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1 |  INTRODUCTION

The secure supply of energy sources is a key indicator for the 
sustainable development of societies. Normally, various types 
of fossil energy reserves (natural gas, coal, and gasoline) are 
the major sources of conventional energy demand. The use 
of fossil fuel for energy production is posing many problems 
including global warming, reduction in fossil energy sources, 
and other related environmental issues.1,2 On the other hand, 
the population rise, economics, and rapid industrialization 
have also posed energy and environmental concerns in var-
ious countries.3 It is estimated that about 1.2 billion people 

globally still do not have even basic energy infrastructure.4 At 
present, Pakistan is a developing country and facing serious 
energy crisis with total energy demand and supply of 93.91, 
70.94 Mtoe, respectively.5 Considering, the huge energy sup-
ply and demand gap, it is highly recommended to explore 
sustainable energy alternatives to address the issue of current 
energy crisis.

Coal is one of the abundantly and evenly distributed fossil 
fuel (~65% of the total fossil fuels) around the globe, unlike 
oil and gas reserves which are only present in a fewer regions 
of the world.6 At present, coal is the major source of energy 
and continues to dominate as a main contributor for energy 
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generation in developing countries.7 Pakistan has huge coal 
reserves that nearly approach to 185 billion tons in its dif-
ferent provinces, especially in Sindh. It is estimated that the 
recoverable coal reserves in Pakistan are about 1.45 thousand 
Mtoe with total production capacity of 2.33 Mtoe per year.8 
The continuous consumption of coal as an energy source can 
pose severe environmental concerns due to large amount of 
CO2 emission in atmosphere.9 Due to growing concerns of 
climate change and its associated environmental problems, 
authorities related to environmental protection are forcing 
to shift conventional energy sources to renewable energy 
sources to minimize carbon foot print.2,10

The generation, disposal, and treatment MSW are major 
concerns in every country. Currently, Pakistan is one of the 
developing countries, experiencing severe environmental is-
sues that are mostly linked to mismanagement of MSW dis-
posal. The continuous release of greenhouse gases (GHG) 
into the atmosphere due to inadequate landfills facilities ulti-
mately results in serious environmental issues.11 In Pakistan, 
the estimated release of methane into the atmosphere due to 
these unusual landfilling practices is about 14.18 Gg per year 
which contributes almost 22 times greater greenhouse effect 
than CO2.12 In light of these concerns, energy from waste 
sources is getting much attraction worldwide. Currently, the 
most common and adopted strategies of waste disposals are 
landfilling, incineration, sea dumping, and composting.13

In the past few years, waste to energy concept in respec-
tive technology has gained great attention.14,15 Incineration of 
waste is one of the simplest strategy to convert waste into its 
corresponding energy.16 In this regard, a good understanding 
of the combustion process will be of great help in designing 
the incinerators with improved efficiency. The combustion 
process can be understood carefully by knowing the Kinetic 
parameters. The most popular and simple technique to study 
the combustion kinetic is thermogravimetric analysis (TGA). 
Many researchers have utilized the TGA analysis to evaluate 
kinetics of combustion process in incineration by developing 
various kinetic models.17-22 Typically, two kinds of kinetic 
models are employed such as model-free (isoconversional) 
and model-fitting. In this paper, isoconversional methods were 
adopted, as these methods are reflected as more reliable and 
accurate compared to complex data fitting methods that are 
generally dependent to type of reaction mechanism and lead to 
imprecise data estimation over wide experimental range.17,23,24 
However, model-free strategy does not depend on a reaction 
mechanism for fitting of respective thermodynamic data that 
ultimately results in precise error-free modeling. Another 
significant issue is variation of activation energy during the 
combustion process, as combustion process consists of more 
than one steps with different activation energies. In model-fit-
ting methods, whole combustion process is characterized by 
a single value of activation energy. Thus, value of activation 
energy obtained is an average value and cannot depict all the 

steps involved during combustion. Conversely, isoconver-
sional models address this issue and estimate value of activa-
tion energy as function of fractional conversion (�) that varies 
continuously till the end of complete combustion.25,26

