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Abstract

Scene understanding is a key problem to solve to enable service robots to perform useful
actions such as tidying up the room, or bringing a requested item. Methods attempting
to solve this problem using 3D data have greatly benefited from the advent of deep
learning. Convolutional neural networks in particular have contributed to advancing
the field but have mostly been studied when dealing with 2D data. Which learning
architecture to use when dealing with 3D data that cannot be reduced to a single view
is however still an open problem. This thesis introduces multiple methods that are
robust to rotation, scale change and occlusion, which is commonly found in 3D data
captured by a robot.

Widely available depth sensors and the progress in camera pose estimation have made
real 3D data collection much more accessible at scales never reached before, and artificial
3D models have been produced using CAD software for decades for manufacturing or
entertainment purposes. Taking advantage of this large pool of already semantically
annotated data requires methods that can deal with both sources indifferently. The
domain shift between artificial and real data however remains a major challenge when
dealing with 3D data. This thesis introduces a part-based representation to tackle this
issue. In particular, the scale of artificial models is often inconsistent, but parts created
based on the curvature of the object surface can be be consistent across domains and
are easily scaled individually to a canonical space. Similarly, rotation invariance can be
achieved by orienting the parts themselves based on their local covariance. Finally, even
under occlusion, many parts of the object will remain the same, limiting the dependency
of the representation on the entire object being present.

Under certain scenarios, it can be particularly challenging to achieve accurate camera
pose estimation, for example when dealing with large scenes. Moreover, each depth
sensing modality has its own limitation. Both issues combined can lead to a very large
gap between artificial and real data. This thesis introduces a data efficient architecture
that takes advantage of the priors introduced by a decade of research in robot vision.
Combining the Point Pair Feature representation with a part-based sampling of the
pairs and a suitable learning architecture, this method a achieves high level of robustness
to noisy data.
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Chapter 1

Introduction

Robots are already part of our everyday life, and it is now common to see them
vacuuming, cleaning floors or even cutting the grass. Figure 1.1 shows examples of
such robots. We have, however, not yet seen the full potential of service robots come
to fruition. The global pandemic that started in 2019 dramatically underlined missed
opportunities with overworked health personal that could have used robot assistance
for menial tasks in the hospital, or essential workers unable to stay safe and confined
during the peak of the pandemic [1]. Combining the abilities to navigate ever-changing
environments, to search for specific objects and to manipulate them in order to clean
up rooms reliably enough to be applicable in various houses, hospitals or restaurants is
still out of reach for today’s robots.

That is not to say that the field has not seen major progress. Semantic understand-
ing [2], camera tracking [3] and even sensing with the wide availability of depth sensors,
such as the active depth Asus Xtion camera, the active stereo Intel Realsense or LIDAR
sensors improved tremendously. These new technologies fueled the development of new
Virtual Reality headsets, such as the Occulus Rift and Augmented Reality headsets
such as the Microsoft Hololens, which face similar challenges as service robots. Indeed,
both fields rely on the ability to understand their environment and their position within
it geometrically. Robots, however, will interact with their environment and manipulate
objects within it, requiring a much finer semantic understanding. More specifically,
because of the interaction between robots and objects, 3D semantic understanding
is essential, that is not only understanding the type of object, but also the type of
an object’s parts and their relations. The geometric information necessary for such
a task is most easily obtained through the use of off-the-shelf depth sensors, which
directly provide this geometric information, reducing the problem to the inference of
the semantic information from the object geometric representation.

Artificial intelligence methods and deep learning in particular provide such semantic
information but require a large amount of data to do so. Annotating large amounts
of data is however a costly task. This problem is compounded by the fine level of
annotation desired for object understanding and manipulation: not only would we
need to annotate every object in the scene, but also the parts that should be grasped
in a given manipulation sequence. This annotation problem can be alleviated in two
ways. First by designing architectures requiring less training data through the use of

1



2 1 Introduction

Figure 1.1: Top: Examples of commercial robots available today. From left to right:
Worx Landroid lawn mower1, Avidbots Neo2, iRobot Roomba3. Bottom:
Examples of service robots used in research labs but struggling to become a
commercial product. From left to right: Toyota Human Support Robot4,
PAL Robotics Tiago5, TU Eindhoven Amigo6, Fetch Robotics7

priors. Second, by using artificial and simulated data. This second option is particularly
appealing when working with 3D data as a very large set of artificial models already
exists, created through computer-aided design (CAD) for manufacturing, optimization,
or video games. There is, however, a domain gap between the artificial models and the
objects sensed by the robot in the real-world that needs to be overcome. The remainder
of this chapter describes the challenges posed by this domain gap and summarizes our
proposed approach to resolve them.

1.1 Problem Statement
Semantic understanding comprises of a variety of task, this work focuses on

object classification as it is a fundamental task in the field. The goal of 3D object
classification is to predict from the 3D data of the object the correct label out of K
possible labels that are fixed and known in advance. Object here is used as a general
term that encompasses not only objects manipulable by a robot but also furniture. In

1https://www.worx.com/landroid-robotic-lawn-mower
2https://www.avidbots.com/avidbots-solutions/the-neo-platform/
3https://www.irobot.at/roomba
4https://mag.toyota.co.uk/toyota-human-support-robot/
5https://pal-robotics.com/robots/tiago/
6http://wiki.ros.org/Robots/AMIGO
7https://fetchrobotics.com/fetch-mobile-manipulator/
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other words, anything found indoors except for walls and other structural elements. 3D
data describes data that cannot be reduced to a single depth 2D image. Single-view 3D
data is sometimes referred to as 2.5D, and is a special case of 3D data, but this work
focuses on the general case.

The challenges of 3D object classification under domain shift is approached by the
research community from different complementary angles. Domain adaptation, for
example, takes advantage of a large amount of unlabeled data from the real domain to
reduce the gap under the condition that this data is available. Simulation is another
angle as it is continuously improved through better sensor noise models and light
effects. We choose to focus on the architecture of models for 3D representation and
their robustness to the diverse sources of divergence between the artificial and real
domain.

1.1.1 3D data representation
Many formats are available to represent 3D data. Point clouds represent it as a list of
points with position and other properties attached to every point. Triangular meshes
add to that list of points a list of triangles connecting three points to approximate the
surface between the points defined. Voxel grids on the other hand represent 3D data
as a discretized 3D grid where every cell is set to one if crossed by the object surface
and set to zero if empty. This variety of representations complicates the design and
comparison of classification methods, as the underlying representation bring its own
benefits and limitations. This issue is further investigated in Chapter 4.

1.1.2 Artifacts in simulated 3D data
The 3D data created artificially, or CAD models, is generally of higher quality but is
not exempt from artifacts. Artificial models are created by humans with the goal of
obtaining good rendering, which can diverge from the goal of creating accurate surfaces.
Examples of such artifacts are disconnected surfaces, surfaces defined within the object,
or surfaces intersecting, as illustrated in Figure 1.2. Disconnected surfaces are used to
obtain better lighting effects in the rendering process, while the last two are remnants of
the modeling process itself. These artifacts are easily removed by rendering the model
with a simulated depth sensor and combining those different views in the same way
that we combine the different views obtained from the real-world sensor. While this
step reduces the domain gap with real data, differences in surface remain and limit the
accuracy of classifier trained and tested on different domains.

1.1.3 Artifacts in real-world 3D data
Real-world 3D data quality is constrained by the quality of the sensor and of the
algorithm fusing different views, also called reconstruction. The depth sensor’s noise
depends on the sensing modality [4]: time-of-flight, structured light, stereo or active
stereo setup all suffer from different types of noise. Reconstruction algorithms limit
the impact of random and depth-dependent noise from the sensor with proper data



4 1 Introduction

Figure 1.2: Illustration of the modeling artifacts. Top left: a very thin hole is present in
the surface. This disconnection does not affect the renderings but changes
the surface definition. Bottom right: the wing is crossing through the plane
hull. These intersecting meshes define incorrect surfaces but do not affect
the renderings.

fusion but brings different artifacts from two sources: the camera pose estimation, and
the algorithm used to combine the data once the poses are known. Depending on
their reliability, they produce overly smoothed surfaces, or create multiple disconnected
surfaces from the same part of a given object (due to poor camera tracking).

Even with state-of-the-art sensors and algorithms, the environment in which the
object is perceived remains an unavoidable and major contributor to the gap between
artificial and real domain for 3D object classification algorithms. It limits the viewpoints
accessible by the robot, and clutter in the area also reduces the parts of the object that
is observable both leading to variable degrees of occlusion of the object. The object
itself is seen under any possible orientation. While statistical methods such as Principal
Component Analysis provide a canonical orientation for a full object, the impact of
occlusion on the statistical distribution of the object makes this process significantly
more challenging in our case.

Finally, as for any classification task, there exist intra-class variation, and notably
regarding object scale. Large-scale dataset of CAD models in particular contain large
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object scale fluctuation as they were modeled for different purposes and multiple
conventions to define the scale. As such, it is common to create a canonical scale, such
as the unit sphere, that is scaling every object to make them fit in a sphere of radius 1.
Obtaining a canonical scale for occluded objects in the real world is, however, a much
more challenging task, again, because of the impact of the occlusion on the statistical
distribution of points and is another contributor to the domain gap.

These challenges of noise, rotation, occlusion and scale are further investigated and
suitable architectures are proposed in Chapters 3 5 and 6.

1.1.4 Computational limitations
Due to their autonomous nature, service robots are bound to a limited computational
power because they are limited in power supply by their batteries. That computational
power is also likely to remain the same throughout their deployment. While this
can be partially resolved through the use of cloud computing, that also introduces
a host of new challenges in terms of synchronisation, responsiveness and reliability.
This computational constraint therefore translates to the need for efficient and fast
algorithms to tackle the challenges that the robot will face.

1.2 Contributions and Outline
In this thesis, we focus on understanding and introducing new architectures suitable for
the challenges of object classification of real-world 3D data collected by a service robot
exploring its environment and under domain shift. To this end, we first investigate the
applicability of classical descriptors’ design in learned architectures to find a trade-off
between robustness and discriminativeness while requiring limited real training data.
To best leverage larger artificial datasets, we then analyze the impact of different 3D
data low-level representations and best practices to obtain similar robustness to the one
obtained by classical descriptors’ design. Guided by the findings, we then propose a
part-based architecture to deal with the domain shift, and finally a set of improvements
on this foundation to make the architecture less sensitive to scale. The general process
is described in Figure 1.3. All the contributions will now be described in more detail.

1.2.1 Robust 3D Object Classification by Combining Point
Pair Features and Graph Convolution

Classical descriptors have been designed for many years and provide compact and robust
representations for point clouds. The advent of deep learning methods [2] brought about
a new level of discriminativeness, largely outperforming classical descriptors. This work
aims to combine both to obtain robust representation offering competitive classification
accuracy. Low-level data is transformed following the design of the Ensemble of Shape
Functions [5], but instead of aggregating them using a histogram, the features are directly
fed into a suitable deep neural network. The accuracy of this model is further boosted
by considering clusters or parts of the objects in the sampling of the pair of points,
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Chapter 4 and 5: Part-based 3D Object Classification
under domain shift 

Chapter 4: Impact of data
representation on the

Sim2Real gap

Classifier 

TESTTRAIN

Pre-processing 
- Projection 
- TSDF Reconstruction

Pre-processing 
- Exploration 
- TSDF Reconstruction 

Part extraction

TRAIN TEST

Pair of Points
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Chapter 3: Learning 3D
Object Classifier from hand-

crafted descriptors 

Figure 1.3: Overview of the work presented in this thesis. Artificial data is used for train-
ing and reconstructed using a TSDF volume to remove modeling artifacts.
Real data is collected by a robot exploring a room, and also reconstructed
using a TSDF volume. Objects from both sources are transformed, either
by sampling pairs of points, or by segmenting out parts, and classified with
an approriate architecture.

and by combining the features obtained for every part using a Graph Convolutional
Network [6]. The final architecture provides robustness to rotation and noise present in
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reconstruction while providing competitive accuracy for datasets with limited training
data. The contributions described here are further detailed and discussed in Chapter 3
and were published in [Weibel, ICRA 2019]

1.2.2 Measuring the Sim2Real gap in 3D Object classification
for different 3D data representation

A variety of representations exist for 3D data, all with their trade-off regarding size,
precision, flexibility and traversability. These trade-offs also transfer to the learning
architecture tailored for each 3D data representation. This work investigates the
impact of different artifacts and different types of occlusion on the performance of the
aforementioned learning architectures, and compares their individual impacts in the
context of domain transfer from simulated to real data. Specifically, the study focuses
on PointNet [7] and PointNet++ [8] designed for point clouds, VoxNet [9] designed
for voxel grids, and MVCNN [10] designed for multi-view representations. The results
underline the importance of hierarchical designs, the benefits of surface representations
rather than volumetric ones when dealing with occlusion and sensitivity of all existing
architectures to scale differences. The contributions described here are further detailed
and discussed in Chapter 4 and were published in [Rohrböck & Weibel, ARW 2021]
and [Weibel, ICVS 2021]

1.2.3 Addressing the Sim2Real Gap in Robotic 3D Object
Classification

Based on the findings of the previous chapter, the part-based representation seem
most appropriate to deal with the challenges of occlusion in the context of 3D object
classification under domain shift. This work introduces a simple definition of purely
geometric object parts and an appropriate architecture to learn features for each part
and combines them to obtain object level representations that are less sensitive to
occlusions. The parts are created based on the surface curvature and part features
are obtained using PointNet [7]. They are then combined using a Graph Attention
Network [11]. Different attention and pooling strategies are evaluated. The approach
outperforms other point cloud-based methods when trained on the ModelNet dataset [12]
and tested on objects extracted from ScanNet [13]. The contributions described here
are further detailed and discussed in Chapter 5 and were published in [Weibel, RA-L
2019]

1.2.4 Robust Sim2Real 3D Object Classification using Graph
Representations and a Deep Center Voting Scheme

Graph Neural Networks [6], [11] provide a novel opportunity to deal with the challenges
of 3D data. They however do not take into account the relative position of the
neighbors in the graph, which is essential information for 3D shapes. Neighborhood-
based architectures [14], [15] build on similar concepts but include information about
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the relative position of neighbors for improved discriminativeness. Relying on point
coordinates, however, introduces a strong dependency on the object scale. This is
problematic as the scale of objects in large artificial datasets is generally normalized
due to its unreliability and different conventions, but this is a more complicated
process for occluded objects that are present in real data as the occlusion affects the
statistical distribution and therefore the normalization process. We propose a novel
part-based object classification architecture that is less sensitive to scale while being
more discriminative than the original Graph Neural Networks. The contributions
described here are further detailed and discussed in Chapter 6.

1.3 List of Publications
Parts of the content presented in this dissertation have been previously published in
the following papers:

• Jean-Baptiste Weibel, Timothy Patten, and Markus Vincze. Geometric priors
from robot vision in deep networks for 3D object classification. Proceedings
of International Conference on Robotics and Automation (Workshop on Multi-
modal Robot Perception: Perception, Inference and Learning for Joint Semantic,
Geometric, and Physical Understanding). 2018.

