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Kurzfassung

Für die Validierung von RDF Graphen hat das W3C mit der Shapes Constraint Language
(SHACL) einen Standard definiert. Für eine erfolgreiche Anwendung von SHACL, selbst
auf sehr große RDF Graphen, werden Methoden benötigt, die eine effiziente Validierung
ermöglichen. Ansätze für eine effiziente Validierung von SHACL existieren bereits, aber
diese optimierten Validierer konzentrieren sich auf die “tractable” Fragmente der SHACL
Sprache und unterstützen nicht die uneingeschränkte Interaktion zwischen Rekursion
und Negation in Shapes Graphen. Bei Vorhandensein von Rekursion und Negation ist ein
Ziel-orientierter Ansatz, wie bestehende Validatoren ihn verfolgen, nicht anwendbar, da
dies die Betrachtung des gesamten Datengraphens und damit eine globale Berechnung
erfordert. Dies ist auch erforderlich wenn die Targets des Shapes Graphen nur einen Teil
des Datengraphen adressieren, der von der Interaktion zwischen Rekursion und Negation
nicht betroffen ist. Neben der Tatsache, dass das Zusammenspiel von Rekursion und
Negation die Validierung rechenintensiv macht, können bei der globalen Validierung der
Graphen Inkonsistenzen auftreten, die aber für die Validierung der Ziele des Shapes
Graphen möglicherweise irrelevant sind.

Aus diesem Grund beschäftigt sich diese Masterarbeit mit der Validierung von SHACL bei
uneingeschränkter Interaktion von Rekursion und Negation. Zu diesem Zweck wird der
Magic Shapes Algorithmus vorgestellt, der als Eingabe einen Shapes Graphen erhält und
einen Magic Shapes Graphen ausgibt, der ebenfalls dem Standard von SHACL entspricht.
Der Magic Shapes Graph enthält nur die für die Validierung der Targets relevanten
Constraints. Diese Constraints werden um magic Shape Constraints erweitert, die den
RDF Graphen während der Validierung auf die notwendigen Knoten reduzieren. Im Fall,
dass keine Inkonsistenzen durch den RDF Graph und der Interaktion von Rekursion
und Negation entstehen, ist das Ergebnis der Validierung für den Eingangs Shapes
Graphen, sowie für die magic Variante äquivalent. Andernfalls ermöglicht der Magic
Shapes Algorithmus eine Ziel-orientierte Validierung und lässt Inkonsistenzen, die das
Validieren der fokusierten Knoten nicht betreffen außen vor. Im Rahmen der Masterarbeit
wurde der Algorithmus implementiert und Experimente mit dem existierenden Validierer
shacl-asp durchgeführt.
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Abstract

For the validation of RDF graphs, the W3C has defined a standard in form of the Shapes
Constraint Language (SHACL). However, for successful adoption of SHACL methods
are needed that enable efficient validation even on very large RDF graphs. Approaches
for efficient validation of SHACL already exist, but these optimized validators focus on
the tractable fragments of the SHACL language and do not support the unrestricted
interaction between recursion and negation in shapes graphs. In presence of recursion
and negation, a target-oriented approach, as existing validators pursue, is not applicable,
since this requires considering the whole data graph and thus global computation. This
is also required even when the targets of the shapes graph address only some part of the
data graph. Besides the fact that the interaction of recursion and negation makes the
validation computationally costly, inconsistencies can arise when validating the graphs
globally, even though these might be irrelevant for validating the targets of the shapes
graph.

For this reason, the aim of this master thesis is the validation of SHACL in presence
of unrestricted interaction of recursion and negation. To this end, the magic shapes
algorithm is presented, which receives as input a shapes graph and outputs an magic
shapes graph that conforms to the standard of SHACL. The magic shapes graph contains
only the constraints relevant for validating the targets. These constraints are extended
with magic shape constraints, which also reduce the RDF graph to the necessary nodes
during validation. In case that no inconsistency arise from the RDF graph and the
interaction of recursion and negation, the results of the validation are equivalent for
the input shapes graph and the magic variant. Otherwise, the magic shapes algorithm
allows for target-oriented validation and leaves out inconsistencies that do not affect
the validation of the focused nodes. As part of the master thesis, the algorithm was
implemented and experiments were performed with the existing validator shacl-asp.
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CHAPTER 1
Introduction

The Resource Description Framework1 (RDF) is a key technology of the Semantic Web,
that represents data via triples to connect arbitrary objects [HO09]. Such a set of triples
is called a data graph. Over time the demand for quality checks like correctness and
completeness of data graphs in RDF has emerged [CRS18]. An approach to validate
RDF data graphs is the SHapes Constraint Language2 (SHACL), which became a W3C
recommendation in 2017. The SHACL language provides the ability to define a set of
constraints structured as shapes, which are one part of so-called shapes graphs. A shapes
graph also contains a set of targets that specifies the nodes of the data graph to be
considered when validated against the shape constraints. For illustration, consider the
following data graph G and a shapes graph (C, T ), where C is a set of shape constraints
and T the targets:

G = {married(Sissi,Franz)}
C = {Queen ← ∃married.T ∧ ∃has.crown}
T = {Queen(Sissi)}

Further, Queen is a shape name, married and has are data predicates, i.e. properties,
and crown is a constant. The target focuses on the node Sissi of the data graph and
validates whether Sissi is a Queen or not. According to the set of shape constraints an
individual is validated as Queen if it is married and has a crown. Since Sissi does not
have a crown in G, the data graph does not validate (C, T ), but the extended graph
G ∪ {has(Sissi, crown)} does.

The W3C recommendation specifies the syntax for shape constraints and defines a
semantics for the validation of RDF graphs against shapes graphs. This standard allows
shapes to refer to other shapes, which can lead to cyclic dependencies, this is called

1https://www.w3.org/TR/rdf11-concepts/
2https://www.w3.org/TR/shacl/
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1. Introduction

recursion. However, the W3C recommendation leaves the semantics for validation of
recursive shape constraints explicitly undefined and up to validation engines:

"The validation with recursive shapes is not defined in SHACL and is left to SHACL
processor implementations. For example, SHACL processors may support recursion

scenarios or produce a failure when they detect recursion."

W3C provides a list of existing SHACL validators3. These listed implementations validate
according to the defined semantics of the W3C recommendation for SHACL, but since the
semantics for validating recursive shapes graphs is not defined yet, these validators do not
operate according to a specified semantics for recursive graphs. The problem of recursive
SHACL is discussed by Corman et al. in [CRS18]. They come to the conclusion that the
complexity of the validation problem for the language of full SHACL is NP-complete, i.e.
non-tractable. The complexity of the validation problem becomes intractable, because
the unrestricted interaction of recursion and negation requires global computation on the
data graph even if the targets only consider part of the data graph. Another problem
that arises from the need for a global computation is that inconsistencies could prevent
validation, even if the inconsistencies are unrelated to the target(s). A data graph is
inconsistent with a shapes graph if there exists no assignment from nodes of the data
graph to shape names of the shapes graph, such that the shape constraints are validated
to true. For demonstration, let’s consider the following example of a data graph G and a
shapes graph (C, T ), where:

G = {crownedBy(Sissi,Archbishop), crownedBy(Tim,Tim)}
C = {Crowned ← ∃crownedBy.¬Crowned}
T = {Crowned(Sissi)}

The constraints in C involve recursion and negation, which might give rise for incon-
sistencies during validation. The target Crowned(Sissi) satisfies the shape constraints
for Crowned, since the individual Sissi is crowned by the Archbishop, who himself is not
Crowned. Although at first glance, it may seem like the target is valid, this is not the
case for the 2-valued semantics proposed in [ACO+20] and [CFRS19b]. The data graph
is invalid, since there is no consistent way to assign or not assign shape name Crowned to
the individual Tim. This result of the validation may not be desired, since the part of
the data graph that causes the inconsistency is irrelevant to the target Crowned(Sissi).
This may be a toy example, but in huge RDF graphs it is not unlikely that erroneous
facts occur.

Goal of the Thesis
Therefore, the aim of this thesis is SHACL validation in the presence of unrestricted
recursion and negation. For that purpose an algorithm is proposed, which adapts the

3https://w3c.github.io/data-shapes/data-shapes-test-suite/
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SHACL
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Modularize
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Figure 1.1: Workflow of SHACL validation with the Magic Shapes Algorithm. A
input shapes graph (C, T ) is transformed into a (typically smaller) magic shapes graph
(Cmagic, T ), that contains only constraints relevant for validating the targets. A data
graph G can be validated against the magic shapes graph with existing validators.

ideas of the Magic Sets optimization technique from Datalog (see [BMSU85, AFGL12]).
The Magic Sets technique is a well-known method for efficient query-answering. It
simulates top-down query evaluation while retaining the benefits of bottom-up validation.
In [FGL07] Faber et al. proposed a generalization of the Magic Set technique for Datalog
programs with unstratified negation (Datalog¬), which serves as a foundation for the
Magic Shapes Algorithm for SHACL. Since the Magic Sets algorithm evaluates in a
query-oriented manner and only considers the part of the Datalog program relevant to the
query, it can be used for inconsistency-tolerant evaluation [FGL07]. The algorithm also
provides an optimization technique, since the algorithm outputs a program containing
the relevant parts necessary for evaluating the query. Thus, the research question to be
answered by this master thesis is,

“Can the ideas underlying the Magic Sets transformation in Datalog be applied to
SHACL shapes graphs and be used to improve the validation of unrestricted SHACL?"

This question pursues the aim of an algorithm to improve the validation of SHACL based
on the Magic Set technique from logic programming [FGL07], that

• allows efficient, target-guided validation even in the presence of recursion and
negation,

• allows inconsistency tolerant validation, i.e. validation in the presence of inconsis-
tencies that do not affect the validation of the target(s), and

• can be used as a pre-processing step to increase the applicability of existing validators
for tractable SHACL (non-recursive fragment, recursive fragment without negation
in cycles).

3



1. Introduction

Contribution

• Section 3 of this thesis proposes the magic shapes algorithm, that takes as
input a shapes graph (C, T ) and produces a potentially smaller magic shapes
graph (Cmagic, T ). Figure 1.1 shows that the input shapes graph undergoes four
steps. In Create Magic Seeds magic constraints are created based on the targets.
Procedure Modularize identifies the relevant constraints of the shapes graph for
validation. For each of these constraints additional magic constraints are generated
by Generate. Finally in step Modify the constraints identified as relevant to the
targets are enhanced by magic shape names, that are added to the magic shapes
graph by Generate. The resulting shapes graph (Cmagic, T ) can then be passed to
existing validators.

• In Chapter 4 we show the correctness of the magic shapes algorithm. The main
theorem states, that whenever the data graph is consistent with (C, T ) and a global
assignment exists, the validation of the input shapes graph and the magic output
graph are equivalent.

• In Chapter 5 we discuss the inconsistency-tolerant validation. In case the data
graph is not consistent with the input, it might still be validated by the magic
shapes graph. This occurs if the part causing the inconsistency is not relevant for
validating the targets. The magic shapes algorithm thus enables to perform an
effective inconsistency-tolerant/3-valued validation.

• The evaluation of the magic shapes algorithm shows that it significantly im-
proves the validation of the shacl-asp validator and enables inconsistency-tolerant
validation with existing SHACL validators.

State-of-the-art
Currently there exists only two approaches for validation of recursive SHACL, described
in the works "Stable model semantics for recursive SHACL" [ACO+20] and "Validating
SHACL Constraints over a SPARQL Endpoint" [CFRS19b]. The former approach relies
on the stable model semantics for logic programming. The shacl-asp4 prototype
implements this approach and covers the language of full SHACL. The latter work
proposes a semantic that makes use of classical logic, for that first all relevant information
for the validation of the shapes graph is obtained from the RDF graph using SPARQL,
and then rules are generated according to specific patterns, considering the obtained
information and the targets, in a next step the generated rules are handed to a SAT-solver.
Further, this work presents two additional methods for the validation of tractable SHACL
fragments. In the non-recursive case Corman et al. have shown that shapes graph can be
expressed using a single SPARQL query, i.e., non-recursive shapes graph can be validated
by means of SPARQL. The second method is an optimized algorithm for the three

4https://github.com/medinaandresel/shacl-asp
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tractable fragments Lnon−rec (non recursive), L+∨ (disjunction as native operator, but no
negation) and Ls (no recursion with negation). The optimized version of the algorithm
operates similar to the one for full SHACL, but this one selects the shapes considering
the targets for further processing, and moreover there is no need for a SAT-solver, as
it performs the validation on-the-fly. In the paper [CFRS19b] Corman et al. also claim
that the order in which shapes are selected leaves room for optimization. Moreover,
the prototype used to perform the experiments in this paper implements this optimized
version of the algorithm that works only for SHACL fragments where the interaction
between recursion and negation is restricted, otherwise it might be necessary to consider
other parts of the shapes graph to maintain the correctness of the validation.