In this work, the thermogravimetric analysis is carried 
out, following by application of model-free methods to pro-
pose a set of the kinetic parameters for combustion of coal, 
MSW, and RDF, to provide fundamental information for op-
timization of combustion process. The novel objective was to 
investigate the variance in thermal decomposition and kinetic 
parameters of locally available sustainable fuels. The thermal 
behavior and kinetic data of MSW and RDF in comparison 
with coal with application of isoconversional are rare, it will 
help researchers and policymakers in great deal regarding 
planning of combustion and cocombustion of these fuels. The 
characteristics and thermogravimetric results of these sam-
ples used for evaluation of kinetics parameters are presented 
in our previous work.27

2 |  MATERIALS AND METHODS

The preparation of experimental samples (MSW and RDF) 
was based on representative components of MSW collected 
from city Lahore, Punjab, Pakistan, as described in our previ-
ous paper,28 whereas low-rank coal sample was taken from 
Chiragh reserves located in province of Punjab, Pakistan. 
Thermogravimetric analysis was performed with the sam-
ple size of 20  mg in Mettler Toledo (TGA/DSC 1 STAR, 
USA) System. Initially, samples were heated from room tem-
perature to 105°C. Four specific heating rates (10, 20, 30, 
and 40°C/min) were adopted to reach final temperature of 
1000°C. A holding time of 10 minutes and 30 minutes was 
insured at temperature of 105°C and 1000°C, respectively. 
Synthetic air with constant flow rate of 80 mL/min was pro-
vided for all complete runs of experiments.

3 |  KINETIC MODELING

Generally, for solid particles the rate of reaction is given as 
follows:

Here

And α can be ascribed to fractional conversion and de-
noted as

(1)d�

dt
= f (T)× f (�)

(2)f (T)=Ae
−

E

RT

(3)
�=

mO−mi

mO−m∞
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Further, f(α) can be denoted as a function of fractional 
conversion (α). The equation can be simplified in derivative 
form using Equation (2) at respective ramping rates for tem-
perature increase.

3.1 | Isoconversional methods

Many researchers have pointed that the prediction of reaction 
kinetics with model-fitting approach always poses inaccu-
rate estimation due to reaction mechanism involvement.29-31 
Conversely, isoconversional approach does not follow any 
preassumption for reaction mechanism that ultimately re-
duces the possibility of errors for homogenous and hetero-
geneous combustion kinetic data. This model-free approach 
can play an effective role to estimate activation energies in 
wide range of experimental temperatures and conversions. 
The isoconversional methods applied in this study are Flynn-
Wall-Ozawa (FWO), Friedman, Kissinger-Akahira-Sunose 
(KAS), and Vyazovkin.

3.1.1 | Friedman differential model

Taking natural logarithm on Equation (4) will result in fol-
lowing form of equation

Equation  (5) present differential isoconversional model 
and is known as Friedman model. Many researchers have em-
ployed this approach for approximation of reaction kinetics in 
solid particles.20,32-43

Eα (apparent activation energy) can be calculated for re-
spective conversion value (α) by estimating resultant slope of 
Equation (5) and 1/Tα,i.

3.1.2 | Vyazovkin integral model

This model-free approach is also known as nonlinear integral 
method that is outcome of revised expression of temperature 
integral from Equation (6).

As for isoconversional models, g(α) is not dependent on 
heating rate so,

The above equation can be rewritten as follows:

The integral value of I(Eα, Tα,i) can be evaluated by re-
solving a complex integration or by using Senum-Yang poly-
nomial 4th-degree approximation44 as described below.

x can be taken as equivalent to α in the previous equa-
tion. The activation energies can be calculated by substitu-
tion of experimental values (Tα and β) in Equation (10) with 
condition of changing Eα to approach a minimum value. The 
minimum value was achieved for each value of α to estimate 
activation energy dependency on conversion. This strategy 
has also been reported reliable and consistent in various stud-
ies reported in the literature.25,31,32,36,40,45-47

3.1.3 | Flynn-Wall-Ozawa method

This method was proposed by cumulative contribution of 
Flynn, Ozawa and Wall by the modification of Doyle contri-
bution as described in Equation (12).

