21] — computes the Control
Flow Graph (CFG) of a smart contract starting from its creation or runtime code. The
authors released their findings as part of an open-source GitHub repository2. EtherSolve
includes a command line interface and is well documented. We will use it for various
analysis tasks, as well as a building block to obtain CFGs.

Narayanan et al. [NCV+17] introduce graph2vec, a neural embedding framework that
is able to create vector representations of arbitrarily sized graphs in an unsupervised
manner. The authors of [HHY+21] leverage this framework to efficiently detect similarities
between CFGs of smart contracts. By doing so, they aim to detect commonly occurring
vulnerabilities in smart contracts — an approach that is also carried out by us.

In a related note, Xu et al. [XLF+17] introduced a novel approach to detect similarities
in conventional binary code using graph embeddings. They published their software
prototype on an open source repository3, though a plugin for the binary code analysis
tool IDA4, which is used to obtain the graph embeddings from the program binaries, is
not publicly available.

Osiris is a framework by Ferreira Torres et al. [FTSS18] based on a procedure similar
to [HHY+21] combining symbolic execution and taint analysis. In their work, the authors
have been successful in finding integer bugs in smart contracts.

Fröwis et al. [FFB19] use similar approaches of symbolic execution and taint analysis to
accurately classify Token contracts as such. Their approach is able to “[...] detect token
systems by their characteristic behavior of updating internal accounts” [FFB19, p. 93].

Liu et al. [LYJ+19] introduce the notion of smart contract birthmarks, a “semantic-
preserving and computable representation for smart contract bytecode” [LYJ+19, p. 105].
These birthmarks consist of a combination of syntactic features, as well as some semantic
patterns defined by the order of appearance of opcodes within single building blocks in

2https://github.com/SeUniVr/EtherSolve
3https://github.com/xiaojunxu/dnn-binary-code-similarity
4https://hex-rays.com/ida-free/

3

https://github.com/SeUniVr/EtherSolve
https://github.com/xiaojunxu/dnn-binary-code-similarity
https://hex-rays.com/ida-free/

1. Introduction

a smart contract’s CFG. Using these birthmarks, the authors of [LYJ+19] were able to
implement a clone detector achieving high levels of accuracy on an undisclosed dataset.
The authors provide their software prototype in the form of a public GitHub repository5.

Eth2Vec, a machine-learning-based static analysis tool by Ashizawa et al. [AYCO21],
is able to identify smart contract vulnerabilities by its bytecode. The authors claim
that Eth2Vec is even robust against rewrites, thus detecting vulnerabilities more reliably.
Eth2Vec uses a neural network for natural language processing, which allows to learn the
context of each function in order to extract features more precisely. Its source code is
available on a public GitHub repository6.

Mythril, a security analysis command line tool developed and maintained by the company
ConsenSys, is able to execute smart contract bytecode symbolically and visualize the
CFG of smart contracts [Ber18]. By making use of techniques such as SMT solving and
taint analysis, Mythril is able to detect a variety of security vulnerabilities in smart
contracts, e.g. reentrancy bugs or unsafe math operations [Con21, dAS19a].

5https://github.com/njaliu/ethereum-clone/
6https://github.com/fseclab-osaka/eth2vec

4

https://github.com/njaliu/ethereum-clone/
https://github.com/fseclab-osaka/eth2vec

CHAPTER 2
Background

A short introduction to blockchain- and other relevant technologies and techniques used
in this work is provided in this chapter. Due to longevity reasons, we forgo a detailed
workup, especially in regard to technical implementations of core blockchain technologies
that are not in the scope of this work. We also omit some details about Neural Networks
(NNs), and instead refer to our cited sources, as they represent much more coherently
assembled works in this area. Rather, we describe the functional aspects of embedding
networks with special focus on graph2vec as it was used in the conducted experiments.
Should open questions remain beyond what is explained, please refer to the cited sources
to gain a more thorough image of the topic.

After covering key aspects of blockchain technologies, this chapter will present peculiarities
of smart contracts on Ethereum, the Ethereum Virtual Machine (EVM) as their execution
environment, the Solidity programming language, the Solidity compiler solc, Control
Flow Graphs (CFGs), and finally graph2vec.

2.1 Blockchain Technologies
Hewa et al. [HYL21] name three key features associated with blockchain technologies.
Through decentralization of compute nodes blockchains achieve high redundancy which
essentially guarantees availability. Contributors to the blockchain network share the
authority by built-in (governance) protocols. Immutability allows a deterministic single
source of truth: Participants of the network can verify the integrity of the blockchain data
themselves at any time. This is enabled by cryptographic links (i.e. hash pointers) that
ultimately make for an absolute chronological order of transaction records. Furthermore,
participants of the network can verify each other’s integrity using digital signature schemes
and do not have to trust a third party to act as a trustworthy middleman [HYL21].
Transaction validators (i.e. miners) are generally encouraged to participate in such
blockchains through monetary rewards [Nak08].

5

2. Background

Bitcoin, the first public blockchain application, combines these concepts to create a
Peer-to-Peer Electronic Cash System, as named by the original author [Nak08]. Initially
seen as a means to send financial transactions securely around the globe, the paradigm
of blockchain has undergone numerous small but significant shifts since then. Many
blockchain systems have sprung into existence ever since, bringing, e.g., improved con-
sensus protocols, better scalability, or extensive on-chain self-governance. As already
mentioned in chapter 1, our work focuses on the Ethereum blockchain, specifically on its
smart contracts.

2.2 Ethereum
Buterin et al. [But14] describe the purpose of Ethereum as follows:

“The intent of Ethereum is to merge together and improve upon the concepts of scripting,
altcoins and on-chain meta-protocols, and allow developers to create arbitrary consensus-
based applications that have the scalability, standardization, feature-completeness, ease
of development and interoperability offered by these different paradigms all at the same
time.” [But14, p. 12]

While the concept of smart contracts had already been described as early as the
1990s [RBC+98], Ethereum was the first blockchain to design and implement a sys-
tem that was not only able to execute such contracts, but also to have the characteristics
mentioned in section 2.1 [But14].

The Ethereum blockchain stores a world state comprising different properties per account.
Examples for such properties are e.g. an account’s balance or a code section for storing
smart contract bytecode. These values can only be manipulated through transactions.

2.3 Smart Contracts
Smart contracts (also referred to as contracts henceforth) are computer programs that
can be stored on the blockchain. Users can interact with them by issuing transactions
specifying a contract’s address, data determining which function should be executed,
as well as the arguments it takes (if any) [But14]. Typical examples for applications of
smart contracts are, e.g. Token contracts (Non-fungible Tokens (NFTs)), Decentralized
Finance (DeFi) apps, or wallet contracts. Even though smart contracts can interact with
each other (for example by calling each other’s functions), they do not do so on their
own. This makes them event-driven — they cannot execute without an external account
initiating the call.

Transactions encapsulate the necessary information to compute the next state from the
current one. This means that one can compute the most recent world state (comprising
all balances, contract storages, etc.) by successively executing all transactions in their
respective order in Ethereum’s own execution environment, the Ethereum Virtual Machine
(EVM) [But14].

6

2.3. Smart Contracts

In order to mitigate Denial of Service (DoS) attacks, each individual instruction that is
executed inside the EVM has a particular cost assigned to it. These costs are referred to
as gas costs. For a transaction to succeed, a sufficiently large amount of ether has to
be provided by the issuer of the transaction. The gas price is paid in ether and its cost
generally fluctuates based on the network’s load.

2.3.1 Solidity and solc
While there are several languages that can be compiled to EVM bytecode such as Vyper
or Rust, the dominant platform to write smart contracts on Ethereum is the Solidity
language [QTN21]. Its syntax is influenced by C++ and JavaScript and it offers typical
Object-oriented programming (OOP)-like patterns, e.g. inheritance or interfaces [Eth22b].
Using Listing 2.1 as an example, we want to highlight some of the language’s features
which will later turn out to be relevant to this work.

1 pragma solidity >=0.7.0 <0.9.0;
2
3 contract Storage {
4
5 uint256 number;
6
7 constructor(uint _number){
8 number = _number;
9 }

10
11 function store(uint256 num) public {
12 number = num;
13 }
14
15 function retrieve() public view returns (uint256){
16 return number;
17 }
18 }

Listing 2.1: An example smart contract with a constructor.

The first line in this contract constrains the versions of solc that can be used to compile
this contract — a feature that was introduced with version 0.4.0. Compiling the same
source code using different versions of solc will often result in slightly different bytecodes,
as is depicted by Figure 2.1. The cost of deployment of a contract can be seen as a
linear function of the size of its bytecode. In order to save cost, the developer can tell
solc whether to optimize for a cheap deployment or gas-efficient computing during the
contract’s lifetime. For this, a parameter estimating the total function calls during a
contract’s lifetime can be provided to solc using the argument --optimize-runs. This
feature adds further variation to contract bytecodes that embody the same semantics,
and poses another hindrance when trying to relate similar contracts to each other.

Per default, solc will compile contracts into deployment bytecode. During deployment, it
executes the constructor code (e.g. line 7 in Listing 2.1), and then copies the remaining

7

2. Background

Figure 2.1: Different compiler versions resulting in different bytecode. The instructions
marked bold perform the same semantic operation. Figure taken from [HHY+21].

contract-code onto the blockchain, i.e. to an account’s code section, to persist it. In the
case of our example, the provided argument _number is persisted in the storage variable
number during deployment. This work will focus only on deployed contract bytecodes,
and we will perform our experiment only on such.

Function Signatures

Functions in smart contracts are identified by the hash of their signature — a characteristic
that we benefit from later. To be precise, the first four bytes of the hash are regarded as
unique enough to adequately identify functions within a single contract [Eth22a]. As it
turns out, these 4-byte identifiers encode additional information into contracts when they
are used in combination with a mapping between function signatures and their respective
4-bytes, as can be found here for example [dAS19b]. The use of such a mapping allows
to reason about the semantics of contracts without necessarily knowing their source code.
For a complete specification of how function selectors are computed we refer to [Eth22a].

To give an example, contracts conforming to an ERC token standard can be identified
as such using these 4 byte signature hashes [dAS20c]. Naturally, developers can not be
forced to adhere to standards when writing contracts — a contract could implement the
token interface, but the actual bodies of the functions could be empty, or do something
else entirely. Knowing this makes it a bit more challenging to make reliable statements
about the semantics of individual contracts, but we believe that function signatures
provide enough information to be a good metric when dealing with many contracts at
once, especially when trying to reason about their similarities like we will do later.

2.4 Ethereum Virtual Machine
The Ethereum Virtual Machine (EVM) is a (quasi) turing-complete stack machine [HSR+18],
and as part of the consensus protocol is implemented by every node participating in the
Ethereum blockchain [Woo14]. It is responsible for the correct execution and validation
of transactions that interact with smart contracts.

8

https://ethereum.logic.at/dictionary

2.4. Ethereum Virtual Machine

Program Counter

Gas Stack Memory

Ethereum Virtual Machine (EVM)

EVM Code

Account Balance

Machine State
(volatile)

World state
(persistent)

(Account) storage

loads

Tx Data
persists to

Block-info
Timestamp

Chain-info ...queries

Figure 2.2: Illustration of the EVM and its core components. Figure adapted from the
official Ethereum documentation1.

As visible in Figure 2.2, the EVM’s volatile machine state µ consists of the stack, a memory
region, and a Program counter (PC) keeping track of the currently executed instruction.
During execution, the EVM has access to the persistent world state σ, which can be
used to query information about the execution environment, e.g. using the instructions
BLOCKHASH or NUMBER. Another important section in Figure 2.2 is the arrow
depicting the transaction data. Using instructions like CALLER, CALLDATALOAD
or CALLVALUE, the EVM can query this section for sender provided data. Based on
this, the EVM can identify which function to execute, the arguments to use, and the
amount of ether provided by the sender. In order to persist data, each smart contract
has access to a personal storage section. The storage is readable by everyone, but only a
contract can write data to its own storage. For each instruction that is executed, the
EVM deducts the instruction’s individual gas cost from the total gas provided by the
transaction sender. As already mentioned, this mechanism protects the network against
DoS attacks by preventing transactions to run indefinitely [Woo14].

The EVM’s instruction set currently consists of 145 distinct 1-byte wide instructions [Woo14]2
— also referred to as opcodes. Besides the above-mentioned instructions to query en-
vironmental information, they comprise operations for basic arithmetic and bitwise
computation, hashing, logging, and other system functionalities that, e.g., allow interact-
ing with or query information about other smart contracts. In addition to these, further

1https://ethereum.org/en/developers/docs/evm/
2https://ethervm.io/

9

https://ethereum.org/en/developers/docs/evm/
https://ethervm.io/

2. Background

instructions exist which may manipulate the world state by creating new contracts
(CREATE, CREATE2), or enabling contracts to destroy themselves (SELFDE-
STRUCT) [Woo14]. Transfer of ether (i.e. monetary value) between two accounts (e.g.
a contract or externally owned) is realized by using one of the CALL* operations or a
CALL transaction. As the EVM is a stack machine, stack manipulating operations of
the families PUSH, DUP and SWAP are extensively used [Koo92].

2.4.1 Stack, Storage, Memory
During the execution, the EVM has access to three different kinds of areas where data
can be read from and written to.

Stack The stack is ephemeral and interacted with by most of the opcodes. Individual
elements in the stack range from one to 32 bytes in size, and the stack can store
at most 1024 elements. Depending on the instruction, the number of elements
consumed from the stack ranges from 0 to 7, but none of the currently existing
instructions produce more than one output element onto the stack [Woo14].

Memory The memory section resembles a computer’s memory: Opcodes that use larger
amounts of data use this area as a type of buffer. It is a bit more expensive to use
than the stack, albeit still transient [Woo14].

Storage The storage is the only persistent area. It is a key-value store of 256-bit length
each. Since the storage is replicated along all nodes in the network, taking up space
here is an expensive operation in terms of real cost and gas cost. For this reason it
is encouraged to free up unused storage by providing a partial refund on the gas
that was used when initially storing the data [Woo14].

2.5 Common Types of Contracts
In the context of this work, it is worth mentioning two types of contracts in particular.

Wallet Contracts A wallet contract is described by di Angelo et al. as a “contract
that provides functionality for collecting and withdrawing Ether and tokens via its
address” [dAS20b, p.393]. We will use their findings — wallet contracts classified
into groups — as a ground truth to measure the quality of our results in chapter 4.

Standard Contracts Standard contracts are contracts that adhere to a standardized
interface. As already mentioned in section 2.3.1 these are identifiable over their
function signatures. An example for such contracts would be the ERC contract
suite. SafeMath, a standard library to prevent integer under- and overflows, was
commonly used by other contracts before solc included built-in checks for these
types of errors.

10

2.6. Smart Contract Skeletons

2.6 Smart Contract Skeletons
We use the technique of “skeletizing” bytecodes described in [dAS19b], [dAS20d] and [dAS20a].

“The skeleton is obtained from the bytecode by removing parts that do not affect function-
ality: Solidity meta-data, constructor arguments and PUSH arguments are replaced by
zeros, then trailing zeros are stripped. [...] Two bytecodes are functionally equivalent if
their skeletons are identical.” [gsa22]

As we will later describe in more detail, this allows us to reduce the number of truly
unique contracts when building our datasets. The code used for this is available on
GitHub3.

2.7 Control Flow Graphs
As is the case with conventional compilers, solc compiles smart contracts into modular
semantic units with the goal of optimizing for performance, length of the compiled code
and, in case of smart contracts, gas cost.

Using symbolic execution, Contro et al. [CCCP21] were able to create CFGs from
bytecodes of contracts. Figure 2.3 provides a visual depiction of such a CFG. The authors
define basic blocks as “a sequence of opcodes which are executed consecutively between a
jump target and a jump instruction, without any other instruction that alters the flow
of control” [CCCP21, p. 4]. Key to identifying the basic blocks (i.e. nodes) of a CFG
are those opcodes that do alter the flow of control. The instructions marking the end of
a basic block are JUMP, JUMPI, STOP, REVERT, RETURN, INVALID and
SELFDESTRUCT, whereas the instruction JUMPDEST marks its beginning.

Since information about jump targets is not stored in the contract bytecode itself but
needs to be computed during the runtime of a contract, the authors of [CCCP21] employ
symbolic execution to identify the edges between nodes. They classify different kinds of
jumps, which we will omit due to the fact that this distinction is not relevant for our
experiments.

2.8 Neural Networks and Embeddings
This section gives a (short) primer to Neural Networks (NNs), vector embeddings, and
how the former can be used to obtain the latter. We discuss the advantages and potential
usages of these embeddings by using word2vec as an example, and proceed to describe
graph2vec, the embedding framework used in this thesis. Since the area of Machine
Learning (ML) has numerous distinctive terms associated with it, we display commonly
used terminology in italics and refer to Google’s ML Glossary4, should uncertainties
remain as to their meaning.

3https://github.com/gsalzer/ethutils/tree/main/doc/skeleton
4https://developers.google.com/machine-learning/glossary

11

https://github.com/gsalzer/ethutils/tree/main/doc/skeleton
https://developers.google.com/machine-learning/glossary

2. Background

0: PUSH1 0x80
2: PUSH1 0x40
4: MSTORE
5: PUSH1 0x04

7: CALLDATASIZE
8: LT
9: PUSH1 0x1c
11: JUMPI

41: JUMPDEST
42: PUSH1 0x01
44: CALLVALUE
45: EQ
46: PUSH1 0x35
48: JUMPI

132: EXIT BLOCK

12: PUSH1 0x00
14: CALLDATALOAD

15: PUSH1 0xe0

17: SHR

18: DUP1
19: PUSH4 0x909dd8f6

24: EQ
25: PUSH1 0x21

27: JUMPI

33: JUMPDEST
34: PUSH1 0x27
36: PUSH1 0x29
38: JUMP

53: JUMPDEST
54: PUSH1 0X01

.

.

.
130: POP
131: JUMP

39: JUMPDEST
40: STOP

49: PUSH1 0x00
51: DUP1
52: REVERT

28: JUMPDEST
29: PUSH1 0x00
31: DUP1
32: REVERT

Entry Block

Block

Exit Block

Jump or
Continuation block

Figure 2.3: Example of an acyclic control flow graph. Illustration adapted
from [CCCP21].

2.8.1 Neural Networks
The smallest building block of a Neural Network (NN) is called a neuron. It is generally
described as a data-structure comprising multiple real-valued and individually weighted
inputs that are summed up and passed to an activation function ϕ, the neuron’s out-
put [GK11]. Commonly used activation functions for ϕ are Rectified Linear Unit (ReLU)
or the sigmoid function [WS21]. Usually, neurons are also assigned a negative or positive
bias b, which is added to the sum of the weighted inputs. A NN consists of multiple layers
of such neurons, connecting neurons in layer n with neurons in layer n + 1. By varying
the number of connections between layers, one can obtain very differently performing
models. Examples for common types of layers are e.g. fully connected (dense) layers,
convolutional layers, or pooling layers. Since there is no single, general-purpose NN that
performs well on every possible task, many different types of NNs have been developed
over the past. In the context of embedding tasks, we will focus on shallow, feed-forward
networks, with fully connected layers.

12

2.8. Neural Networks and Embeddings

(a) A neuron with 3 inputs and acti-
vation function ϕ. Illustration adapted
from [Pic22].

(b) A two-layered, fully connected neural
network.

Figure 2.4: Single neuron vs. neural network.

Figure 2.4a provides an example of a neuron with 3 inputs xi, i ∈ {1, 2, 3}, while
Figure 2.4b depicts how the outputs of individual neurons are propagated from one layer
to another.

Training

Training a NN is the act of adjusting weights and biases of the network, in a way that
improves inferring (predicting) labels from given features. Key to this procedure is
a loss function, i.e. a method of evaluating how well an algorithm models a dataset.
Backpropagation is a commonly used technique for learning in feed-forward NNs. In the
case of embedding networks, the authors of [MCCD13] combine backpropagation with a
method called negative sampling in order to reduce training time.

2.8.2 Embedding Example: word2vec
The skip-gram model introduced by Mikolov et al. [MCCD13] allows to encode words
in a N -dimensional vector space while preserving their semantics in an unsupervised
manner. It works by training a network using a one-hot encoded vector representation of
words as feature and their contexts as labels. In order to obtain the word embeddings, the
last layer of the network is dismissed. For each input word, the outputs of the second
to last layer are calculated and extracted. These are regarded as the N -dimensional
vector representations of the individual words [MCCD13]. Figure 2.5 depicts a network
implementing the skip-gram model with an embedding dimension of N = 300.

13

2. Background

0
0

0
0

0
0

1
0

0
0

0

...

Input Vector

One-hot encoded
representation of
the word ant

10,000 positions 300 neurons
...

...

10,000 neurons

Hidden Layer
Linear Neurons

Output Layer
Softmax Classifier

Probability that the word
appearing in the context of ant
is abandon

... ability

... able

... zone

Figure 2.5: Skip-gram as described in [MCCD13]. Image adapted from5.

Word embeddings enable interesting applications. A prominent example is one provided
by the original authors, and showcases the additive composability of word vectors: “[...]it
was shown for example that vector(‘King’) − vector(‘Man’) + vector(‘Woman’) results in
a vector that is closest to the vector representation of the word Queen” [MCCD13]. In our
work we are interested in the peculiarity that the similarity between such vectors in N
dimensions is as easy to calculate as it is for vectors in lower dimensions: By computing
their cosine similarity. Due to the fact that this is a very light operation, resource-efficient
mass computation of similarity becomes viable [MCCD13].

5https://israelg99.github.io/2017-03-23-Word2Vec-Explained/

14

https://israelg99.github.io/2017-03-23-Word2Vec-Explained/

2.8. Neural Networks and Embeddings

2.8.3 graph2vec

Document ID Doc2vec

(skipgram)

word 1

word 2

word c-1

word c

...

(a) doc2vec samples c words from a docu-
ment d, and uses them to learn d’s represen-
tation.

Graph ID Graph2vec

(skipgram)

rooted subgraph 1

rooted subgraph 2

rooted subgraph c-1

rooted subgraph c

...

(b) graph2vec treats a graph g as
doc2vec treats a document. The rooted
subgraphs of g are used as context analo-
gously to words in doc2vec.

Figure 2.6: Comparison doc2vec vs. graph2vec. Both figures adapted from [NCV+17].

The authors of [NCV+17] borrow the idea of unsupervised feature encoding and apply it
to graphs. They draw parallels between doc2vec, an extension of word2vec for embedding
entire documents, and graph2vec. Figure 2.6 illustrates the intuition behind graph2vec.
The idea is to treat rooted subgraphs within a graph as words, while the graphs themselves
make up the document. According to [NCV+17], this allows for capturing structural
equivalences between graphs while learning their embedding vectors in an unsupervised
manner. The authors name two use cases for their work, namely graph classification and
graph clustering.

The functional aspects of graph2vec that are relevant to our work are that it takes a
corpus of graphs as input, and produces their corresponding N -dimensional embedding
vectors as output. As was the case with word embeddings, graph embedding vectors also
allow for fast comparison by calculating their cosine distance. In this work, we will use
these properties to calculate similarities between graphs extracted of smart contracts.

15

CHAPTER 3
Approach

We base our approach on the work of [HHY+21] by applying the techniques described by
the authors. The aim of their work was to automatically detect re-used vulnerabilities
among different smart contracts. In addition to trying to recreate their findings, we want
to explore if the described methods can be used to detect semantically related bytecode en
masse. The difficulty in this task does not only lie in the aforementioned characteristics
of the solc compiler, but also in the amount of data that has to be processed. Thus, while
often referring to the original, this chapter will also go into detail about the enhancements
that had to be made to ensure a scalable end-to-end process.

Figure 3.1: The entire process as laid out by the authors. Illustration taken directly
from [HHY+21].

Figure 3.1 depicts the process pipeline of [HHY+21]. By manipulating the CFGs of smart

17

3. Approach

contract bytecodes, the authors of [HHY+21] are able to extract graph-like datastructures
called slices. The embedding framework graph2vec is used to learn the embedded
representation of these slices in an unsupervised manner. These steps are performed using
different datasets, one containing contracts from the blockchain and the other containing
known-to-be vulnerable contracts. Finally, they identify slices that embody the most
of a vulnerability’s logic, which they then match against slices extracted from all other
contracts. Since the embedded representations of slices are easily comparable, they are
able to discover previously undetected vulnerabilities within real smart contracts.

We try to re-enact their steps, and extend their approach by the process pipeline depicted
in Figure 3.2. The most significant differences are related to optimizations that were made
in order to increase contract throughput: We operate on a smaller dataset by grouping
together semantically equivalent contracts, and we leverage the immense parallelization
capabilities of the GPU compared to the CPU for the calculation of similarities. For
the sake of modularity in our experiments we consolidate the results of each stage in
individual files in the JavaScript Object Notation (JSON) format.

EtherSolve

CFGs

Slice Extraction

Graph Embedding

Vectors

Similarity Measurement

& Further Analysis

5% / 10% of Skeletons

sampling

Unique Skeleton Groups

Figure 3.2: Our application of the process. Each step’s resulting data is stored in a
separate file to enable checkpoint-like behaviour when running experiments with different
parameters/tunings etc.

18

3.1. Obtaining Bytecodes

3.1 Obtaining Bytecodes
The first step of our process is to obtain the bytecodes of smart contracts. Since the
size of the body of contracts has a large impact on the runtime of the whole process,
it is crucial to reduce this number to a minimum. Thankfully, it is no secret that a
large portion of smart contracts are functional clones of each other, with little to no
semantic differences [dAS20b]. At the time of writing, there are 490 k unique smart
contracts among the 47.6 M deployed ones on the Ethereum main chain. In order to
further reduce the number of unique contracts, and group those together whose code differ
only minimally, we generate smart contract skeletons as described in [dAS19b, dAS20d]
and section 2.6.

3.1.1 Smart Contract Skeletons
By applying a series of transformations to contract codes, we are able to lower the number
of truly unique contracts even further. These transformations comprise the replacement
of three code sections by zeros: The meta-data, constructor arguments and the PUSH
arguments that are read off of the bytecode sequence. According to [dAS19b, dAS20d,
dAS20b], these modifications have little to no impact on the functional behaviour of
contracts, and allow us to “transfer knowledge gained for one contract to others with
the same skeleton” [dAS20b]. Thus, by assessing the similarity of two contracts that are
representative for a skeleton group, we are able to reason about the similarity of two
entire groups of contracts sharing the same skeletons.

Using a relational database, we are able to extract contract bytecodes — one representing
each skeleton group. The reduction of 489 k unique contracts to roughly 234 k unique
skeletons yields benefits through the entire process pipeline and reduces the runtime by
more than half compared to when operating on unique contracts alone.