A very recent work regarding a more efficient SHACL validation by rearranging the order
of shapes in a graph is Trav-SHACL [FRV21]. In addition, the SHACL engine detects
invalid entities earlier by rewriting targets and constraint queries. Figuera et al. [FRV21]
compared the execution times of Trav-SHACL to shacl2sparql, which is a prototype
implementing the optimized algorithm of [CFRS19b], and came to the conclusion that
Trav-SHACL performs up to a factor of 29.93 better. Like the shacl2sparql validator,
Trav-SHACL is limited to the language fragment that restricts the interaction between
recursion and negation, and thus does not deal with the full SHACL language either.

Structure of the Thesis

Chapter 2 provides background information in order to understand the proposed op-
timization technique. RDF as well as the language of SHACL and the notion of
validation under the supported and stable model semantics are discussed.

Chapter 3 proposes the magic shapes algorithm, first for the positive language fragment
of SHACL (i.e. the language in absence of negation) and in a second step an extended
version of the magic shapes algorithm is introduced, which is applicable for the full
language of SHACL.

Chapter 4 presents a proof to show the correctness of the proposed magic shapes
algorithm.

Chapter 5 gives a definition of an inconsistency-tolerant semantics for both the supported-
and stable model semantics. In this chapter it is shown, that the magic shapes
technique makes it possible to find an so called faithful assignment, which allows to
leave shape names undefined.

Chapter 6 outlines the results of the experiments, that show that the technique improves
the performance of shacl-asp significantly. Since it is the only implementation
that supports the full language of SHACL, i.e. includes validation in the presence
of inconsistencies, the experiments are performed with this validator.

Chapter 7 concludes the thesis by a summary and an outlook for future work.

5





CHAPTER 2
Preliminaries

This chapter provides background information necessary to understand the magic shape
algorithm in Chapter 3. For this purpose, the W3C recommendations for RDF and
SHACL are explained first. In a next section the problem of validating data graph against
a shapes graph is addressed.

2.1 Resource Description Framework
The World Wide Web Consortium1 (W3C) declared the Resource Description Framework2

(RDF) a W3C recommendation in 1999. Since then, the RDF formalism has become an
essential part of the semantic web for data interchange. The language of RDF consists
of triples, which consist of a subject, a predicate and an object. A triple can also
be represented in form of a graph, where subjects and objects correspond to nodes
and predicates to edges, as shown in Figure 2.1. The recommendation distinguishes

Subject Object
predicate

Figure 2.1: Graphical representation of an RDF triple

between three different types of nodes: IRIs, literals and blank nodes. IRIs (short for
Internationalized Resource Identifier) and literals (values such as strings, numbers and
dates) denote resources, i.e. something in the "universe of discourse". This means
anything in the world can be a resource, e.g. things and abstract concepts. In contrast
to IRIs and literals, blank nodes are used to determine that a relation exists, but without
giving a reference to a specific resource. Moreover a set of triples corresponds to the

1https://www.w3.org/
2https://www.w3.org/TR/rdf11-concepts/
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2. Preliminaries

designation of an RDF graph. An abstract representation of an RDF graph, called a
data graph, is given by Definition 1, where N is the set that forms the alphabet for
subjects and objects, and P forms the alphabet for predicates. A triple has the form
(subject)−[predicate]→(object), where subject, predicate and object can all be of type
IRI; subject and object can be a blank node and only objects can be literals. The abstract
representation of a triple is p(v, v,) where p is the predicate, v the subject, and v, the
object.

Definition 1 (Data graph). Let N and P denote infinite, disjoint sets of nodes, and
property names, respectively. A (data) graph G is a finite set of atoms of the form p(v, v,),
where p ∈ P and v, v, ∈ N . The set of nodes appearing in G is denoted with V (G).

Example 2 illustrates two different representations of the same data graph. One is the
abstract syntax used for simplicity in the theoretical part of this thesis, and the other
is a syntax defined by the W3C recommendation for RDF, which is commonly used by
real-world applications.

Example 2. On the left side is a data graph in the syntax corresponding to Definition 1
and on the right side is the same graph in N-triples3 syntax for RDF data graphs.

type(HarryPotter,Film). :HarryPotter dbo:type dbo:Film.
starring(HarryPotter,EmmaWatson). :HarryPotter dbo:starring :EmmaWatson.
director(HarryPotter,ChrisColumbus). :HarryPotter dbo:director :ChrisColumbus.
type(ChrisColumbus,Person). :ChrisColumbus dbo:type dbo:Person.
type(EmmaWatson,Person). :EmmaWatson dbo:type dbo:Person.
birthDate(EmmaWatson,1990-04-15). :EmmaWatson dbo:birthDate 1990-04-15.
birthPlace (EmmaWatson,Paris). :EmmaWatson dbo:birthPlace :Paris.

SPARQL Query Language. RDF allows to store all kinds of information in form of
triples without any further schema. In order to query the data, efficient query languages
are needed, which is why a brief introduction to SPARQL is provided. SPARQL is a
recursive acronym and abbreviates the SPARQL query language for RDF, which enables
the querying of RDF data graphs. The results of these queries are either result sets or
RDF graphs, as described in the W3C recommendation for SPARQL4.

Example 3. The SPARQL query in this example asks for all nodes of type dbo:Person.
In case of the data graph of Example 2, :EmmaWatson and :ChrisColumbus are returned
as results.

Select distinct ?x where {
?x dbo:type dbo:Person

}
3https://www.w3.org/TR/n-triples/
4https://www.w3.org/TR/rdf-sparql-query/

8



2.2. Shape Constraint Language

2.2 Shape Constraint Language
The Shape Constraint Language5 (SHACL) was established to check the quality of RDF
data graphs and became a W3C recommendation in 2017. The SHACL language allows
to define sets of constraints in terms of shapes and then validate a data graph against
a so called shapes graph. An important concept of the SHACL language is the notion
of a target. This notion narrows the validation to the so called focus nodes. The
recommendation distinguishes between five different types of targets, i.e. node targets,
class-based targets, implicit class targets, subjects-of targets and objects-of targets, of
which only the node targets and class-based targets are taken into account in this thesis.
But for the theory part of this thesis, we only consider ground targets, since the different
types of targets can be converted to ground targets using SPARQL queries. The SHACL
recommendation6 provides a possible definition in SPARQL for each target type. Next,
an example of a SHACL shapes graph in Turtle7 syntax with a class-based target is given
by Example 4.

Example 4. This example is a shapes graph with three shapes, namely PersonShape,
MusicianShape and LocationShape. For a node to be validated as a LocationShape it
has to have at least a country path. PersonShape has to have exactly one birth place that
is a LocationShape, exactly one birth date and at least one birth name. A node validates
as MusicianShape, if it plays at least one instrument, further MusicianShape refers
to PersonShape, which means that a node must additionally satisfy all constraints of
PersonShape in order to validate MusicianShape as true. Additionally MusicianShape
has a whole class as target defined, i.e. sh:targetClass dbo:Person. This means all
nodes of type dbo:Person fall into the focus of validation.
:PersonShape a sh:NodeShape; :MusicianShape a sh:NodeShape;
sh:property [ sh:targetClass dbo:Person;
sh:path dbo:birthPlace; sh:node :PersonShape;
sh:minCount 1; sh:property [
sh:maxCount 1; sh:path dbo:instrument;
sh:node :LocationShape sh:minCount 1
] ; ] .
sh:property [
sh:path dbo:birthDate; :LocationShape a sh:NodeShape;
sh:minCount 1; sh:property [
sh:maxCount 1 sh:path dbo:country;
] ; sh:minCount 1
sh:property [ ].
sh:path dbo:birthName;
sh:minCount 1
] .

5https://www.w3.org/TR/shacl/
6https://www.w3.org/TR/shacl/#targets
7https://www.w3.org/TR/turtle/

9



2. Preliminaries

In contrast to the Turtle syntax, we provide the definition for an abstract syntax of the
SHACL language in the W3C specification in the following.

Definition 5 (Syntax of SHACL). Let S be an infinite set of shape names, disjoint from
N and P . A shape atom is an expression of the form s(a), where s ∈ S and a ∈ N . A
path expression E is a regular expression build from the operators ∗, ·, ∪, and symbols p
or expressions p−, where p ∈ P . A (shape) expression is an expression φ of the form:

φ :=T | s | a | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ |≥n E.φ | E = E,,

where s ∈ S, a ∈ N , n ∈ N, and E, E, are path expressions. The usual abbreviations
∃E.φ for ≥1 E.φ, and ≤n E.φ for ¬(≥n+1 E.φ) are used. A (shape) constraint is of the
form s ← φ, where s ∈ S and φ is a shape expression. In this thesis, s is also called the
head and φ the body of a constraint.
A target set (or simply targets) is a set of shape atoms of the form s(a) where s ∈ S and
a ∈ N . A shapes graph is a pair (C, T ), where C is a set of constraints and T is the target
set. The definition φs,C of a shape name s in a set of constraints C is the disjunction of
all shape expressions in the body of a shape constraint in C whose head shape is s. That
is, φs,C = ∧s←φ∈Cφ. If C is clear from the context, φs,C may be simplified as φs.

Example 6. This shapes graph contains the same constraints and shapes as in Example
4 in formal syntax from Definition 5. For an explanation of the constraint see Example 4.

T = {MusicianShape(mozart)}
C = {

PersonShape ← ≥1 birthP lace.LocationShape∧
≤1 birthPlace.LocationShape∧
≥1 birthDate.T∧
≤1 birthDate.T∧
≥1 birthName.T,

MusicianShape ← ≥1 instrument.T ∧ PersonShape,
LocationShape ← ≥1 country.T

}

The dependencies between shape names of a set of shape constraints can be represented
as a graph, which we call a shape dependency graph. With the shape dependency graph it
is possible to identify if a shapes graph is recursive. We provide the definition for shape
dependency graph, cycles and recursion in the following.

Definition 7 (Shape Dependency Graph, Cycle, Recursion). The shape dependency
graph of C is a directed graph DGC , where there is an edge (s, s,) from node s to node
s, if there is a constraint s ← φ in C such that s, occurs in φ.
A cycle of DGC is a sequence of nodes n1, . . . , nk, such that n1 = nk, each ni for 1 < i < k
occurs exactly once in S, and (ni, ni+1) for (1 ≤ i < k) is an edge in DGC .
A shapes graph (C, T ) is recursive if the shape dependency graph DGC of C contains a
cycle.

10



2.3. SHACL Validation

[T]I = V (I) [c]I = {c}
[p]I = {(v, v,) | p(v, v,) ∈ I} [p−]I = {(v, v,) | p(v,, v) ∈ I}
[E ∪ E,]I = [E]I ∪ [E,]I [E · E,]I = [E]I ◦ [E,]I

[E∗]I = {(v, v) | v ∈ V (I)} ∪ [E]I ∪ [E · E]I ∪ [E · E · E]I ∪ · · ·
[s]I = {v | s(v) ∈ I} [¬φ]I = V (I) \ [φ]I

[φ1 ∨ φ2]I = [φ1]I ∪ [φ2]I [φ1 ∧ φ2]I = [φ1]I ∩ [φ2]I

[≥n E.φ]I = {v | |{(v, v,) ∈ [E]I and v, ∈ [φ]I}| ≥ n}
[E = E,]I = {v | ∀v, : (v, v,) ∈ [E]I iff (v, v,) ∈ [E,]I}

Table 2.1: Evaluation of shape expressions

2.3 SHACL Validation
The W3C recommendation for SHACL provides semantics for the validation of con-
straints, but since the validation for recursive shapes graphs is explicitly omitted and left
to implementations, there have been several approaches to the semantics of validating
recursive SHACL graphs. In this section we present different approaches for SHACL
validation, namely the supported model semantics[CFRS19a] and the stable model se-
mantics[ACO+20], followed by a listing of tractable fragments of the SHACL language.
But before going into details of the semantics, we first define the notion of an assignment
and decorated graph.

