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Kurzfassung

Sei ein Graph G gegeben, dann ist eine Menge S ⊆ V (G) eine (σ, ρ)-Menge genau dann,
wenn

• für alle v ∈ S |N(v) ∩ S| ∈ σ gilt, und

• für alle v /∈ S |N(v) ∩ S| ∈ ρ gilt.

Das Problem zu entscheiden, ob für einen Graph eine (σ, ρ)-Menge S existiert, ist
das Entscheidungsproblem von (σ, ρ)-GenDomSet. Natürlicherweise gibt es auch das
entsprechende Minimierungs und Maximierungsproblem, in dem S möglichts klein bzw.
groß sein soll.

Das (σ, ρ)-GenDomSet Framework verallgemeinert viele klassische Graphenprobleme.
Zum Beispiel erhalten wir Dominating Set, wenn σ = N und ρ = N \ {0} ist, und
Independent Set, wenn wir σ = {0}, ρ = N setzen.

In dieser Diplomarbeit werden die Resultate von Focke et al. [SODA 2023] für den Fall,
dass σ und ρ periodische Mengen, genauer gesagt Restklassen modulo m sind, erweitert.

Konkret wird gezeigt, dass wenn 0 /∈ ρ und m ≥ 3 gilt, für jedes ε > 0 das Entscheidungs-
problem nicht in der Laufzeit (m − ε)tw · |G|O(1) gelöst werden kann, selbst wenn der
Eingabegraph G zusammen mit einer Baumzerlegung der Weite tw gegeben ist, außer die
Strong Exponential Time Hypothesis ist falsch. Wenn m = 2 gilt, kann das Entscheidungs-
problem in Polynomialzeit gelöst werden. Für diesen Fall erweitern wir die Resultate für
das Minimierungsproblem unter der Annahme 0 /∈ ρ, sowie das Maximierungsproblem für
alle Möglichkeiten von σ, ρ. Alle präsentierten unteren Schranken sind scharf, da man das
Entscheidungsproblem und beide Optimierungsprobleme in der Zeit mtw · |G|O(1) lösen
kann.

Diese Arbeit stellt die erste dar, die scharfe konditionelle untere Schranken für (σ, ρ)-
GenDomSet mit der Baumweite als Parameter gibt, wenn weder σ, ρ noch N \ σ, N \ ρ
endlich sind und repräsentiert somit einen ersten Schritt in diese Richtung.

Große Teile der Arbeit wurden während eines Sommerpraktikums beim
Max-Planck-Institut für Informatik unter Betreuung von Philip Wellnitz und
Philipp Schepper durchgeführt.
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Abstract

Given a graph G, a set S ⊆ V (G) is a (σ, ρ)-set of G if and only if

• for all v ∈ S we have |N(v) ∩ S| ∈ σ, and

• for all v /∈ S we have |N(v) ∩ S| ∈ ρ.

The problem of deciding whether a graph has a (σ, ρ)-set is the decision problem of
(σ, ρ)-GenDomSet. Naturally, one can also consider the minimization and maximization
problems, in which S is supposed to be as small, respectively as large as possible.

The framework of (σ, ρ)-GenDomSet captures numerous classical graph problems. For
instance, the problem corresponds to Dominating Set when σ = N and ρ = N \ {0},
and we obtain Independent Set by setting σ = {0}, ρ = N.

In this thesis, the work by Focke et al. [SODA 2023] is extended for the case where σ
and ρ are periodic sets, specifically residue classes modulo m.

We show that when 0 ̸∈ ρ and m ≥ 3, for any ε > 0, the decision problem cannot be
solved in time (m − ε)tw · |G|O(1), even when the input graph is provided together with a
tree decomposition of width tw, unless the Strong Exponential Time Hypothesis is false.
If m = 2, the decision problem can be solved in polynomial time. For this case, we extend
the lower bound to the minimization problem assuming 0 ̸∈ ρ, and the maximization
problem in all settings. In all cases, the obtained lower bounds are tight, as one can solve
the decision problem and both optimization problems in time mtw · |G|O(1).

The work in this thesis represents the first work that provides tight conditional lower
bounds for (σ, ρ)-GenDomSet parameterized by treewidth when σ, ρ are neither finite
nor cofinite, making it a first step into this domain.

Large parts of this work were done during a summer internship at the Max
Planck Institute of informatics supervised by Philip Wellnitz and Philipp
Schepper.
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CHAPTER 1
Introduction

In the Lights Out game (see [FY13] for a literature survey), the player is presented with
25 lightbulbs arranged on a 5 × 5 grid. Each lightbulb has an associated switch, and a
lightbulb can be either on or off. Using the switch of a bulb does not only change the
state of the lightbulb, but also the state of all non-diagonal neighboring lightbulbs. Given
some starting configuration of lightbulbs being on or off, the goal is to turn off all lights.

A simple observation that was, for example, presented in [Sut89] and [AF98], is that
using the same switch twice has the same effect as not using it at all. Moreover, the order
in which the switches are pressed does not matter. Thus, a solution can be described by
a set of switches (or equivalently, lamps those switches belong to) that need to be used
in order to turn off all lights.

We can now formulate the problem as a graph-theoretic problem, in which the solution is a
subset of the vertices of the graph. This formulation also immediately yields a reasonable
generalization of the original Lights Out game, in which the size of the board game was
fixed. For this purpose, we model the game on an undirected graph G. Each vertex of
G corresponds to a lamp, and the switch of the lamp/vertex changes the state of the
vertex itself, and of the neighboring vertices in the graph. We are furthermore provided a
|V (G)|-dimensional binary vector c⃗, which describes the initial state of the vertices. Our
task is finding a set S ⊆ V (G), such that

|N [v] ∩ S| ≡2 c⃗[v] for all v ∈ V (G).

That is, if a vertex is initially on, it should have an odd number of vertices in its closed
neighborhood. If a vertex is initially turned off, it should have an even number of vertices
in its closed neighborhood. This Lights Out problem, and variants thereof, have been
studied by numerous researchers in the past [Sut88, Sut89, GKTZ95, GKT97, AF98,
HKT00b, DW01, GK07, GH08, FY13, BBH21].
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1. Introduction

A natural emerging questions is how one can efficiently solve the described problem.
It turns out that this is actually quite easy. Indeed, we must only solve the system of
equations (A+I) · x⃗ = c⃗ over the field F2 for the binary vector x⃗, where A is the adjacency
matrix of G (see e.g. [Sut89, GKTZ95, GKT97, AF98, HKT00b]). This can be done in
polynomial time, for example by using Gaussian Elimination. However, a player may
not simply want any solution to the game, but a solution in which as few switches as
possible must be triggered. Hence, a natural extension of the problem is to not ask for
any solution, but for a solution of small size. As is often the case, the additional size
requirement makes the problem NP-hard [Sut88, HKT00b, CGK01].
Naturally, one can also formulate the problem in which open neighborhoods instead of
closed neighborhoods are used. This problem has also been explored by researchers in
the past [Sut88, HKT00b, GK07, GH08]. Similarly to the case in which the switches are
reflexive, the minimization variant of the problem is NP-hard, and the decision problem
can be solved in polynomial-time [Sut88, HKT00b].
In this thesis, a generalization of the Lights Out problem, based on the framework by
Telle [Tel94, TP93] is explored. In the framework, the problem is defined relative to two
non-empty sets of non-negative integers σ and ρ. When given an input graph G, a set
S ⊆ V (G) is a (σ, ρ)-set if for all v ∈ S, we have |N(v) ∩ S| ∈ σ, and for all v ∈ V (G) \ S,
we have |N(v) ∩ S| ∈ ρ. Hence, σ described the allowed number of selected neighbors
of selected vertices, whereas ρ described the allowed number of selected neighbors for
unselected vertices.
The problem of deciding whether any (σ, ρ)-set exists for G is referred to as the decision
problem, and the problem of deciding whether a (σ, ρ)-set that has at most (at least)
a certain size exists is the minimization (maximization) problem. When setting σ =
{0, 1, . . . } and ρ = {1, 2, . . . }, the classical Dominating Set problem appears, by
choosing σ = {0} and ρ = {0, 1, . . . } we obtain Independent Set. These were just
a few examples of well-known problems that are covered by the framework, refer to
[Tel94] for a more extensive list. As the framework generalizes Dominating Set,
we refer to the problem as (σ, ρ)-GenDomSet. This problem and special cases of it
have been studied both in the classical and, due to the NP-hardness for many choices
of σ, ρ, also in the parameterized setting, by many researchers [TP93, Tel94, vBR09,
Cha10, ABR+10, BvvV10, GKS12, JKST19, JRS19, MFMP20, van20, van21, FMI+23a,
FMI+23b, FMI+23c].
Within the framework of (σ, ρ)-GenDomSet, we do not consider closed, but open
neighborhoods, which must be taken into account when modeling Lights Out in it. We
will assume for now that the starting configuration of Lights Out is the configuration in
which all lights are on, and note that this restriction can easily be circumvented later. As
a selected vertex requires an odd number of selected neighbors in the closed neighborhood,
and it is selected itself, it requires an even number of selected neighbors in its open
neighborhood. An unselected vertex also requires an odd number of selected neighbors in
the closed neighborhood, which means that it needs an odd number of selected neighbors
in its open neighborhood. This problem is called Refl-AllOff by us, and it is obtained
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by setting σ = {0, 2, . . . } and ρ = {1, 3, . . . }. Similarly, by choosing σ = ρ = {1, 3, . . . },
we can also express the problem variant denoted as AllOff that uses open instead of
closed neighborhoods for the switches.

