
A Hybrid Quantum-Classical
Framework for Reinforcement

Learning of Atari Games

MASTERARBEIT

zur Erlangung des akademischen Grades

Master of Science

im Rahmen des Studiums

Computational Science and Engineering

eingereicht von

Dominik Freinberger, BSc
Matrikelnummer 11708140

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr.rer.nat. Dr.h.c. Radu Grosu
Mitwirkung: Dr. Sofiène Jerbi

Univ.Ass. Dipl.-Ing. Julian Lemmel

Wien, 7. Juni 2024
Dominik Freinberger Radu Grosu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Mobile User

A Hybrid Quantum-Classical
Framework for Reinforcement

Learning of Atari Games

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Computational Science and Engineering

by

Dominik Freinberger, BSc
Registration Number 11708140

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr.rer.nat. Dr.h.c. Radu Grosu
Assistance: Dr. Sofiène Jerbi

Univ.Ass. Dipl.-Ing. Julian Lemmel

Vienna, June 7, 2024
Dominik Freinberger Radu Grosu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Mobile User

Erklärung zur Verfassung der
Arbeit

Dominik Freinberger, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 7. Juni 2024
Dominik Freinberger

v

Mobile User

Acknowledgements

I would like to thank Sofiène Jerbi and Julian Lemmel for their professional guidance
and continuous support during the research and composition of this thesis. I would also
like to thank Radu Grosu for giving me the opportunity to carry out this research within
the Cyber-Physical Systems research unit at the Institute of Computer Engineering.

The computational results presented have been achieved using the Vienna Scientific
Cluster (VSC).

vii

Mobile User

Mobile User

Kurzfassung

Quantum Machine Learning (QML) ist ein vielversprechendes Anwendungsgebiet für ak-
tuelle Quantencomputer, wobei hybride quantenmechanisch-klassische Modelle, basierend
auf parametrisierten Quantenschaltkreisen (PQCs), als erfolgversprechende Algorithmen
gelten. Jüngste Fortschritte im Bereich des Quantum Reinforcement Learning (QRL)
haben das Potenzial von PQCs als Alternative zu klassischen Deep-Learning Model-
len demonstriert. Während diese Studien das Potential von PQCs in standardisierten
Benchmarking-Aufgaben aus dem OpenAI Gym gezeigt haben, ist noch ungeklärt, in-
wieweit QRL-Techniken basierend auf PQCs erfolgreich bei komplexeren Problemen mit
hochdimensionalen Zustandsräumen angewendet werden können.

Diese Arbeit präsentiert einen hybriden quantenmechanisch-klassischen Ansatz, der einen
PQC mit klassischen neuronalen Netzwerken zur Merkmalskodierung und zum Post-
processing kombiniert. Das resultierende Modell wird im Rahmen von approximativem
Q-Learning trainiert und evaluiert, wobei eine umfassende Hyperparametersuche durchge-
führt wird. Zwei repräsentative Spielumgebungen, Atari Pong und Breakout, dienen dazu,
die Leistung des hybriden Modells zu bewerten. Ein klassisches Modell, das ähnlichen
architektonischen Einschränkungen wie das hybride Modell unterliegt, wird als Referenz
konstruiert. Die Ergebnisse dieser Studie zeigen, dass das entwickelte hybride Modell
die Pong-Umgebung erfolgreich lösen kann und bei Breakout vergleichbare Ergebnis-
se wie die klassische Referenz erzielt. Darüber hinaus zeigen die Ergebnisse wichtige
Hyperparameter-Einstellungen und Designentscheidungen auf, die die Interaktion zwi-
schen quantenmechanischen- und klassischen Komponenten beeinflussen. Diese Arbeit
trägt zum Verständnis hybrider quantenmechanisch-klassischer Modelle bei und stellt
einen ersten Schritt in Richtung ihrer Anwendung in realen RL-Szenarien dar.

ix

Mobile User

Mobile User

Abstract

Quantum machine learning (QML) is a promising area of application for near-term
quantum computing devices, with hybrid quantum-classical models based on parame-
terized quantum circuits (PQCs) as prominent candidate algorithms. Recent advances
in quantum reinforcement learning (QRL) have demonstrated the potential of PQCs
as an alternative to classical deep learning models. While these studies have shown
the performance of PQCs on standard benchmarking tasks from the OpenAI Gym, it
remains an interesting open question to what extent QRL techniques based on PQCs can
be successfully applied to more complex problems exhibiting higher-dimensional state
spaces.

This work presents a hybrid quantum-classical framework that combines a PQC with
classical feature encoding and post-processing layers. The resulting model is trained and
evaluated in an approximate Q-learning setting and a comprehensive hyperparameter
search is performed. Two representative game environments, Atari Pong and Breakout,
are selected to assess the performance of the hybrid model. A classical model, subjected
to architectural restrictions similar to those present in the hybrid model, is constructed
to serve as a reference. The results of this study demonstrate that the proposed hybrid
model is capable of solving the Pong environment and achieves scores comparable to
the classical reference in Breakout. Furthermore, the findings shed light on important
hyperparameter settings and design choices that impact the interplay of quantum and
classical components. This work contributes to the understanding of hybrid quantum-
classical models and provides a first step towards their deployment in real-world RL
scenarios.

xi

Mobile User

Mobile User

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Contributions . 3
1.4 Outline . 4

2 Preliminaries 5
2.1 Quantum Computing . 5
2.2 Reinforcement Learning . 10

3 Quantum Reinforcement Learning 17
3.1 Quantum Machine Learning . 17
3.2 Quantum Q-Learning . 25

4 Methodology 31
4.1 The Hybrid Quantum-Classical Model 31
4.2 Atari 2600 Environments . 34
4.3 The Hybrid Model in the Q-Learning Framework 38

5 Results and Analysis 43
5.1 Performance of Hybrid Baseline and Classical Reference 43
5.2 Effects of Activation Function in Pre-Processing Layer 45
5.3 The Q-function Surface . 46
5.4 A Sample Episode . 47
5.5 Effects of Reward Scaling and Learning Rate 48
5.6 Effects of Latent Space Dimension . 50

6 Conclusion 53

xiii

Mobile User

6.1 Findings and Contributions . 53
6.2 Limitations and Future Research . 54

7 Appendix 57
7.1 Performance of Classical Model without Bottleneck 57
7.2 Additional Settings not listed in the Results 58

List of Figures 59

List of Tables 63

List of Algorithms 65

Bibliography 67

Mobile User

CHAPTER 1
Introduction

1.1 Motivation
There is no doubt that machine learning and artificial intelligence (AI) have established
their position as some of the most impactful and transformative technologies of the 21st
century, particularly in the course of the last decade. According to the International Data
Corporation (IDC), global spending on AI, including software, hardware, and services for
AI-centric systems, was projected to reach $154 billion in 2023, representing an increase
of 26.9% over the amount spent in 2022 [IDC23]. AI investment is forecasted to approach
$200 billion globally by 2025, driven by substantial investments in physical, digital, and
human capital to integrate and leverage new AI technologies [Sac23]. This growth is
expected to continue, with AI software spending expected to reach almost $300 billion
by the year 2027, indicating the rapid incorporation of AI into a wide range of products
and services [Gar23].

As the significance of machine learning and AI in industry and society grows, it is
imperative to consider the operational challenges associated with these technologies:
Ever-increasing model complexities [LVL22] lead to tremendous computational resource
demands that in turn fuel enormous energy requirements [SGM19, NDM+21, PGL+21],
comparable to those of whole nations, as recent studies suggest [Vri23]. For this reason, it
comes as no surprise that there is an increasing interest in exploring alternative computing
architectures for machine learning purposes that exceed the limitations of the classical
silicon-based von Neumann architecture [vN93].

In this pursuit, quantum computing stands out as a promising candidate. The field of
quantum computing involves information processing with devices that operate based
on the principles of quantum mechanics [NC10]. By harnessing quantum mechanical
phenomena such as superposition and entanglement and using them as computational
resources, quantum computing tries to gain computational advantages in certain problem

1

Mobile User

1. Introduction

classes. Among the most significant theoretical contributions is Shor’s algorithm [Sho95]
providing an exponential speedup for the prime factorization of large integers, a founda-
tional breakthrough with profound implications for cryptography. Similarly, Grover’s
algorithm [Gro96] demonstrates a quadratic speedup for unstructured search problems,
demonstrating a clear quantum advantage over classical counterparts for specific tasks.
The Harrow-Hassidim-Lloyd (HHL) algorithm [HHL09] represents a substantial theoreti-
cal contribution to quantum computing by offering an exponential speed-up for solving
systems of linear equations with a logarithmic runtime in the number of variables. The
algorithm highlights the potential for quantum computing in areas such as optimization,
quantum chemistry, machine learning and beyond, where solving large systems of linear
equations is paramount. These algorithms serve as cornerstones, showcasing the potential
for quantum computing to address problems that are beyond the reach of classical
approaches in certain contexts.

However, it is crucial to approach these successes with a balanced perspective: Many
proposed quantum algorithms rely on fault-tolerant quantum computers, which will
not be available in the near future. The current stage of quantum computing, often
referred to as the noisy intermediate-scale quantum (NISQ) era [Pre18], is characterized
by devices that, while increasingly capable, still face significant challenges such as high
error rates, short qubit coherence times and poor scalability in the number of qubits.
Current NISQ devices exhibit qubit numbers ranging from tens to hundreds, depending
on the architecture. However, to mitigate errors, these devices must combine multiple
physical qubits into fewer logical qubits using error-correction codes, effectively reducing
the number of usable qubits.

Nevertheless, despite these early-stage hardware limitations, ongoing research has suc-
cessfully identified algorithms that demonstrate significant potential on today’s quantum
devices [BCLK+22]. Among these, variational quantum algorithms (VQAs) [CAB+21]
are particularly promising and versatile candidates, applicable to various problems. VQAs
represent a class of quantum algorithms that optimize parametrized quantum circuits
(PQCs), quantum circuits that contain tuneable parameters, in a hybrid quantum-classical
manner. By design, these algorithms are more compatible with near-term devices as they
utilize low-depth circuits, require relatively few qubits, and their iterative optimization
process is compatible with error mitigation techniques [CBB+23]. Compared to error
correction, these techniques are less resource-heavy as they only require multiple iterations
of the same noisy circuit.

Quantum machine learning (QML) has established itself as a promising field of ap-
plication for VQAs, suitable for current and near-term NISQ devices. PQCs have
been shown to be a viable alternative to classical neural networks (NNs) in various
supervised [MNK+18, FN18, SBS+20, SK19, PSCLGF+20, SSM21] and unsupervised
[ZLW19, CMD+20, ZLW21] learning tasks. However, few studies have explored the
application of PQCs in reinforcement learning (RL) [CYQ+20, LS20, JGM+21, SJD22],
a subfield of machine learning. RL is known to be particularly challenging, as there exists
no labeled data and the learning is inherently unstable, which often results in prolonged

2

Mobile User

1.2. Problem Statement

training times and significant computational costs. This underscores the importance
of further exploring the capabilities and boundaries of quantum reinforcement learning
(QRL) within this complex learning paradigm.

1.2 Problem Statement
Previous work [JGM+21, SJD22] has demonstrated the potential of QRL methods
to compete with classical deep RL methods in standard benchmarking tasks such as
OpenAI Gym environments [BCP+16]. While these results are very promising for a wider
applicability of QRL methods, it remains an interesting open question to what degree
QRL techniques based on PQCs can successfully be applied to more complex environments
exhibiting high-dimensional observation spaces. NISQ devices only possess a limited
number of computational units (qubits) and the computational resources required to
simulate a quantum computer scale exponentially with the number of qubits, rendering the
theoretical study of larger quantum systems increasingly challenging. The feature space of
these non-trivial problems such as the raw pixels of Atari game interfaces is therefore too
large to be encoded into a PQC directly. One approach to circumvent this issue is to use
established dimensionality reduction techniques in a hybrid quantum-classical computing
framework that enables testing quantum agents on higher dimensional problem settings.
This was attempted in previous work [LS21] but the learning capabilities of the proposed
hybrid models in the Atari games Pong and Breakout were deemed insufficient.

The aim of this work is to develop and study a hybrid quantum-classical framework
for reinforcement learning in high-dimensional state spaces. The thesis assesses the
performance of PQC-based hybrid models in two well-studied Atari games, which serve
as a midway point between benchmark environments and real-world scenarios. Therefore
the present study addresses the following research questions:

• Can hybrid quantum-classical machine learning methods perform well in high-
dimensional reinforcement learning tasks?

• What design choices have a non-trivial impact on the hybrid models performance?

• How does their performance compare to classical models?

1.3 Contributions
This research demonstrates the learning capabilities of hybrid quantum-classical machine
learning models compatible with current NISQ requirements in high-dimensional rein-
forcement learning settings. In particular, the models presented can effectively solve the
Atari Pong environment with a performance similar to a comparable classical reference.
In the more complex environment of Atari Breakout, the model achieves significant results
comparable to the classical counterpart. For the first time, a hybrid quantum-classical
model is successfully employed in RL settings with large observation spaces. Furthermore,

3

Mobile User

1. Introduction

this work sheds light on which hyperparameters and design choices significantly influence
learning performance, offering valuable insights for future research.

1.4 Outline
This thesis is structured as follows: Chapter 2 provides an introduction to the basic
concepts of quantum computing and reinforcement learning, setting the stage for further
discussions on how quantum circuits can be used as machine learning models and fit
into the overarching reinforcement learning framework. Chapter 3 builds on these
concepts and introduces the reader to the field of quantum machine learning, focusing on
parameterized quantum circuits, which lie at the heart of the hybrid model proposed
in this work. Throughout this chapter, the intricacies of training quantum models are
explained and the current state of the art in quantum reinforcement learning is presented,
identifying existing research gaps. The methodological setup is outlined in Chapter 4,
starting with a detailed explanation of the hybrid model’s architecture and parameters as
well as the reinforcement learning framework. This chapter also highlights the specifics of
the Atari game environments, including details on pre-processing. In Chapter 5 the main
results of the study are presented and discussed. Chapter 6 concludes with a summary
of the findings, addressing the initial research questions and highlighting the constraints
of this study.

4

Mobile User

CHAPTER 2
Preliminaries

To fully appreciate the application of quantum computing in the field of machine learning,
particularly in reinforcement learning, it is important to first introduce some basic
concepts of both disciplines. This chapter revolves around two main topics, quantum
computing and reinforcement learning. The first part explains how information processing
in the world of quantum mechanics works and sets the stage for the application of quantum
computing in machine learning. The second half of the chapter focuses on reinforcement
learning, a subset of machine learning that involves self-learning agents that learn through
trial and error by interacting with an environment. Specifically, the Q-learning algorithm
is explained, as it serves as the overarching RL framework in this thesis.

2.1 Quantum Computing
Quantum computing encompasses information processing with devices that operate
based on the principles of quantum mechanics. Research in this field aims to exploit
quantum mechanical phenomena such as superposition and entanglement and use them
as computational resources to gain computational advantages in specific problem domains
or to explore new approaches for solving classically hard or intractable problems. The
following sections introduce the key concepts of quantum computing and their interplay
in pursuit of the aforementioned objectives. A comprehensive introduction to the field of
quantum information and quantum computation is provided by [NC10].

2.1.1 Quantum bits - encoding information into quantum states
The basic unit of quantum information and quantum computation is the quantum bit, or
qubit, representing a quantum analogue to the classical binary bit. In practice, a qubit
may be realized by any two-level quantum system. Mathematically, the state of a qubit
is described by a normalized vector in a two-dimensional complex vector space, called a

5

Mobile User

2. Preliminaries

Hilbert space. The two orthogonal states |0Í = (1, 0)T and |1Í = (0, 1)T form a basis of
this space and are referred to as the computational basis states. A fundamental principle
of quantum mechanics states that a qubit is not limited to its basis states but can exist
in any linear combination or superposition of the form

|ÂÍ = a |0Í + b |1Í , (2.1)

where a, b œ C are complex numbers known as probability amplitudes satisfying the
normalization condition |a|2 + |b|2 = 1. However, there is a redundancy in this formulation
as only the relative phase between these coefficients carries any physical meaning. It is
thus sufficient to set a = cos

1
◊
2

2
and b = ei„ sin

1
◊
2

2
to fully describe the qubit’s state.

This choice leads to a geometric representation of a qubit given by the Bloch sphere,
where every possible state of the qubit corresponds to a point on the sphere’s surface.
The latter condition imposes an additional constraint on the state of the qubit that allows
a general qubit state |ÂÍ to be parameterized by only two real values ◊ and „. These are
the polar and azimuthal angles in the Bloch sphere representation of a qubit state as
depicted in Figure 2.1.

Figure 2.1: The Bloch sphere, a representation of the quantum state of a qubit. The
computational basis states are indicated as circles at the north and south poles of the
sphere. An arbitrary state |ÂÍ defined by the angles ◊ and „ is depicted as a black dot
on the surface of the sphere.

Just as classical computers do not operate solely on a single bit, a quantum computer
typically performs operations on multiple qubits. The state of a general n-qubit system
is described by a superposition of all 2n possible combinations of its qubits’ basis states

|ΨÍ =
2n≠1ÿ
i=0

ci |iÍ , (2.2)

6

Mobile User

2.1. Quantum Computing

where |iÍ denotes the quantum state corresponding to the n-bit binary representation of
the integer i. Each |iÍ is a tensor product of n qubit basis states (|0Í or |1Í), encoding
one of the 2n possible combinations of basis states {|0...0Í , ..., |1...1Í}, where |jk...nÍ
abbreviates |jÍ ¢ |kÍ ¢ ... ¢ |nÍ. The coefficients ci are again complex numbers that satisfy
the normalization condition q2n≠1

i=0 |ci|2 = 1, which ensures that the total probability of
finding the system in any of its possible states is one. This representation indicates the
exponential growth of the state space dimension with an increasing number of qubits n.
The combined Hilbert space for an n-qubit system is:

H¢n =
np

i=1
Hi. (2.3)

If the state of an n-qubit system can be written as |ΨÍ = |Â1Í ¢ ... ¢ |ÂnÍ for |ÂiÍ œ Hi,
it is called separable. Otherwise, the state is said to be entangled.