Definition 8 (Assignment, decorated graph). An assignment A for a graph G is a set
of shape atoms such that v ∈ V (G) for each s(v) ∈ A. The set I = G ∪ A is called a
decorated graph.

2.3.1 Supported Model Semantics
In order to answer the validation problem for a data graph and a possibly recursive
shapes graph Corman et al. proposed a semantics in [CRS18] and Andresel et al. denoted
this semantics in [ACO+20] as the supported model semantics. In the supported model
semantics an RDF data graph validates to true against a shapes graph if the condition
in Definition 9 is satisfied given the evaluation function for complex shape constraints in
Table 2.1. Throughout this thesis we assume that when validating a shapes graph (C, T )
against a data graph G, constants that occur in (C, T ) also appear in G.

Definition 9 (Supported Model Semantics). Given a set of shape constraints C, a
decorated graph I is called a supported model of C, if [s]I = [φs]I for all s ← φs ∈ C.

The following examples illustrate validation under the supported model semantics.

11
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Example 10. Let (C, T ) be a shapes graph and G be a data graph defined as follows:

C = {Queen ← ∃gender .female ∧ (∃married.King ∨ ∃has.crown),
King ← ∃gender .male ∧ (∃married.Queen ∨ ∃has.crown)}

T = {King(Franz)}
G = {married(Harry,Meghan),married(Meghan,Harry),

married(Franz ,Sissi),married(Sissi,Franz),
gender(Harry,male), gender(Meghan, female)
gender(Franz ,male), gender(Sissi, female)
has(Franz , crown)}

The constraint in C state that a Queen is a female, who is either be married to a King or
has a crown. Equivalent to this a King is a male that is either married to a Queen or has
a crown. Now, consider the following shape assignments:

A1 = {King(Harry),Queen(Meghan),King(Franz),Queen(Sissi)}
A2 = {King(Franz),Queen(Sissi)}

The decorated graphs Ii = G∪Ai with 1 ≤ i ≤ 2 both satisfy the condition [φs]Ii = [s]Ii

for each shape name s occurring in C, and hence, I1 and I2 are a supported model of C.

2.3.2 Stable Model Semantics
The stable model semantics for SHACL validation proposed in [ACO+20] refines the
supported model semantics from [CRS18] by requiring that the validation of the targets
has a well-founded justification.

Definition 11 (Level assignment). Let I be a supported model. A level assignment for
I is a function level that maps tuples in {(φ, v) | v ∈ [φ]I} to integers, and satisfies the
following conditions:

(i) level(φ1 ∧ φ2, v) = max({level(φ1, v), level(φ2, v)})

(ii) level(φ1 ∨ φ2, v) = min({level(φ1, v), level(φ2, v)})

(iii) level(≥n E.φ, v) is the smallest k ≥ 0 for which there exist n nodes v1, v2, . . . , vn

such that for all 1 ≤ i ≤ n

(a) (v, vi) ∈ [E]I , vi ∈ [φ]I , and
(b) level(φ, vi) ≤ k.

Definition 12 (Stable Model Semantics). A decorated graph I is a stable model of a
set C of shape constraints, if

12
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(i) I is a supported model of C, and

(ii) there exists a level assignment such that for all s(v) ∈ I, level(φ, v) < level(s, v),
with s ← φ the constraints in C.

Every stable model is by definition also a supported model, but the converse may not be
the case. This is shown by the following example.

Example 13. Consider the shapes graph (C, T ), the data graph G and its supported
models I1 and I2 from Example 10. Model I1 has no level assignment that fulfills
the conditions of Definition 12 item (ii), hence it is not a stable models. However,
I2 is a stable models, to show that observe the following level assignment, with v ∈
{Harry,Megan,Franz ,Sissi}:

level(T, v) = 0 level(∃has.crown,Franz) = 0
level(King,Franz) = 1 level(Queen,Sissi) = 1

Note that level(φs, v) < level(s, v) for all s(v) ∈ G ∪ A2 as required.

2.3.3 Brave- and Cautious Validation

Definition 14 (Brave- and cautious validation). A data graph G is bravely valid against
a shapes graph (C, T ) under the supported (or stable) model semantics, if there exists
an assignment A such that

(i) G ∪ A is a supported (or stable) model of C, and

(ii) T ⊆ A

A data graph G is cautiously valid against a shapes graph (C, T ) under the supported
(or stable) model semantics, if for every stable model G ∪ A of C (ii) holds. C is called
consistent with G if there exists a supported (or stable) model I of C; otherwise C is
called inconsistent with G under the supported (or stable) model semantics.

Example 15. Let’s continue Example 10. The target T is contained in the supported
models with assignment A1 and A2. Hence, the data graph G bravely and cautiously,
validates the shapes graph (C, T ) under the supported model semantics. For the stable
model semantics there exist only one model, namely G ∪ A2. Since T ⊆ A2 the data
graph G bravely and cautiously validates the shapes graph (C, T ) under the stable model
semantics.

In the process of validating a data graph, we look for supported- or stable models. If
such a model exists and the targets are a subset of this model, we say the data graph is
valid against the shapes graph, otherwise the data graph is not valid. Deciding whether

13
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a data graph is valid with respect to a shapes graph is called the validation problem, we
provide the definition of it below.

Validation Problem
Input: A graph G and a shapes graph (C, T )
Question: Is G valid against (C, T )?

2.3.4 Normal form for SHACL

To ease the presentation of shapes graphs, in what follows it is assumed that shape
constraints occur in normal form, which is defined below.

Definition 16 (Normal form for constraints). A constraint is in normal form if it has
one of the following forms:

(NF1) s ← T (NF2) s ← a (NF3) s ← E = E,

(NF4) s ← ¬s, (NF5) s ← s1 ∧ · · · ∧ sn (NF6) s ←≥n E.s,

It was shown in [ACO+20] (Proposition 4.2) that a set of constrains C can be transformed
in polynomial time in a normalized set of constraints C , such that for every graph G
and target set T , G validates (C, T ) iff G validates (C ,, T ) under supported- and stable
model semantics. It can be further shown that a model I of (C, T ) can be transformed
into a model I , of (C ,, T ). Hence, both brave- and cautious validation are preserved.

Example 17. The shapes graph from Example 6 after the transformation in normal
form:

T = {MusicianShape ← Person)}
C , = {PersonShape ← PS1 ∧ PS2 ∧ PS3 ∧ PS4 ∧ PS5,

PS1 ←≥1 birthP lace.LocationShape,
PS2 ← ¬PS21,

PS21 ←≥2 birthP lace.LocationShape,
PS3 ←≥1 birthDate.T,

PS4 ← ¬PS41,

PS41 ←≥2 birthDate.T,

PS5 ←≥1 birthName.T,

MusicianShape ← MS1 ∧ MS2,

MS1 ←≥1 instrument.T,

MS2 ← PersonShape,
LocationShape ←≥1 country.T}

14
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Fragment Data Constraint Combined
L NP-complete NP-complete NP-complete
L+∨ P P P-complete
Ls NL-complete — —
Lnon−rec P-complete — —

Table 2.2: Complexity of the validation problem for different SHACL language fragments
from [CFRS19b] and [CRS18]

2.3.5 Tractable Fragments
In this section we discuss the complexity of the validation problem. In [CRS18] Corman
et al. investigates the complexity of validation for the supported model semantics. Since
the size of G and C can grow they studied two different kind of complexity, namely data
complexity (for a fixed C) and constraint complexity (for a fixed G). They come to the
conclusion that the data-, constraint- and combined complexity of solving the validation
problem for the full language of SHACL, which we denote as L is NP-complete. Further,
they showed that validation is in P (data-, constraint- and combined complexity) for the
language fragment, that disallows negation, but allows disjunction as a native operator,
denoted as L+∨ .

In [CFRS19b] Corman et al. provide data complexities for further fragments of the SHACL
language. They argue that in database literature it is usual to measure complexity in
size of the data graph, since the size of the data graph is likely to grow faster. Therefore,
Corman et al. provide the data complexity only, for the non-recursive fragment Lnon−rec

and the fragment that restricts the interplay between recursion and negation Ls. The
validation problem of both language fragments is PTIME-complete. Table 2.2 summarizes
the just mentioned complexities for the supported model semantics.

For the stable model semantics Andresel et al. reveal in [ACO+20] that the complexity
of solving the validation problem for the full language of SHACL is also NP-complete.
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CHAPTER 3
Magic Shapes Algorithm

In this chapter we introduce the magic shapes algorithm. For this purpose, we first
present the algorithm for the positive language fragment of SHACL and then extend it to
support the unrestricted interaction between recursion and negation. The magic shapes
algorithm is based on the magic set technique from logic programming and deductive
databases proposed in [FGL07] for Datalog with unstratified negation.

3.1 Algorithm for positive fragment of SHACL
The positive language fragment of SHACL contains all shape constraints of the normal
from Definition 17 except negation (NF4). Note that the normal form does not contain
explicit disjunction or universal quantification. The general idea of the algorithm is to
have a SHACL shapes graph as input and return a new SHACL shapes graph (see Figure
1.1). The produced magic shapes graph then contains only constraints relevant for the
validation of the targets. Depending on the target set, constraints may be removed
from the initial shapes graph, the remaining ones are extended with additional magic
shapes, which intuitively ensure that during validation the original constraints are only
instantiated in the relevant part of the data graph. Before discussing the individual
procedures of the algorithm we give the definition of reachable set and module, which rely
on the shape dependency graph in Definition 7. For illustration we provide an example
of a shape dependency graph below.

Example 18. This example demonstrates what the shape dependency graph looks like
for the set C containing the following constraints:

s1 ← s2 ∧ s3 s2 ← ∃r.s4

s3 ← s2 s4 ← ∃r.T
s5 ← s6 s6 ← ∃r.s2

17
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s1 s2 s6

s5s4s3

In a next step the shape names reachable from the targets are identified by means of the
shape dependency graph. Based on this set of shape names, the relevant constraints for
the validation of the targets can then be selected.

Definition 19 (Reachable Set, Module). Given a shapes graph (C, T ), where C is in
the positive fragment and DGC is the shape dependency graph of C. Let reach(C, T ) be
the smallest set of shape names such that:

(i) if s(v) ∈ T , then s ∈ reach(C, T ), and

(ii) if s(v) ∈ T and there exists an edge from s to s, in DGC , then s, ∈ reach(C, T )

The set of constraints CT = {s ← φ ∈ C | s ∈ reach(C, T )} is called the module of C
w.r.t. T .

Shape names in reach(C, T ) are said to be reachable in C from shape names in T . Example
20 illustrates the computation of the reachable set and module for the set of constraints
given in Example 18.

Example 20. Consider a shapes graph (C, T ) where C is the set of constraints from
Example 18 and the target set is T = {s1(a), s1(b)}. Then the reachable shape names
from the targets are reach(C, T ) = {s1, s2, s3, s4}. Since there exists no directed path
from s1 to s5 or s6, these shapes are not in the reachable set. The reachable set results
in the module

CT = {s1 ← s2 ∧ s3 s2 ← ∃r.s4

s3 ← s2 s4 ← ∃r.T}.

Recall that Figure 1.1 gives an overview of the input, output and procedures of the magic
shapes algorithm. Now we present the algorithm, by providing a detailed breakdown of
the functionality of the magic shapes algorithm in Algorithm 3.1 and an explanation of
the four main steps.

18
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Algorithm 3.1: Magic Shape Algorithm for positive SHACL
Input : shapes graph (C, T )
Output : Optimized shapes graph (Cmagic, T ).

1 begin
2 Cgenerate := {magic_s ← v | s(v) ∈ T} ;
3 CT := {s ← φ ∈ C | s ∈ reach(C, T )};
4 foreach s ← φ ∈ CT do
5 Cgenerated := Cgenerated∪{ Generate(s ← φs)};
6 end
7 Cmodified := {s ← magic_s ∧ φ | s ← φ ∈ CT };
8 Cmagic = Cgenerated ∪ Cmodified;
9 return (Cmagic, T );

10 end

Create magic seeds
In line 2 constraints of the form magic_s ← v, called magic seeds, are added for each
shape atom s(v) in T to the set of generated constraints Cgenerated. This process creates
magic shapes for shape atoms in the target set. By the magic seeds the validation is
narrowed to the focus nodes.