• Jean-Baptiste Weibel, Timothy Patten, and Markus Vincze. Robust 3D object
classification by combining point pair features and graph convolution. IEEE
International Conference on Robotics and Automation (ICRA) 2019.

• Jean-Baptiste Weibel, Timothy Patten, and Markus Vincze. Addressing the
sim2real gap in robotic 3-d object classification. IEEE Robotics and Automa-
tion Letters 5.2 (2019): 407-413. Honorable Mention from IEEE Robotics and
Automation Letters 2019.

• Rainer Rohrböck, Jean-Baptiste Weibel, and Markus Vincze. Analysis of 3D
shape representation in presence of corrupted data. Austrian Robotics Workshop
(ARW), 2021.

• Jean-Baptiste Weibel, Rainer Rohrböck, and Markus Vincze. Measuring the
Sim2Real Gap in 3D Object Classification for Different 3D Data Representation.
International Conference on Computer Vision Systems. Springer, Cham, 2021.

• Jean-Baptiste Weibel, Timothy Patten, and Markus Vincze. Robust Sim2Real
3D Object Classification using Graph Representations and a Deep Center Voting
Scheme. Under review at IEEE Robotics and Automation Letters (RA-L), 2022.



Chapter 2

Background

This chapter details previous works related to and built upon in this thesis. The different
approaches to obtain 3D data, and the available datasets created with those methods
are reviewed. An overview of the state-of-the-art of 3D data classification is then given,
grouped by the type of approach. Finally, segmentation and part-based approaches are
discussed.

2.1 3D data: Depth Sensing and Reconstruction
In this section, we provide an introduction to the sensors and methods needed to create
3D representations of the real world and then give an overview of the available datasets
in the field.

2.1.1 Obtaining real 3D data
3D data in this work refers to data that generally cannot be reduced to a single depth
image. Indeed, single depth images, sometimes referred to as 2.5D can be seen as a
special case of 3D data, and is often processed using techniques developed for RGB
images, sometimes computing normals out of the depth to obtain three channels [16], or
creating a special mapping to obtain three channels [17]. This approach comes naturally
as many depth sensors such as the Asus Xtion, Intel RealSense or Microsoft Kinect
Azure provide depth in the image format. Obtaining 3D data requires the combination
of multiple images from the sensor.

This brings two challenges. First, the relative robot and therefore camera pose used to
capture each view is necessary to combine them meaningfully. This long studied problem
in robotics is usually referred to as Simultaneous Localization and Mapping (SLAM).
Current state-of-the-art solutions include [3], that developed efficient local features
called ORB to match between frames and estimate the relative pose used to capture
those frames, [18] that uses image gradient to directly optimize the transformation or
[19] that fuses multiple sensors. These solution can be applied with different sets of
sensors like monocular or stereo cameras, or directly use the output of depth camera
like the Asus Xtion or Intel Realsense, but they take in one image at a time, as they
are captured by the robot. In situations where only a collection of unordered images

9
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are available, structure from motion approaches can still be applied [20]. They also rely
on feature extraction in every frame, most commonly scale-invariant feature transforms
(SIFT) [21], match them across frames and perform a general optimization step of the
features position, camera pose and camera intrinsics called bundle adjustment.

The second challenge of depth views combination is related to the data management.
While it is possible to simply add points in space obtained from every single view into a
large point cloud, this is sub-optimal in that it does not use the redundant observation
to reduce the noise in the final observation. Moreover, the final point cloud will have
inconsistent point density. Methods either sample a fixed number of points, or learn
from local neighborhood, and variable point density will make patterns less consistent
in both approaches. Every depth sensor suffers from different types of noise [4], but
their systematic errors in depth prediction can be removed by proper calibration, and
their random error can be accounted for when fusing views, granted that a noise model
exists for the given sensor, like [22] for the Microsoft Kinect. This fusion step comes
with its computational challenges, especially when working with larger maps. One of
the oldest method is the Truncated Signed Distance Function [23]. The signed distance
function represents at every point in space the distance to the closest object surface,
being positive when inside the object and negative outside of it. The TSDF stores
similar information but only up to a certain distance of the surface, and truncate the
value to 1 or -1 when further away from object surfaces. So given a depth measurement
from a given pose, the value of the TSDF volume can be updated along the ray of the
depth measurement, and set to -1 until a specific distance to the surface is reached
and then fused with the previous measurement around the depth measurement. The
distance to the object surface where values are updated is chosen according to the depth
measurement noise level and the noise level in the camera pose estimation. With proper
fusion, the zero-crossings in the TSDF volume define the object surface. This principle
has been used in KinectFusion [24] and implemented on GPU to work in real-time.
Many methods have built on this idea, notably InfiniTAM [25] that creates many small
TSDF volumes and updates all of them to make the method more scalable and usable
for larger volumes. BundleFusion [26] optimizes camera poses globally and is able to
integrate and deintegrate updates to its TSDF volume to correct errors in the camera
poses. Not every reconstruction method relies on TSDF however. ElasticFusion [27]
for example directly use a point cloud representation but each point also has a radius
attached such that each point represents a small surface (they are referred to as surfels)
to avoid storing redundant information. Finally, ScalableFusion [28] directly works
on triangular meshes, creating or updating vertex positions. Novel approaches have
also emerged in the wake of NeRF [29] that aim to represent the surface implicitly
within a neural network set of weights, but are designed for accurate rendering rather
than accessing the scene geometry, which is what we are interested in in this work thus
making them less applicable here.

2.1.2 3D Datasets

Using the methods described previously, many researchers have worked on creating
large-scale datasets of rooms. The NYU Depth Dataset v2 [30] is among the first ones
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to also include a complete semantic annotation per frame for a total of 1449 frames.
Similarly, ObjectNet3D [31] provides RGB, depth and annotation for an even larger
number of frames (90127). But both of these do not include camera poses. Later efforts
like the Stanford 3D Indoor dataset [32], SceneNN [33] and ScanNet [13] provided
large scale annotated datasets and accurate camera poses enabling scene reconstruction.
While the Stanford 3D Indoor dataset focuses on offices with over 70000 frames and
includes a limited number of semantic classes, SceneNN and ScanNet cover most rooms
and objects found in typical houses with respectively 100 room scans and more than 1500
room scans. Even larger datasets were created recently, chief among them Matterport3D
[34] and Gibson [35]. Gibson however does not include complete semantics annotation.
While these datasets are extremely useful to researchers and have largely contributed
to the progress made in the field, the investment necessary for the larger dataset is
considerable, involving dozens of people for many months. Despite that work, they do
not cover every indoor scenario and suffer from regional biases, usually including only
rooms from a specific area of the world. Moreover, datasets of this scale also create
privacy issues in that many people have to accept to open their homes.

To circumvent these issues, many artificial datasets have been created. The most
comprehensive effort is the ShapeNet dataset [36] which is a very large collection of
CAD models. Two curated subsets have been created: the ShapeNetCore containing
51300 unique models spanning 55 classes, and the ShapeNetSem containing 12000
models spanning 270 classes but also including the real-world dimension of the object
among a few other properties. This last set illustrates the difficulty of gathering
large sets of scaled CAD models. Due to the existence of various conventions, and
because they were created for different purpose, CAD models gathered online need to
be manually annotated for scale. The ModelNet [12] dataset, another large-scale CAD
model collection, ignores the scale entirely, and provides a 40 class version with 12311
models and a 10 class version with 4899 models. It is commonly used as a benchmark
for 3D object classification. A set of the ShapeNet models have also been used in
PartNet [37] to provide annotations of the different parts of the objects. Some works
like SceneNet [38] also provide artificial scenes created from CAD models. In this case,
models have to be gathered, annotated for scale, and combined meaningfully in a floor
plan. Habitat [39] goes one step further by providing tools to instantiate agents in
these artificial rooms, and can also instantiate agents in the reconstructed rooms of the
Matterport3D dataset, Gibson dataset and a few others. SAPIEN [40] builds on top
of the PartNet dataset by reusing the same objects and provides simulation tools to
interact with the articulated objects of that dataset. Finally, ScanObjectNN [41] is an
effort to extract objects from ScanNet and SceneNN that overlap with classes defined
in ModelNet40, providing a bridge between artificial and real objects at the scene level.

CAD models are created by humans, and even in curated dataset like ShapeNet
and ModelNet, they still contain artifacts from the modeling process. An easy way to
remove them and reduce the gap between artificial and real data is to render a set of
views around the objects, possibly using a sensor noise model [22] and combine all those
views using a TSDF volume [23] (being artificially rendered, the camera pose is always
available). While a triangular mesh of constant density is easily obtained from a TSDF
volume, it should be noted that a triangular mesh can also be obtained from a point
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cloud where normals are computed using a Ball Pivoting technique [42] for example.

2.2 3D Classification
In this section we review the different methods developed for 3D object classification.

2.2.1 Classical methods

There is long history of 2D local descriptors with SIFT [21] being the most widely used.
The advent of cheap widely available depth sensors like the Microsoft Kinect significantly
sped up the development of 3D local descriptors. One of the earlier example, the Point
Feature Histogram (PFH) [43] considers every pair of point in the neighborhood of the
point of interest, creates a local reference based on the normals and position of the
pair of points. That local reference frame guarantees that the features are rotation
invariant. Within that local reference frame, 3 angles are computed. Those 3 angles
and the distance between the pair of points are binned into a histogram to obtain the
final representation. The Fast PFH (FPFH) [44] was later introduce to keep the useful
properties of PFH while speeding up the computation. This speed-up is achieved by
only considering the combination of the points of interest with its neighbors instead of
every pair in the point of interest’s neighborhood. The simplified PFH is then combined
with the simplified PFH computed for neighboring points to approximate the complete
computation of PFH. The Viewpoint Feature Histogram (VFH) [45] extends the concept
and proposes a global descriptor with a viewpoint dependent definition, very suitable
for object recognition. The SHOT descriptor [46] also focuses on local changes of the
object surface: the neighborhood of a point of interest is oriented with a local reference
frame based on the set of points’ covariance, which makes the descriptor invariant to
object rotations. The points of the neighborhood are then grouped based on their
relative position in that oriented spatial grid and the normal angle is considered for
each group.

The descriptors described above use a local reference frame, which can be quite
sensitive to the quality of normal estimation, which in turn is strongly affected by sensor
noise. They are also designed with classification in mind but the Point Pair Features
(PPF) [47] uses no local reference frame and is designed for object pose estimation.
Two points are randomly sampled in the scene (and not only in the neighborhood
of a point of interest) and 4 angles are computed using the point’s normal and the
vector going from one point to the other. Those angles are then discretized to create
the feature representation of that pair of points, which cast a vote for a given object
pose if it matches a pair feature of one of the object model. These simple features are
rotation-invariant. The Ensemble Shape Feature (ESF) [5] uses similar features for
pairs of points and adds to it the ratio of occupied cells in an occupancy grid along the
vector connecting the two sampled points. The process is repeated for a given number
of pairs to obtain a global descriptor fed to a support vector machine (SVM) [48] used
for the object classification. Both of these work have inspired more recent work that try
to combine these simple low-level features and more powerful deep learning techniques.
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Notably, EPPF [49] uses similar low-level features to ESF but combines them in a 4D
histogram, keeping the correlation between features and classifying objects from this
histogram using 4D convolutions. PPFNet [50] uses local grouping of PPF features to
learn 3D local descriptors using the PointNet architecture [7].

2.2.2 View-based methods
With the advent of modern deep learning and the large improvement in RGB object
classification demonstrated by AlexNet [2], a natural idea is to use depth images as input
to similar network to obtain powerful 3D object classifier [51]. People have investigated
hand-crafted transformations [17] to obtain three channels out of the depth images,
similar to the three channels of color images. [16] suggests that the best transformation
is to compute the surface normals. Those works focus on single-view depth or 2.5D.
To classify 3D data in general, architectures have been developed to deal with sets of
views and MVCNN [10] is an early example. All views are fed independently to a 2D
convolutional neural network, and the features obtained for each view are max-pooled
and fed to a multi-layer perceptron to obtain the final classification. This work was
refined and updated with more modern deep learning techniques in [52]. This concept is
improved in [53] using an harmonized bilinear pooling. Alternatively to a global pooling
step, 3D2SeqViews [54] treats the views as a sequence and uses hierarchical attention
aggregation to classify the view sequence. [55] creates a fixed number of clusters from
the set of views based on their features, grouping redundant views together before the
final classification. [56] jointly learns the object class and the pose of the camera for
every view enabling more meaningful pooling. Instead of creating multiple views, it is
also possible to explore different projections to include as much information in a single
view, as showcased with a panoramic projection with [57], or a stereographic projection
with [58]. View-based methods tend to be more sensitive to the object orientation, and
the view selection while trivial when working with artificial objects can be a challenging
topic when working with real data.

2.2.3 Grid-based methods
Convolutional networks can be extended to work in three dimensions. This comes with
an increased memory and computational cost but has been investigated early on with
a coarse grid by VoxNet [9]. [59] improves upon that work using orientation boosted
voxel networks. [60] tries to address the computational cost by making the network
learn from octrees rather than dense grids. A similar idea is used in [61] that learns
directly from KD-trees. [62] approaches the same problem from a different angle using
binary networks to reduce the computational cost. [63] aggregates multiple points
within each cell of the voxel grid using the fisher vector to obtain more meaningful
cell features. [64] instead introduce an efficient implementation tailored for sparse
voxels grids. While not working on a grid directly, we include in this section methods
working on a complete set of points of a point cloud at once. [65] uses as input the
point coordinates and considers each point individually before a global pooling step
performed using a symmetric function. This is very similar to PointNet [7], which also
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uses a spatial transformer network [66] for improved performance. The operation of
the network can be understood as a transformation between Euclidean coordinates
and position in an implicit learned grid enabling the meaningful combination of each
individual point feature using a max pooling function. PointNet++ [8] improves upon
PointNet by introducing sampling and grouping modules to enable stacking multiple
PointNet modules one after another.

2.2.4 Neighborhood-based methods
Instead of learning from the entire set of points in a point cloud, many works choose
to focus on point neighborhoods, emulating the behavior of 2D convolutional neural
networks on the irregular domain of object surfaces. Tangent Convolutions[67] recreate
2D surfaces by projecting neighboring points on the tangential plane of the point of
interest. SpiderCNN [14] adapts the convolution operation to the irregular domain
by using a third-order Taylor decomposition. PointCNN [68] also tries to generalize
convolutions to the irregular domain. KPConv [69] creates a set of kernels around the
point of interest and aggregates the features of every neighboring point based on their
distance to the kernel. This work was extended in [70] to create a rotation invariant
representation. DGCNN [15] considers every point in the neighborhood as vertices of a
graph connected by edges to the point of interest. Features are learned from those edges,
and the graph is dynamically updated in higher levels of the hierarchy of features. [71]
creates rigorously rotation invariant features based on the point of interest neighborhood
and uses a similar architecture to DGCNN to combine them hierarchically.