It is noteworthy that, when the AllOff problem is formulated as a graph in the
framework, both σ and ρ are residue classes modulo 2. This gives rise to the variant of
the problem studied in this thesis. A set τ ⊆ N is called periodic if it is a residue class
modulo m, for some positive integer m, that is, τ = {n ∈ N | n ≡m k} for some integer k
with 0 ≤ k < m. Moreover, we call m the period of the set in this case. Observe that the
even and odd integers are both periodic sets with period 2.

Given two periodic sets σ and ρ with the same period m and an input graph G, we study
both the decision and minimization variants of (σ, ρ)-GenDomSet. The sets σ and ρ are
treated as fixed constant sets in this setting. As both the decision and the minimization
problems are NP-hard for most choices of σ and ρ, we explore the question with regard
to the predominant parameter treewidth. Intuitively, the treewidth is a measure of how
tree-like the input graph is. Trees, clearly the most tree-like graphs, have a treewidth of
one, whereas cliques, the graphs that appear to be the furthest away from trees, have a
treewidth linear in their number of vertices. We refer to [CFK+15, Chapter 7] for more
information about the concept of treewidth.

The ultimate goal for (σ, ρ)-GenDomSet parameterized by treewidth is obtaining an
algorithm with a running time bounded by ctw · |V (G)|O(1), where tw is the treewidth
of the input graph G, and c a constant that is as small as possible. Algorithms with
a running time of this type exist for the case where σ and ρ are finite or cofinite
sets [TP93, vBR09, Cha10, van20, van21, FMI+23a, FMI+23b]. A natural question that
appears is how small the constant c can get. To answer questions of this type, lower
bounds based on the Strong Exponential Time Hypothesis (SETH) [IP01, CIP09] can be
used. The SETH is the assumption that, for any ε > 0, there is a k such that n-variable,
m clause k-SAT1 cannot be solved in time (2 − ε)n · (n + m)O(1). For the case where σ
and ρ are finite, Focke et al. [FMI+23a, FMI+23c] consider the decision problem, and
provide a lower bound conditioned on SETH matching the running time of the best
known algorithms for this case.

For the considered problem of (σ, ρ)-GenDomSet with sets having the same period no
explicit running times for any problem variant were known in general. Concretely, while
it is known that the decision problem admits a running time of the form ctw · |G|O(1) for
some constant c [Cha10], no concrete values for c are known in most cases. The only
exception to this is for the cases where m = 2, for which Gassner and Hatzl [GH08]
provide an algorithm for all problem variants that runs in time 23tw · |V (G)|. Hence,
before our work, there either existed no concrete information on what the integer c should
be, or only an algorithm which is presumably far from optimal.

1The problem k-SAT is the classical SAT problem in which clauses are given in conjunctive normal
form, and each clause contains at most k literals.
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1. Introduction

When carefully analyzing the algorithm by Focke et al. [FMI+23b], it becomes clear that
many of their ideas should be applicable to this setting as well. Their results suggest that
a running time of mtw · |V (G)|O(1) could be achievable for all problem variants, which
would represent a drastic reduction in the exponential dependency on the treewidth
compared to the algorithm by Gassner and Hatzl for the case m = 2.

The question on what the optimal constant c is was investigated by me for this master
thesis, and in a summer internship at the Max Planck Institute of Informatics, where
I was supervised by Philip Wellnitz and Philipp Schepper. The work on this topic
is also presented in a preprint [GSW24]. We showed that the algorithm by Focke et
al. [FMI+23b] can indeed be adapted to the setting of periodic sets to solve the decision
and optimization problems in time mtw · |V (G)|O(1). Note that this running time is
exponentially smaller in the treewidth than a naive algorithm would be.

In this thesis, the focus is on the lower bounds, which are, except for lower bounds for
the maximization problems with period 2, also presented in [GSW24]. As [GSW24] also
includes a matching upper bound, the main results presented in this thesis are a subset
of those presented in [GSW24]. Note, however, that the construction given in Chapter 3
differs slightly from the one given in [GSW24, Section 5]. The reason for this is that the
aim of the thesis is to be more self-contained, whereas the approach in [GSW24] utilizes
some theorems in a black-box fashion. This also allows for the simplification of some
parts of the construction. The content in Section 5.3 is not presented in [GSW24].

Concretely, we provide a matching lower bound conditioned on the SETH, showing that
the running time of the algorithm is presumably optimal, even for the decision problem,
as long as m ≥ 3 and 0 /∈ ρ. To exclude these cases, we define the notion of easy and
difficult pairs of (σ, ρ).

Definition 1 (Easy and difficult cases; [GSW24, Definition 2.7]). Let σ and ρ be two
periodic sets. We say that this pair is easy if 0 ∈ ρ or

• σ = {0, 2, 4, . . . } and ρ = {1, 3, 5, . . . }, or

• σ = ρ = {1, 3, 5, . . . }.

Otherwise, the pair is said to be difficult.

When 0 is part of the set ρ, the empty set is a solution of minimum size. The remaining
easy cases are when m = 2, and correspond exactly the Refl-AllOff and AllOff
problems, for which the decision problem can be solved in polynomial time. We now
state the first main result of the thesis. Note that the pathwidth is at least as large as
the treewidth of any graph, and hence stating the result for pathwidth is even stronger
than for treewidth.

4



Main Theorem 1 ([GSW24, Main Theorem 2]). Write σ, ρ ⊆ N for difficult periodic
sets that both have the same period m ≥ 2. Unless SETH fails, for all ε > 0, there is no
algorithm that can decide in time (m − ε)pw · |G|O(1) whether the input graph G has a
(σ, ρ)-set, when a path decomposition of width pw is given with the input.

For Refl-AllOff and AllOff, we show that, while deciding whether any solution
exists can be done in polynomial time, the problem of deciding whether a solution smaller
than a given integer k exists can not be done quicker than (2 − ε)tw · |G|O(1) under the
SETH. Moreover, we show that also the problem of deciding whether a solution of size at
least k exists cannot be solved in time (2 − ε)tw · |G|O(1) for any ε > 0 when σ, ρ have
period 2, unless the SETH is false.

Main Theorem 2 ([GSW24, Main Theorem 3]). Unless SETH fails, for all ε > 0, there
is no algorithm for each of the problems Refl-AllOff and AllOff deciding in time
(2 − ε)pw · |G|O(1) whether there exists a solution of size at most k for a graph G that is
given with a path decomposition of width pw.

Main Theorem 3. Let σ, ρ be periodic sets with period 2. Unless SETH fails, for all
ε > 0, there is no algorithm for (σ, ρ)-GenDomSet deciding in time (2 − ε)pw · |G|O(1)

whether there exists a solution of size at least k for a graph G that is given with a path
decomposition of width pw.

Hence, we conclusively settle the complexity of the minimization problem in all cases,
and even show that the algorithm is optimal under SETH for the maximization problem
when the period is 2. The only question that remains open is the complexity of the
maximization problem when 0 ∈ ρ. We expect that one would need to craft many
components from scratch to deal with this situation, and hence, we have chosen to not
focus on it.

In Section 2.1 we define the graph notation we use. In Chapter 2 existing literature
about the topics (σ, ρ)-GenDomSet, treewidth, parameterized complexity, and lower
bounds conditioned on the SETH will also be examined. In particular, the key ideas
behind the quick algorithm leading to the upper bound matching the lower bound will be
presented. The main scientific contributions of the thesis are the lower bounds presented
in Chapters 3 to 5.
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CHAPTER 2
Preliminaries and Related Work

In this chapter, the notation used will be introduced briefly, and literature related to
the topics of the thesis will be examined. Compared to the introduction, the coverage
of the papers will be more in-depth, that is, for some papers concrete results and ideas
behind the proofs will be presented. The aim is not only to cover papers that are directly
related to the problem at hand, but also literature related to the central concepts of the
scientific contribution. Especially Sections 2.2 and 2.3 cover standard material, and the
experienced reader might want to directly skip to the subsequent sections. The notation
is covered in Section 2.1. We then introduce the notion of parameterized complexity and
the parameter treewidth in Section 2.2. Then, we present the lower bound machinery in
Section 2.3, and finish by covering generalized dominating set in Section 2.4.

2.1 Notation

A graph G = (V, E) is a structure where V is a finite set of vertices, and E ⊆ (︁V
2
)︁

a
set of edges. Hence, all considered graphs are finite and undirected. Given a graph
G = (V, E), we often refer to the set V as V (G) and the set of edges E as E(G). Given
an edge {u, v} we may also simply refer to it as uv. The (open) neighborhood of a
vertex v in a graph G is defined as NG(v) = {u | uv ∈ E(G)}. The closed neighborhood
is NG[v] = NG(v) ∪ {v}. These concepts can be extended to sets of vertices. When
S ⊆ V (G), then NG(S) = ⋃︁

v∈S NG(v) \ S, and NG[S] = ⋃︁
v∈S NG[v]. The degree of a

vertex v is dG(v) = |NG(v)|. We may drop the subscript G from all of these concepts
when the graph G is clear from the context. The symbol N refers to the set of natural
numbers and 0 ∈ N. We write [n, m] for the set {x ∈ Z | n ≤ x ≤ m}.