Example 21. Continuing with Example 20, the algorithm adds two constraints to the
set of generated constraints Cgenerated. Therefore, after step create magic seeds the set
Cgenerated contains the following:

magic_s1 ← a magic_s1 ← b

Modularize
The step modularize produces in line 3 the set of constraints relevant for validating the
targets, i.e. the module CT . For this purpose, the set reach(C, T ) is obtained as specified
in Definition 19. Note that the reachable set (and module) depends on the shape names
in the target set (e.g. s1 for the (C, T ) in Example 20) and not the targeted node(s) (e.g.
a and b in Example 20), therefore the module from Example 20 would not change for a
target set like T , = {s1(a)}, since it still contains only s1 as shape name.

Generation
For each reachable constraint of the targets the procedure Generate(s ← φ) creates magic
constraints in lines 4-6. Algorithm 3.2 shows the sequence of procedure Generate, namely
it generates for a constraint s ← φ new constraints of the form magic_s, ← magic_s
for each shape name s, in φ. In case the constraint connects two shapes by a path
expression E, the path expression gets additionally inverted. The generated constraints
are thereafter added to the set of generated constraints Cgenerated.
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Algorithm 3.2: Generation
1 function Generate(s ← φ) is
2 if φ =≥n E.s, then
3 return magic_s, ←≥n E−.magic_s;
4 else
5 foreach shape name s, /= s in φ do
6 return magic_s, ← magic_s;
7 end
8 end
9 end

Example 22. For the module CT of Example 20 procedure Generate described in
Algorithm 3.2 adds the following constraints to the set Cgenerated:

magic_s2 ← magic_s1 magic_s3 ← magic_s1

magic_s4 ← ∃r−.magic_s2 magic_s2 ← magic_s3.

Thus, after the lines 4 to 6 have been processed, the set Cgenerated consists of the magic
seeds and the four constraints from above.

Modification

In this step (line 3) the body of each constraint in the module CT is enhanced with a
magic version of the shape name occurring in the head of the constraint, i.e. a constraint
s ← φ is rewritten as s ← magic_s ∧ φ and added to the set of modified constrains
Cmodified. This ensures that the validation is only further executed for nodes that are
recognizes as relevant, i.e. nodes that occur in the respective magic shape atom.

Example 23. Consider again CT from Example 20, then the Modification step adds a
constraint for each constraint in the module to the set Cmodified:

s1 ← magic_s1 ∧ s2 ∧ s3 s2 ← magic_s2 ∧ ∃r.s4

s3 ← magic_s3 ∧ s2 s4 ← magic_s4 ∧ ∃r.T

The output Cmagic of the magic shapes algorithm consists of the union of the sets Cgenerated
and Cmodified. Example 24 gives an overview of the changes the magic shapes algorithm
performs on the input.

Example 24. In the following a comparison between the input set of constraints C and
the result Cmagic from previous examples is given. A discussion of each row is provided
after the table.
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C Cmagic
magic_s1 ← a
magic_s1 ← b
magic_s2 ← magic_s1
magic_s3 ← magic_s1
magic_s4 ← ∃r−.magic_s2
magic_s2 ← magic_s3

s1 ← s2 ∧ s3 s1 ← magic_s1 ∧s2 ∧s3
s2 ← ∃r.s4 s2 ← magic_s2 ∧ ∃r.s4
s3 ← s2 s3 ← magic_s3 ∧ s2
s4 ← ∃r.T s4 ← magic_s4 ∧ ∃r.T
s5 ← s6
s6 ← ∃r.s2

s1 s2 s6

s5s4s3

s1

magic
s1

magic
s3

magic
s2

s3

s2

magic
s4

s4

b

a

G = { r(a, a), r(a, c) } G = { r(a, a), r(a, c) }
A = { s1(a), s2(a), s3(a), A, = { s1(a), s2(a), s3(a),

s4(a), s5(a), s6(a), s4(a), s5(a), s6(a)}
s1(c), s2(c), s3(c),
s4(c) }

M = { magic_s1(a), magic_s1(b)
magic_s2(a), magic_s2(b)
magic_s3(a), magic_s3(b)
magic_s4(a) }

For a better overview, the set of shape constraints for the input shapes graph (C, T )
and the magic output (Cmagic, T ) are summarized in the first row. As a reminder, the
target set of the shapes graphs is T = {s1(a), s1(b)}. The second row contains the shape
dependency graphs of the constraints. As can be seen the set Cmagic no longer contains
shape names s5 and s6, but four additional magic shapes have been added to the set.
The removal of s5 and s6, the four additional magic shape constraints and the fact that
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magic_s1 refers to the target nodes narrow the validation of the data graph to what is
relevant for validating the targets s1(a) and s1(b). In order to demonstrate the difference
between the validation of C and Cmagic, the third row shows a stable model G ∪ A for C
and G ∪ M ∪ A, for Cmagic. The target set T is neither a subset of A nor of A,, therefore
the data graph G does not (bravely and cautiously) validate the shapes graphs (C, T )
and (Cmagic, T ).

As this example shows, the returned set of magic shape constraints Cmagic might contain
disjunction, in the sense that several constraints with the same shape name in the head
may occur in Cgenerated. This can be rewritten as disjunction or with conjunction and
negation if it is required in normal form.

3.2 Extended Algorithm for Full SHACL

To determine whether the validation of the targets is affected by inconsistencies, it is
necessary to check whether the targets are associated with so-called odd cycles. An odd
cycle is a cyclic dependency with an odd number of negated predicates, in the database-
literature it is well-known that this causes inconsistencies [LZ04]. In the following, first
the notion of dangerous shape names is introduced and then the magic shapes algorithm
is extended to consider these dangerous shapes.

3.2.1 Dangerous Shapes

Dangerous shape names are shape names involved with odd cycles and can therefore lead
to inconsistencies during validation of a data graph. But before defining dangerous shape
names a definition for odd cycles and an example to illustrate them are provided below.

Definition 25 (Odd cycle). An edge (s, s,) of the shape dependency graph DGC of C
is marked if s ← ¬s,. An odd cycle in DGC is a cycle, where an odd number of edges are
marked.

Example 26. This example illustrates the shape dependency graph and its odd cycles
for the set of constraints C with the following constraints:

s1 ← ¬s1 ∧ s2 s2 ← s3

s3 ← ∃r.¬s4 s4 ← ∃r.¬s3

s5 ← s4 ∧ ¬s6 s6 ← s4 ∧ ¬s5

The corresponding shape dependency graph with the marked edges in red is shown below.
It has three cycles, but only the cycle involving s1 has an odd number of marked edges.
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s1 s2 s5

s4s3 s6

The following definition specifies when a shape name is identified as dangerous, which is
the case if the shape name occurs directly in an odd cycle or is associated with an odd
cycle in the dependency graph.

Definition 27 (Dangerous shape name). Let DGC be a shape dependency graph of a
set of constraints C. A shape name s is dangerous if

(i) s occurs in an odd cycle of DGC , or
(ii) there exists an edge (s,, s) in DGC where s, is dangerous

Example 28. Consider the set of shape constraints C from Example 26. This set has
one odd cycle, which involves the shape name s1. Since s1 is dangerous and depends on
s2, s2 depends on s3 and s3 on s4, the shape names s1 to s4 become dangerous. The
figure below shows the shape dependency graph with its dangerous shapes in red.

s1 s2 s5

s4s3 s6

The following example demonstrates that the magic shapes algorithm for the full SHACL
language must take dangerous shape names into account in order to preserve cautious-
completeness and brave-soundness for consistent inputs. The completeness property
means that if a data graph G validates a shapes graph (C, T ), then G also validates
(Cmagic, T ) and soundness means if G validates (Cmagic, T ), then G validates (C, T ).

Example 29. Consider a data graph G = {r(a, a)} and a document (C, T ) where C is
the set of constraints from Example 26 and the target set T = {s4(a)}. Then there exists
two supported models that also coincide with the stable models, which are

I1 = {r(a, a), s4(a), s5(a)} and
I2 = {r(a, a), s4(a), s6(a)}.

Since the target set is a subset of both models, the data graph is both bravely and
cautiously valid.
Now to compare this result of the validation with the output of the magic shapes algorithm
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from Section 3.1, the set of magic constraints Cmagic is computed. The reachable set
contains the shape names s3 and s4. Consequently, the module of the shapes graph is
the set CT = {s3 ← ∃r.¬s4, s4 ← ∃r.¬s3} and the resulting magic shapes graph Cmagic
consists of the constraints below:

magic_s4 ← a

magic_s4 ← ∃r−magic_s3

magic_s3 ← ∃r−magic_s4

s3 ← magic_s3 ∧ ∃r.¬s4

s4 ← magic_s4 ∧ ∃r.¬s3

This transformed set of shape constraints likewise has two supported (and stable) models:

I ,
1 = {r(a, a),magic_s3(a),magic_s4(a), s4(a)} and
I ,

2 = {r(a, a),magic_s3(a),magic_s4(a), s3(a)}.
Different from the supported (or stable) models of G and C, not both models of G and
Cmagic contain the target s4(a) and thus G is also bravely valid against (Cmagic, T ), but
not cautiously.
There are also cases were G bravely validates (Cmagic, T ), but not cautiously. For instance,
consider again the graph G and the shapes graph (C, T ,), with the target set T , = {s3(a)}.
Since the data graph and the set of constraints have not changed, the supported (or
stable) models I1 and I2 remain the same. The target set T , is neither contained in I1
nor in I2, therefore G is neither bravely nor cautiously valid against the shapes graph
(C, T ,). When applying the magic shapes algorithm on the shapes graph (C, T ,), the
output C ,

magic contains the same constraints as above, except for the magic seed, which is
magic_s3 ← a due to the change of the target. Then the supported (or stable) models of
(C ,

magic, T
,) are:

I ,
3 = {r(a, a),magic_s3(a),magic_s4(a), s4(a)} and
I ,

4 = {r(a, a),magic_s3(a),magic_s4(a), s3(a)}.
Although the target set T , is not a subset of I1 and I2, it is contained in model I ,

4, which
means that (C ,

magic, T
,) bravely validates the graph G and (C, T ,) does not.

As Example 29 illustrates, the magic shapes algorithm from Section 3.1 is not cautious-
complete and brave-sound for the full SHACL language. In order to maintain cautious-
completeness and brave-soundness for the unrestricted language the magic shapes algo-
rithm is extended to take dangerous shapes into account. For this purpose Definition 19
for reachable sets is extended by item (iii) below. The extended definition for reachable
shape names takes into account not only the dependency from the head to the body, but
also the reverse direction for dangerous shape names in the body.

Definition 30 (Extended Reachable Set, Module). Given a shapes graph (C, T ), exReach(C, T )
is the set of extended reachable shape names in C from shape names in T such that:
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(i) if s(a) ∈ T , then s ∈ exReach(C, T ),

(ii) if s(a) ∈ T and there exists an edge from s to s, in DGC , then s, ∈ exReach(C, T ),
and

(iii) if s ∈ exReach(C, T ), s, is dangerous and there exists an edge from s, to s in DGC ,
then s, ∈ exReach(C, T ).

The set of constraints CT = {s ← φ ∈ C | s ∈ exReach(C, T )} from C is called a module
of C w.r.t. T .

By extending the reachable set, the module CT is consequently enhanced by constraints
with a dangerous shape name in the head. These are then processed by Generate, but
this alone is not enough. Therefore the function Generate is expanded by a second part
(see Algoritm 3.3 lines 9-16), which generates magic shapes also for the body to head
direction of constraints with dangerous shape names. The following example demonstrates
the extended version of the magic shapes algorithm.