The resultant straight lines by plotting Equation  (12) vs 
1/Tαi will give the estimation of activation energy at different 
conversion levels.35,37,38,45,48

3.1.4 | Kissinger-Akahira-Sunnose method
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The resultant plot of Equation (13) vs 1/Tαi yields slope 
equal to −Eα/R. The application of this model has been re-
ported satisfactory by many researchers.41,49-52

4 |  RESULTS AND DISCUSSION

4.1 | TG and DTG profiles

TG and DTG curves for coal, MSW, and RDF were observed 
individually, as function of time and temperature range of 
25°C to 1000°C. Figures 1 and 2 present TG and DTG trends 
of the sample fuels at specific heating rates (10, 20, 30, and 
40°C/min). It is important to define the extent of conversion 
through an observable adequate physical property. According 
to different thermal decomposition studies, among all physi-
cal properties, mass loss is the most suitable physical prop-
erty to describe the dependency of the overall rate constant 
on the temperature. The is mainly due to fact that the mass 
loss during the combustion process does not depend upon the 
heating rate.53-56

It is broadly accepted that fuel decomposition process 
mainly contains three stages over complete range of tempera-
ture, which are (a) moisture drying, (b) major loss of weight, 
due to release of volatile organic matter, and (c) consecutive 
slow combustion of fixed carbon.57 Last two steps, certainly, 
are linked with chemical composition (homogeneous/het-
erogeneous nature) of these samples, as main constituent of 

these samples has dissimilar degradation profiles, as shown 
in Figure  2. The physical composition of simulated solid 
wastes is presented in Table 1. The proximate and ultimate 
analysis presented in Table 2 showed that all the fuels were 
low in content of moisture and fixed carbon, as a result, first 
and third region showing less prominent weight loss. As ex-
pected, apart from the heating rate, the decomposition pro-
cess of MSW and RDF shows a very high weight loss due to 
high reactivity, whereas coal TG behavior is slower, which is 
characterized by a low volatile content and high ash content. 
The mass percent of ash content of coal is ~32.1% that is 
much higher than that of MSW (~11.1%) and RDF (~12.9%). 
The decomposition pattern of solid wastes showed that a 
number of individual shoulders or peaks appeared at lower 
heating rate, which disappear or overlap as the heating rate 
is increased. The thermal decomposition of coal results in 
one major peak, due to release of carbon-containing vola-
tile matter,58 whereas existence of different peaks in case of 
solid wastes is credited to the heterogeneous nature of these 
wastes fuels. The solid wastes show prominent weight loss 
between 180°C and 550°C, whereas the coal weight loss is 
mainly between 400°C and 770°C at heating rate of 20°C/
min. The solid wastes exhibit multicomponents sharp weight 
loss peaks in the fast devolatilization stage. The weight loss 
of first peak of MSW (~43.1%) and RDF (~39.8%) is mainly 
contributed by the highly volatile and easily decomposable 
components in solid wastes such as biodegradables (cellulose 
and hemicellulose), textile, and paper with temperature range 

F I G U R E  1  TG curves of coal, MSW, and RDF samples at different heating rates
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of 180-390°C and 216-376°C, respectively. The second vol-
atile release peak from solid wastes mainly corresponds to 
combustion of mixed plastic (LDPE, HDPE, and PVC) with 
almost same temperature range 388-550°C for MSW and 
RDF. In the carbonization stage, tiny weight loss in MSW 
and coal is attributed to thermal decomposition of lignin and 
char present in samples. This result is in agreement with the 
findings of researchers using MSW and RDF as fuel samples 
in TGA.16,17,59-61

The combustion characteristic parameters such as the 
initial temperature, burnout temperature, and temperature at 

maximum weight loss obtained from TG and DTG curves for 
combustion of the studied samples at different heating rates 
are summarized in Table  3. Thermal behavior and charac-
terization studies at specific heating rates are an imperative 
criterion for kinetics studies. It is noticed that the heating 
rate affects the TG and DTG curves.62 At specific heating 
rates, contact of fuel particles varies, which change the curve 
shape and combustion characteristics considerably, as indi-
cated in Figures  1 and 2. It is evident from analysis, with 
the increasing heating rates, TGA curves are shifted toward 
the right and DTG curves are slightly shifted toward higher 

F I G U R E  2  DTG curves of coal, MSW, and RDF at different heating rates
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Order Material True MSW (%)
Simulated 
MSW (%)

Simulated 
RDF (%)