7



2. Preliminaries and Related Work

2.2 Parameterized Complexity and Treewidth
The intractability of many algorithmic problems, such as SAT, Dominating Set and
Independent Set is one of the most fundamental and widespread beliefs in theoretical
computer science. This leaves only a handful of possibilities left for dealing with problems
that are NP-complete or even more difficult. One can turn to approximation or heuristic
algorithms, if obtaining the optimum solution is not a requirement. Otherwise, the
problem may still be solvable in polynomial-time if the input belongs to a certain graph
class. For example, it is well-known that Independent Set can be solved in polynomial
time on tree graphs. A related way of dealing with intractability is provided by the
area of parameterized complexity. See [AEFM89, DF92b, DF92a, DF95a, DF95b] for
early work in the area and [DF13, CFK+15] for some relatively recent textbooks about
the topic. The content of this section will largely follow the well-known textbook on
parameterized complexity by Cygan et al. [CFK+15], as the textbook exactly covers the
fundamental notions of the area, albeit at greater detail than this thesis.

2.2.1 Parameterized Complexity

The central idea of parameterized complexity is that input instances with a certain
structure can allow for quick algorithms, even if the considered problem is intractable in
general. More concretely, a parameterized problem is a set Q ⊆ Σ∗ × N, where Σ is a
finite alphabet, e.g. {0, 1} (see [CFK+15, Definition 1.1]). Given an instance I = (x, k),
the task is to decide whether I is a part of Q. Usually, the integer (parameter) k of the
instance will be some measurement of the remaining instance string x, such as the size of
the solution the instance asks for, or a structural measurement.

If there is an algorithm that can decide whether I ∈ Q in time f(k) · |x|O(1), the problem
is said to be fixed parameter tractable (FPT) [CFK+15, Definition 1.2]. We also denote
the class of all problems that are fixed parameter tractable as FPT. As running times of
this type effectively separate the running time dependency on the size of the instance and
the parameter, achieving running times of this type is one of the main goals. Another
often obtainable, potentially worse running time would be |x|f(k). Problems that can be
decided in that time are called slice-wise polynomial (XP) [CFK+15, Definition 1.3].

To illustrate the concept, let us take a look at the famous Vertex Cover problem
parameterized by the solution size k. It is easy to see that an algorithm with running
time |V (G)|k+O(1) exists that simply enumerates all subsets of the vertices of size at most
k. Hence, the problem is Vertex Cover parameterized by the solution size k is in XP.
But, an even better running time can also be achieved, as illustrated e.g. by the very
quick algorithm due to Chen et al. [CKX10] that runs in time 1.2738k + |V (G)|O(1). This
FPT algorithm can evidently be massively quicker than the naive XP algorithm.

The complexity of parameterized problems that are XP but not FPT may still be
classifiable according to the W -hierarchy [CFK+15, Section 13.3]. A parameterized
problem that is W [i]-hard for any i ≥ 1 can be in XP, but it is believed to not be in FPT.

8



2.2. Parameterized Complexity and Treewidth

For instance, Independent Set parameterized by solution size is W [1]-hard[DF95b]
and Dominating Set parameterized by solution size is W [2]-hard [DF95a].

The main problem considered in this paper is FPT, and hence, concrete details about the
W -hierarchy is of no importance for the thesis. To understand the remaining parts of
the literature review, it will be sufficient to keep in mind that techniques exist to provide
evidence for the fact that a problem is not FPT.

2.2.2 Treewidth
It is well-known that many NP-hard graph problems can be solved in polynomial-time
when the input graph is a tree. For instance, Vertex Cover, Independent Set,
Dominating Set, 3-Coloring, Feedback Vertex Set, and Hamiltonian Cycle
admit linear-time algorithms on tree graphs (see e.g. [CFK+15, Theorem 7.9 and Theorem
7.10]). A natural next step is asking whether such problems can also be solved quickly
on graphs that are structurally close to tree graphs.

One way of capturing how close a graph is to a tree is the notion of treewidth, which
is tightly bound to the notion of tree decomposition. Refer to [CFK+15, Chapter 7]
for a recent introduction to the topic given in a textbook. Roughly speaking, a tree
decomposition is obtained by mapping the vertices of a graph to subsets of vertices of a
tree, while ensuring that the mapping fulfills certain properties that show that the original
graph is structurally similar to the tree the vertices are mapped onto. The width of a tree
decomposition is a numerical measurement of it, and the treewidth of G will simply be the
minimum width over all tree decompositions. The notions of treewidth and pathwidth in
their current forms were introduced by Robertson and Seymour [RS86, RS83], but many
equivalent characterizations are known (see e.g. [Bod98] or [CFK+15, Section 7.5]).

Formally, tree decompositions and treewidth are defined as follows.

Definition 2 (Tree decompositions and treewidth; [CFK+15, Section 7.2]). A tree
decomposition of a graph G is a pair T = (T, {Xt}t∈V (T )), where T is a tree graph. Every
vertex of T is assigned a set Xt ⊆ V (G), often called a bag, such that the following
conditions are fulfilled:

1. ⋃︁
t∈V (T ) Xt = V (G), that is, every vertex of G is present in some bag of the

decomposition,

2. for every edge uv ∈ E(G) there exists a t such that u ∈ Xt and v ∈ Xt, that is,
there is a bag which contains both endpoints of the edge,

3. for every v ∈ V (G) the graph T [Tv] is connected, where Tv = {t ∈ V (T ) | v ∈ Xt}.

The width of tree decomposition T is max{|Xt| − 1 | t ∈ V (T )}, that is, the size of a
smallest bag of T minus one.

The treewidth of G is the minimum width of any tree decomposition of G.

9
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We can similarly define the standard notion of a path decomposition.

Definition 3 (Path decomposition; [CFK+15, Section 7.2]). A path decomposition of a
graph G is a tree decomposition (T, {Xt}t∈V (T )) of G in which the decomposition tree T
is a path. The pathwidth of G is the minimum width of any path decomposition of G.

Given a graph G, we denote the treewidth of the graph by tw(G), and the pathwidth by
pw(G). We may drop the G from this quantity if it is clear which graph is meant. The
reason why one subtracts one from the largest bag size in the definitions is that this way,
it is ensured that trees with at least two vertices have a treewidth of one, and paths with
at least two vertices have a pathwidth of one [CFK+15, Section 7.2].

Often, problems that are solvable in polynomial-time on trees are also solvable in
polynomial time if the input graph G is provided together with a tree decomposition of
small width. Hence, these problems tend to be FPT when the parameter is the treewidth
of the input graph. This is true for the problems Vertex Cover, Independent Set,
Dominating Set, 3-Coloring, Feedback Vertex Set, and Hamiltonian Cycle
mentioned at the beginning of the section (see e.g. [CFK+15, Theorem 7.9 and Theorem
7.10]).

Unfortunately, computing the treewidth of a graph is NP-hard in general [ACP87].
However, the problem is FPT parameterized by the treewidth, and it can be solved in
time 2O(tw2) · |V (G)|O(1) [KL23]. Many other exact and approximation algorithms are also
known, see, for example, Table 1 in [KL23] for a good overview. Hence, the assumption
that a tree decomposition is provided together with the input is not a strong restriction.
In particular, if an FPT algorithm is obtainable when a tree decomposition is provided
together with the input graph, one can solve the problem in FPT time even when no tree
decomposition is provided by first computing a decomposition of minimum width.

Given that so many problems are FPT parameterized by treewidth, a perhaps surprising
result is given by Fellows et al. [FFL+11]. They show that the problem List Coloring,
which is a well-known extension of the classical Coloring problem, is W [1]-hard
parameterized by treewidth. Contrasting this result, they prove that the List Chromatic
Number problem is FPT parameterized by the same parameter.

Algorithms that show tractability parameterized by treewidth typically operate by
dynamic programming on the provided tree decomposition. To make such algorithms
easier to define, one usually also assumes that the provided tree decomposition is a
nice tree decomposition [CFK+15, Section 7.2]. Nice tree decompositions are rooted
tree decompositions, in which every node of the decomposition tree is one of a constant
number of types. This makes writing dynamic programs that operate bottom up, starting
from the leaves, significantly easier. One can convert any tree decomposition into a nice
one sufficiently quickly without increasing the width [CFK+15, Lemma 7.4].

One characterization of pathwidth which is at times quite convenient is that of the node
search number (see [KP86, KP85, FT08] or [CFK+15, Section 7.5]). Imagine that the
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graph is a network of tunnels, and each edge is initially contaminated by dangerous gas.
The graph has to be cleaned by using some number of searchers, which are either on a
vertex of the graph, or in a pool of free searchers. An edge uv is cleaned when a searcher
is present on vertex u, and another searcher is present on vertex v at the same time.
Unfortunately, the gas instantaneously spreads through vertices on which no searchers
are placed, and hence, even edges that were already cleaned can be recontaminated if
there is a path from the edge to another edge that is not clean, and no searcher is placed
on a vertex of the path. The goal of cleaning the entire graph has to be achieved by using
a node search strategy. The possible moves for a strategy are either placing a searcher
from the pool of free searchers on a vertex of the graph, or removing a searcher from the
graph and placing it into the pool of free searchers. The node search number is then the
minimum number of searchers required to clean the graph using a node search strategy.
Moreover, if a graph has pathwidth at most pw, then its node search number is at most
pw + 1. Finally, if the graph can be cleaned using k searchers, it can be cleaned by a
search strategy using k searchers that never recontaminates an edge, and such a search
strategy can be transformed into a path decomposition of width k − 1 in polynomial
time. 1

2.3 Lower Bounds based on the (Strong) Exponential
Time Hypothesis

The Strong Exponential Time Hypothesis (SETH) is a complexity-theoretic assumption
about the minimum amount of time that is needed to decide the k-SAT problem as k goes
towards infinity. As it assumes a concrete running time lower bound, the hypothesis can
be used to also infer tight lower bounds for other problems, by providing carefully crafted
reductions from k-SAT. The hypothesis is strongly related to the Exponential Time
Hypothesis (ETH) introduced by Impagliazzo and Paturi [IP01], and proving the SETH
assuming ETH was stated as an open problem by them. The name Strong Exponential
Time Hypothesis for the conjecture was introduced by Calabro et al. [CIP09]. Refer to
[CFK+15, Chapter 14] and [LMS11] for good introductions to the topics.