Algorithm 3.3: Extended Generation
1 function Generate(s ← φ) is
2 if φ =≥n E.s, then
3 return magic_s, ←≥n E−.magic_s;
4 else
5 foreach shape name s /= s, in φ do
6 return magic_s, ← magic_s;
7 end
8 end
9 if s is dangerous then

10 if φ =≥n E.s, then
11 return magic_s ←≥n E.magic_s,;
12 else
13 foreach shape name s /= s, in φ do
14 return magic_s ← magic_si;
15 end
16 end
17 end

Example 31. Consider G = {r(a, a)} and (C, T ) from Example 29. The shapes graph
has s1 to s4 as dangerous shape names and consequently the extended reachable set
contains s1 to s4 (note that this does not necessarily have to be the same set). Accordingly
the module is CT = {s1 ← ¬s1 ∧ s2, s2 ← s3, s3 ← ∃r.¬s4, s4 ← ∃r.¬s3} based on which
the magic shapes algorithm yields the constraints listed in column Cmagic of the table
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below. (The highlighted rows show the constraints added by the extended version of
procedure Generate (see Algorithm 3.3)).

C Cmagic
magic_s4 ← a
magic_s2 ← magic_s1
magic_s1 ← magic_s2
magic_s3 ← magic_s2
magic_s2 ← magic_s3
magic_s4 ← ∃r−.magic_s3
magic_s3 ← ∃r.magic_s4
magic_s3 ← ∃r−.magic_s4
magic_s4 ← ∃r.magic_s3

s1 ← ¬s1 ∧ s2 s1 ← magic_s1 ∧ ¬s1 ∧ s2
s2 ← s3 s2 ← magic_s2 ∧ s3
s3 ← ∃r.¬s4 s3 ← magic_s3 ∧ ∃r.¬s4
s4 ← ∃r.¬s3 s4 ← magic_s4 ∧ ∃r.¬s3
s5 ← s4 ∧ ¬s6
s6 ← s4 ∧ ¬s5

The shapes graph (Cmagic, T ) has a unique stable model

I = {r(a, a),magic_s1,magic_s2,magic_s3,magic_s4, s4(a)}.

Since the target T is contained in I the data graph both bravely and cautiously validates
(Cmagic, T ) as it validates (C, T ).
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CHAPTER 4
Correctness

This chapter provides a correctness proof for the magic shapes algorithm. For a given
shapes graph (C, T ), the algorithm described in Chapter 3 outputs a new shapes graph
(Cmagic, T ) where Cmagic is the union of Cgenerate and Cmodified. By Cgenerate the set of
constraints of the form magic_s ← φ and by Cmodified the modified constraints from
C are denoted. The correctness proofs guarantee that on consistent C validation of a
data graph G against (C, T ) and (Cmagic, T ) coincides for supported- and stable model
semantics. Otherwise, the algorithm ensures cautious-completeness and brave-soundness
of validation. In order to show these statements the following lemma is provided first:

Lemma 32. Let G be a data graph and let (C, T ) be a shapes graph, where C is in
the positive fragment. Then, there exists a unique assignment A, such that G ∪ A is an
unique stable model of C.

Proof. By a simple inspection of the constraints in C can be observed that the claim
holds. In particular, we observe that the constraints in C are positive, that is they do
not contain negation, and hence a stable model must exist, which is unique.

From Lemma 32 it follows that there exists an unique stable model for Cgenerate, since
procedure Generate does not produce constraints of the form (NF4) and hence Cgenerate
falls in the positive fragment. Note that there may be more supported models for a set
Cgenerate, but there is a unique one that has a level assignment. The level assignment
assures minimality of a supported model I = G ∪ M of Cgenerate, that means for any
other supported model with assignment M , it holds that M ⊂ M ,. In particular, the
stable model of Cgenerate produces an overestimation of the necessary atoms to validate
the target(s) against the set of constraints C for both the stable and supported model
semantics. These atoms are marked with a ’magic’ prefix and in this way preselected for
the actual validation by Cmodified.
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4. Correctness

Ground Constraints
In order to show the correctness of the magic shapes algorithm, we show that the magic
shape constraint Cmagic defines some kind of module, that is independent from the rest
of the constraints in C. For this purpose we introduce the notion of ground constraints.
Intuitively ground constraints instantiate shape constraints at a node v or a pair of nodes
(v, v,).

Definition 33 (Ground Constraints). A ground constraint is a tuple (s ← φ, v), if
s ← φ is a constraint of the form (NF1)-(NF5) and a tuple (s ← φ, (v, v,)), if s ← φ is
a constraint of the form (NF6), where v, v, are nodes from N. We say (s ← φ, v) (or
(s ← φ, (v, v,))) is the grounding of s ← φ w.r.t. v (or (v, v,)).

In the following we provide the definition for grounding a set of shape constraints with
respect to a data graph.

Definition 34 (Grounding). Given a data graph G and a set of constraints C, the
grounding Cgr of C w.r.t. G is a set of ground constraints obtained for each s ← φ ∈ C,
such that

• if s ← φ is of the form (NF1)-(NF5), then (s ← φ, v) is in Cgr for each v ∈ V (G),

• if s ← φ is of the form (NF6), then (s ← φ, (v, v,)) is in Cgr for each v, v, ∈ V (G).

Next the definition for supported- and stable models for ground constraints is given. This
allows the validation of ground constraints.

Definition 35 (Supported-, Stable Model of Ground Constraints). A decorated graph I
is a supported model of a set of ground constraints Cgr if [s]I = [φs]I for each shape
name s occurring in Cgr and for each v ∈ [s]I there exists in Cgr a ground constraint
(s ← φ, v) or (s ← φ, (v, v,)). I is a stable model of Cgr if it is a supported model of Cgr ,
and there exists a level assignment such that level(φs, v) < level(s, v) for all s(v) ∈ I.

From this definition the following lemma immediately holds, since the grounding of a set
of shape constraints C with respect to a data graph G instantiates every constraints in
C with every node in V (G).

Lemma 36. Let G be a data graph and let C be a set of constraints. Then I is a
supported (or stable) model of C iff I is a supported (or stable) model of Cgr.

Independent Shape Constraints
In this section we define the notion of independence, i.e. a set of ground constraints is
independent of another set of ground constraints. This definition is based on the notion
for ground ASP programs in [EGM97] by Eiter et al. and splitting sets in [LT99] by
Lifschitz et al.
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Definition 37 (Shape Domain, Independent Constraints). Given a set of ground con-
straints Cgr , the shape domain of Cgr , written as SDom(Cgr), is the set of shape atoms
s(v) such that one of the following holds:

• (s ← φ, v) is in Cgr , or

• (s, ← φ, v) is in Cgr and s occurs in φ, or

• (s ← φ, (v, v,)) is in Cgr , or

• (s, ← φ, (v,, v)) is in Cgr and s occurs in φ.

Let C1 and C2 be sets of ground constraints. Then C1 is independent of C2 if it is not
the case that there is a shape name s of a ground constraint (s ← φ, v) or of the form
(s ← φ, (v, v,)) in C2 such that s(v) occurs in SDom(C1).

This definition states that C1 is independent of C2 whenever the grounded shape name
in the head of any constraint in C2 does not occur at all in the ground constraints of C1.
This has the effect that the constraints in C1 may have an impact on the constraints of
C2 but not the other way around.

Theorem 38. Let G be a data graph and let Cgr be the grounding of C w.r.t. G.
Moreover, let C1 and C2 be such that Cgr = C1 ∪ C2 and C1 is independent of C2. Let
M = SDom(C1). Then, for every supported (or stable) model I = G ∪ A of Cgr it is the
case that G ∪ (A ∩ M) is a supported (or stable) model of C1.

Proof. First we show the claim for the supported model semantics and then for supported
models with a level assignment. Let I = G ∪ A be a supported model of Cgr and let
I1 = G ∪ (A ∩ M). We need to show that I1 is a supported model of C1, that is: 1)[s]I1 = [φs]I1 for each shape name s occurring in C1, and 2) for each v ∈ [s]I1 there
exists a ground constraint (s ← φ, v) or (s ← φ, (v, v,)) in C1.

To show 1), first note that since C1 is independent from C2, it is the case for each node
v ∈ [s]I1 that all the ground constraints (s ← φ, v) or (s ← φ, (v, v,)) that appear in Cgr
appear also in C1. Thus there is a unique φs that is the definition of s in both Cgr and
C1, which is in fact also its definition in C. Now, let s be an arbitrary shape name in C1
and let v be an arbitrary node in V (G). It is left to show that v ∈ [s]I1 if and only if
v ∈ [φs]I1 . For (⇒), let s(v) ∈ I1. This implies that s(v) ∈ A and s(v) ∈ M . The first
implies that v ∈ [φs]I . Let φ be an arbitrary disjunct in φs such that v ∈ [φ]I . It is
left to show that v ∈ [φ]I1 . The claim trivially holds for φ as in (NF1), (NF2) or (NF3).
If φ is of the form ¬s,, as in (NF4), then s,(v) must not be in I and hence it is not in
A, which implies that v ∈ [¬s,]I1 . If φ is a conjunction of shape names s1, . . . , sn, as in
(NF4), then each si(v) is in A. Since (s ← s1 ∧ · · · ∧ sn, v) is in Cgr , then it must also be
in C1, which implies that each si(v) is also in M , and hence also in I1. Finally, for φ of
the form ≥n E.s,, as in (NF6), reasoning as in the previous case, there must be at least n
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4. Correctness

nodes vi with an E-path from v such that s,(vi) in A. Since the grounding is with respect
to every node in V (G), for each such vi there is a ground constraint (s ← ≥n E.s,, (v, vi))
in Cgr , and since C1 is independent of C2, each such ground constraint is also in C1.
Hence, by the definition of the shape domain of C1, s,(vi) is in M for each such node
vi. From these observations follows that s,(vi) is in A ∩ M for each vi, which shows that
v satisfies ≥n E.s, in I1. For (⇐), v ∈ [φs]I1 implies v ∈ [φs]I . Since I is a supported
model of Cgr , it follows that v ∈ [s]I . That is, there is some ground constraint (s ← φ, v)
or (s ← φ, (v, v,)) that appears in Cgr , and hence, it also appears in C1. It follows that
s(v) is also in M , and hence also in I1.

To show 2), note that s(v) is in M , so there is some constraint with s in the head or the
body and v in the corresponding position, as in Definition 37. Note that it cannot occur
in a body only, since there must be some constraint with s in the head and grounded
with v in either C1 or C2, but as C1 is independent from C2, it cannot be in C2.

For the stable model semantics, it is clear that if I has a level assignment, then I1 ⊆ I
also has a level assignment.

Independent Magic Shape Constraints
In the following we show that the supported or stable models of Cmagic are also supported
or stable models of the grounding of the module CT with the nodes in the stable model
of Cgenerate, i.e. the nodes with a “magic” prefix, and vice versa.

Lemma 39. Let G be a data graph, let (C, T ) be a shapes graph and let G ∪ M be
the stable model of Cgenerate. For each shape name s such that magic_s is in M let
Ns = {v | magic_s(v) ∈ M}. Let CT,gr be the set of ground constraints obtained by
grounding every constraint s ← φ in CT as follows:

• if s ← φ is of the form (NF1) to (NF5), then (s ← φ, v) ∈ CT,gr for each v ∈ Ns,

• if s ← φ is of the form (NF6), then (s ← φ, (v, v,)) ∈ CT,gr for each v, v, with
v ∈ Ns and v, ∈ Ns, ,

Then, the following hold under supported and stable model semantics:

(1) if I is a model of Cmagic, then I \ M is a model of CT,gr , and

(2) if I is a model of CT,gr , then I ∪ M is a model of Cmagic.

Proof. For (1), let I be a supported model of Cmagic and let s be an arbitrary shape name
occurring in the constraints of Cmodified. Then, it is the case that [s]I = [φs ∧ magic_s]I

and [s]I ⊆ Ns. Clearly, s ← φs is also the definition of s in CT and by construction, for
each v ∈ Ns and for each constraint s ← φ in CT , there is a ground constraint (s ← φ, v)
or (s ← φ, (v, v,)) in CT,gr . By the definition of models of ground constraints, it follows

30



that I \ M is also a model of CT,gr . For the stable model semantics, the existence of a
level assignment for I \ M in item (1) is trivial.

For (2), let I be a model of CT,gr . Then, [s]I = [φs]I and [s]I ⊆ Ns. Since Ns

contains all the nodes appearing in atoms over magic_s in M , follows that I ∪ M
is a model for Cgenerate and for Cmodified. It is left to show that if I = G ∪ A has a
level assignment, then I ∪ M has a level assignment. Since G ∪ M is the stable model
of Cgenerate, there is a level assignment for the atoms with magic as prefix such that
level(φmagic, v) < level(magic_s, v) for every magic_s(v) ∈ M , with magic_s ← φmagic
a constraint in Cgenerate. Let LG be an assignment, where the atoms from G are assigned
integer 0, and let l be the integer of the highest ranked shape atom in LG. Furthermore,
let L, be a level assignment for I. We define LM which assigns to each shape atom α in
A an integer i + l, where i is the level assigned to the atom α in L,. Clearly, the level
assignment composed of LG and LM is as desired.