1 Biodegradable 56 69 -

2 Nylon plastic bags 11 14.5 47.3

3 Textile 9.1 11.5 37.6

4 Paper 2.8 4.1 13

5 Noncombustible 6.3 - -

6 PET 0.7 0.9 1.8

7 Tetrapak 1.1 - -

8 Combustibles 6.2 - -

9 Diaper 5.3 - -

10 Hazardous 1.3 - -

11 Glass 0.7 - -

T A B L E  1  Physical percentage 
(average) of MSW, simulated MSW, and 
simulated RDF27
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peak temperatures without changing the thermal profile. This 
shows that the overall reaction rate in decomposition process 
is a function of temperature only.55 Consequently, all the 
combustion characteristic parameters were shifted to higher 
values, showing thermal lag at increasing heating rate. This 
might be credited to heat and mass transfer limitations due to 
poor thermal conductivity of materials present in samples.59 
Among the selected fuel samples, coal has highest ignition 
and burnout temperature, while MSW and RDF have con-
siderably low and slight close range of these temperatures. 
The coal ignition temperature at four heating rates (10, 20, 
30, and 40°C/min) varies from 443°C to 460°C. For MSW 
and RDF, this thermal lag varies from 219°C to 230°C and 
238°C to 255°C, respectively. Similar shift of temperature 

zone/ thermal lag is observed for burnout temperature values. 
The higher burnout temperature of coal is attributed to higher 
ash content, which again is main factor for further character-
ization of burnout process. It is evident that the heating rate 
had a significant effect on the weight loss rate during com-
bustion process. In combustion process of these samples, the 
higher heating rates result in lower weight loss (conversion) 
and high reactivity. The reactivity during combustion process 
is proportional to the height of DTG peak. In case of coal, 
as heating rate increased, the weight loss rate at same tem-
perature is increased. As revealed in Figure 2, as heating rate 
increased from 10 to 40°C/min, the weight loss rate increased 
from to 0.1 to 0.19%  S−1. Even though, similar trend was 
observed in case of MSW and RDF, as greater weight loss 
rate was recorded in both peaks with increasing heating rate. 
However, in solid wastes overlapping of peaks was prominent 
at higher heating rates. This may be explained on the basis of 
residence time during the combustion process. At low heat-
ing rate, more residence time results in efficient and effective 
heat transfer compared to higher heating rate. Similar results 
of combustion process are reported by researcher using dif-
ferent heating rate such as MSW,16,61 RDF,17 and coal.20 The 
reactivity of these fuels was investigated at peak tempera-
tures, resulting an order of RDF > MSW > coal.

4.1.1 | Kinetic analysis

In order to describe the dependence of the activation energy 
(E�) on the conversion degree, four models from model-free 
kinetic methods were tested. The isoconversional plots of 
KAS, FWO, and Friedman for conversion (�) range of 0.1-
0.9 are shown in Figure 3. According to reported studies, the 
parallelism of these lines is accredited to the same reaction 
mechanism and kinetic behavior.63 For considered range of 

T A B L E  2  Proximate & ultimate analysis of samples27

Order Samples

Proximate analysisa Ultimate analysisb 

H2O 
(%)

VM 
(%)

Ash 
(%)

F.Cc  
(%) C (%) H (%) Oc  (%) N (%) S (%)

HHV 
(kJ/kg)

1 Biodegradeable 4.1 77.5 10 8.4 62.5 8.0 28.8 0.4 0.1 10 338

2 Textile 2.94 81.23 5.01 10.82 58.4 4.98 35.7 0.6 0.16 20 392

3 Nylon plastic bags 0.02 93.71 5.52 0.741 78.7 12.4 8.7 0.12 0.02 40 416

4 Paper 3.44 75.85 18.82 1.89 50.5 6.41 42.3 0.22 0.55 16 239

5 PET bottles ND 92.26 0.19 7.55 62.0 4.04 33.9 0.05 0.01 23 060

6 MSW 3.3 79.7 9.1 7.2 63.6 8.1 27.1 0.4 0.11 15 978

7 RDF 1.6 86.2 7.07 4.7 66.9 8.7 23.8 0.32 0.14 29 429

8 Coal 1.84 38.8 31.7 27.53 80.7 3.6 9.6 1.02 5.04 30 362
aAir-dried basis. 
bDried ash-free basis. 
cCalculated by difference. 