2.1.2 Quantum gates - manipulating quantum information
To perform calculations, it is essential to manipulate the information encoded in the
qubits, which is achieved through the application of quantum gates. Analogous to classical
logic gates, quantum gates alter the states of one or multiple qubits. Depending on the
specific physical realization of the quantum computer, there are different methods to
implement quantum gates. Mathematically, quantum gates operating on n qubits are
represented by 2n ◊ 2n-dimensional unitary matrices (that is, U†U = UU† = I), as they
are norm-preserving and reversible. The first property ensures that the total probability
of measuring the quantum system in any of its possible states remains equal to one, even
after the application of a quantum gate. The reversible nature of quantum gates reflects
the principle of information conservation in closed quantum systems as postulated by
quantum mechanics.

An important set of single-qubit gates are the Pauli matrices ‡x, ‡y and ‡z. As quantum
gates and in circuit diagrams, they are denoted as X, Y and Z:

X = ‡x =
C
0 1
1 0

D
Y = ‡y =

C
0 ≠i
i 0

D
Z = ‡z =

C
1 0
0 ≠1

D
. (2.4)

Each of these gates rotates or flips the qubit state vector by fi radians around the x, y
or z axes of the Bloch sphere. The X gate is often referred to as NOT gate, as it flips
the state of a qubit between the two computational basis states (X |0Í = |1Í and vice
versa). Using the Pauli matrices, it is possible to further define three useful gates, the
Pauli rotations. While the Pauli matrices and many other quantum gates perform a fixed
operation on the qubit(s) they act on, the Pauli rotations are parameterized gates, as the
corresponding transformations depend on a parameter ◊:

7

Mobile User

2. Preliminaries

Rx(◊) = e≠i ◊
2 ‡x =

C
cos(◊

2) ≠i sin(◊
2)

≠i sin(◊
2) cos(◊

2)

D
(2.5)

Ry(◊) = e≠i ◊
2 ‡y =

C
cos(◊

2) ≠ sin(◊
2)

sin(◊
2) cos(◊

2)

D
(2.6)

Rz(◊) = e≠i ◊
2 ‡z =

C
e≠i ◊

2 0
0 ei ◊

2

D
. (2.7)

So far, the gates introduced all act on individual qubits. An important 2-qubit gate is
the CZ or Controlled-Z gate. It is an example of a controlled gate that only affects
the second qubit, or target qubit, if the first qubit, the control qubit, is in the |1Í state.
For example, the CZ gate applied to |01Í leaves the state in |01Í but CZ applied to |11Í
changes the state of the system to ≠ |11Í. This behaviour is instrumental for introducing
entanglement between multiple qubits.

2.1.3 Quantum measurements - retrieving classical information
Unlike a classical bit whose state can be determined directly, the state of a qubit is only
accessible through a quantum measurement conducted using a suitable observable. An
observable is a physical quantity and it is represented by a Hermitian or self-adjoint (i.e.,
M = M†) operator M acting on the quantum state of the system. This property ensures
that all eigenvalues of the operator are real numbers and thus physically meaningful,
which is critical for interpreting measurement outcomes. The measurement postulate of
quantum mechanics states that when a quantum system is measured, the outcome of the
measurement corresponds to one of the eigenvalues of the measured observable M, and
the state of the system after the measurement is the eigenstate |mÍ corresponding to the
observed eigenvalue m.

An important example of a quantum measurement is the computational basis measurement
or Z-measurement, which uses the Pauli Z-matrix ‡z as an observable. The computational
basis corresponds to the eigenstates of the Pauli Z-operator, where |0Í is the eigenstate
with eigenvalue +1 and |1Í is the eigenstate with eigenvalue ≠1. Computational basis
measurements are a specific case of projective measurements with the projection operators
P0 = |0Í È0| and P1 = |1Í È1|. An important postulate of quantum mechanics is the Born
rule: Measuring a qubit in the general state 2.1 using a computational basis measurement,
the probability of observing the qubit in state |0Í is given by p(0) = ÈÂ|P†

0P0|ÂÍ = |a|2,
and the state of the qubit after measurement becomes |0Í. Similarly, the probability of
observing the qubit in state |1Í is |b|2 and the post-measurement state becomes |1Í. It is
said that the measurement has collapsed the state.

From this discussion, it becomes apparent that a quantum measurement is inherently
a probabilistic process, where a single measurement provides limited insight into the
pre-measurement quantum state. Given that the quantum state collapses to an eigenstate

8

Mobile User

2.1. Quantum Computing

of the measurement observable upon observation, repeated measurements of a single
system instance do not yield additional information about the original superposition state.
To accurately characterize the quantum state, one must perform repeated measurements
across many identically prepared systems. For projective measurements, an explicit
formula for the expectation value of the measurement exists:

E(M) =
ÿ
m

mp(m) =
ÿ
m

m ÈÂ|Pm|ÂÍ = ÈÂ|(
ÿ
m

mPm)|ÂÍ = ÈÂ|M|ÂÍ =: ÈMÍ . (2.8)

Given the spectrum of the Pauli Z-matrix, the expectation value of a computational
basis measurement falls within the interval [≠1, 1]. This naturally generalizes to n-qubit
systems, where n > 1: Separate (local) computational basis measurements performed
on individual qubits each return a value between ≠1 and 1 as the expectation value. In
this work, occurrences of terms like measurement result or outcome always refer to the
expectation value rather than a single measurement.

2.1.4 Quantum circuits - a model for quantum computation
There exists a simple but expressive representation for quantum computations applied
to one or multiple qubits: The quantum circuit diagram. It consists of several elements
illustrating the flow of operations. Figure 2.1 depicts an arbitrary quantum circuit
consisting of three qubits with instances of the gates discussed in Section 2.1.2. On the
left side of the circuit, the initial state of the involved qubits is highlighted. Starting
at the initial state a quantum wire indicates the flow of operations (loosely connected
to the passage of time). If there appear no gates on a wire, the qubit is assumed to
stay in its initial state until a gate is applied or until measurement, indicated by the
meter-like symbol at the right end of the wire. Quantum gates that appear on a wire
indicate their application to the respective qubit, where the order of application is from
left to right. Controlled gates are depicted by a vertical line connecting the control qubit
(black dot) with the target qubit (operation). Parametrized gates are represented with
their according parameters.

|0Í X Y Z •

|0Í Rx(–) Ry(—) Rz(“)

|0Í Z

Table 2.1: Quantum circuit diagram containing various gates.

The concepts covered in the previous sections represent a theoretical minimum required
to explain variational quantum algorithms based on parametrized quantum circuits. This
is the subject of Chapter 3, where the topic of quantum machine learning is introduced.

9

Mobile User

2. Preliminaries

The following sections discuss the field of classical reinforcement learning, one of the
three main areas of modern machine learning.

2.2 Reinforcement Learning

At the heart of Reinforcement Learning lies the concept of a learning agent that interacts
with an environment by taking actions based on observed states in order to accomplish
a specific goal. No prior information about which actions to take is given to the agent,
leaving it to learn through trial and error. Feedback is provided to the agent in the form
of numerical rewards, but given that an action might have a long-term effect on the
environment’s trajectory, this complicates the task of assigning rewards to specific actions.
Unlike supervised learning, RL does not rely on pre-labelled data; instead, the agent
generates training data through its interactions with the environment. A unique challenge
in reinforcement learning tasks lies in finding the right balance between exploring the
environment for data collection and exploiting learned strategies. The formalization of
RL concepts and the introduction of specific algorithms are the subject of the following
sections. An in-depth introduction to the field of reinforcement learning can be found in
the seminal work [SB18].

2.2.1 Markov Decision Process - the agent-environment interaction

An abstract framing for a RL problem is given by a Markov decision process (MDP).
An MDP is comprised of a set of states S, called the state space, which represents the
possible observations of the environment and a set of actions A, the action space, the
agent can choose from. For a discrete sequence of time steps, t = 0, 1, 2, 3, ..., the agent
chooses a specific action at œ A when in state st œ S, which brings it to a new state st+1
and it receives a numerical reward rt+1 œ R upon this transition. The probability of
going from a state s to its successor state sÕ and receiving a reward r after choosing action
a is given by the probability distribution p(sÕ, r|s, a), which characterizes the dynamics of
the MDP. Notably, the probability of transitioning to a new state sÕ solely depends on the
predecessor state s and the chosen action a, but not on earlier states and actions. This
limited memory of the environment is known as the Markov property. The components
of the MDP, i.e., the states, actions, transition probabilities and rewards enable it to
describe a wide variety of RL tasks and give rise to further concepts necessary for defining
RL algorithms.

2.2.2 The Q-value function - quality of states and actions

A crucial ingredient for solving RL tasks is to define the goal the agent is intended to
achieve. With the notion of rewards,it is possible to define the return Gt at time step t
as the sum of discounted future rewards:

10

Mobile User

2.2. Reinforcement Learning

Figure 2.2: A simplistic illustration of the reinforcement learning problem: An agent
observes states s and takes actions a in an environment for which it obtains rewards r
from the environment.

Gt :=
Tÿ

k=t+1
“k≠t≠1rk (2.9)

where 0 < “ < 1 is the discount rate which determines the importance of long-term over
short-term rewards and keeps the - possibly infinite (if T = Œ) - sum from diverging.
Since MDPs are inherently probabilistic, the goal of the agent is to maximize the expected
value of this return by selecting proper actions. The agent selects actions based on a
policy function fi(a|s) that defines the probability of taking action a when in a state s.
With these ingredients, it is possible to define an action-value function Qfi(s, a) that
indicates the value or quality of a state-action pair (s, a). In other words: The Q-function
is the expected return when taking action a while being in state s and following the
policy fi thereafter,

Qfi(s, a) := Efi[Gt|st = s, at = a]. (2.10)

The maximum expected return achievable when taking action a while in state s and
following an optimal policy thereafter (indicated by maxat+1 Qú(st+1, at+1) in the recursive
definition below), is given by the optimal Q-value function:

Qú(s, a) := max
fi

Qfi(s, a) = E[rt+1 + “ max
at+1

Qú(st+1, at+1)|st = s, at = a]. (2.11)

Equation 2.11 is known as the Bellman optimality equation. If the optimal Q-function
Qú(s, a) is known, deriving an optimal policy fiú is straight-forward: In state s the agent
should choose an action that maximizes the optimal Q-function, i.e

fiú(s) = arg max
a

Qú(s, a). (2.12)

This observation leads to the main objective of Q-learning, which is finding the optimal
Q-function in order to deduce the optimal policy for the agent.

11

Mobile User

2. Preliminaries

It is worth mentioning that there exists another class of methods known as policy-based
methods. Unlike Q-learning, which is a value-based approach, policy-based methods
directly parameterize the policy function, optimizing it with respect to the expected
return by gradient ascent. These methods work by adjusting the policy parameters in a
way that increases the probability of actions that lead to higher rewards.

2.2.3 Q-learning - finding the optimal Q-function
Q-learning is an iterative RL algorithm that learns the optimal policy by estimating the
optimal Q-values through interactions with the environment. It does not require a model
of the environment (i.e., transition probabilities and rewards of the MDP are unknown)
and is thus considered a model-free method. Q-learning updates the Q-values according
to the following update rule,

Q(st, at) Ω Q(st, at) + –
Ë
rt+1 + “ max

at+1
Q(st+1, at+1) ≠ Q(st, at)

È
, (2.13)

where – is the learning rate and the initial Q-values are set to zero. Note that both
Q(st+1, at+1) and Q(st, at) are approximations and thus Q-learning relies on a concept
known as bootstrapping, where the estimates are updated using other estimates. The
term within brackets in Equation (2.13) is the temporal difference (TD) error, reflecting
the discrepancy between the current Q-value estimate and a new, more accurate estimate.
This new estimate sums the observed reward rt+1 with the estimated maximum discounted
future value, “ maxat+1 Q(st+1, at+1), for a better approximation of the state-action value
Q(st, at). This process allows Q-learning to iteratively converge towards the optimal
Q-values [SB18]. In theory, the agent could follow a purely random exploration policy
while still being able to eventually estimate the optimal Q-values, thus Q-learning is
an example of an off-policy method. However, convergence to an optimal policy may
take a long time if following a purely random exploration policy. The Á-greedy policy
is a simple yet effective strategy for balancing exploration and exploitation during the
training process. With an adjustable probability Á, the agent selects a random action,
facilitating exploration of the state space. Conversely, with a probability 1 ≠ Á, the agent
selects the action with the highest estimated Q-value for the current state, exploiting
its current policy. This strategy ensures that the agent does not prematurely converge
to a suboptimal policy by getting stuck in local maxima and continues to explore the
environment to find the optimal policy.

2.2.4 Approximate Q-Learning
In its simplest form, Q-learning is designed as a tabular learning approach where the
Q-value for each state and action is stored in a Q-table. This approach ultimately limits
the applicability of Q-learning to rather low-dimensional state and action spaces. A
remedy for this restriction is approximate Q-learning. Here, instead of a Q-table, a
Q-function approximator is used. This is a function Q◊(s, a) dependent on a set of

12

Mobile User

2.2. Reinforcement Learning

parameters ◊ that approximates the Q-values of any state-action pair. Instead of working
on all state-action pairs, this method only requires adjusting the parameters ◊ in the
parameter space, which usually is of far lower dimension. The introduction of deep
neural networks as Q-function approximators led to a series of advancements in the
field of reinforcement learning and coined the term deep Q-learning (DQL), a form of
approximate Q-learning using so-called deep Q-networks (DQN) [MKS+13, MKS+15].
Here, instead of directly updating the Q-value approximation for a given state-action
pair, a loss function based on the TD error is constructed as follows

L(◊) =
1
rt + “ max

aÕ Q̂(st+1, aÕ; ◊≠) ≠ Q(st, at; ◊)
22

, (2.14)

where the dependence of the approximate Q-function on the parameters ◊ is highlighted.
This loss function is then minimized through gradient descent on the DQN weights to
refine the approximation of the Q-values:

◊ Ω ◊ ≠ –Ò◊L(◊) (2.15)

The ◊≠ in the estimated Q-function of timestep t+1 indicates the use of a target network:
Instead of using the same Q-network for making predictions and setting the target, a
second Q-network is used as target model Q̂, which is a periodically updated copy of the
online model Q, that learns at each step. This technique avoids undesirable feedback loops
and correlations between the target and the estimated Q-values, stabilizing the training
process. Another critical concept to stabilize learning is experience replay: By storing
the agent’s experiences at each time step, denoted as transitions et = (st, at, rt, st+1),
in a replay memory Dt = {e1, ..., en}, the algorithm can randomly sample a mini-batch
of transitions to train the network. This approach breaks the temporal correlations
between consecutive learning samples and smoothens the learning process by using a
diverse set of experiences. Furthermore, experience replay allows for more efficient use of
previous experiences by learning from them multiple times, which is especially beneficial
in environments where obtaining new samples is costly or limited.

Algorithm 2.1 shows a pseudo-code implementation of deep Q-learning with experience
replay and a target network: A replay memory D is initialized to store N sequences
(st, at, rt, st+1). The online network Q is initialized with random weights ◊ and the target
network Q̂ is assigned the same weights ◊≠ = ◊. The algorithm proceeds through a series
of episodes. Each episode starts with an initial state s1. Within each episode, the agent
interacts with the environment for a number of time steps T . At each step t, the agent
chooses an action at: Either it randomly selects an action with probability Á (exploration)
or chooses the action that maximizes the current Q-value estimation for the current
state st (exploitation). The chosen action is executed in the environment, and the agent
observes the resulting reward rt and the next state st+1. This transition (st, at, rt, st+1)
is stored in the replay memory D. The agent then samples a random minibatch of size
|B| of transitions from the replay memory. For each transition in the minibatch: If the

13

Mobile User

2. Preliminaries

next state sj+1 is a terminal state, the target value yj is set to the observed reward rj .
Otherwise, yj is set to rj plus the discounted maximum future reward as estimated by
the target network Q̂ for the next state sj+1. The loss is computed as the mean squared
error between the predicted Q-values from the network Q(sj , aj ; ◊) and the target values
yj . A gradient descent step is performed to update the network weights ◊ to minimize
this loss. Every C steps, the weights of the target network Q̂ are updated to match the
weights of the online network Q.

Algorithm 2.1: Deep Q-learning with experience replay and target network
1 Initialize replay memory D to capacity N
2 Initialize action-value function Q with random weights ◊

3 Initialize target action-value function Q̂ with weights ◊≠ = ◊
4 for episode = 1 to M do
5 Initialize sequence s1
6 for t = 1 to T do
7 With probability Á select random action at otherwise select

at = argmaxaQ(st, a; ◊)
8 Execute action at in emulator, observe reward rt and next state st+1
9 Store transition (st, at, rt, st+1) in D

10 Sample random minibatch of size |B| of transitions (sj , aj , rj , sj+1) from
D where j is from the index set B

11 for j œ B do

12 Set yj =
I

rj , for terminal sj+1

rj + “ maxaÕ Q̂(sj+1, aÕ; ◊≠), for non-terminal sj+1
13 end
14 Compute the loss for the minibatch: L(◊) = 1

|B|
q

jœB(yj ≠ Q(sj , aj ; ◊))2

15 Perform a gradient descent step: ◊ Ω ◊ ≠ –Ò◊L(◊)
16 Every C steps, reset ◊≠ = ◊

17 end
18 end

State of the art in deep Q-learning

Deep Q-learning has seen remarkable successes, for example by achieving superhuman
performance in Atari games, as demonstrated in the seminal works [MKS+13] and the
follow-up [MKS+15]. In [vHGS15] the DQN algorithm was further refined by introducing
Double Deep Q-learning (DDQN), which reduces overestimation by decoupling action se-
lection from value evaluation, improving the accuracy of value estimation. Improvements
in the experience sampling method, as proposed in [SQA+16], helped accelerate the
learning process by replaying important experiences more frequently. Another improve-
ment on the original DQN algorithm was proposed in [WSH+16] with Dueling Network

14

Mobile User

2.2. Reinforcement Learning

Architectures, which separately estimate state values and action advantages, leading to
more precise value function estimations.