We now proceed to the formal definition of the ETH and SETH as given in [CFK+15,
Section 14.1].

Let δk be the infimum of the set

{δ | there is an algorithm for k-SAT with running time in 2δ·n · (n + m)O(1)},

where n denotes the number of variables and m the number of clauses of an instance.
The ETH is the hypothesis that δ3 > 0. The SETH assumes that limk→∞ δk = 1. Note
that the SETH is equivalent to saying that for any ε > 0, there is a k such that k-SAT

1The only exception to this are graphs without edges, which require zero searchers to clean, yet have
pathwidth 0. However, this exception is of no relevance in this thesis.
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cannot be solved in time (2 − ε)n · (n + m)O(1) on instances with n variables and m
clauses [CFK+15, Section 14.5].

The ETH implies that SAT with arbitrarily sized clauses cannot be solved in subexpo-
nential time, whereas SETH implies that SAT cannot be solved in time (2 − ε)n for any
ε > 0 [CFK+15, Section 14.1]. According to Cygan et al. [CFK+15, Section 14.1] the
ETH is a widely-believed assumption, whereas the SETH is not as universally accepted.
However, the bounds obtainable from SETH are considerably more precise than those
obtainable via ETH, and an algorithm that disproves the SETH would still be considered
ground-breaking.

2.3.1 Lower Bounds under the Exponential Time Hypothesis
Classical polynomial time reductions from 3-SAT that show the NP-hardness of problems
immediately imply lower bounds under ETH (see, for example, the survey [LMS11]).
Typical reductions from 3-SAT to the problems Vertex Cover or Dominating Set
result in instances with size in O(n + m), if the input instance contained n variables and
m clauses. Moreover, the number of clauses m can be in Θ(n3). This is quite unfortunate,
as this means that the size of the output instance is in O(n3), and not necessarily linear in
n, which weakens the lower bound. If there existed an algorithm that can solve Vertex
Cover or Dominating Set in time 2o( 3

√
|G|), we could solve 3-SAT in time 2o(n), which

would contradict the ETH (see also [CFK+15, Section 14.1]).

The fact that we only get a lower bound having the third-root in the exponent rather
than n directly is quite unfortunate, but can luckily be circumvented to obtain a lower
bound of 2o(|G|) [CFK+15, Theorem 14.6]. The required tool is the so-called sparsification
lemma [IPZ01]. The sparsification lemma is not relevant for the remainder of this thesis,
and hence omitted. However, the issue illustrates that reductions for proving tight lower
bounds must be crafted very carefully in order to not worsen the bound too much.

Similarly to the lower bound for Dominating Set and Vertex Cover conditioned on
ETH, the well-known problem Hamiltonian Path cannot be solved in time 2o(|V (G)|)

if the ETH is true [LMS11]. Lokshtanov et al. [LMS11] also note that the reduction
from 3-SAT to Hamiltonian Path on planar graphs due to Garey et al. [GJT76]
shows a lower bound of the form 2o(

√
|V (G)|) under ETH, and remark that this bound

is asymptotically tight. Observe that in the latter case, the “decrease” from a bound
in 2o(|V (G)|) to 2o(

√
|V (G)|), stemming from the fact that the number of vertices of the

output instance is quadratic in the number of variables of the input 3-SAT instance, is
vital to obtain the correct bound.

When crafting lower bounds for FPT problems under ETH, the requirement shifts slightly.
Since we now seek lower bounds for the function of the parameter of the FPT running
time, the size of the output instance itself is generally no longer a concern. Instead, it
must be ensured that the value of the parameter of the output instance has the correct
size, for example that it is linear in the number of variables of the input instance.

12
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Cai and Juedes [CJ03] build upon the work of Impagliazzo et al. [IPZ01], and show that
problems such as Max SAT and Vertex Cover parameterized by the solution size
k cannot be solved in time 2o(k) · |I|O(1) under ETH (|I| is the size of the instance).
Moreover, they consider problems on planar graphs, showing that Dominating Set
on planar graphs, Vertex Cover on planar graphs and Independent Set on planar
graphs cannot be solved in time 2o(

√
k) · |V (G)|O(1) unless ETH fails.

Often, FPT algorithms admit a running time in ck · |I|O(1) (for parameter k), in which c
is a constant. A natural question is whether some FPT problems are “inherently harder”
and only admit running times that are at least “slightly superexponential”. For instance,
Lokshtanov et al. [LMS18b] tackle this problem, and show the following array of lower
bounds assuming ETH:

• The problem Closest String does not admit an algorithm with running time
2o(d log d) · |I|O(1) or 2o(d log |Σ|) · |I|O(1), where Σ is the alphabet the strings are over,
and d a bound on the distance.

• The problem Distortion cannot be solved in time 2o(d log d) · |V (G)|O(1), where d
is a bound on the distortion.

• There is no algorithm for the Disjoint Paths problem that has a running time in
2o(tw log tw) · |V (G)|O(1).

• Similarly, there is no algorithm for Chromatic Number that runs in time
2o(vc log vc) · |V (G)|O(1), where vc is the size of a vertex cover of the input graph.

For all of these problems, the lower bounds match the best known algorithms [LMS18b].

Cygan et al. [CPP16] show that the problem Edge Clique Cover does not have a
22o(k) · |V (G)|O(1) algorithm if the ETH is true, here, k is the solution size. This result
is complemented by a preprocessing strategy due to Gramm et al. [GGHN08], that can
reduce the number of vertices of any instance to at most 2k in polynomial time. The
resulting instance then has at most 4k edges, and a dynamic programming algorithm on
the subset of edges of the reduced instance can solve the problem in time 2O(4k) ·|V (G)|O(1)

overall [CPP16], matching the lower bound.

Continuing with lower bounds for problems with running times that are superexponential,
Marx and Mitsou [MM16] provide lower bounds for the k-Choosability problem,
showing that it cannot be solved in time 22o(tw) · |V (G)|O(1) for any fixed integer k ≥ 3,
unless the ETH is false. The k-Choosability Deletion problem admits an even more
extreme running time. For k ≥ 4, the problem can be solved in time 222O(tw) · |V (G)|O(1)

and an algorithm running in time 222o(tw) · |V (G)|O(1) would contradict the ETH.

We now briefly shift our attention to the parameter treewidth and consider the infamous
Constraint Satisfaction Problem. Marx [Mar10] shows that, unless the ETH is false,
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there cannot be an algorithm for the problem and a class G containing graphs of unbounded
treewidth, such that the algorithm can solve the problem in time f(G) · |I|o(tw/ log tw)

when the primal graph G of the input instance is in G, and tw is the treewidth of G. This
in turn indicates that it is not possible to do much better than already known algorithms.
Cygan et al. [CFG+16] deal with the Graph Homomorphism and Subgraph Isomor-
phism problems, and prove lower bounds under ETH that match the running time of
brute-force algorithms for both problems.
Let us now take a look at problems that are W [1]-hard, and hence most likely not FPT.
For these problems, lower bounds based on the ETH should clearly not just rule out
algorithms that have a subexponential running time in the parameter, but instead rule
out algorithms that have a specific non-FPT running time. For instance, just because
a problem is most likely not FPT, that does not mean that we cannot solve in, say,
time nlog k, which is still significantly better than trivial algorithms with running time
nk. Here, the ETH can be used to obtain evidence that such algorithms do not exist.
And ideally, also in this case the obtained lower bounds should match the best known
algorithm. Chen et al. [CCF+05] show that the problems Hitting Set and Set Cover
do not admit algorithms with running time no(k) · mO(1), unless W [1] = FPT. Here, n
refers to the size of the universe, m to the instance size and k to the solution size. Further,
the fundamental problems Clique and Independent Set do not have algorithms with
running time f(k) · |G|o(k) if the ETH holds [CHKX06]. A simple corollary of this is that
the ETH implies that FPT ̸= W [1].
Fomin et al. [FGLS14] show that the problems Max-Cut and Edge Dominating Set
cannot be solved in time f(cw) · |V (G)|o(cw) on graphs with cliquewidth cw under the
ETH. Moreover, they provide asymptotically matching upper bounds for the problems.
Lastly, it is worth mentioning that lower bounds under ETH were also achieved for
algorithms that are not exact. For instance, Marx [Mar07] showed lower bounds for
polynomial-time approximation schemes of many problems, including Maximum Inde-
pendent Set on planar graphs and Minimum Dominating Set on planar graphs under
the hypothesis.