T A B L E  3  The combustion characteristics parameters for Coal, 
MSW, and RDF from TG and DTG curves

Sample
Heating rate 
(°C/min)

Ti 
(°C)

Tf 
(°C)

T1 
(°C)

T2 
(°C)

Coal 10 443 713 562 -

20 444 727 578 -

30 451 743 599 -

40 460 778 610 -

MSW 10 219 560 301 455

20 223 573 313 461

30 225 586 325 470

40 230 598 329 479

RDF 10 238 556 316 465

20 242 559 334 473

30 245 563 342 481

40 255 570 367 495

Note: Ti: the ignition temperature, Tf: burnout temperature, T1, T2: temperature at 
maximum weight loss rate of first peak and second peak.
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conversion (�), the activation energy (E�) values were ob-
tained from individual slopes based upon linear model equa-
tions. The obtained E� and correlation coefficient (R2) values 
together with the values from nonlinear Vyazovkin proce-
dure are summarized in Tables 4-6. The correlation coeffi-
cient of obtained E� is close to unity, which indicates that 
these models had capability for better fit of experimental data 

for estimation of kinetics. The average values of obtained E� 
from isoconversional methods are summarized in Figure 4. 
Many researchers have presented such findings about iso-
conversional models.17,25,29,32,64 Activation energy means the 
minimum energy requirement that must be acquired to start a 
reaction. This indicates, the reaction with high activation en-
ergy needs a high temperature or an extended reaction time. 

T A B L E  4  Dependency of activation energy (E�, kJ/mol) of coal 
on conversion degree from model-free methods

�

Coal

KAS FWO FM VK

R2
E
�

R2
E
�

R2
E
�

E
�

0.1 0.999 151.3 0.999 155.8 0.997 124 151

0.2 0.999 121.3 0.999 127.9 0.994 90.7 121

0.3 0.997 102.6 0.997 110.6 0.988 74.1 103

0.4 0.995 90.6 0.997 99.5 0.984 57.7 91

0.5 0.994 81.1 0.996 90.7 0.978 46.4 82

0.6 0.991 72.9 0.994 83.2 0.976 39.4 73

0.7 0.988 65.7 0.993 76.6 0.919 63.9 66

0.8 0.984 59.9 0.991 71.5 0.975 59.8 61

0.9 0.980 56.8 0.989 68.9 0.954 56.7 58

Average 89.2 98.3 68.1 89.5

F I G U R E  3  Plots for kinetic model. Friedman, FWO, KAS

T A B L E  5  Dependency of activation energy (E�, kJ/mol) of MSW 
on conversion degree from model-free methods

�

MSW

KAS FWO FM VK

R2
E
�

R2
E
�

R2
E
�

E
�

0.1 0.954 239.9 0.957 236.5 0.968 232.1 240

0.2 0.980 210.3 0.981 208.8 0.992 186.1 210

0.3 0.997 186.5 0.997 186.5 0.996 184.1 186

0.4 0.991 172.9 0.992 173.9 0.969 168.2 173

0.5 0.952 179.1 0.957 180.2 0.941 175.1 179

0.6 0.873 376.2 0.879 368.5 0.822 379.9 205

0.7 0.973 243.2 0.976 242.8 0.980 245.2 243

0.8 0.998 134.4 0.999 139.8 0.986 134.1 134

0.9 0.993 108.4 0.995 115.6 0.933 108.5 109

Average 205.6 205.8 201.4 186.5
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Figures  5-7 show dependence of activation energy on the 
extent of selected fuel conversion. Comparison of obtained 
E� showed that Vyazovkin, FWO, and KAS methods formed 
closer results than Friedman. The coal E� at � 0.1 was found 
as 151.3, 155.8, 124, and 151 kJ/mol for each model as per 
given order in Table 4. For interval of � 0.2-0.9, the activation 
energies were close to each other with decreasing trend. This 
thermal event at temperature ~400°C and conversion degree 
~0.1 is characterized by slow reaction rate with highest en-
ergy barrier ~155 kJ/mol, which means that in case of coal 
the energy requirement for the main mass combustion was 
less after initializing the reaction. It is noticeable that the coal 
activation energy values obtained from Friedman differen-
tial method are slightly lower than integral methods. In case 
of MSW and RDF, activation energy analysis shows tedious 
dependency on conversion and specifies the typical behavior 
of complex parallel reaction, involving multiple and consec-
utive degradation steps. For solid waste fuel, the changing 