2.2.5 Graph-based methods
The neighborhood of points in a point cloud can be retrieved efficiently using a KD-Tree,
and both information combined can be seen as a graph with 3D points as vertices
and close enough points connected by edges. Triangular meshes are themselves graphs
with a specific topology. Deep learning architectures have been developed for general
graphs such as Graph Convolutional Networks [6] that learns from the adjacency matrix
and a feature matrix. This idea has been extended by GAT [11], which introduces an
attention mechanism enabling the weighting of each neighbor of a vertex differently,
thus increasing the discriminativeness of the network. These general graph learning
architectures have been adapted to 3D data in [72].

There is also a body of work tailored for Triangular Meshes, trying to take advantage
of their specific topology. Surface Networks[73] uses a spectral representation of a graph
and introduces a learning architecture using the Dirac operator. MeshCNN [74] learns
from edges in the graph, introducing a symmetric edge convolution operation and using
the edge collapse operation to create a task-driven pooling operation. SpiralNet++ [75]
traverses neighboring triangles in a spiral creating a sequence of features that can be
learned from with a regular convolution operation. MeshNet [76] relies on the fact that
every face of a triangular mesh has three neighbors to create a mesh convolution applied
to each face from regular convolution operations and learns from structural and spatial
information. Primal-Dual MeshNet [77] creates a primal graph from the mesh faces
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and a dual graph from the mesh edges and learns from both graphs alternatively using
a GAT network.

2.3 3D Over-Segmentation and Part-based repre-
sentation

There exists a large body of work dealing with object segmentation from 3D data [78],
[79]. A subset of these methods is focused on obtaining an over-segmentation of
the scene. Instead of trying to solve the complex and ill-posed problem of object
segmentation, these methods focus on obtaining segments as large as possible while
still guaranteeing that no segment crosses any object boundary. The segments obtained
from such 3D segmentation methods are often referred as supervoxels. This can
simplify any later processing step, while also reducing their computational complexity,
as the number of supervoxels is much smaller than the number of points. Voxel Cloud
Connectivity Segmentation (VCCS) [80] was among the first ones to be designed for
point clouds. It creates an adjacency graph from the voxels created from the points in
space and grows regions based on normal angles and color differences. This approach is
very computationally efficient but produces fairly small supervoxels. Locally Convex
Connected Patches (LCCP) [81] builds on this work, and merges supervoxels created
by VCCS if they are locally convex and meaningfully connected. The final supervoxels
are larger and much more meaningful, and the assumption that convex areas do not
contain object boundaries holds true in most situations. As reviewed in [79], there are
many methods for part segmentation designed for meshes specifically, as they represent
the object surface completely, enabling the development of spectral methods [82] beside
the methods based on local geometries [83]. More modern works try to learn more
semantically meaningful parts [84] by minimizing the rank of a similarity matrix between
points to create patches that are then merged using a Graph Neural Network. [85]
proposes an end-to-end Supervised Primitive Fitting Network (SPFN) to extract a set
of primitive shapes from a model, while [86] proposes an adapted version of Hough
Voting to detect primitives that does not require any learning. VoteNet[87] introduces
a neural network and a set of modules such that the network can cast votes for the
position of the object center and cluster them. While developed for object detection,
the method introduced here is a general approach to combine parts based on the center
of the object or of the part. Similarly, Unseen Object Instance Segmentation [88] makes
every point cast a vote for the object center, but clusters them with an adapted version
of Mean-Shift.



Chapter 3

Robust 3D Object Classification by
Combining Point Pair Features and Graph

Convolution

3.1 Motivation
Most practical tasks undertaken by service robots require semantic understanding of
complex surroundings. Such tasks greatly benefit from the ubiquitous availability of
cheap consumer-grade depth sensors, such as the Microsoft Kinect, as they allow for
geometric reasoning.

Modern computer vision methods require large amounts of data for training, therefore,
it is commonplace to use Computer-Aided Design (CAD) models to simulate the output
of common sensors. However, data acquired by robotic platforms in the real world differ
in a few characteristic ways (see Fig. 3.1): objects are observed under arbitrary poses,
partial occlusion, over- or under-segmentation, and sensor limitations. The fact that
objects in the real world have arbitrary poses must be taken into consideration when
designing a classifier. Aligning the data is all the more complex when the data also
suffer from partial occlusions.

These issues, in addition to the intrinsic limitations of the depth sensors (distance,
noise, resolution), can be alleviated by autonomous robots, as they have the ability to
explore their environment and accumulate observations. Importantly, reconstruction
methods have been successfully developed that fuse depth information using point
clouds from multiple viewpoints to generate a globally consistent representation of large
environments [27]. Classifying objects directly from reconstructions has many benefits,
as more of each object is observed due to multiple viewpoints, and the accumulation
of data over many frames reduces sensor noise. However, the unstructured nature of
this representation (i.e. no point ordering) is unsuitable for state-of-the-art 2D and 3D
convolutional networks. The optimal representation for dealing with 3D data in deep
learning is still an open question, but is a very active field of research [7], [10], [61].

In this chapter, we present a novel method that is robust to imperfect data with a
deep learning architecture applicable to unstructured point clouds, in particular those
that are produced by reconstruction methods. Our model creates a representation
that is invariant to rotation around the global vertical axis (z-axis) through the use
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Figure 3.1: Real against artificial data: pervasive noise hinders the performance of
methods that are not carefully designed to be robust in the real world.

of features extracted from pairs of points, which avoids the problem of unpredictable
object orientation. These low-level features are combined through state-of-the-art set
classification methods [7], [65] and a graph convolutional network (GCN) [6].

In summary, the contributions of this chapter are the introduction of

1. a novel attention model to achieve more stable training and

2. a new structured sampling scheme for pair of points enabled by the use of GCNs.

These aspects allow us to significantly improve upon state of the art on the classifi-
cation task from real-world reconstruction datasets, namely the Stanford 3D indoor
dataset [32] and ScanNet [13]. We outperform current methods by up to 22%, which
demonstrates the value of incorporating robust features in a deep learning architecture
through structured sampling. As an additional test, we show that our method obtains
competitive accuracy on a CAD model dataset, ModelNet40 [12], in comparison to
other approaches developed for clean data that do not consider real-world robustness.

3.2 Learning from Graphs for Robust 3D Object
Classification

Our proposed method builds on the work in [89] and [49] that showed that sets of point
pair features are highly discriminative for object classification. We drastically improve
the representative power by introducing a graph where each vertex feature encodes
information about pairs of points. The resulting structure remains rotation invariant
(if the underlying features are rotation invariant) since the graph itself does not impose
any strict orientation. The overall architecture is shown in Figure 3.2.

For use in real-world robotics scenarios, we prioritize rotation invariance around the
global z-axis by introducing a feature to represent this orientation. The motivation is
that most objects have only a small number of stable poses and their representation
only depends on the viewpoint around it. A novel attention model is also introduced
to stabilize training. This also improves the overall results, particularly when training
with fully rotation-invariant features.
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Figure 3.2: System overview of our proposed method where v is the number of vertices
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Figure 3.3: Illustration of the point pair features computed at a vertex for two sampled
points −→p1 and −→p2 (with respective normals −→n1 and −→n2). The distance is
represented by d, the angle between the normals is represented by β and
the angle between the vector −→p1 − −→p2 and each of the normals is represented
by α1 and α2 (only α2 is shown).

This section describes the proposed architecture. We first explain the point sampling
process and the computation of features from each vertex in the graph. We then outline
the approach for connecting the vertices in the graph and the design of our graph
convolution.

3.2.1 Graph vertices

Vertex features A set of vertices is randomly sampled from the input point cloud
where the number of vertices v is significantly smaller than the number of input points
N . Each vertex represents a 3D centroid and the sampling ensures that the vertices are
spatially separated by a specified distance. A local neighborhood is then defined as a
subset of points around each vertex centroid.

For the vertices, features are extracted from pairs of points instead of relying on
raw point coordinates by drawing inspiration both from the Point Pair Feature [47],
and from the ESF descriptor [5]. A first point −→p1 is sampled inside the neighborhood
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of the vertex and a second point −→p2 is sampled anywhere in the point cloud. Let us
refer to their respective normals (which are assumed to be normalized) as −→n1 and −→n2.
This sampling scheme is beneficial because pairs of points that are far away tend to be
more informative than those that are nearby. As such, sampling from outside of the
local neighborhood results in more descriptiveness at an object level than exclusively
sampling within the local neighborhood.

Once points are sampled, a number of features are computed for the vertex as shown
in Figure 3.3. We extract the distance d between the points

d = �−→p1 − −→p2� , (3.1)

the cosine similarity between the normals (where the angle is referred to as β)

cos(β) = −→n1 · −→n2, (3.2)

and the absolute value of the cosine similarity between the vector −→p1 − −→p2 and each of
the two normals (where the angles are referred to as α1 and α2)

���cos(α{1,2}))
��� =

�����(
−→p1 − −→p2).−−−→n{1,2}

�−→p1 − −→p2�

����� . (3.3)

Finally, as in the ESF descriptor, the occupancy ratio of the vector −→p1 − −→p2 is also
computed. This quantity is determined by tracing the line in a voxel grid of size
64x64x64 and counting the percentage of filled voxels.

In addition to these features, and retaining invariance to the rotation around the
z-axis for robustness, the model includes the difference on the z-axis

z12 = zp1 − zp2 , (3.4)

where zp1 and zp2 are the original z coordinates of the points −→p1 and −→p2 .

Learning from sets Following the PointNet model, each sextuplet set of features is
independently fed to the same convolutional neural network. The feature dimension is
enlarged and the set is max-pooled. As described in [89], this amounts to learning the
optimal bins over the feature space, taking into account the correlation between the
different features.

The complete architecture is shown in Figure 3.2. In difference to the architecture of
PointNet, the spatial transformer network is unnecessary as the features of our model
do not depend on the orientation because Euclidean coordinates are no longer used.
Instead, four 1D convolutional layers are used with a kernel size of 1. A progressively
increasing number of filters are then applied before a max-pooling layer to implement the
histogram-like feature learning scheme. Each of the layers includes a batch normalization
step [90]. A weighted version of the maximum value (over the whole set) of a given
filter is subtracted from each output as described in [65]. ReLU is used as an activation
function.
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3.2.2 Graph edges
Graph connectivity The proposed model is inspired by the GCN model introduced
in [6]. The GCN simplifies larger graph convolutional models by only considering
neighbors of the first degree. Such models cannot differentiate neighbors from each
other. The connectivity of the graph that is fed to the network is therefore particularly
important because it introduces more information to partially compensate for the
missing order of the neighbors.

In our model, the four nearest vertices of the vertex of interest are connected to strike
a good balance between an overconnected or underconnected graph, both of which are
detrimental to the learning process. To make the connectivity more similar to the real
object shape, connections are only made if the two vertices have an occupancy ratio
larger than 0 (due to the noisiness of the feature). Ideally, vertices should be connected
according to their geodesic distances, but this is computationally expensive, and would
require meshes as input rather than point clouds1. Our vertex connection strategy
remains computationally cheap and still provides additional information to the model.
Attention model The GCN model can be made more powerful by introducing a
sophisticated attention scheme. Instead of considering all neighbors as equal, the
neighbors can be weighted according to a criterion that is specific to the attention
model chosen. Some examples of attention models have been developed in [72] and
[11] that rely solely on the features of the nodes. We will refer to this class of methods
as data-driven attention models. To further improve the representational power of
a network, multiple attention heads are used for the same layer, and sets of weights
are applied per neighbor and per attention head. The attention heads output are
concatenated or averaged.

Introducing attention to the GCN model amounts to learning a valid coefficient to
replace the normalization factor. For example, in [11], the graph convolution layer
becomes

hl+1
vi

= σ

 �
j∈Ni

γijh
l
vj

W l

 , (3.5)

where hvi
is the feature vector of the i-th vertex, σ is the activation function, and W

the parameter vector of the layer l. The coefficient γij is then defined as

γij = softmax(eij),

= exp(eij)
k∈Ni

exp(eik) ,
(3.6)

where eij = LeakyReLU(aT .[hvi
W ||hvj

W ])), (·)T denotes the transpose operation, | · |
denotes the concatenation operation and a is the vector of learned parameter for the
attention. This attention model is prone to overfitting when the features of the vertices
do not contain information about their relative position, which is the case when using
coordinates. To compensate, we introduce an attention model that operates directly on
edge features and more specifically on their relative position. We redefine γij as

1The point cloud format assumes less information about the object. It is straightforward to transform
from a mesh to a point cloud, but the opposite transformation is more difficult.



3.3 Experiments 21

Figure 3.4: Illustration of the local reference frame of a chair under two orientations.
The normal vector shown in black, the z-axis (i.e. −→u ) shown in green and−→v shown in red. The edges of the graph are shown in blue.

γij = exp(aT eij)
k∈Ni

exp(aT eik) , (3.7)

where eij is the coordinate of vertex vj relative to vertex vi. This approach is more
similar to classical convolutions as it allows each attention head to specialize on a
specific relative position around the point of interest. Rotation invariance is preserved
by defining a local reference frame (LRF) that is specific to the point of interest, while
being independent of the orientation around the z-axis. This is achieved by defining
three vectors, as shown in Figure 3.4,

−→u = (0, 0, 1),
−→v = (n1x, n1y, 0),
−→w = u × v,

(3.8)

where −→pi and −→ni are the vector and normal vector of the centroid of the i-th vertex in
the original reference frame, and the center of the LRF is the point of interest itself.
The first vector (−→u ) of the LRF is the z-axis itself. The second vector (−→v ) is the
component of the normal of the point of interest that is in the x-y plane. The third
vector (−→w ) is obtained by the cross product between the first two vectors. The eij

coefficient in (3.7) is then defined as the coordinates of the j-th vertex in the local
reference frame computed around the i-th vertex.

3.3 Experiments
This section presents the experimental results. The first set of experiments compares
our proposed approach to state-of-the-art methods for object classification in real-world
scenarios by using two reconstruction datasets. The second set of experiments is
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performed on a large scale artifical model dataset to put our method in context with
other competing deep learning methods that use various data representations. Lastly,
we evaluate the contribution of our proposed attention model, showing that its inclusion
is very important for achieving high classification accuracy.

3.3.1 Experimental setup

Implementation Our final model is described in Figure 3.2. We sample 800 pairs of
points for each of the 16 vertices. The features of each vertex are obtained after feeding
them through a series of 1D convolutional layers (kernel size 1 with filters 16, 16, 32
and 256) and max-pooling the whole set. We then use 4 graph convolutional layers.
Each of these layers has 8 attention heads with 16, 16, 32 and 32 filters. The output
of each attention head is concatenated. Finally, the resulting features are max-pooled
over all vertices and the result is passed to the classification layers that consists of
two fully connected layers of size 128. All these parameters are a result of a tradeoff
between memory and representational power of the network. Under these parameters,
the preprocessing time needed to construct the graph and sampled pairs is on average
5ms on a single core of an i7-7700K CPU. Furthermore, the amortized time to train
over one batch (both preprocessing and learning) of 32 examples is 249ms on a Nvidia
GTX 1070.