15

Mobile User

Mobile User

CHAPTER 3
Quantum Reinforcement Learning

Similar to classical machine learning and reinforcement learning, quantum reinforcement
learning (QRL) can be considered a subset of quantum machine learning (QML), an active
area of research focused on leveraging quantum computing capabilities to improve existing
machine learning methods or develop novel ones. QML is one of the most promising
fields of application of quantum computing. Particularly on today’s error-prone and
limited-qubit hardware, variational quantum algorithms (VQAs) emerged as a promising
candidate for near-term quantum devices. VQAs utilize parameterized quantum circuits
(PQCs) as main components, optimizing them in a hybrid quantum-classical approach.
PQCs are quantum circuits that incorporate parameterized gates adjustable by classical
computing resources. This section initially provides an overview of the field of QML,
including a concise historical background. The main focus, however, is on PQCs and how
they are used in a machine learning context. The encoding of classical data within PQCs
is explained and how it affects the function classes representable by PQCs. Further,
the conjunction of PQCs with classical layers to form flexible hybrid quantum-classical
models is discussed. Lastly, this section shows how hybrid quantum-classical models
based on PQCs can be applied in an approximate Q-learning setting, highlights recent
advancements in QRL research to illustrate the current state-of-the-art and sets the stage
for the research conducted in this study.

3.1 Quantum Machine Learning
Given the drastic advances made in classical machine learning over the last decade, it is
no surprise that quantum computing research is increasingly focusing on this domain with
the prospect of further enhancing existing ideas, exploring potential synergies between
the fields, or uncovering novel concepts altogether. Before delving into the theoretical
aspects of QML, it is crucial to give a high-level description of what the domain of
QML encompasses. A categorization found in [SP21] identifies four flavors of quantum

17

Mobile User

3. Quantum Reinforcement Learning

machine learning depending on what the quantum element is - the data, the algorithm
or both: QML can involve classical data processed by classical algorithms (CC) that
draw inspiration from quantum mechanics, for example tensor networks [SS16, GPC19].
The quantum data - classical algorithm (QC) domain seeks to leverage classical machine
learning techniques to support progress in quantum information processing itself. The
classical data - quantum algorithm (CQ) paradigm includes the framework proposed
in this thesis. In this scenario, problems defined by classical data are tackled using a
quantum or hybrid quantum-classical algorithm. A particular challenge in this setting is
effectively encoding data into a quantum state, an issue that is addressed later in this
chapter in Section 3.1.3. In the quantum data - quantum algorithm (QQ) realm, the
data itself is inherently quantum, potentially generated by another quantum subroutine.

3.1.1 The history of quantum machine learning
Pinpointing the exact start of QML research is challenging, as self-learning machines
have fascinated people since the dawn of computing, and quantum computing is no
exception. With the introduction of the famous quantum algorithms of Shor [Sho95]
and Grover [Gro96] the first tangible ideas of how quantum computing might be used
for self-learning algorithms arose. In the 1990s and early 2000s, QML research - if it
can be considered as such - was primarily concerned with artificial neural networks,
albeit with limited practical outcomes. Early works investigated possible connections to
neural computing, drawing inspiration from biological information processing [Kak95]
and conceptualized Quantum Neural Networks (QNNs), with the aim of harnessing
the unique computational capabilities of quantum information processing [BNS+00,
Alt01, GZ02, AA02]. The introduction of the Harrow-Hassidim-Lloyd (HHL) algorithm
for matrix inversion [HHL09] marked a shift in the trajectory of quantum machine
learning. Promising an exponential speed-up with a logarithmic runtime in the problem
dimension, at least under specific assumptions, the HHL algorithm directed research into
enhancing linear algebra subroutines common in many machine learning algorithms. The
authors of [WBL12] built upon the HHL algorithm for solving linear regression problems
and evaluating least-squares fits. In [RML14], the authors express a support vector
machine as an approximate least-squares problem to allow the use of the HHL algorithm.
Results reported in [ZFF19] promise an exponential speed-up in compute time in certain
cases by applying the HHL algorithm to Gaussian process regression. Noticeably, the
HHL algorithm led to a significant expansion of approaches to incorporating quantum
computing in the field of machine learning. Nevertheless, it faces considerable constraints.
Strict conditions on the occurring matrices to be sparse and have a low condition number
limit the applicability to special cases. More critically, the effective implementation of HHL
relies on fault-tolerant quantum computers, which remain beyond current technological
capabilities. In contrast, the study of parameterized quantum circuits (PQCs) as machine
learning models [BLS+19] in the framework of variational quantum algorithms (VQAs)
[CAB+21] constitutes a different point of view: Instead of focusing on speeding up existing
(sub)routines, the research aims to explore new families of models and their potential
advantages over classical approaches in solving specific problems. While PQCs on current

18

Mobile User

3.1. Quantum Machine Learning

NISQ hardware do not guarantee a quantum advantage, that is, the ability to outperform
classical algorithms for the same tasks, they offer significant advantages over traditional
quantum algorithms: PQCs are compatible with today’s NISQ devices and even shallow
circuits consisting of only a single qubit can successfully solve non-linear learning tasks
[PSCLGF+20, JFPN+23]. VQAs using PQCs are an example of hybrid quantum-classical
algorithms as part of the computation is performed on classical hardware, while the
quantum part serves as the hypothesis or model. The following sections introduce the
reader to the concept of PQCs and their application as machine learning models.

3.1.2 Parametrized quantum circuits as machine learning models
In essence, a parametrized quantum circuit (PQC), also variational quantum circuit, is
a quantum circuit that applies parameterized gates to its qubits. The values of these
parameters are controlled by classical hardware, usually to minimize a suitable cost
function with respect to an expected value of a measurement observable. An example
of such parameterized gates are the Pauli rotations discussed in Section 2.1.2, where
the parameters correspond to the angles by which the qubit states are rotated around
a specific axis. More generally, given an initial state of a n-qubit quantum system,
for example the trivial state |0Í¢n, a PQC applies the parameter-dependent unitary
transformation U(x, ◊) to its qubits, which is defined as:

U(x, ◊) =
LŸ

l=1
Vl(◊)Ul(x). (3.1)

In the context of machine learning, the Ul(x) are the encoding unitaries, responsible for
encoding or embedding the features xi of a feature vector x œ Rd into the quantum state.
The Vl(◊) are the variational or parameterized unitaries, composed of gates of adjustable
parameters ◊ œ Rk that are optimized during the training process. The different Ul(x)
and Vl(◊) can all be distinct unitaries and may each encode only parts of the feature
vector x and the parameter vector ◊ respectively. The alternating application of encoding
and variational gates is repeated L times in layers. This data re-uploading [PSCLGF+20]
architecture is known to enhance the expressivity of PQC-based machine learning models,
as will be discussed in Section 3.1.4.

The state of the system resulting from the application of the circuit is U(x, ◊) |0Í¢n =
|Â(x, ◊)Í. According to the measurement postulate and the Born rule (see Section 2.1.3)
the expectation value of some measurement observable M on the quantum system
prepared by the PQC is

ÈMÍx,◊ = ÈÂ(x, ◊)|M|Â(x, ◊)Í =: f◊(x). (3.2)

This defines a deterministic quantum machine learning model f◊(x), that, given input x
and setting parameters ◊, outputs a deterministic value ÈMÍx,◊.

19

Mobile User

3. Quantum Reinforcement Learning

Figure 3.1: A parameterized quantum circuit as defined in Equation 3.1 as machine
learning model. A feature vector x is encoded into the quantum system in its trivial
state |0Í¢n via the repeated encoding unitaries Ul(x) (red). Intermediate variational
unitaries Vl(◊) (blue) enable the training of the circuit. The output of the model f◊(x)
is the expectation value ÈMÍx,◊ of a (or multiple) observables (e.g., a Pauli-Z observable
on each qubit) measured at the end of the circuit.

Training the quantum model is conducted in a hybrid quantum-classical manner: On a
classical computer, the output produced by the quantum circuit (i.e., Equation 3.2) is
compared to a target value through a suitable loss (or cost) function L(◊) that quantifies
the error as a function of the model’s trainable parameters ◊. The classical computer
then optimizes the model parameters towards a lower cost. A common choice for the
optimization algorithm are gradient-based methods such as gradient descent. These
methods minimize the cost by updating the model parameters in the direction of the
negative gradient of the cost function with respect to the parameters. This is repeated
iteratively until a desired cost is achieved. More details on obtaining gradients of quantum
computations are discussed in Section 3.1.5.

3.1.3 Encoding classical data in PQCs
In order to operate on a classical dataset, it is essential to represent the data on the
quantum computer. There exist multiple methods to realize the encoding of classical
data into a n-qubit quantum system, the most common being basis encoding, amplitude
encoding and rotation encoding. Basis and amplitude encoding are well suited for single-
layer PQCs, where the data is encoded only once (i.e., L = 1 or equivalently Ul(x) = I for
l > 1 in Equation 3.1). Rotation encoding enables repeated uploading of data throughout
the quantum circuit, giving rise to data re-uploading models.

The following notation is adopted throughout the remainder of this chapter: Let X be the
space of (raw) data and x̃ œ X a data sample. Depending on the problem, this could be
vectors in Rd, images represented as tensors in Rh◊w◊c, or more complex data structures.
Further, let F be the feature space and x œ F a feature vector. Each data sample x̃
is transformed into a feature vector x = „(x̃) via a pre-processing function „ : X æ F .
This function „ could range from simple normalization over feature extraction methods
to sophisticated feature engineering processes, such as convolutional neural networks.

20

Mobile User

3.1. Quantum Machine Learning

Basis encoding

In basis encoding, a classical data vector x̃ œ Rd transformed to binary representation
xbin = „(x̃) is directly encoded into the basis state of the quantum system by flipping
the according qubits, resulting in |Â(xbin)Í, for example: x̃ = (0.5, ≠0.1, 0.3) æ xbin =
(01000, 10001, 00100) æ |Â(xbin)Í = |010001000100100Í, where the first bit is used to
indicate the sign. As can be observed, the number of qubits required for this encoding
technique is rather high, as it scales linearly with the number of features in the input
vector as well as logarithmically with the inverse of the desired precision.

Amplitude encoding

Another option is to encode the features onto the amplitudes of the quantum state.
Amplitude encoding does not require a binary representation, but normalization of
the data vector and padding xpad = „(x̃) to expand it to length 2n, where n is the
number of qubits. Using again the example from before: x̃ = (0.5, ≠0.1, 0.3) æ xpad =
(0.845, ≠0.169, 0.507, 0.000) æ |Â(x̂pad)Í = 0.845 |00Í ≠ 0.169 |01Í + 0.507 |10Í + 0 |11Í.
Each value is associated with the amplitude of a different basis state, and therefore the
number of qubits required is Álog2(d)Ë for x œ Rd.

Rotation encoding

The third encoding method is rotation encoding, also called angle encoding or in more
general cases, time-evolution encoding [SP21]. To illustrate this encoding scheme, a
single scalar value x œ R shall be encoded onto a qubit in its trivial state |0Í. The idea is
to use x as the parameter of a Pauli rotation gate, i.e., the angle of rotation of the qubit
state, which justifies the name of this encoding technique. This operation yields the state
|Â(x)Í = Rj(x) |0Í, where Rj is a Pauli rotation. A crucial observation when encoding
features via qubit rotations is the ambiguity arising from the scale of the input features
xi and the periodicity of the effect of a rotation gate: Encoding a feature xi via some
Pauli rotation is equivalent to encoding xi + 2nfi with n œ Z. Therefore, pre-scaling the
data to the interval of periodicity is required before encoding. The periodic nature of
the rotation encoding has a direct relation to the functions a quantum machine learning
model based on PQCs can represent, as will be discussed in the following section.

3.1.4 Expressivity of PQCs
Encoding data in a parameterized quantum circuit via rotation gates leads to a concise
representation of quantum machine learning models like 3.2 that highlights the function
classes these models can represent. In their work [SSM21], the authors offer a rigorous
analysis of the expressive power of QML models based on rotation encoding and deduce a
correspondence to trigonometric functions, specifically partial Fourier series. Theorem 1,
adapted from [SP21] and restricted to Pauli rotation encoding, summarizes one of their
key findings:

21

Mobile User

3. Quantum Reinforcement Learning

Theorem 1 (Function class of quantum models with Pauli rotation encoding)
Let x̃ be a data sample in the data space X , x = „(x̃) its corresponding feature vector in
the feature space F = RN obtained by the feature encoding function „ : X æ F . Further,
let Y = R be the output domain and f◊: F æ Y a deterministic quantum model as defined
in 3.2 with circuit U(x, ◊) as in Equation 3.1. Accordingly, the j’th feature is encoded by
a gate e≠ixj‡j/2, where ‡j œ {‡x, ‡y, ‡z} is a Pauli matrix. Then, f◊ can be written as

f◊(„(x̃)) = f◊(x) =
ÿ

Ê1œΩ1

...
ÿ

ÊN œΩN

cÊ1...ÊN (◊)eiÊ1x1 ...eiÊN xN , (3.3)

where the frequency spectrum of the j’th feature j=1,...,N, is given by

Ωj = {⁄j
s ≠ ⁄j

t |s, t œ {1, 2}} = {≠1, 0, 1}. (3.4)

This frequency spectrum is the set of all values produced by differences between any two
eigenvalues ⁄j of ‡j/2. We are guaranteed that 0 œ Ω, and that for each Ê œ Ω there is
≠Ê œ Ω too with cÊ(◊) = cú

≠Ê(◊). This symmetry guarantees that f◊ is real-valued, and
that the sum can be rewritten with cosine and sine functions.

For the proof of Theorem 1 in its general formulation see [SSM21]. The frequencies of
the trigonometric function accessible by the model defined in Equation 3.2, as a function
of the features x, are determined by the eigenvalues of the scaled Pauli matrices ⁄j

1 = 0.5
and ⁄j

2 = ≠0.5. For Pauli rotations, all differences ⁄j
s ≠ ⁄j

t are integer-valued and Eq.
3.3 represents a multi-dimensional partial Fourier series with limited frequency spectra
Ωj = {≠1, 0, 1}, assuming that each feature xj is encoded only once in the circuit (or
equivalently, each xj is different). The coefficients cÊ1...ÊN are defined by the non-encoding
part of the quantum circuit, as shown in [SSM21]. Together, both the frequency spectra
and the coefficients define the functions the quantum model can realize.

While the frequency spectrum of f◊ as a function of a single feature xj is rather limited,
note that it is straightforward to choose a feature encoding „ that achieves a rich spectrum
for the data components x̃i. Consider, for example, two features xi and xj that encode
the same data component x̃k. Then, in Equation XY, the terms eiÊixi = eiÊix̃k and
eiÊjxj = eiÊj x̃k combine to ei(Êi+Êj)x̃k and the sums over Êi œ Ωi and Êj œ Ωj together form
a sum over the richer spectrum Ω̃ = {(⁄i

s ≠⁄i
t)+(⁄j

s ≠⁄j
t)|s, t œ {1, 2}} = {≠2, ≠1, 0, 1, 2}.

Therefore, operationally, encoding a single data component x̃i in multiple rotations (either
sequentially on the same qubit or in parallel over many qubits) has the effect of enriching
the spectrum of f◊ as a function of that data component. In general, encoding a data
component in d Pauli encodings allows to access the spectrum Ω = {≠d, ..., d}. The
expressivity of the model with respect to the input data therefore is highly dependent on
the effect of the pre-processing mapping „.

The repeated uploading of classical information into the quantum circuit was first
introduced in [PSCLGF+20], who coined the term data re-uploading, and was extensively

22

Mobile User

3.1. Quantum Machine Learning

studied in [SSM21]: From their analysis, the authors derive that if a quantum model can
generate a sufficiently diverse set of frequencies (e.g., through repeated encodings) and
can manipulate the Fourier coefficients associated with these frequencies effectively, then
such models are universal function approximators. The authors of [JGM+21] demonstrate
that data re-uploading models (L > 1 in Equation 3.1), where each layer encodes all
features xj of the feature vector x, can be mapped to single-layer models (L = 1 in
Equation 3.1), where features are encoded only once. It follows, that data re-uploading is
not a requirement for universal function approximation of PQCs. However, single-layer
models have substantially higher requirements in the number of qubits compared to data
re-uploading models. The authors of [PSCLGF+20] further demonstrate how trainable
weights on the features enhance the expressivity of PQCs, which they use to conjecture
universal function approximation of re-uploading PQCs later shown in [PSLNGS+21].

As stated above, an important consideration for the expressivity of a PQC is its general
structure or ansatz. The circuit ansatz defines the circuit template, similar to the
architecture of a neural network. Choosing the right ansatz can have a great impact
on the expressibility of a quantum model, as numerically demonstrated in [SJAG19].
A particular versatile ansatz is the hardware efficient ansatz introduced in [KMT+17],
which aims to utilize gates and qubit connectivities native to a given quantum device. In
this work, single-qubit rotations and entangling gates are used that follow the topology of
current NISQ devices, similar to those used in the quantum circuit sampling experiments
conducted in [AAB+19].

3.1.5 Estimating gradients of quantum computations
As previously discussed in Section 3.1.2, training quantum machine learning (QML)
models involves minimizing a cost or loss function L(◊), which measures the discrepancy
between computed expectation values f◊(x) and target values. Like in classical machine
learning, this optimization task can be tackled with gradient-based methods like gradient
descent and its variations in a hybrid quantum-classical manner. Once the gradient of
the cost function with respect to the variational gate parameters Ò◊L(◊) is known, the
classical computer can update the parameters of the PQC in the direction of smaller
cost by performing a gradient descent step. In classical machine learning, gradients are
obtained via backpropagation, a form of automatic differentiation (autodiff), which uses
intermediate values to efficiently calculate the gradient of a function with a runtime similar
to the execution of the function itself. This dependency on intermediate information makes
it difficult to apply backpropagation, or autodiff in general, to quantum computations,
as the collapse of the quantum state upon measurement prevents the straight-forward
reuse of information [MBK21, AKH+23]. This fundamental difference requires alternative
approaches for gradient computation in quantum machine learning, such as the parameter-
shift rule [MNK+18, SBG+19, MBK21].