The next lemma states that the ground constraints CT,gr obtained from Cmagic are
independent from the rest of the grounding Cgr.

Lemma 40. Let G be a data graph and let Cgr be the grounding of C w.r.t. G. Then,
CT,gr is independent of Cgr \ CT,gr .

Proof. Towards a contradiction, let (s ← φ, v) or (s ← φ, (v, v,)) be in Cgr \ CT,gr and
assume that s(v) occurs in SDom(CT,gr). By Lemma 39 follows that magic_s(v) is in
M , where G ∪ M is the stable model of Cgenerate. From that follows that the constraint
s ← φ appears in CT and by Lemma 39 there exists a ground constraint (s ← φ, v) or
(s ← φ, (v, v,)) in CT,gr , thus deriving a contradiction to the initial assumption.

Now we present the main lemma, that puts all the previous definitions and lemmas
together to show that each supported (or stable) model of C can be modified, such that
they become a supported (or stable) model of Cmagic. And for consistent C it shows that
the supported (or stable) model of Cmagic can also be modified to obtain a supported (or
stable) model for C.

Lemma 41. Let G be a data graph and let (C, T ) a shapes graph. Assume G ∪ M is
the stable model of Cgenerate and M , = {s(v) | magic_s(v) ∈ M}. Then, the following
hold under supported- and stable model semantics:

(1) if I = G ∪ A is a model of C, then I , = G ∪ M ∪ A, is a model of Cmagic, where
A, = A ∩ M ,, and

(2) if C is consistent with G and I , = G ∪ M ∪ A, is a model of Cmagic, then there exists
an A such that I = G ∪ A is a model of C and A, = A ∩ M ,.
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Proof. For item (1), we again show the claim first for supported models and then for
models with a level assignment. By Lemma 36 it follows that I is a model of the grounding
of C w.r.t. G, i.e. Cgr . By Lemma 40 follows that CT,gr is independent of Cgr \ CT,gr ,
where CT is the module of C w.r.t. T , and CT,gr is the grounding of CT w.r.t. the stable
model G ∪ M of Cgenerate as defined in Lemma 39. This observation and Theorem 38,
imply that G ∪ (A ∩ M ,) is a supported model of CT,gr , which together with Lemma 39,
item (2), imply that I , = G ∪ (A ∩ M ,) ∪ M is a supported model of Cmagic. For the
stable model semantics, it is left to show that I , has a level assignment if I has a level
assignment. For that we argue analogously to the proof of Lemma 39 item (2), that is
we can combine the level assignments for G ∪ M and I into a level assignment for I ,.
For item (2), similarly as above, we first show the claim for supported models and argue
about the existence of a level assignment. Let I , = G ∪ M ∪ A, be a supported model of
Cmagic. By Lemma 39, item (1), follows that I , \ M , i.e. G ∪ A, is a supported model of
CT,gr . Since CT,gr is independent from Cgr \ CT,gr , we know that for every supported
model I = G ∪ A of Cgr it is the case that G ∪ (A ∩ M ,) is a supported model of CT,gr,
from which follows that A, = A ∩ M ,. It is left to show that such an A exists, which
we argue similarly as in the proof of Theorem 3.4 in [FGL07]: in a nutshell, we show
that there is no constraint participating in an odd cycle in Cgr \ CT,gr that ‘kills’ the
assignment A, of CT,gr .
To this aim, let Codd,gr denote the set of all ground constraints (s ← φ, v) or (s ← φ, (v, v,))
in Cgr \ CT,gr , where s is a dangerous shape name. This means that Codd,gr contains
all ground constraints from Cgr \ CT,gr with a dangerous shape name s in the head
that participates either in an odd cycle, is reachable from an odd cycle, or reaches an
odd cycle (see Definition 27 for dangerous shape names). It follows that the shape
domain SDom(Codd,gr) ∩ SDom((Cgr \ CT,gr) \ Codd,gr) = ∅. Moreover, we show that
SDom(Codd,gr) ∩ SDom(CT,gr) = ∅. By Definition 37, there is no ground constraint
(s ← φ, v) or (s ← φ, (v, v,)) in Codd,gr with s(v) ∈ SDom(CT,gr) since CT,gr is independent
of Cgr \ CT,gr and Codd,gr is contained in Cgr \ CT,gr . Assume towards a contradiction
that there is a ground constraint (s ← φ, v) or (s ← φ, (v, v,)) in Codd,gr with s, in φ of
the constraint s ← φ such that s,(v) ∈ SDom(CT,gr). First, we observe that since s of
such a constraint (s ← φ, v) or (s ← φ, (v, v,)) in Cgr is dangerous, then s ← φ must
also also be dangerous in C, and by definition, the shape name s, occurring in φ is also
dangerous. Since s,(v) ∈ SDom(CT,gr) by Definition 37, there is a constraint such that at
least one of the following holds:

• (s,, ← φ,,, v) is in CT,gr and s, = s,,, or
• (s,, ← φ,,, v) is in CT,gr and s, occurs in φ,,, or
• (s,, ← φ,,, (v, v,)) is in CT,gr and s, = s,,, or
• (s,, ← φ,,, (v,, v)) is in CT,gr and s,, occurs in φ,,.

Thus, in s,, ← φ,, either s,, is dangerous or it contains a dangerous shape name in φ,,.
Hence, by Definition 30, s ← φ is present in the module CT and by Definition 33, CT,gr
contains the ground constraint (s ← φ, v) or (s ← φ, (v,, v)) and is therefore not in
Codd,gr , deriving a contradiction.

32



From the above observations it follows that the shape domain of Codd,gr has no intersection
with the shape domain of the rest of the constraints in Cgr . Since Cgr is consistent, it
follows that there exists a supported model of Codd,gr . Let G ∪ Aodd be that supported
model. Note that the rest of the set of ground constraints, that is (Cgr \ CT,gr) \ Codd,gr
does not contain any odd cycles. It is known from answer set programming that programs
that do not contain any odd cycles are consistent [Dun92], which means they admit a
supported model. This result can be lifted to SHACL by results from Andresel et al. in
[ACO+20], which showed that a shapes graph can be translated into a logic program
with negation that preserves validation under the stable and supported model semantics.
These transformation does not change the parity of negation in cyclic dependencies of
shape names. Hence, a shape name s appears in a cycle with an odd number of negative
edges if and only if the corresponding unary atom over s appears in a cycle with an odd
number of negative edges in the translated logic program. So, since (Cgr \ CT,gr) \ Codd
has no odd cycles, we know it has a supported model. Let G ∪ Arest be that supported
model. It then follows that G∪Arest ∪A, ∪Aodd is a supported model of Cgr . By Lemma
36 it holds that I = G ∪ A where A = A, ∪ Arest ∪ Aodd is a supported model of C.
Neither Aodd nor Arest have any atoms from M ,, so A, = A ∩ M ,. This completes the
proof for the supported model semantics.

For the stable model semantics, it remains to argue that there is a level assignment for
I. We know that there are level assignments for each of G ∪ Arest , G ∪ Aodd and G ∪ A,.
Since Arest and Aodd are disjoint, and they are both disjoint from A,, we can combine
them into a level assignment for I.

Intuitively, the above theorem states that every stable model of C can be converted into
a stable model of Cmagic by restricting the set of shape atoms to those defined by the
magic part of Cmagic. And every stable model of Cmagic can be extended into a stable
model of C, after removing the magic shape atoms. Moreover, Theorem 41 implies the
following corollary.

Corollary 42. Let G be a data graph and let (C, T ) be a shapes graph. Then, C is
consistent with G implies that Cmagic is consistent with G.

Finally, the relationship between a set of shape constraints C and the produced set of
magic shape constraints Cmagic for a given target set T is establish.

Theorem 43. Let G be a data graph and let (C, T ) be a shapes graph. Then, the
following hold:

(1) if G bravely validates (C, T ), then G bravely validates (Cmagic, T ),

(2) if G cautiously validates (Cmagic, T ), then G cautiously validates (C, T ), and

(3) if C is consistent with G, then G validates (Cmagic, T ) iff G validates (C, T ), under
both brave and cautious validation.
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Proof. For (1), suppose I = G ∪ A is a stable model of C and T ⊆ A. Observe that
for every such atom there exists a constraint of the form magic_s ← v in Cmagic, and
particularly in Cgenerate. Hence, magic_s(v) is in the stable model G ∪ M of Cgenerate for
each s(v) ∈ T and by definition it follows that s(v) ∈ M ,. From the above observations
and by Lemma 41 item (1) it follows that I , = G ∪ M ∪ A,, where A, = A ∩ M ,, is a
stable model of Cmagic and since T ⊆ M and T ⊆ A it follows that T ⊆ A,, therefore it
holds that G bravely validates (Cmagic, T ).

For (2), the claim trivially holds for the case where C is not consistent with G. Otherwise,
suppose G cautiously validates Cmagic. Then, either (a) Cmagic is not consistent with
G, which by Corollary 42 implies that C is not consistent with G, and thus the claim
trivially follows, or (b) Cmagic is consistent with G and I , is a stable model of Cmagic and
T ⊆ A for each I ,. For the latter, let I , = G ∪ M ∪ A, be an arbitrary stable model of
Cmagic such that T ⊆ A,. By Lemma 41 item (2) it is the case for consistent C that there
is a stable model I = G ∪ A where A, = A ∩ M ,, G ∪ M is the stable model of Cgenerate
and M , = {s(v) | magic_s(v) ∈ M}. Since A, ⊆ A it follows that T ⊆ A.

For (3), C is consistent with G implies Cmagic is consistent with G. It suffices to show (4)
if G bravely validates (Cmagic, T ), then G bravely validates (C, T ), and (5) if G cautiously
validates (C, T ), then G cautiously validates (Cmagic, T ). Then, (4), (5) together with (1)
and (2) show the correctness of the claim. For (4), suppose I , = G ∪ M ∪ A is a stable
model of Cmagic. Then, arguing as above by Theorem 41, item (2), let a shape assignment
A be such that I = G ∪ A is a stable model of C, where A, = A ∩ M ,, G ∪ M is the
stable model of Cgenerate and M , = {s(v) | magic_s(v) ∈ M}. By assumption T ⊆ A,,
and since A, ⊆ A, it follows that I contains T and hence I is a stable model of C, which
shows the claim. For (5), towards a contradiction assume I , = G ∪ M ∪ A, is a stable
model of Cmagic such that s(v) /∈ A,, for some shape atom s(v) ∈ T . Then, let a shape
assignment A be such that A ∩ M = ∅ and I = G ∪ A is a stable model of C, where
A, = A ∩ M ,, G ∪ M is the stable model of Cgenerate and M , = {s(v) | magic_s(v) ∈ M}.
Such a shape assignment must exist by Theorem 41 item (2). By assumption s(v) /∈ A,,
and s(v) cannot be in A either since s(v) ∈ M , because magic_s(v) ∈ M . It follows
that I is not a stable model of C, which contradicts the assumption that G cautiously
validates (C, T ).

The proof for supported model semantics is identical, since the essential Lemma 41 also
holds for the supported model semantics.

For the positive fragment of SHACL, brave and cautious validation coincide as Lemma
32 shows that there exists exactly one stable model for C in the positive fragment.
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CHAPTER 5
Inconsistency-tolerant Validation

The previous chapters indicate that there are cases were a data graph might not be
consistent with a shapes graph (C, T ), but it may nevertheless be consistent with the
output shapes graph (Cmagic, T ) of the magic shapes algorithm. This suggests that
the parts of the data- and shapes graph causing the inconsistency are not relevant for
validating the targets. As the size of RDF data graphs increases, the likelihood of such
situations occurring also increases. The 2-valued semantics considered in this thesis
require a total assignment i.e. a node of the data graph is neither assigned to a shape or
its negation. Until here a shape atom s(v) is considered as negated if it does not occur in
the assignment. In [CRS18] Corman et al. separate the definition for assignment and total
assignment. Further, they define validation based on the notion of a faithful assignment
or strictly-faithful assignment. The evaluation of 3-valued assignments in [ACO+20]
corresponds to the notion of a strictly-faithful assignment, whereas the inconsistency-
tolerant validation in this chapter is based on the notion of faithful assignment. Hence,
3-valued assignments have been proposed, but no good validation algorithm exists. The
magic shapes algorithm can be deployed to decide for a 3-valued model. To this aim we
first introduce a new definition for assignment, which makes negated atoms explicit to
allow shape atoms to be undefined.