3.2 Generating the Control Flow Graphs
The current and the following section deviate from [HHY+21]. In order to extract
slices from contract bytecodes, their CFGs needs to be computed beforehand. We base
our approach to generate CFGs on [CCCP21]. This is done due to the fact that the
authors of [HHY+21] have not gone into detail on how they create the CFGs. Instead,
they refer to two existing methods described in [LCO+16] and [TDC+18]. We assume
that the CFG-generation and slicing procedure were done simultaneously, though the
evidence for this is vague. For these reasons, we opted to use an external tool called
EtherSolve [CCCP21]1 for CFG generation instead.

The generation of the CFGs is agnostic of the source the contract bytecodes stem from.
This allows for combining contracts extracted from the real ethereum blockchain with
synthetically compiled datasets as we will do in our later experiments using a modified

1https://github.com/SeUniVr/EtherSolve

19

https://github.com/SeUniVr/EtherSolve

3. Approach

version of EtherSolve. The modifications we made comprise functionalities for the
processing of multiple contracts at once, rather than having to start a new process for
each individual bytecode. We also utilize our system’s multiprocessing capabilities by
running multiple bytecodes in parallel. The resulting CFG data is combined within a
single output file in the JSON format.

Due to different possible stack configurations, EtherSolve’s results may include edge lists
containing the same directed edge more than once. We make the simplification to reduce
these duplicated edges to a single one in an attempt to limit the runtime in our slicing
stage.

An example for a CFG was already shown in Figure 2.3. While EtherSolve’s outputs
contain lots of additional information on a smart contract, we make use of only a few
fields of the generated JSON object while extracting slices in the next steps. In particular,
we care about the nodes and the edges within the CFG, and discard the remaining
metadata. The output file at this stage consists of a single JSON dictionary, containing
contract addresses as keys and EtherSolve’s analysis data as value. Since we anticipated
experiments with files of up to 50 GB in size, we make use of an iterative JSON parser2

that is able to stream the json key-value pairs, rather than having to load the JSON
object into the memory before being able to further process it. The remaining processes
in the pipeline have been optimized in a similar fashion.

3.3 Preprocessing & Slicing
This section explains how we perform the slicing procedure. We have tried to stay as
true to [HHY+21] as possible, but due to lack of details we had to make numerous
assumptions when faced with uncertainties. We also had to undertake measures for
optimizing the runtime, as our interpretation of the original method would have been
infeasible to compute.

The rationale behind the slicing procedure in [HHY+21] is to remove code sections that
do not carry relevant information or code semantics with them. As their work had an
emphasis on security, they decided that they would only be interested in segments of
code in which user provided data, or data that can be influenced by an external entity,
is handled. For this, they have defined a set of opcodes called slicing criteria. These
consist of EVM instructions which rely on, or handle information stemming from outside
the contract’s own program logic, e.g. CALLDATALOAD or BLOCKHASH. Such
instructions mark the beginning of a slice.

As visible in Table 3.1, Huang et al. defined 4 categories for such criteria. During our
experiments we found that the matching potential of contracts was dependent on how
many slices we extract per contract. In an attempt to raise the average number of slices,
we extended these operations by adding other instructions we deemed fitting to the

2https://github.com/ICRAR/ijson

20

https://github.com/ICRAR/ijson

3.3. Preprocessing & Slicing

Category Operation

Transaction Data CALLDATALOAD, CALLER,
CALLVALUE, CALLDATASIZE

Block Data BLOCKHASH, TIMESTAMP,
NUMBER, DIFFICULTY, GASLIMIT

Storage Data SLOAD

Return Values CALL, CALLCODE, DELEGATECALL,
STATICCALL, CREATE, CREATE2

Miscellaneous
SHA3, CODESIZE, EXTCODESIZE,
EXTCODEHASH, CHAINID,
SELFBALANCE, PC, GAS

Table 3.1: Slicing criteria extracted from the original paper. Instructions and categories
in bold were added by us.

existing categories, and added another category for instructions that we thought would
benefit our cause.

The goal of the slicing procedure is to trace in- and outputs of instructions that are
picking up on the execution results of the current slicing criterion — an approach that
is also referred to as taint analysis [TPF+09]. In order to follow said arguments and
outputs across the entire simulated execution of a contract, we need another mapping
between opcodes and so-called tags. This mapping serves to reduce the number of possible
categories for operations, taking away variability to some degree. Operations with related
semantics (e.g. CALLDATALOAD, CALLDATASIZE) are assigned to the same
group and are given a group tag (as described by the original paper) as well as a group
symbol (as used by us). Again, we decided to extend instructions that were defined
in [HHY+21] in a manner that seemed meaningful for us, especially due to the fact
that [HHY+21] explicitly mentions the incompleteness of the table they provide. Our
additions to their defined groups and tags can be seen in Table 3.2.

A core concept of the original method is the concatenation of input arguments with
the group tag (or symbol in our case) of the currently executed instruction. Elements
inside the stack are represented by strings. During the execution, these strings may be
concatenated to each other to form new, arbitrarily-sized stack elements. We are able
to decrease our memory footprint by using single-lettered group symbols in favor of the
original tags introduced by [HHY+21]. Since the graph embedding stage will build upon
tokenized labels of nodes, this simplification will not affect the results in any way.

21

3. Approach

Instructions Group Tag Group Symbol
(Instruction Output)

CALLDATALOAD, CALLDATACOPY1,
CALLDATASIZE calldata a

CALLER, ORIGIN, CALLVALUE,
ADDRESS, BALANCE, GASPRICE tx_data b

BLOCKHASH, TIMESTAMP, COINBASE,
NUMBER, DIFFICULTY, GASLIMIT,

BASEFEE, CHAINID, SELFBALANCE,
PC, GAS

blk_data c

SLOAD, SHA3 sto_data d

CALL, RETURNDATASIZE, CALLCODE,
DELEGATECALL, CREATE, CREATE2,

STATICCALL, CODESIZE, EXTCODESIZE
EXTCODEHASH

call_res e

ADD, MUL, SUB, DIV, SDIV, MOD, SMOD,
ADDMOD, MULMOD, EXP arith_res f

NOT, AND, OR, XOR, SHL, SHR, SAR bit_res g

LT, GT, SLT, EQ, SGT, ISZERO cmp_res h

MLOAD, MSIZE mem_data i

PUSH2 literal j

1 While this instruction is included in the table found in [HHY+21], it does not produce
any output onto the stack that could be tagged. We are including it here for the sake
of completeness but leave it out in the actual code.

2 Includes all operations of the PUSH family.
Table 3.2: Mapping between instructions and their output tags. Original table taken
from [HHY+21]. Instructions written in bold were added by us.

3.3.1 Simulating Bytecode Execution
At this point we have to perform the simulated execution of a given bytecode within a
CFG to extract the slices. Our focus of interest during execution lies in the opcode that
is currently being executed, as well as the contents of the stack at that time. To this end,
we deploy a simplified stack machine, and use it to extract the data of interest.

The core element of this process is the stack. It keeps track of arguments that are used

22

3.3. Preprocessing & Slicing

for instructions as well as their outputs. Moreover, it allows us to track the usage of data
introduced by a criterion across the entire line of execution and recognize its usage by
subsequent operations up until the point at which every stack element that is derived
from the criterion is eventually consumed.

We had to make a compromise between having an accurate stack representation, and
our process running in feasible time. The most accurate stack representation at start
time of slicing would be obtained by simulating execution beforehand, i.e. by having an
outer recursion traversing the graph. However, we realized in our experiments that this
option is computationally infeasible for many of our CFGs, and opted against using this
variant. Instead, we pass a symbolic stack configuration of 32 elements to the subroutine
traversing the subgraph. See subsection 3.7.1 for details.

Our starting point is the collection of nodes from the CFG as depicted in Figure 2.3. We
iterate over all nodes in the graph in no particular order. Once a criterion (as defined in
Table 3.1) is met, we start the slicing procedure as laid out in Figure 3.3 by passing the
remaining subgraph, an instance of the static stack configuration, and an empty list for
storing the extracted slices, to a subroutine. Each instruction is then processed one at a
time while recursively traversing over all paths between the initiating criterion and the
CFG’s exit block. At the same time we simulate the effects of each instruction on the
stack by pushing and popping the correct amount of arguments from and to the stack
respectively.

Before branching out into the subgraph, however, the criterion’s group symbol is pushed
onto the current stack configuration as an upper case, single-lettered string, which we
will refer to as slice key from now on. This is done in order to distinguish between
instruction outputs that are of the same category as the slicing criterion — we only want
to trace the exact same stack element that was originally introduced by the criterion. In
order to perform an accurate execution, we create a ruleset for handling different cases
based on which opcode is currently encountered

23

3. Approach

0: PUSH1 0x80
2: PUSH1 0x40
4: MSTORE
5: PUSH1 0x04

7: CALLDATASIZE
8: LT
9: PUSH1 0x1c
11: JUMPI

41: JUMPDEST
42: PUSH1 0x01
44: CALLVALUE
45: EQ
46: PUSH1 0x35
48: JUMPI

132: EXIT BLOCK

12: PUSH1 0x00
14: CALLDATALOAD

15: PUSH1 0xe0

17: SHR

18: DUP1
19: PUSH4 0x909dd8f6

24: EQ
25: PUSH1 0x21

27: JUMPI

33: JUMPDEST
34: PUSH1 0x27
36: PUSH1 0x29
38: JUMP

53: JUMPDEST
54: PUSH1 0X01

.

.

.
130: POP
131: JUMP

39: JUMPDEST
40: STOP

49: PUSH1 0x00
51: DUP1
52: REVERT

28: JUMPDEST
29: PUSH1 0x00
31: DUP1
32: REVERT

0: PUSH1 0x80
2: PUSH1 0x40
4: MSTORE
5: PUSH1 0x04
7: CALLDATASIZE
8: LT
9: PUSH1 0x1c
11: JUMPI

41: JUMPDEST
42: PUSH1 0x01
44: CALLVALUE
45: EQ
46: PUSH1 0x35
48: JUMPI

132: EXIT BLOCK

12: PUSH1 0x00
14: CALLDATALOAD

15: PUSH1 0xe0
17: SHR
18: DUP1
19: PUSH4 0x909dd8f6

24: EQ
25: PUSH1 0x21
27: JUMPI

33: JUMPDEST
34: PUSH1 0x27
36: PUSH1 0x29
38: JUMP

53: JUMPDEST
54: PUSH1 0X01

.

.

.
130: POP
131: JUMP

39: JUMPDEST
40: STOP

49: PUSH1 0x00
51: DUP1
52: REVERT

28: JUMPDEST
29: PUSH1 0x00
31: DUP1
32: REVERT

Entry Block

Block

Jump or Continuation block

Denotes beginning of slice by meeting

criterion instruction

Exit Block

Outer Loop

Inner CFG Traversal (=Slicing)

Slicing Criterion

41: JUMPDEST
42: PUSH1 0x01
44: CALLVALUE
45: EQ
46: PUSH1 0x35
48: JUMPI

132: EXIT BLOCK

53: JUMPDEST
54: PUSH1 0X01

.

.

.
130: POP
131: JUMP39: JUMPDEST

40: STOP

49: PUSH1 0x00
51: DUP1
52: REVERT

Iterating through CFG Nodes

41: JUMPDEST
42: PUSH1 0x01
44: CALLVALUE
45: EQ
46: PUSH1 0x35
48: JUMPI

132: EXIT BLOCK

12: PUSH1 0x00
14: CALLDATALOAD

15: PUSH1 0xe0

17: SHR

18: DUP1
19: PUSH4 0x909dd8f6

24: EQ
25: PUSH1 0x21

27: JUMPI
 33: JUMPDEST

34: PUSH1 0x27
36: PUSH1 0x29
38: JUMP

53: JUMPDEST
54: PUSH1 0X01

.

.

.
130: POP
131: JUMP

39: JUMPDEST
40: STOP

49: PUSH1 0x00
51: DUP1
52: REVERT

28: JUMPDEST
29: PUSH1 0x00
31: DUP1
32: REVERT

Traverse remaining Subgraph

(All paths between Criterion and Exit)

Figure 3.3: Recursive algorithm for traversing the CFG. The outer loop, while iter-
ating over CFG nodes, initiates slicing once a criterion is met. Illustration adapted
from [CCCP21].

24

3.3. Preprocessing & Slicing

Ruleset I - Execution and Extraction

PUSHN The PUSH group’s symbol (‘j’ in this case) is pushed onto the stack. N
determines the offset to the next operation read from the bytecode sequence.

SWAPN Swaps the topmost element in the stack with the N th element in the stack.

DUPN Duplicates the N th topmost element and pushes it onto the stack.

The remaining instructions are executed by correctly handling the number of arguments
produced and consumed. To this end, we keep a mapping m : o → (δ, α), where o
denotes an instruction, δ the amount of arguments consumed, and α the amount of
arguments produced from and onto the stack by o respectively. In the case that
the instruction produces an output (i.e. α > 0), we concatenate the δ popped
arguments to each other, prepend the group symbol of o and push the resulting
string back onto the stack. If no output is produced, the popped arguments are
simply discarded.

If the slice key is encountered in the executing instruction’s arguments, and the
executing instruction is neither of the PUSH, SWAP or DUP families, we append
the instruction along with its arguments to our slices collection. Additionally, in
case we encounter an arithmetic or a bitwise operator, we employ a normalization
technique described in section 3.3.1 below.

Since we are dealing with graphs, we implement the subroutine as a recursive function
that will branch once a junction (i.e. a JUMPI) is met. This way we make sure that all
paths (within a certain recursion depth) are traversed, and the slices correctly extracted.
We apply Ruleset I to every instruction in the executing subgraph during slicing, and
finish slicing only in one of the following cases:

Ruleset II - End of Slice

INVALID If the execution encounters an invalid opcode (i.e. an undefined byte-
instruction), we extract the mnemonic INVALID and end the simulation for
the current branch.

REVERT, RETURN The authors of [HHY+21] reason that these instructions are
of interest since they indicate (abnormal) terminations of a transaction. Thus,
when encountered, either of these operations are included into the slice and the
simulation ends for the current branch.

Slice Key not in Stack Once the last element in the stack containing the slice key is
consumed, we add the slice to a collection and end the simulation for the current
branch.

The extracted slices are appended to a global list before returning from the current
branch. This results in one contract having ~128 slices on average.

25

subsubsec:ruleset

3. Approach

Instruction Normalization

To remove even more variability introduced by compilers, the authors of [HHY+21]
suggest a normalization technique for arithmetic and bitwise operations before extracting
them into a slice. To this end, we reorder arguments alphabetically for the commutative
instructions ADD, MUL, AND, OR, XOR, EQ (e.g. add(b, a) = add(a, b)). The same
applies to the operations LT, GT, SLT, SGT, with the exception that iff reordering
occurs, we also replace the instruction with its semantic opposite (e.g. lt(b, a) = gt(a, b)).
This ensures that the instruction’s original semantics are kept.

3.3.2 Slicing Example
Using the entry node in Figure 3.3 as reference point and Figure 3.4 as visualization, we
continue to provide an example.

Step 0 The outer loop iterates over the bytecodes of all nodes until it detects one of the
criteria defined in Table 3.1.

Step 1 The criterion CALLDATALOAD is encountered. Slicing begins with a static
stack configuration containing dummy values (i.e. values that are not assigned to
criteria groups as symbols). The criterion introduces the slice key, i.e. its capitalized
group tag, onto the stack.

Step 2 Instruction LT is encountered. It consumes two elements from the stack. Since
one of them contains the slice key (A in this case), we extract the instruction along
with its arguments as part of the slice. The instruction’s output is obtained by
concatenating its arguments and prepending LT’s group tag. Note that instruction
reordering is not performed here due to the first argument, A, being alphabetically
smaller than the second argument, k.

Step 3 The next instruction is of the PUSH family. We push an element, j, onto the
stack while consuming none.

Step 4 Lastly, a JUMPI is encountered. This argument consumes the two topmost
elements, and thus, is extracted as part of the slice as well. Since it produces no
output, the slice key is no longer present in the stack after its execution, which
indicates that the end of this slice has been reached. Lastly we append the slice to
a list of slices, return from the current subroutine, and continue iterating over the
nodes in Step 0.

26

3.3. Preprocessing & Slicing

k

l

...

z

K

L

...

Z

Stack

Static stack

configuration

ASlice ID: 7

Execution: 7: CALLDATASIZE

Elements Consumed: δ = 0

Elements Produced: α = 1

Slice

LT(A, k)

m

...

z

K

L

...

Z

Stack
hAk

Slice ID: 7

Execution: 8: LT

Elements Consumed: δ = 2

Elements Produced: α = 1

Input args
l

l

m

...

z

K

L

...

Z

Stack

hAk

Slice ID: 7

Execution: 9: PUSH1 0x1c

Elements Consumed: δ = 0

Elements Produced: α = 1

j

Slice

LT(A, k)

JUMPI(j, hAk)

m

...

z

K

L

...

Z

StackSlice ID: 7

Execution: 11: JUMPI

Elements Consumed: δ = 2

Elements Produced: α = 0

Input args
l

1 2

43
Slices

Dummy value as part of the static stack

An element containing the criterion's tag

Remaining stack elements

0

0: PUSH1 0x80
2: PUSH1 0x40
4: MSTORE
5: PUSH1 0x04

7: CALLDATASIZE
8: LT
9: PUSH1 0x1c
11: JUMPI

12: PUSH1 0x00
14: CALLDATALOAD

15: PUSH1 0xe0

17: SHR

18: DUP1
19: PUSH4 0x909dd8f6

24: EQ
25: PUSH1 0x21

27: JUMPI

28: JUMPDEST
29: PUSH1 0x00
31: DUP1
32: REVERT

...

Slicing criterion

Figure 3.4: Step-by-step example based on the first criterion found in the entry block of
the CFG in Figure 3.3.

27

3. Approach

In [HHY+21, p. 2148], it is clearly stated that in this procedure each instruction is
viewed as a node within a slice, and that each slice is viewed as a graph. Many of the
extracted slices contain graphs where each node has exactly one predecessor and one
successor (e.g. the slice extracted in Figure 3.4). This is due to the fact that the slice key
is often consumed before a JUMPI to another block occurs. For other slices, we are
able to retain the CFG’s structure by introducing edges into the extracted slice whenever
a junction is met. Figure 3.5 draws a comparison between the two kinds of graphs.

LT(A, k)

JUMPI(j, hAk)

(a) The graph for the slice extracted in Fig-
ure 3.4. There is no junction because the
slicing ended immediately after a JUMPI
was encountered.

LT(A, k)

DUP1(hAk)

...

JUMPI(j, hAk)

...

(b) Another example of a similar slice. Here
the argument of JUMPI is duplicated be-
fore being consumed. The criterion’s symbol
is still present in the stack so both paths
continue to be executed afterwards.

Figure 3.5: Two example slices/graphs.

28

3.4. Graph Embedding

3.4 Graph Embedding
Once the contract slices are obtained, we continue with the graph embedding. We make
use of a graph embedding library, namely graph2vec3. As was the case in previous sections,
we modify this library to allow for data-streaming from files. This unfortunately comes
with the drawback that learning takes longer due to bandwidth constraints which is why
we only make use of this modification when memory becomes a constraint, as is the case
in one of our experiments.

We call graph2vec with all default parameters except for the “dimensions” parameter,
which we set to 64 as the authors of [HHY+21] do. This configuration is used across all
experiments in an effort to try and limit the already large number parameters in our
experiment variations. As input file for graph2vec we provide the result of the slicing
stage. This results in a CSV file where each row corresponds to a single slice of a contract,
containing the contract’s skeleton, address, slice id, and the 64-dimensional embedding
vector. Table 3.3 exemplifies the data produced in this step. We may use the terms slice
and vector interchangeably in the following sections.

Slices
Dim. 0 1

...

j-2 j-1 j j+1

...

k-2 k-1

...

l l+1

...

m-2 m-1
0 0.97 0.88 -0.82 -0.08 0.53 -0.09 0.73 0.37 -0.84 -0.57 -0.98 -0.29
1 0.08 0.53 -0.88 0.41 0.14 -0.91 0.08 -0.56 -0.67 -0.62 0.91 -0.74
2 -0.33 -0.04 0.50 0.94 0.61 -0.34 0.58 -0.68 0.26 -0.88 -0.94 -0.71
3 0.56 0.74 -0.51 0.24 -0.75 -0.54 -0.03 0.42 0.33 -0.95 0.08 0.97

...

60 0.65 -0.56 -0.56 -0.07 -0.83 -0.45 -0.84 0.24 -0.40 0.70 -0.76 -0.94
61 -0.26 -0.43 -0.05 -0.62 0.19 0.56 -0.20 0.65 -0.80 -0.89 -0.35 -0.61
62 0.19 -0.67 0.23 0.16 0.29 -0.89 0.83 0.39 -0.75 0.87 0.73 0.92
63 0.95 0.94 0.53 -0.69 -0.73 -0.48 -0.20 0.84 -0.06 0.95 0.04 -0.78

Contract 1 Contract 2 Contract N

Table 3.3: Result of the graph embedding. This table is a transposed depiction of the
actual CSV file. Each slice corresponds to one 64-dimensional vector in this array.

3.5 Similarity Measurement
As is usual when dealing with embedding vectors [MCCD13], the authors of [HHY+21]
calculate the similarity between two slices by using the cosine similarity:

cos(θ) = a · b

�a� �b� =
�n

i=1 ai · bi��n
i=1(a2

i) ·
��n

i=1(b2
i)

(3.1)

The result of the cosine similarity function is a real value between −1 and 1, and is
commonly used to measure the angle between any two vectors. In our 64-dimensional

3https://github.com/benedekrozemberczki/graph2vec/

29

https://github.com/benedekrozemberczki/graph2vec/

3. Approach

vector space, however, this value is regarded as the similarity between two vectors, with
a cosine of −1 meaning two slices are exact opposites of each other, and a cosine of 1
meaning their vectors are congruent.

3.5.1 1-to-1 Similarity
Due to the focus of [HHY+21] lying on detecting reused code vulnerabilities, their
matching logic follows a 1-to-1 similarity calculation: For every vulnerable contract
they identify the target slice that encapsulates the logic of the vulnerability the most,
and match this slice against all other slices using Equation 3.1 [HHY+21, p. 2149]. To
recreate the results of their 1-to-1 matching, we craft our own data-set of slices containing
contract vulnerabilities, and try to conduct experiments in the same fashion. However,
the problem quickly grows in complexity when trying to relate entire contracts — each
potentially spanning hundreds of slices — to one another.

3.5.2 N-to-M Similarity
The problem of n-to-m slice matching is a variation of the classical Assignment prob-
lem [10.63]. Instances of this problem are commonly represented using one of the two
following data-structures:

Matrix Representation Consider a two-dimensional matching matrix of size n×m
between two contracts c1 and c2. Then, vij for i < n and j < m denotes the
matching value between slice i of contract c1 and slice j of contract c2. Reference
implementations for the problem using this variant exist. A common textbook
algorithm for this representation is the Hungarian algorithm [MtSD07].

Bipartite Graph Representation Due to each node in either partition having a
bidirectional edge to every node in the other partition, we obtain two fully connected
partitions in a bipartite graph. This peculiarity makes the memory consumption
of both representations roughly the same. Previous works describe linear-runtime
approximation algorithms given any fixed error bound [DP14]. However, neither
did the authors of [DP14] implement this algorithm, nor were we able to find an
implementation online.

In our experiments, we opt for the first representation variant, and enjoy the advantage
of having a readily implemented reference algorithm for finding an optimal solution.
We further help ourselves by exploiting the fact that the cosine similarity between two
vectors can be easily computed in batch using matrix multiplication — an operation that
is notoriously well optimized for running on GPUs. Before doing so, however, we further
simplify the previously obtained vector array (see Table 3.3) by transforming each of the
slicing vectors into their corresponding unit vector. This step equates the denominator
in Equation 3.1 to 1, conveniently reducing the right part of the equation to �n

i=1 ai · bi.
In succeeding sections we will refer to the unit vectors array as V̂.

30

3.5. Similarity Measurement

We iterate over all indices that delimit the individual contracts, and perform the similarity
calculation between a single contract ci and all other contracts one at a time. To this
end, we pass V̂ and ci as arguments into TensorFlow’s matmul4 function, and indicate
that ci shall be transposed before execution via a third flag argument, transpose_b.

We summarize the matrix dimensions below and follow with an example:

Si
pi×q

= c�i
pi×64

· V̂
64×q

(3.2)

where

Si : similarity matrix for contract ci

V̂ : unit vectors of all slices where each column corresponds to one slice
ci : submatrix containing the slices/vectors that make up the ith contract
c�i : transposition of submatrix ci

pi : number of slices of contract ci

q : total number of slices

Example: Similarity Calculation for Contract c1

S1 =

v0,0 v0,1 . . . v0,62 v0,63
...

...
...

vj,0 vj,1 . . . vj,62 vj,63


� �� �

c�
1

·



c1� �� �
v0,0 · · · v0,j

c2� �� �
v0,j+1 · · · v0,k

· · ·����
· · ·

cn� �� �
v0,l · · · v0,m

v1,0 · · · v1,j v1,j+1 · · · v1,k . . . v1,l . . . v1,m
...

...
v62,0 · · · v62,j v62,j+1 · · · v62,k . . . v62,l . . . v62,m

v63,0 · · · v63,j v63,j+1 · · · v63,k . . . v63,l . . . v63,m


� �� �

V̂

=

=



c1 · c�
1� �� �

1 . . . s0,j

c2 · c�
1� �� �

s0,j+1 . . . s0,k

· · ·����
· · ·

cn · c�
1� �� �

s0,l . . . s0,m

s1,0 . . . s1,j s1,j+1 . . . s1,k . . . s1,l . . . s1,m
...

...
sj,0 . . . 1 sj,j+1 . . . sj,k . . . sj,l . . . sj,m


� �� �

S1

(3.3)

where

vi,j : jth value of vector i / slice i
si,j : cosine-similarity between slices i and j

4matmul in the official TensorFlow documentations

31

https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/mat-mul

3. Approach

We proceed to conduct experiments using two different ways for calculating m-to-n
similarities, one finding an optimal solution and the other using a heuristic method.

Variant I: Optimal Slice Matching

Since the speed of the similarity computation on the GPU and the speed at which the
result can be further processed on the CPU are quite asymmetric, we implement the
best-match finding algorithm using multiple worker processes, each running on its own
CPU core. That means, each result array Si is passed to a worker process that will
again iterate over all contract indices, and for each sub-result cj · c�i apply the linear sum
assignment algorithm. Using this parallelization, we can somewhat compensate for the
CPU’s slow performance when compared to the GPU, but are still able to detect idle
time of the latter.