The parameter-shift rule exploits the trigonometric nature of PQCs as functions of their
parameters. Theorem 1 equally applies when the quantum model is seen as a function of
the variational parameters ◊ instead of the inputs x. As a function of a single parameter

23

Mobile User

3. Quantum Reinforcement Learning

◊i with all other parameters ◊j œ ◊, j ”= i, and the inputs x fixed, the quantum model as
defined in 3.2 is of the form

f◊i
= a · sin(◊i + b) + c, (3.5)

where the constants a, b and c are determined by the fixed part of the circuit. Functions
of this type adhere to the parameter-shift rule, which allows the exact computation of
the derivative with respect to the parameter ◊i using two evaluations of the function with
a shift in the parameter. Specifically, for a given parameter ◊i in a quantum circuit, the
gradient of the expectation value f◊i

:= ÈMÍ◊i
can be evaluated as:

ˆf◊i

ˆ◊i
=

f◊i+fi/2 ≠ f◊i≠fi/2
2 = a · cos(◊i + b). (3.6)

This applies to an expectation value of the form 3.2 - the deterministic quantum machine
learning model f◊. Note that Equation 3.6 is not a finite difference approximation, but
gives the exact value of the gradient - if the expectation value ÈMÍ was known exactly.
In that sense, an estimation of the exact gradient can be computed via Equation 3.6
using 2s circuit evaluations per parameter ◊i, where s is the number of shots to estimate
the expectation.

When simulating quantum computations on classical computers, the situation is however
different: The gradients of simulated quantum computations can be evaluated without
the need for the parameter-shift rule. Since the quantum state of the system is completely
known during all times of the computation, classical automatic differentiation can be
applied directly.

One phenomenon that critically impacts trainability of PQCs, is a gradient vanishing
exponentially in the circuit depth and number of qubits. These barren plateaus [MBS+18]
in the cost function landscape are especially prominent in deep circuits, as in this setting
an exponentially large space has to be searched for the solution. Much effort is put into
mitigating the barren plateau problem through educated ansatz strategies and suitable
parameter intialization [GWO+19, ZLH+22].

3.1.6 Hybrid quantum-classical models
Training PQCs involves quantum (the PQC) and classical (the optimizer) parts. However,
the model itself can also be hybrid. Essentially, these models are composed of classical
and quantum processing parts that together act as hypotheses. To some extent, every
QML model within the CQ (classical data, quantum algorithm) domain can be viewed
as a hybrid model, as usually the input to the model is subject to some pre-processing
„(·) (e.g., re-scaling) and, similarly, the expectation values are usually post-processed to
match some desired criteria. In this work, a stricter view of hybrid quantum-classical
models is adopted, where the pre-processing „(·) is some non-trivial mapping, like a

24

Mobile User

3.2. Quantum Q-Learning

classical neural network and similarly for the post-processing. A prototypical example
was introduced in [MBI+20], where classical neural network layers are employed as pre-
and post-processing units with the quantum circuit performing the main computations.
The authors demonstrated the capabilities of this architecture in transfer learning tasks
and labelled it as dressed quantum circuit:

Qhybrid = Lnqænout ¶ Qbare ¶ Lninænq . (3.7)

Here, Qhybrid represents the hybrid quantum-classical model, consisting of classical pre-
processing layers Lninænq followed by the bare PQC Qbare as defined in Equation 3.1 and
classical post-processing layers Lnqænout . Two main advantages were identified: First,
the classical layers can learn an optimal embedding of the input data and post-processing
of the expectation values. Second, the hybrid model has more flexibility in the number
of input and output values and is not limited by the number of encoding gates used
in the PQC. This is indicated by the subscripts of the classical layers nin æ nq and
nq æ nout. In [LSI+20], this architecture was adapted to perform image classification: A
pre-trained ResNet (Lninænq) processes an image, with its last layer replaced by a linear
layer that outputs a 2-dimensional intermediate feature vector. These features serve as
input into a parameterized quantum circuit (Qbare). After training the linear layer in
conjunction with the PQC, the classical layer learns to organize the data into patterns
that the quantum circuit can distinguish, achieving perfect separation of the classes.

3.2 Quantum Q-Learning
This section first describes the integration of hybrid quantum-classical models into the
deep Q-learning framework. Further, it highlights cutting-edge results in the field of
quantum reinforcement learning, focusing on PQC-based methods in both value-based
and policy-based settings.

3.2.1 Hybrid quantum-classical models in approximate Q-learning

Just as neural networks serve as Q-function approximators in the DQL setting, PQCs or
hybrid models based on PQCs approximate the Q-function in an approximate Q-learning
setting that might then be called quantum Q-learning. Figure 3.2 illustrates the DQL
pipeline, based on Algorithm 2.1 in Section 2.2.4. Here the ‘-greedy policy and the
minibatch sampling from the replay buffer are ignored for simplicity. While the online
model Q and target model Q̂ in Algorithm 2.1 are purely classical, here they are replaced
by hybrid quantum-classical models, Q and Q̂, respectively. Like in the classical case, the
online and target hybrid models are used to break correlations between the target and
estimated Q-values and to stabilize training. Both models follow the structure introduced
in Equation 3.7, and the parameters ◊ and ◊≠ refer to all trainable parameters in the
hybrid models, that is, to the weights of the classical layers Lninænq and Lnqænout as well

25

Mobile User

3. Quantum Reinforcement Learning

as to the angles of the parameterized rotations in the PQC Qbare. Assuming that the
experience replay memory is at its full capacity, a training iteration proceeds as follows:

The online model processes a state st as observed in the environment and predicts
Q-values Q(st, a; ◊) for each possible action a in that state. The action a that results
in the largest Q-value, at = argmaxaQ(st, a; ◊), is executed in the environment. The
resulting sequence (st, at, rt, st+1) is stored in the experience replay memory. A sequence
(sj , aj , rj , sj+1) is randomly selected from the replay buffer. The online model is given the
state sj and action aj to predict the corresponding Q-value. The state sj+1 is given to
the target model, to predict the Q-values for all actions of that next state. The output of
the online model, Q(sj , aj ; ◊), and the target model, maxaÕ Q̂(sj+1, aÕ; ◊≠), together with
the reward rj from the replay buffer are used to calculate the loss 2.14. The parameters
of the online model ◊ are updated according to 2.15 and every C steps, the target model
parameters are set to match the online model parameters Q̂ = Q.

Figure 3.2: Schematic of the Deep Q-Learning framework using hybrid quantum-classical
models. The online model Q (here Qonline) interacts with the environment (green arrows),
which in turn stores state transition sequences in the experience replay memory (blue
arrow). Such (sj , aj , rj , sj+1) sequences are drawn at random from the replay memory and
used by the online model and target model Q̂ (here Qtarget) to make predictions. Together
with the observed reward rj , these predictions are used to compute the loss (purple
arrows). The online model parameters ◊ are updated by performing a gradient descent
step based on the gradient of the loss function with respect to the model parameters (red
arrow). Parameter synchronization between the online and target model occurs every C
steps (orange arrow).

26

Mobile User

3.2. Quantum Q-Learning

3.2.2 State of the art in QRL research

Research in QML has predominantly focused on supervised and unsupervised learning
tasks, while fewer studies have considered reinforcement learning as a testbed for varia-
tional quantum algorithms. In [MUP+24], the authors provide a comprehensive overview
of current QRL research, including NISQ-compatible VQA-based approaches as well as
methods suited for fault-tolerant hardware. In this section, the focus lies on the former,
as it is the path taken in this work. Specifically, the application of quantum and hybrid
quantum-classical techniques to classical problems is discussed. This selection is not
exhaustive but highlights results that border or intersect with the research conducted
in this thesis. The interested reader is referred to the aforementioned publication for a
wider view of the field of QRL.

Value-based QRL

As discussed in Section 2.2, the objective in value-based RL (and QRL) is to approximate
the Q-function, which in turn is used by the agent to derive optimal actions in each given
state.

The first efforts to transfer this approach to the QRL domain were made by [CYQ+20].
Inspired by the seminal work of [MKS+15], the authors employ PQCs in conjunction with
classical bias terms on the outputs as Q-function approximators in a Double DQN fashion.
As their benchmark, they selected the environments FrozenLake (OpenAI Gym [BCP+16])
and CognitiveRadio, both exhibiting a discrete state space. Using basis encoding (Section
3.1.3) to encode environment states in the quantum system, the authors demonstrate
the learning capabilities of the quantum model and argue about advantages in memory
consumption and a reduction of model parameters, compared to the classical case.

The authors of [LS20] extend this study by adapting the encoding techniques to also
comfort with continuous state spaces. In the OpenAI Gym environments CartPole and
Blackjack, the authors propose using fixed rotations to qubits based on the sign of the
input data - a form of rotation encoding, see Section 3.1.3. Comparing purely quantum
and hybrid models, they demonstrate non-trivial learning outcomes, however, not solve
the environments as per their definition [BCP+16].

In [SJD22] a PQC is used as a Q-function approximator in the OpenAI Gym environments
FrozenLake (discrete states) and CartPole (continuous states) using basis encoding in
the discrete setting and rotation encoding in the continuous environment. The authors
highlight the importance of the right choice of observable to match the range of possible
Q-values and further introduce trainable weights on the observable to allow for flexible
scaling of the observable’s expectation values. Performing comprehensive ablation studies
with different settings of their design choices, the authors find that a combination of
data re-uploading [PSCLGF+20, SSM21] and trainable scaling parameters on the inputs
greatly enhances the quantum agent’s performance allowing it to successfully solve the
continuous CartPole environment, in contrast to earlier works.

27

Mobile User

3. Quantum Reinforcement Learning

Policy-based QRL

Although not the approach taken in this work, notable results have been achieved in
using PQCs as policy-function approximators. Importantly, design choices established
in [JGM+21] have been successfully adopted to the value-based approach in [SJD22]
mentioned in the previous section.

The first studies to assess the performance of PQC-based models in a value-based setting
were conducted in [JGM+21]. The authors present a rigorous value-based approach to
tackle the continuous state space environments CartPole, MountainCar and Acrobot
from the OpenAI Gym. In their work, the authors highlight important design choices in
their hybrid models, most notably: trainable scaling parameters on the inputs encoded
in rotations as suggested in [PSCLGF+20] and [SSM21], trainable weights at the output
of the PQC, together with an adjustable softmax function to better control exploration-
exploitation in the environment. With these design choices, their proposed quantum
models solve the OpenAI Gym environments with similar performance as classical
deep learning approaches and demonstrate an empirical advantage over their classical
counterparts in constructed environments based on PQCs. The authors further prove
a theoretical exponential advantage in learning performance for quantum agents over
classical agents. This is achieved by adapting separation results from [LAT21] based on
the classical hardness of the discrete logarithm problem to a policy-based RL setting.

Further extending the work of [JGM+21] on parameterized quantum policies, recent
studies have explored variations in the parameter initialization and readout strategy
[SSB23], classical post-processing [MSP+23a] and techniques to improve the trainability
of the proposed algorithms [MSP+23b]. These contributions offer nuanced views on
specific details in approximating the policy function using PQCs both theoretically and
experimentally.

QRL in high-dimensional state spaces

The studies highlighted so far cover a wide range of model designs, encoding techniques
and environments and demonstrated promising results on standard benchmarking tasks
from the OpenAI Gym. However, a common characteristic of all these previous works
is a rather low-dimensional state space, described by less than 10 variables that can be
encoded directly into the quantum circuit. It is thus natural to ask whether suitable
hybrid quantum-classical models are capable of performing well in high-dimensional state
spaces.

Insights to this challenge are provided in [CCL+23] where the authors train a hybrid
model to solve a 20 ◊ 20 dimensional GridWorld environment. The proposed architecture
extends the model in [CYQ+20] by a classical deep neural network that pre-processes the
raw inputs. The authors highlight the benefits of the hybrid architecture to be adaptive
to problems of higher dimensions, here ≥400, and claim a reduced complexity of their
hybrid model compared to full-quantum models.

28

Mobile User

3.2. Quantum Q-Learning

A step closer to real-world problems is taken in [LS21], which extends their previous
work [LS20]. Here, the authors study the performance of a hybrid model in the high-
dimensional environments of Atari 2600 Pong and Breakout. The state space of both
environments is specified by a 3D array of pixels of dimension 210 ◊ 160 ◊ 3, resulting
in approximately 100,000 variables. They propose a hybrid architecture consisting of a
classical convolutional network for feature extraction and a quantum circuit consisting
of quantum convolution operations [CCL19] and "conventional" parameterized layers.
They compare two different approaches: either post-processing the expectation values
via a classical fully connected layer or applying a quantum pooling operation to match
the environment’s action space dimension. Although the architecture achieves notable
results in CartPole, the proposed model fails to learn in the high-dimensional Atari game
environments of Pong and Breakout.

It remains thus unclear whether PQCs together with classical pre- and post-processing
constitute viable models in high-dimensional RL settings that can hold up with their
classical counterparts. It is the overall aim of this work to develop and study such a
quantum-classical framework and further investigate important design choices and the
interplay of the classical and quantum components in order to assess the performance of
near-term QRL algorithms on close-to-real-world problems.

29

Mobile User

Mobile User

CHAPTER 4
Methodology

The previous chapter introduced the fundamental concepts required to describe the
hybrid quantum-classical RL framework. This chapter elaborates on the implementation
of these principles to make the application of the hybrid model in a deep Q-learning
setting tangible. Most importantly, the hybrid quantum-classical model as used in this
work is introduced, highlighting the architecture and interplay of classical and quantum
components. This model serves as a quantum baseline, against which different design
choices in the architecture and hyperparameters are compared. Additionally, a purely
classical model featuring an artificial bottleneck is described, which serves as a fair
reference for the hybrid models. Besides the models, the game environments used to
assess the agents’ performance are introduced. Further, the game mechanics, the action
space, and reward system, custom to each environment, are detailed. A crucial part is
the pre-processing of the environment states issued to the agent, which is explained in
detail. Lastly, all relevant numerical experiments conducted are listed together with the
exact parameter settings and the rationale behind each one.

4.1 The Hybrid Quantum-Classical Model
The central component of the hybrid quantum-classical RL framework is a hybrid
quantum-classical model, which serves as the Q-function approximator in the approximate
Q-learning setting. As introduced in Chapter 3, what makes the model hybrid is not
only the training procedure, which is partially carried out on classical hardware but
also the structure of the model itself. Similarly to the approach taken in [MBI+20], the
hybrid model consists of classical pre- and post-processing layers effectively encapsulating
the parameterized quantum circuit. Figure 4.1 sketches the hybrid model used in this
work: The model first consists of three convolutional layers, which, together with a
subsequent fully connected (dense) linear layer, act as a dimensionality reduction and
feature extraction unit. The terms linear layer and linear activation refer to the case

31

Mobile User

4. Methodology

where the activation function in each neuron is the identity function. The role of the
linear layer is to gather the still high-dimensional output of the convolutional layers
and further compress the latent representation down to a manageable number (16 or 36,
depending on the setting) of latent features, as determined by the number of encoding
gates in the quantum circuit. An additional functionality of this pre-processing layer is
the scaling of the inputs to the PQC, which adds additional flexibility as theorized in
[PSCLGF+20, SSM21] and empirically observed in [JGM+21, SJD22]. The latent output
of the linear layer is then used as an input for the encoding gates of the PQC. The PQC
acts as the main, quantum processing unit of the hybrid model, operating on the latent
features generated by the preceding layers. The expectation values of each qubit are
treated as the output of the PQC and are passed to another linear layer, which serves
two purposes: First, as with the pre-processing linear layer, it allows for rescaling of
the fixed-range expectation values to match the optimal Q-values, which is crucial in
a Q-learning setting (see Section 2.2). Second, it gives the model more flexibility with
regard to the number of actions in a given environment, meaning that the number of
qubits does not have to reflect the number of possible actions, which could be a limiting
factor for environments possessing large action spaces.

4.1.1 Detailed architecture of the baseline hybrid model

As introduced in the beginning of this chapter, for the hybrid model, a baseline setting is
established which serves as a reference when exploring different hyperparameter settings
in the model’s architecture and training procedure. The parameters of the convolutional
layers are the same as in [MKS+15]: The first layer consists of 32 filters of size 8 ◊ 8 and
a stride of 4, the second layer convolves 64 filters of size 4 ◊ 4 and a stride of 2 and the
third layer uses 64 filters of size 3 ◊ 3 and a stride of 1. All convolutional layers use the
non-linear rectifier activation function (ReLU). Following the convolutional layers is a
fully-connected layer consisting of n ◊ l neurons with linear activation, where n is the
number of qubits and l the number of layers in the PQC, as explained shortly. This layer
is referred to as pre-processing layer as it prepares (i.e., further downsizes and rescales)
the 3136-dimensional output of the convolutional layers for encoding in the PQC. The
3136 values produced by the convolutional layers are reduced to just 16 or 36, depending
on the setting (see Table 4.3).