2.3.2 Strong Exponential Time Hypothesis
As illustrated in the last section, lower bounds under the ETH often provide evidence
that algorithms with running time 2o(n) are unlikely to exist. While this information
rules out substantial improvements, it is still quite fuzzy in the sense that it does not
differentiate between running times like 1.001n or 1000!n. In particular, when having an
algorithm with running time cn at hand, the ETH cannot be used to determine whether
the constant c is as low as possible.
That is where the SETH comes in. Assuming the SETH holds, we know that for any
ε > 0, there is a k such that k-SAT cannot be solved in time (2 − ε)n · (n + m)O(1).
By showing that an improved algorithm to a specific problem would yield a faster than
allowed algorithm for k-SAT, much more precise lower bounds can be given.
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To illustrate this, we show that a constraint satisfaction problem called q-CSP-B,
introduced by Lampis [Lam20], cannot be solved in time (B − ε)n · (n + m)O(1) for
instances with n variables and m constraints, unless the SETH is false. The reason for
choosing this problem as the exemplary problem is that this problem will be used as the
starting point of the reduction in the main contribution of the thesis.

In the q-CSP-B problem [Lam20], one is given a set of n variables X = {x1, . . . , xn}, and
a set of ℓ constraints C = {C1, . . . , Cℓ}. Each constraint Ci consists of an ordered q-tuple
of variables scp(Ci) = (xλ1 , . . . , xλq ), and a set of satisfying assignments acc(Ci) ⊆ [1, B]q.
The goal is to find a variable assignment π : X → [1, B] such that, for each constraint
Ci of the instance, with scp(Ci) = (xλ1 , . . . , xλq ) we have (π(xλ1), . . . , π(xλq )) ∈ acc(Ci).
When such an assignment π exists, we say that the instance is satisfiable. We now restate
and prove the lower bound.

Theorem 1 ([Lam20, Theorem 3.1]). For any integer B ≥ 2 and real number ε >
0 there is a q such that n variable m constraint q-CSP-B cannot be solved in time
(B − ε)n · (n + m)O(1), unless the SETH is false.

Proof. The proof is due to Lampis [Lam20].

For the sake of simplicity, instances of q-CSP-B are allowed to contain constraints with
less than q variables, which can easily be handled by introducing dummy variables. Fix
arbitrary integer B ≥ 2 and real ε > 0, and assume that there is an algorithm that can
solve q-CSP-B instances with n variables and m constraints in time (B −ε)n · (n+m)O(1)

for any q.

Our first goal is to choose p large enough such that 2 · (B − ε)p ≤ Bp, which is possible
since Bx grows exponentially quicker than (B − ε)x. So, let p be the smallest integer
such that 2 · (B − ε)p ≤ Bp. Then, we want to choose an integer t such that 2t ≤ Bp

while being as large as possible. Now, observe that we have 2t > Bp

2 ; otherwise, t could
be increased by at least one. So, we have (B − ε)p ≤ Bp

2 < 2t ≤ Bp. Finally, we must
choose a δ > 0 such that (B − ε)p ≤ (2 − δ)t. Given that 2t > (B − ε)p, and the fact
that (B − ε)p is already fixed, we must only choose δ small enough, which is always
possible since limx→0(2 − x)t = 2t. Note that p, t only depend on B and ε, and are hence
constants independent of the input size.

After having established these values and properties, we can finally proceed to the actual
reduction. Let the input k-SAT instance contain the variables x1, . . . , xn and clauses
C1, . . . , Cm. Next, partition the variables of the k-SAT instance into γ = ⌈n

t ⌉ groups,
such that every group, except for potentially the last one, contains t variables. Denote
these groups as V1, . . . , Vγ . For each of these γ groups, create a group of p variables for
the q-CSP-B instance, and call these groups X1, . . . , Xγ . Recall that we have 2t ≤ Bp.
Hence, for all i ∈ [1, γ], each possible assignment of the variables in group Vi can be
injectively mapped to an assignment to the variables in group Xi.

The final task of the reductions is mapping the clauses to constraints of the q-CSP-B
instance. Consider an arbitrary input clause. Then, we create a constraint for the
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q-CSP-B instance, that has the union of all variable groups that correspond to variables
of the clause as the scope. That is, if the variables of the clause appear in the groups
Vλ1 , . . . , Vλr , then the scope of the constraint is Xλ1 ∪· · ·∪Xλr . The satisfying assignment
of the constraint are exactly the assignments corresponding to satisfying assignments
of the clause. As r ≤ k, each constraint we create contains at most k · p variables, and
hence, the output instance is an instance of q-CSP-B where q = k · p. Recall that k, p
and B are constants. Hence, the number of variables of the constraint is constant, and so
is the overall size of the constraint. This means that we can perform the above operation
for every clause of the input instance of polynomial time.

It is easy to see that the instances are equivalent, as the constraints of the q-CSP-B
instance ensure that each input clause is satisfied, and a satisfying assignment of the
k-SAT instance can directly be mapped to a satisfying assignment of the constraint
satisfaction problem.

Finally, we need to validate that our algorithm indeed breaks the SETH. For that purpose,
apply the algorithm to the output instance. It runs in time (B − ε)γ·p · (γ · p + m)O(1),
since the output instance has γ · p variables and m constraints. We can rewrite and
obtain

(B − ε)γ·p ≤ (B − ε)(1+ n
t

)·p = ((B − ε)p)1+ n
t ≤

(︂
(2 − δ)t

)︂1+ n
t = (2 − δ)n+t.

Moreover, t is a constant, and hence (2 − δ)n+t = O((2 − δ)n). Also, γ · p ≤ p + n·p
t for

constants p and t, showing that γ · p is in O(n).

Hence, we can solve k-SAT in time (2 − δ)n · (n + m)O(1), which contradicts the SETH
since k was arbitrary, that is, we would have limx→∞ δx ≤ 2 − δ < 2 if a q-CSP-B
algorithm with the assumed running time were to exist.

The usefulness of the q-CSP-B problem is evident: Oftentimes, one does not want
to prove a lower bound of the form (2 − ε)n under SETH, but a lower bound of the
form (c − ε)n, where c is an integer different from 2. Instead of having to deal with
the shenanigans used in the proof above, one can directly use q-CSP-c as the starting
problem, which provides the correct base right away.

Next, we cover lower bounds under the SETH that scientists previously came up with. In
general, lower bounds under the SETH are even more sensitive to changes in the size of
the output instance or the parameter (in the parameterized setting) than lower bounds
under the ETH. Moreover, the lack of a theorem similar to the sparsification lemma
appears to be a major obstruction. In particular, if the output size/parameter is linear in
the size of the number of clauses of the input instance, that is simply not good enough
to provide tight bounds under SETH (see e.g. the discussion in [CFK+15, Section 14.5]).

Pǎtraşcu and Williams [PW10] show lower bounds for a variety of problems. Concretely,
they show that Dominating Set parameterized by the solution size k does not have an
O(nk−ε) algorithm for any ε > 0 and k ≥ 3, unless the SETH fails. They also provide
conditional lower bounds for the problems d-SUM, 2-SAT and HornSat.
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Abboud et al. [ABW15] consider the problem of computing the longest common subse-
quence and dynamic time warping distance of two strings of length n. They show that
both problems do not admit algorithms with running time in O(n2−ε) for any ε, unless
the SETH is not true.

Abboud, Bringman, Hermelin and Shabtay [ABHS22] show that a known algorithm with
pseudo-polynomial running time for the Subset Sum problem can most likely not be
improved upon, that is, there is no algorithm with running time T 1−ε · 2o(n) for any ε > 0
under the SETH. In the used notation, T is the target value and n the count of numbers
of the input instance.

Backurs et al. [BIS17] consider problems arising in machine learning, and provide lower
bounds under SETH for them. Bennet et al. [BGS17] consider special cases of the
Closest Vector Problem and prove that a running time of 2(1−ε)·n is not obtainable
under the SETH, where n is the lattice rank.

Now, we once again point our attention to our beloved parameter treewidth. The first
major results in this area are due to Lokshtanov et al. [LMS18a], who show the following
assortment of results under the SETH:

• Independent Set cannot be solved in time (2 − ε)tw · |V (G)|O(1),

• Dominating Set cannot be solved in time (3 − ε)tw · |V (G)|O(1),

• Max Cut cannot be solved in time (2 − ε)tw · |V (G)|O(1),

• Odd Cycle Transversal cannot be solved in time (3 − ε)tw · |V (G)|O(1),

• q-Coloring has no (q − ε)tw · |V (G)|O(1) algorithm for any integer q ≥ 3,

• Partition Into Triangles cannot be solved in time (2 − ε)tw · |V (G)|O(1).

The authors mention that each of the lower bounds listed above matches the running
time of the best known algorithm, and hence, they settle the question of the precise
complexity of these problems.

Borradaile and Le [BL16] provide an algorithm that can solve the r-Dominating Set
problem in time O((2r +1)tw · |V (G)|). Moreover, they show that the connected variant of
the problem can be solved in time O((2r + 2)tw · |V (G)|O(1)) by a randomized algorithm.
By providing lower bounds conditioned on the SETH, they provide evidence that these
running times are in fact the best possible running times for the problems.