Contract N
Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 Max

C
on

tr
ac

t
M

Slice 1 -0.857 0.527 -0.972 -0.144 0.122 0.527
Slice 2 0.805 -0.968 -0.805 0.022 0.798 0.805
Slice 3 -0.250 0.313 -0.821 0.066 0.113 0.313
Slice 4 0.094 0.034 0.420 -0.692 -0.846 0.420
Slice 5 -0.462 -0.392 0.671 0.586 0.922 0.922
Slice 6 0.281 0.437 -0.647 -0.699 -0.480 0.437
Slice 7 -0.740 0.602 0.824 0.017 0.476 0.824
Slice 8 0.547 0.192 0.590 -0.498 -0.276 0.590
Slice 9 -0.562 0.615 -0.302 -0.594 -0.845 0.615
Slice 10 -0.037 -0.346 -0.828 -0.235 0.040 0.040
Slice 11 -0.341 0.478 0.441 -0.832 0.313 0.478
Slice 12 0.645 -0.705 -0.116 -0.578 -0.637 0.645
Max 0.805 0.615 0.824 0.586 0.922

Table 3.4: An example for a matching matrix between slices of two example contracts
N and M . Optimal match indicated in bold. We include the maximum value of each
column/row to stress the fact that the optimal solution cannot generally be found by a
greedy algorithm, i.e. by picking the largest values of the column/row.

Worker processes make use of a reference implementation from the scipy library5 which is
based on the Jonker-Volgenant algorithm, but has been modified to have no initialization.
It has an upper bound runtime of O(n3) [Cro16]. Table 3.4 shows an example of how
slices of two different contracts are matched, with the resulting match being of size
min(|cn|, |cm|) = 5. We define a threshold t = 0.97, and regard contract pairs with an
average matching value larger or equal to t as similar. These contracts, combined with
additional metadata, are extracted into a separate file for further analysis.

5Linear sum assignment problem in the official scipy documentations

32

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html

3.5. Similarity Measurement

Initial experiments were conducted using a sample size of 5 % of skeleton-contracts, but
we quickly realized the need for an even more efficient process. Thus, we decided to
explore further possibilities to push computation towards the GPU.

Variant II: Heuristic Slice Matching

Albeit not without sacrificing the optimality of our solution, we try to extract similar
information regarding contract matches using other functionalities provided by the Ten-
sorFlow library. The functions tf.math.segment_max and the ones of the tf.math.reduce_*
family have turned out to be particularly useful for our intentions.

0.1 0.9 0.4 0.6 0.4 ... 0.3 0.7

0.3 0.7 0.4 0.4 0.9 ... 0.2 0.1

...

0.9 0.6 ... 0.7

0.7 0.9 ... 0.2

...

max max max

c1⋅ci
T c2⋅ci

T cn⋅ci
T

...

Si

Simax

0.8 0.75 ... 0.45

reduce_mean

... X

 ≥ t = 0.7
mean
min
max
std

mean
min
max
std

Figure 3.6: Illustration of the tf.math.segment_max function. For demonstration purposes
we display t = 0.7. Actual values used in our experiments range from 0.85 to 0.95. Figure
adapted from the official TensorFlow documentation 6.

Picking up on the matching result Si of Equation 3.3, Figure 3.6 depicts an example
of a pi × q-dimensional tensor being reduced to a pi × r-dimensional tensor, where r
denotes the total number of contracts in our experiment. We denote the resulting matrix
with Simax, and use it to perform further aggregations on a per-contract basis. Initially,
we calculate only the mean over individual contracts in Simax using reduce_mean and

6tf.math.segment_max - Official TensorFlow documentations

33

https://www.tensorflow.org/api_docs/python/tf/math/segment_max

3. Approach

define another threshold t to determine whether a contract qualifies for extraction or
not. Contracts that do not qualify are dismissed, while to the others we apply further
reductions. In particular, we calculate the minima, maxima and the standard deviations
for each qualifying contract in Simax, and extract these metrics to a file.

In addition to the aforementioned aggregations, we make use of TensorFlow’s AutoGraph7

module, which converts functions written in python code into execution graphs for the
GPU. This dramatically reduces communication overhead between CPU and GPU
inbetween execution cycles, and results in immensely improved data throughput. With
these additions, we are able to fully exploit the GPU’s capacities.

To provide context, one of our earlier experiments using a 5 % sample size of skeletons,
and an average slice count of ~80 slices per contract would take several hours using
Variant I, while the method described in Variant II would finish in less than two
minutes. Unsurprisingly, this effect is amplified when running experiments with larger
sample sizes.

3.6 Hypotheses
In contrast to the optimal method, our heuristic approach produces a pair of each metric
for both directions of a match. We continue to denote Simax for contract j and Sjmax
for contract i with mi,j and mj,i respectively. The metrics include the means, minima,
maxima and standard deviations of mi,j and mj,i. As we are mostly focused on the
mean of these values, we introduce the notions mi,j to denote the mean of mi,j , and
mj,i to denote the mean of mj,i. This allows us to define the symmetric similarity score
Mi,j = Mj,i between two contracts follows:

Mi,j = min (mi,j , mj,i) (3.4)

We reason that there are a few deterministically computable contract features that serve
as useful metrics for determining how contracts relate to each other. First and foremost
we assume that contracts featuring the same function signatures are likely to perform
semantically related tasks. Thus, a plausible metric to compute a similarity score between
two contracts is to calculate the Jaccard index over their sets of function signatures A
and B respectively, defined as follows:

J(A, B) = |A ∩ B|
|A ∪ B| (3.5)

The rationale behind this is that contract authors usually name functions in a predictable
manner, either following existing conventions or the same literature. Further, we think
that accounts belonging to the same entity are likely to deploy several versions of the

7tf.autograph - Official tensorflow documentation

34

https://www.tensorflow.org/api_docs/python/tf/autograph

3.7. Contributions

same contract more than once, or at least that these accounts are likely to re-use code
among the contracts they deploy.

Taking this idea further, one could argue for several such correlations, albeit with much
less confidence: If two contracts are deployed within quick succession, they are more
likely to be related than two contracts with deployments separated by millions of blocks.
We want to investigate whether the temporal locality of the deployment of two contracts
is a measurable indicator of their similarity. A final metric that we want to examine in
the same way is the code length of a contract. It is not too far-fetched to believe that
contracts comprising the same semantics hardly differ in their respective code lengths.

As is the case with the embedding network word2vec and its skip-gram model, we
also suspect that a larger dataset for training a graph embedding network will have a
positive impact on similarity matching. Combining these thoughts leads to the following
hypotheses, ordered by how confident we are in making them.

Hypothesis 1: A higher Jaccard index J between two contracts i and j generally implies
a higher similarity score Mi,j . A larger dataset is more likely to exhibit this behaviour.

Hypothesis 2: If two contracts have the same creator, they are more likely to be similar
than two contracts with distinct creators. A larger dataset is more likely to exhibit this
behaviour.

Hypothesis 3: Contracts with low block difference between their deployments are more
likely to be similar. A larger dataset is more likely to exhibit this behaviour.

Hypothesis 4: Contracts with low difference in code length are more likely to be similar.
A larger dataset is more likely to exhibit this behaviour.

We try to investigate these hypotheses, and by providing appropriate correlation metrics
we want to argue either in favor of or against them.

3.7 Contributions
While we made an effort to highlight all deviations from the source material in the
previous sections, we want to summarize our contributions in this section.

3.7.1 Stack Content before Slicing
Since starting the slicing procedure with an empty stack may lead to IndexOutOfBound-
sErrors (namely, when the sequence succeeding the criterion consumes more arguments
than are available on the stack), our initial and faithful implementation required the
stack being accurately simulated before slicing had begun as well. This, however, had
immense performance drawbacks — especially with contracts that have a CFG with a
high average branching factor. Further, we recognized that attempting to limit the width
of the branching would not sufficiently decrease runtime either for any branching factor

35

3. Approach

larger than 1. Thus, we decided to make use of a constant stack configuration consisting
of 32 elements that is used when the slicing procedure is initiated.

3.7.2 Similarity Calculation
The authors of [HHY+21] focus on detecting similarities between individual slices, whereas
our main interests lie in additionally detecting similarities across entire contracts. Due to
the sheer amount of slices, we implement a resource-efficient comparison method using
the GPU’s parallelization capabilities for both kinds of matching, 1-to-1 and N-to-M.

3.7.3 Adjustments to External Tools
EtherSolve

As already mentioned, our additions to EtherSolve comprise functionalities to process
contracts in batch, rather than one at a time. By doing so, contracts no longer need to be
stored in individual files, and only one process needs to be launched instead of creating
one for each contract. Furthermore, we add multiprocessing capabilities to EtherSolve,
leveraging other CPU cores that would stay idle in the standard implementation. The
resulting CFGs are stored in a single output file in the JSON format.

graph2vec

The implementation of graph2vec that we use will load all graphs into memory by default,
before creating the embedding. For large corpora of contracts (i.e. the full set of skeleton-
contracts), we were quickly limited by our system’s memory. Feeling the need for a more
memory-efficient process, we added an option to stream the graphs from file, rather than
having to load them into memory first. Depending on the number of epochs (10 in our
case), this comes with the drawback that creating the graph embeddings will take much
longer — a penalty we found acceptable considering the lack of alternatives.

36

CHAPTER 4
Evaluation

In this chapter we lay out in detail the experiments that we conduct, as well as the steps
needed in order to do so. We begin by providing information necessary to reproduce our
experiments.

4.1 Data Recency
The data that we use for our evaluation is almost exclusively derived from the Ethereum
mainnet blockchain. Its recency can be viewed in Table 4.1. In our experiments we
operate on three different datasets of skeleton-contracts: A full dataset comprising all
skeletons as well as two samples sized at 5 % and 10 % respectively. The dimensions of
these datasets are provided in Table 4.3.

Latest Block 13 599 999
(created Nov-12-2021)

Total number of deployed contracts 47 615 589
Contracts with distinct bytecode 488 883
Amount of distinct contract skeletons 233 533

Table 4.1: The recency and size of the data used in this work.

4.2 Test Unit Specification
All experiments during the course of this work were conducted on a system with an AMD
Ryzen 3600–6C/12T CPU, an Nvidia RTX 2060 with 6GB GDDR6 and 32GB of DDR4
RAM, clocked at 3000 MHz. Table 4.2 depicts the various tools, programming languages
and frameworks that were used during the course of this thesis.

37

4. Evaluation

Name Category Version Used for Link
Ubuntu OS 21.10 - -

Nvidia GPU
Driver System Driver 495.29.05 TensorFlow

Dependency -

Nvidia CUDA GPU APIs 11.5 TensorFlow
Dependency -

Python Programming
Language 3.9.7 Implementation official source

TensorFlow ML Framework 2.7.0 Similarity Calculation PyPI
EtherSolve External Tool 0840e9d1 CFG generation GitHub
graph2vec External Tool efa61571 Graph Embedding GitHub

numpy Library 1.21.2 Array Manipulation
Similarity Calculation PyPI

SciPy Library 1.7.1 Similarity Calculation
Optimal Solution PyPI

matplotlib Library 3.5.1 Plotting PyPI
pandas Library 1.4.1 Plotting PyPI
seaborn Library 0.11.2 Plotting PyPI
ijson Library 3.1.4 Iterative JSON parsing PyPI
tqdm Library 4.62.3 Overseeing Progress PyPI

Docker Virtualization 20.10.7 Encapsulating
Components official source

PostgreSQL DBMS 13.4 Analyzing results Docker Hub
Ethereum Mainnet Blockchain multiple Data Source -
Mayflies Metadata - Validation Website
solc Compiler 0.4.10-0.8.8 Evaluation GitHub

1 Modifications were made to these tools. See subsection 3.7.3 for details.
Table 4.2: Relevant tools and frameworks used during the course of this thesis.

38

https://www.python.org/downloads/
https://pypi.org/project/tensorflow/2.7.0/
https://github.com/SeUniVr/EtherSolve
https://github.com/benedekrozemberczki/graph2vec
https://pypi.org/project/numpy/1.21.2/
https://pypi.org/project/scipy/1.7.1/
https://pypi.org/project/matplotlib/3.5.1/
https://pypi.org/project/pandas/1.4.1/
https://pypi.org/project/seaborn/0.11.2/
https://pypi.org/project/ijson/3.1.4/
https://pypi.org/project/tqdm/4.62.3/
https://docs.docker.com/get-docker/
https://hub.docker.com/_/postgres
https://ethereum.logic.at
https://github.com/ethereum/solc-bin/tree/gh-pages/linux-amd64

4.3. 1-to-1 Slice Matching

Fu
ll

da
ta

se
t

10
%

Sa
m

pl
e

5
%

Sa
m

pl
e

V
ul

ne
ra

bl
e

C
on

tr
ac

ts

St
an

da
rd

C
on

tr
ac

ts

W
al

le
t

C
on

tr
ac

ts

Size 233 533
skeletons

23 318
skeletons

11 628
skeletons

24
contracts

412
contracts

893
skeletons

thereof CFGs1 228 852 22 830 11 374 24 404 876

thereof sliceable2 228 693 22 813 11 368 19 396 876

extracted
slices 29 280 245 2 925 905 1 452 403 1 468 1 896 120 161

represented
contracts 6 500 286 3 56 673 13 118 -4 -4 1 203 457

avg. slices / contract 128 128 128 77 5 137

1 There may be several reasons why EtherSolve does not extract a CFG for every contract.
One reason is that some contracts do not actually store valid EVM code. A more
realistic take might be that EtherSolve can simply not extract CFGs for all contracts.
See https://github.com/SeUniVr/EtherSolve/issues/4 for more information.

2 Our slicing tool may fail for some CFGs, e.g. when no slicing criterion is present.
3 The reduction of 86 % from 47 M contracts to 6.5 M is explained by the ~5k skeletons

for which EtherSolve was unable to create CFGs. These include skeletons for mass
deployed contracts like gasTokens or mayfly contracts [dAS19b] and are representative
for ~40 M contracts.

4 These synthetically generated contracts do not represent any existing contracts on the
real blockchain.

Table 4.3: Dimensions of our three datasets. A decline in contracts is observable after
each stage.

4.3 1-to-1 Slice Matching
In order to perform 1-to-1 slice matching, we proceed the same way as [HHY+21] and
build a dataset of slices extracted from known-to-be vulnerable contracts. To this end,
we work with contracts that previously have been classified as vulnerable by Rameder
et al. [RdAS22]. Due to the difficulty of obtaining versions of solc below 0.4, we focus
on contracts that were created for higher versions. This also allows us to benefit from

39

https://github.com/SeUniVr/EtherSolve/issues/4

4. Evaluation

the specified pragmata in order to identify a valid version of solc with little effort. We
proceed by slicing the vulnerable contracts separately from the corpus, identify those
slices that embody most of the vulnerability’s logic and merge them into the corpus
before reaching the embedding stage. Table 4.4 lists the vulnerable contracts we use in
this experiment, where the first column specifies the name of the vulnerable contract, and
the second column the type of vulnerability. For more information about these vulnerable
contracts please refer to [RdAS22]. As an example, Figure 4.1 depicts a slice vulnerable
to an Externally Forced Fail (EFF)1.

After embedding, the slice vectors are compared to each other using Equation 3.1. Since
this experiment is not as computationally challenging as the others, we will work with
all three datasets, including the complete dataset, for which we will compare the few
vulnerable slices to all 29 M slices. We select the threshold t = 0.95 and extract all slice
pairs whose similarity exceeds t.

EXP(j, DZ) DIV(fjDZ, Y) AND(ffjDZY, j) AND(gjffjDZY, j)

CALL(j, gjgjffjDZY, fhjX, ij, fijij, ij, j)ISZERO(gjgjffjDZY)ISZERO(hgjgjffjDZY)JUMPI(j, hhgjgjffjDZY)

Figure 4.1: Example for a slice of a vulnerability of type EFF.

Using a relational database, we then query the best match for each of the vulnerable
slices. We perform sanity checks on these matches by verifying whether the two slices do
in fact resemble each other, and the instructions required for the vulnerability to exist
are present. Once a pair is found whose match seems plausible, we proceed to manually
inspect the source code of the matched contract, if available. For this we rely on the
external service EtherScan2 as it is a handy tool to quickly query the source code of
smart contracts.

Tables 4.5, 4.6 and 4.7 display our results. We leave them uncommented for now and
present analyses building upon this data in chapter 5.

1https://swcregistry.io/docs/SWC-113
2https://etherscan.io

40

https://swcregistry.io/docs/SWC-113
https://etherscan.io

4.3. 1-to-1 Slice Matching

Contract Vulnerability #Vulnerable Slices
QIUToken Origin 5
UNITDummyPaymentGateway Origin 4
UNITPaymentGatewayList Origin 4
UNITSimplePaymentGateway Origin 3
CrowdSalePreICO UncheckedReturnValue 3
CreditDepositBank UncheckedReturnValue 2
EthBird ExternallyForcedFail 2
Masker DelegateCall 2
EthMashChain BlockInfoDependency 2
EthMashMount BlockInfoDependency 2
SysEscrow Origin 2
PrivateBank Reentrancy 2
PrivateDeposit Reentrancy 2
Private_Bank Reentrancy 2
IceRockMining ExternallyForcedFail 2
Vault Selfdestruct 1
PiggyBank Selfdestruct 1
TokenERC20 Selfdestruct 1
MyAdvancedToken Selfdestruct 1
Sum 43

Table 4.4: Candidate vulnerable contracts. We tried to identify at least one slice per
contract, but note that not all slices incorporate a vulnerability equally well.

41

4. Evaluation

1-to-1 similarity — 5 % sample — sanity checked

Vulnerability Matched Candidate Contract Score Sane
Selfdestruct 0x9f751aaacc74e55a27a19419c332e02aa96ed961 0.990336 �
Delegatecall 0x5aeb706c39a76c31fa89bf726de1a6f7d6bc1a51 0.958257
Delegatecall 0x8fe028eb002bbc3ec45c5df8acfff67ec95b6f88 0.991465
ExternallyForcedFail 0x34ea8cdc7837d3a84f5869909104bdb1a7c8cb35 0.991206 �
ExternallyForcedFail 0x0347cd66ea7756377028e494e92845c800ee1521 0.992572 �
Origin 0xcd9e13b2f3bfc26cd99989fb849a2751932595c4 0.987938
Origin 0xfeae69049d5a7fe9af32a0aad6e8cb77f99aac0d 0.991296
Origin 0xe36d1b67696c8567a3997858cb73de40c9b6888f 0.991067
Origin 0x7600beeee1db4e7e222e765f831b1afa87cc62f2 0.982846
Origin 0xfd810ccff10dba53c619806940a4acf4416ddbe0 0.992502
Selfdestruct 0xead66d97b7a4918163fe24bff8be5be465bac246 0.989936
Origin 0x6d6c14d241a1c610b5d248be778c17ee57679a8f 0.990943
Origin 0x066128b9f7557b5398db3d4ed141f2e64245ffa1 0.993294
Selfdestruct 0x6816184f231aa6af7f959d99ec0ace5731ab33f0 0.991337
Reentrancy 0x62195cfda73f99e1bff4881fdcfbf5c9576d3c88 0.982594
Reentrancy 0x5bd21d52421b40affd00aabd55f46e90b2f7a32a 0.983811 �
BlockInfoDependency 0x3edc3ca0135eca1b1b79f33ede36642f23ea5c5e 0.985866
BlockInfoDependency 0x26b4fd727cd0ca88d4bb8150866d7c2e2d1c44d9 0.972862
BlockInfoDependency 0x8535ef070a685eeece7dfaab5d78948065fb81cc 0.985387
BlockInfoDependency 0x6bce536e0a938dc19dbcbb045b46b93c3d13620b 0.981298
Reentrancy 0x2dcfce5df534b5bd27d3f1cf78e17d67addd0bce 0.984777
Reentrancy 0x6d647bde7d25c920e92b77e9654e5654c877561d 0.983952 �
ExternallyForcedFail 0xff93908c8e92181d623f4a58bceb5bf53fb143c5 0.982666
Reentrancy 0xead66d97b7a4918163fe24bff8be5be465bac246 0.98828
Reentrancy 0x900a979cfcc4a9e5f0dcac1f7cc629873e2528ec 0.979604
UncheckedReturnValue 0x76ea2186182e3ec27c2d9c7394b83e5c8f2cf6c4 0.974858
UncheckedReturnValue 0x5221537b92b0a405d244dec5b6d9435c1c910350 0.985035
UncheckedReturnValue 0xbb36d6d8b2eb7266f7dc484885eed76242d0435a 0.990657
Selfdestruct 0xc3a1d2dfee2229893cabf9d4ee0fb9d6afb963b5 0.991385
UncheckedReturnValue 0x8e4f34b5dae571d2193578fd2615fc0200aff28c 0.962468
Origin 0x2c84b7f585af341b38f63f18547f8cbf25316ccd 0.990265
Origin 0x2ef624da1c1644e673b5d299ae67dc08e419ee19 0.990583
Origin 0xe3f64dc522a66405c51d96aae234217a03502bb4 0.986649
Origin 0x0d180978830fc88736b3664d47337c406347c147 0.984917
Origin 0x18ecc2461dfd84c5ce9da581aca58919a8750ae5 0.987155
Origin 0x18ecc2461dfd84c5ce9da581aca58919a8750ae5 0.986463
Origin 0x0d180978830fc88736b3664d47337c406347c147 0.989803
Origin 0x008fac90c491f3f01e0131241e5e9c8ccbf83a12 0.989026
Origin 0x18ecc2461dfd84c5ce9da581aca58919a8750ae5 0.99145
Origin 0x18ecc2461dfd84c5ce9da581aca58919a8750ae5 0.99029
Origin 0x9d1aebde5973fc8c121103deddf0328f70b11b2e 0.99024

5/41

Table 4.5: Vulnerable slice matching — 5 % sample.

42

4.3. 1-to-1 Slice Matching

1-to-1 similarity — 10 % sample — sanity checked

Vulnerability Matched Candidate Contract Score Sane
Selfdestruct 0xedb69fe5c154eb74d1a5d48203b43086d812ad77 0.990925
Delegatecall 0x285b2af01b71074bcebb4042fa1cee21d2f60873 0.991661
ExternallyForcedFail 0xf547229a3b21c525630eda4fa334fada82464358 0.990225 �
ExternallyForcedFail 0xacdb43d57fbea59d7aa4e9e6fd274ea78d0610cb 0.991428 �
Origin 0xcd2f1aa6e9421e98459b70d6b02a710ecee3da12 0.989612
Origin 0x96e7d5c04a5ad54ef081f16bb535443b4c017c37 0.989372
Origin 0x078dfa9f511eaeafaec0ddb396632f4b22a2ee51 0.988888
Origin 0x6cbae4ffd478786f1dae7359b4965cdce0fda659 0.98176
Origin 0x9dd8db08a907ddf82eb539bb0645d1237e9024ee 0.990799
Selfdestruct 0xbd0ea1ad69665c4108ef2e971c58b2068c0cdf97 0.983596
Origin 0xc8d9b34e5913cd935095cae813dd345a6896c11c 0.99175
Origin 0x1e01d81ab996fd409004e5dcb312e01fd47a83df 0.992919
Selfdestruct 0x738dfaf60910ebcb4cd369cb983b5d36467e9673 0.98839 �
Reentrancy 0x77a2bf0bda9775fb3524a6720dd3b16bd455e2c2 0.984812
Reentrancy 0x95aae0975f1606dd895b58cbc1ffc4c5da5e2191 0.981802 �
BlockInfoDependency 0xd97660f7db31024c7c48126fcb8fa35a565b8cda 0.981974
BlockInfoDependency 0x1444073090cd558749f5289f224fd83846676e4d 0.969281
BlockInfoDependency 0xd97660f7db31024c7c48126fcb8fa35a565b8cda 0.979826
BlockInfoDependency 0x6ca044b9677f64382841b2996b782f7a967cb555 0.972989
Reentrancy 0xba8d9b2bce809427b4bd8b054910108b916a8537 0.982535
Reentrancy 0xfb30a5154b3d1cd024319d3092b3708443aee960 0.980025
ExternallyForcedFail 0x20d14e391a80dfa8e28778c263e41e780fb8f4b8 0.978045
Reentrancy 0x7aee02f10f41fbc8645b3e4fb505c2894a414467 0.98423
Reentrancy 0x2ed6dac2b01a2a27803d6fe4f8e9729e92a8dfcf 0.982067 �
UncheckedReturnValue 0x40730f34668afcb3884f050cbc3d376a444bbe44 0.977421
UncheckedReturnValue 0x1385deab431450f67aae72ab611fad48fadb0631 0.990852
UncheckedReturnValue 0x844224a22eed9f7787838c7ad903c596d565a573 0.98802
Selfdestruct 0x3e4f5dd1be2db446f4ddbdb1e4b2be0e58bbb408 0.99186
UncheckedReturnValue 0x242dd24ea38c56f345d207e2fd728723daf56fe3 0.955968
Origin 0xad56273c8268972341aaa9e2d999e4d0a00ec0f9 0.987735
Origin 0x3114360f81c643c2f18346a06b56d8ddd5573583 0.988753
Origin 0xad56273c8268972341aaa9e2d999e4d0a00ec0f9 0.991081
Origin 0x957640e9cdad57030c37b81ebdcc18988d14951f 0.982627
Origin 0x957640e9cdad57030c37b81ebdcc18988d14951f 0.986654
Origin 0x250057812d65e2359b980f0ee02814b641637c65 0.98884
Origin 0xd4010881cfab9c385a33db0d7797941be834c0eb 0.987256
Origin 0xedffbcd5ba7d78e82f55445f1dd5fc5b2d594a06 0.990752
Origin 0xc03744f29ba7563c6d80e3f1af374866056cdca4 0.98345
Origin 0xe041340b3338e1f220c10e9971aa4edf9bfd776e 0.985577
Origin 0xb15657374327eb26b7fbafdc7cc765130371d49b 0.990881

5/40

Table 4.6: Vulnerable slice matching — 10 % sample.