The parameterized quantum circuit follows a hardware-efficient ansatz (see Section 3.1.4):
First a set of three variational gates (Rx, Ry and Rz) is applied to each qubit. Following
this variational block, a set of CZ-gates is implemented in a circular arrangement (i.e.,
the control æ target setup is 1 æ 2, 2 æ 3, 3 æ 4, ..., n ≠ 1 æ n, 1 æ n) to introduce
entanglement into the quantum state. Subsequently, a Rx-gate is applied to each qubit,
where each gate encodes a distinct latent feature from the pre-processing layer on a
separate qubit. In summary, the sequence of blocks in the PQC is as follows: Variational
block æ entangling block æ encoding block. This configuration is referred to as a single
layer of the PQC and is repeated l times. Finally, another block of variational gates (Rx,
Ry and Rz) is applied to all qubits. The latent features produced by the fully connected

32

Mobile User

4.1. The Hybrid Quantum-Classical Model

Figure 4.1: The hybrid quantum-classical model. Three convolutional layers act as a
dimensionality reduction and feature extraction unit to produce a low-dimensional latent
representation of the high-dimensional input. A subsequent fully connected layer with
identity activation further pre-processes this latent representation resulting in a limited
number of latent features to be encoded in the PQC. The PQC is at the heart of the
hybrid model and serves as a quantum processing unit. Local Pauli-Z measurements
of each qubit are the output of the PQC, which is further post-processed by a fully
connected layer with identity activation.

pre-processing layer are encoded layer-wise, where the first n features are encoded in the
first encoding block, the second n features in the second encoding block and so forth.
Thus, the number of encoding gates in the circuit and, accordingly, the output size of the
pre-processing layer is n ◊ l. The total number of trainable parameters in the PQC is
(3 ◊ n) ◊ (l + 1). The expectation value of each qubit is obtained by local (i.e., qubit-wise)
Pauli-Z measurements. Figure 4.2 depicts the PQC structure with n = 3 and l = 1. In
the default setting used as a baseline, the hybrid model exhibits a PQC of n = 4 qubits
and l = 4 layers and thus contains 60 tuneable parameters and accommodates 16 latent
features in the quantum circuit. The final (or output) layer of the hybrid model is again
a fully connected linear layer, where the number of output neurons is determined by the
number of actions available in the respective environment.

In Section 3.1.5 the concept of barren plateaus was discussed. To mitigate the risk
of encountering this undesirable phenomenon and avoid trainability issues, we adopt
a Gaussian initialization of the variational parameters ◊i according to the following
distribution: ◊init

i ≥ N (0, ‡2) where ‡ = 0.01 · fi. This variance was chosen to lie well
within the bounds of O(1/L), where L is the number of single-qubit rotations per qubit.

33

Mobile User

4. Methodology

|0Í Rx(◊0) Ry(◊1) Rz(◊2) • • Rx(x0) Rx(◊9) Ry(◊10) Rz(◊11)

|0Í Rx(◊3) Ry(◊4) Rz(◊5) Z • Rx(x1) Rx(◊12) Ry(◊13) Rz(◊14)

|0Í Rx(◊6) Ry(◊7) Rz(◊8) Z Z Rx(x2) Rx(◊15) Ry(◊16) Rz(◊17)

Figure 4.2: Quantum circuit diagram of the PQC with 3 qubits and a single layer. A
block of variational gates is followed by a set of entangling gates in a circular arrangement.
The feature encoding block is highlighted by a dashed line. A second variational block
comes after the encoding block. At the end of the circuit, local Pauli-Z measurements
are conducted.

As indicated in [ZLH+22], this choice leads to well-behaved bounds of the gradients.

4.1.2 Classical reference model
In order to have a fair reference with which to compare the performance of the hybrid
model, here a classical reference model is introduced. The architecture is inspired by
the Deep Q-Network introduced in the seminal paper [MKS+15], which consists of three
convolutional layers, a fully connected non-linear layer consisting of 512 neurons with
ReLU activation and a final linear output layer, i.e., with identity activation. In this
work, this architecture is adapted in order to have a fair comparison with the hybrid
quantum-classical model (see Figure 4.3): Arguably, one of the biggest limitations of
the hybrid model is its small latent space dimension, i.e., the restricted number of
features it can accommodate in the PQC. By introducing an artificial bottleneck layer
after the convolutional layers and before the non-linear layer in the DQN model taken
from [MKS+15], the resulting model is subject to similar constraints in the latent space
dimension as the hybrid model introduced in Section 4.1.1. The number of neurons in
this bottleneck layer is chosen to be the same as in the pre-processing layer of the hybrid
model and a linear activation function is used to be as little invasive as possible.

The next section explains the Atari game environments chosen as a benchmark for the
hybrid quantum-classical model.

4.2 Atari 2600 Environments
As a testbed for the hybrid framework, two well-known game environments, Pong and
Breakout from the Atari 2600 game collection, were selected. Emulators for both games
are provided in the OpenAI Gym [BCP+16]. As discussed in Chapter 2 Section 2.2,
there exists a wealth of literature on addressing these environments through different
classical RL algorithms, offering insights and references for the experiments carried out
in this study. Both environments meet the requirements needed to investigate the initial

34

Mobile User

4.2. Atari 2600 Environments

Figure 4.3: An illustration of the model architecture proposed in [MKS+15] (left) and an
adapted version obtained by insertion of a linear bottleneck layer (right). The original
model consists of three convolutional layers, a fully connected (FC) non-linear (ReLU)
layer and a final fully connected output layer with identity activation (Id.). The reference
model used in this work has an additional layer with relatively few neurons and identity
activation right after the convolutional layers and before the fully connected layer. This
bottleneck layer drastically limits the size of the latent feature space, creating constraints
for the classical reference similar to the hybrid quantum-classical model introduced in
Section 4.1.1.

questions posed in this study, particularly, since they have high-dimensional feature
spaces represented by RGB images. While both games share similarities in the underlying
control problem, their game dynamics exhibit notable differences. Studies indicate that
Breakout poses a more complex learning challenge for RL agents [MKS+15], making
Pong a suitable proof-of-concept environment to assess the ability of the hybrid model to
learn in high-dimensional environments. Therefore, further experimental configurations
will be tested in Breakout. This section first outlines the characteristics, goals and game
mechanics of both environments and further explains the pre-processing steps applied to
the raw environment states before training the agent.

Pong

In the first environment, Pong, the objective is to outscore a computer-controlled opponent
in a simulation similar to tennis: the player controls a paddle, moving it vertically to
hit a ball back and forth competing against the computer that has the same goal. Both
players start with a score of zero and a player scores one point when the opponent
hits the ball out of bounds or misses a hit. These points translate one-to-one into the
rewards obtained by the agent, i.e., scoring a goal gives 1.0 as a reward. No negative
rewards are issued when the opponent scores a point. The game ends once either the
computer or the agent scores a total of 21 points. By default, the environment allows

35

Mobile User

4. Methodology

for six possible actions, where only three are relevant for playing the game: since the
ball is fired automatically when the game starts, the actions "FIRE", "RIGHTFIRE" and
"LEFTFIRE" are removed from the action space. The actions "NOOP" (no operation),
"RIGHT" and "LEFT" (corresponding to the up and down movement of the paddle) are
kept for the agent to choose from.

Breakout

Breakout, the second game, shares similar dynamics with Pong in terms of paddle and
ball movement. However, Breakout presents a more complex challenge: The player must
use the paddle to hit a ball towards six layers of bricks at the top of the screen. The
goal is to break as many bricks as possible. When the ball hits a brick, it bounces back
and the brick is destroyed. The player earns points for destroying bricks, with different
point values for bricks in different rows. The highest possible score in the game is 432
points, as there are 18 bricks per row and the first two rows give one point per brick, the
middle two rows four and the uppermost rows seven points. As in Pong, these scores
serve as numerical rewards for the agent. The agent starts with five lives and loses one
life each time the ball misses the paddle and goes out of bounds. No negative rewards are
issued when the agent loses a life. The game ends once all lives are lost. In Breakout, a
player has to start the game manually by selecting the "FIRE" action. In order to avoid
long initial learning periods during which the agent must learn to initiate the game, an
auto-firing mechanism is implemented, which issues the "FIRE" command automatically
upon the restart of an episode or when a life is lost. The "FIRE" action is removed, which
leaves the agent to choose from "NOOP", "RIGHT" and "LEFT", like in Pong. Table 4.1
summarizes the environment specifications of both games. More details on pre-processing
are discussed in the following section.

Environment characteristics
Parameter Pong Breakout

possible actions "NOOP", "RIGHT", "LEFT" "NOOP", "RIGHT", "LEFT"
possible rewards 0.0 or 1.0 0.0, 1.0, 4.0 or 7.0

max. score 21 points 432 points

Table 4.1: Summary of environment specifications. Each game environment supports
three possible actions. The reward system in Pong is simple, either a point is scored or
not. In Breakout, the number of points scored for destroying a brick depends on the row
the brick belongs to. The total number of points achievable in both games differs as well.

4.2.1 Pre-processing of the raw environment state
Several pre-processing steps are applied to both game environments before being used to
train the agent. These are best practices suggested in [MBT+17], which aim to establish
a standard in evaluating RL algorithms on Atari 2600 game environments. It is important
to state that these pre-processing steps do not refer to the operations applied by the

36

Mobile User

4.2. Atari 2600 Environments

Figure 4.4: The pre-processing pipeline illustrated on a sequence of game frames: A
rectangle represents a frame as produced by the game emulator. The crossed-out frames
are skipped and not shown to the agent. The last two frames of each sequence of four
successive frames are combined using a frame pooling operation. Finally, the pooled
frames are stacked to form a single new observation.

pre-processing layers in the hybrid model, but are carried out "manually" before passing
the observations to the model.

In its unprocessed form, the observation space of both environments is the RGB image
of the game’s screen of a given frame, which is specified by a 3D array of pixels of
dimension 210 ◊ 160 ◊ 3. This corresponds to an image shape of 210 pixels in height and
160 pixels in width. Each pixel is comprised of three colour channels (red, green and
blue), ranging from 0 to 255. As a first step, the observations are grey scaled, which
means the number of colour channels is reduced to one, and the image is downsized to
84 ◊ 84. Instead of using each individual frame of the game, only every fourth frame is
considered, a technique called frame skipping, which simplifies the reinforcement learning
problem and speeds up training. This implies that the agent can only take an action
every four frames of the game and all rewards issued between these frames are summed
up. Each point in time at which the agent can take an action is called an environment
step and corresponds to four frames of the game. Since the Atari 2600 hardware is limited
in the number of sprites it can render in a given frame, a frame pooling operation is
applied on two successive frames, combining them into a single frame. In order to encode
temporal information into a single observation, four subsequent frames are stacked along
the colour channels dimension, an operation referred to as frame stacking. The dimension
of the final observation is 84 ◊ 84 ◊ 4, where the third dimension does not represent
colour information, but the four stacked frames. The frame skipping, frame pooling
and frame stacking operations are illustrated in Figure 4.4. A comparison between the
unprocessed environment state and the result after pre-processing is depicted in Figure
4.5 on the example of the Breakout environment. The next section highlights the RL
framework used to assess the hybrid agent’s performance in the two game environments
just explained.

37

Mobile User

4. Methodology

Figure 4.5: Breakout observation space before (left) and after (right) pre-processing
applied. The four colours in the right image are for visualization purposes; each colour
actually represents one of four distinct frames. The observation dimensions change from
210 ◊ 160 ◊ 3 for the raw RGB image to 84 ◊ 84 ◊ 4 for the cropped, grey-scaled and
stacked observations.

A note on stochasticity: The Atari 2600 environments do not provide any source of
randomness, which implies that each episode of each game starts in the exact same
state and evolves deterministically. This involves the small risk of the agent learning
an open-loop control strategy, where the observations made in the environment are
irrelevant and the agent learns to issue an optimal sequence of actions by trial and error.
As stated in [MBT+17], the ‘-greedy policy in approximate Q-learning is a suitable
source of stochasticity, mitigating this problem. Random experience replay sampling
additionally randomizes the agent’s behaviour. The strategy employed in [MKS+15],
namely randomly enforcing 0 to 30 initial no-operations upon the start of the game, is
not used in this work. This leads to higher scores for both hybrid and classical models,
which is desirable for the feasibility study and comparisons conducted in this thesis.

4.3 The Hybrid Model in the Q-Learning Framework
For evaluating the hybrid quantum-classical model in a reinforcement learning setting,
the deep Q-learning framework with a target model and experience replay is used. The
general idea is described in Section 2.2 with the adaptation to hybrid models detailed
in Section 3.2.1. Here the exact setting used in this work is presented. Note that most
decisions are based on [MKS+15].

Training begins by following a purely random policy for 20,000 environment steps (i.e.,
80,000 frames) in order to populate the replay buffer with training samples. Once 100,000
(st, at, rt, st+1) sequences are gathered, the replay buffer operates on a first-in, first-out
(FIFO) basis. Experiences are uniformly sampled from the replay buffer. Following this
initial warm-up phase, the predictions of the hybrid agent are used to derive a policy

38

Mobile User

4.3. The Hybrid Model in the Q-Learning Framework

(specified below). The online model is trained every 4 steps and the target model is
updated every 8,000 steps in the pre-processed environment or 32,000 frames in the game.
For minimizing the loss function explained in Equation 2.14, the Adam optimizer is chosen
with a default learning rate of 2.5e-4. Note that in the baseline setting, the learning
rate is the same for all parts of the hybrid model (i.e., classical and quantum layers).
Throughout the training process, an ‘-greedy policy is employed, where ‘ is initialized
to 1 and gradually decreases to 0.01 following a linear decay schedule over the course
of 250,000 environment steps. The discount factor used is 0.99 and remains constant.
Training is carried out for a total of 2.5 million environment steps corresponding to 10
million frames.

4.3.1 Numerical experiments conducted

In the previous sections, the architecture of the hybrid quantum-classical model and the
game environments used to assess the model’s performance were described in detail. Here,
the experimentation procedure is explained, starting with the different hyperparameter
settings tested in multiple numerical experiments. Experiment runs are repeated multiple
times with different initial seeds to compute meaningful statistics and counteract statistical
fluctuations. Hyperparameters of interest are the learning rate of the post-processing
layer of the hybrid model, the magnitudes of the rewards issued by the environment,
the size of the latent space after the linear pre-processing layer as well as the activation
function of the pre-processing layer.

4.3.2 Parameter settings

In the following, all hyperparameters that were investigated are listed and motivated.
The actual values and combinations tested are summarized at the end of this section in
Table 4.3.

Pre-processing activation function: To encode features into a PQC using the rotation
encoding technique, as discussed in Section 3.1.3, it is desirable for the variations across
all samples of any given feature to be constrained to a maximum of 2fi. Values of
features that exceed this range introduce ambiguities because of the periodic nature of
the controlled rotations. In a hybrid model, employing a particular activation function in
the pre-processing layer is an effective method to comply with this constraint. Instances
of such functions include a scaled hyperbolic tangent fi · tanh(x) or a scaled sigmoid
function 2fi · ‡(x), with images (≠fi, fi) and (0, 2fi) respectively. Setting 1 in Table 4.3
refers to this hyperparameter.

Post-processing learning rate: An essential factor to consider is the learning rate
of the post-processing layer, which plays a critical role in adjusting the outputs of the
PQC and is thus crucial for Q-learning. Results presented in [SJD22] suggest that a
higher learning rate for the weights in the post-processing layer benefits the overall
performance of the hybrid model. This aligns with the idea that the predicted Q-values

39

Mobile User

4. Methodology

should quickly adapt to the optimal Q-values. Settings 2a to 2f include experiments
tuning this hyperparameter.

Reward scaling: Observations of the model’s output in the baseline setting (Figure 5.4)
indicate that the individual predicted Q-values fall within a close range. This is the case
for both the quantum and classical models. This motivates multiplying the rewards given
by the environment by a fixed scaling factor s > 1 in order to promote a greater absolute
separation of predicted Q-values as the scaling effectively increases the target Q-values
by the same factor. Different values for reward scaling were studied in settings 2a to 2f.

Latent space dimension: An obvious bottleneck of the hybrid model is the limitation
in the number of features encoded in the circuit, as dimensionality reduction always
comes at the cost of information loss. This number of latent features (or dimension of the
latent feature space), is tied to the number of qubits and encoding layers in the circuit
and corresponds to the number of neurons in the pre-processing layer. To address this
subject, a model possessing more qubits and layers, and thus encoding gates, is compared
to the baseline hybrid model. A larger latent space dimension is investigated in setting
3a and combined with reward scaling in setting 3b and 3c.

The values of the hyperparameters were tested in Breakout, performing an informal
search: Each parameter setting was evaluated against the baseline setting (see Table 4.3)
running five differently seeded experiments to counteract statistical fluctuations. For the
post-processing learning rate and reward scaling (settings 2a to 2f in Table 4.3) a grid
search was performed. Due to computational resource constraints, here three runs each
were performed. The best-performing hyperparameter settings of the hybrid model were
tested as well in the classical setting, listed in Table 4.2.

A post-selection of successful runs was performed in the game of Pong: For the baseline
model, 11 runs were performed using the classical reference model and 5 runs using the
hybrid model. In 7 out of 11 cases, the classical model did not learn at all in the Pong
environment. Only the 4 successful runs were used for evaluation. The hybrid model
delivered 4 successful runs out of a total of 5 runs. These were used for evaluation. The
unconstrained classical model (depicted in Figure 4.3 on the left) produced 4 successful
runs out of a total of 5 runs.

Hyperparameter settings (Classical reference)
Setting Activationpre LRpost Reward Sc. Qubits ◊ Layers
baseline identity 2.5e-4 - 4 ◊ 4

setting 1a identity 2.5e-2 10x 4 ◊ 4
setting 1b identity 2.5e-1 100x 4 ◊ 4
setting 2 identity 2.5e-4 - 6 ◊ 6

Table 4.2: The different hyperparameter settings used for the classical reference model.
For an explanation of the abbreviations see Table 4.3. For the Reward Scaling parameter
only those values where chosen, that performed best in the hybrid setting.

40

Mobile User

4.3. The Hybrid Model in the Q-Learning Framework

Hyperparameter settings (Hybrid model)
Setting Activationpre LRpost Reward Scaling Qubits ◊ Layers
baseline identity 2.5e-4 - 4 ◊ 4
setting 1 fi · tanh 2.5e-4 - 4 ◊ 4
setting 2a identity 2.5e-3 - 4 ◊ 4
setting 2b identity 2.5e-3 10x 4 ◊ 4
setting 2c identity 2.5e-2 10x 4 ◊ 4
setting 2d identity 2.5e-2 100x 4 ◊ 4
setting 2e identity 2.5e-1 10x 4 ◊ 4
setting 2f identity 2.5e-1 100x 4 ◊ 4
setting 3a identity 2.5e-4 - 6 ◊ 6
setting 3b identity 2.5e-2 10x 6 ◊ 6
setting 3c identity 2.5e-1 100x 6 ◊ 6

Table 4.3: A summary of the numerical experiment settings. Activationpre is the
activation function in the pre-processing layer, LRPQC and LRpost are the learning
rates of the PQC and the pre-processing layer respectively. Reward Scaling indicates
which factor for reward scaling was used and Qubits ◊ Layers resembles the latent
feature space dimension in terms of the number of qubits and encoding layers.