Datasets Evaluation is performed on two datasets of real reconstructed scenes, the
Stanford 3D Indoor Dataset [32] and the subset of ScanNet [13] that is defined for
the classification task. We follow the evaluation procedure described in [49]. For the
Stanford dataset, this means using a random 60-40% split for the training and test set
(the original split provided is based on which building is explored which is unsuitable
here because some classes would not be present in the training or test set). The classes
clutter, floor, ceiling and wall are omitted as in [49]. The first version of the ScanNet is
used with the same 14 classes in [49] (i.e. basket, bed, cabinet, chair, keyboard, lamp,
microwave, pillow, printer, shelf, stove, table and tv). In addition, we presents results
on the artificial dataset ModelNet40. This is widely used to evaluate models working
on 3D data.

3.3.2 Evaluation on reconstruction datasets

Table 3.1 reports the average classification accuracy and class accuracy on the two
reconstruction datasets. We compare our approach with the state-of-the-art methods
for point cloud object classification. As the table shows, our proposed approach
outperforms the existing methods. On the Stanford dataset our method achieves 9.8%
better accuracy and 22.6% better class accuracy over the next best performing approach.
On the ScanNet dataset, the improvement over the state of the art is less significant,
achieving 1.7% better accuracy and 4.6% class accuracy. Many classes in the Stanford
dataset are vertical objects (e.g. board, door and window) so the addition of the z12
feature is particularly helpful for this dataset. This feature is a major contributing factor
to the larger performance difference. The ScanNet dataset has less vertical objects and
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Table 3.1: Object Classification accuracy on Reconstruction Datasets

Dataset Metric Stanford [32] ScanNet [13]

EPPF3D Accuracy (%) 81.94 70.57
Class Acc. (%) 66.37 44.35

EPPF4D Accuracy (%) 83.22 72.1
Class Acc. (%) 65.11 45.7

PointNet Accuracy (%) 64.3 63.04
Class Acc.(%) 42.48 37.5

Ours Accuracy (%) 93.0 73.8
Class Acc. (%) 89.0 50.3

Ours w/ scale Accuracy (%) 89.1 78.8
Class Acc. (%) 86.8 58.4

Table 3.2: Classification accuracy on the ModelNet40 dataset [12]

MN40 Input
VoxNet [9] 83 Voxel Grid

PointNet [7] 89.2 Point Cloud
KD-Networks [61] 91.8 KD-Tree

MVCNN [10] 90.1 Views
EPPF4D [49] 82.1 Point Cloud

Ours 87.6 Point Cloud

so the performance gain is less pronounced. Nonetheless, our model still outperforms
existing approaches on both these challenging datasets.

These datasets contain reconstructions of real objects, therefore, we also evaluate the
importance of object scale. This is shown in the bottom row of Table 3.1. The scale
information is incorporated by multiplying the features d and z12 by the factor by which
the point cloud is scaled when fitting it into the unit sphere. This operation recovers
the original values of these features while keeping all other aspects the same. The
scale information significantly improves the performance on the ScanNet dataset. The
performance increases by 5% for accuracy and by 8.1% for class accuracy. Surprisingly,
the scale information does not improve the results on the Stanford dataset. This is
explained by the fact that the confusion of the Stanford dataset objects mostly happens
between classes of similar sizes. These classes have very similar scale, which potentially
leads to further confusion between the classes and, therefore, limits the benefits of the
added information.



24 3 Robust 3D Object Classification by Combining Point Pair Features and Graph
Convolution

Table 3.3: Evaluation of different configuration on the ModelNet10 dataset [12] (Accu-
racy / Class average Accuracy)

Attention Model With z12 Without z12
Data-driven 89.1 / 88.9 -

XYZ Coordinates 92 / 91.7 90.7 / 90.7
LRF Coords 89.8 / 90.1 86 / 86

3.3.3 Evaluation on clean artificial data

Table 3.2 presents the results of our method on ModelNet40. This dataset is widely used
to evaluate models operating with 3D data and allows a fair comparison of different
data structures. We include a representative subset of the methods developed for, and
particularly evaluated on, this dataset. Although our model performs slightly worse
than other models, this dataset only presents clean and complete data. Additionally, the
data is pre-aligned, which diminishes the importance of rotation invariance. Although
KD-Networks [61] performs best, this method needs aligned models and is not robust
to rotation or sensor noise. As such, it would fail on reconstructions. This is a key
observation, that methods can be tuned for good performance if real-world robustness
is not required. Most of the misclassifications by our method are caused by confusing
plant as flower_pot (8.2% of all misclassifications), table as desk (8.0%), dresser
as night_stand (3.6%) and dresser as wardrobe (3.5%). Many have not only similar
geometric shapes but also similar semantics, which would limit the impact of the
mistake in the context of a robotic deployment, or could be resolved by exploiting scale
information.

3.3.4 Evaluation of attention models

Two important contributions of our work are the LRF-based attention model and
the z-axis feature z12. To evaluate exactly how much performance is gained by their
inclusion we perform experiments with various attention models with and without the
inclusion of z12. The results for ModelNet10 (a subset of ModelNet40) are shown in
Table 3.3.

We evaluate different configurations on the artificial dataset to remove any source
of noise to assess our attention model in a “worst-case” scenario. The LRF-based
attention needs a given point normal to make a large enough angle with the z-axis for
the LRF not to be ambiguous. As such, points cannot be sampled on horizontal planar
surfaces. Such surfaces are common in ModelNet10 where many classes are furniture
(proportionally much more so than ModelNet40). To give a more complete comparison,
we also include the results obtained using the raw coordinates in the original frame
(XYZ coordinates attention model) instead of the coordinates in the local reference
frame. This is only possible with this dataset because the data is aligned. This approach
does not have any restriction on the sampling and can therefore be considered as the
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“best-case” for the attention model.
The data-driven attention and our LRF-based attention achieve very similar perfor-

mance in this setting. Despite its performance, the data-driven approach is susceptible
to overfitting when used without the z12 feature. In this case the vertices no longer
contain information regarding their relative position. When removing the constraint on
the vertex sampling, we observe that the XYZ coordinates attention model outperforms
the data-driven attention model. This is encouraging as perfectly horizontal planar
surfaces are less common in everyday objects that are manipulated by robots. This
supports the use of the LRF attention model for real-world applications.

3.4 Discussion
This chapter addresses the important robotics task of object classification from 3D data.
We present an approach that combines classical features within a graph convolutional
network to retain the robustness of the handcrafted features while benefiting from
the power of deep learning. The model is based on pairs of point features that are
extracted in a structured manner. The features from the sets are then combined
through a graph using our novel attention model. Experiments with our method
show high discriminativeness and robustness to noise found in real sensor data. We
achieve significant performance gains over current state of the art on two challenging
reconstruction datasets while maintaining competitive performance on a clean CAD
model dataset. Notably, we empirically showed that building on a representation that is
invariant to the rotation around the z-axis provides sufficient robustness for classifying
objects in the real world.

Highlights

(1) Point Pair Features are discriminative enough to perform 3D object classifica-
tion efficiently.
(2) PointNet is a suitable learning architecture to replace and improve upon
histograms in classical descriptors.
(3) Graph Convolutional Network, and even more Graph Attention Network, are
a powerful architecture for 3D data and its sparsity.



Chapter 4

Measuring the Sim2Real gap in 3D Object
classification for different 3D data

representation

4.1 Motivation
Understanding the geometry of the environment a robot is operating in is key to
its safe operation. Whether it is to identify obstacles or to decide which elements
of a scene are indeed objects that will be safely grasped and interacted with, the
semantic information provided by 3D object classification is an essential element of this
environment understanding.

The state-of-the-art of 3D object classification has continuously improved [8], [15], [52],
but new methods are evaluated on standard CAD model datasets, like ModelNet [12].
This is not enough for robotic applications because data captured in the wild suffers
from frequent occlusions, smoothed-out surfaces, and over- or under-segmentation. This
difference in performance on artificial and on real data is partially demonstrated in [41],
but exclusively for point-cloud based methods. Indeed, the evaluation of the Sim2Real
gap is made more complex by the co-existence of different 3D data representation in
the field. Each of these representations come with their own advantage and drawbacks
for object classification.

The contribution of this chapter is to complement this original study by evaluating
the Sim2Real gap in multi-view, voxel grid and point cloud based methods. To do so,
we select representative deep learning models based on different data representation
and use their respective performance as a proxy to evaluate the Sim2Real gap in 3D
object classification for each representation. Point clouds (using PointNet [7] and
PointNet++ [8] as representatives), multi-view (using MVCNN [52] as representative)
and voxel grids (using VoxNet [9] as representative) are the selected representations
for evaluation as illustrated in Figure 4.1. We train the deep learning models using a
subset of the ModelNet [12] dataset (the entire dataset contains 12,311 artificial CAD
models spread in 40 classes), and evaluate them using a subset of the ScanObjectNN
dataset [41] (the entire dataset contains around 15,000 real objects spread in 15 classes,
with 2902 unique object instances). In a second phase, we perform a set of expefments
on modified artificial data to separately evaluate the impact of specific design elements

26
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Figure 4.1: 3D data representations: view-, grid and point-based representation

from each deep learning model.
As a results of all these experiments, we formulate a set of design guidelines to

improve performance on real-world data in the field of 3D object classification.

4.2 Measuring the Sim2Real gap on ScanObjectNN
In this section, the experimental conditions used to measure the Sim2Real gap are first
described, and an analysis of the results is then performed.

4.2.1 Experimental setup

In this set of experiments, models are trained on the subset of 11 classes from ModelNet40
dataset that overlaps with the classes defined in the ScanObjectNN dataset, and then
evaluated with objects from the same 11 classes from the ScanObjectNN dataset (as
defined in [41]). However, to make the evaluation possible, both datasets have to be
transformed.

First, the CAD models of the ModelNet dataset are rendered from multiple viewpoints
and the obtained depth maps are used to reconstruct the object using a Truncated
Signed Distance Function (TSDF) volume [24]. This step is done to remove artifacts,
and more specifically, surfaces defined within the object itself (remnants of the human
object modeling process), that would only affect PointNet and VoxNet, but not MVCNN.
Object models are first scaled to the unit sphere, and 26 depth maps are created: 12
views in a circle slightly above the object, 12 views in a circle slightly below the object,
and the top and bottom views. They are combined into a single TSDF volume from
which the object mesh is extracted. The result of the process is illustrated in Figure 4.2

As the ScanObjectNN dataset was originally designed to evaluate point cloud-based
object classification methods, a transformation is also necessary, because this format
is not suitable for the view rendering necessary for the MVCNN. The surface of the
object models is reconstructed from the dense point cloud with pre-computed normals
using a ball pivoting method [42].
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Figure 4.2: CAD Model (left) and TSDF reconstruction (right)

The transformations of both the train and test set make the results presented
impossible to directly compare with those presented in [41], but were necessary to fairly
compare the different methods evaluated in this chapter.

PointNet [7] and PointNet++ [8] are used for point cloud representation, VoxNet [9]
for voxel grids, and MVCNN [52] for multi-views. While these models might not reach
the highest accuracy for their respective representation, the focus in this chapter is on
the relative change in performance, and their architectural simplicity makes them more
representative of the behavior of other models based on the same representation. For
every model, the authors’ code is used, and the parameters of the chapter are respected.
MVCNN is evaluated using the VGG-11 backbone and 12 shaded views (in a circle
slightly above the object), PointNet++ and PointNet use 1024 points, and VoxNet is
trained on a 32×32×32 grid.

4.2.2 Results

Table 4.1: Impact of the TSDF reconstruction of object models, mean per class accuracy
is reported in percent

Train Test MVCNN VoxNet PointNet++
CAD CAD 89.4 82.9 88.0
CAD TSDF 83.4 (-6.0%) 82.2 (-0.7%) 85.6 (-2.4%)
TSDF TSDF 88.5 83.1 87.1
TSDF CAD 85.8 (-2.7%) 80.8 (-2.3%) 85.0 (-2.1%)

Before evaluating the gap between artificial and real data, we look at the impact
of the transformation performed on the artificial data, that is the rendering of views
and fusion of these views using a TSDF volume. Table 4.1 shows that the absolute
performance of every method is not significantly affected by the data transformation,
but differences do exist as every method accuracy drops a little when applied to the
other version. MVCNN is disproportionately affected as minor imperfections in the
TSDF reconstructions are made more prevalent by the shading applied to the depth
images before being fed to the CNN.

Table 4.2 presents the results of evaluating the different deep learning models on
the ScanObjectNN dataset and on the test set of the ModelNet dataset, when trained
on the pre-defined training set of the ModelNet dataset. Two ScanObjectNN variants
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Table 4.2: Results when training on ModelNet and evaluating on ScanObjectNN, mean
class accuracy and relative change is reported in percent

Model ModelNet OBJ_ONLY OBJ_BG
VoxNet 90.08 49.77 (-44.8%) 54.36 (-39.7%)
MVCNN 93.49 62.69 (-33.0%) 58.58 (-37.3%)
PointNet++ 93.31 52.49 (-43.8) 55.78 (-40.2%)
PointNet 90.31 54.22 (-40.0%) 55.71 (-38.3%)

are evaluated: the OBJ_ONLY, where only points belonging to the actual object are
considered, and the OBJ_BG where all points falling into the bounding box of the
object are considered.

4.2.3 Analysis

Overall, the MVCNN is the best performing approach, with a large gap when looking at
the OBJ_ONLY variant. Because the MVCNN only relies on object views sampled on
a circle slightly above the object, it is less affected than other methods by the absence
of data at the bottom and under the object in the ScanObjectNN dataset.

The OBJ_ONLY variant tends to be over-segmented (parts of the objects are missing,
for example, decorative cushion occludes parts of a sofa but would not be included),
while the OBJ_BG is under-segmented (many background points are included, like
the floor). MVCNN is clearly more affected by the under-segmentation than the over-
segmentation, which is in line with the experiments in [52] suggesting that the model is
sensitive to the object silhouette. On the other hand, VoxNet, PointNet and PointNet++
performs similarly on both variants. Looking further, results are significantly better
on the OBJ_ONLY variant for the table class (relative improvement 122.2% for
VoxNet, 82.4% for MVCNN, 47.6% for PointNet++ and 63.2% for PointNet) which
often include the ground floor in the OBJ_BG variant. On the other hand, VoxNet
(-10.7%), PointNet++ (-40.6%) and PointNet (-17.5%) performs worse on the shelf
class. So removing the background points as in OBJ_ONLY seems only beneficial
to certain classes while being detrimental on other classes, leading to similar overall
performance on both variants for VoxNet, PointNet and Point++. We hypothesize that
all methods are sensitive to the addition of background points, but VoxNet, PointNet++
and PointNet are more sensitive to holes than MVCNN, as they break local patterns,
whereas MVCNN better learns the overall object appearance from its silhouette.