trend of E� value obtained by these isoconversional methods 
is very consistent. The E� values of solid wastes reported in 
the literature show great variation due to nonuniform compo-
sition of such kind of fuels. In case of solid wastes with the 
conversion rates increased from 0.1 to 0.9, two obvious peaks 
were observed at �: 0.1 and 0.6, respectively. As it can be 
observed from first peak of MSW, between 0.1 ≤ � ≤ 0.5 for 
temperature range between 180 and 365°C shows a progres-
sive decrease in the activation energy from 239 to 180 kJ/
mol, whereas first peak in case of RDF shows a progressive 
increase in the activation energy (118-165 kJ/mol) for same 
conversion degree with shorter temperature range between 
226 and 356°C. This behavior is credited to complex mul-
tistep reaction during biomass decomposition of MSW. As 
mentioned earlier, the first peak is attributed to combustion 
of volatile matter and second peak corresponds to combus-
tion of different organic compounds which offer greater 
energy barrier. Finally, both MSW and RDF at conversion 
degree 0.6 observed a maximum increase in activation en-
ergy values, ~365 kJ/mol and ~290 kJ/mol at corresponding 
temperature of 445°C and 405°C, respectively. This interval 
0.6 ≤ � ≤ 0.9 is attributed to components of solid wastes with 
lower activity (biochar) and complex decomposition phase of 
PVC, which dictate the rate of reaction and need more energy 
under high temperature.65,66 For solid wastes at conversion 
range (�  =  0.1-0.5), smaller fluctuations in E� values with 
increasing trend were observed, whereas at conversion range 
(� = 0.6-0.9), higher fluctuations with decreasing trend were 
observed throughout the process. This fluctuation in the E� 
value is generally attributed to heterogeneous nature of solid 
wastes, which leads to complex reaction system including 
parallel, competitive, and complex reaction scheme.57

It is possible to say that the average activation energy of 
solid wastes obtained from all considered isoconversional 
methods is very close, compared to average activation en-
ergy of coal, as illustrated in Figure 7. It is important to note 
that the MSW E� by the all isoconversional methods were 
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205.6, 205.8, 201.4, and 186.5 kJ/mol with the given order, 
which was 26.7, 25.3, 18.2, and 4.0 kJ/mol higher than that 
of RDF. This means, on average, more energy is required in 
the combustion process of MSW. It might be the result of 

less volatile content in MSW than RDF.67 Conferring to ki-
netic analysis by all four isoconversional models, the selected 
fuels could be set in subsequent order of activation energy 
MSW > RDF > coal.
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5 |  CONCLUSION

According to TG and DTG analysis, it was observed that 
thermal decomposition of coal sample comprised single 
stage, whereas thermal decomposition of MSW and RDF 
involved complex set of multiple and simultaneous steps re-
lated to decomposition of biowaste (ie, food waste, textile, 
and paper) and plastic. The rate of thermal decomposition 
of all solid fuels was found increasing with the increase in 
heating rates. The dependency of the apparent activation en-
ergy (E�) on conversion (�) was estimated through isoconver-
sional approaches using three integral methods (Vyazovkin, 
KAS, and FWO) and one differential (Friedman) method. In 
case of coal, monotonic decrease in activation energy was 
found for selected conversion, whereas solid wastes ob-
serve two prominent peaks with conversion ranges between 
0.1 ≤ � ≤ 0.5 and 0.6 ≤ � ≤ 0.9, with maximum activation 
energy value of MSW (~365  kJ/mol) and RDF (~290  kJ/
mol) at conversion degree 0.6. The average activation ener-
gies were found as 89.2, 98.3, 68.1, and 89.5 kJ/mol for coal, 
205.6, 205.8, 201.4, and 186.5 kJ/mol for MSW, and 178.9, 
180.5, 183.2, and 182.5 kJ/mol for RDF using KAS, FWO, 
Friedman, and Vyazovkin approaches, respectively. In case 
of coal, it is worth noting that Friedman differential method 
exhibited lower values of for whole range of conversion.

The finding of this research work might open perspectives 
for the utilization (combustion and co-combustion) of solid 
wastes as promising alternative energy source and will pro-
vide new roadmap for waste management policies.
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NOMENCLATURE
TGA Thermogravimetric Analysis
MC Moisture Content
FC Fixed Carbon
RDF Refuse Derived Fuel
HHV High Heating Value
VM Volatile Matter
MSW Municipal Solid Waste
ad air-dried basis
daf dried ash-free basis
α Fractional Conversion
Eα Activation Energy (kJ/mol)
A Pre-exponential Factor
� Heating Rate (°C/min)
R General Gas Constant
f (�) Differential Form of Reaction Model

g (�) Integral Form of Reaction Model
R2 Correlation Coefficient
n order of reaction
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