4.3.3 Plotting the Q-value surface
In Chapter 3, the function classes that PQCs can represent were introduced, referring to a
thorough analysis [SSM21, SP21]. There, the equivalence to partial Fourier series, natural
to rotational encoding, was demonstrated. To investigate this behaviour in the hybrid
quantum-classical model, the following approach is taken: First, the output vector of the
convolutional layers (after flattening) is stored for each step of a single episode of Breakout.
The resulting collection of 3136-dimensional vectors is used to compute an average output
vector of the convolutional network. Then, a copy of the hybrid model is created without
the convolutional layers. Next, two of the 3136 input nodes of the truncated model are
selected randomly. For plotting the Q-value surface in two dimensions, these two values
are varied, while the other input nodes of the truncated model are given their respective
average values as computed earlier. The range of variation for the two selected values is
selected based on the range observed during the episode that was played. A visualization
of the truncated model is provided in Figure 4.6.

4.3.4 Evaluation metrics
As the main evaluation metric for the different agents tested in this work, the learning
curves of the agents are used. The learning curve represents the rewards (or scores in the
game) the agent obtains while learning to solve the game environments. These rewards
show a high variance, even in later stages of training, because the ‘-greedy policy, together
with random sampling from the replay buffer, leads to greatly varying performances of
the agent from one game episode to another. For evaluation purposes, a moving average

41

Mobile User

4. Methodology

Figure 4.6: A truncated hybrid model is used to plot the predicted Q-values as a function
of two values produced by the convolutional layers. All except for two inputs (blue
arrows) to the truncated model are kept constant. The two inputs are varied in order to
obtain the Q-value landscape as a function of these values.

is applied to the gathered data: First, the total undiscounted rewards for each episode
played during training are collected. Second, 10 (in Pong) or 250 (in Breakout) successive
episode rewards are averaged to obtain a smoother curve. As suggested in [MBT+17], no
evaluation runs are conducted, where the agent fully exploits its learned policy without
any parameter updates.

4.3.5 Implementation details
It is crucial to emphasize that the numerical experiments carried out in this research
did not utilize real quantum computers. Despite the increasing accessibility of quantum
hardware [Mec24], simulating quantum computations offers significant advantages. Sim-
ulations provide a setting free from errors and noise, which are common challenges in
actual quantum systems. In addition, they allow for a fast evaluation of gradients, making
optimization of parameterized quantum circuits straightforward. Simulation also leads to
faster prototyping, eliminating the long waiting times typically associated with accessing
quantum computing resources. In this study, TensorFlow Quantum [BVM+21] was
employed for simulating quantum circuits and models, while TensorFlow Agents [HDV18]
was used for implementing reinforcement learning algorithms. The game environments of
Pong and Breakout are provided by OpenAI Gym. The codebase of this work can be
accessed through the following GitHub link [Fre].

42

Mobile User

https://github.com/Spiegeldondi/A-Hybrid-Quantum-Classical-Framework-for-Reinforcement-Learning-of-Atari-Games.git

CHAPTER 5
Results and Analysis

In the following sections, the questions raised at the beginning of this work are addressed
by presenting and discussing the results of numerical experiments carried out according
to the methodology introduced in Chapter 4. Most importantly, the ability of a hybrid
quantum-classical model to solve the high-dimensional game environments of Pong and
Breakout is assessed first. An analysis of the latent features produced by the pre-
processing layer is presented, providing insights into the interplay of the classical and
quantum components of the hybrid model. Results of using different learning rates
for the post-processing layer are given as well, which plays an important role when
reward scaling in the environment is applied. A comparison to the classical reference
models introduced in Chapter 4.1.2 is given where suitable. It is also interesting to look
at the Q-function landscape the hybrid model produces, especially when compared to
its classical counterpart, and what implications this has on learning performance. An
evaluation of a sample episode of Breakout as "played" by the baseline model is discussed,
where the predicted Q-values are compared to the actual discounted returns. To account
for the limitations imposed by the low-dimensional latent space, the scores achieved by
models having a higher-dimensional feature space are reported. The chapter ends with a
comparison of the best-performing hybrid and classical model in Breakout.

5.1 Performance of Hybrid Baseline and Classical
Reference

When looking at the rewards the agents obtained in the course of training, some interesting
observations can be made about the hybrid model’s performance in both games Pong
and Breakout. Figure 5.1 shows these learning curves as an average of five instances
of each model (four in the case of Pong) and the standard deviation as a shaded area
around each curve. As explained in Section 4.3.2, a running mean was applied to each
curve to obtain smoother graphs. The learning curve of the hybrid model in Figure 5.1

43

Mobile User

5. Results and Analysis

0 0.2 0.4 0.6 0.8 1
·106

≠20

≠10

0

10

20

Environment steps

Sc
or

e
Pong

baseline (hybrid)
baseline (classical)

0 0.5 1 1.5 2 2.5
·106

0

50

100

150

Environment steps

Breakout

baseline (hybrid)
baseline (classical)

Figure 5.1: Rewards obtained during training for the hybrid and classical model. Shaded
areas indicate the standard deviation of multiple runs. Left: The hybrid agent (blue)
and the classical reference (grey) show differences in learning performance in Pong. In
this environment, the hybrid agent appears to learn faster and more consistently across
multiple runs. Right: Hybrid agent (blue) and classical reference (grey) in Breakout.
Here, clearly, the classical reference takes the lead.

on the left clearly shows that the model is able to learn and solve the Pong environment
with scores close to 20 after 400,000 environment steps. The classical reference reaches
the same level of performance, however, takes significantly longer to do so. The standard
deviations in both curves indicate that the individual hybrid model runs exhibit more
consistent behaviour. The success rate in learning the Pong game is significantly lower in
the classical case as fewer runs achieved a score >= 20 overall (see Section 4.3.2) and the
performance of the successful runs is noticeably lower.

However, the classical reference without the constraint of a bottleneck layer scores
drastically better (see Figure 7.1 in the Appendix 7). In that case, the model achieves
average scores of 20 after around 200,000 steps and does so in a more consistent manner;
that is, the standard deviation between individual runs is marginal. This suggests that
the bottleneck in the reference model might be too much of a constraint for the single
non-linear layer in the reference model.

For the hybrid model, the results in Pong indicate that the high-dimensional input of the
game environment is effectively encoded into a low-dimensional latent representation that
can further be processed by the PQC to compute optimal Q-values. This observation is
further supported by the rewards the hybrid agent achieves in Breakout, which is a more
complex learning task. In Figure 5.1 the scores achieved in the game of Breakout are
depicted on the right. Within 2.5 million environment steps the agent obtains on average

44

Mobile User

5.2. Effects of Activation Function in Pre-Processing Layer

0.0 0.5 1.0 1.5 2.0 2.5
·106

0

50

100

150

Environment steps

Sc
or

e

Breakout (Hybrid model)

baseline
setting 1

≠fi ≠fi/2 0 fi/2 fi

≠fi

≠fi
2

0

fi
2

fi

Feature value

Activation functions

identity

tanh(x) · fi

Figure 5.2: Left: Scores achieved by the baseline hybrid model (baseline) and a hybrid
model with tanh ·fi activation function in the pre-processing layer (setting 1) in Breakout.
The tanh ·fi activation in the pre-processing layer leads to worse performance. Right:
Comparison of the identity function (blue) and a tanh function scaled by a factor of fi
(red). Applying tanh ·fi to feature values in the shaded area ±(0.5fi, fi), maps them to a
very narrow region in the image of tanh ·fi, possibly resulting in information loss.

rewards slightly above 80. In Breakout, the classical reference model with the bottleneck
layer performs significantly better compared to the hybrid model. However, also in this
setting, the bottleneck imposes a strict limitation, as can be seen when comparing the
performance of the classical reference with the unconstrained version (see Figure 7.1 in
the Appendix 7). Considering that the hyperparameters were originally optimized for the
classical agent, the performance of the hybrid model is particularly promising, suggesting
a strong potential for further improvements of this model.

5.2 Effects of Activation Function in Pre-Processing Layer
As discussed in Section 4.1, the pre-processing layer uses unrestricted identity activation
functions, which implies that there is no limitation to the magnitudes of the values of
individual latent features produced by this classical layer. However, the PQC encodes
inputs as rotations, therefore, the values of distinct features must not exceed a range of
2fi. One way to enforce that this range is not exceeded is by using a scaling activation
function as outlined in 4.3.2.

Figure 5.2 (left) compares the baseline hybrid model to a hybrid model with tanh · fi
activation function (setting 1). The baseline model performs noticeably better, indicating
that scaling latent features before encoding might not be necessary. A reason for the
poor behaviour of the scaling activation function might be the following: Comparing the

45

Mobile User

5. Results and Analysis

0 5 10 15

≠3
≠2
≠1

0
1
2
3

Latent feature

Va
lu

e
Feature values (Hybrid model)

0 5 10 15
≠30

≠20

≠10

0

10

20

30

Latent feature

Feature values (Classical reference)

Figure 5.3: Typical values of individual latent features produced by the pre-processing
layer in the course of training. Left: The latent feature values of the hybrid model each
fall within a range of ±fi. Right: The latent features of the classical reference exceed this
range. This indicates that the classical pre-processing components of the hybrid model
learn to adhere to the constraint imposed by rotational encoding.

graphs of an identity function and tanh · fi (Figure 5.2, right), shows that the image of
feature values close to ±fi is compressed to a very small interval. This distortion might
influence the impact of large latent features (in absolute terms) negatively and lead to
less relevant information encoded in the PQC.

Results in Figure 5.3 (left) suggest that a linear activation function in the pre-processing
layer suffices: The distributions of the values of each individual feature, which were
sampled every 10,000 environment steps during training, show that all values of a specific
feature remain well within a range of 2fi. Indeed, most of the values fall within a range
of fi or less, which indicates that the classical layers preceding the PQC, especially the
linear pre-processing layer, "learn" to regulate the latent feature magnitudes throughout
the training process. This observation is further supported by the range of feature values
produced by the pre-processing (or, in this case, bottleneck) layer of the classical reference
model in Figure 5.3 (right). Since the purely classical model does not suffer from the
limitation imposed by the rotation encoding, the magnitudes of features go well beyond
the ±fi range observed in the hybrid model.

5.3 The Q-function Surface
In Section 4.3.3, the procedure for comparing the Q-value function learned by the hybrid
and classical models was explained. Figure 5.4 depicts the output of the classical (top) and
hybrid (bottom) model as a function of two randomly chosen inputs to the pre-processing
layer. The close-up figures on the left highlight a section of the input domain, that reflects

46

Mobile User

5.4. A Sample Episode

Figure 5.4: Q-value surface as obtained from the classical (top) and hybrid model
(bottom). The Q-value predictions are plotted as a function of two randomly chosen
inputs to the pre-processing layer. For a detailed explanation see Section 4.3.3. Left:
Close-up of the Q-value surface, where the range of input values reflects a typical range
as observed during an episode of Breakout.

a typical range of values observed during an episode of Breakout. Here, the piece-wise
linear behaviour of the Q-function produced by the classical model differs significantly
from the sinusoidal function obtained from the quantum model. The linear regularity of
the classical model is a direct consequence of the sole presence of relu and linear activation
functions in all layers of the model. The graphs on the right depict a wider section of the
feature domain providing a pronounced view of the different function shapes produced
by the classical and quantum models. The impact of the different Q-function shapes
on the agent’s learning performance can only be motivated: Naturally, a smooth and
continuous function landscape is preferable. High oscillations in the Q-value hyperplane
might lead to regions where the Q-value of an otherwise sub-optimal action takes on the
largest value, leading to a wrong action selected by the agent.

5.4 A Sample Episode
In addition to the shape of the Q-value landscape, insights can be gained by comparing
the Q-value estimates of the agent with the actual discounted returns. In Figure 5.5, the
hybrid model’s predictions (illustrated by the green graph) and the returns observed in

47

Mobile User

5. Results and Analysis

Figure 5.5: Left: Screenshots at selected timesteps of a sample episode, shortly before,
during and after the ball passes the layer of bricks. Right: The according predicted
Q-values and target Q-values. The predictions closely follow the pattern of the target
values, but are slightly overestimated. Both predicted and target Q-values peak whenever
the ball is about to pass the layer of bricks, shortly before it bounces back an forth
between the top of the screen and the top row of bricks.

the environment (depicted by the blue graph) during an episode of the Breakout game are
displayed. Four red vertical bars highlight specific moments in the in-game state - just
before, at, and after the peak rewards achieved in the episode. Corresponding snapshots
of the game screen for these markers are shown in Figure 5.5 on the left. The Q-value
curve reveals a common phenomenon observed in classical deep Q-learning algorithms,
where Q-values tend to be overestimated due to the max operation when forming the TD
target in the approximate Q-learning update rule. Nevertheless, the predicted Q-values
closely approximate the target Q-values, showing similar patterns throughout the episode.
Both curves display a similar behaviour as observed in [MKS+15]: The Q-values sharply
rise shortly before the ball traverses the layers of bricks (1). The maximum Q-values are
obtained once the ball reaches the top of the screen (2) when the agent anticipates the
highest rewards due to the ball bouncing back and forth between the upper boundary of
the screen and the top rows of bricks. Subsequent actions are less likely to yield such
high rewards since the top two rows offer the highest scores (7 points per brick), and it
will require some effort for the agent to navigate the ball through these rows again. This
scenario occurs in step (4) where the agent successfully guides the ball to the top of the
screen, resulting in a second, albeit lower, peak in the Q-values.

5.5 Effects of Reward Scaling and Learning Rate
Observing the Q-values for each action as predicted by the hybrid agent reveals that they
lie close together in most cases (see Figure 5.4). This behaviour is not unique to the

48

Mobile User

5.5. Effects of Reward Scaling and Learning Rate

0.0 0.5 1.0 1.5 2.0 2.5
·106

0

50

100

150

Environment steps

Sc
or

e

Breakout (Hybrid model)

baseline
setting 2c
setting 2f

0.0 0.5 1.0 1.5 2.0 2.5
·106

0

50

100

150

Environment steps

Breakout (Classical reference)

baseline
setting 1a
setting 1b

Figure 5.6: Left: The hybrid baseline model (blue) as well as a hybrid model trained
with 10x scaled rewards and a final layer learning rate of 2.5e-2 (setting 2c) and a hybrid
model trained with 100x reward scaling and a final layer learning rate of 2.5e-1 (setting
2f). Right: The classical reference model (blue) and a classic reference trained with 10x
reward scaling and final layer learning rate of 2.5e-2 (setting 1a) and 100x reward scaling
and final layer learning rate of 2.5e-1 (setting 1b). While the hybrid model benefits from
the modifications, the performance of the classical model deteriorates.

hybrid agent but also applies to the classical reference model. This motivates re-scaling
the rewards issued by the environment to the agent by a constant factor in order to
promote a greater separation in the Q-values predicted by the model. Closely related
to the magnitude of the target Q-values is the learning rate of the post-processing layer
following the PQC in the hybrid model. As discussed in Chapter 4, different combinations
of reward scaling factors and learning rates of the pre-processing layer were tested. The
best results are presented in Figure 5.6 (left) and compared to the hybrid baseline in blue.
Table 4.3 in Section 4.3.2 explains the different parameter settings shown. In both cases,
the graphs show an average of three models each. From the graphs, it is evident that
the scaled rewards combined with a higher learning rate in the final layer of the hybrid
model lead to significantly higher rewards (setting 2c and 2f). For both cases, the average
reward clearly surpasses 100 and gets close to a score of 120. Results from literature
[SJD22] support the observation that higher learning rates in the post-processing part
are beneficial. Rewards obtained in settings 2a, 2b as well as 2d and 2e of Table 4.3
are shown in the Appendix 7 in Section 7.2. The classical model does not benefit from
scaling the rewards nor a higher learning rate in the final layer: In Figure 5.6 (right) the
same settings as for the hybrid model are used for the classical reference (setting 1a and
1b), both of which exhibit lower scores of around 120 which is lower than the classical
reference shown in blue.

49

Mobile User

5. Results and Analysis

0.0 0.5 1.0 1.5 2.0 2.5
·106

0

50

100

150

Environment steps

Sc
or

e
Breakout (Hybrid model)

setting 3a
setting 3b
setting 3c

0.0 0.5 1.0 1.5 2.0 2.5
·106

0

50

100

150

Environment steps

Breakout (Classical reference)

setting 2

Figure 5.7: Left: Scores achieved by the hybrid model when the latent feature space is
increased by using more encoding gates in the PQC and expanding from 4 to 6 qubits in
setting 3a. Settings 3b and 3c combine these relaxed constraints with reward scaling and
higher learning rates in the post-processing. Right: The classical reference with increased
latent space dimension also achieves noticeably higher scores when the constraint imposed
by the bottleneck layer is loosened.

5.6 Effects of Latent Space Dimension

Presumably, the most limiting factor for the performance of the hybrid (and classical)
models is the dimension of the latent space representation following the convolutional
layers. The removal of the bottleneck layer in the classical model leads to a drastic
increase of the maximum rewards achieved (see Appendix 7). To find out whether a
similar observation can be made for the quantum model, the results of a test with a
modified baseline model are shown in Figure 5.7.

The left figure shows the scores achieved by the hybrid model. Again, the exact specifi-
cations are listed in Table 4.3 in Section 4.3.2. All three settings share one difference
contrasting the baseline: The PQC in the hybrid model consists of 6 qubits (instead
of 4 as in the baseline model) and encodes 6 different features on each qubit (instead
of 4). This loosens the tight bottleneck of the baseline hybrid model from 16 latent
features to a latent space of dimension 36, more than double the size. Settings 3b and
3c additionally have scaled rewards (10x and 100x respectively) and increased learning
rates in the post-processing layer (2.5e-2 and 2.5e-1 respectively).