43

4. Evaluation

1-to-1 similarity — full dataset — sanity checked

Vulnerability Matched Candidate Contract Score Sane
Selfdestruct 0xa5c65c70e17747371fe105c1a6fe50e4fcec246f 0.978934 �
Delegatecall 0xb1fd7151cb2869bde7a0d148d45ca2cd6f71b7bb 0.97617
ExternallyForcedFail 0x8b48cb5d71ae681a5fbba2064a330afbc448aaa5 0.982287 �
ExternallyForcedFail 0x2ca103f6c1b5bdc36118c05491eea85080e93d14 0.98179 �
Origin 0xa8e5ea57f875d8cb5700eb270238ce52ede9cad8 0.978875
Origin 0xbca69aa1269207844783e7f9c429e05ad116b72f 0.984917
Origin 0x40ab332dd48f35ebd227708ef381c946c4959eb6 0.980746
Origin 0x77dfdda69e9491c7c8d78a9e2413562b32aef2ff 0.975914
Origin 0xfe246f3ecea5765cfd3f8ac266718ea6c3165ee5 0.989504
Selfdestruct 0x7236aef748e70f2abfb4dc21c147b3ffea07c57b 0.963273
Origin 0xfef3fe6e8b08c8930e447e714a8eff2cc54e44cf 0.975827
Origin 0xce75d331bed26b8d7df9818441781b9943e27a0d 0.982536 �
Selfdestruct 0xa38a4ecb19982ad05c00f0a2419ccdd228e2e5b4 0.970559
Reentrancy 0x44ed1b079275188a8e40e113a2474b872971ff4a 0.964864 �
Reentrancy 0xa428680d6aec0ae8666a331d78284905601e1ca2 0.972162 �
BlockInfoDependency 0xf629cbd94d3791c9250152bd8dfbdf380e2a3b9c 0.973201
BlockInfoDependency 0xb7b1b594c4c9f3c692b94d28349dab7c4b261c8c 0.971125
BlockInfoDependency 0x5d433518b080633a079381e3b3a4fb36f5458577 0.955194
Reentrancy 0xd40d45c246bed33e2edf93b9b78119e7f993415b 0.970448
Reentrancy 0x81e17be1afbee982250190d9acd2f14d6226bc2b 0.978076 �
Reentrancy 0x93d21366305f42f473b7cb65fed601477965dd3f 0.965493 �
UncheckedReturnValue 0x258c65ca3f47f13903db9dc9998294bcbe499179 0.976005
UncheckedReturnValue 0x625c999d88891143a9e8964ce949b5ecac3d03e9 0.969992 �
UncheckedReturnValue 0x400a13360fba517421d1b7c469c7526e2af1a4a6 0.969096 �
Selfdestruct 0x6bf93bec191169bd09594cf5704574c9cc0dd92a 0.980715
UncheckedReturnValue 0xf644a47ab6089eb0b4aa2b83c23a7011f5039b91 0.959201
Origin 0xd16fa899d1a192c2cf844e956885ed09daa19dc4 0.972511
Origin 0x682541027a628f99e8d11a6f0b93bfdfc194225b 0.982736
Origin 0xfaf5c17a22026dc81d3b93d3c32510b23bb407ff 0.979137
Origin 0x103c416afa628e78afb11a4c11131db1d3a5f607 0.989001
Origin 0xb811e413920e4a4ad32d41c0ee34cb2a14873691 0.982705
Origin 0x41c663009260aa52f0b0955cda5f4c70b2c18d70 0.981659
Origin 0xfaf5c17a22026dc81d3b93d3c32510b23bb407ff 0.980112
Origin 0x0c7b8eedd028f3730e7b0f3dc032e916302f09b4 0.989278
Origin 0xbc7b80fd304d48cf4e3ea0865bf62dd12734b943 0.984084
Origin 0xffd0444c2d34101b4acc642509c5ff59fa26d0f7 0.979814
Origin 0x42059697e8800576eaf454fc8c2380302a85fb8a 0.97367

10/37

Table 4.7: Vulnerable slice matching — full dataset.

44

4.4. N-to-M Slice Matching

4.4 N-to-M Slice Matching
Contract Matching

The second goal of our work is to explore how well our method is suited to find similar
contracts in general. To be able to make confident claims about the quality of contract
matching, we use methods described in subsections 4.4.1 and 4.4.2. Since embedding
frameworks usually work better when trained with larger datasets [MCCD13], we want
to investigate performance differences between our experiments conducted with either of
the sample sizes (5 % and 10 %).

While the method for n-to-m matching is the heuristic method as described in section 3.5.2,
we consider two different definitions of a match in our two experiments. The first one
is a simple, asymmetric match as is part of our extraction procedure. Asymmetric in
this context means that in a match mi,j between two contracts i and j, the contracts
are not interchangeable, i.e. mi,j �= mj,i. In other words, our heuristic may determine
contract i to be similar to contract j, but the inverse may not necessarily hold true. This
notion of a match is used in our first experiment with standard contracts for the reason
that contracts within this dataset are minimal implementations with little program logic.
Since few slices are extracted of these contracts on average, we think comparing with
real contracts only makes sense when done so in one direction.

Our second definition of a match tries to symmetrize the above-mentioned asymmetric
matches, and is used in our second experiment. Here, we compare wallets which share
more similarities with each other than with other contracts and also yield a high average
slice count. To this end, we only regard results where both mi,j and mj,i exceed the
threshold t. By doing so, we “symmetrize” matches and remove those contract pairs
where t > 0.9 fails to hold true for both directions of the match. For our second
experiment, we define the similarity between two values as Mi,j = min (mi,j , mj,i), and
regard such matches as symmetrical, i.e. Mi,j = Mj,i, while still making use of their
individual matching scores mi,j and mj,i.

4.4.1 Standard contracts
By taking reference implementations of the ERC contracts and including them in the
corpus of contracts, we might be able to detect contracts of similar nature. In order to
account for the variability introduced by the solc compiler on the one hand, and for the
different contract versions that can be found in the wild on the other hand, we compile
different combinations of both. Furthermore, we use the argument --optimize-runs
on solc to compile each individual combination with four different levels of lifetime gas
usage optimization: 1, 200 (default), 10 000 and 1 000 000. We source our selection of
standard contracts from OpenZeppelin’s GitHub repository3. Table 4.8 shows the name
of the contract, which versions we were able to extract of it, and which versions of solc
we used to compile them.

3https://github.com/OpenZeppelin/openzeppelin-contracts

45

https://github.com/OpenZeppelin/openzeppelin-contracts

4. Evaluation

The rationale behind using standard contracts for contract matching is that many smart
contract developers rely on open-source reference contracts to write their own. However,
an even more compelling argument is that ERC contracts must implement their respective
standard interfaces to be regarded a valid ERC contract. Since function signatures are
identifiable even in closed source contracts, this makes ERC contracts theoretically useful
for verifying the performance of our method.

Table 4.8 displays the selection of contracts that we have extracted, and the variations of
parameters we compile them with. After completing our process of compiling, generating
CFGs, and slicing, we obtain 1 896 slices of 396 distinct contracts, which we proceed
to match against contracts in our corpora. Since individual contracts may implement
more than one interface, we define a match as plausible if there is a single common
interface that both contracts inherit from, i.e. both of the contracts expose all function
identifiers of the same Solidity interface. Tables 4.11, 4.12 and Figures 4.3a, 4.3b display
this circumstance for the 10 % dataset.

We focus on two subsets of matches: One subset comprises matches between our synthet-
ically generated standard contracts only (Figures 4.2a and 4.3a and Tables 4.9 and 4.11),
meaning that both contracts in a match will be one of those contract variations listed in
Table 4.8. The other subset comprises matches between synthetically generated contracts
on one side, and real contracts on the other (Figures 4.2b and 4.3b and Tables 4.10
and 4.12). Both of these subsets are obtained during the same embedding process using
the same dataset.

46

4.4. N-to-M Slice Matching

ERC Contract Contract Pragmata solc Versions

CrowdsaleMock ^0.4.24, ^0.5.0 0.4.26, 0.5.17

ECDSAMock ^0.4.24, ^0.5.0, ^0.6.0,
^0.7.0, ^0.8.0

0.4.26, 0.5.0, 0.5.17, 0.6.0, 0.6.12,
0.7.0, 0.7.6, 0.8.0, 0.8.8

ERC165Mock ^0.4.24, ^0.5.0, ^0.6.0,
^0.7.0, ^0.8.0

0.4.26, 0.5.0, 0.5.17, 0.6.0, 0.6.12,
0.7.0, 0.7.6, 0.8.0, 0.8.8

ERC20BurnableMock ^0.4.24, ^0.5.0, ^0.6.0,
^0.7.0, ^0.8.0

0.4.26, 0.5.0, 0.5.17, 0.6.12, 0.7.0,
0.7.6, 0.8.0, 0.8.8

ERC20MintableMock ^0.4.24, ^0.5.0 0.4.26, 0.5.0, 0.5.17

ERC20Mock ^0.4.24, ^0.5.0, ^0.6.0,
^0.7.0, ^0.8.0

0.4.26, 0.5.0, 0.5.17, 0.6.12, 0.7.0,
0.7.6, 0.8.0, 0.8.8

ERC20PausableMock ^0.4.24, ^0.5.0, ^0.6.0,
^0.7.0, ^0.8.0

0.4.26, 0.5.0, 0.5.17, 0.6.12, 0.7.0,
0.7.6, 0.8.0, 0.8.8

ERC721FullMock ^0.4.24, ^0.5.0 0.4.26, 0.5.17

ERC721MintableBurnableImpl ^0.4.24, ^0.5.0 0.4.26, 0.5.17

ERC721Mock ^0.4.24, ^0.5.0, ^0.6.0,
^0.7.0, ^0.8.0

0.4.26, 0.5.17, 0.6.12, 0.7.0, 0.7.6,
0.8.8

SafeMathMock ^0.4.24, ^0.5.0, ^0.6.0,
^0.7.0, ^0.8.0

0.4.26, 0.5.0, 0.5.17, 0.6.0, 0.6.12,
0.7.0, 0.7.6, 0.8.0, 0.8.8

ERC20 ^0.4.24, ^0.5.0, ^0.6.0,
^0.7.0, ^0.8.0

0.4.26, 0.5.0, 0.5.17, 0.6.12, 0.7.0,
0.7.6, 0.8.0, 0.8.8

ERC721 ^0.4.24, ^0.5.0, ^0.6.0,
^0.7.0, ^0.8.0

0.4.26, 0.5.17, 0.6.12, 0.7.0, 0.7.6,
0.8.8

ERC1820Implementer ^0.5.0, ^0.6.0, ^0.7.0,
^0.8.0

0.5.0, 0.5.17, 0.6.0, 0.6.12, 0.7.0,
0.7.6, 0.8.0, 0.8.8

ERC777 ^0.5.0, ^0.6.0, ^0.7.0,
^0.8.0 0.5.17, 0.6.12, 0.7.0, 0.7.6, 0.8.8

ERC1155Mock ^0.7.0, ^0.8.0 0.7.0, 0.7.6, 0.8.8

ERC1155ReceiverMock ^0.7.0, ^0.8.0 0.7.0, 0.7.6, 0.8.0, 0.8.8

ERC1155 ^0.7.0, ^0.8.0 0.7.0, 0.7.6, 0.8.8

Table 4.8: Commonly used contracts used as reference for this experiment. Each valid
combination is compiled using four different optimization levels (1, 200, 10 000 and
1 000 000) which results in 412 individual bytecodes. Source codes for these contracts
were obtained from OpenZeppelin’s GitHub repository.

47

4. Evaluation

5 % sample ∪ standard contracts — matches between synthetic standard contracts
Contract t=0.95 t=0.94 t=0.93 t=0.92 t=0.91 t=0.90 # slices

pl
au

sib
le

im
pl

au
sib

le

pl
au

sib
le

im
pl

au
sib

le

pl
au

sib
le

im
pl

au
sib

le

pl
au

sib
le

im
pl

au
sib

le

pl
au

sib
le

im
pl

au
sib

le

pl
au

sib
le

im
pl

au
sib

le

ERC777 270 0 307 0 317 0 347 0 378 0 380 0 14,19,20,22
ERC721FullMock 56 0 156 0 319 29 433 170 457 372 473 540 10
ERC721MintableBurnableImpl 66 0 117 0 231 10 335 69 428 228 490 383 9
ERC20PausableMock 3 0 32 0 120 0 203 10 321 50 546 123 6,9,10,12
ERC20BurnableMock 0 0 36 0 151 0 308 0 463 5 616 36 4,6,9
ERC20MintableMock 332 0 437 0 466 3 479 88 574 185 744 373 4,5
ERC1155Mock 96 6 251 50 326 168 385 341 413 446 444 538 3,6
ERC721 1 325 212 1 874 445 2 447 1 148 2 959 1 992 3 348 2 738 3 721 3 481 3,6
ERC1155 212 36 512 167 724 435 944 763 1 194 1 049 1 391 1 378 3,6
ERC20Mock 156 0 326 2 435 19 502 71 649 151 917 472 3,4,6,8
ERC1155ReceiverMock 20 23 61 51 125 99 226 139 402 212 529 322 3
ERC721Mock 964 198 1 163 329 1 300 675 1 385 1 121 1 468 1 297 1 581 1 494 2,3,6
ERC20 585 101 1 047 214 1 633 436 2 220 747 2 935 1 049 3 885 1 750 1,3,5
ERC165Mock 1 723 389 1 778 569 1 889 1 063 2 083 1 400 2 273 1 532 2 413 1 621 1,2,3
ERC1820Implementer 0 0 0 1 0 10 0 28 0 53 0 85 1
SafeMathMock 0 0 0 0 0 0 0 2 0 6 0 13 1

Table 4.9: Matches between synthetically generated standard contracts using the 5 %
dataset. Figure 4.2a depicts a heatmap of relative values from this table.

5 % sample ∪ standard contracts — matches between synthetic and real contracts
Contract t=0.95 t=0.94 t=0.93 t=0.92 t=0.91 t=0.90 # slices

pl
au

sib
le

im
pl

au
sib

le

pl
au

sib
le

im
pl

au
sib

le

pl
au

sib
le

im
pl

au
sib

le

pl
au

sib
le

im
pl

au
sib

le

pl
au

sib
le

im
pl

au
sib

le

pl
au

sib
le

im
pl

au
sib

le

ERC777 185 562 773 2 000 1 705 5 158 3 585 9 337 6 861 15 409 12 093 23 880 14,19,20,22
ERC721FullMock 762 793 1 444 2 444 2 073 5 156 2 782 8 417 3 543 12 298 4 258 17 412 10
ERC721Mintable
BurnableImpl 813 740 1 409 2 210 1 993 4 657 2 665 7 530 3 359 10 668 4 026 14 812 9

ERC20PausableMock 290 131 1 049 664 2 485 1 552 5 568 3 466 10 854 7 059 18 166 11 982 6,9,10,12
ERC20BurnableMock 16 1 126 47 647 415 2 165 1 565 4 744 3 755 8 741 7 306 4,6,9
ERC20MintableMock 5 524 7 645 8 687 9 480 14 574 12 340 21 169 15 526 26 266 18 589 29 738 21 449 4,5
ERC1155Mock 46 74 422 496 910 1 140 1 576 2 271 2 366 4 796 3 227 8 176 3,6
ERC721 3 962 10 235 6 783 17 837 10 257 29 117 14 369 42 958 18 844 61 705 23 177 86 506 3,6
ERC1155 724 3 344 1 724 6 541 3 263 11 088 5 558 18 698 8 226 29 774 10 958 43 626 3,6
ERC20Mock 149 49 612 503 1 801 1 559 4 259 3 553 7 374 6 450 11 431 10 566 3,4,6,8
ERC1155ReceiverMock 556 3 146 983 5 624 1 603 8 945 2 505 14 217 3 473 20 671 4 435 28 197 3
ERC721Mock 2 247 8 296 2 940 11 021 3 737 14 089 4 794 17 349 6 105 22 623 7 584 30 533 2,3,6
ERC20 6 119 8 100 11 003 11 763 20 755 18 388 35 464 28 766 53 144 42 774 74 349 61 027 1,3,5
ERC165Mock 4 691 17 690 5 746 24 231 6 581 31 275 7 247 37 824 8 071 46 728 9 615 60 062 1,2,3
ERC1820Implementer 0 143 0 1 425 1 3 157 2 4 242 2 5 144 3 6 604 1
SafeMathMock 0 11 0 147 0 861 0 2 314 0 3 898 0 5 636 1

Table 4.10: Matches between synthetically generated contracts using the 5 % dataset.
Figure 4.2b depicts a heatmap of relative values from this table.

48

4.4. N-to-M Slice Matching

10 % sample ∪ standard contracts — matches between synthetic standard contracts
Contract t=0.95 t=0.94 t=0.93 t=0.92 t=0.91 t=0.90 # slices

pl
au

sib
le

im
pl

au
sib

le

pl
au

sib
le

im
pl

au
sib

le

pl
au

sib
le

im
pl

au
sib

le

pl
au

sib
le

im
pl

au
sib

le

pl
au

sib
le

im
pl

au
sib

le

pl
au

sib
le

im
pl

au
sib

le

ERC777 230 0 306 0 316 0 327 0 365 0 380 0 14,19,20,22
ERC721FullMock 55 0 101 0 324 8 418 87 445 207 466 393 10
ERC721MintableBurnableImpl 107 0 134 0 316 19 428 124 495 225 530 378 9
ERC20PausableMock 0 0 31 0 103 0 188 0 276 1 435 7 6,9,10,12
ERC20BurnableMock 2 0 20 0 109 0 269 0 421 2 578 21 4,6,9
ERC20MintableMock 205 0 369 0 464 0 468 45 485 139 526 224 4,5
ERC1155Mock 229 32 378 127 441 338 469 498 509 654 573 794 3,6
ERC721 235 18 415 94 629 273 826 510 990 773 1 135 1 015 3,6
ERC1155 176 17 333 89 402 230 444 422 480 560 525 697 3,6
ERC20Mock 33 0 196 0 367 1 463 8 536 43 663 125 3,4,6,8
ERC1155ReceiverMock 13 3 60 7 167 34 345 89 491 201 628 374 3
ERC721Mock 1 033 214 1 315 342 1 438 565 1 479 842 1 533 1 138 1 582 1 492 2,3,6
ERC20 83 95 266 287 552 503 784 646 967 720 1 145 786 1,3,5
ERC165Mock 1 721 403 1 777 538 1 871 711 2 109 805 2 350 1 035 2 554 1 460 1,2,3
ERC1820Implementer 0 0 0 2 0 5 0 12 0 27 10 64 1
SafeMathMock 0 0 0 0 0 3 2 14 2 32 4 72 1

Table 4.11: Matches between synthetically generated standard contracts using the 10 %
dataset. Figure 4.3a depicts a heatmap of relative values from this table.

10 % sample ∪ standard contracts — matches between synthetic and real contracts
Contract t=0.95 t=0.94 t=0.93 t=0.92 t=0.91 t=0.90 # slices

pl
au

sib
le

im
pl

au
sib

le

pl
au

sib
le

im
pl

au
sib

le

pl
au

sib
le

im
pl

au
sib

le

pl
au

sib
le

im
pl

au
sib

le

pl
au

sib
le

im
pl

au
sib

le

pl
au

sib
le

im
pl

au
sib

le

ERC777 122 458 825 1 936 2 417 5 640 5 155 12 730 10 120 22 700 17 143 35 859 14,19,20,22
ERC721FullMock 739 874 2 131 2 673 3 707 7 238 5 098 13 001 6 556 18 674 7 878 24 866 10
ERC721Mintable
BurnableImpl 2 148 1 910 3 595 5 935 4 950 11 416 6 273 16 929 7 612 21 974 8 744 28 813 9

ERC20PausableMock 696 257 2 205 906 4 730 1 805 9 348 3 900 16 274 8 314 26 268 15 568 6,9,10,12
ERC20BurnableMock 8 0 224 17 842 210 2 733 1 242 6 898 3 438 12 901 7 429 4,6,9
ERC20MintableMock 8 735 11 108 12 103 15 927 15 808 19 354 24 979 24 218 37 802 30 244 49 725 36 019 4,5
ERC1155Mock 78 237 894 1 056 2 481 2 465 4 458 4 662 6 572 9 489 8 104 16 795 3,6
ERC721 283 1 243 1 326 4 453 3 484 8 948 6 685 14 974 10 194 23 956 13 471 36 225 3,6
ERC1155 51 199 602 984 1 935 2 272 3 679 4 326 5 647 8 575 7 295 15 151 3,6
ERC20Mock 46 11 443 185 1 128 842 3 158 2 509 8 246 5 621 14 609 10 569 3,4,6,8
ERC1155ReceiverMock 349 1 671 1 130 5 012 2 398 10 993 4 109 19 958 6 042 31 310 8 389 44 841 3
ERC721Mock 3 976 13 428 5 463 18 079 7 448 23 586 9 925 29 174 12 760 37 190 15 607 49 562 2,3,6
ERC20 113 63 657 662 1 745 2 723 3 558 6 665 7 051 12 116 13 241 19 175 1,3,5
ERC165Mock 8 645 28 922 11 355 40 568 13 900 55 364 16 358 71 315 18 723 89 075 21 415 108 899 1,2,3
ERC1820Implementer 0 37 0 567 1 3 114 1 11 158 5 27 632 10 52 775 1
SafeMathMock 0 111 0 863 0 4 098 0 10 906 0 23 080 0 40 241 1

Table 4.12: Matches between synthetically generated contracts using the 10 % dataset.
Figure 4.3b depicts a heatmap of relative values from this table.

49

4. Evaluation

0.95 0.94 0.93 0.92 0.91 0.90

Threshold t

ERC777

ERC721FullMock

ERC721Mintable
BurnableImpl

ERC20Pausable
Mock

ERC20Burnable
Mock

ERC20Mintable
Mock

ERC1155Mock

ERC721

ERC1155

ERC20Mock

ERC1155Receiver
Mock

ERC721Mock

ERC20

ERC165Mock

ERC1820Implementer

SafeMathMock

C
on

tr
ac

tI
m

pl
em

en
ta

tio
n

100 100 100 100 100 100

100 100 91.67 71.81 55.13 46.69

100 100 95.85 82.92 65.24 56.13

100 100 100 95.31 86.52 81.61

/ 100 100 100 98.93 94.48

100 100 99.36 84.48 75.63 66.61

94.12 83.39 65.99 53.03 48.08 45.21

86.21 80.81 68.07 59.77 55.01 51.67

85.48 75.41 62.47 55.3 53.23 50.23

100 99.39 95.81 87.61 81.13 66.02

46.51 54.46 55.8 61.92 65.47 62.16

82.96 77.95 65.82 55.27 53.09 51.41

85.28 83.03 78.93 74.82 73.67 68.94

81.58 75.76 63.99 59.8 59.74 59.82

/ 0 0 0 0 0

/ / / 0 0 0

Relative number of plausible matches
between synthetic contracts only

5% sample

0

20

40

60

80

100

(a) Heatmap for matches between synthetic con-
tracts only.

0.95 0.94 0.93 0.92 0.91 0.90

Threshold t

ERC777

ERC721FullMock

ERC721Mintable
BurnableImpl

ERC20Pausable
Mock

ERC20Burnable
Mock

ERC20Mintable
Mock

ERC1155Mock

ERC721

ERC1155

ERC20Mock

ERC1155Receiver
Mock

ERC721Mock

ERC20

ERC165Mock

ERC1820Implementer

SafeMathMock

C
o
n

tr
a
c
t

Im
p

le
m

e
n

ta
ti

o
n

24.77 27.88 24.84 27.74 30.81 33.62

49 37.14 28.68 24.84 22.37 19.65

52.35 38.93 29.97 26.14 23.95 21.37

68.88 61.24 61.56 61.63 60.59 60.26

94.12 72.83 60.92 58.04 55.82 54.47

41.95 47.82 54.15 57.69 58.56 58.1

38.33 45.97 44.39 40.97 33.04 28.3

27.91 27.55 26.05 25.06 23.39 21.13

17.8 20.86 22.74 22.91 21.65 20.08

75.25 54.89 53.6 54.52 53.34 51.97

15.02 14.88 15.2 14.98 14.38 13.59

21.31 21.06 20.96 21.65 21.25 19.9

43.03 48.33 53.02 55.21 55.41 54.92

20.96 19.17 17.38 16.08 14.73 13.8

0 0 0.03 0.05 0.04 0.05

0 0 0 0 0 0

Relative number of plausible matches
between synthetic and real contracts

5% sample

0

20

40

60

80

(b) Heatmap for matches between synthetic and
real contracts.

Figure 4.2: Two heatmaps displaying the number of plausible match relative to all
matches per threshold and contract. Both heatmaps represent distinct subsets of matches
within the 5 % dataset.

50

4.4. N-to-M Slice Matching

0.95 0.94 0.93 0.92 0.91 0.90

Threshold t

ERC777

ERC721FullMock

ERC721Mintable
BurnableImpl

ERC20Pausable
Mock

ERC20Burnable
Mock

ERC20Mintable
Mock

ERC1155Mock

ERC721

ERC1155

ERC20Mock

ERC1155Receiver
Mock

ERC721Mock

ERC20

ERC165Mock

ERC1820Implementer

SafeMathMock

C
on

tr
ac

tI
m

pl
em

en
ta

tio
n

100 100 100 100 100 100

100 100 97.59 82.77 68.25 54.25

100 100 94.33 77.54 68.75 58.37

/ 100 100 100 99.64 98.42

100 100 100 100 99.53 96.49

100 100 100 91.23 77.72 70.13

87.74 74.85 56.61 48.5 43.77 41.92

92.89 81.53 69.73 61.83 56.15 52.79

91.19 78.91 63.61 51.27 46.15 42.96

100 100 99.73 98.3 92.57 84.14

81.25 89.55 83.08 79.49 70.95 62.67

82.84 79.36 71.79 63.72 57.39 51.46

46.63 48.1 52.32 54.83 57.32 59.3

81.03 76.76 72.46 72.37 69.42 63.63

/ 0 0 0 0 13.51

/ / 0 12.5 5.88 5.26

Relative number of plausible matches
between synthetic contracts only

10% sample

0

20

40

60

80

100

(a) Heatmap for matches between synthetic con-
tracts only.

0.95 0.94 0.93 0.92 0.91 0.90

Threshold t

ERC777

ERC721FullMock

ERC721Mintable
BurnableImpl

ERC20Pausable
Mock

ERC20Burnable
Mock

ERC20Mintable
Mock

ERC1155Mock

ERC721

ERC1155

ERC20Mock

ERC1155Receiver
Mock

ERC721Mock

ERC20

ERC165Mock

ERC1820Implementer

SafeMathMock

C
o
n

tr
a
c
t

Im
p

le
m

e
n

ta
ti

o
n

21.03 29.88 30 28.82 30.83 32.34

45.82 44.36 33.87 28.17 25.98 24.06

52.93 37.72 30.25 27.04 25.73 23.28

73.03 70.88 72.38 70.56 66.19 62.79

100 92.95 80.04 68.75 66.74 63.46

44.02 43.18 44.96 50.77 55.55 57.99

24.76 45.85 50.16 48.88 40.92 32.55

18.55 22.95 28.02 30.86 29.85 27.11

20.4 37.96 45.99 45.96 39.71 32.5

80.7 70.54 57.26 55.73 59.46 58.02

17.28 18.4 17.91 17.07 16.18 15.76

22.85 23.21 24 25.38 25.55 23.95

64.2 49.81 39.06 34.8 36.79 40.85

23.01 21.87 20.07 18.66 17.37 16.43

0 0 0.03 0.01 0.02 0.02

0 0 0 0 0 0

Relative number of plausible matches
between synthetic and real contracts

10% sample

0

20

40

60

80

100

(b) Heatmap for matches between synthetic and
real contracts.