Definition 44 (Literal assignment). A literal assignment A for a graph G is a set of
shape atoms of the form s(v) or ¬s(v) where s ∈ S and v ∈ V (G).

A shape atom s(v) ∈ A is called undefined if for a shape name s occurring in C and a
node v ∈ V (G) it is the case that {s(v),¬s(v)} ∩ A = ∅.

In the following 3-valued models for the supported and the stable model semantics are
defined based on the literal assignment.
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Definition 45 (3-valued supported model). Assume a set of shape constraints C and a
literal assignment A for G. Then I = G ∪ A is called a 3-valued supported model of C if
for each s ← φs ∈ C and for each node v ∈ V (G)

(i) if s(v) ∈ I, then v ∈ [φ]I , and

(ii) if ¬s(v) ∈ I, then v /∈ [φ]I .

Definition 46 (3-valued stable model). Assume a set of shape constraints C and a
literal assignment A for G. Then I = G ∪ A is called a 3-valued stable model of a set of
constraints C if

(i) I is a 3-valued supported model of C

(ii) there exists a level assignment for I such that for all s(v) ∈ I, level(φ, v) < level(s, v),
with s ← φ the constraints in C.

Definition 47 (Validation). A graph G is valid against a document (C, T ) under 3-valued
supported (or 3-valued stable model) semantics if there exists a literal assignment A such
that

(i) G ∪ A is a 3-valued supported resp. stable model of C, and

(ii) T ⊆ A

Note that every 2-valued supported- (or stable) model G ∪ A of a set of constraint C can
be translated into a 3-valued supported (resp. 3-valued stable) model G ∪ A,. In order
to do so let A, extend A by the negated version of each shape atom s(v) /∈ A with s a
shape name appearing in C and v a node in V (G).

The magic shapes algorithm provides an efficient method to validate a shapes graph
under the 3-valued semantics. The models of the magic shapes graph can be seen as
3-valued models, where shape atoms relevant for validating the targets are identified by
Cgenerate. The shape atoms of the model for Cgenerate are assigned either true or false and
all remaining atoms are left undefined, since they are irrelevant for the validation of the
targets.

Lemma 48. Let G be a data graph, let C be a shapes graph, and let I , = G ∪ M ∪ A,

be a supported (or stable) model of Cmagic, where G ∪ M is the stable model of Cgenerate.
Let M , = {s(v) | magic_s(v) ∈ M}. Then, I = G∪A is a 3-valued supported (or stable)
model of C, where

A = A, ∪ {¬s(v) | s(v) ∈ M , \ A,}

Proof. In order to show that I = G∪A is a 3-valued supported model we need to show that
(i) if s(v) ∈ I, then v ∈ [φ]I , and (ii) if ¬s(v) ∈ I, then v /∈ [φ]I . Let I , = G ∪ M ∪ A,
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be a supported model of Cmagic, it follows that [s]I, = [magic_s]I, ∩ [φ]I, for each
constraint s ← magic_s ∧ φ ∈ Cmagic. Note that the evaluation of shape expressions
is not affected by additional negated shape atoms (see Table 2.1), hence the equality[φ]I = [φ]I, holds. For positive shape atoms s(v) ∈ I, we know that s(v) ∈ A,, which
implies that v ∈ [φ]I . For the negated shape atoms of the form ¬s(v) ∈ A, we know that
s(v) is in M , but not in A,, which implies that v /∈ [φ]I .

To prove it for the 3-valued stable model semantics it is left to show that I has a level
assignment such that for all s(v) ∈ I it holds that level(φs, a) < level(s, a). Let I , be
a stable model of Cmagic, then it has a level assignment where level(magic_s ∧ φs) =
max({level(magic_s), level(φs)}) < level(s, v) for all s(v) ∈ I ,. From this observation
follows that level(φs) < level(s, v) for all s(v) ∈ I ,. By construction of I every s(v) in I
is also in I ,, therefore for all s(v) ∈ I it holds that level(φs) < level(s, v).

Theorem 49. Let G be a data graph, let (C, T ) be a shapes graph. Then, if G validates
(Cmagic, T ) under the supported (or stable) model semantics, then G validates (C, T )
under the 3-valued supported (or stable) model semantics.

Proof. Let I = G ∪ M ∪ A, be a stable model of Cmagic and T ⊆ A. Then G is valid
against a shapes graph (C, T ) under the 3-valued supported (or stable) model semantics
if (i) I is a 3-valued supported- or stable model and (ii) T ⊆ A. By Theorem 48
(i) holds, since G ∪ A is a 3-valued supported model (or stable model) of C, where
A = A, ∪ {¬s(v) | s(v) ∈ M , \ A,} and M , = {s(v) | magic_s(v) ∈ M}, and (ii) holds by
assumption.

The converse does not hold as can be seen by the following counter example. This is
the case because the magic shapes technique provides a stronger inconsistency-tolerant
validation than arbitrary 3-valued models.

Example 50. Consider a shapes graph (C, T ) and a data graph G defined as follows:

C = {s ← s, ∧ ¬s, s, ← ∃r.T}
T = {s,(a)}
G = {r(a, b)}

Then G ∪ {s,(a)} is a 3-valued supported (or stable) model of C that validates the target
T . But it is not a 2-valued supported (or stable) model of Cmagic, because shape name s
is involved in an odd cycle and is therefore dangerous. Since s, occurs in the body of
s ← s, ∧ ¬s, the constraint is also contained in CT by Definition 30. Based on this the
magic output contains the constraint s ← magic_s ∧ s, ∧ ¬s. For the data and shapes
graph there is no consistent way to assign or not assign node a to shape name s, hence
there exists no supported (or stable) model for Cmagic.
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CHAPTER 6
Implementation & Experiments

To conduct experiments and test the performance and advantages of the approach, we
implemented a prototype of the magic shapes algorithm. The prototype receives as input
a shapes graph and produces as output a new magic shapes graph, more details on the
implementation are provided in the first section of this chapter. In a second section
the evaluation of the experiments are discussed. For the experiments the Shacl-Asp
validator performed once on the original shapes graph and once on the magic variant.
The source code of the prototype and the files used for the experiments are available at
the following link: https://github.com/biziloehnert/magicSHACL.

6.1 Prototype
Our prototype takes as input a shapes graph either in abstract or Turtle syntax and
produces a magic shapes graph, again in abstract or Turtle syntax. Later in this section
we give more details about the different conversion of syntaxes. For the implementation
of the different parsers and the generation of the magic shapes graph, we applied the
model-driven engineering (MDE) approach [Ken02]. The model of this approach is not to
be confused with the previously defined supported- or stable models. The MDE approach
allows software development based on a domain model also called meta-model. In case of
the MagicShapes prototype the meta-model is an abstract representation of the SHACL
language. In order to apply the MDE approach the eclipse model framework (EMF)
was used1. Figure 6.1 shows the complete meta-model as UML diagram and Figure
6.2 provides an excerpt meta-model with the components of the SHACL language. The
prototype is able to parse and generate different syntax, i.e. Turtle and an abstract shapes
graph representation. For parsing the project Xtext2 was deployed and for generating

1https://www.eclipse.org/modeling/emf/
2https://www.eclipse.org/Xtext/
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6. Implementation & Experiments

Figure 6.1: Meta-model as UML diagram used to implement the prototype by means of
MDE

ShapesGraph Target

ShapeConstraint

ShapeExpression Value Node

ShapeName

[0..*] shapeConstraints
[0..*] targets

[0..*] shapeName

[0..*] shapeExpressions

[0..*] values

[0..*] shapeExpressions

Figure 6.2: Excerpt of the meta-model used to implement the prototype

Xtend3, both are part of the eclipse modeling project4 (like EMF) and based on the
meta-model shown in 6.2. To enable the parsing of shapes graphs in Turtle or abstract
syntax, Xtext is configured with the grammar of each language, which is similar to the
Extended Backus-Naur Form (EBNF). A transition from EBNF to Xtext is provided

3https://www.eclipse.org/xtend/
4https://projects.eclipse.org/projects/modeling
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6.2. Evaluation

ShapesGraph = {ShapeConstraint}
ShapeConstraint = ShapeName (Target "?" | ":-" ShapeExpression ";")
ShapeName = UNICODE
Target = "(" UNICODE ")"
ShapeExpression = PropertyType {Value} | Value {PropertyType Value}
PropertyType = "min"|"max"|"and"|"or"|"not"|"some"|"some ∧"
Value = UNICODE
UNICODE = [∧]{"a".."z"|"A".."Z"|"0".."9"|"_"|":"|"#"|"/"|"."|"-"|"”"|"{"|"}"|"\\"|"$"}

Table 6.1: EBNF of the abstract syntax for SHACL

in [Yue14]. Table 6.1 shows the grammar of the abstract syntax for SHACL in EBNF.
The grammar is based on the elements of the meta-model in Figure 6.2. Besides the
uncomplicated implementation of a parser, another advantage of MDE is the generation
of files (or code), based on the meta-model. By means of this mechanism the following
transformations are performed:

• if the input shapes graph (C, T ) is in Turtle syntax, then the prototype produces
→ a normalized shapes graph (C ,, T ) in abstract syntax, and
→ a magic shapes graph (Cmagic, T ) in Turtle syntax

• if the input shapes graph (C, T ) is in abstract syntax, then it produces
→ a magic shapes graph (Cmagic, T ) in abstract syntax

The transformation from a shapes graph in abstract syntax to one in Turtle syntax has
not yet been implemented, since the shacl-asp validator only accepts abstract syntax
and thus merely shapes graphs in abstract syntax were needed for the experiments. The
reverse direction was implemented, as for the experiments shapes graphs from [CFRS19b]
were expanded and these are available in Turtle syntax. Nevertheless, the framework
provides the mechanisms and thus allows the list of transformations to be extended if
necessary.

6.2 Evaluation
The experiments were performed on a Linux server with a 24 core Intel Xeon CPU
running at 2.20 GHz and 264 GB of RAM. We used the DLV based Shacl-Asp validator
and an Apache Jena TDB5 as an RDF triple store to retrieve the relevant triples from
the data graph, which are transformed into ASP facts.

Data Graph
The data graph G for the experiments was obtained from DBPedia (latest-core, ver-
sion 2021-12)6. More precisely, the datasets "PersonData", "Instance Types", "Labels",

5https://jena.apache.org/documentation/tdb/
6https://www.dbpedia.org/resources/latest-core/
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6. Implementation & Experiments

C1 = { Actor ← Person ∧ (∃starring−.Movie ∨ ∃occupation.actor),
Director ← Person ∧ ∃director−.Movie,
Movie ←≥ imdbId.T∧ ≤ imdbId.T ∧ ∃starring−.Actor,
Location ← ∃country.T,
TranslatedMovie ← Movie∧ ≥2 language.T,
Anarchy ← Location ∧ ¬∃leaderTitle.T,
AwardWinning ← ∃award.T,
Famous ← ∃knownFor .T,
LivingLanguage ← ∃spokenIn.Location,
Person ←≥ birthPlace.Location∧ ≤ birthPlace.Location,
Parent ← Person ∧ ∃child.T,
Musician ← Person ∧ ∃instrument.T,
Employee ← ∃employer .T,
WorkingPerson ← Person ∧ Employee,
WorkingParent ← Parent ∧ WorkingPerson,
WorkingClass ← Person ∧ ∃child−.WorkingParent}

C2 = (C1 \ {Employee ← ∃employer .T}) ∪ {Employee ← ∃employer .Employee}
Table 6.2: Sets of constraints C1 and C2 used in the experiments.