Cygan et al. [CNP+22] provide a breakthrough result by showing that the problems
Hamiltonian Path, Steiner Tree, Feedback Vertex Set and Connected Domi-
nating Set admit randomized FPT algorithms with running time ctw · |G|O(1), where c
is a constant. Lower bounds for the parameter pathwidth, providing evidence that the
constant c is as small as possible, are given by them for the problems Steiner Tree,
Feedback Vertex Set and Connected Dominating Set.
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Besides the result about q-CSP-B we have already covered, Lampis [Lam20] shows that,
for all integers k ≥ 3, the k-Coloring problem can be solved in time (2k − 2)cw · |G|O(1),
and cannot be solved in time (2k − 2 − ε)cw · |G|O(1) on graphs with cliquewidth cw, for
any ε > 0, unless the SETH is not correct.

Cygan et al. [CDL+16] provide a variety of results conditioned on the SETH and a similar
conjecture. One major contribution due to them is that a variety of conjectures are
equivalent to the SETH, which increases the credibility of the assumption. They show
that the following assumptions are equivalent to the SETH:

• For all ε < 1, there is a k such that k-Hitting Set cannot be solved in time
O(2ε·n) for a universe of size n and sets of size at most k,

• For all ε < 1, there is a k such that k-Set Splitting cannot be solved in time
O(2ε·n) for a universe of size n and sets of size at most k,

• For all ε < 1, there is a k such that n variable k-NAE-SAT cannot be solved in
time O(2ε·n),

• For all ε < 1, there exists a k such that n variable k-VSP-Circuit-SAT cannot
be solved in time O(2ε·n).

The Strong Exponential Time Hypothesis can also be used to rule out faster algorithms
for counting problems, in which determining the number of solutions to a problem is the
goal. However, the nature of these problems suggest that a variant of the hypothesis that
is tuned to counting problems should be used. This hypothesis, called the counting Strong
Exponential Time Hypothesis (#SETH) (see [CM16], and also [DHM+14] for the ETH
equivalent) is simply the same as SETH, only that deciding whether a solution exists is
replaced with counting the number of solutions. Clearly, if one can count the number
of solutions quickly, one can also decide whether a solution exists quickly. Hence, the
SETH implies the #SETH, and the latter is the more plausible assumption. Curticapean
and Marx [CM16] show that counting the number of perfect matchings of a graph has
no (2 − ε)tw · |V (G)|O(1) algorithm for any ε > 0, unless the #SETH is false. They also
show that the same problem does not have an O(|V (G)|(1−ε)·cw) algorithm where cw is
the cliquewidth of the input graph under the same conjecture.

Marx et al. [MSS22] consider the AntiFactor problem, and provide a lower bound
under #SETH for the counting version of a special parameterization of the problem,
among other results. A similar result was also obtained by Max et al. [MSS21] for the
General Factor problem.

Roditty and Williams [RW13] improve upon a known algorithm for approximating the
diameter of a graph, and show that no algorithm with running time O(|E(G)|2−ε) exists
for the (3

2 − ε)-approximation of the diameter under SETH.

In conclusion, we see that the ETH and the SETH are useful hypotheses with solid
foundations. Using them, lower bounds can be obtained for classical NP-hard problems,
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but they are also extremely useful in the parameterized setting, and can even be used to
obtain lower bounds for problems that can be solved in polynomial-time.

2.4 Generalized Dominating Set
We now proceed to the family of graph problems that is considered in this work, namely
(σ, ρ)-GenDomSet. The problem was introduced by Telle [Tel94, TP93] and its decision
version is defined below. Given a graph G, a set S ⊆ V (G) is a (σ, ρ)-set if and only if
we have |N(v) ∩ S| ∈ σ for all v ∈ S and |N(v) ∩ S| ∈ ρ for all v ∈ V (G) \ S.

(σ, ρ)-GenDomSet (Decision problem)
Input: Graph G
Question: Is there a set S ⊆ V (G) such that S is a (σ, ρ)-set of G?

Note that σ, ρ are fixed non-empty subsets of the natural numbers and not part of the
problem input. Naturally, one may not only want to decide if any solution exists, but
instead ask for solutions of specific sizes. We refer to the problem of deciding whether
a (σ, ρ)-set of size at most k exists as the minimization version, and to the problem of
deciding whether a (σ, ρ)-set of size at least k exists as the maximization version.

The strength of the (σ, ρ)-GenDomSet framework is that it captures a huge variety of
different domination-like problems. For illustrative purposes, we provide a selection of
the problems listed by Telle [Tel94, Table I]. It is understood that some problems referred
to in the list may typically not be framed as decision problems, but as minimization or
maximization problems.

• When σ = N, ρ = {1, 2, . . . }, we obtain Dominating Set.

• When σ = {0}, ρ = N, we obtain Independent Set.

• When σ = {0}, ρ = {1} we obtain Perfect Code.

• When σ = {0}, ρ = {1, 2, . . . } we obtain Independent Dominating Set.

• When σ = N, ρ = {1} we obtain Perfect Dominating Set.

• When σ = ρ = {1, 2, . . . } we obtain Total Dominating Set.

• When σ = N, ρ = {q, q + 1, . . . }, where q ≥ 1, we obtain q-Dominating Set.

• When σ = {q}, ρ = N, where q ≥ 0, we obtain Induced q-Regular Subgraph,
which is Induced Matching when q = 1.

Evidently, the problem family is extremely expressive, and obtaining fast algorithms for
problems in it is of high priority. The problem is clearly decidable if σ, ρ are recursive
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sets, but not a lot more can be immediately deduced. In particular, the complexity of
the different types of problems can differ completely depending on the structure of σ
and ρ. On one hand, the framework captures problems like Dominating Set, where
the maximization and decision problems are trivial, and only the minimization problem
is hard. On the other hand, we have problems like Independent Set, where the
maximization problem is difficult, while the other problems are again trivial. And then,
there are also problems like Perfect Code, for which the decision problem is NP-hard
even if the input graph is planar and bipartite [LT02].

Telle [Tel94] examines the problem for specific sets, and shows NP-hardness as well as
polynomial-time solvability for many cases. For instance, [Tel94, Theorem 1] states that
the decision problem is NP-complete when σ = {0} and ρ = {q, q + 1, q + 2, . . . } for all
integers q ≥ 2. Moreover, the NP-completeness of Dominating Induced Matching
is shown. Another interesting result due to them is that the decision problem is NP-
complete when 0 ̸∈ ρ, and when both σ and ρ are finite. The last result of Telle [Tel94]
that we want to highlight is that the maximization problem is solvable in polynomial
time when σ = {k, k + 1, k + 2, . . . } and ρ has a specific structure.

Another special case of the problem was studied by Halldórsson et al. [HKT00a] under
the name independent sets with domination constraints. There, σ is fixed to be {0}, and
hence, any solution is an independent set. The set ρ is not restricted, except that it
is non-empty. Note that they assume that an oracle for deciding whether an element
is in ρ is given. Under this assumption, they fully settle the question of the classical
complexity of the decision problem, by showing that it is NP-complete if ρ ̸= N+ and
there is a k ≥ 0 with k ̸∈ ρ but k + 1 ∈ ρ. In the remaining cases, the problem can be
solved in polynomial time. Moreover, results in the realm of approximation algorithms
are provided for optimization variants.

Jacob et al. [JRS19] consider a problem called Fair Set that is a special case of (σ, ρ)-
GenDomSet. Meybodi et al. [MFMP20] consider the special cases [1, j]-Dominating
Set, where σ = N and ρ = [1, j], and [1, j]-Total Dominating Set that is expressible
by setting σ = ρ = [1, j].

Fomin et al. [FGK+11] consider the problem where σ does not contain two consecutive
integers and either (1) σ and ρ are finite or (2) at least one of σ, ρ is finite and σ ∩ ρ = ∅.
They present novel branching algorithms for the considered problem, and show that all
(σ, ρ)-sets can be enumerated in time cn · |G|O(1) for some constant c < 2 (depending on
σ and ρ).

Another algorithm due to Fomin et al. [FGK+09] is for the case when σ = {p} and
ρ = {q}. In that case, there is an exact algorithm that can solve the decision and
optimization problems as well as the counting problem in time 2|V (G)|/2 · |V (G)|O(1).
They extend their algorithm so that it also works for the case where σ = p + m · N and
ρ = q + m · N and m is an integer that is at least two. It should be noted that the latter
case is a generalization of the case we consider in this thesis for the parameter treewidth.

Due to the hardness that can be observed for many cases of (σ, ρ)-GenDomSet, re-
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searchers commonly view problems of this type under the lens of parameterized complexity.
Golovach et al. [GKS12] initiated the study of the problem using the parameter solution
size. For finite sets σ and ρ with 0 ̸∈ ρ and the parameter solution size, the minimization
problem turns out to be W [1]-complete. On the other hand, when σ or ρ are finite
or cofinite, then the problem of finding a solution of size at least |V (G)| − k is FPT
parameterized by k. We would also like to point out their result for the case of even and
odd sets. In Theorem 16, they show that, when σ, ρ ∈ {{0, 2, 4, . . . }, {1, 3, 5, . . . }}, then
the problem of deciding whether a (σ, ρ)-set of size at least |V (G)| − k exists is W [1]-hard
parameterized by k. Note that this covers problems strongly related to Refl-AllOff
and AllOff.