Figure 4.3: Two heatmaps displaying the number of plausible match relative to all
matches per threshold and contract. Both heatmaps represent distinct subsets of matches
within the 10 % dataset.

51

4. Evaluation

4.4.2 Wallet Contracts
We make use of wallets that have previously been classified as similar by [dAS20d]. The
authors combine three different methods for identifying wallets. To be precise, they
identify wallets based on their contract interfaces, by locating their factories, and they
use the external blockchain service EtherScan4 to extract contracts that contain the term
’wallet’ in their name. This way, they distill 40 distinct families of wallets that can be
further subdivided into 893 distinct skeleton groups distinguished by their deployment
bytecode. We extract candidate contracts for each of these 893 skeletons, extract their
CFGs and slice them before including them into the contract corpora. As was the
case with our previous datasets, EtherSolve fails to extract CFGs for some contracts,
reducing 893 wallet skeletons to 876. We proceed with these, check whether the wallets
match with each other and whether a match occurs within a specific wallet group or
not. If mismatches occur, we try to explain them by looking at source code if available.
Table 4.13 displays the wallet types and the number of skeletons that were classified.

In order to be able to compare matches among groups we compute the number of
pairwise matches Mi,j where i > j. This eliminates symmetric matches (Mi,j = Mj,i)
and identities (Mi,i). Equation 4.1 and Figure 4.4 provide formal and visual descriptions
for this idea respectively.

wallets in group

wa
lle

ts
in

gr
ou

p

Figure 4.4: Visual depiction (and optical illusion) of Equation 4.1.

t-sum(n) = n2 −
n�

k=1
k = n(n−1)

2 (4.1)

4https://etherscan.io/

52

https://etherscan.io/

4.4. N-to-M Slice Matching

Wallet Group Classified Skeletons Sliced Skeletons=n t-sum(n)
multisig Stefan George 345 343 58 653
multisig Gavin Wood/Ethereum/Parity 119 116 6 670
multisig WalletSimple/BitGo 98 94 4 371
multisig WalletSimple/BitGo forwarder 69 67 2 211
multisig Christian Lundkvist 44 44 946
controlled 33 32 496
smart GnosisSafe 28 28 378
timelocked wallet 16 16 120
smart Julien Niset/Argent 14 14 91
simple wallet 2 13 13 78
wallet 3 13 13 78
loopring wallet 10 9 36
consumer wallet 9 9 36
dapper 8 7 21
multisig Teambrella Wallet 7 7 21
wallet1 7 6 15
ambi wallet 6 4 10
multisig Julien Niset/Argent 5 5 10
smartwallet 5 5 10
spendable wallet 5 5 6
intermediatewallet 4 4 6
multisig Unchained Capital 3 3 3
logicproxywallet 3 3 3
multisig NiftyWallet 3 3 3
wallet 2 3 3 3
wallet 4 3 3 3
simple wallet 2 2 1
basicwallet 2 2 1
eidoo wallet 2 2 1
simple wallet 3 2 2 1
multisig Ivt 2 2 1
wallet 7 2 2 1
autowallet 1 1 0
ether wallet 1 1 1 0
ether wallet 2 1 1 0
poloniex2 1 1 0
simple wallet 4 1 1 0
ICT lock 1 1 0
wallet 5 1 1 0
wallet 6 1 1 0

Table 4.13: Wallet groups and their respective amount of classified and sliced contracts.
As was the case in our previous experiments, not all of our base data was processable,
hence the third column.

53

4. Evaluation

Number of (mis)matches per t and per dataset
Wallets trained using 5 % sample Wallets trained using 10 % sample

t matches1 mismatches2 % matches matches1 mismatches2 % matches
0.95 2 533 0 100 % 2 223 0 100 %
0.94 7 967 4 99.94 % 7 097 5 99.93 %
0.93 15 877 30 99.81 % 14 273 25 99.83 %
0.92 21 777 269 98.78 % 20 481 153 99.29 %
0.91 26 264 2 429 91.53 % 24 717 1 414 94.59 %
0.90 31 146 9 603 76.43 % 29 107 6 002 82.90 %
1 Number of matches where both wallets were of the same type.
2 Number of matches where the two wallets were of different type.

Table 4.14: The threshold t and its effect on matches and mismatches between wallets.

Table 4.14 shows the ratio of matches to mismatches in their respective datasets, keyed
by different brackets of t. Symmetrical matches, i.e. Mi,j = Mj,i are counted only
once, and identities, i.e. Mi,i are excluded from the statistics. Tables 4.15 and 4.16
show how our method performs on the wallet datasets. The confusion matrices in
Figures 4.5, 4.6, 4.7, 4.8, 4.9 and 4.10 show which wallet groups were more prone to
mismatches than others.

54

4.4. N-to-M Slice Matching

Optimal vs. actual vs. mismatches — Wallets trained with 5 % sample — t = 0.90

Wallet Group n t-
su

m
(n

)

m
at

ch
es

m
is

m
at

ch
es

%
m

at
ch

es

di
ff

%
di

ff

multisig Stefan George 343 58 653 26 567 4 352 85.92 % −32 086 45.30 %
multisig Gavin Wood/Ethereum/Parity 116 6 670 2 445 2 700 47.52 % −4 225 36.66 %
multisig WalletSimple/BitGo 94 4 371 985 597 62.26 % −3 386 22.53 %
multisig WalletSimple/BitGo forwarder 67 2 211 643 378 62.98 % −1 568 29.08 %
multisig Christian Lundkvist 44 946 109 64 63.01 % −837 11.52 %
controlled 32 496 54 70 43.55 % −442 10.89 %
smart GnosisSafe 28 378 112 602 15.69 % −266 29.63 %
timelocked wallet 16 120 25 34 42.37 % −95 20.83 %
smart Julien Niset/Argent 14 91 23 123 15.75 % −68 25.27 %
simple wallet 2 13 78 19 2 90.48 % −59 24.36 %
wallet 3 13 78 78 65 54.55 % 0 100.00 %
consumer wallet 9 36 30 322 8.52 % −6 83.33 %
loopring wallet 9 36 14 9 60.87 % −22 38.89 %
dapper 7 21 9 2 81.82 % −12 42.86 %
multisig Teambrella Wallet 7 21 11 15 42.31 % −10 52.38 %
wallet1 6 15 1 23 4.17 % −14 6.67 %
spendable wallet 5 10 4 33 10.81 % −6 40.00 %
multisig Julien Niset/Argent 5 10 1 35 2.78 % −9 10.00 %
smartwallet 5 10 4 1 80.00 % −6 40.00 %
ambi wallet 4 6 0 0 0 % −6 0 %
intermediatewallet 4 6 1 27 3.57 % −5 16.67 %
multisig Unchained Capital 3 3 1 0 0 % −2 33.33 %
logicproxywallet 3 3 0 0 0 % −3 0 %
multisig NiftyWallet 3 3 3 35 7.89 % 0 100.00 %
wallet 2 3 3 3 0 0 % 0 100.00 %
wallet 4 3 3 1 8 11.11 % −2 33.33 %
simple wallet 3 2 1 1 18 5.26 % 0 100.00 %
multisig Ivt 2 1 1 19 5.00 % 0 100.00 %
eidoo wallet 2 1 1 0 0 % 0 100.00 %
basicwallet 2 1 0 13 0 % −1 0 %
wallet 7 2 1 0 8 0 % −1 0 %
simple wallet 2 1 0 0 0 % −1 0 %
poloniex2 1 0 0 0 0 % 0 0 %
wallet 5 1 0 0 2 0 % 0 0 %
wallet 6 1 0 0 0 0 % 0 0 %
simple wallet 4 1 0 0 0 0 % 0 0 %
autowallet 1 0 0 3 0 % 0 0 %
ICT lock 1 0 0 27 0 % 0 0 %
ether wallet 2 1 0 0 14 0 % 0 0 %
ether wallet 1 1 0 0 2 0 % 0 0 %

876 74 284 31 146 9 603 76,43 % −43 126 41.93 %

Table 4.15: Wallet groups and the optimal number of matches within each group vs. the
number of contract pairs that matched using our method. The table shows data using
our 5 % dataset.

55

4. Evaluation

Optimal vs. actual vs. mismatches — Wallets trained with 10 % sample — t = 0.90

Wallet Group n t-
su

m
(n

)

m
at

ch
es

m
is

m
at

ch
es

%
m

at
ch

es

di
ff

%
di

ff

multisig Stefan George 343 58 653 24 955 2 641 90.43 % −33 698 42.55 %
multisig Gavin Wood/Ethereum/Parity 116 6 670 2 157 1 325 61.95 % −4 513 32.34 %
multisig WalletSimple/BitGo 94 4 371 931 333 73.66 % −3 440 21.30 %
multisig WalletSimple/BitGo forwarder 67 2 211 562 279 66.83 % −1 649 25.42 %
multisig Christian Lundkvist 44 946 118 41 74.21 % −828 12.47 %
controlled 32 496 43 55 43.88 % −453 8.67 %
smart GnosisSafe 28 378 111 659 14.42 % −267 29.37 %
timelocked wallet 16 120 29 39 42.65 % −91 24.17 %
smart Julien Niset/Argent 14 91 17 62 21.52 % −74 18.68 %
simple wallet 2 13 78 23 9 71.88 % −55 29.49 %
wallet 3 13 78 78 38 67.24 % 0 100.00 %
consumer wallet 9 36 30 256 10.49 % −6 83.33 %
loopring wallet 9 36 13 5 72.22 % −23 36.11 %
dapper 7 21 9 1 90.00 % −12 42.86 %
multisig Teambrella Wallet 7 21 10 5 66.67 % −11 47.62 %
wallet1 6 15 2 27 6.90 % −13 13.33 %
spendable wallet 5 10 4 40 9.09 % −6 40.00 %
multisig Julien Niset/Argent 5 10 1 16 5.88 % −9 10.00 %
smartwallet 5 10 2 0 0 −8 20.00 %
ambi wallet 4 6 0 0 0 −6 0
intermediatewallet 4 6 1 25 3.85 % −5 16.67 %
multisig Unchained Capital 3 3 1 1 50.00 % −2 33.33 %
logicproxywallet 3 3 0 0 0 −3 0
multisig NiftyWallet 3 3 3 28 9.68 % 0 100.00 %
wallet 2 3 3 3 0 0 0 100.00 %
wallet 4 3 3 1 6 14.29 % −2 33.33 %
simple wallet 3 2 1 1 12 7.69 % 0 100.00 %
multisig Ivt 2 1 1 20 4.76 % 0 100.00 %
eidoo wallet 2 1 1 0 0 0 100.00 %
basicwallet 2 1 0 11 0 −1 0
wallet 7 2 1 0 6 0 −1 0
simple wallet 2 1 0 0 0 −1 0
poloniex2 1 0 0 12 0 0 0
wallet 5 1 0 0 0 0 0 0
wallet 6 1 0 0 0 0 0 0
simple wallet 4 1 0 0 0 0 0 0
autowallet 1 0 0 10 0 0 0
ICT lock 1 0 0 28 0 0 0
ether wallet 2 1 0 0 10 0 0 0
ether wallet 1 1 0 0 2 0 0 0

876 74 284 29 107 6 002 82.90 % −45 165 39.18 %

Table 4.16: Wallet groups and the optimal number of matches within each group vs. the
number of contract pairs that matched using our method. The table shows data using
our 10 % dataset.

56

4.4. N-to-M Slice Matching

co
nsu

m
er

 w
al

le
t

lo
op

ri
ng w

al
le

t

m
ulti

si
g G

av
in

 W
oo

d /

Eth
er

eu
m

 /
Par

ity

m
ulti

si
g Iv

t

m
ulti

si
g N

ift
yW

al
le

t

m
ulti

si
g S

te
fa

n G
eo

rg
e

m
ulti

si
g W

al
le

tS
im

ple
 /

BitG
o

m
ulti

si
g W

al
le

tS
im

ple
 /

BitG
o

fo
rw

ar
der

sm
ar

t G
nos

is
Saf

e

sm
ar

t J
ulie

n N
is

et
 /

Arg
en

t

w
al

le
t 2

w
al

le
t 3

Wallet Group 2

consumer wallet

loopring wallet

multisig Gavin Wood /
Ethereum / Parity

multisig Ivt

multisig NiftyWallet

multisig Stefan George

multisig WalletSimple /
BitGo

multisig WalletSimple /
BitGo forwarder

smart GnosisSafe

smart Julien Niset /
Argent

wallet 2

wallet 3

W
a
ll

e
t

G
ro

u
p

 1

3 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 116 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 2007 0 0 0 0 0 0

0 0 0 0 0 0 319 0 0 0 0 0

0 0 0 0 0 0 0 6 0 0 0 0

0 0 0 0 0 0 0 0 29 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 46

5% sample Wallets
 t=0.95

100

101

102

103

Matches between Groups of Wallet Contracts

Figure 4.5: Confusion matrix of matches between wallets groups using the 5 % sample
and t = 0.95.

57

4. Evaluation

co
nsu

m
er

 w
al

le
t

co
ntr

ol
le

d

dap
per

lo
op

ri
ng w

al
le

t

m
ulti

si
g C

hri
st

ia
n

Lundkv
is

t

m
ulti

si
g G

av
in

 W
oo

d /

Eth
er

eu
m

 /
Par

ity

m
ulti

si
g S

te
fa

n G
eo

rg
e

m
ulti

si
g W

al
le

tS
im

ple
 /

BitG
o

m
ulti

si
g W

al
le

tS
im

ple
 /

BitG
o

fo
rw

ar
der

si
m

ple
 w

al
le

t 2

sm
ar

t G
nos

is
Saf

e

sm
ar

t J
ulie

n N
is

et
 /

Arg
en

t

tim
el

oc
ke

d w
al

le
t

w
al

le
t 3

w
al

le
t1

Wallet Group 2

consumer wallet

controlled

dapper

loopring wallet

multisig Christian
Lundkvist

multisig Gavin Wood /
Ethereum / Parity

multisig Stefan George

multisig WalletSimple /
BitGo

multisig WalletSimple /
BitGo forwarder

simple wallet 2

smart GnosisSafe

smart Julien Niset /
Argent

timelocked wallet

wallet 3

wallet1

W
a
ll

e
t

G
ro

u
p

 1

16 0 0 0 0 0 8 0 0 0 0 0 0 0 0

0 27 0 0 0 0 0 0 8 0 0 0 0 0 0

0 0 9 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 6 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 56 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1293 18 0 0 0 0 0 0 0 0

27 0 0 0 0 24 19204 8 0 0 28 1 0 0 0

0 0 0 0 0 0 8 663 1 0 3 0 0 0 0

0 6 0 0 0 0 0 1 272 0 0 0 2 0 3

0 0 0 0 0 0 0 0 0 4 0 0 0 0 0

0 0 0 0 0 0 42 0 0 0 98 2 0 0 0

0 0 0 0 0 0 1 0 0 0 1 18 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 11 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 78 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5% sample Wallets
 t=0.92

100

101

102

103

104

Matches between Groups of Wallet Contracts

Figure 4.6: Confusion matrix of matches between wallets groups using the 5 % sample
and t = 0.92. We include the top 15 most common wallet types.

58

4.4. N-to-M Slice Matching

co
nsu

m
er

 w
al

le
t

co
ntr

ol
le

d

dap
per

lo
op

ri
ng w

al
le

t

m
ulti

si
g C

hri
st

ia
n

Lundkv
is

t

m
ulti

si
g G

av
in

 W
oo

d /

Eth
er

eu
m

 /
Par

ity

m
ulti

si
g S

te
fa

n G
eo

rg
e

m
ulti

si
g W

al
le

tS
im

ple
 /

BitG
o

m
ulti

si
g W

al
le

tS
im

ple
 /

BitG
o

fo
rw

ar
der

si
m

ple
 w

al
le

t 2

sm
ar

t G
nos

is
Saf

e

sm
ar

t J
ulie

n N
is

et
 /

Arg
en

t

tim
el

oc
ke

d w
al

le
t

w
al

le
t 3

w
al

le
t1

Wallet Group 2

consumer wallet

controlled

dapper

loopring wallet

multisig Christian
Lundkvist

multisig Gavin Wood /
Ethereum / Parity

multisig Stefan George

multisig WalletSimple /
BitGo

multisig WalletSimple /
BitGo forwarder

simple wallet 2

smart GnosisSafe

smart Julien Niset /
Argent

timelocked wallet

wallet 3

wallet1

W
a
ll

e
t

G
ro

u
p

 1

30 0 0 2 4 0 287 23 0 0 0 4 0 0 0

0 54 0 0 2 0 0 3 46 0 0 0 1 0 2

0 0 9 0 0 0 0 0 0 0 2 0 0 0 0

0 0 0 14 0 0 8 0 0 0 0 1 0 0 0

2 1 0 0 109 0 11 14 0 0 21 1 0 0 0

2 0 0 0 0 2445 2698 0 0 0 0 0 0 0 0

580 0 0 4 2 2792 26567 441 1 0 383 84 0 28 0

20 9 0 0 11 0 408 985 48 0 35 20 0 29 0

0 32 0 0 0 0 2 34 643 3 1 1 74 52 30

0 0 0 0 0 0 0 0 0 19 0 0 0 0 0

0 0 0 0 25 0 532 14 0 0 112 22 0 6 0

10 0 0 4 0 0 80 3 0 0 19 23 0 2 0

0 0 0 0 0 0 0 1 26 0 0 0 25 3 3

0 0 0 0 0 0 26 10 12 0 3 2 0 78 5

0 0 0 0 0 0 0 0 17 0 0 0 3 1 1

5% sample Wallets
 t=0.90

100

101

102

103

104

Matches between Groups of Wallet Contracts

Figure 4.7: Confusion matrix of matches between wallets groups using the 5 % sample
and t = 0.90. We include the top 15 most common wallet types.

59

4. Evaluation

co
nsu

m
er

 w
al

le
t

m
ulti

si
g C

hri
st

ia
n

Lundkv
is

t

m
ulti

si
g G

av
in

 W
oo

d /

Eth
er

eu
m

 /
Par

ity

m
ulti

si
g Iv

t

m
ulti

si
g N

ift
yW

al
le

t

m
ulti

si
g S

te
fa

n G
eo

rg
e

m
ulti

si
g W

al
le

tS
im

ple
 /

BitG
o

m
ulti

si
g W

al
le

tS
im

ple
 /

BitG
o

fo
rw

ar
der

sm
ar

t G
nos

is
Saf

e

sp
en

dab
le

 w
al

le
t

w
al

le
t 3

Wallet Group 2

consumer wallet

multisig Christian
Lundkvist

multisig Gavin Wood /
Ethereum / Parity

multisig Ivt

multisig NiftyWallet

multisig Stefan George

multisig WalletSimple /
BitGo

multisig WalletSimple /
BitGo forwarder

smart GnosisSafe

spendable wallet

wallet 3

W
a
ll

e
t

G
ro

u
p

 1

3 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 29 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0

0 0 0 0 0 1896 0 0 0 0 0

0 0 0 0 0 0 223 0 0 0 0

0 0 0 0 0 0 0 2 0 0 0

0 0 0 0 0 0 0 0 18 0 0

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 46

10% sample Wallets
 t=0.95

100

101

102

103

Matches between Groups of Wallet Contracts

Figure 4.8: Confusion matrix of matches between wallets groups using the 10 % sample
and t = 0.95.

60

4.4. N-to-M Slice Matching

co
nsu

m
er

 w
al

le
t

co
ntr

ol
le

d

dap
per

lo
op

ri
ng w

al
le

t

m
ulti

si
g C

hri
st

ia
n

Lundkv
is

t

m
ulti

si
g G

av
in

 W
oo

d /

Eth
er

eu
m

 /
Par

ity

m
ulti

si
g S

te
fa

n G
eo

rg
e

m
ulti

si
g W

al
le

tS
im

ple
 /

BitG
o

m
ulti

si
g W

al
le

tS
im

ple
 /

BitG
o

fo
rw

ar
der

si
m

ple
 w

al
le

t 2

sm
ar

t G
nos

is
Saf

e

sm
ar

t J
ulie

n N
is

et
 /

Arg
en

t

tim
el

oc
ke

d w
al

le
t

w
al

le
t 3

w
al

le
t1

Wallet Group 2

consumer wallet

controlled

dapper

loopring wallet

multisig Christian
Lundkvist

multisig Gavin Wood /
Ethereum / Parity

multisig Stefan George

multisig WalletSimple /
BitGo

multisig WalletSimple /
BitGo forwarder

simple wallet 2

smart GnosisSafe

smart Julien Niset /
Argent

timelocked wallet

wallet 3

wallet1

W
a
ll

e
t

G
ro

u
p

 1

16 0 0 0 0 0 2 0 0 0 0 0 0 0 0

0 19 0 0 0 0 0 0 4 0 0 0 0 0 0

0 0 8 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 5 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 50 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1216 4 0 0 0 0 0 0 0 0

14 0 0 0 0 8 18013 5 0 0 13 0 0 0 0

0 0 0 0 0 0 1 660 0 0 0 0 0 0 0

0 4 0 0 0 0 0 0 262 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 9 0 0 0 0 0

0 0 0 0 0 0 28 0 0 0 99 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 10 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 16 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 78 0

0 0 0 0 0 0 0 0 2 0 0 0 0 0 0

10% sample Wallets
 t=0.92

100

101

102

103

104

Matches between Groups of Wallet Contracts

Figure 4.9: Confusion matrix of matches between wallets groups using the 10 % sample
and t = 0.92. We include the top 15 most common wallet types.

61

4. Evaluation

co
nsu

m
er

 w
al

le
t

co
ntr

ol
le

d

dap
per

lo
op

ri
ng w

al
le

t

m
ulti

si
g C

hri
st

ia
n

Lundkv
is

t

m
ulti

si
g G

av
in

 W
oo

d /

Eth
er

eu
m

 /
Par

ity

m
ulti

si
g S

te
fa

n G
eo

rg
e

m
ulti

si
g W

al
le

tS
im

ple
 /

BitG
o

m
ulti

si
g W

al
le

tS
im

ple
 /

BitG
o

fo
rw

ar
der

si
m

ple
 w

al
le

t 2

sm
ar

t G
nos

is
Saf

e

sm
ar

t J
ulie

n N
is

et
 /

Arg
en

t

tim
el

oc
ke

d w
al

le
t

w
al

le
t 3

w
al

le
t1

Wallet Group 2

consumer wallet

controlled

dapper

loopring wallet

multisig Christian
Lundkvist

multisig Gavin Wood /
Ethereum / Parity

multisig Stefan George

multisig WalletSimple /
BitGo

multisig WalletSimple /
BitGo forwarder

simple wallet 2

smart GnosisSafe

smart Julien Niset /
Argent

timelocked wallet

wallet 3

wallet1

W
a
ll

e
t

G
ro

u
p

 1

30 0 0 4 0 0 242 7 0 0 0 1 0 0 0

0 43 0 0 1 0 0 3 30 0 0 0 0 0 4

0 0 9 0 0 0 0 0 0 0 1 0 0 0 0

2 0 0 13 0 0 2 0 0 0 0 1 0 0 0

0 0 0 0 118 0 3 17 0 0 8 0 0 0 0

0 0 0 0 0 2157 1325 0 0 0 0 0 0 0 0

500 0 0 0 1 1374 24955 288 0 0 389 42 0 37 0

4 2 0 0 6 0 228 931 16 0 30 7 0 23 0

0 29 0 0 0 0 0 12 562 8 1 1 60 13 36

0 0 0 0 0 0 0 0 2 23 1 0 0 0 0

0 0 0 0 25 0 601 9 0 2 111 16 0 3 0

3 0 0 1 0 0 39 3 0 0 14 17 0 0 0

0 0 0 0 0 0 0 1 31 0 0 0 29 0 3

0 0 0 0 0 0 11 8 6 0 0 1 0 78 8

0 0 0 0 0 0 0 0 16 0 0 0 4 3 2

10% sample Wallets
 t=0.90

100

101

102

103

104

Matches between Groups of Wallet Contracts

Figure 4.10: Confusion matrix of matches between wallets groups using the 10 % sample
and t = 0.90. We include the top 15 most common wallet types.

62

4.4. N-to-M Slice Matching

4.4.3 Correlation Metrics
We proceed by providing various correlation metrics between matching values and the
Jaccard index over function signatures. For this we regard results from different datasets,
as described in the captions of the figures. We use the following notations:

N : population size, i.e. number of total matches in the respective experiment
n : size of sample for plotting
r : Pearson’s correlation coefficient (over the entire population)
p : p-value for Pearson’s correlation coefficient
cri : creator of contract i

As the calculation of p-value assumes that each dimension is normally distributed [Kow72,
p. 1-12] we proceed to conduct our correlation analyses using the entire (finite) population
N , which allows us to omit significance testing for our data points. In order to achieve
readable graphs, however, we limit our observations for plotting to a sample size of
n = 1000. In other words, the specified r-values in the plots refer to the population size
N instead of the sample size n.

We further want to investigate whether two contracts that are deployed by the same
creator are more likely to be similar to each other than two contracts from different
creators. The η2 coefficient is used to determine correlations between nominal values, e.g.
a boolean value that determines whether two contracts in a match were deployed by the
same creator, and metric values, i.e. our similarity score Mi,j . Cohen et al. [Coh88, p.
282] define it as:

η2 = 1 − Ep

Et
(4.2)

where

Et =
n

i=1
(yi − ȳ)2

Ep =

k

n

i=1

(yi − ȳk)2δik

δik =
�

1, if i = k

0 else

In the above equation, ȳk denotes the group mean of group k. In our case, we have
two groups, true and false, indicating whether two contracts were deployed by the same
creator or not.

63

4. Evaluation

Further, Cohen et al. [Coh88, p. 282-287] define as rule of thumb:

• η2 < 0.01: negligible effect

• 0.01 ≤ η2 < 0.06: small effect size

• 0.06 ≤ η2 < 0.14: medium effect size

• 0.14 ≤ η2: large effect size

η2 correlation coefficient
5 % sample 10 % sample

t η2 N η2 N

0.90 0.0020 2 698 247 0.0026 9 428 544
0.91 0.0032 1 312 887 0.0043 4 649 524
0.92 0.0053 555 119 0.0076 2 000 222
0.93 0.0097 202 166 0.0136 721 609
0.94 0.0188 59 502 0.0284 201 170
0.95 0.0321 13 334 0.0577 38 835

Table 4.17: η2 correlation coefficient similarity score Mi,j and creators cri = crj per
dataset. By increasing the threshold t, and thus regarding “higher quality” matches, the
correlation becomes stronger.