"Mappingbased Literals" and "Mappingbased Objects" were used. The data sets are in
Turtle syntax and contain about 119 million triples (15.4 GB). These data sets are stored
as triples in an Apache Jena TDB, from where the data can be accessed by means of
SPARQL queries. The shacl-asp validator retrieves triples from the data graph G
and transforms them into corresponding ASP facts. This ASP facts form a sub-graph
of G, which we denote as Gasp. The data graph Gasp for the experiments of this thesis
contains about 7 million facts and 4 million constants i.e. nodes in the graph. To be
able to evaluate the inconsistency-tolerant semantics a few additional triples were added
to the data graph, i.e. a cycle of employers employer(bill, bob), employer(bob, jim) and
employer(jim, bill). All three nodes bill, bob and jim are of type (class) Person and have
a birthPlace.

Shapes Graphs

For the experiments two set of shape constraints were created from the domain of persons
and their professions motivated by those in [CFRS19b]. Table 6.2 shows the sets of
constraints C1 and C2 in abstract syntax, both containing 16 shape constraints. The set
C2 contains a cycle (recursion) in the shape Employee, this can cause inconsistencies if
the data graph has cycles involving the relation employer . The sets of constraints were
combined with different targets in order to obtain 40 different shapes graphs. The targets
are either node targets s(v) or class targets s(C), that allow to specify focus nodes via
class names. Such a target definition is a short-cut for node targets s(v), where v has
type C in the data graph G, i.e. there exists a triple of the form v rdf:type C. The
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6.2. Evaluation

Targets C1 C2
T nodes t tmagic |Cmagic| t tmagic |Cmagic|
Musician(mozart) 1 783s 243s 6 860s 231s 6
Musician(Actor) 4872 958s 253s 6 957s 240s 6
Musician(Person) 2267445 894s 410s 6 936s 407s 6
Actor(cameron) 1 768s 384s 8 894s 404s 8
Actor(Actor) 4872 905s 450s 8 929s 441s 8
Actor(Person) 2267445 975s 620s 8 933s 642s 8
Movie(Film) 143121 882s 474s 8 999s 448s 8
TranslatedMovie(Film) 143121 849s 491s 12 905s 508s 12
Employee(bill) 1 868s 42s 2 936s 45s 4
Employee(mark) 1 785s 39s 2 831s 43s 4
Employee(Actor) 4872 825s 42s 2 977s 44s 4
Employee(Person) 2267445 868s 86s 2 880s 145s 4
WorkingPerson(bill) 1 846s 241s 8 981s 259s 10
WorkingPerson(mark) 1 795s 234s 8 879s 249s 10
WorkingPerson(Actor) 4872 864s 250s 8 997s 294s 10
WorkingPerson(Person) 2267445 906s 410s 8 970s 488s 10
WorkingClass(bill) 1 734s 258s 14 890s 283s 16
WorkingClass(mark) 1 822s 291s 14 942s 285s 16
WorkingClass(Actor) 4872 906s 278s 14 979s 313s 16
WorkingClass(Person) 2267445 887s 445s 14 985s 588s 16

Table 6.3: Results of experiments with the shacl-asp validator.

number of focus nodes ranges from 1 to over 2 million nodes, see the second column in
Table 6.4 and 6.3.

Results
Table 6.3 summarizes the main results of the conducted experiments. Column t and
tmagic shows the average execution time for running the validation five times on the input
shapes graph and five times on its magic version. The results display that the magic
shapes algorithm significantly improves the performance of the shacl-asp validator in
the test cases by at least 30% and in some cases by as much as 95% (e.g. where shape
name Employee is targeted). The columns |Cmagic| give the number of shape constraints
in the magic versions of C1 and C2. In most cases this number is reduced for this test
cases, except for the shapes graphs with C2 and WorkingClass as target. Nevertheless
the execution times are also reduced in these cases. Note that the magic shapes graph
might count more shape constraints than the input shapes graph, since the procedure
Generate adds magic shape constraints.

Table 6.4 provides more details about the validation. In the second column again the
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6. Implementation & Experiments

Targets C1 C2
T nodes valid2,3 Nmagic valid3 Nmagic

Musician(mozart) 1 0 1 0 1
Musician(Actor) 4872 0 6908 0 6908
Musician(Person) 2267445 5248 2396852 5248 2396852
Actor(cameron) 1 1 3 1 3
Actor(Actor) 4872 614 253606 614 253606
Actor(Person) 2267445 16645 2567841 16645 2567841
Movie(Film) 143121 2449 302030 2449 302030
TranslatedMovie(Film) 143121 5 303021 5 303021
Employee(bill) 1 1 1 nm 3
Employee(mark) 1 0 1 0 1
Employee(Actor) 4872 6 4872 6 4879
Employee(Person) 2267445 9290 2267445 nm 2273847
WorkingPerson(bill) 1 1 2 nm 2
WorkingPerson(mark) 1 0 2 0 2
WorkingPerson(Actor) 4872 2 6908 2 6915
WorkingPerson(Person) 2267445 2959 2396852 nm 2403194
WorkingClass(bill) 1 0 2 0 2
WorkingClass(mark) 1 1 7 1 7
WorkingClass(Actor) 4872 0 7055 0 7056
WorkingClass(Person) 2267445 40 2396883 40 2397188

Table 6.4: Details about the experiments with the shacl-asp validator.

number of focus nodes are given. The column ‘valid2,3’ shows the number of valid targets
for C1 under the 2- and 3-valued semantics, i.e. how many of the focus nodes validate
to true. In case of C1 this number is the same for the input shapes graph and the
magic variant, since Theorem 43 states equivalence for consistent shapes graphs. Indeed,
C1 also contains recursion and negation, but they do not interact with each other and
therefore C1 is always consistent. This is not the case for C2, it contains a dangerous
shape name, namely Employee as there is a marked self-loop resulting in an odd cycle
in the dependency graph of C2. Because of the employer cycle in the data graph Gasp
between bill, bob and jim, no consistent way of assigning Employee to these nodes can
be found, which makes it inconsistent. Thus, there exists no 2-valued (supported and
stable) model for these shapes graphs. However, the magic shapes algorithm allows
to find a 3-valued model for 16 out of the 20 shapes graphs, since the targets are not
related to the inconsistency, see column ‘valid3’. The magic version of the shapes graphs
with targets containing the shape names Musician, Actor, Movie and TranslatedMovie are
positive (do not contain negation) and are equivalent for C1 and C2. This is reflected
by the numbers in the columns |Cmagic| of Table 6.3 and Nmagic of Table 6.4. Nmagic are
the number of nodes that are recognizes as relevant by the magic shapes algorithm, i.e.
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6.2. Evaluation

C,Gasp Cmagic, Gmagic Nmagic |Gmagic|
(C1, {Actor(cameron)}) 768s 0.13s 3 461
(C1, {WorkingClass(mark)}) 822s 1.87s 7 26069
(C2, {WorkingClass(mark)}) 942s 2.31s 7 26069

Table 6.5: Experiments on reduced data graphs. The times in the first column are for
validating the original shapes graph over Gasp, and in the second column for the magic
shapes graph over the reduced data graph.

the nodes that occur in V (M), where G ∪ M is the stable model of Cgenerate. Comparing
Nmagic to the focus nodes, it can be observed that it increased only by a few nodes.
For the targets with shape names Employee, WorkingPerson and WorkingClass Nmagic of
C2 increases compared to C1. The reason is that there is an additional magic shape
constraint magic_Employee ← employer .magic_Employee in Cgenerate.

Finally, in shapes graphs where the target is not connected to recursion the magic shapes
algorithm can eliminate recursion completely, e.g. targets with the shape name Musician.
In other cases, the algorithm gets rid of the recursion associated with negation, reducing
the complexity of validation (e.g. shapes graphs with C2 and targets involving the shape
names Musician, Actor, Movie and TranslatedMovie). This allows to follow a validation
approach optimized for a fragment of SHACL (see [CFRS19b, FRV21]), as implemented
by the validators shacl2sparql and Trav-SHACL7.

Reduced data graph
Column Nmagic shows the number of nodes relevant for validating the target. Consequently,
these nodes with their properties are enough for a correct validation. Unfortunately, the
shacl-asp validator still loads all 7 million facts for validation and does not leverage
the data graph recognized as relevant, which is several orders of magnitude smaller.
To show the potential this smaller data graph holds, Gasp was manually reduced to a
smaller data graph for three test cases, such that only triples remain that contain a node
from those in Nmagic, this smaller data graph is called Gmagic. Table 6.5 provides the
results of validating the reduced data graph Gmagic against the magic shapes graphs.
For the restricted data graph the improvement of the execution time is even greater,
the validation takes in the range of seconds (see column Cmagic, Gmagic) compared to
750s−940s for validation of C,Gasp. This indicates that shacl-asp could be significantly
improved by using the procedure Generate (i.e. the set of constraints Cgenerate) of the
magic shapes algorithm and based on that querying only for the relevant part of the data
graph from the triple store.

7It was not possible to run the magic shapes graphs with these validators because the parser seems
to be incomplete and does not support shape constraints like s ← s,.
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CHAPTER 7
Conclusion

In this thesis we examined whether the ideas underlying the magic sets transformation can
be applied to SHACL shapes graphs and be used to improve the validation of unrestricted
SHACL. The answer to this research question is:

“When the ideas underlying the magic sets transformation from logic
programming are applied to SHACL shapes graphs, they facilitate a more
effective and robust validation of shapes graphs, where the interaction of
recursion and negation is not restricted.”

To come to this conclusion we proposed the magic shapes algorithm for SHACL,
which is based on the magic sets technique for non-ground Datalog¬ programs [FGL07].
The algorithm takes as input a shapes graph (C, T ) and returns a new magic shapes
graph (Cmagic, T ). The magic shapes graph optimizes the validation of the targets once
by removing irrelevant constraints and furthermore by identifying the relevant part for
validating the data graph. This enables a target oriented validation independent from
the validation approach and even in the presence of unrestricted recursion and negation.

Further, we showed the correctness of the magic shapes algorithm. The main theorem
states that in cases where the data graph is consistent with C, the validation results of
(Cmagic, T ) are equivalent to the results of (C, T ).

For the cases where the data graph is inconsistent with (C, T ), we discussed how the
magic shapes algorithm provides an effective way to perform inconsistent-tolerant
validation.

In order to evaluate the empirical evidence of the approach a prototype implementing
the magic shapes algorithm was developed. Experiments were performed with the
shacl-asp validator, the only prototype that supports the validation of full SHACL, i.e.
unrestricted interaction of recursion and negation. The experiments’ results show that
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7. Conclusion

the validation with the magic version of the shapes graph is significantly faster than with
the input shapes graph, we discuss the details in the following section.

Discussion
The results of the experiments show that the magic shapes algorithm improves the
execution times of the shacl-asp validator by at least 30% for our test cases. For the
consistent test cases the magic shapes graph validates the same amount of targets as
the input shapes graph. We showed that this is the case for consistent shapes graphs in
Theorem 43. Further, for the test cases with an inconsistent input shapes graphs the
magic shapes graph could still be validated in 16 out of 20 cases. This is the case if the
inconsistency is not related to the target and prohibits to find a model for the whole
shapes graph. The 2-valued models of the magic shapes graphs correspond to 3-valued
models of the input shapes graphs, we show this in Theorem 49. For the experiments,
we executed the shapes- and magic shapes graphs all on the same data graph. But
with the Cgenerate constraints of the magic shapes graph it would be possible to identify
the relevant shape atoms and reduce the data graph to these and their properties. For
three test cases that have a single target node we manually reduced the data graph and
achieved validation times around few seconds, compared to 750-900s for the input shapes
graph. This could be a starting point for future research.

Outlook
Future work could explore how the magic shapes algorithm improves the other approach
(besides stable model semantics from [ACO+20]) that supports unrestricted recursion
and negation from [CFRS19a].

Another research direction could be to improve the validators by retrieving the relevant
data graph on-the-fly. The experiments we have conducted with the reduced data graph
show that this is promising for further optimization of the existing validators. Since some
prototypes, e.g. shacl2sparql, retrieve facts from a data graph via SPARQL queries,
it would be an option to find a suitable translation from the constraints in Cgenerate to
SPARQL in such a way that SPARQL directly retrieves only the relevant part of the
data graph from the endpoint to validate the targets.

In this thesis we focused on the magic sets transformation algorithm from [FGL07], but
there are several variation of the magic sets technique. Thus, in future the different magic
sets techniques could be compared and it could be investigated whether the advantages
can also be applied to the SHACL language.
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