Parameterization by treewidth, the main topic of this thesis, has also gained considerable
attention for the problem. The observations given in this paragraph are based on the
thoughts provided in van Rooij [vBR09] and Focke et al. [FMI+23a]. Let σ be finite
or cofinite set. Define σmax = max σ if σ is finite, and σmax = 1 + maxN \ σ if σ is
cofinite and σ ̸= N, if σ is cofinite and σ = N, then σmax = 0. Similarly, let ρ be finite
or cofinite and define ρmax. Then, a classical dynamic programming algorithm on tree
decomposition will need to track two properties for each vertex of a bag. First, it needs to
track whether the vertex is selected or not in the current (partial) solution, and secondly,
it needs to track how many selected neighbors the vertex has. This naturally leads to
the σ states σ0, . . . , σσmax and the ρ states ρ0, . . . , ρρmax . Observe that, when σ is finite,
we must not track the case that a selected vertex has more than σmax neighbors, such a
partial solution is never feasible. When σ is cofinite, any selected vertex that has at least
σmax neighbors will remain “happy”, as it can always receive more selected neighbors.
Analogous properties hold for the set ρ. Thus, these states perfectly suffice. A naive
dynamic programming algorithm (for the decision or optimization problems) would then
have a running time of (σmax + ρmax + 2)2tw · |G|O(1). Although not explicitly stated, the
algorithm by Telle and Proskurowski [TP93] works for these cases and yields precisely
this running time.

Van Rooij et al. [vBR09] dramatically improve upon this naive bound, showing that the
problems can actually be solved in time (σmax + ρmax + 2)tw · |G|O(1) by optimizing the
computations in the join-node of the tree decomposition. The algorithm was subsequently
improved [van20, van21] by optimizing polynomial factors in the running time. We do
not go into the details regarding these improvements, but note that one of the introduced
techniques is vital for the quick algorithm for the case where σ, ρ are periodic with the
same period.

Focke et al. [FMI+23a, FMI+23b, FMI+23c] consider the problem of (σ, ρ)-GenDomSet
for finite or cofinite sets σ and ρ parameterized by treewidth. In particular, one of their
main goals initially was showing that the previously known algorithms are optimal under
the SETH2, which turned out to be only partially true. More concretely, they call a set
τ m-structured if there exists a constant C such that for all x ∈ τ the property x ≡m C

2personal communication with the authors

21



2. Preliminaries and Related Work

holds. The pair of sets (σ, ρ) is m-structured if both σ and ρ are m-structured. Observe
that any subset of the integers is trivially 1-structured. Partially building upon the
algorithm by van Rooij [van20], they show that the decision, optimization and counting
problem can be solved in time

1. (σmax + ρmax + 2)tw · |G|O(1) if (σ, ρ) is not m-structured for any integer m ≥ 2,

2. (σmax + 2)tw · |G|O(1) if σmax = ρmax is even and (σ, ρ) is 2-structured but not
m-structured for any integer m ≥ 3, and

3. (max(σmax, ρmax)+1)tw·|G|O(1) in all other cases, that is, when (σ, ρ) is m-structured
for some integer m ≥ 3, or (σ, ρ) is 2-structured with σmax ≠ ρmax, or (σ, ρ) is
2-structured with σmax = ρmax being an odd integer.

Compared to the previously known algorithms, this is sometimes an exponential improve-
ment in the running time. Continuing with their original goal, they show that these
running times are essentially optimal for the decision problem under the SETH when σ
and ρ are finite (and 0 ̸∈ ρ). Moreover, the running times are proven to be tight under
the SETH for the counting problem, even if cofinite sets are allowed. Lastly, it should
be mentioned that they provide an algorithm based on representative sets that can, in
certain cases, solve the decision and optimization problems even quicker when cofinite
sets are in play.

Chapelle [Cha10] considers the problem for sets that are not necessarily finite or cofinite.
They show that the decision problem is W [1]-hard for infinitely many cases of recursive
sets σ and ρ. Considering that domination-like problems of this type tend to be FPT
parameterized by the treewidth, this is certainly an interesting and relevant result that
gets us closer to a full dichotomy of the complexity of the problem. It is also shown that
the problem admits an algorithm running in time stw · |G|O(1) when σ or ρ are ultimately
periodic, where s is a constant that depends on the number of states of minimal automata
that enumerate σ and ρ. Hence, no explicit running time bound is provided in this case,
and the question of how low the constant in the base of the running time can go is still
open in most cases.

The (σ, ρ)-GenDomSet problem has also been studied for other parameterizations. For
instance, the parameter boolean-width was considered in the work of Adler et al. [ABR+10].
They provide algorithms for the case of σ and ρ being finite or cofinite sets. Bodlaender
et al. [BvvV10] consider the problem for finite or cofinite sets σ and ρ and the parameter
branchwidth.

Finally, we would like to point out that also extensions and variations of the already
extremely expressive (σ, ρ)-GenDomSet problem were studied in the past. For instance,
Jaffke et al. [JKST19] study the problem of (σ, ρ)-GenDomSet in which a different
notion of neighborhood is used. Concretely, for any vertex v in a graph G, they define the
ball of radius r around v as the set {w ∈ V (G) \{v} | distG(v, w) ≤ r}, where distG(v, w)

22



2.4. Generalized Dominating Set

is the length of the shortest path from v to w. Using the concept, the definition of
(σ, ρ)-sets can naturally be extended by simply replacing the standard neighborhood with
the ball of radius r around v. The authors prove that the decision and optimization
problems of this generalization are in XP parameterized by the mim-width of the input
graph when σ, ρ are finite or cofinite. Complementing these results, they prove that
certain problem variants are W [1]-hard parameterized by the solution size plus the
mim-width for specific cases of σ, ρ.

Heggernes and Telle [HT98] study the (k, σ, ρ)-Partition problem. In this problem, a
solution consists of a partition of the vertex set of the input graph, such that the partition
consists of k (possibly empty) blocks, and each block is itself a (σ, ρ)-set. They consider
a variety of these problems, and provide cutoff values for k. That is, they show that, for
certain fixed cases of σ, ρ, the problem (k, σ, ρ)-Partition is NP-hard, but the problem
(k′, σ, ρ)-Partition can be solved in polynomial time for all non-negative integers k′ < k.

2.4.1 Lights Out

We now point our attention to two specific cases of (σ, ρ)-GenDomSet that served as
one of the motivations for the thesis. In the Lights Out game, originally distributed by
Tiger Electronics, the player is given a board containing 25 lightbulbs arranged on a 5 × 5
grid (see e.g. [DW01]). Each lightbulb can either be off, or on, and each lightbulb has
an associated switch. Unlike a usual switch, toggling it does not only change the state
of the associated lightbulb, but also changes the state of all non-diagonal neighboring
lightbulbs. Initially, the player is presented with a board in which some (potentially all)
lightbulbs are turned on, and cleverly using the switches to turn off all lights is the goal.

As illustrated in Chapter 1 and mentioned within [AF98], it does not make sense to use
a switch more than once, and the order in which the switches are used does also not
matter. A solution to the problem can thus be represented by a set of switches that need
to be pressed. A lamp that is initially turned on must be turned off after all switches of
the solution are pressed, thus, its state must be changed an odd number of times. Hence,
the solution must select an odd number of switches from the neighborhood of the switch,
where the neighborhood also includes the switch itself. Similarly, a lamp that is initially
turned off requires an even number of neighboring selected switches in order to stay off
in the end.

It is easy to see that we can model the game in a graph-theoretic manner, such that
it is played on a 5 × 5 grid graph, where the vertices correspond to the lamps. When
the initial configuration is so that every lamp is turned on, we are exactly looking for
a (σ, ρ)-set of the graph for σ = {0, 2, . . . } and ρ = {1, 3, . . . }. Naturally, the game can
be played on arbitrary graphs. We call the resulting problem Refl-AllOff since each
switch also changes the state of the associated lamp. When using the open neighborhood
instead of the closed neighborhood, we call the problem AllOff, and solutions to this
problem are (σ, ρ)-sets where σ = ρ = {1, 3, . . . }. Let us stick to the problem in which
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all lights are initially turned on for now, we will later see that a proposed algorithm can
easily also handle the other cases.

Sutner [Sut89] showed that any graph has a solution for the Refl-AllOff problem.
Hence, the decision problem is trivial for this case. For the AllOff problem it is easily
observed that the same property does not hold. For instance, a graph that consists of
a single vertex does not have a solution. Still, it is easy to see and mentioned multiple
times in the literature (see e.g. [Sut89, GKTZ95, GKT97, AF98, HKT00b]) that one
must only solve the set of equations A · x⃗ = 1⃗ for x⃗, where 1⃗ is the 1-vector of length n,
x⃗ a vector of n variables, A the adjacency matrix of the graph, and the set of equations
is over the field F2. As one can determine a solution in cubic time, the decision problem
of AllOff is also not too difficult.

Naturally, the player wants to press as few switches as possible to solve the problem,
and hence, solving the minimization problem is a next natural goal. In contrast to the
tractability of the decision problem, the minimization problem and maximization problem
of AllOff and Refl-AllOff are NP-hard [Sut88, CGK01, HKT00b].

With regard to parameterization by treewidth, the first algorithm for the optimization
problems we know of is due to Gassner and Hatzl [GH08], and has a running time of
23tw · |G|. This was subsequently improved by Greilhuber et al. [GSW24, Section 4].
Their results utilized ideas by Focke et al. [FMI+23b] to show that the minimization and
maximization problems can be solved in time 2tw · |G|O(1), which is a large improvement.