4.3 Disentangling the impact of design choices
In this section, objects from the ModelNet dataset are altered in specific ways to better
understand the impact of design choices of each deep learning model evaluated in this
chapter and their consequences on the Sim2Real gap in 3D object classification. The
impact of occlusions is studied in three ways. First, a hole is grown in the object model,
until a certain percentage of the object surface is reached. second, the set of views used
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Figure 4.3: Illustration of the alterations of artifical data. Top: complete sofa, with
random occlusion (as in Figure 4.4), with a cut (as in Table 4.5), with a
bottom plane added (as in Table 4.6). Bottom: an example sofa in the
OBJ_BG and in the OBJ_ONLY variant of ScanObjectNN

to reconstruct the object is limited, using only a half or a quarter of them. Third, a
section of the object model is cut, removing a fixed volume of the bounding sphere. This
second type of occlusion also affects the scale of the object more once normalizing the
occluded objects. The impact of under-segmentation is studied by adding a supporting
plane under the object. Those alterations are illustrated in Figure 4.3. All deep learning
models are trained on reconstructed objects models from the 40 classes of the ModelNet
dataset and evaluated on the altered reconstructed test set, according to the experiment
performed.

4.3.1 Hierarchical learning from object parts
In this first set of experiments, the impact of hierarchy and subdivision of objects in
deep learning models is investigated. Intuitively, learning from parts of the object, and
relations between these parts rather than the entire object at once should be more robust
to objects occlusions. The performance of deep learning models under increasing amount
of random occlusions is therefore evaluated and presented in Figure 4.4. Occlusions here
are generated by selecting a random face in the object mesh, and growing the region to
be removed until a certain percentage of the object surface area is reached. PointNet
performs the worst out of all models, which is consistent with the hypothesis, as it is the
only model considering the entire set of points at once. PointNet++ performs the same
operation at multiple levels, each level being applied on a larger subset of the object
than the previous one. This design mitigates the issue as the performance degrades at
the same rate as VoxNet, which also learns hierarchically thanks to the use of classic
convolutions. MVCNN degradation relative to the level of occlusion is the slowest, as
it benefits from both the hierarchical learning from convolutions in single views and
the subdivision of the object in a set of views. We also noticed that while MVCNN
performs better with multiple views, when using a single view of a clean artificial object
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Figure 4.4: Mean class accuracy for various levels of occlusion

(setting the other 11 to black), MVCNN performance only degrades by 13.8%, showing
that MVCNN is quite robust to multiple corrupted views.

4.3.2 Impact of Surface-based or Euclidean-based Represen-
tation

Table 4.3: Impact of limited viewpoints (full and half models) during model reconstruc-
tion. Mean class accuracy and relative change in percent.

Model Full Half (Front) Half (Back)
VoxNet 71.41 67.33 (-5.7%) 62.00 (-13.2%)
MVCNN 78.14 73.45 (-6.0%) 67.63 (-13.5%)
PointNet++ 70.58 64.23 (-9.0%) 56.79 (-19.5%)
PointNet 75.27 67.45 (-10.4%) 64.10 (-14.8%)

MVCNN, because of its use of projection, only ever considers one side of an object
surface at a time. On the other hand, PointNet++ considers local subset of points
defined by the Euclidean distance rather than the co-visibility of points. A robot
operating in the wild can rarely observe a given object under every viewpoint. For
example the top of the bottom of a table are unlikely to be both accessible. We
hypothesize that patterns learned on subsets defined by the Euclidean distance will be
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Table 4.4: Impact of limited viewpoints (quarter models) during model reconstruction.
Mean class accuracy and relative change in percent.

Model Quarter (Front) Quarter (Back)
VoxNet 60.68 (-15.0%) 55.92 (-21.7%)
MVCNN 69.10 (-11.6%) 61.85 (-20.8%)
PointNet++ 57.73 (-18.2%) 49.39 (-30.0%)
PointNet 51.62 (-31.4%) 49.14 (-34.7%)

more affected by viewpoints constraints than patterns learned on those defined by the
object surface.

The impact of limited views is evaluated in Table 4.3 and Table 4.4. In this experiment,
12 views are generated all around the object on a horizontal circle at half the height of
the object (the circle of views is therefore at a equidistant height to the two used to
create the training set). We then report the performance on various subsets of views:
the half-circle subsets include the 6 views of the front (respectively back) of the object,
the quarter circle experiments report the average results when including the 3 left views
and when including the 3 right views of the front (respectively back) of the object. The
front, back, left and right are defined by the version of ModelNet where objects models
are aligned.

PointNet++ performance and even more so, PointNet performance degrades faster
than VoxNet and MVCNN. With more and more limited viewpoints available, the
difference between surface and Euclidean neighborhood definition grows bigger. While
VoxNet theoretically falls into the Euclidean type of representation, we attribute its
relatively good performance here to the coarseness of its voxel grid. Indeed, in most
situation, front and back surface of an object are likely to fall into the same voxel,
mitigating this issue. For example, on the bathtub class, PointNet++ and PointNet
show respectively a 85.4% and 87.1% decrease compared to -67.1% and -60.0% for the
VoxNet and MVCNN respectively on the quarter (back) experiments. This implies a
stronger reliance on the presence of both the outer (present) and inner (absent in this
experiment) surface of the bathtub. Another example is the bowl class, where most
models are barely affected, except the PointNet with an average decrease on all quarter
experiments of 56.3%. While the class is discriminative enough thanks to its curvature
that is uncommon in this dataset, PointNet reliance on both sides of the bowl being
present leads to incorrect classification.

4.3.3 Impact of over- and under-segmentation and scale
Many CAD models like those provided in the ModelNet dataset do not have a reliable
scale information, as the unit used to create them is not provided. It is common to scale
them to the unit sphere. As occlusions of objects will affect their bounding spheres, they
affect the final scale of the object. To investigate further over- and under-segmentation
and their connection with scale, a new type of occlusion is evaluated in Table 4.5. The
object is cut vertically at a certain percentage of the unit sphere diameter, guaranteeing
that the resulting object’s scale will be changed when re-scaling the remaining points to
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Table 4.5: Impact of scale, and over-segmentation. Mean class accuracy and relative
change in percent.

Models 30% cut 30% cut scaled 50% cut 50% cut scaled
VoxNet 73.5 (-18.4%) 73.0 (-19.0%) 73.0 (-19.0%) 45.2 (-49.8%)
MVCNN 83.1 (-11.1%) 86.0 (-8.0%) 71.0 (-24.1%) 72.7 (-22.2%)
PointNet++ 84.3 (-9.7%) 83.3 (-10.7%) 71.1 (-23.8%) 68.8 (-26.3%)
PointNet 79.7 (-11.7%) 76.4 (-15.4%) 26.0 (-71.2%) 40.4 (-55.3%)

Table 4.6: Impact of under-segmentation. Mean class accuracy and relative change in
percent.

Models Bottom plane
VoxNet 66.5 (-26.2%)
MVCNN 78.3 (-16.2%)
PointNet++ 25.3 (-72.9%)
PointNet 23.2 (-74.3%)

the unit sphere. The reliance on the scale information of VoxNet is made clear, as the
scaling and centering operation resulting from the occlusion strongly affects the voxel
grid. PointNet and PointNet++, thanks to the fixed number of sampled points still
extracts discriminative patterns from scaled up occluded objects, and MVCNN already
scales every view around the object.

Under-segmentation is also evaluated in Table 4.6 by adding a ground plane under
every object of the same width and length as the object. These experiments confirms
MVCNN sensitivity to under-segmentation shown in Table 4.2, but also demonstrates
the limits of the fixed number of points used in PointNet and PointNet++ representation.
Not only does it add outlier point, but it also consequently limits the number of points
that can be sampled on the object, forcing them to be further apart, and losing any
discriminative local patterns in the process.

4.3.4 Application-specific considerations

While this chapter focused so far on generally applicable guidelines for 3D object
classification, knowledge about the end application can also inform the design of the
classification method.

For example, the higher absolute performance of the MVCNN in this chapter is
partially attributed to its implicit use of surface normals, necessary to the creation
of shaded images. They make classes with finer surface details easier to distinguish,
making the method more robust to random occlusion. Looking at the difference between
performance on complete reconstructed models and models with a 50% random occlusion,
the benefit is noticeable for classes like keyboard (0% for MVCNN, -60.0% for VoxNet,
-40.0% for PointNet++, -65% for PointNet) or curtain (-5.3% for MVCNN, -16.0%
for VoxNet, -22.2% for PointNet++, -16.7% for PointNet). This benefit is tied to the
availability of reliable surface normals in the end application.
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The fixed set of viewpoints used by MVCNN can also be tuned to the application, but
because of the projection process, it is less suitable to represent concave parts. Looking
at the same experiments as before for the sink class, MVCNN (-36.8%) is performing
worse than VoxNet (-9.3%), PointNet++ (17.6%) or PointNet (-20.0%).

4.4 Discussion
The set of experiments presented here underlines the strengths and weaknesses of point
cloud based, voxel grid based and multi-view based representation of 3D data. Through
a set of experiments on both real and artificial data, design guidelines have emerged to
further reduce the Sim2Real gap in 3D object classification. In particular, based on the
results presented here, we advise to learn features hierarchically, as is already common,
using object surfaces to define point neighborhood, rather than the Euclidean distance
between points, and favoring data creation producing over-segmentation, especially
when opting for a fixed number of points representation (which presents significant
computational benefits). All these choices mitigate the impact of occlusions present
in real data. Moreover, the application and the set of classes that will need to be
recognised can further guide the design of the approach, as surface normal, and their
implicit use in shaded images help differentiate finer details, but concave elements are
harder to represent reliably using a set of views.

Highlights

(1) View-based methods dominate most other approaches both thanks to research
already invested in 2D convolutional networks and because they split the object
into subparts to better deal with occlusions.
(3) With the exception of view-based methods that benefit from shading, they
all struggle with finer details of objects. This could be alleviated by adaptive
subparts helping to focus on those smaller structures.
(2) Surface-based neighborhoods are preferable to Euclidean-based neighborhoods
when objects are occluded.



Chapter 5

Addressing the Sim2Real Gap in Robotic
3D Object Classification

5.1 Motivation
Whether to recommend the most suitable CAD model to a designer or to enable a service
robot to decide where to place objects when tidying a room, 3D object classification is
an essential task. Research in this area has greatly benefited from the wide availability
of 3D CAD models as well as the accessibility of depth sensors, as this has established
a large amount of data to apply geometric reasoning.

Deep learning has profoundly transformed computer vision in recent years, and in
particular, object classification has seen spectacular improvements. There has been
steady interest for applying these methods for 3D data but introducing geometric
reasoning in deep learning is not without its pitfalls. Typical deep learning approaches
cannot handle rotated objects and real-world objects might be observed in arbitrary
poses. Some methods use the statistical distribution of the data to transform the
unknown object to a canonical pose for the deep network [7], [66]. However, inaccessible
viewpoints, partial occlusions, supporting surfaces, and over- or under-segmentation
observed in real-world data all contribute to modifying the statistical distribution of
data that these methods expect, thus hindering their performance. This problem is
particularly common for data obtained by indoor service robots. Most deep networks
also expect a fixed size input. This is achieved by rescaling, however, applying this to an
occluded object can lead to a significant difference in the final fixed size representation.
Consider how rescaling and centering a model airplane to the unit sphere and the same
model with one wing missing would produce vastly different coordinates. The effect
becomes prevalent when transferring from CAD models to real-world objects, as scale
information is not available during training since most CAD models are scaleless.

In this work, we develop a method for 3D object classification based on object parts
that are reproducible under orientation or scale changes and can be defined for any
level of occlusion, as shown in Figure 5.1. It should be noted that we define parts
as a continuous subset of the original object without any specific semantic meaning.
Indeed, semantic parts such as a cup handle or a chair leg are also likely to be occluded
and impossible to recover from the original objects, whereas our non-semantic parts
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TRAIN TEST

Figure 5.1: Creating reproducible object parts with similar representations on all sources
of data enables better transfer from artificial to real objects.

can always be defined. Once parts are extracted, a rotation-invariant representation
is computed through the use of a reproducible local reference frame. Finally, a graph-
convolution based architecture is used to classify the graph of parts. This approach
is chosen because of its ability to incorporate information about the neighborhood of
the parts without needing to define a global orientation or to know about the object
delineation.

In summary, the contributions of this chapter are the introduction of:

1. a carefully designed angle-based sampling procedure that creates object parts
reproducible under various rotation, scale and occlusion and,

2. a general graph-based learning architecture for classification that preserves the
relevant properties of 3D object parts.

These aspects allow us to achieve high performance when transferring from artificial to
real-world data. In particular, our approach transfers from the ModelNet dataset [12] to
objects segmented from the reconstructed scenes in the ScanNet dataset [13] better than
previous point cloud-based methods. Our approach also outperforms the baseline 3D
method PointNet [7] when training and testing on ScanNet, which further demonstrates
the value of careful part design and the inclusion of geometric priors.

5.2 Learning from Object Parts for Robust 3D Ob-
ject Classification

Our method is developed for over- or under-segmented objects represented by manifold
triangle meshes (a mesh is a manifold if each edge is connecting at most two triangles).
The reason for using a mesh is that surfaces are preserved. Reconstruction methods
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Figure 5.2: Architecture overview of our proposed method. The number of parts is
reduced to eight for readability purposes and the connectivity is not displayed.
Convolution layers all consider only a single element (kernel size one) and
the number of filters is indicated.

generate that representation either directly [28] or by applying a post-processing step
such as the marching cube algorithm [25]. However, the method presented here could
easily be adapted for dense point clouds by using nearest neighbor approaches to retrieve
the neighborhood of each point.

This section describes the proposed method. We first explain the object part sampling
process and the part representation. We then outline the learning approach for the
graph of object parts and the design of our graph convolution architecture.

5.2.1 Creating object parts
Object parts sampling To transfer from artificial object models to real reconstructed
data, object parts should be repeatable under varying orientation, occlusions, scale
and point density. Scale-invariance forbids the use of Euclidean distance for sampling
parts. To avoid sampling a part that would span through an object, and thus being
significantly more sensitive to occlusions, parts are grown by following the surface of
the object. The average angle between a triangle and its neighbors on a surface is
used when deciding whether a neighboring triangle should be added to the part. Since
reconstruction algorithms account for sensor noise and artificial data does not suffer
from any random noise, high quality normals can be computed for both type of data.
The angle between two neighboring normals is independent of scale and orientation of
the object, and in a perfectly noiseless case, even independent of the surface sampling
density. Object parts are then extracted by performing a Breadth-First Search (BFS) on
the graph defined by the object mesh, or in other words, incrementally adding a one-ring
neighborhood around the sampled part center. Due to the strong unpredictability of
occlusions, part centers are randomly sampled. Centers are sampled so long as they do
not belong to a previously sampled part. The search is stopped when the accumulated
angle over the object part reaches a set threshold. The accumulated angle is computed
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from the average angle of each triangle, which is simply the average of the angle with
each triangle neighbor.

Reconstructed scenes do not provide perfectly smooth surfaces, therefore, we perform
low-pass filtering on the normals defined by the triangles. Normals for all points are
first computed by averaging the normals of each triangle they belong to. Then triangle
normals are computed by averaging the normals of the three points. The resulting
normals are smoother than the original mesh.

Object part features The object part representation should maintain the properties
of the sampling. In this work, we sample a fixed number of points from the object part
to generate a fixed size representation from parts of varying sizes. Orientation-invariance
is then achieved by defining a local reference frame (LRF). The center of the LRF is
defined by the mean of a set of points and we propose two different orientations.