Table 4.17 lists values of η2 for different thresholds. The remainder of this section
introduces calculations which we later use to discuss the hypotheses made in section 3.6.

64

4.4. N-to-M Slice Matching

0.0 0.2 0.4 0.6 0.8 1.0

Jaccard Index over Function Signatures

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

S
im

il
a
ri

ty
 M

i,
j

N=40, 749

n=1, 000, r=0.643

match

mismatch

Wallet Contracts - Jaccard vs. Similarity - 5% dataset

Figure 4.11: Scatter plot for matches between wallets trained with the 5 % dataset.
Individual dots represent a match, and the red line represents the line of best fit over
the sampled observations. The horizontal axis represents the Jaccard index over their
function signatures, and the vertical axis the similarity score Mi,j . This makes the vertical
axis synonymous with the threshold t in Table 4.14.

65

4. Evaluation

0.0 0.2 0.4 0.6 0.8 1.0

Jaccard Index over Function Signatures

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

S
im

il
a
ri

ty
 M

i,
j

N=35, 109

n=1, 000, r=0.607

match

mismatch

Wallet Contracts - Jaccard vs. Similarity - 10% dataset

Figure 4.12: Scatter plot for matches between wallets trained with the 10 % dataset.
Individual dots represent a match, and the red line represents the line of best fit over
the sampled observations. The horizontal axis represents the Jaccard index over their
function signatures, and the vertical axis the similarity score Mi,j . This makes the vertical
axis synonymous with the threshold t in Table 4.14.

66

4.4. N-to-M Slice Matching

0.0 0.2 0.4 0.6 0.8 1.0
Jaccard Index over Function Signatures

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

S
im

il
a
ri

ty
 M

i,
j

All Contracts
 Jaccard vs. Similarity - 5% dataset

N=2, 702, 969

n=1, 000, r=0.144

0.0 0.2 0.4 0.6 0.8 1.0
Jaccard Index over Function Signatures

0.90

0.91

0.92

0.93

0.94

0.95

0.96

S
im

il
a
ri

ty
 M

i,
j

All Contracts
 Jaccard vs. Similarity - 10% dataset

N=9, 440, 957

n=1, 000, r=0.178

Figure 4.13: Correlation for the 5 % and 10 % datasets. The red lines represent the line
of best fit over the sampled observations. The low correlation coefficients compared to
Figure 4.11 and Figure 4.12 are explained by the homogeneity of the wallet dataset, and
by the fact that wallets produce many slices on average (see Table 4.3).

0.0 0.2 0.4 0.6 0.8 1.0
Jaccard Index over Function Signatures

0.90

0.91

0.92

0.93

0.94

0.95

0.96

S
im

il
a
ri

ty
 M

i,
j

Contracts with >150 slices
 Jaccard vs. Similarity - 5% dataset

N=581, 138

n=1, 000, r=0.244

0.0 0.2 0.4 0.6 0.8
Jaccard Index over Function Signatures

0.90

0.91

0.92

0.93

0.94

0.95

0.96

S
im

il
a
ri

ty
 M

i,
j

Contracts with >150 slices
 Jaccard vs. Similarity - 10% dataset

N=1, 955, 228

n=1, 000, r=0.282

Figure 4.14: Correlation for the 10 % and 5 % datasets with limited number of slices.
The red lines represent the line of best fit over the sampled observations. Compared to
Figure 4.13, the correlation coefficient r is increasing when the natches are limited to
those in which both contracts generate more than 150 slices.

67

4. Evaluation

0 2 4 6 8
Block Difference [millions]

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

S
im

il
a
ri

ty
 M

i,
j

Block Difference vs. Similarity - 5% dataset

N=2, 702, 969

n=1, 000, r= 0.139

0 2 4 6 8
Block Difference [millions]

0.90

0.91

0.92

0.93

0.94

0.95

0.96

S
im

il
a
ri

ty
 M

i,
j

Block Difference vs. Similarity - 10% dataset

N=9, 440, 957

n=1, 000, r= 0.147

Figure 4.15: Correlation between our similarity score Mi,j and the block difference
between deployments of contract i and j. The red lines represent the line of best fit over
the sampled observations.

0 5 10 15 20
Difference in Code Length [thousands]

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

S
im

il
a
ri

ty
 M

i,
j

Code Length vs. Similarity - 5% dataset

N=2, 702, 969

n=1, 000, r= 0.034

0 5 10 15 20
Difference in Code Length [thousands]

0.90

0.91

0.92

0.93

0.94

0.95

0.96

S
im

il
a
ri

ty
 M

i,
j

Code Length vs. Similarity - 10% dataset

N=9, 440, 957

n=1, 000, r= 0.045

Figure 4.16: Correlation between our similarity score Mi,j and the difference in code
length between contract i and j. The red lines represent the line of best fit over the
sampled observations.

68

CHAPTER 5
Discussion

In this chapter we discuss the results of our evaluations. We want to point out what
worked well, what did not and later give our thoughts about possible applications for our
approach, and what improvements we would try to make next.

5.1 1-to-1 Matching
Using the results of our experiment with three different datasets, we first want to discuss
our findings in general, then draw parallels to the results of [HHY+21] while highlighting
key differences between their method and our version. While doing so, we also want to
discuss the difficulties we experienced while reenacting their steps. Since we operate on
datasets different from [HHY+21], we cannot faithfully recreate their results. Rather, we
focus on analysing how well our implementation works when used with our datasets.
Finally, we provide a more in-depth analysis of individual matches, which helps us to
identify weak points in our method and propose changes that may improve our results.

so
ur

ce
:8

6
no

so
ur

ce
:1

31

no
ts

an
e

sane

best match per
vuln. slice

5%
10

%
10

0%

to
ta

lc
he

ck
ed

:2
17

additionally
checked

EFF

Reentrancy

Selfdestruct
false positive

true positive

118

99

77

74

66 11

4
6

 7
2

3

75

Figure 5.1: Sankey diagram consolidating the results of vulnerability matching. Of over
217 checked matches, only 11 had available source code and passed our sanity checks.

69

5. Discussion

Figure 5.1 displays our success (or lack thereof) in finding vulnerabilities with the
respective datasets. It also depicts how many of our potential matches are eliminated
by performing basic sanity checks, e.g. by verifying whether a slice actually contains
the operation that defines a vulnerability, or by manually inspecting if the matched
slices really do resemble each other. Matches of vulnerability type origin and Block-info
Dependency (BID) were disproportionally disqualified by these checks — a circumstance
that is described in more detail in subsection 5.1.1.
The authors of [HHY+21] focused on five types of vulnerabilities in particular: Inte-
ger overflows, reentrancies, bad randomness, unprotected ownership and mishandled
exceptions. They built one dataset containing 24 vulnerable contracts of these types
and matched them against two other datasets, one containing 2 297 058 closed-source
bytecodes from the blockchain, and the other containing 164 open-source vulnerable
contracts from EtherScan.
We leverage the findings of Rameder et al. [RdAS22] and utilize 21 different contracts, of
which we mark 44 slices as vulnerable to seven different types of vulnerabilities. Some
types we use in our dataset are not directly mappable to the ones in [HHY+21], and
the opposite holds true as well. We operate on three differently sized datasets of target
contracts as we believe that the size of the embedding corpus has an impact on the
quality of embedding vectors. Our target datasets consist of 228 793, 22 813 and 11 368
skeleton-contracts each, which are representative for 6 500 283, 56 673, and 13 118 real
world contracts respectively. In contrast to [HHY+21], we do not utilize a separate
dataset for validation, and rather manually validate the results of our best matches where
source code is available. While the authors of [HHY+21] select their threshold t = 0.90
trying to minimize false-negatives and false-positives within their validation set, we set it
to t = 0.95 to limit the amount of extracted data.
As they claim that they were fairly successful in finding vulnerabilities, we want to
highlight deviations between our findings and theirs. For example, while they successfully
detected vulnerabilities that make use of bad randomness, which is partly represented
by our BID category, we were not able to do so. Another category for which we could
not confirm any true positive matches is for reentrancy vulnerabilities. Matches for
which we were able to do so belong exclusively to the category EFF. These are the only
ones where we think that the method works well in finding transfers, which under
circumstances could be exploited for DoS attacks.
We conclude that the method proposed by [HHY+21], or at least our implementation
of it, works well for finding some types of vulnerabilities, but not at all for others. We
were able to confirm that our version of their method is capable of finding slices similar
to each other, based on what is extracted from the CFGs. We also observe that the
perceived degree of similarity between matching pairs decreases proportionally to their
score, albeit at different thresholds in different datasets. In order to generate good results,
however, the quality of target slices, i.e. the ones containing the vulnerability, is crucial.
This conclusion is supported by the fact that our initial goal of marking at least one
vulnerable slice per contract resulted in matches of poor quality.

70

5.1. 1-to-1 Matching

To give an example, we initially included a vulnerable contract exhibiting arithmetic
bugs in our test set but were not able to accurately identify slices characteristic of the
bugs. As we proceeded to target slices we deemed near the vulnerability, we later realized
that we cannot perform meaningful sanity checks on their matches and moved on to
source code analysis. Even though some manual source code inspections showed the
presence of arithmetic operations that were not protected by calls to the SafeMath library,
other contracts did in fact do so. Since there was no evidence that these slices do in
fact embody an overflow vulnerability, we decided to exclude them from the test set.
Another example for a vulnerability group that is likely as undetectable by our method
are Transaction Order Dependencies (TOD).

We have repeatedly stressed the distinction between our version of the method compared
to the one of [HHY+21]. The reason for this is due to the numerous personal interpreta-
tions and assumptions that we had to make while recreating their work, and thus, cannot
confidently claim that we have produced a faithful re-implementation. To give an example
for lacking detail, the original paper never explicitly mentions the criteria for terminating
a slice, and implicitly only does so in a single example. Further, the authors mention
the procedure of generating CFGs only twice, referring to two other works in this area
but provide no other points of orientation. Another interesting finding in their work is
Table I [HHY+21, p. 2148], in which they list instructions and corresponding tags of their
output. Disregarding the fact that they explicitly mention the table’s incompleteness,
Table I contains an instruction, CALLDATACOPY, which, per definition, does not
produce an output on the stack at all. We remain uncertain about whether this was
overseen by the authors, or whether we misinterpreted the purpose of the table.

Nonetheless, we think that our implementation is on the right path to perform similarly
well as the one of [HHY+21]. Retrospectively, we realize that a more conservative selection
process for targeting vulnerable slices would have decreased the time to analyse, and
likely would have yielded more accurate results. Additionally, a more diverse dataset of
vulnerable contracts would likely help to achieve better results. This, in combination
with our conclusions in the remainder of this section leads us to believe that our version
of the method has room for improvement.

The following parts of this section give more insight into our proceedings on a per-
vulnerability-type basis. We elaborate our conclusions in more detail and describe
matches between slices that we believe were accurate or not. We remark that it is a
difficult task to judge whether a vulnerability is present within a contract as this strongly
depends on its business case. The classifications of true positives and false positives in the
remainder of this section have been made based on whether we think that the highlighted
code section can be used contrary to the intentions of the author of the contract.

71

5. Discussion

5.1.1 Origin
The first noteworthy mention regarding Tables 4.4, 4.5 4.6 and 4.7 is that slices embodying
vulnerabilities of type ORIGIN are overrepresented in our dataset. This fact also translates
to the number of matched slices for this vulnerability type, though we want to point out
that out of the 53 matches over each of the datasets, not a single one passed the sanity
checks. The reason for this is quickly revealed by looking at a match of type ORIGIN.
Listing 5.1 shows how both slices in the match are identical to each other but differ
only in their initiator. Since a vulnerability of this kind cannot be present without the
instruction ORIGIN occurring, matches like this do not pass the sanity checks.

1 {
2 "191078_0x9dd8db08a907ddf82eb539bb0645d1237e9024ee_71": {
3 "initiator": {"mnem": "CALLER"},
4 "edges": [[0, 1], [1, 2], [2, 3], [3, 4]],
5 "features": {
6 "0": "AND(B, j)",
7 "1": "EQ(Z, gjB)",
8 "2": "ISZERO(hgjBZ)",
9 "3": "ISZERO(hhgjBZ)",

10 "4": "JUMPI(j, hhhgjBZ)"
11 }
12 },
13 "1001146_0x000000000000000000000000000vuln_QIUToken_100": {
14 "target": true,
15 "initiator": {"mnem": "ORIGIN"},
16 "edges": [[0, 1], [1, 2], [2, 3], [3, 4]],
17 "features": {
18 "0": "AND(B, j)",
19 "1": "EQ(Z, gjB)",
20 "2": "ISZERO(hgjBZ)",
21 "3": "ISZERO(hhgjBZ)",
22 "4": "JUMPI(j, hhhgjBZ)"
23 }
24 }
25 }

Listing 5.1: Example of a match between an “ORIGIN vulnerability”, and another slice.
Note that the extracted slices are identical, and only their initiators, i.e. the slicing critera
differ.

The above considerations lead us to draw our first conclusion:

Conclusion 1 Future iterations of our method should include the slicing criterion into the
extracted slices as we think it would increase the quality of matches. See subsection 6.1.1
for details.

72

5.1. 1-to-1 Matching

5.1.2 Selfdestruct
Out of 12 matches across three datasets for this group, only two1,2 pass our sanity
checks. While for both of these contracts source code is available, and both implement
self-destruction, we note that the functionality is protected by onlyOwner modifiers.
Thus, these matches fall under the category false positives. We think that the reason
for this is two-fold and also observable with other vulnerability types: On the one hand,
a slice that comprises the SELFDESTRUCT operation will not necessarily include
logic that is executed at the beginning of a function, e.g. by a modifier. This means that,
depending on the size of the functions body, code implementing access control logic is
unlikely to be included in a slice embodying a vulnerability. On the other hand, even if
such logic was included in the extracted slices, what makes this vulnerability threatening
is the absence of such logic — not the presence thereof. Including such modifier logic
into a slice would most likely not find any more vulnerabilities but other contracts that
protect their self-destruction using such a modifier. Based on these thoughts, we make
our second conclusion:

Conclusion 2 Since the use of modifiers is widespread in solidity, a way to improve our
process could be to ensure the absence of such before extracting a slice as vulnerable. As
access control modifiers often implement only few lines code performing similar kinds of
checks, we think it could be viable to identify typical slices corresponding to such code,
and in addition to checking for the presence of a vulnerable slice, check for the absence
of such modifier slices in the matched contract where applicable.

5.1.3 Externally Forced Fail
As depicted in Table 5.1, out of 8 matches, 6 passed our sanity tests. Of those six
contracts, only one contract’s source code was available, while none of the others’ could
be obtained, neither directly, nor by association over their respective skeleton group.
Interestingly, contracts with the same skeleton as the last contract in Table 5.1 had been
deployed 95 times from five different accounts, but for none we could obtain the source
code.

We looked into the single contract stemming from the 5 % dataset whose source code
was available3, and technically we were indeed able to identify a vulnerability of type
EFF. Listing 5.2 depicts a shortened version of this contract.

In particular, the functions sowCorn and reap are vulnerable to EFFs due to the fact
that their caller must specify the target contract’s address himself. Since no restrictions to
the address exist, an attacker could pass arbitrary contracts under his control as arguments
for these functions, including ones that fail forcefully. As no other logic is executed
besides the two function calls, we conclude that even if the contract is theoretically prone
to EFFs, this particular instance is not a contract that can be meaningfully exploited by

10x9f751aaacc74e55a27a19419c332e02aa96ed961
20x738dfaf60910ebcb4cd369cb983b5d36467e9673
30x34ea8cdc7837d3a84f5869909104bdb1a7c8cb35

73

https://etherscan.io/address/0x9f751aaacc74e55a27a19419c332e02aa96ed961#code
https://etherscan.io/address/0x738dfaf60910ebcb4cd369cb983b5d36467e9673#code
https://etherscan.io/address/0x34ea8cdc7837d3a84f5869909104bdb1a7c8cb35#code

5. Discussion

an attacker. Lastly, we note that the onlyParent modifier in line 20 remains unused
within the contract, and think that this was either overseen or — given the name of the
contract — done intentionally by the creator. We classify this match as a true positive.

1 pragma s o l i d i t y ^ 0 . 4 . 1 9 ;
2
3 interface CornFarm
4 {
5 function buyObject (address _ b e n e f i c i a r y) public payable ;
6 }
7
8 interface Corn
9 {

10 function balanceOf (address who) public view returns (uint256) ;
11 function transfer (address to , uint256 value) public returns (bool) ;
12 }
13
14 contract howbadlycouldthisgowrong {
15 address public parentAddress ;
16 event ForwarderDeposited (address from , uint value , bytes data) ;
17
18 /* constructor and fallback function omitted */
19
20 modifier onlyParent {
21 i f (msg . sender != parentAddress) {
22 revert () ;
23 }
24 _;
25 }
26
27 address public farmer = 0xC4C6328405F00Fa4a93715D2349f76DF0c7E8b79 ;
28
29 function sowCorn (address s o i l , uint8 s e e d s) external {
30 for (uint8 i = 0 ; i < s e e d s ; ++i) {
31 CornFarm(soil).buyObject(this);
32 }
33 }
34
35 function reap (address corn) external {
36 Corn(corn).transfer(farmer, Corn(corn).balanceOf(this));
37 }
38 }

Listing 5.2: Contract howbadlycouldthisgowrong. The highlighted lines mark code
that may result in EFFs, though the (malicious) caller would be the only one damaged
when trying to exploit this contract.

After this arguable initial success, we decided to investigate further matches for the target
slice matching with this contract. The 19 next best matches were looked at, all of which
passed our sanity checks. For five of those contracts we were able to obtain source codes
and proceeded to make manual inspections.

74

5.1. 1-to-1 Matching

skeleton-contract dataset sane source represented
contracts

0x34ea8cdc7837d3a84f5869909104bdb1a7c8cb35 5 % yes yes 1
0x0347cd66ea7756377028e494e92845c800ee1521 5 % yes no 1
0xff93908c8e92181d623f4a58bceb5bf53fb143c5 5 % no - -
0xf547229a3b21c525630eda4fa334fada82464358 10 % yes no 1
0xacdb43d57fbea59d7aa4e9e6fd274ea78d0610cb 10 % yes no 1
0x20d14e391a80dfa8e28778c263e41e780fb8f4b8 10 % no - -
0x8b48cb5d71ae681a5fbba2064a330afbc448aaa5 100 % yes no 1
0x2ca103f6c1b5bdc36118c05491eea85080e93d14 100 % yes no 95

Table 5.1: Matches for type EFF. The matches in this table represent the best matches
per vulnerable slice and dataset that exceed t = 0.95.

ListingsERC20 4 This contract is a hybrid token / auctioning contract where a seller
could create an unsellable listing by creating a contract that fails when its transfer
function is called. Listing 5.3 displays the vulnerable function, with the unsafe
transfer taking place on line 16. Since exploiting this could somewhat deny service
to others, we classify this match as a true positive.

1 function buyLis t ing (bytes32 l i s t i n g I d , uint256 amount) external payable {
2 L i s t i n g storage l i s t i n g = l i s t i n g s [l i s t i n g I d] ;
3 address s e l l e r = l i s t i n g . s e l l e r ;
4 address contractAddress = l i s t i n g . tokenContractAddress ;
5 uint256 p r i c e = l i s t i n g . p r i c e ;
6 uint256 s a l e = p r i c e . mul (amount) ;
7 uint256 al lowance = l i s t i n g . a l lowance ;
8 require (now <= l i s t i n g . dateEnds) ;
9 require (a l lowance − s o l d [l i s t i n g I d] >= amount) ;

10 require (a l lowance − amount >= 0) ;
11 require (getBalance (contractAddress , s e l l e r) >= al lowance) ;
12 require (getAl lowance (contractAddress , s e l l e r , this) <= al lowance) ;
13 require (msg . value == s a l e) ;
14 ERC20 tokenContract = ERC20(contractAddress) ;
15 require (tokenContract . transferFrom (s e l l e r , msg . sender , amount)) ;
16 seller.transfer(sale - (sale.mul(ownerPercentage).div(10000)));
17 s o l d [l i s t i n g I d] = al lowance . sub (amount) ;
18 List ingBought (l i s t i n g I d , contractAddress , p r i c e , amount , now, msg . sender) ;
19 }

Listing 5.3: A vulnerable contract where the seller of a listing could always force a fail to
deny buyers their purchase.

DMToken 5 This contract exhibits an unchecked return value on line 261. While an
EFF vulnerability theoretically exists, it is highly unlikely that this can ever be
exploited unless the “upgradeMaster” loses control of the target contract. Thus,
we classify this match as a false positive.

40xab24cd33766da327ecd4ec9e46e2e7ba72cda783
50x5c751a3a3375a97463a4b5f000c3f700802e903a

75

https://etherscan.io/address/0xab24cd33766da327ecd4ec9e46e2e7ba72cda783#code
https://etherscan.io/address/0x5c751a3a3375a97463a4b5f000c3f700802e903a#code

5. Discussion

Draw 6 Here, an EFF vulnerability exists, though an attacker would not be able to
exploit this contract in the sense of stealing ether. Parts of the contract are displayed
in Listing 5.4. The vulnerability is constituted by line 27, where an “attacker” could
be participating from a contract that forces upon being called with the transfer
function. For this reason, we classify this match as a true positive.

1 /* pragma and Ownable contract omitted*/
2 contract Draw i s Ownable {
3
4 /* storage variable declarations , constructor , initiator function and

fallback function redirecting to joinGame omitted */
5
6 function joinGame () public payable {
7 require (msg . sender != owner) ;
8 require (msg . value == 100 finney) ;
9 require (counter < MAX_PLAYERS) ;

10
11 p l a y e r s [counter] = msg . sender ;
12 counter++;
13 s l o t s _ l e f t = MAX_PLAYERS − counter ;
14
15 i f (counter >= MAX_PLAYERS) {
16 last_winner = endGame () ;
17 }
18 }
19
20 function endGame () internal returns (address winner) {
21 require (this . balance − owner_balance >= 900 finney) ;
22 t d e l t a = now − t0 ;
23 index = uint (t d e l t a % MAX_PLAYERS) ;
24 t0 = now ;
25 winner = p l a y e r s [index] ;
26 initGame () ;
27 winner.transfer(855 finney);
28 owner_balance = owner_balance + 45 finney ;
29 }
30 /* balance query and withdrawing functions omitted */
31 }

Listing 5.4: A player using a contract (which does not implement receive or fallback)
to participate would be denied his winnings.

Forwarder 7 This contract uses a if !call then revert() instead of a require(call)
construct, which might be reason that this contract was matched. Since the vulner-
ability does in fact not exist, we claim this to be a false positive.

Snake 8 Our last match is a contract that is definitely vulnerable to an EFF. The
contract works by buying parts of a snake off of a previous owner. Everytime the
head of the snake is traded, its body grows by a length of one. An attack scenario
could comprise buying any part of the snake for its current price using a malicious
contract that implements a transfer function which unconditionally reverts. This
way, an attacker could deny potential buyers the ability to buy the snake part from

60xc32c4bd955cfd68bddbc13b4baef73bcef0e09da
70xed8d3b7221453777f67622f5a4fea8e1b427d517
80x01dd8186b8f38dfa01ea2c044355ea95206a4481

76

https://etherscan.io/address/0xc32c4bd955cfd68bddbc13b4baef73bcef0e09da#code
https://etherscan.io/address/0xed8d3b7221453777f67622f5a4fea8e1b427d517#code
https://etherscan.io/address/0x01dd8186b8f38dfa01ea2c044355ea95206a4481#code

5.1. 1-to-1 Matching

him. Applying such an attack to the snake’s head would additionally prevent the
snake from growing any larger. Both of these attack scenarios are EFFs that lead to
a DoS. Listing 5.5 depicts the vulnerable contract’s source code, which we classify
as a true positive.

1 pragma s o l i d i t y ^ 0 . 4 . 1 9 ;
2
3 contract Snake {
4 address public ownerAddress ;
5 uint256 public length ; // stores length of the snake
6
7 mapping (uint256 => uint256) public snake ;
8 mapping (uint256 => address) public owners ;
9 mapping (uint256 => uint256) public stamps ;

10
11 event S a l e (address owner , uint256 p r o f i t , uint256 stamp) ; // ’stores’ sales

of tokens
12
13 function Snake () public {
14 ownerAddress = msg . sender ;
15 length = 0 ; // set initial length of the snake to 0
16 _extend (length) ; // create head of the snake
17 }
18
19 // called when someone buys a token from someone else
20 function buy (uint256 id) external payable {
21 require (snake [id] > 0) ; // must be a valid token
22 require (msg . value >= snake [id] / 100 ∗ 150) ;
23 address owner = owners [id] ;
24 uint256 amount = snake [id] ;
25
26 snake [id] = amount / 100 ∗ 1 5 0 ; // set new price of token
27 owners [id] = msg . sender ; // set new owner of token
28 stamps [id] = uint256 (now) ;
29
30 owner.transfer(amount / 100 * 125); // transfer gain

31 S a l e (owner , amount , uint256 (now)) ;
32 // if this is the head token being traded:
33 i f (id == 0) {
34 length++; // increase the length of the snake
35 _extend (length) ; // create new token
36 }
37 ownerAddress . transfer (this . balance) ; // transfer to owner
38 }
39 // increases length of the snake
40 function _extend (uint256 id) internal {
41 snake [id] = 1 ∗ 10∗∗16;
42 owners [id] = msg . sender ;
43 }
44 }

Listing 5.5: A contract where DoS is possible against all participants.

77

5. Discussion

A proof of concept (PoC) exploit contract might look as follows.
1 pragma solidity ^0.4.19;
2 contract SnakeEater {
3 Snake public snake = Snake(0xd9145CCE52D386f254917e481eB44e9943F39138);
4
5 function buyPart(uint part) payable public{
6 snake.buy.value(msg.value)(part);
7 }
8 }

Listing 5.6: PoC exploit for contract Snake.

A contract that is called via a transfer which implements neither of receive or
fallback will fail. Thus, it suffices to buy a snake’s part using a single-function contract
as depicted in Listing 5.6. Listing 5.7 contains the slice that matched with the contracts
listed for this category.