Even without reward scaling, the less constrained model, setting 3a, achieves scores
over 100, a significant improvement over the baseline hybrid model. These numbers
suggest that a small increase in latent space dimension has a similar impact on the

50

Mobile User

5.6. Effects of Latent Space Dimension

overall performance of the model as tuning multiple hyperparameters as discussed in
Section 5.5. Combined with reward-sacling, in setting 3c, the scores converge to a mean
reward of almost 150 within the 2.5 million steps training period. This represents the
best performance achieved by the hybrid model given the experimental constraints and
available computational resources.

To provide a fair comparison, the blue graph on the right of Figure 5.7 shows a classical
reference with a relaxed bottleneck layer of dimension 36 and, subsequently, more latent
features to process for Q-value predictions. The margin of improvement is relatively
similar to that of the hybrid quantum-classical model.

It is important to note that excessively increasing the latent space dimension may
negatively impact the hybrid model. Larger latent spaces require more qubits and
deeper quantum circuits to encode all the features, which increases the complexity of
the quantum circuit. This added complexity can lead to trainability issues, such as the
barren plateau phenomenon, where gradients become exponentially small. Exploring this
regime numerically is however computationally demanding and beyond the computational
resources available for this project.

The results and analysis presented in the previous chapter illustrate the performance
and capabilities of hybrid quantum-classical models in high-dimensional reinforcement
learning environments, such as Atari Pong and Breakout. Through a series of numerical
experiments, various aspects of these models were explored, including their learning rates,
activation functions, Q-value surfaces, and the impact of latent space dimensions. These
findings not only demonstrate the feasibility of hybrid models in solving complex tasks
but also highlight key factors that influence their effectiveness. The following chapter
will summarize the main findings, discuss the implications of the results, and outline
potential directions for future research to further enhance the application of hybrid
quantum-classical models in high-dimensional reinforcement learning scenarios.

51

Mobile User

Mobile User

CHAPTER 6
Conclusion

Parameterized quantum circuits have become the preferred approach for quantum ma-
chine learning on NISQ devices. Hybrid models that integrate both PQCs and classical
processing elements enhance the functionality of these approaches, allowing their applica-
tion to a wider range of problems. Among the three classic fields of machine learning
- supervised learning, unsupervised learning, and reinforcement learning - the latter
remains the least studied in quantum machine learning, particularly in high-dimensional
state spaces, commonly encountered in in real-world scenarios.

6.1 Findings and Contributions
This thesis provides a framework for assessing the performance of hybrid quantum-classical
agents in high-dimensional reinforcement learning settings. Specifically, hybrid models
are tested as Q-function approximators in a deep Q-learning setting. The hybrid models
consist of a parameterized quantum circuit as well as classical convolutional and fully-
connected layers that serve as pre- and post-processing units. Comprehensive comparisons
of the hybrid models are conducted against an appropriate classical reference model. The
performance of both the hybrid and reference models is assessed in the Atari 2600 game
environments Pong and Breakout, as both environments offer a high-dimensional state
space, consisting of by game images.

The findings presented in this study demonstrate that hybrid quantum-classical models
based on PQCs are capable of learning in high-dimensional RL settings and can solve Atari
Pong according to its specifications [ATA97] and surpass a professional human player
in the game of Breakout [MKS+15]. This research extends previous studies that first
demonstrated the learning capabilities of quantum and hybrid models in an approximate
Q-learning setting [CYQ+20, LS20, JGM+21] in simple benchmarking environments from
the OpenAI Gym [BCP+16]. In contrast to earlier findings by [LS21], which reported
that hybrid models were unable to learn in the Atari environments due to a lack of

53

Mobile User

6. Conclusion

expressibility, this study shows that hybrid models are very well capable of solving the
environments of Atari Pong and Breakout. This discrepancy suggests that with the
appropriate model design and parameter tuning, hybrid quantum-classical models can
achieve successful learning outcomes even in complex, high-dimensional RL settings.

The results underscore the importance of careful hyperparameter tuning, revealing
that learning rates in the classical post-processing layer, along with scaling of rewards
and consequently the Q-values, significantly influence the hybrid model’s performance.
Furthermore, this research highlights that a primary influence on the model’s learning
capabilities is the dimension of the latent feature space produced by the classical pre-
processing layers and processed by the PQC. Naturally, more features potentially encode
more information. However, as the latent feature space dimension grows, the demands
for quantum hardware or simulation also increase. More encoding gates are needed,
requiring quantum circuits of greater depth and width, which can lead to trainability
issues such as barren plateaus.

Finally, the research emphasizes the necessity of establishing a fair classical baseline
for comparison with the hybrid model, since an unconstrained classical model clearly
outperforms the hybrid model. By subjecting the classical model to the same constraints
as the quantum model, it becomes evident that the difference in performance is much
less pronounced, and the hybrid model nearly matches the performance of the classical
reference.

Overall, these results provide a significant step towards the application of hybrid quantum-
classical models in real-world RL scenarios. These results highlight the critical role of
hyperparameter tuning and direct focus towards the most impactful design considera-
tions. The results contribute to the understanding of hybrid quantum-classical models,
particularly the interplay between quantum and classical components.

6.2 Limitations and Future Research

While this research attempted to evaluate the impact of certain hyperparameters on the
performance of hybrid agents, a significant number of them remained unexplored. Notably,
the learning rates in the classical pre-processing layer were not modified, nor were those
of the PQC. Additionally, the significant reduction in dimensionality enforced by the
pre-processing layer could potentially be delegated in part to the convolutional layers,
to better capture important spatial features. Ultimately, most of the hyperparameters
for both the model and the surrounding DQL algorithm were initially tailored to the
classical model proposed in [MKS+15] and were not adjusted for the hybrid model used
in this study.

Furthermore, due to computational constraints, it remains an intriguing question as to
how the performance of the quantum model improves with the expansion of the latent
space dimension, implying less information compression. As the dimension of the latent

54

Mobile User

6.2. Limitations and Future Research

space increases, improvements in the performance of the quantum model are anticipated,
until a threshold is reached beyond which training difficulties are expected.

Another consideration lies in the environments used to assess the performance of the
agents. Although both selected environments exhibit high-dimensional state spaces, their
action spaces are relatively simple, with only three discrete actions. An interesting open
question remains as to how well hybrid models handle high-dimensional environments
offering more complex action spaces.

An important next step is to test this algorithm on real quantum hardware. While the
methods used in this work are compatible with today’s NISQ devices, it remains to be
seen how noise and other technical limitations affect the feasibility and performance of the
proposed framework. Testing on actual quantum devices will provide valuable insights
into the robustness and practicality of hybrid quantum-classical models in real-world
conditions. Additionally, understanding the impact of quantum noise, gate fidelity, and
hardware-specific constraints will be crucial for refining these models and enhancing their
applicability to more complex and diverse reinforcement learning tasks.

55

Mobile User

Mobile User

CHAPTER 7
Appendix

7.1 Performance of Classical Model without Bottleneck
Figure 7.1 shows the rewards obtained by the classical model without the limitation of
the bottleneck layer in both Pong and Breakout. It is evident that the bottleneck layer
creates a harsh limitation, as the model clearly converges much faster and shows fewer
fluctuations in Pong and achieves much higher scores in Breakout.

0 0.2 0.4 0.6 0.8 1
·106

≠20

≠10

0

10

20

Environment steps

Sc
or

e

Pong (Classical reference)

reference (no bottleneck)

0 0.5 1 1.5 2 2.5
·106

0

100

200

300

Environment steps

Breakout (Classical reference)

reference (no bottleneck)

Figure 7.1: Scores of a classical model following the architecture proposed in [MKS+15].
The left figure shows the rewards obtained in the game of Pong and the right figure
shows the rewards obtained in Breakout. Without the bottleneck, the classical model
achieves significantly higher scores in Breakout and, similarly, much faster converges to
the optimum in the case of Pong.

57

Mobile User

7. Appendix

7.2 Additional Settings not listed in the Results
As discussed in Section 4.3.2, a grid search was conducted on the learning rate of the
post-processing layer and the reward scaling factor. Settings 2c to 2f in Table 4.3 were
evaluated in this grid search, with settings 2c and 2f performing the best. Settings 2d
and 2e also showed improvements over the baseline setting, as demonstrated in Section
5.5. In Figure 7.2, the right side displays the scores achieved during training for these
settings. The left side of Figure 7.2 illustrates settings 2a and 2b from Table 4.3, where
setting 2a uses a learning rate in the post-processing layer that is ten times higher than
the baseline. Setting 2b also incorporates tenfold reward scaling. These settings do not
result in any improvement over the baseline model.

0.0 0.5 1.0 1.5 2.0 2.5
·106

0

50

100

150

Environment steps

Sc
or

e

Breakout (Hybrid model)

baseline
setting 2a
setting 2b

0.0 0.5 1.0 1.5 2.0 2.5
·106

0

50

100

150

Environment steps

Breakout (Hybrid model)

baseline
setting 2d
setting 2e

Figure 7.2: Left: The hybrid baseline model (blue), along with a hybrid model trained
with a final layer learning rate of 2.5e-3 (setting 2a), and another hybrid model trained
with 10x reward scaling and a final layer learning rate of 2.5e-3 (setting 2b). Right: The
hybrid baseline model (blue), a hybrid model trained with 100x reward scaling and a final
layer learning rate of 2.5e-2 (setting 2d), and a hybrid model trained with 10x reward
scaling and a final layer learning rate of 2.5e-1 (setting 2e).

The better performance of settings 2c and 2f (refer to Figure 5.6) compared to settings 2d
and 2e, as shown above, is likely attributed to the alignment of learning rates and reward
scaling factors in settings 2c and 2f. The lack of improvement in settings 2a and 2b
suggests that a significantly higher learning rate in the post-processing layer, as observed
in settings 2c to 2f, is indeed a crucial factor when combined with reward scaling.

58

Mobile User

List of Figures

2.1 The Bloch sphere, a representation of the quantum state of a qubit. The
computational basis states are indicated as circles at the north and south
poles of the sphere. An arbitrary state |ÂÍ defined by the angles ◊ and „ is
depicted as a black dot on the surface of the sphere. 6

2.2 A simplistic illustration of the reinforcement learning problem: An agent
observes states s and takes actions a in an environment for which it obtains
rewards r from the environment. 11

3.1 A parameterized quantum circuit as defined in Equation 3.1 as machine
learning model. A feature vector x is encoded into the quantum system
in its trivial state |0Í¢n via the repeated encoding unitaries Ul(x) (red).
Intermediate variational unitaries Vl(◊) (blue) enable the training of the
circuit. The output of the model f◊(x) is the expectation value ÈMÍx,◊ of a
(or multiple) observables (e.g., a Pauli-Z observable on each qubit) measured
at the end of the circuit. 20

3.2 Schematic of the Deep Q-Learning framework using hybrid quantum-classical
models. The online model Q (here Qonline) interacts with the environment
(green arrows), which in turn stores state transition sequences in the experience
replay memory (blue arrow). Such (sj , aj , rj , sj+1) sequences are drawn at
random from the replay memory and used by the online model and target
model Q̂ (here Qtarget) to make predictions. Together with the observed
reward rj , these predictions are used to compute the loss (purple arrows).
The online model parameters ◊ are updated by performing a gradient descent
step based on the gradient of the loss function with respect to the model
parameters (red arrow). Parameter synchronization between the online and
target model occurs every C steps (orange arrow). 26

59

Mobile User

4.1 The hybrid quantum-classical model. Three convolutional layers act as
a dimensionality reduction and feature extraction unit to produce a low-
dimensional latent representation of the high-dimensional input. A subsequent
fully connected layer with identity activation further pre-processes this latent
representation resulting in a limited number of latent features to be encoded
in the PQC. The PQC is at the heart of the hybrid model and serves as a
quantum processing unit. Local Pauli-Z measurements of each qubit are the
output of the PQC, which is further post-processed by a fully connected layer
with identity activation. 33

4.2 Quantum circuit diagram of the PQC with 3 qubits and a single layer. A
block of variational gates is followed by a set of entangling gates in a circular
arrangement. The feature encoding block is highlighted by a dashed line. A
second variational block comes after the encoding block. At the end of the
circuit, local Pauli-Z measurements are conducted. 34

4.3 An illustration of the model architecture proposed in [MKS+15] (left) and an
adapted version obtained by insertion of a linear bottleneck layer (right). The
original model consists of three convolutional layers, a fully connected (FC)
non-linear (ReLU) layer and a final fully connected output layer with identity
activation (Id.). The reference model used in this work has an additional layer
with relatively few neurons and identity activation right after the convolutional
layers and before the fully connected layer. This bottleneck layer drastically
limits the size of the latent feature space, creating constraints for the classical
reference similar to the hybrid quantum-classical model introduced in Section
4.1.1. 35

4.4 The pre-processing pipeline illustrated on a sequence of game frames: A
rectangle represents a frame as produced by the game emulator. The crossed-
out frames are skipped and not shown to the agent. The last two frames of
each sequence of four successive frames are combined using a frame pooling
operation. Finally, the pooled frames are stacked to form a single new
observation. 37

4.5 Breakout observation space before (left) and after (right) pre-processing
applied. The four colours in the right image are for visualization purposes;
each colour actually represents one of four distinct frames. The observation
dimensions change from 210 ◊ 160 ◊ 3 for the raw RGB image to 84 ◊ 84 ◊ 4
for the cropped, grey-scaled and stacked observations. 38

4.6 A truncated hybrid model is used to plot the predicted Q-values as a function
of two values produced by the convolutional layers. All except for two inputs
(blue arrows) to the truncated model are kept constant. The two inputs are
varied in order to obtain the Q-value landscape as a function of these values. 42

60

Mobile User

5.1 Rewards obtained during training for the hybrid and classical model. Shaded
areas indicate the standard deviation of multiple runs. Left: The hybrid
agent (blue) and the classical reference (grey) show differences in learning
performance in Pong. In this environment, the hybrid agent appears to learn
faster and more consistently across multiple runs. Right: Hybrid agent (blue)
and classical reference (grey) in Breakout. Here, clearly, the classical reference
takes the lead. 44

5.2 Left: Scores achieved by the baseline hybrid model (baseline) and a hybrid
model with tanh ·fi activation function in the pre-processing layer (setting 1)
in Breakout. The tanh ·fi activation in the pre-processing layer leads to worse
performance. Right: Comparison of the identity function (blue) and a tanh
function scaled by a factor of fi (red). Applying tanh ·fi to feature values in
the shaded area ±(0.5fi, fi), maps them to a very narrow region in the image
of tanh ·fi, possibly resulting in information loss. 45

5.3 Typical values of individual latent features produced by the pre-processing
layer in the course of training. Left: The latent feature values of the hybrid
model each fall within a range of ±fi. Right: The latent features of the classical
reference exceed this range. This indicates that the classical pre-processing
components of the hybrid model learn to adhere to the constraint imposed by
rotational encoding. 46

5.4 Q-value surface as obtained from the classical (top) and hybrid model (bottom).
The Q-value predictions are plotted as a function of two randomly chosen
inputs to the pre-processing layer. For a detailed explanation see Section 4.3.3.
Left: Close-up of the Q-value surface, where the range of input values reflects
a typical range as observed during an episode of Breakout. 47

5.5 Left: Screenshots at selected timesteps of a sample episode, shortly before,
during and after the ball passes the layer of bricks. Right: The according
predicted Q-values and target Q-values. The predictions closely follow the
pattern of the target values, but are slightly overestimated. Both predicted
and target Q-values peak whenever the ball is about to pass the layer of bricks,
shortly before it bounces back an forth between the top of the screen and the
top row of bricks. 48

5.6 Left: The hybrid baseline model (blue) as well as a hybrid model trained with
10x scaled rewards and a final layer learning rate of 2.5e-2 (setting 2c) and
a hybrid model trained with 100x reward scaling and a final layer learning
rate of 2.5e-1 (setting 2f). Right: The classical reference model (blue) and a
classic reference trained with 10x reward scaling and final layer learning rate
of 2.5e-2 (setting 1a) and 100x reward scaling and final layer learning rate of
2.5e-1 (setting 1b). While the hybrid model benefits from the modifications,
the performance of the classical model deteriorates. 49

61

Mobile User

5.7 Left: Scores achieved by the hybrid model when the latent feature space is
increased by using more encoding gates in the PQC and expanding from 4 to
6 qubits in setting 3a. Settings 3b and 3c combine these relaxed constraints
with reward scaling and higher learning rates in the post-processing. Right:
The classical reference with increased latent space dimension also achieves
noticeably higher scores when the constraint imposed by the bottleneck layer
is loosened. 50

7.1 Scores of a classical model following the architecture proposed in [MKS+15].
The left figure shows the rewards obtained in the game of Pong and the right
figure shows the rewards obtained in Breakout. Without the bottleneck, the
classical model achieves significantly higher scores in Breakout and, similarly,
much faster converges to the optimum in the case of Pong. 57

7.2 Left: The hybrid baseline model (blue), along with a hybrid model trained
with a final layer learning rate of 2.5e-3 (setting 2a), and another hybrid
model trained with 10x reward scaling and a final layer learning rate of 2.5e-3
(setting 2b). Right: The hybrid baseline model (blue), a hybrid model trained
with 100x reward scaling and a final layer learning rate of 2.5e-2 (setting 2d),
and a hybrid model trained with 10x reward scaling and a final layer learning
rate of 2.5e-1 (setting 2e). 58

62

Mobile User

List of Tables

2.1 Quantum circuit diagram containing various gates. 9

4.1 Summary of environment specifications. Each game environment supports
three possible actions. The reward system in Pong is simple, either a point
is scored or not. In Breakout, the number of points scored for destroying a
brick depends on the row the brick belongs to. The total number of points
achievable in both games differs as well. 36

4.2 The different hyperparameter settings used for the classical reference model.
For an explanation of the abbreviations see Table 4.3. For the Reward
Scaling parameter only those values where chosen, that performed best in
the hybrid setting. 40

4.3 A summary of the numerical experiment settings. Activationpre is the
activation function in the pre-processing layer, LRPQC and LRpost are
the learning rates of the PQC and the pre-processing layer respectively.
Reward Scaling indicates which factor for reward scaling was used and
Qubits ◊ Layers resembles the latent feature space dimension in terms of
the number of qubits and encoding layers. 41

63

Mobile User

Mobile User

List of Algorithms

2.1 Deep Q-learning with experience replay and target network 14

65

Mobile User

Mobile User

Bibliography

[AA02] M. Andrecut and M. K. Ali. A quantum neural network model. In-
ternational Journal of Modern Physics C, 13(01):75–88, January 2002.
Publisher: World Scientific Publishing Co.