The first design option is to perform Principal Component Analysis (PCA) with the
set of points and use the eigenvectors as the LRF. The first and last eigenvectors (when
ordered by decreasing eigenvalues) are kept and the direction of the last eigenvector
is flipped in order to follow the average direction of the surface normals of the set of
points. This guarantees a different LRF for concave and convex sets. The last vector
is the cross-product of the first two vectors. This LRF provides a total orientation
invariance and is referred to as PCA-LRF.

The second option is to define the LRF based on the global vertical axis (Z-axis)
and the component of the mean surface normal of the part that is orthogonal. This
is no longer independent of the orientation of the object but only independent of the
orientation of the object around the Z-axis. This local frame of reference is referred to as
Z-LRF. Although it is only partially orientation-invariant, it offers a more informative
representation. Since many objects have a small number of canonical poses (e.g. most
bottles stand upright), it remains beneficial when tested on realistic data.

All point sets are rescaled to the unit sphere to make the representation independent
of the scale. In most experiments in Section 5.3, we also add the average angle value as
a feature to the point coordinates. When sampling the point, we use the average angle
value of the triangle it belongs to. It slightly improves the accuracy without any extra
computation overhead because it is computed during sampling.

Finally, the graph is constructed by connecting parts that overlap. In other words,
parts are connected if at least one triangle in each of the parts was sampled in the
original object.

5.2.2 Model Architecture

General architecture The architecture, as shown in Figure 5.2, follows the PointNet
model where each point extracted from a part is independently fed to the same con-
volutional neural network. In difference to the architecture of PointNet, the spatial
transformer network is unnecessary as the points’ coordinates are already defined in a
LRF. Each of the layers includes a batch normalization step [90]. A weighted version of
the maximum value (over the whole set) of a given filter is subtracted from each output
as described in [65].
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The proposed model includes graph convolution layers inspired by the GCN model
introduced in [6]. This is a simplification of larger graph convolutional models because
only first-degree neighbors are considered. As a result, the model cannot differentiate
neighbors from each other. To address this, we introduce an attention model in our
graph convolutions.
Attention model The GCN model is made more powerful by introducing an attention
mechanism. Instead of considering all neighbors as equal, the neighbors are weighted
according to a criterion that is specific to the attention model chosen. Examples
of attention models have been developed in [72] and [11]. To further improve the
representational power of a network, multiple attention heads are used for the same
layer, and the attention heads output are concatenated at each layer.

Introducing attention to the GCN model amounts to learning a valid coefficient to
replace the normalization factor. We follow the model defined in [11] where the graph
convolution layer becomes

hl+1
vi

= σ

 �
j∈Ni

γijh
l
vj

W l

 , (5.1)

where hvi
is the feature vector of the i-th vertex, σ is the activation function, and W is

the parameter vector of the layer l. The coefficient γij is defined as

γij = softmax(eij),

= exp(eij)
k∈Ni

exp(eik) ,
(5.2)

where eij = LeakyReLU(aT .[hvi
W ||hvj

W ])), (·)T denotes the transpose operation, ·||·
denotes the concatenation operation and a is the vector of learned parameters for the
attention. In order to respect the part connectivity, we add a bias matrix to the eij

term before applying the softmax in which disconnected nodes have a value of −109

and connected nodes have a value of 0. This model is further discussed in [11] and [89].
Summarizing over object parts In this work, we are interested in predicting the
object-level class. The object part representation described so far affords a number of
different options for this task. The most straightforward option is to simply perform a
max-pooling operation on the feature vectors of each part and then classifying the object
(referred to as MaxPool). However, the classifier will be trained expecting all nodes
and is therefore less likely to transfer well to real reconstructed data that have missing
nodes. A second option is to predict one class per node and average all predictions
into an object-level prediction (referred to as SingleNode). Both options are evaluated
in Section 5.3. The single node prediction trained on artificial data still provides a
representation that assumes perfect connectivity. We therefore propose one last option
in which a proportion of nodes are randomly disconnected (except for self-connections).

5.3 Experiments
This section presents the experimental results. The first set of experiments compares
our proposed approach to state-of-the-art methods for object classification on artificial
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data using the ModelNet dataset [12]. The second set of experiments evaluates the
transfer abilities from artificial data (ModelNet) to real-world data (objects extracted
from the ScanNet dataset [13]). We also evaluate in more depth the impact of the
object part size and the connectivity of the object parts graph. Lastly, our method is
evaluated against the PointNet architecture when training and testing on real-world
data with objects extracted from the ScanNet dataset.

5.3.1 Experimental setup
Implementation Our final model is described in Figure 5.2. We sample up to 32
parts per object and 250 points per part. The representation of each object part is fed
through four 1D convolutional layers and max-pooling is applied over the whole set
of points from the object part. The local representation is then passed to four graph
convolutional layers. The output of each attention head is concatenated at each layer
before being fed to the next. When predicting over single nodes or over a set of nodes,
pooling is applied either before or after the classification layers.
Datasets Evaluation is performed on two datasets: The ModelNet dataset [12] and
the ScanNet dataset [13] (1513 reconstructed rooms). We use both ModelNet40 (12311
CAD models split between 40 classes) and the ModelNet10 subset (4899 models in 10 of
the original 40 classes: bathtub, bed, chair, desk, dresser, monitor, night_stand,
sofa, table, toilet). The second version of the annotation for ScanNet is used with
the train/test/val split defined in the first version. Objects are extracted according
to the annotation in the dataset. Afterwards the object classes are mapped to the
ModelNet classes. The ModelNet10 mapping is the subset of ScanNet objects that
belong to the ModelNet10 classes. The ModelNet40 mapping is the same but uses the
ModelNet40 classes.

5.3.2 Evaluation on artificial data
Table 5.1 compares the performance of our method to state-of-the-art methods on the
ModelNet [12] dataset. It should be noted that the models of the dataset are non-
manifold meshes. To apply our method, we project views of the objects and reconstruct
them using a TSDF-based method. As a result, the object models differ slightly. For
reference, we provide the accuracy of available methods on both versions and observe a
drop in accuracy between one and three percent for the object models created for our
approach.

This experiment shows that despite being specifically designed with real-world con-
straints in mind, our method still shows competitive results on artificial data. The
results presented in Table 5.1 correspond to our method with a max pooling and trained
with the average angle values as an included feature. Table 5.2 shows the results of
the addition of the average angle value as an extra feature. We see that performance
slightly improves in all conditions without adding any computation as it is already
calculated during the sampling process. Furthermore, the SingleNode type of pooling
(i.e. predicting a class for each object part and averaging the prediction over the object)
gives similar results to MaxPool on artificial data. An experiment using the GCN model
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Table 5.1: Classification accuracy on the ModelNet40 dataset [12] (MN40Rec indicates
that the method was evaluated on the reconstructed models)

Method MN40 MN40Rec Input
VoxNet [9] 83.0 - Voxel Grid

KD-Networks [61] 91.8 - KD-Tree
MVCNN [10] 90.1 - Views

MVCNN-New [52] 95.0 91.7 Views
3DmFV-Net [63] 91.6 91.1 Point Cloud
3DCapsules [91] 92.7 - Point Cloud

PointNet [7] 89.2 88.1 Point Cloud
*Ours (PCA-LRF) - 86.9 Mesh

*Ours (Z-LRF) - 89.4 Mesh

Table 5.2: Evaluation of design choices on ModelNet10

Pooling LRF Avg ang. Attention Acc.
MaxPool PCA-LRF ✗ ✓ 85.6
MaxPool PCA-LRF ✓ ✓ 86.3
MaxPool Z-LRF ✗ ✓ 87.2
MaxPool Z-LRF ✓ ✗ 86.9
MaxPool Z-LRF ✓ ✓ 89.2

SingleNode Z-LRF ✓ ✓ 89.6

[6] without the attention model is also performed. This result shows that the attention
model improves the results, which is consistent with [11]. All future results include the
average angle as a feature, use the Z-LRF and include the attention model.

Figure 5.3 illustrates the benefits of our design when simulating levels of occlusion
on artificial object. The occlusion is simulated by removing a region that is grown on
the mesh surface until a set percentage of the object is reached. We observe that the
performance degrades significantly better than for the PointNet architecture.

5.3.3 Evaluation of the gap between real and artificial data
This section evaluates the gap when training on artificial data (objects from ModelNet)
and testing on real-world data (segmented objects from ScanNet). This is a difficult
task because of the domain shift as well as some important characteristics of the
ScanNet dataset (see Figure 5.4). ScanNet was first and foremost designed for semantic
segmentation, which is more concerned with large-scale structures. Additionally, since
it represents natural environments, the dataset is strongly imbalanced. Chair is a highly
dominating class, which is seen by the performance of the “chair predictor” baseline (i.e.
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Figure 5.3: Accuracy in percent for various simulated occlusion (ModelNet40 is used,
SingleNode model trained with 75% Disconnect).

always predicting the chair class) in Table 5.3. As such, class accuracy is a more relevant
metric than overall accuracy. Moreover, most structures tend to be oversmoothed by
the reconstruction algorithm. This is a side-effect of the reconstruction algorithm that
tries to reconcile various noisy measurements. Subtle differences also exist between
ScanNet classes and ModelNet classes (e.g. a pack of bottles in ScanNet is mapped to
the bottle class, whereas that class only contains single standing bottle in ModelNet).
Finally, the segmentation is often inaccurate for smaller objects. This is due to the
fact that scenes are oversegmented and then clusters are annotated. Therefore, many
extracted objects include points from the surrounding elements. All these factors make
this a very challenging dataset for the task.

As shown in Table 5.3, only MVCNN-New and our model manage to perform some
transfer. The result when always predicting the chair class not only demonstrates
the imbalance of the dataset but also provides a general reference for evaluating
performance. Considering that our object part representation could easily be swapped
out in our pipeline, a comparison to PointNet is fairest to our contribution. This local
representation was selected for its versatility and proven reliability in various contexts
[92], [93]. The good results of the MVCNN-New architecture supports the idea that
part-based (in this case parts are defined by projective geometry), and invariance to
rotation around the gravity axis is essential to transfer to real reconstruction. MVCNN-
New seems to work best if one of the sampled view preserves the outer contour of
the reconstructed object. In particular, MVCNN-New is better than our method on
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Figure 5.4: Illustration of the noisy objects extracted from the ScanNet dataset. Left
to right: monitor (very noisy surface), potted plant (strong occlusions and
many disconnected parts), cup (small object) and table (object on top
merged with it).

Table 5.3: Evaluation when transferring from ModelNet40 to ScanNet

Acc. Cls Acc.
Chair Predictor 36.2 2.5

PointNet 2.2 3.3
3DmFV-Net 0.9 4.2

MVCNN-New 36.6 20.0
Ours 34.6 19.1

the classes plant, sofa and toilet, but worse for bathtub monitor and sink. It is
interesting to note that both sink and bathtub are both box-like objects with concave
parts that do not affect the outer contour of the object in a projected view. Our model
is adversely affected by meshes having many disconnected components such as plant
and bookshelf meshes in the ScanNet dataset.

For our method, the best results are achieved by increasing the sampling threshold
by a factor of two compared to training. Also, SingleNode pooling is used with a
disconnection rate of 75% during training. In the next section, we evaluate those design
choices in more detail.

Influence of the part size in the transfer One significant parameter in the transfer
performance is the threshold set for the part sampling algorithm. ScanNet scenes tend
to be oversmoothed, which affects the angle-based sampling procedure for objects that
have large flat surfaces in artificial models. Also, scenes are reconstructed at a constant
density, which means that smaller objects have a smaller density than bigger objects.
Combined with the low level of noise, the right trade-off needs to be found for increasing
the threshold used in training and testing because classes react differently. Figure 5.5
shows the impact of the sampling threshold on the accuracy when using the mapping
from ModelNet40 classes to the ScanNet objects. The best threshold typically increases
with the increase of the average size of the class. For small objects, such as bowl, the
best threshold is close to the training value. For medium-sized objects, such as toilet,
the best threshold is between three and fours times the original value. For very large
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Figure 5.5: Accuracy in percent for various multiplicative factors applied to the sampling
threshold (ModelNet40 mapping is used, SingleNode model trained with
75% Disconnect).

objects, such as piano, the best best threshold is up to eight times. Larger objects
simply have more triangles in the mesh. The threshold is reached much faster due to
the noise, therefore, they require a larger threshold in order to reproduce parts similar
to those observed during training.

Influence of the connectivity and pooling Table 5.4 shows the impact of different
pooling strategies on the transfer performance. It also shows the impact of randomly
disconnecting some object parts in the object part graph during training in order
to better approximate occluded objects. The experiments are performed using the
mapping from ModelNet10 to ScanNet. The significant increase in accuracy is due to
the fact that the ModelNet10 mapping contains most of the well-reconstructed objects
because classes of ModelNet10 corresponds to objects of larger scale (excluding classes
such as cup, keyboard, laptop, vase and xbox). Clearly, performance improves with
disconnection considered. Applying 0% has low accuracy because it does not model the
occlusion. At 100% the performance is also low because this over-estimates the level of
occlusion. The best compromise is achieved with 75% for the ScanNet dataset. The
disconnect experiments are not applied to the MaxPool setup, as it would still take into
account each part when max-pooling, thus failing to simulate occlusions.
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Table 5.4: Evaluation of design choices for transferring to ScanNet (using the Model-
Net10 mapping)

Pooling Disconnect (%) Acc. Cls Acc.
MaxPool - 44.1 42.35

SingleNode 0 50.1 38.3
SingleNode 50 62.2 39.0
SingleNode 75 62.9 43.2
SingleNode 100 54.5 33.2

Chair predictor - 56.0 10.0

Table 5.5: Evaluation when training and testing on ScanNet (using the ModelNet40
mapping)

Acc. Cls Acc.
Chair Predictor 36.2 2.5

PointNet 73.6 52.3
PointNet (rescaled obj.) 53.4 17.2

Ours (Z-LRF) 85.2 62.8

5.3.4 Evaluation on real data

The large size of ScanNet makes it feasible to train methods on real-world data instead
of artificial data. This is helpful because it can establish an upper bound for the transfer
to this dataset. The results in Table 5.5 are significantly higher than when transferring,
which implies the existence of occlusion consistency for a given class. We, however,
conjecture that this only holds for larger structures but not for smaller objects, such as
household items. The results additionally show that an advantageous side-effect of our
design is the ability to better learn from noisy data. Our method achieves an accuracy
of 85.2% and class accuracy of 62.8%. The best results are achieved using the Z-LRF
frame of reference. Prediction is performed for each node and averaged, and training is
performed with a 75% random chance of disconnecting two neighbors. In comparison,
the PointNet architecture achieves much lower scores of 73.6% accuracy and 52.3%
class accuracy, which is approximately 10% less than our method. Experiments are also
performed with PointNet trained on objects rescaled to the unit sphere to prevent the
method from taking advantage of scale information. The significant decrease in this
case suggests that PointNet finds it more difficult to establish consistent shapes. This
supports our argument that even though objects have inconsistent shapes, they always
have consistent parts.
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5.4 Discussion
This chapter addressed the important robotics task of object classification from 3D
data. We present an approach that transfers to real reconstructed objects when trained
on clean CAD models only. Results show that our approach significantly outperforms
state-of-the-art methods while maintaining competitive performance when training
and testing on CAD models. The performance increase in the transfer is achieved
through sampling object parts that are reproducible under rotation, occlusion and
scale in combination with a graph-based deep learning architecture. Learning with
a rotation-invariant and scale-invariant representation of parts enables objects to be
recognized with significant portions of missing data.