1 {
2 "initiator": {
3 "mnem": "SLOAD"
4 },
5 "edges": [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]],
6 "features": {
7 "0": "EXP(j, DZ)",
8 "1": "DIV(fjDZ, Y)",
9 "2": "AND(ffjDZY, j)",

10 "3": "AND(gjffjDZY, j)",
11 "4": "CALL(j, gjgjffjDZY, fhjX, ij, fijij, ij, j)",
12 "5": "ISZERO(gjgjffjDZY)",
13 "6": "ISZERO(hgjgjffjDZY)",
14 "7": "JUMPI(j, hhgjgjffjDZY)"
15 }
16 }

Listing 5.7: The slice that matched with the named contracts.

Conclusion 3: We conclude that our method at least somehow works for contracts that
neglect checking the return value of transfers. We take these findings into consideration
later.

5.1.4 Delegatecall
Since none of the matches shown in Tables 4.5, 4.6 and 4.7 incorporated a slice containing
the instruction DELEGATECALL, and thus passed our sanity checks, we decided to
extend our search trying to find a well-matched slice. Unfortunately, even after checking
30 additional slices, there was not a single one fulfilling the above requirement. Since we
ordered the matches by their score and checked them in descending order, the matches
were getting more dissimilar as we advanced through the list. We try to explain this
behaviour by displaying the slice that we marked as vulnerable in Listing 5.8.

78

5.1. 1-to-1 Matching

1 {
2 "target": true,
3 "edges": [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]],
4 "features": {
5 "0": "EXP(j, DZ)",
6 "1": "DIV(fjDZ, Y)",
7 "2": "AND(ffjDZY, j)",
8 "3": "AND(gjffjDZY, j)",
9 "4": "AND(gjgjffjDZY, j)",

10 "5": "MSTORE(fjij, gjgjgjffjDZY)",
11 "6": "SUB(gjffjDZY, ij)",
12 "7": "DELEGATECALL(X, V, ij, fgjffjDZYij, ij, j)"
13 }
14 }

Listing 5.8: While our target instruction included DELEGATECALL as the very last
instruction, none of the matched slices did the same.

While many of our inspected slices where almost identical to the target slice, we noticed
that the last instruction in our target slice — the instruction defining this vulnerability

— was missing in all of them. We believe that this may be due to the fact that the
instruction in question was the very last one, and that such instructions generally perform
worse in the matching than ones occurring earlier in the slice. This might be ascribed to
the way how graph2vec uses sub-graphs as context for its labels. Since the neighbouring
sub-graphs of the last instruction, i.e. of DELEGATECALL contain very little nodes, we
think that graph2vec may not have been as successful in encoding this instruction into
the vector space as it was for earlier occurring ones.

Conclusion 4 We think this behaviour could be mitigated by introducing bidirectional
edges instead of ordinary ones. This may seem counter-intuitive at first, as such edges
would go against the sequence direction of the program. However, we think it could help
when dealing with situations like we encountered here.

5.1.5 Reentrancy
Of 38 matches over all three datasets that were individually looked at, 20 passed the
sanity checks. However, only three of those had their source code available. In the
first match9, in the function executeOperation, reentrancy is theoretically possible
through a function call. However, the code can de facto be ruled out to ever be exploited
due to the fact that the reentering contract would be under the control of the owner.
Thus, we classify this as a false positive.

The second match10 is classified as a false positive as well due to the fact that a
transfer rather than a call is used. This limits the amount of available gas for the

90x1597e31e4831284a63ff9e98faa70b16612a1ac8
100xca30a6938d8a2c70c547a694755bf6d81e04b2ea

79

https://etherscan.io/address/0x1597e31e4831284a63ff9e98faa70b16612a1ac8#code
https://etherscan.io/address/0xca30a6938d8a2c70c547a694755bf6d81e04b2ea#code

5. Discussion

receiver to 2 300, and was specifically introduced to mitigate reentrancy attacks.

The last match11 is another false positive due to the fact that a special nonReentrant
modifier is used on functions, preventing reentrancy. While the original authors were
successful in detecting reentrancy vulnerabilities, we conclude that it is rather difficult to
find instances where theoretical reentrancies can really be exploited.

5.1.6 BlockInfoDependency
Generally speaking, matches of this kind were of low quality. While subjectively good
matches for other vulnerability types were observed to be around a threshold of ~0.99 for
the sampled datasets, and around ~0.97 for the full dataset, we observed matches for
this kind of vulnerability generally to be way below those thresholds. The reason for this
likely stems from causes that we have already mentioned in subsection 5.1.1.

1 {
2 "target": true,
3 "initiator": {"mnem": "BLOCKHASH"},
4 "edges": [[0, 1], [1, 2]],
5 "features": {
6 "0": "DIV(j, CZ)",
7 "1": "ADD(Y, fjCZ)",
8 "2": "ADD(X, ffjCZY)"
9 }

10 }

Listing 5.9: Example slice for a vulnerable slice with a BLOCKHASH criterion.

As observable in Listing 5.9, the only information within the slice that a block info
instruction was used is the group symbol of BLOCKHASH, C, which it shares with 10
other instructions (see Table 3.2). We think this is a very vague encoding of information,
and again recommend including the slicing criterion to the slice itself, which may result
in a more characteristic target slice and may lead to matches of better quality.

5.1.7 UncheckedReturnValue
While two out of twelve matches pass the sanity checks, there is no source code available
for the contracts on Etherscan.io.

110x08c96398c00c0b890da21ebdd26c67487455d2bf

80

https://etherscan.io
https://etherscan.io/address/0x08c96398c00c0b890da21ebdd26c67487455d2bf#code

5.2. N-to-M Matching

5.2 N-to-M Matching
In this section we discuss the results of our experiments concerning N-to-M matching
(contract matching).

5.2.1 Standard Contracts
As mentioned in subsection 4.4.1, we focus on two subsets of matches from the dataset
10 % sample ∪ standard contracts for this experiment: One subset containing matches
between our synthetically generated contracts on both sides of the match, and the other
containing matches between synthetic and real contracts. Using the numbers of plausible
and implausible matches in Tables 4.11, 4.12 and Figures 4.3a, 4.3b we will proceed to
draw our conclusions. We want to point out that we omit discussing results for the 5 %
dataset due them exhibiting little deviations compared to the 10 % dataset.

First, we want to revisit our definition of plausible and implausible matches using the
contract ERC721MintableBurnableImpl as an example. This contract inherits from
three interfaces: ERC721, Mintable and Burnable. We define a match as plausible
if there is at least one interface which both contracts in the match inherit from, and
implausible otherwise. In this case, the second contract in the match would have to
implement any of the three interfaces mentioned above in order for the match to be ruled
as plausible. We want to stress the fact that a plausible match does not guarantee that
two contracts were matched because of the interface that they are sharing, just the same
as an implausible match does not necessarily mean that there are no similarities between
the matched contracts at all. Knowing this, we want to highlight our findings using both
of the subsets separately before drawing our conclusions.

Synthetic Subset

Generally speaking, we can observe that our method performs moderately well for matches
above the threshold t = 0.95. Depending on the contract, however, the ratio of plausible
matches relative to the total matches deviates largely, and in an unexpected manner in
one instance. The contract that stands out as negative outlier in this regard is ERC20.
Compared to other contracts, it registers an increase in the percentage of plausible
matches as the threshold is decreased. This effect seems counter-intuitive at first, and
may be explained by the fact that there are four other synthetic contracts inheriting
this interface, making this interface overrepresented. Out of 786 implausible matches for
contract ERC20, 517 can be attributed to variations of the ERC721 contract and 268 to
the ERC1155 family.

Contracts that performed rather poorly are ERC1820Implementer and SafeMathMock,
which is unsurprising given that both contracts only generate one slice. For SafeMathMock,
the low number of plausible matches is also explained by the fact that ordinary implemen-
tations of the ERC-suite do generally not expose their functions performing SafeMath
operations, which makes detecting plausible matches impossible using our method.

81

5. Discussion

Another observation we make is that matches with the contract ERC777Token have a
100 % rate of being plausible within our synthetic subset, regardless of the threshold t.
Despite the fact that the contract in our synthetic setup implements both interfaces,
ERC20 and ERC777, none of the plausible matches in this category are cross-matches,
i.e. none of the matched contracts are such that implement ERC20 but no other interface.
This means that in all matches with this specific contract, both of the contracts implement
both interfaces. The reason for this may be due to a few very long and characteristic
slices that were extracted from our ERC777Token contracts.

Real Subset

Looking at matches between synthetic and real contracts, we observe that our method per-
forms rather poorly, with the best two sticking out as contracts ERC20BurnableMock
and ERC20Mock. Interestingly enough, the contract that performed worst within syn-
thetic matches, ERC20, is among the better performing ones when matched against real
contracts. Contracts that generate many matches with a high threshold of t = 0.95 are
ERC20MintableMock (8 735 plausible), ERC165Mock (8 645 plausible), and ERC721Mock
(3 976 plausible).

Our intuition is that this experiment performed badly due to the fact that contracts in
the ERC-suite generally generate a small amount of slices. This was also the reason why
we decided to look at the similarity of matches in only one direction, i.e. whether an ERC
contract is similar to the match, but not the other way around. We believe the reason
for the low number of slices to be that the reference implementations we obtained from
OpenZeppelin are minimal implementations with little to no program logic, whereas real
ERC token contracts generally comprise more business logic, and therefore generate more
slices.

The conclusion we draw from this experiment is that the number of generated slices
are key when trying to relate contracts to each other. This, in combination with the
uniqueness of extracted slices determines the quality of our matches.

Lastly, we want to point out that there were no noteworthy differences in the number of
plausible matches between the larger and the smaller dataset.

5.2.2 Wallet Contracts
As the nature of the results does not deviate noticeably between the two datasets, we
want to focus on discussing results using the 10 % for this experiment as well. We will
draw a more high level comparison between the datasets at the end of this subsection.

Compared to our experiment using standard contracts, matching wallets with each other
seems to have been more successful at first glance. By looking at Table 4.14, we can
observe that our matching process works well for classifying different wallet types given
a sufficiently high threshold. Figure 4.8 and Table 4.14 show that by choosing a high
value for t, we are able to reduce mismatches to 0, albeit at the price of a low number of

82

5.2. N-to-M Matching

overall matches. We take this as an indicator in favor of our method, and that it can
work as intended given the right circumstances. Decreasing the threshold to t = 0.92,
we can observe that for a total of 20 614 matches, 20 481 are between the same types, and
153 between different types of wallets. Here, it turns out that wallets of type “consumer
wallet” are prone to mismatch with type “multisig Stefan George” — a circumstance that
manifests even stronger when further decreasing the threshold. At a threshold of t = 0.90,
we observe that many of the mismatches can be attributed to the group “multisig Stefan
George”. This is to be expected to some extent, as this group is by far the largest group
of wallets, as depicted in Table 4.16. The wallet types listed in Table 5.2 are wallet type
pairs prone to mismatch in absolute numbers.

Wallet Type 1 Wallet Type 2 Mismatches1

multisig Stefan George multisig Gavin Wood/Ethereum/Parity 2 699
multisig Stefan George smart GnosisSafe 990
multisig Stefan George consumer wallet 742
multisig Stefan George multisig WalletSimple/BitGo 516

1 In this table we count mismatches between two wallet groups regardless of their
direction.

Table 5.2: Common Wallet mismatches.

We note that our threshold t = 0.90 was likely too high to capture all possible matches.
This circumstance is depicted by Tables 4.15 and 4.16, where large differences between
values of column t-sum(n) and the actual number of matches are observable. However,
decreasing the threshold to capture more matches is not a viable strategy as the number
of mismatches rapidly increases for thresholds below t = 0.92. Rather, we think that
adjusting the method according to our recommendations in chapter 6 is a more promising
approach.

Particularly interesting are the first mismatches that occur when decreasing the threshold
from t = 0.95, as well as mismatches that display a high Jaccard index over function
signatures. In the remainder of our discussion we will look at a few of such mismatches,
and reason about why they might have happened.

The first mismatch with source codes available for both wallet contracts is one between
type “multisig WalletSimple/BitGo forwarder”12 and type “spendable wallet”13. The
most obvious overlap between their functionalities is that both contracts implement code
to withdraw ether to an address that is persisted in the storage, and to transfer tokens
of type ERC20 using a caller-specified token contract. Our investigations have shown
that the Forwarder contract is used in combination with so-called Proxy contracts, which
delegate calls to said Forwarder to make use of its implementations. This circumstance,

120xf5e967b72f20892f4d28fce0fc0f99c9898f3c57
130x36d76772c416bab17661e1596e023f1a04d6bef0

83

https://etherscan.io/address/0xf5e967b72f20892f4d28fce0fc0f99c9898f3c57#code
https://etherscan.io/address/0x36d76772c416bab17661e1596e023f1a04d6bef0#code

5. Discussion

however, is out of scope of our similarity matching and should only be registered as a
side note.

37 3012

SpendableWallet Forwarder

Figure 5.2: Number of slices per contract in the first wallet (mis)match. The intersection
represents the set of slices that occur in both sides of the match.

Figure 5.2 displays that these contracts share 12 identical slices. While the remaining
slices show resemblances as well, we cannot tell with certainty which slice pairs were
matched as this information is dismissed in the extraction process. Listings 5.10 and 5.11
are excerpts of these contracts that show functionally similar code, which probably lead
to the 12 shared slices.

1 function f lushTokens (address tokenContractAddress) external onlyParent {
2 ERC20Interface i n s t a n c e = ERC20Interface (tokenContractAddress) ;
3 address forwarderAddress = address (this) ;
4 uint256 forwarderBalance = i n s t a n c e . balanceOf (forwarderAddress) ;
5 i f (forwarderBalance == 0) {
6 return ;
7 }
8
9 require (

10 i n s t a n c e . transfer (parentAddress , forwarderBalance) ,
11 "Token flush failed"
12) ;
13 }
14
15 function f l u s h () public {
16 uint256 value = address (this) . balance ;
17 i f (value == 0) {
18 return ;
19 }
20 (bool s u c c e s s ,) = parentAddress . c a l l { value : value }("") ;
21 require (s u c c e s s , "Flush failed") ;
22 emit ForwarderDeposited (msg . sender , value , msg . data) ;
23 }

Listing 5.10: Two functions of the Forwarder wallet, flushTokens and flush.

1 function claimTokens (address _token) public onlyOwner {
2 i f (_token == 0x0) {
3 owner . transfer (address (this) . balance) ;
4 return ;
5 }
6
7 ERC20 erc20token = ERC20(_token) ;
8 uint256 balance = erc20token . balanceOf (address (this)) ;
9 erc20token . transfer (owner , balance) ;

10 emit ClaimedTokens (_token , owner , balance) ;
11 }

Listing 5.11: Function claimTokens of the SpendableWallet wallet.

84

5.2. N-to-M Matching

We point out that the same SpendableWallet contract matches with two other Forwarder
contracts14,15, both of which slightly vary from the previous one, but in essence implement
the same functionalities. Judging from this circumstance, we think a valid conclusion
is that mismatches are consistent in their causality. Further, we note that there is at
least one other SpendableWallet contract16 (mis)matching with the same three Forwarder
wallets above. The two SpendableWallets differ insofar as the second one encloses its
transfer statements with require logic.

The third type of mismatch for which source code is available is between the groups “smart
GnosisSafe”17 and “multisig Stefan George”18. Due to the fact that these contracts span
several hundreds of lines, manual source code analysis becomes tedious and unreliable.
We note that there are a few similar functionalities such as different types of signature
validation, but we are not able to pinpoint the exact sections of codes that these contracts
share among each other, if any.

By ordering mismatches by the highest Jaccard index we discover a mismatch between
wallets of types “simple wallet 2”19 and “spendable wallet”20 Based on their source codes,
there are few similarities between these two contracts, other than that they both inherit
from the same Ownable contract. Due to the fact that the first contract in this mismatch
does only include two basic, single-line functions, we have reason to believe that these
contracts matched for the sole reason of inheriting a common contract.

This intuition is further reinforced by the fact that the next mismatch in our list is
between the same “simple wallet 2” as before, but this time with another “spendable
wallet”21. Again it is the case that the only shared common code is the inherited Ownable
contract, but simply due to the fact that there is little else to share.

To conclude this subsection, we want to glance at the performance of our method when
compared with the Jaccard index over function signatures. As seen in Figures 4.11
and 4.12, our similarity scores show a moderate correlation with the Jaccard index with
a Pearson’s coefficient of r = 0.643 and r = 0.607 respectively. Since wallet contracts
were predominantly classified by their function signatures it comes as no surprise that
the marginal plots in either of the Figures show that the Jaccard index is a much better
discriminator between matches and mismatches than our similarity metric. Nonetheless,
we think that the experiments conducted with wallet contracts are ones where our method
shows its strengths.

140x85e0e3464bbb9a75d6b3dd4db241e49721fda555
150x6a92fad4231183104ad67fa17857030d576a99eb
160x016fa0e04822bdaadea2c8335198482b1948d5c4
170xb6029ea3b2c51d09a50b53ca8012feeb05bda35a
180x4cadb4bad0e2a49cc5d6ce26d8628c8f451da346
190x308b773f33e3f1a38ada8928c3f6dc2d8861d573
200x016fa0e04822bdaadea2c8335198482b1948d5c4
210x2254f46dedafa2a03f59008456a7400cfadcaf73

85

https://etherscan.io/address/0x85e0e3464bbb9a75d6b3dd4db241e49721fda555#code
https://etherscan.io/address/0x6a92fad4231183104ad67fa17857030d576a99eb#code
https://etherscan.io/address/0x016fa0e04822bdaadea2c8335198482b1948d5c4#code
https://etherscan.io/address/0xb6029ea3b2c51d09a50b53ca8012feeb05bda35a#code
https://etherscan.io/address/0x4cadb4bad0e2a49cc5d6ce26d8628c8f451da346#code
https://etherscan.io/address/0x308b773f33e3f1a38ada8928c3f6dc2d8861d573#code
https://etherscan.io/address/0x016fa0e04822bdaadea2c8335198482b1948d5c4#code
https://etherscan.io/address/0x2254f46dedafa2a03f59008456a7400cfadcaf73#code

5. Discussion

5.2.3 Correlation Metrics
We conclude this section by discussing our hypotheses from section 3.6.

Hypothesis 1: A higher Jaccard index J between two contracts i and j generally implies
a higher similarity score Mi,j. A larger dataset is more likely to exhibit this behaviour.

Figure 4.13 displays a slight correlation between our matching score and the Jaccard
index, albeit much lower than it was for wallets in Figures 4.11 and 4.12. We explain
the difference in correlation by the fact that the wallet datasets consist of contracts
that on the one hand create more slices per contract, and on the other form a more
homogeneous corpus. After having made this observation, we limited results to matches
where both contracts generate over 150 slices. As expected, matches of this kind display
a higher correlation. We also confirm our intuition that contracts trained in the larger
dataset display a slightly higher correlation between the two metrics — an effect that
is observable in either of the measurements. Interestingly, this trend is reversed when
regarding the experiments containing wallet contracts as depicted by Figure 4.11 and
Figure 4.12.

Hypothesis 2: If two contracts have the same creator, they are more likely to be similar
than two contracts with distinct creators. A larger dataset is more likely to exhibit this
behaviour.

According to the classification made by Cohen et al. (listed in subsection 4.4.3), there is
small correlation between the two metrics for thresholds higher than t = 0.93. Correlations
for thresholds smaller than t = 0.93 turn out to be negligible. The highest observed value
for η2 in Table 4.17 was 0.0577 using the 10 % dataset and a threshold of t = 0.95.

Hypothesis 3: Contracts with low block difference between their deployments, are more
likely to be similar. A larger dataset is more likely to exhibit this behaviour.

According to Figure 4.15, the general intuition of a negative correlation between block
difference and similarity holds true. The effect may be small, but is still detectable as
indicated by the sign of the correlation coefficients r = −0.139 and r = −0.147 for the
5 % and 10 % dataset, respectively. We note that the correlation for the 10 % dataset is
marginally stronger.

A third correlating factor could be the solc version with which the contracts were compiled.
We think it is reasonable to assume that contracts whose deployments are separated by
millions of blocks tend to also be compiled using compiler versions farther apart than
contracts that were deployed in quick succession. An investigation whether this claim
holds true is left for future work.

Hypothesis 4: Contracts with low difference in code length are more likely to be similar.
A larger dataset is more likely to exhibit this behaviour.

While the directions of the correlation coefficients align with our intuition, their magni-
tudes are negligible. Figure 4.16 depicts this circumstance with a correlation coefficient
of r = −0.034 for the 5 % dataset, and r = −0.045 for the 10 % dataset.

86

5.3. Research Questions

5.3 Research Questions
Finally, we revisit our research questions from chapter 1.

RQ1: Can we verify that the method of [HHY+21] performs as described when
used on our dataset?
During our attempt to reimplement the approach of [HHY+21], we had to make
many assumptions and design choices ourselves due to lacking details in their
description. Hence, our implementation deviates to an unknown extent from the
original. We can therefore not verify their exact method. However, we succeeded in
implementing a prototype, and showed that it can be used as intended in section 5.1.
Our method having repeatedly detected one particular type of vulnerabilities —
Externally Forced Fail (EFF) — speaks in favor of our method, whereas our
observations for other vulnerability types investigated by us do not. Given the
numerous weak points and false positives detected in section 5.1, we believe that
a reassessment of our method needs to be made after implementing the proposed
improvements. Nonetheless, we think that the key functionality, matching similar
slices to each other, is provided by our method.

RQ2: How well can semantic similarities between smart contracts be detected
by extending the method of [HHY+21]?
As we have seen with some matches in the previous section, we deem it possible
that our method can find similarities between contracts in some cases, although it
does so with limited precision. Given a high enough similarity score, we believe
that our method is also able to detect similarities between wallets of different
groups. For instance, we have shown that a mismatch between two wallet groups
occurred because of two contracts extending the same base contract. Depending on
the experiment, we were also able to show small to moderately large correlation
between our similarity metric and the Jaccard index over function signatures of two
contracts. Furthermore, we were able to confirm our hypotheses which correlate
our similarity score with various other features of contract pairs. However, we
have also shown that our method is limited when e.g. trying to find contracts
implementing standard interfaces, where a low number of extracted slices worked
against our method. Again, we think a reassessment is necessary after implementing
the proposed improvements.

87

CHAPTER 6
Conclusion

6.1 Future Work
This section lists our suggestions for improving our method, ordered by the presumed
impact we believe they will have.

6.1.1 Adding the Criterion to the Slice
While [HHY+21] do not explicitly mention whether they include the criterion to the slice,
we opted against doing so during implementation. The clue that lead us to make this
decision is the fact that their provided example does not depict the inclusion of the slicing
criterion. Retrospectively, we believe that doing so would likely have reduced the number
of contracts failing our sanity checks in section 5.2. For this reason, we propose that
future iterations of our method should include the slicing criterion as first label in the
extracted slice / graph. We think that especially slices with a small number of commonly
occurring instructions (e.g. Figure 3.5a) could benefit from having an additional node
with the criterion as label.

6.1.2 Optimal Algorithm as TensorFlow function
In this work we have investigated two possible methods for n-to-m matching, one yielding
an optimal solution using the CPU and the other being more performant in terms of
throughput using the GPU. Since other algorithms for finding the optimal solution for
the assignment problem exist, we think trying to implement those using the TensorFlow
framework and its tf.autograph module could be a viable option. One suitable candidate
algorithm for such an implementation is the Hungarian Algorithm as described by Kuhn
et al. [Kuh55]. We think the operations used in this algorithm may be well-supported by
TensorFlow.

89

6. Conclusion

6.1.3 Adjust the Matching Metric
In our experiments, we realized that the number of slices extracted from contracts in a
match have a large impact on its quality. In a worst case scenario, a contract for which a
single slice was extracted may have a high matching score with a contract, for which 150
slices were extracted. We propose that further iterations of our scoring metric should
account for this difference by e.g. applying a penalty to scores where the slice count of
contracts differ largely.

6.1.4 Hyperparameter Optimization
There are several parameters for which further optimizations could be performed in our
process. This subsection lists a few of them.

Criteria Set

As the focus of [HHY+21] is on the detection of vulnerabilities, their set of criteria that
initiate slicing consisted of instructions that introduce data originating from outside
the blockchain. This criteria set originally consisted of only 7 instructions, which we
extended for our uses as depicted by Table 3.1. It is reasonable to assume that this set is
incomplete in the sense that by adding or removing certain criteria one could achieve
better results.

Stack Configuration

We believe the method of using a static stack configuration rather than calculating a
realistic one yielded great benefits to our process, primarily to its runtime. As our
algorithm currently finishes slicing procedure once an out-of-bounds element from the
stack is accessed, increasing the number of elements in the static stack configuration
could be a simple way to extract longer and more characteristic slices.

Varying the Graph Limits

Since traversing the CFG is expensive for larger graphs, we had to limit the depth until
which we do so. Foremost, we limited the depth of our graph recursion to 10, and within
the same recursion never traverse the same edge twice, even if it would be part of another
path. While this was done in order to keep computation times low, we also tried to limit
the length of slices this way while aiming to increase their numbers thinking that this
would yield better matching results.

graph2vec Parameters

In an attempt to stay as true to [HHY+21] as possible (and to limit runtime) we assumed
their embedding size of choice (64), but also other default parameters of graph2vec and
omitted hyperparameter optimization altogether. However, since the optimal choice of
the embedding size is largely dependent on the used dataset, we retrospectively think

90

6.2. Limitations

that spending effort to do so could lead to meaningful improvements of the method,
especially as graph2vec requires several parameters that could be optimized for.

6.1.5 Improved Dataset of Vulnerable Contracts
By crafting the dataset more carefully, and by using a validation dataset like the authors
did in [HHY+21], we think that more reliable statements can be made about the quality
of our findings. Another addition could be to consider contracts written for Solidity
versions smaller than 0.4 as compilers of early versions lack security relevant features.

6.1.6 Apply graph clustering
Since N-dimensional embedding vectors allow for more than just comparing the angle
between them, we think that it may be a viable option to perform clustering on vectors.
As Narayanan et al. state:

“graph2vec’s embeddings could be used along with general purpose clustering algorithms
such as K-means and relational clustering algorithms such as Affinity Propagation (AP)
[14] to achieve this.” [NCV+17, p. 5]

6.1.7 Include bidirectional edges into slices
An idea that might seem counterintuitive at first, since it violates the flow of the executed
bytecode, would be to introduce bidirectional edges between nodes within slices instead
of unidirectional ones. We suspect that this could be a way to put more weight onto
instructions that occur later in a slice.

6.2 Limitations
The conducted experiments show that our implementation of [HHY+21] can indeed work
as intended for both 1-to-1 matching and N-to-M matching. Both applications, however,
come with limitations that need further elaboration.