[AAB+19] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin,
Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao,
David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto
Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks
Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith
Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan
Ho, Markus Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov,
Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly,
Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa,
David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore
Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao
Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman,
Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre
Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram
Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim
Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher,
Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam
Zalcman, Hartmut Neven, and John M. Martinis. Quantum supremacy
using a programmable superconducting processor. Nature, 574(7779):505–
510, October 2019. Publisher: Nature Publishing Group.

[AKH+23] Amira Abbas, Robbie King, Hsin-Yuan Huang, William J. Huggins,
Ramis Movassagh, Dar Gilboa, and Jarrod R. McClean. On quantum
backpropagation, information reuse, and cheating measurement collapse,
May 2023. arXiv:2305.13362 [quant-ph].

[Alt01] M. V. Altaisky. Quantum neural network, July 2001.

[ATA97] ATARI. AtariAge - Atari 2600 Manuals (HTML) - Video Olympics
(Atari), 1997.

67

Mobile User

[BCLK+22] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner
Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen,
Jakob S. Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim, Leong-
Chuan Kwek, and Alán Aspuru-Guzik. Noisy intermediate-scale quantum
algorithms. Reviews of Modern Physics, 94(1):015004, February 2022.
Publisher: American Physical Society.

[BCP+16] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. OpenAI Gym, June 2016.
arXiv:1606.01540 [cs].

[BLS+19] Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini.
Parameterized quantum circuits as machine learning models. Quantum
Science and Technology, 4(4):043001, November 2019. Publisher: IOP
Publishing.

[BNS+00] E. C. Behrman, L. R. Nash, J. E. Steck, V. G. Chandrashekar, and S. R.
Skinner. Simulations of quantum neural networks. Information Sciences,
128(3):257–269, October 2000.

[BVM+21] Michael Broughton, Guillaume Verdon, Trevor McCourt, Antonio J.
Martinez, Jae Hyeon Yoo, Sergei V. Isakov, Philip Massey, Ramin Halavati,
Murphy Yuezhen Niu, Alexander Zlokapa, Evan Peters, Owen Lockwood,
Andrea Skolik, Sofiene Jerbi, Vedran Dunjko, Martin Leib, Michael Streif,
David Von Dollen, Hongxiang Chen, Shuxiang Cao, Roeland Wiersema,
Hsin-Yuan Huang, Jarrod R. McClean, Ryan Babbush, Sergio Boixo, Dave
Bacon, Alan K. Ho, Hartmut Neven, and Masoud Mohseni. TensorFlow
Quantum: A Software Framework for Quantum Machine Learning, August
2021. arXiv:2003.02989 [cond-mat, physics:quant-ph].

[CAB+21] M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Sug-
uru Endo, Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan,
Lukasz Cincio, and Patrick J. Coles. Variational quantum algorithms. Na-
ture Reviews Physics, 3(9):625–644, September 2021. Publisher: Nature
Publishing Group.

[CBB+23] Zhenyu Cai, Ryan Babbush, Simon C. Benjamin, Suguru Endo, William J.
Huggins, Ying Li, Jarrod R. McClean, and Thomas E. O’Brien. Quantum
error mitigation. Reviews of Modern Physics, 95(4):045005, December
2023. Publisher: American Physical Society.

[CCL19] Iris Cong, Soonwon Choi, and Mikhail D. Lukin. Quantum Convolutional
Neural Networks. Nature Physics, 15(12):1273–1278, December 2019.
arXiv:1810.03787 [cond-mat, physics:quant-ph].

68

Mobile User

[CCL+23] Hao-Yuan Chen, Yen-Jui Chang, Shih-Wei Liao, and Ching-Ray Chang.
Deep-Q Learning with Hybrid Quantum Neural Network on Solving Maze
Problems, December 2023. arXiv:2304.10159 [quant-ph].

[CMD+20] Brian Coyle, Daniel Mills, Vincent Danos, and Elham Kashefi. The
Born supremacy: quantum advantage and training of an Ising Born
machine. npj Quantum Information, 6(1):1–11, July 2020. Publisher:
Nature Publishing Group.

[CYQ+20] Samuel Yen-Chi Chen, Chao-Han Huck Yang, Jun Qi, Pin-Yu Chen,
Xiaoli Ma, and Hsi-Sheng Goan. Variational Quantum Circuits for Deep
Reinforcement Learning. IEEE Access, 8:141007–141024, 2020. Conference
Name: IEEE Access.

[FN18] Edward Farhi and Hartmut Neven. Classification with Quantum Neural
Networks on Near Term Processors, August 2018. arXiv:1802.06002
[quant-ph].

[Fre] Dominik Freinberger. Spiegeldondi/A-Hybrid-Quantum-Classical-
Framework-for-Reinforcement-Learning-of-Atari-Games: This repo ex-
plores the capabilities of hybrid quantum-classical models based on vari-
ational quantum algorithms (VQAs) in high dimensional reinforcement
learning (RL) environments such as the Atari 2600 classics Pong and
Breakout.

[Gar23] Gartner. Invest Implications: Forecast Analysis: Artificial Intelligence
Software, 2023-2027, Worldwide, September 2023.

[GPC19] Ivan Glasser, Nicola Pancotti, and J. Ignacio Cirac. From probabilistic
graphical models to generalized tensor networks for supervised learning,
December 2019. arXiv:1806.05964 [cond-mat, physics:quant-ph, stat].

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search,
May 1996.

[GWO+19] Edward Grant, Leonard Wossnig, Mateusz Ostaszewski, and Marcello
Benedetti. An initialization strategy for addressing barren plateaus
in parametrized quantum circuits. Quantum, 3:214, December 2019.
Publisher: Verein zur Förderung des Open Access Publizierens in den
Quantenwissenschaften.

[GZ02] Sanjay Gupta and R. K. P. Zia. Quantum Neural Networks, January
2002.

[HDV18] Danijar Hafner, James Davidson, and Vincent Vanhoucke. TensorFlow
Agents: Efficient Batched Reinforcement Learning in TensorFlow, October
2018. arXiv:1709.02878 [cs].

69

Mobile User

[HHL09] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum Al-
gorithm for Linear Systems of Equations. Physical Review Letters,
103(15):150502, October 2009. Publisher: American Physical Society.

[IDC23] IDC. Worldwide Spending on AI-Centric Systems Forecast to Reach $154
Billion in 2023, According to IDC, July 2023.

[JFPN+23] Sofiene Jerbi, Lukas J. Fiderer, Hendrik Poulsen Nautrup, Jonas M.
Kübler, Hans J. Briegel, and Vedran Dunjko. Quantum machine learning
beyond kernel methods. Nature Communications, 14(1):517, January
2023. Publisher: Nature Publishing Group.

[JGM+21] Sofiene Jerbi, Casper Gyurik, Simon Marshall, Hans Briegel, and Vedran
Dunjko. Parametrized Quantum Policies for Reinforcement Learning. In
Advances in Neural Information Processing Systems, volume 34, pages
28362–28375. Curran Associates, Inc., 2021.

[Kak95] Subhash C. Kak. Quantum Neural Computing. In Peter W. Hawkes,
editor, Advances in Imaging and Electron Physics, volume 94, pages
259–313. Elsevier, January 1995.

[KMT+17] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita,
Markus Brink, Jerry M. Chow, and Jay M. Gambetta. Hardware-efficient
variational quantum eigensolver for small molecules and quantum magnets.
Nature, 549(7671):242–246, September 2017. Publisher: Nature Publishing
Group.

[LAT21] Yunchao Liu, Srinivasan Arunachalam, and Kristan Temme. A rigorous
and robust quantum speed-up in supervised machine learning. Nature
Physics, 17(9):1013–1017, September 2021. arXiv:2010.02174 [quant-ph].

[LS20] Owen Lockwood and Mei Si. Reinforcement Learning with Quantum
Variational Circuit. Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, 16(1):245–251, October
2020. Number: 1.

[LS21] Owen Lockwood and Mei Si. Playing Atari with Hybrid Quantum-
Classical Reinforcement Learning, July 2021. arXiv:2107.04114 [quant-
ph].

[LSI+20] Seth Lloyd, Maria Schuld, Aroosa Ijaz, Josh Izaac, and Nathan Kil-
loran. Quantum embeddings for machine learning, February 2020.
arXiv:2001.03622 [quant-ph].

[LVL22] Alexandra Sasha Luccioni, Sylvain Viguier, and Anne-Laure Ligozat.
Estimating the Carbon Footprint of BLOOM, a 176B Parameter Language
Model, November 2022. arXiv:2211.02001 [cs].

70

Mobile User

[MBI+20] Andrea Mari, Thomas R. Bromley, Josh Izaac, Maria Schuld, and Nathan
Killoran. Transfer learning in hybrid classical-quantum neural networks.
Quantum, 4:340, October 2020. arXiv:1912.08278 [quant-ph, stat].

[MBK21] Andrea Mari, Thomas R. Bromley, and Nathan Killoran. Estimating the
gradient and higher-order derivatives on quantum hardware. Physical
Review A, 103(1):012405, January 2021. Publisher: American Physical
Society.

[MBS+18] Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush,
and Hartmut Neven. Barren plateaus in quantum neural network training
landscapes. Nature Communications, 9(1):4812, November 2018. Number:
1 Publisher: Nature Publishing Group.

[MBT+17] Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness,
Matthew Hausknecht, and Michael Bowling. Revisiting the Arcade Learn-
ing Environment: Evaluation Protocols and Open Problems for General
Agents, November 2017. arXiv:1709.06009 [cs].

[Mec24] The Quantum Mechanic. Quantum Computers For Public Use? What
You Need To Know For Success In The Coming Quantum Age., March
2024. Section: Quantum Cloud.

[MKS+13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing Atari with
Deep Reinforcement Learning, December 2013. arXiv:1312.5602 [cs].

[MKS+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei Rusu, Joel
Veness, Marc Bellemare, Alex Graves, Martin Riedmiller, Andreas Fid-
jeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik,
Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep
reinforcement learning. Nature, 518:529–33, February 2015.

[MNK+18] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii. Quantum circuit
learning. Physical Review A, 98(3):032309, September 2018. Publisher:
American Physical Society.

[MSP+23a] Nico Meyer, Daniel Scherer, Axel Plinge, Christopher Mutschler, and
Michael Hartmann. Quantum policy gradient algorithm with optimized
action decoding. In Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Pro-
ceedings of the 40th International Conference on Machine Learning, vol-
ume 202 of Proceedings of Machine Learning Research, pages 24592–24613.
PMLR, 23–29 Jul 2023.

71

Mobile User

[MSP+23b] Nico Meyer, Daniel D. Scherer, Axel Plinge, Christopher Mutschler, and
Michael J. Hartmann. Quantum natural policy gradients: Towards sample-
efficient reinforcement learning. In 2023 IEEE International Conference
on Quantum Computing and Engineering (QCE), volume 02, pages 36–41,
2023.

[MUP+24] Nico Meyer, Christian Ufrecht, Maniraman Periyasamy, Daniel D. Scherer,
Axel Plinge, and Christopher Mutschler. A Survey on Quantum Rein-
forcement Learning, March 2024. arXiv:2211.03464 [quant-ph].

[NC10] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and
Quantum Information: 10th Anniversary Edition. Cambridge University
Press, 2010.

[NDM+21] Rakshit Naidu, Harshita Diddee, Ajinkya Mulay, Aleti Vardhan,
Krithika Ramesh, and Ahmed Zamzam. Towards Quantifying the Car-
bon Emissions of Differentially Private Machine Learning, July 2021.
arXiv:2107.06946 [cs].

[PGL+21] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel
Munguia, Daniel Rothchild, David So, Maud Texier, and Jeff Dean.
Carbon Emissions and Large Neural Network Training, April 2021.
arXiv:2104.10350 [cs].

[Pre18] John Preskill. Quantum Computing in the NISQ era and beyond. Quan-
tum, 2:79, August 2018. Publisher: Verein zur Förderung des Open Access
Publizierens in den Quantenwissenschaften.

[PSCLGF+20] Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil-Fuster, and José I.
Latorre. Data re-uploading for a universal quantum classifier. Quantum,
4:226, February 2020. arXiv:1907.02085 [quant-ph].

[PSLNGS+21] Adrián Pérez-Salinas, David López-Núñez, Artur García-Sáez, P. Forn-
Díaz, and José I. Latorre. One qubit as a Universal Approximant. Physical
Review A, 104(1):012405, July 2021. arXiv:2102.04032 [quant-ph].

[RML14] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. Quantum Support
Vector Machine for Big Data Classification. Physical Review Letters,
113(13):130503, September 2014. Publisher: American Physical Society.

[Sac23] Goldman Sachs. AI investment forecast to approach $200 billion globally
by 2025, January 2023.

[SB18] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. The MIT Press, second edition, 2018.

72

Mobile User

[SBG+19] Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan
Killoran. Evaluating analytic gradients on quantum hardware. Physical
Review A, 99(3):032331, March 2019. Publisher: American Physical
Society.

[SBS+20] Maria Schuld, Alex Bocharov, Krysta Svore, and Nathan Wiebe. Circuit-
centric quantum classifiers. Physical Review A, 101(3):032308, March
2020. arXiv:1804.00633 [quant-ph].

[SGM19] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and Pol-
icy Considerations for Deep Learning in NLP, June 2019. arXiv:1906.02243
[cs].

[Sho95] Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer, August 1995.

[SJAG19] Sukin Sim, Peter D. Johnson, and Alan Aspuru-Guzik. Expressibil-
ity and entangling capability of parameterized quantum circuits for hy-
brid quantum-classical algorithms. Advanced Quantum Technologies,
2(12):1900070, December 2019. arXiv:1905.10876 [quant-ph].

[SJD22] Andrea Skolik, Sofiene Jerbi, and Vedran Dunjko. Quantum agents in the
Gym: a variational quantum algorithm for deep Q-learning. Quantum,
6:720, May 2022. Publisher: Verein zur Förderung des Open Access
Publizierens in den Quantenwissenschaften.

[SK19] Maria Schuld and Nathan Killoran. Quantum Machine Learning in
Feature Hilbert Spaces. Physical Review Letters, 122(4):040504, February
2019. Publisher: American Physical Society.

[SP21] Maria Schuld and Francesco Petruccione. Machine Learning with Quantum
Computers. Quantum Science and Technology. Springer International
Publishing, Cham, 2021.

[SQA+16] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized
Experience Replay, February 2016. arXiv:1511.05952 [cs].

[SS16] Edwin Stoudenmire and David J Schwab. Supervised Learning with
Tensor Networks. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 29. Curran Associates, Inc., 2016.

[SSB23] André Sequeira, Luis Paulo Santos, and Luis Soares Barbosa. Policy gra-
dients using variational quantum circuits. Quantum Machine Intelligence,
5(1):18, April 2023.

73

Mobile User

[SSM21] Maria Schuld, Ryan Sweke, and Johannes Jakob Meyer. The effect of data
encoding on the expressive power of variational quantum machine learning
models. Physical Review A, 103(3):032430, March 2021. arXiv:2008.08605
[quant-ph, stat].

[vHGS15] Hado van Hasselt, Arthur Guez, and David Silver. Deep Reinforcement
Learning with Double Q-learning, December 2015. arXiv:1509.06461 [cs].

[vN93] J. von Neumann. First draft of a report on the EDVAC. IEEE Annals of
the History of Computing, 15(4):27–75, 1993. Conference Name: IEEE
Annals of the History of Computing.

[Vri23] Alex de Vries. The growing energy footprint of artificial intelligence.
Joule, 7(10):2191–2194, October 2023. Publisher: Elsevier.

[WBL12] Nathan Wiebe, Daniel Braun, and Seth Lloyd. Quantum Algorithm
for Data Fitting. Physical Review Letters, 109(5):050505, August 2012.
Publisher: American Physical Society.

[WSH+16] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanc-
tot, and Nando de Freitas. Dueling Network Architectures for Deep
Reinforcement Learning, April 2016. arXiv:1511.06581 [cs].

[ZFF19] Zhikuan Zhao, Jack K. Fitzsimons, and Joseph F. Fitzsimons. Quantum
assisted Gaussian process regression. Physical Review A, 99(5):052331,
May 2019. arXiv:1512.03929 [quant-ph, stat].

[ZLH+22] Kaining Zhang, Liu Liu, Min-Hsiu Hsieh, and Dacheng Tao. Escaping
from the Barren Plateau via Gaussian Initializations in Deep Variational
Quantum Circuits, December 2022. arXiv:2203.09376 [quant-ph].

[ZLW19] Christa Zoufal, Aurélien Lucchi, and Stefan Woerner. Quantum Genera-
tive Adversarial Networks for learning and loading random distributions.
npj Quantum Information, 5(1):1–9, November 2019. Publisher: Nature
Publishing Group.

[ZLW21] Christa Zoufal, Aurélien Lucchi, and Stefan Woerner. Variational quantum
Boltzmann machines. Quantum Machine Intelligence, 3(1):7, February
2021.

74

Mobile User

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Contributions
	Outline

	Preliminaries
	Quantum Computing
	Reinforcement Learning

	Quantum Reinforcement Learning
	Quantum Machine Learning
	Quantum Q-Learning

	Methodology
	The Hybrid Quantum-Classical Model
	Atari 2600 Environments
	The Hybrid Model in the Q-Learning Framework

	Results and Analysis
	Performance of Hybrid Baseline and Classical Reference
	Effects of Activation Function in Pre-Processing Layer
	The Q-function Surface
	A Sample Episode
	Effects of Reward Scaling and Learning Rate
	Effects of Latent Space Dimension

	Conclusion
	Findings and Contributions
	Limitations and Future Research

	Appendix
	Performance of Classical Model without Bottleneck
	Additional Settings not listed in the Results

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