Hightlights

(1) Part-based representations are useful to deal with the sim2Real gap in 3D
object classification, and with occlusion in particular.
(2) Parts can be more reliably scaled and oriented which enables, in combination
with graph-based learning architectures, a rotation-invariant and scale-invariant
representation.
(3) The benefits of such an approach does not require semantic subdivision of
the object, and accomodates itself very well to a simple breadown.



Chapter 6

Robust Sim2Real 3D Object Classification
using Graph Representations and a Deep

Center Voting Scheme

6.1 Introduction
Service robotics could provide significant relief to overwhelmed healthcare workers or
help elderly people remain independent for longer by carrying out menial tasks. To attain
this objective, they need to adapt to an ever changing environment and manipulate a
constantly evolving set of objects. The majority of state-of-the-art methods use deep
learning to achieve this property [8], [14], [15], [68]. However, such approaches require a
large flow of annotated data to learn about new objects, which is only practical through
simulation and modeling, as manual reconstruction, segmentation and labeling at scale
is prohibitively time consuming.

Learning from artificially produced data is an increasingly popular direction of
research. The challenge is for the trained model to still operate robustly on data taken
by a robot in a realistic setting. The loss of performance, usually referred to as the
Sim2Real gap, is still remarkably large in 3D object classification compared to 2D
color images [41], even though producing photo-realistic images is more challenging
than producing realistic 3D models. Models trained from artificial object models still
struggle to classify objects segmented from 3D reconstructions because of occlusions,
over-smoothing due to noise in the camera pose, light modeling, CAD models deviation
from real objects, and scale differences as seen in Chapter 4. Notably, scale from CAD
models is arbitrary, and not necessarily metric, making it difficult to rely on when
using a large-scale dataset. It is therefore common to rescale objects to a normalized
scale like the unit sphere. For real objects, however, under-segmentation or partial
occlusion will affect the rescaling factor. It therefore becomes more challenging to
obtain consistent coordinates for object points. Indeed, to obtain object representations
at a consistent scale, a very good segmentation of the objects is needed, but to obtain
a precise segmentation requires a semantic understanding of the object, which is the
objective in the first place. This problem is compounded when designing a method for
object segmentation or detection trained on artificial data, but is more easily studied
on classification tasks. Relying explicitly or implicitly on coordinates renders these
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vote vj
part pi

Figure 6.1: Illustration of the voting procedure. Every part of the graph learns from its
own shape and neighborhood (left). They each cast a vote for the object
center that then get clustered (right). Votes from background points are
more scattered than votes from the object, which makes the separation more
marked.

representations more sensitive to scale, which in turn leads to misclassification on real
data.

In this work, we propose to learn representations significantly more robust to scale
from a graph of reproducible parts and their connectivity. Specifically, only the relative
direction between neighboring parts is considered, instead of their actual coordinates.
In addition, we introduce a voting mechanism to further robustify our method to
under-segmentation as illustrated in Figure 6.1. Each part votes for its corresponding
object center such that background and foreground parts are separated through their
center prediction.

In summary, the contributions of this chapter are:

• 3D object classification evaluation showcasing the sensitivity of state-of-the-art
methods to scale.

• A segmentation method for creating a robust graph of parts for 3D object classifi-
cation.

• DirEdgeConv - a scale-invariant adaptation of EdgeConv [15].

• The introduction of a voting procedure for separating foreground from background.

• Improvement of up to 16% on the noisiest variation of real object dataset ScanOb-
jectNN[41] when training on artificial models dataset ModelNet.
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x1

x2 x3

x4

Figure 6.2: Illustration of the convexity criterion. The connection between x1, x2 and
x3 are convex or flat so they are merged in the same part.

6.2 Sim2Real Classification of Under-segmented Ob-
jects

The key idea of the proposed method is to increase the robustness to scale change. To
achieve this, we represent the object as a graph of object parts. Its creation and the
learning architecture used to preserve these properties is described in the following
sections.

6.2.1 Building a graph of parts

Our method creates a graph of parts from object reconstructions. As we intend to learn
an object representation based on object parts, they should be reproducible between
artificial models and real data of reconstructed objects to facilitate the transfer from
one domain to the other. Since scale is inconsistent between the two domains, parts
are defined in a scale-invariant way, depending on the surface changes themselves.
They need to cover a limited portion of an object such that most parts are unaffected
by partial occlusion. Finally, parts need to respect object boundaries and not span
over multiple objects such that representations remain consistent in the presence of
background points.

Locally Convex Connected Patches (LCCP) [81] is shown to create an over-segmentation
that respects object boundaries well, based on experiments in [78]. Starting from a
set of supervoxels (sets of voxels guaranteed to not cross object boundaries), LCCP
computes a convexity criterion between every pair of neighboring supervoxels. Based
on this connectivity, a region growing procedure is performed to obtain the final clus-
ters. Formally, for a pair of connected supervoxels with centroids x1 and x2 and their
respective normals n1 and n2, the convexity criterion (CC) in [81] is used to decide
whether two parts should be merged, with an extra tolerance threshold αthresh (set to
the cosine of 10Â° in all our experiments):

CC =
true if (n1 − n2). x1−x2

�x1−x2� > 0 ∨ n1.n2 < αthresh

false otherwise
(6.1)

Two supervoxels are neighbors if they have a convex edge or if their angular difference
is smaller than the arccosine of αthresh. This is further illustrated in Figure 6.2. A small
angular difference occurs in mostly flat areas, and the threshold is set to accommodate
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noise in the surface orientation. In combination with the sanity criterion described
in [81], object parts are grown based on this newly obtained connectivity.

Following a similar pipeline, we start by extracting supervoxels as in [80]. Since we
work with 3D data, and not a single frame depth map, both sides of an object can be
observed. For thin object parts, such as a chair backrest seen from the front and the
back, points from both sides could fall into the same voxel. Because the connectivity
is derived from a voxel grid, a connection would be created between parts through
the object volume instead of the object surface. This is problematic for the convexity
criterion, as the front and the back will have opposite normals leading to very different
segmentations depending on which side is used. Moreover, creating parts according to
the object surface is a desirable property for occlusion robustness because two surfaces
with opposite orientation are unlikely to both be observable when viewpoints are limited.

To circumvent this issue, we allow our approach to create up to two supervoxels per
voxel if the angular difference is more than 90Â°. Supervoxels are refined exclusively
based on the angular difference.

When applied to object reconstructions, parts created by LCCP will cover large
portions of the object. Indeed, supervoxels will belong to the same part as long as
there is a path linking them in the convexity graph, or in other words, every connection
between two parts need to be concave in order for them to be split. These very large
parts are detrimental to the robustness of the approach since large object parts are
unlikely to be fully visible once deployed because of occlusions. The growth of a part
is therefore constrained and a supervoxel si (with normal nsi) can be added to a part
P = {sj|j ∈ 1...k} only if

nsi .nsj < βthresh ∀ sj ∈ P (6.2)

We set βthresh to the cosine of 120Â° and use this criterion to approximate, in a
computationally efficient way, the fact that there should be a projection where every
supervoxel of a part is visible, since reconstructions are obtained from a collection of
views. This makes the region growing procedure dependent on the seed initialization.
As such, seeds are randomly sampled among the supervoxels that do not belong to a
part.

The connectivity between object parts is derived from the connectivity of the super-
voxels, where any voxel sharing a face, edge or a vertex in the grid is considered to be a
neighbor.

This segmentation is sensitive to scale only through the original voxel resolution
chosen. We argue that the part growing compensates for this aspect, and as long as
the original voxel grid is fine enough, the combination of supervoxels based on their
normals will result in a similar part.

6.2.2 Learning object representations from object graphs

We now introduce our method to learn from a graph of parts while preserving the
properties of the parts. Firstly, since parts cover many points, we describe how to learn
features from the parts’ shapes independently of their scales. Secondly, we describe how
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to learn object-level representations from a graph of parts while preserving the scale
change robustness.
Local parts representation Parts created using the method described in the previous
section represent different surfaces and cover many points. A part-specific representation
is introduced to learn the shape information of each part. A fixed number of points
within each part is sampled. Each set of points is re-centered and scaled to fit the unit
sphere. The parts representation is learned using an architecture (Figure 6.3) similar to
PointNet [7], except that at every one-dimensional convolution layer the maximum of
the input feature is subtracted, weighted by a learned parameter as described in [65]
for added representational power. Batch normalization [90] is used at every layer.
Representing parts in context using Graph representations Relying purely on
the graph structure and its connectivity as in chapter 5 loses the information about
the relative position of graph nodes. However, positions are sensitive to scale changes.
Specifically, the graph produced by the method described in Section 6.2 creates parts
of variable size and the relative positions can therefore have different magnitudes. We
therefore only consider the relative direction of each neighboring part by adapting the
EdgeConv layer. It should be noted that analogous adaptation can be made to all
neighborhood-based representations.

In the original EdgeConv layer introduced in [15], f l+1
i ∈ RF , the feature vector of

length F of part i at layer l + 1, is obtained based on its neighborhood Ni according to

f l+1
i = max

j∈Ni

�
concat

�
f l

i , f l
i − f l

j

��
(6.3)

where concat represents the concatenation of the two vectors. Features are learned
directly from point coordinates and the neighborhood is defined by a nearest neighbor
search on the set of feature vectors.

We introduce a new layer based on EdgeConv, called DirEdgeConv for clarity, that
can learn from object parts without introducing any sensitivity to scale change. The
local parts representation only encodes shape and not position (which is the case
for point coordinates). To re-introduce this information without depending on the
coordinates scale, we use the relative direction of neighbors defined as xj−xi

�xj−xi� where xi

and xj are the centers of the two neighboring parts. This is in contrast to using their
relative position xj − xi as is done implicitly in the original EdgeConv layer. Putting
everything together, with f l+1

i ∈ RF the feature vector of length F of part i at layer
l + 1, xi its center and Ni its neighborhood, we propose the following DirEdgeConv
layer

f l+1
i = max

j∈Ni

�
concat

�
f l

i , f l
i − f l

j ,
xj − xi

�xj − xi�
		

(6.4)

In Section 6.3, DirEdgConv is evaluated both when using the fixed neighborhood
defined in the previous section and when recomputing the neighborhood dynamically
based on the nearest neighbor search between parts features as in [15]. In the case of
the dynamic connectivity, the first DirEdgeConv layer still uses the fixed neighborhood
defined previously because parts features do not encode their position.
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Figure 6.3: Overview of our approach. A local representation is learned for the N parts
extracted from the object. Taking advantage of their connectivity and
relative position, four DirEdgeConv layers are used and concatenated to
learn the final part representation and vote for the object center. Parts’
features are then grouped based on the position of votes to create the final
prediction.

6.2.3 Separating objects from the background using a voting
scheme

In the context of Sim2Real classification, objects are also often under-segmented, mean-
ing that not every point belongs to the object of interest. As good classification results
require good segmentation and good segmentation masks require good classification, we
propose to frame this problem of under-segmented object classification as a detection
problem. Based on the findings of [87], we conjecture that background parts and object
parts can be separated using object center prediction as object parts will have more
consistent votes.

Each part predicts an offset Δpi from the part center to the object center. Using
farthest point sampling, a fixed number of cluster centers is sampled among the votes
cast. Every vote within a sphere of fixed radius is considered a part of the cluster.
Using a max-pooling layer, we aggregate the features of all parts whose vote was cast
within a cluster. This cluster representation is then classified. The full architecture is
illustrated in Figure 6.3.

During training, only CAD models are used, which can easily be centered and thus
avoids the need for any extra annotation. The voting procedure is supervised by an
L2-loss, which, for a part of center pi and offset predicted Δpi, is given by

Lvote = �Δpi + pi�2 (6.5)

Keeping the representation unaware of scale makes the voting procedure more uncertain,
but this remains an effective foreground-background strategy if the object classes
considered have sufficiently similar scales.

The complete loss of the network is the weighted sum L = Lcross−entropy + λLvote with
λ = 0 when using the max-pooling structure and λ = 2 when using the vote pooling
structure.
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6.3 Experiments
This section presents our experimental results. We first consider the performance of
our approach on the standard ModelNet benchmark, a set of artificial CAD models,
and look at the impact of scale on a selection of state-of-the-art methods. We then
present our results when learning from artificial data and testing on real data. Finally,
the impacts of our design choices are evaluated in an ablation study.

6.3.1 Experimental setup
Experiments are performed using the ModelNet dataset [12], a set of 12311 CAD
models from 40 classes, and the ScanObjectNN dataset [41], a set of 2902 unique real
object instances. The ScanObjectNN dataset is composed of objects extracted from
real reconstructions of 3D scenes. The original dataset referred to as OBJ, and the
T25 and T50_RS variations are used to showcase different amounts of error in the
object points extraction. To obtain meshes more similar to the ones obtained from
real reconstructions from artificial CAD models, a set of views is sampled around and
above the object. Those views are combined using a TSDF (Truncated Signed Distance
Function) volume. This reconstruction step provides dense mesh representations that
are free from artifacts of CAD models (e.g., variable density, triangles disconnected
for sharper rendering, etc.) and closer to the reconstruction objects as the bottom of
objects are ignored. Since the resulting meshes have constant density, point clouds can
be trivially obtained by only keeping the vertices of the mesh. The models are all scaled
to the unit sphere because the ModelNet dataset does not provide accurate scales for
its CAD models.

The graph of object parts is created with up to 200 parts (the exact number of
parts is driven by the geometry of the object), and 128 points are sampled within each
part. Votes are grouped into five clusters. Since the task at hand is classification, only
one prediction per object is necessary, so only the predictions from the most confident
cluster, as defined by the softmax, are used. As in the original implementation [15],
we use a multi-scale architecture concatenating the output of every DirEdgeConv and
classifying using this feature vector. The number of layers and number of features used
at each layer is given in Figure 6.3. The network is trained using a cross-entropy loss.
The vote loss introduced in Section 6.2 is added with a factor of 2 in the version of the
network using the voting scheme (further referred to as “with voting”).

The part segmentation computation time depends on the number of points and
geometry of object. Our measurements vary between 25ms for 23000 points and 523ms
for 1 million points. The network is trained in 15 hours on a NVidia 1070Ti and a
single inference step for one example takes 10.4ms.

6.3.2 Evaluation on artificial data
In this section, the performance of our method is compared to the four best performing
methods on the ScanObjectNN dataset [41]. We report their performance on artificial
data for completeness. They are all state-of-the-art methods developed specifically for
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Table 6.1: Evaluation on ModelNet40 [12] and ScanObjectNN (original scale, and re-
scaled). Results when training with the raw models in OBJ*, and with the
reconstruction step in OBJ.