The limitations of 1-to-1 slice matching become obvious when looking at our conclusions
from section 5.1. Firstly, it is a rather difficult undertaking to compile a dataset
of vulnerable contracts where each contract contains slices that perfectly embody a
vulnerability’s logic. A too liberal selection process when marking vulnerable slices will
result in many false positives, as we have found. Being too strict, however, will come
with the drawback that either little vulnerable slices will be found, or a very large set of
vulnerable contracts needs to be assembled.

Unfortunately, overcoming these obstacles does not guarantee to find vulnerabilities. We
have seen that few of our matches actually passed a simple sanity check of verifying
whether the instruction defining the vulnerability is present or not (Figure 5.1), even if
the matched slices were subjectively similar otherwise.

91

6. Conclusion

We also recognize limitations of N-to-M matching. Foremost, we point out that in contrast
to our experiment with wallet contracts (subsection 4.4.2), results of the experiments
using standard contracts (subsection 4.4.1) were mediocre at best. We name two possible
reasons for the discrepancy between these two datasets. Firstly, contracts that produce
only a small number of slices (e.g. less than 50) are difficult to match with each other,
especially if the extracted slices are short and of generic nature, rather than characteristic.
This claim is supported by Figures 4.13 and 4.14, where we have shown that contracts
with a larger number of slices exhibit a stronger correlation with the Jaccard index over
function signatures.

The second reason is that the wallet dataset consists of more homogeneous contracts
compared to randomly sampled ones. This, by itself, is a rather strong restriction as it
suggests that our method can only be applied to contracts which are already known to
be similar.

Another limitation is that the verification of our results is a difficult undertaking, especially
if no source code of the matched contracts is available. However, even if source code is
obtainable, it remains a difficult task to verify alleged similarity as smart contracts may
span several hundreds of lines and sometimes consist of dozens of subcontracts, making
manual investigation tedious and unreliable. Using the function signatures of contracts
as a guide, as we have often done, sometimes is not viable, either, as we have shown with
SafeMath contracts (see Table 4.11 and Figure 4.3a) which usually do not expose their
internal functions.

Lastly, our method is also constrained by technical limitations. Even though we managed
to reduce the runtime of our last stage by dismissing the optimal solution in favor of
a heuristic one, the overall process can still take a long time to complete. While the
changes we made to graph2vec comprise functionalities to stream data from disk instead
of reading once and storing in memory, doing so will result in an explosion of runtime.
To provide context, embedding the full dataset was only possible using the streaming
based approach and took more than 50 hours, while using the memory based approach
on the 10 % dataset typically took half an hour at roughly 70 % memory consumption.

Another technical limitation is that contracts cannot be added to corpora after training,
meaning that all contracts have to be trained at the same time. During our research,
this resulted in numerous time- and data-consuming reruns.

6.3 Closing Thoughts
This work pursued two goals. One was to implement the method of [HHY+21], who
tried to automatically detect vulnerabilities between smart contracts. By creating CFGs
of smart contracts, extracting multiple graphs (a.k.a. slices) thereof and calculating
their vector representations using the graph embedding framework graph2vec, we believe
that we have succeeded in implementing a process pipeline that is close to the original
of [HHY+21]. Lastly, we calculate the similarities between slices deemed to be vulnerable,

92

6.3. Closing Thoughts

and slices of unknown contracts with the goal of finding vulnerable ones. While the
results of our 1-to-1 slice matching did not reach the levels of [HHY+21], we discussed
the reasons why we believe that this was the case. We note that due to lack of detail,
many assumptions had to be made during the process of implementing the methods
of [HHY+21], which also partly explains the poor results of 1-to-1 matching. However, we
also believe that we have gathered enough evidence to claim that the methods employed
by Huang et al. [HHY+21] are indeed useful for the intended purpose. In section 5.1, we
discuss that our method can perform according to the authors’ description, as we showed
that one type of vulnerabilities, Externally Forced Fail (EFF), was repeatedly detected
by our implementation of the method. We also highlight the weak points of our method
in this regard, and provide suggestions that we believe would lead to improved results
overall. During our implementation process, we extended functionalities of the existing
tools EtherSolve (section 2.7), and graph2vec (subsection 2.8.3) in regard to scalability.
The second goal of this work was to explore means of relating not only individual
(vulnerable) slices to each other, but also to apply the same method of [HHY+21] in a
way that allows us to detect similarities between entire contracts. By implementing an
optimal matching method first, and later on sacrificing optimality for a heuristic but
much more performant method, we were partly able to show that there is a moderate
correlation between our similarity score and the Jaccard index over function signatures.
We successfully implemented the heuristic method in such a way that it exploits the
enormous parallelization capabilities of the GPU in comparison to the CPU using the
TensorFlow framework. Over the span of multiple experiments, we were able to show
that medium correlation between our similarity score and the Jaccard index over function
signatures exists, and believe that this is an indicator in favor of our method. Further,
we were able to use our method to prove previously formulated hypotheses about other
features of contract matches (subsection 5.2.3) that correlate with our similarity metric.
In an attempt to reduce the amount of data and thus, the overall runtime, we built
our datasets by regarding not just contracts with unique bytecode, but made use of
a technique called skeletizing[gsa22, dAS19b], which allowed us to remove functionally
identical contracts from our datasets.
Another approach we followed while aiming to reduce runtime is the use of a static stack
configuration. Instead of calculating an accurate stack by simulating execution of a
CFG top down, we only start our simulated execution with the same instruction that
represents the slicing criterion. We believe to have shown that this is a cheap way to
reduce runtime, though the effects of the number of elements in the static stack still need
to be investigated.
We recognize that our method is still limited in many regards, but we believe that it can
prove useful, especially when combined with other methods. For example, we have shown
that two wallets, that were previously classified as mismatch in the wallets experiment, do
in fact share almost identical semantics with each other (subsection 5.2.2). A combination
of our method with ones that classify contracts based on function signatures could help
to achieve a more fine-grained distinction between contract pairs. In our opinion, the

93

6. Conclusion

best proof supporting this claim, and showing that our method can work as intended,
are the results of the wallet experiments.

However, we also realize that the method is not yet mature enough to fully harness its
potential. For the time being, we recommend to consider the method presented in this work
as a proof of concept (PoC), rather than a reliable means of detecting semantic similarities
between contracts, and urge for the implementation of the suggestions in section 6.1,
before conducting further experiments. We believe that the original application, searching
vulnerabilities using 1-to-1 matching, would benefit substantially from these suggestions
as well.

94

List of Figures

2.1 Different compiler versions resulting in different bytecode 8
2.2 Illustration of the EVM and its core components 9
2.3 Example of a CFG . 12
2.4 Simple neural network . 13
2.5 Skip-gram as described in [MCCD13] . 14

3.1 The entire process as depicted by [HHY+21] 17
3.2 Our application of the process . 18
3.3 Recursive algorithm for traversing the CFG 24
3.4 Step-by-step example based on the first criterion found in the entry block of

the CFG in Figure 3.3 . 27
3.5 Two example slices/graphs . 28
3.6 Illustration of the tf.math.segment_max function 33

4.1 Example for a slice of a vulnerability of type EFF 40
4.2 Two heatmaps displaying the number of plausible match relative to all matches

for the 5 % dataset . 50
4.3 Two heatmaps displaying the number of plausible match relative to all matches

for the 10 % dataset . 51
4.4 Visual depiction (and optical illusion) of Equation 4.1 52
4.5 Confusion matrix of matches between wallets groups using the 5 % sample

and t = 0.95 . 57
4.6 Confusion matrix of matches between wallets groups using the 5 % sample

and t = 0.92 . 58
4.7 Confusion matrix of matches between wallets groups using the 5 % sample

and t = 0.90 . 59
4.8 Confusion matrix of matches between wallets groups using the 10 % sample

and t = 0.95 . 60
4.9 Confusion matrix of matches between wallets groups using the 10 % sample

and t = 0.92 . 61
4.10 Confusion matrix of matches between wallets groups using the 10 % sample

and t = 0.90 . 62
4.11 Scatter plot for matches between wallets trained with the 5 % dataset . . 65
4.12 Scatter plot for matches between wallets trained with the 10 % dataset . . 66

95

4.13 Correlation for the 5 % and 10 % datasets 67
4.14 Correlation for the 10 % and 5 % datasets with limited number of slices . 67
4.15 Correlation between our similarity score Mi,j and the block difference between

deployments of contract i and j . 68
4.16 Correlation between our similarity score Mi,j and the difference in code length

between contract i and j . 68

5.1 Sankey diagram consolidating the results of vulnerability matching 69
5.2 Number of slices per contract in the first wallet (mis)match 84

96

List of Tables

3.1 Slicing criteria extracted from [HHY+21] . 21
3.2 Mapping between instructions and their output tags 22
3.3 Result of the graph embedding . 29
3.4 An example for a matching matrix between slices of two example contracts N

and M . 32

4.1 The recency and size of the data used in this work. 37
4.2 Relevant tools and frameworks used during the course of this thesis . . . 38
4.3 Dimensions of our three datasets . 39
4.4 Candidate vulnerable contracts . 41
4.5 Vulnerable slice matching — 5 % sample 42
4.6 Vulnerable slice matching — 10 % sample 43
4.7 Vulnerable slice matching — full dataset 44
4.8 Commonly used contracts used as reference for this experiment 47
4.9 Matches between synthetically generated standard contracts using the 5 %

dataset . 48
4.10 Matches between synthetically generated contracts using the 5 % dataset . 48
4.11 Matches between synthetically generated standard contracts using the 10 %

dataset . 49
4.12 Matches between synthetically generated contracts using the 10 % dataset 49
4.13 Wallet groups and their respective amount of classified and sliced contracts 53
4.14 The threshold t and its effect on matches and mismatches between wallets 54
4.15 Wallet groups, optimal and actual matches using the 5 % dataset 55
4.16 Wallet groups, optimal and actual matches using the 10 % dataset 56
4.17 η2 correlation coefficient between our similarity score Mi,j and creators

cri = crj per dataset . 64

5.1 Matches for type EFF . 75
5.2 Common Wallet mismatches . 83

97

Glossary

doc2vec A variation of word2vec, used to create embeddings of entire documents, rather
than individual words. Useful for tasks where finding similarity of words is not
sufficient. 15

ERC From https://eips.ethereum.org/:
“Application-level standards and conventions, including contract standards such as
token standards (ERC-20), name registries (ERC-137), URI schemes (ERC-681),
library/package formats (EIP190), and wallet formats (EIP-85).” 3

EtherScan A service that provides insightful data regarding the Ethereum blockchain,
including the ability for developers to upload the source code of their contract, and
to verify it. 70

GitHub A service that hosts public and private git repositories. 3, 4, 11, 45, 47

graph2vec A neural network for creating graph embeddings. 3, 5, 11, 15, 29, 36, 79,
90–93

OpenZeppelin A crypto and cybersecurity technology services company that maintains
standard interfaces and implementations of contracts on their public GitHub
repository. 45, 47, 82

SafeMath A library used for arithmetic operations to prevent integer under- and overflow
bugs in smart contracts. 71, 81, 92

scipy Python-based math framework containing reference implementations of algorithms
for common problems in computer science. 32

SMT solving A technique commonly used for symbolic execution of program code. 4

TensorFlow A machine learning framework for Python that is capable of running code
on the GPU. 33, 34, 89, 93

word2vec A neural network by Mikolov et al. for creating semantic-preserving vector
representations of words, so-called embeddings. 11, 15, 35

99

https://eips.ethereum.org/

Acronyms

BID Block-info Dependency 70

CFG Control Flow Graph 3–5, 11, 17, 19, 20, 22–24, 27, 28, 35, 36, 39, 46, 52, 70, 71,
90, 92, 93, 95

DeFi Decentralized Finance 6

DoS Denial of Service 7, 9, 70, 77

EFF Externally Forced Fail 40, 70, 73–77, 87, 93, 95, 97

ERC Ethereum Request for Comment 3, 8, 10, 45, 46, 81, 82, Glossary: ERC

EVM Ethereum Virtual Machine 5–10, 20

JSON JavaScript Object Notation 18, 20, 36

ML Machine Learning 11

NFT Non-fungible Token 6

NN Neural Network 5, 11–13

OOP Object-oriented programming 7

PC Program counter 9

PoC proof of concept 78, 94

ReLU Rectified Linear Unit 12

solc Solidity Compiler 1, 5, 7, 17, 38–40, 45, 86

TOD Transaction Order Dependency 71

101

EVM Opcodes

ADD Pops two values of the stack and pushes their sum back onto it. Unsafe against
overflows. 26

AND Bitwise AND operation. 26

BLOCKHASH Queries the hash value of one of the 256 most recent blocks and pushes
it onto the stack. 9, 20, 80

CALLDATACOPY Copies the data that was provided alongside a message into the
memory section. 71

CALLDATALOAD Reads a (u)int256 from the data provided alongside a message
and pushes it onto the stack. 9, 20, 21, 26

CALLDATASIZE Queries the message data length in bytes and pushes it onto the
stack. 21

CALLER Queries the address of the message caller and pushes it onto the stack. 9

CALLVALUE Queries the amount of wei that was provided alongside a message. 9

CALL Calls a method in another contract. Result of execution is pushed onto the stack.
10

CREATE2 Allows to create contracts at a precomputed address. 10

CREATE Creates a new contract at an address by copying the provided code to the
address’s code section. 10

DELEGATECALL Calls another contract which uses the storage of the calling contract
as context. Useful for proxy contracts, or for updating implementation after the
deployment. 78, 79

DUP Opcodes of the DUP family. Duplicates the N th of the stack and places it on
top. 10

EQ Checks for equality of the two topmost elements in the stack. Result is pushed back
onto the stack. 26

103

GT Greater-than comparison between the two topmost elements in the stack. Result is
pushed back onto the stack. 26

INVALID Placeholder mnemonic for all unmapped instructions 11, 25

JUMPDEST Denotes the beginning target of a conditional jump. 11

JUMPI Performs a conditional jump to a position in the code which is read from the
stack. 11, 25, 26, 28

JUMP Performs a jump to a position in the code which is read from the stack. 11

LT Less-than comparison between the two topmost elements in the stack. Result is
pushed back onto the stack. 26

MUL Multiplies the two topmost elements of the stack and pushes the result back onto
it. Unsafe against overflows. 26

NUMBER Queries the current blocks number and pushes it onto the stack. 9

ORIGIN Queries the origin from the transaction data and pushes it on top of the stack.
72

OR Bitwise OR operation. 26

PUSH Opcodes of the PUSH family. Pushes a value onto the stack. 10, 26

RETURN Returns from current contract call. Return value is specified by the two
topmost elements in the stack and are read off the memory. 11

REVERT Stops the execution and reverts all state changes. 11

SELFDESTRUCT The contract empties its storage and code sections and transfers
remaining funds to a specified address. 10, 11, 73

SGT Signed greater-than comparison between the two topmost elements in the stack.
Result is pushed back onto the stack. 26

SLT Signed less-than comparison between the two topmost elements in the stack. Result
is pushed back onto the stack. 26

STOP Halts the execution of the contract. 11

SWAP Opcodes of the SWAP family. Swaps the topmost value of the stack with the
N th. 10

XOR Bitwise exclusive OR operation. 26

104

Bibliography

[10.63] The quadratic assignment problem. Manage. Sci., 9(4):586–599, jul 1963.

[AYCO21] Nami Ashizawa, Naoto Yanai, Jason Paul Cruz, and Shingo Okamura.
Eth2Vec: Learning Contract-Wide Code Representations for Vulnerabil-
ity Detection on Ethereum Smart Contracts. BSCI 2021 - Proceedings of
the 3rd ACM International Symposium on Blockchain and Secure Critical
Infrastructure, co-located with ASIA CCS 2021, pages 47–59, 2021.

[Ber18] Mueller Bernhard. Smashing ethereum smart contracts for fun
and real profit. https://github.com/muellerberndt/smashing-smart-
contracts/blob/0663ad015b0a6ce08053d48731cdee1e7bc4e726/smashing-
smart-contracts-1of1.pdf, 2018. [Online; accessed 2022-04-15].

[But14] Vitalik Buterin. A next-generation smart contract and decentralized applica-
tion platform. Etherum, (January):1–36, 2014.

[CCCP21] Filippo Contro, Marco Crosara, Mariano Ceccato, and Mila Dalla Preda.
EtherSolve: Computing an Accurate Control-Flow Graph from Ethereum
Bytecode. IEEE International Conference on Program Comprehension, 2021-
May:127–137, 2021.

[Coh88] J. Cohen. Statistical Power Analysis for the Behavioral Sciences. Lawrence
Erlbaum Associates, 1988.

[Con21] ConsenSys. Mythril. https://github.com/ConsenSys/mythril/blob/
dfaa9382ecbf6387e12e121c6368a95a6f3342ed/README.md, 2021. [Online;
accessed 2022-04-15].

[Cro16] David F. Crouse. On implementing 2D rectangular assignment algorithms.
IEEE Transactions on Aerospace and Electronic Systems, 52(4):1679–1696,
2016.

[dAS19a] Monika di Angelo and Gernot Salzer. A Survey of Tools for Analyzing
Ethereum Smart Contracts. In 2019 IEEE International Conference on
Decentralized Applications and Infrastructures (DAPPCON), pages 69–78,
Piscataway, NJ, USA, apr 2019. IEEE.

105

https://github.com/muellerberndt/smashing-smart-contracts/blob/0663ad015b0a6ce08053d48731cdee1e7bc4e726/smashing-smart-contracts-1of1.pdf
https://github.com/muellerberndt/smashing-smart-contracts/blob/0663ad015b0a6ce08053d48731cdee1e7bc4e726/smashing-smart-contracts-1of1.pdf
https://github.com/muellerberndt/smashing-smart-contracts/blob/0663ad015b0a6ce08053d48731cdee1e7bc4e726/smashing-smart-contracts-1of1.pdf
https://github.com/ConsenSys/mythril/blob/dfaa9382ecbf6387e12e121c6368a95a6f3342ed/README.md
https://github.com/ConsenSys/mythril/blob/dfaa9382ecbf6387e12e121c6368a95a6f3342ed/README.md

[dAS19b] Monika di Angelo and Gernot Salzer. Mayflies, breeders, and busy bees in
ethereum: Smart contracts over time. BCC 2019 - Proceedings of the 3rd
ACM Workshop on Blockchains, Cryptocurrencies and Contracts, co-located
with AsiaCCS 2019, pages 1–10, 2019.

[dAS20a] Monika di Angelo and Gernot Salzer. Assessing the similarity of smart
contracts by clustering their interfaces. Proceedings - 2020 IEEE 19th In-
ternational Conference on Trust, Security and Privacy in Computing and
Communications, TrustCom 2020, pages 1910–1919, 2020.

[dAS20b] Monika di Angelo and Gernot Salzer. Characterizing Types of Smart Con-
tracts in the Ethereum Landscape. In 4th Workshop on Trusted Smart
Contracts, Financial Cryptography. Springer, 2020.

[dAS20c] Monika di Angelo and Gernot Salzer. Tokens, Types, and Standards: Identi-
fication and Utilization in Ethereum. In Int. Conf. Decentralized Applications
and Infrastructures (DAPPS), pages 1–10. IEEE, 2020.

[dAS20d] Monika di Angelo and Gernot Salzer. Wallet Contracts on Ethereum –
Identification, Types, Usage, and Profiles. 2020.

[DP14] Ran Duan and Seth Pettie. Linear-time approximation for maximum weight
matching. Journal of the ACM (JACM), 61(1):1–23, 2014.

[Eth22a] Ethereum. Application binary interface specification — solidity 0.4.21 docu-
mentation. https://docs.soliditylang.org/en/v0.4.21/abi-spec.html#function-
selector, 2022. [Online; accessed 2022-03-24].

[Eth22b] Ethereum. Language influences — solidity 0.8.14 documentation.
https://docs.soliditylang.org/en/latest/language-influences.html, 2022. [On-
line; accessed 2022-03-19].

[FFB19] Michael Fröwis, Andreas Fuchs, and Rainer Böhme. Detecting token systems
on ethereum. In Ian Goldberg and Tyler Moore, editors, Financial Cryptog-
raphy and Data Security, pages 93–112, Cham, 2019. Springer International
Publishing.

[FTSS18] Christof Ferreira Torres, Julian Schütte, and Radu State. Osiris: Hunting for
integer bugs in ethereum smart contracts. In Proceedings of the 34th Annual
Computer Security Applications Conference, ACSAC ’18, page 664–676, New
York, NY, USA, 2018. Association for Computing Machinery.

[GK11] Erkam Guresen and Gulgun Kayakutlu. Definition of artificial neural networks
with comparison to other networks. Procedia Computer Science, 3:426–433,
2011. World Conference on Information Technology.

[gsa22] gsalzer. Skeletizing bytecode. https://github.com/gsalzer/ethutils/tree
/main/doc/skeleton, 2022. [Online; accessed 2022-03-26].

106

https://docs.soliditylang.org/en/v0.4.21/abi-spec.html#function-selector
https://docs.soliditylang.org/en/v0.4.21/abi-spec.html#function-selector
https://docs.soliditylang.org/en/latest/language-influences.html
https://github.com/gsalzer/ethutils/tree/main/doc/skeleton
https://github.com/gsalzer/ethutils/tree/main/doc/skeleton

[HHY+21] Jianjun Huang, Songming Han, Wei You, Wenchang Shi, Bin Liang, Jingzheng
Wu, and Yanjun Wu. Hunting Vulnerable Smart Contracts via Graph
Embedding Based Bytecode Matching. IEEE Transactions on Information
Forensics and Security, 16:2144–2156, 2021.

[HSR+18] Everett Hildenbrandt, Manasvi Saxena, Nishant Rodrigues, Xiaoran Zhu,
Philip Daian, Dwight Guth, Brandon Moore, Daejun Park, Yi Zhang, An-
drei Stefanescu, and Grigore Rosu. KEVM: A complete formal semantics
of the ethereum virtual machine. Proceedings - IEEE Computer Security
Foundations Symposium, 2018-July:204–217, 2018.

[HYL21] Tharaka Hewa, Mika Ylianttila, and Madhusanka Liyanage. Survey on
blockchain based smart contracts: Applications, opportunities and challenges.
Journal of Network and Computer Applications, 177(November 2020):102857,
2021.

[Koo92] Philip Koopman. A preliminary exploration of optimized stack code genera-
tion. 1992.

[Kow72] Charles J. Kowalski. On the effects of non-normality on the distribution
of the sample product-moment correlation coefficient. Journal of the Royal
Statistical Society. Series C (Applied Statistics), 21(1):1–12, 1972.

[Kuh55] H. W. Kuhn. The Hungarian method for the assignment problem. Naval
Research Logistics, 52(1):7–21, 1955.

[LCO+16] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 254–269, New
York, NY, USA, oct 2016. ACM.

[LYJ+19] Han Liu, Zhiqiang Yang, Yu Jiang, Wenqi Zhao, and Jiaguang Sun. Enabling
Clone Detection for Ethereum via Smart Contract Birthmarks. In Proceedings
of the 27th International Conference on Program Comprehension, ICPC ’19,
pages 105–115. IEEE Press, 2019.

[MCCD13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estima-
tion of word representations in vector space. 1st International Conference on
Learning Representations, ICLR 2013 - Workshop Track Proceedings, pages
1–12, 2013.

[MtSD07] G Ayorkor Mills-tettey, Anthony Stentz, and M Bernardine Dias. The
Dynamic Hungarian Algorithm for the Assignment Problem with Changing
Costs. Naval Research Logistics Quarterly, (July):83–87, 2007.

[Nak08] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. Techni-
cal report, 2008.

107

[NCV+17] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan,
Lihui Chen, Yang Liu, and Shantanu Jaiswal. graph2vec: Learning Dis-
tributed Representations of Graphs. 28th Modern Artificial Intelligence and
Cognitive Science Conference, MAICS 2017, pages 189–190, jul 2017.

[Pic22] Lukas Pichler. Collaborative Inference for Edge Intelligence - Impacts on
Performance and Privacy of Partition Points, 2022.

[QTN21] Ilham Qasse, Manar Abu Talib, and Qassim Nasir. Toward Inter-Blockchain
Communication Between Hyperledger Fabric Platforms, pages 251–272.
Springer International Publishing, Cham, 2021.

[RBC+98] Martin Röscheisen, Michelle Baldonado, Kevin Chang, Luis Gravano, Steven
Ketchpel, and Andreas Paepcke. The Stanford InfoBus and its service layers:
Augmenting the internet with higher-level information management protocols.
pages 213–230, 1998.

[RdAS22] Heidelinde Rameder, Monika di Angelo, and Gernot Salzer. Review of
automated vulnerability analysis of smart contracts on ethereum. Frontiers
in Blockchain, 5, 2022.

[TDC+18] Petar Tsankov, Andrei Dan, Dana Drachsler Cohen, Arthur Gervais, Florian
Buenzli, and Martin Vechev. Securify: Practical Security Analysis of Smart
Contracts. arXiv, jun 2018.

[TPF+09] Omer Tripp, Marco Pistoia, Stephen J Fink, Manu Sridharan, and Omri
Weisman. Taj: effective taint analysis of web applications. ACM Sigplan
Notices, 44(6):87–97, 2009.

[Woo14] Gavin Wood. Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper, pages 1–32, 2014.

[WS21] Akhilesh A. Waoo and Brijesh K. Soni. Performance analysis of sigmoid and
relu activation functions in deep neural network. In Amit Sheth, Amit Sinhal,
Abhinav Shrivastava, and Amit Kumar Pandey, editors, Intelligent Systems,
pages 39–52, Singapore, 2021. Springer Singapore.

[XLF+17] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song.
Neural network-based graph embedding for cross-platform binary code sim-
ilarity detection. Proceedings of the ACM Conference on Computer and
Communications Security, pages 363–376, 2017.

108

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Research Questions
	Related Work

	Background
	Blockchain Technologies
	Ethereum
	Smart Contracts
	Ethereum Virtual Machine
	Common Types of Contracts
	Smart Contract Skeletons
	Control Flow Graphs
	Neural Networks and Embeddings

	Approach
	Obtaining Bytecodes
	Generating the Control Flow Graphs
	Preprocessing & Slicing
	Graph Embedding
	Similarity Measurement
	Hypotheses
	Contributions

	Evaluation
	Data Recency
	Test Unit Specification
	1-to-1 Slice Matching
	N-to-M Slice Matching

	Discussion
	1-to-1 Matching
	N-to-M Matching
	Research Questions

	Conclusion
	Future Work
	Limitations
	Closing Thoughts

	List of Figures
	List of Tables
	Glossary
	Acronyms
	EVM Opcodes
	Bibliography