Method MN40 OBJ* OBJ OBJ scaled
PointNet [7] 89.2 42.3 50.7 56.2 (10.8%)

PointNet++ [8] 90.7 43.6 50.3 59.8 (18.9%)
DGCNN [15] 92.2 49.3 55.6 63.2 (13.7%)

SpiderCNN [14] 90.0 44.2 48.8 57.5 (17.8%)
KPConv [69] 92.9 41.4 44.8 54.4 (21.4%)

Ours 85.8 - 58.6 -
Ours (with voting) 86.9 - 59.2 -

point clouds. The results on the 40 classes of the ModelNet dataset [12] are presented
in Table 6.1.

We also report the results when training on the reconstructed ModelNet dataset,
and evaluating on the ScanObjectNN dataset, with and without rescaling the objects
in Table 6.1. This evaluation is done without any of the background points. In a
realistic scenario, this rescaling would not be possible, as a proper re-scaling of the
object requires an accurate segmentation. This would require a good understanding of
the object at hand, which depends on the scale of the representation. The evaluation
on re-scaled objects is intended to highlight the sensitivity of methods to scale change
and the performance “lost” due to this sensitivity in a realistic scenario. In particular,
the relative difference in percentage reported underlines the particular sensitivity of
KPConv, PointNet++ and SpiderCNN.

6.3.3 Evaluation of the gap between artificial and real data
In this section, models are trained on a subset of ModelNet based on the classes that
overlap with the classes defined in ScanObjectNN. The evaluation is then performed on
the original version of ScanObjectNN, with and without background points. Background
points are points within the bounding box around the original object. The evaluation
is also performed on perturbed versions of ScanObjectNN. Noise is added to the object
bounding boxes before extracting objects from the scene reconstructions, and only
points within the noisy bounding boxes are kept. Specifically in ScanObjectNN_T25,
bounding boxes from the original ScanObjectNN are translated by up to 25% of the
object size. In ScanObjectNN_T50_RS, bounding boxes are translated by up to 50%
and objects are rescaled and rotated randomly. Those perturbations provide variable
amounts of noise in the object pre-segmentation, and provide a test bed to estimate the
robustness of methods to over-segmentation (translating the bounding the box before
extraction leads to less object points remaining) and under-segmentation (background
points remaining). All results reported are obtained using the test set defined by
ScanObjectNN. More details on the perturbation and split definition can be found
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Table 6.2: Evaluation when training on ModelNet and testing on ScanObjectNN without
any background points

OBJ T25 T50_RS
PointNet [7] 50.7 40.5 32.7

PointNet++ [8] 50.3 42.8 40.0
DGCNN [15] 55.6 44.8 36.2

SpiderCNN [14] 48.8 38.7 28.5
KPConv [69] 44.8 40.1 37.8

GAT-PointNet similar to Chapter 5 38.4 36.7 33.8
GAT-PointNet, our seg. 50.0 43.9 38.8

Ours 58.6 50.6 45.2
Ours (with voting) 59.2 51.1 44.4

in [41]. Example objects are shown in Figure 6.4. All the results presented in Table 6.2
and Table 6.3 use a dynamic graph for the method without voting and a fixed graph
when using the voting scheme.

Table 6.2 and 6.3 clearly show the benefit of our approach on the task of transferring
from artificial data to real data as it outperforms every other method on every variant
of the ScanObjectNN dataset. We report the performance of our method both with
and without the voting scheme. Overall, the more perturbed the input, the larger the
improvement compared to other methods. In Table 6.2, the relative increase in accuracy
is, respectively, 5.4% (6.5% with voting), 12.9% (14.1% with voting) and 13.0% (11.0%
with voting) over the state-of-the-art for the original, the T25 and T50_RS variants of
ScanObjectNN.

Table 6.3 illustrates the benefit of our voting scheme as we test on ScanObjectNN
while keeping the background points. The difference in accuracy with respect to the
state-of-the-art is -3.0% (2.0% with voting), 3.4% (6.3 % with voting) and 14.2% (16.4%
with voting), for the original, T25 and T50_RS variants of ScanObjectNN.

We also report the results when using [11] in combination with the same parts
features as our method similarly to the method presented in Chapter 5 (referred to
as GAT-PointNet) to learn from the graph of parts. This method only learns from
the graph structure underlining the importance of the relative position of nodes in 3D
object classification.

6.3.4 Ablation study
In this section, different design choices are evaluated independently and results are
presented in Table 6.4. Specifically, DirEdgeConv is compared to the original Edge-
Conv [15], with and without re-scaling of the data. This demonstrates that DirEdgeConv
reaches the same maximal performance as EdgeConv, but without the sensitivity to
scale changes, since it only relies on the direction of neighbors. The results when using
DirEdgeConv without normalizing the relative position in equation (6.4) indicated by †



56 6 Robust Sim2Real 3D Object Classification using Graph Representations and a
Deep Center Voting Scheme

Table 6.3: Evaluation when training on ModelNet and testing on ScanObjectNN includ-
ing background points

OBJ T25 T50_RS
PointNet [7] 52.0 40.4 34.7

PointNet++ [8] 43.2 34.9 33.7
DGCNN [15] 53.9 44.7 36.6

SpiderCNN [14] 44.6 36.7 30.5
KPConv [69] 40.5 35.4 34.68

GAT-PointNet similar to Chapter 5 31.8 28.5 26.0
GAT-PointNet, our seg. 41.2 34.3 30.7

Ours 52.3 46.2 41.8
Ours (with voting) 55.0 47.5 42.6

Figure 6.4: Example segmentations. Top row: Objects from ModelNet40, bottom row:
objects from ScanObjectNN. Colors are assigned randomly.

also demonstrate that the perfomance increase comes from only using the direction, and
not the introduction of local coordinates information at every layer by the DirEdgeConv
layer. The voting scheme presented in Section 6.2 is referred to as Vote pooling and is
evaluated against max-pooling over the features of every part (Max in Table 6.4). These
results show the benefit of the voting scheme when background points are included.

In Table 6.4, we also report the results using the dynamic and the fixed graph config-
uration. The dynamic graph outperforms its fixed graph counterpart for Max pooling
but is worse for Vote pooling. Fixed connectivity is indeed important to meaningfully
predict the object center. These results highlight the importance of connectivity in
graph representations, and is a good indicator that fully learned segmentation and
connectivity is a promising research direction.

Finally, Figure 6.5 showcases the robustness of the method presented to different
voxel sizes. This result supports the claim that as long as the voxel size is small enough,
the final parts will be similar.
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Figure 6.5: Influence of the voxel size on the accuracy. In the range [0.01, 0.1] the
absolute difference in accuracy of our method is less than 1%.

Table 6.4: Ablation study. Results are given on the unperturbed version of ScanOb-
jectNN. * indicates that the results are obtained when scaling the objects. †
indicates that the relative position are not normalized in Equation 6.4

Layer Graph Pooling Without bg. With bg.
EdgeConv Dyn. Max 47.4 47.9 41.7 40.7
EdgeConv* Dyn. Max 58.4 57.3 52.0 50.4

DirEdgeConv † Fixed Max 49.9 48.1 42.4 40.9
DirEdgeConv Fixed Max 57.0 56.2 49.4 50.0
DirEdgeConv Dyn. Max 58.6 58.4 52.3 53.2
DirEdgeConv Fixed Vote 59.2 57.7 55.0 54.1
DirEdgeConv Dyn. Vote 58.2 56.6 54.4 53.2

6.4 Discussion
We presented a novel method that reduces the Sim2Real gap in 3D object classification.
This is achieved both through a better robustness to under segmentation using a voting
scheme and a better robustness to scale change through reproducible parts and a
scale-invariant graph learning architecture. Our conjecture that methods tested on
real scenes are negatively impacted when relying on point coordinates is supported
by our experimental results on the ScanObjectNN dataset [41]. The performance of
our method, that does not rely on point coordinates, better handles the challenges



58 6 Robust Sim2Real 3D Object Classification using Graph Representations and a
Deep Center Voting Scheme

of imperfect segmentation and scale. The impact of scale change is a particularly
important issue as even within a given class, scale can vary greatly.

Hightlights

(1) Neighborhood-based methods can easily be adapted to not require points
coordinates. This makes them significantly less sensitive to scale change, while
more discriminative than graph-based representations that are unaware of the
relative position of their neighbors.
(2) While the part definition does not require parts to have a particular semantic
meaning, it is beneficial to the classification accuracy if they are respectful of the
object boundaries.
(3) Voting-based approaches can help further robustify methods to under-
segmented inputs.



Chapter 7

Conclusion

A service robot that can work anytime and anywhere is still out-of-reach given the
current state of research. There is, therefore, a need to adapt to the environment
the robot will be deployed in. Besides potential re-training and modeling efforts, the
methods have to be robust enough to the variations the robot will face. While it is
commonly accepted that more data and larger learning architectures can deal with
most artifacts and variations and noise sources, it is not an adequate solution for
resource-constrained robots. In particular, 3D understanding, which remains a key part
in creating helpful service robots, has greatly progressed, thanks notably to the advent
of deep learning. This progress, however, has come at the expense of the amount of
data required. Leveraging artificial data helps to alleviate this challenge, but a gap
remains between the artificial and real domain due to sensor noise, pervasive occlusions,
and variable orientations.

This chapter summarizes how the methods introduced in this thesis integrate long-
standing design ideas from robot vision in deep learning architectures and increase the
robustness and reduce the gap between artificial and real domains without needing more
data. Finally, insights are given about potential future works in 3D object classification.

7.1 Summary
In each chapter, different part-based representations are introduced to achieve different
robustness, and in particular to occlusion, rotation, and scale changes. The different
methods are evaluated on a variety of standard artificial and real-world datasets and
achieve state-of-the-art performance.

A novel architecture inspired by the Ensemble Shape Function (ESF) and the Point
Pair Feature (PPF) is introduced in Chapter 3. Sampling of pair of points with one point
within a neighborhood and one anywhere in the object, a set of clusters is obtained. The
features extracted from the pairs of points make the representation rotation-invariant,
and feature vectors are obtained for each vector using a PointNet-like architecture.
The features of each cluster are combined into an object-level feature representation
using a graph convolutional network to obtain a data-efficient network that is more
discriminative than previous work.

Chapter 4 explores the impact of the sim2real gap in 3D object classification on
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different 3D representations. In particular, the robustness of standard point cloud-
based, view-based, and voxel grid-based neural networks is investigated when trained on
artificial data and tested on real data. From this set of experiments, general guidelines
for architecture design are obtained. In particular, over-segmentation and hierarchical
approaches are more robust to occlusion. Furthermore, representations that are based
on the object surface rather than the Euclidean neighborhood also handle occlusions
better. Simple artificial data transformation also helps reduce the gap. While the
problem of view selection remains, view-based approaches tend to outperform methods
designed specifically for 3D data, in good parts because 2D architectures have been
studied and improved over a longer period of time.

Chapter 5 builds on the lessons learned in the previous chapters and introduces
a part-based method that tackles the challenges of learning from artificial 3D data
to classify real 3D data. The parts are grown following the object’s surface based
on the surface curvature, such that featureless areas create larger parts. The part
representation is based on the PointNet architecture and is rotation-invariant. The
parts features are further combined using a graph convolutional network to achieve
better discriminativeness. The method achieves results on par with state-of-the-art
view-based methods when training on artificial data and testing on real data and
outperforms state-of-the-art point cloud based methods. In addition, the method also
outperforms state-of-the-art point cloud based methods when training and testing on
real data.

Chapter 6 further improves upon the architecture introduced in Chapter 5. Specifically,
the parts are created by adapting the LCCP segmentation method to 3D instead of 2.5D,
reducing the likelihood that a given part would cross an object boundary. The parts
are combined using a method similar to DGCNN instead of the graph convolutional
network such that the features can take advantage of the relative position of each
neighbor without being sensitive to scale, whereas the graph convolutional network is
unaware of their relative position. Finally, each part votes for the object center, further
separating object parts from noisy background parts, making the overall method more
robust to under-segmentation. Altogether, the method outperforms state-of-the-art
methods when training on artificial data and testing on real data through much better
robustness to scale change.

7.2 Outlook

Reducing the gap between artificial and real data is ongoing work, and further improve-
ments are expected in the coming years. It creates the opportunity to benefit from the
power of deep learning without needing massive, costly data annotation work, especially
when dealing with 3D data that has been simulated for many years and that is easier
to simulate than RGB data. This also opens up new opportunities and new challenges,
bringing us closer to having a robot perform useful tasks.
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7.2.1 3D object detection and segmentation with limited an-
notation

One natural extension of the work presented in this thesis is to consider the tasks of
object detection and segmentation. 3D object classification is a canonical task in the
field and serves as a meaningful test-bed for any other semantic task performed on
3D data, but more work is needed to adapt the ideas presented here for 3D object
segmentation. Building into the architecture the robustness described in this thesis
could be one step. An even more interesting direction would be to improve the graph-
based part understanding such that object detectors could be trained directly from
examples of single objects rather than complete annotated scenes. This task, while
trivial for humans, is very challenging for current learning approaches but could further
lower the annotation effort. Indeed, while simpler to achieve in artificial data than with
real-world data, creating artificial scenes still requires a lot of manual work to scale and
arrange objects in a semantically meaningful way. Using this part-based approach, the
segmentation is transformed into an edge prediction problem, creating an edge when
two parts belong to the same object and no edge otherwise.

7.2.2 3D object classification of articulated and deformable
objects

Given the progress of state-of-the-art 3D object classification, a natural extension
is to consider non-rigid objects. Learning architectures relying on point coordinates
are sub-optimal to represent object deformation as any deformation would drastically
change the resulting features. Part-based approaches could alleviate this issue when
dealing with articulated objects, as long as the parts do not cross any joint, and
rotation-invariant representation can be created for every part. This part representation
could therefore help make networks more data-efficient as they would not have to learn
a different representation for every possible angle of the articulation. The challenge is
then to manage the creation of meaningful object-level representations despite different
potential relative orientations of the parts.

7.2.3 The place of classical robot vision in a deep learning
world

Robot vision and machine vision have produced many useful methods, and while using
priors in the learning architecture is bound to be outperformed by prior-free approaches
given enough data and computation, there are many opportunities to integrate some of
these ideas in current architectures. These priors can help create more computationally
efficient methods that require less data and more robust prediction within the domain
of application. Furthermore, many classical methods provide confidence estimates, and
replicating these in deep learning network would be very beneficial and enable a more
meaningful connection between learned and learning-free blocks in a robot complex
system. A robot needs to act on its environment, and an understanding of risk and
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uncertainty could help avoid catastrophic failures and potential harm to humans and
the robot itself. Bayesian Deep Learning and Evidential Deep Learning both provide
solid frameworks to obtain such estimates.
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Appendix A: Open Resources

A.1 Codes and Tools
• Robust 3D classification (Chapter 3): https://github.com/jibweb/robust_

3d_object_clf

• Addressing the Sim2Real gap (Chapter 5): https://github.com/jibweb/addressing_
sim2real

• 3D Object Classification using Graph representations and Deep Center Voting
(Chapter 6): https://github.com/jibweb/dgcnn_voting
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