2.4.2 Algorithm for (σ, ρ)-GenDomSet and Periodic Sets

The problems AllOff and Refl-AllOff show that there are natural, interesting
problems of (σ, ρ)-GenDomSet where σ and ρ are neither finite nor cofinite. This
suggests that taking a closer look at such a setting is reasonable. Concretely, Greilhuber
et al. [GSW24] consider the problem of (σ, ρ)-GenDomSet where σ and ρ are both
periodic sets with the same period m ≥ 2. A set τ is periodic with period m if it is a
residue class modulo m, that is, τ = {n ∈ N | n ≡m k} for some positive integer m and
some integer k with 0 ≤ k < m. This setting covers AllOff and Refl-AllOff by
choosing specific residue classes modulo two. Their algorithm admits a running time
of mtw · |V (G)|O(1), and utilizes multiple non-trivial improvement techniques first used
by Focke et al. [FMI+23b]. As this is the algorithm the lower bound part of the thesis
matches, we will now cover its central ideas. It is understood that the remainder of this
section presents work that was already presented in [GSW24], and in particular builds
upon ideas of [FMI+23b].

At its core, the algorithm is simply a classical dynamic programming algorithm operating
on tree decompositions. However, several major obstructions need to be overcome. Since
we consider the problem of (σ, ρ)-GenDomSet where both σ and ρ are residue classes
modulo m for some m ≥ 2, we naturally have m states for selected vertices, and m states
for unselected vertices. This suffices since a vertex that has x selected neighbors behaves
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exactly the same as a vertex that has x + m selected neighbors. To make this more
concrete, we formally define the states we keep track of in the algorithm.

Definition 4 (Vertex states; See [GSW24, Definition 3.3]). We define the ρ states to be
R = {ρ0, . . . , ρm−1} and the σ states to be S = {σ0, . . . , σm−1}. The set of all states is
A = R ∪ S.

Initially, one might be tempted to think that the fact that we have 2m states available
for each vertex should lead to a lower bound of (2m − ε)tw · |V (G)|O(1). Surprisingly, this
is not the case.

For our proof sketch, we require the notion of graphs with portals and partial solutions.

Definition 5 (Graph with portals; [FMI+23b, Section 3.2]). A graph with portals is a
pair (G, U) consisting of a graph G and a set U ⊆ V (G).

Intuitively, for a graph with portals (G, U), the set U will usually be some form of
“interface” to a larger graph, of which G is a subgraph. For instance, it may be the case
that we have a node of a nice tree decomposition t at hand, and consider the graph with
portals (G[Vt], Xt), where Vt is the set of all vertices introduced in and below node t.
Given a graph with portals (G, U), we are then interested in vertex subsets that already
fulfill the constraints for the vertices in V (G) \ U , but not necessarily the constraints
for the vertices in U . For the case of a tree decomposition, this corresponds to the
fact that, during the dynamic program, all vertices in Vt \ Xt must already have their
constraints satisfied, while the vertices in the bag might receive more selected neighbors
as we proceed.

Definition 6 (Partial solution; [FMI+23b, Definition 3.3]). A partial solution with regard
to a graph with portals (G, U) (and sets σ, ρ) is a set S ⊆ V (G) such that

1. For all v ∈ S \ U we have |N(v) ∩ S| ∈ σ,

2. for all v ∈ V (G) \ (S ∪ U) we have |N(v) ∩ S| ∈ ρ.

That is, the set S already respects the degree constraints of σ and ρ for all vertices not in
U .

Now, given a graph with portals (G, U), we want to associate partial solutions with
strings that describe the vertex states within U .

Definition 7 (Compatible strings; Modification of [FMI+23b, Definition 3.4], [GSW24,
Definition 3.4]). Let (G, U) be a graph with portals, and σ, ρ be two periodic sets with
period m. String x ∈ AU is compatible with (G, U) if there is a partial solution Sx ⊆ V (G)
such that, for all v ∈ U ∩ S we have x[v] = σi and i = |NG(v) ∩ Sx| mod m, and for all
v ∈ U \ S we have x[v] = ρi and i = |NG(v) ∩ Sx| mod m.

Partial solution Sx is also said to be a witness or witnessing solution for x.
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Essentially, any x ∈ AU describes a potential partial solution via the states of the vertices
of U , and x is compatible if a matching partial solution actually exists.

Within the dynamic programming algorithm, we naturally want to keep track of strings
that are compatible with (G[Vt], Xt) for all nodes t of the tree decomposition. We also
call this set of strings the realized language. The related notions providers and realizers
are of special importance for the lower bound.

Definition 8 (Realized language, L-realizer and L-provider; [FMI+23c, Definition 3.9],
[GSW24, Definition 3.5]). Given a graph with portals (G, U), its realized language is
defined as

L(G, U) = {x ∈ AU | x is compatible with (G, U)}.

For a language L ⊆ AU , (G, U) is a L-realizer if L = L(G, U), and a L-provider if
L ⊆ L(G, U).

After this heap of formal definitions, we can finally explain the intuition behind why we
do not have to track as many states as expected. It turns out that, for a graph with
portals (G, U) even though we have |AU | = (2m)|U |, at most m|U |+1 of those strings
can actually be compatible with the graph. That is, the realized language of (G, U) is
significantly smaller than the naive bound would suggest. Hence, one does not need to
keep track of as many solutions as expected at first.

We continue by formally proving the bound on the size of the realized language of a
graph with portals. For this purpose, we decompose strings over AU into a selection
vector, and a weight vector.

Definition 9 (Selection and weight vectors; See [FMI+23b, Definition 4.2], [GSW24,
Definition 4.1]). Given a string x ∈ An, the selection vector σ⃗(x) ∈ {0, 1}n is defined as
the vector where σ⃗(x)[i] is 1 if and only if x[i] ∈ S.

The weight vector w⃗(x) ∈ [0, m − 1]n is defined as the vector with w⃗[i] = c, where
x[i] ∈ {σc, ρc}.

Next, we prove an important property of strings of realized languages, that will eventually
allow us to prove the size bound.

Lemma 1 ([GSW24, Lemma 4.3]). Let σ and ρ be two periodic sets with the same period
m ≥ 2, and let (G, U) be a graph with portals. Consider two strings x, y ∈ AU , such
that there are witnessing solutions Sx, Sy for x, respectively y, with |Sx \ U | ≡m |Sy \ U |.
Then, σ⃗(x) · w⃗(y) ≡m σ⃗(y) · w⃗(x).

Proof. The central ideas behind the lemma and proof should be attributed to Focke et
al. [FMI+23b, Lemma 4.3].

Let (G, U), x, y and Sx, Sy be as in the statement of the lemma. We prove the statement
by counting the edges from Sx to Sy in two different ways. For this purpose, define

26



2.4. Generalized Dominating Set

E(X, Y ) = {uv ∈ E(G) | u ∈ X, v ∈ Y } for X, Y ⊆ V (G). We examine E(Sx, Sy). A
vertex in Sx is either

1. part of U , or

2. part of Sy \ U , or

3. not part of U and not part of Sy.

If the vertex is part of Sy \ U , then the number of neighbors it has that are in the set
Sy must be in σ, because Sy is a partial solution. In particular, this number must be
congruent to min σ modulo m.

If the vertex is neither part of U nor of Sy, then its number of selected neighbors in Sy

must be in ρ, and in particular congruent to min ρ modulo m.

Finally, if the vertex v is part of U , the weight vector entry w⃗(y)[v] describes precisely
how many neighbors v has in Sy.

Combining these observations, we obtain

|E(Sx, Sy)| ≡m min ρ · |Sx \ (U ∪ Sy)|
+ min σ · |(Sx ∩ Sy) \ U |
+ σ⃗(x) · w⃗(y)
= min ρ · (|(Sx \ U)| − |Sx ∩ Sy| + |Sx ∩ Sy ∩ U |)
+ min σ · |(Sx ∩ Sy) \ U |
+ σ⃗(x) · w⃗(y).

Using the same strategy for E(Sy, Sx), we get

|E(Sy, Sx)| ≡m min ρ · (|(Sy \ U)| − |Sy ∩ Sx| + |Sy ∩ Sx ∩ U |)
+ min σ · |(Sy ∩ Sx) \ U |
+ σ⃗(y) · w⃗(x).

Finally, by utilizing our assumption that |Sx \ U | ≡m |Sy \ U |, we see that

σ⃗(x) · w⃗(y) ≡m σ⃗(y) · w⃗(x)

as desired.
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We can later show that a language L ⊆ An has bounded size whenever

σ⃗(x) · w⃗(y) ≡m σ⃗(y) · w⃗(x)

holds for all x, y ∈ L. We call such languages L sparse (see also [GSW24, Definition
4.2] and [FMI+23b, Page 16]). The lemma above allows us to utilize this information
to bound the size of any realized language. Note that we can decompose any realized
language into m bins of strings having witness solutions of a specific size modulo m,
which only leads to an overhead of factor m when considering the full language.

To proof the size bound on sparse languages, we need the concept of σ-defining sets
which was also used by Focke et al. [FMI+23b].

Definition 10 (σ-defining set; See [GSW24, Definition 4.5],[FMI+23b, Definition 4.7]).
Let X ⊆ {0, 1}n. Then, S ⊆ [1, n] is a σ-defining set for X if S is an inclusion-wise
minimal set such that for all u, v ∈ X we have u[S] = v[S] implies u = v.

Greilhuber et al. [GSW24, Lemma 4.7] show that such a set S can be computed in time
O(|X| · n3), which is actually a relatively easy task and requires no advanced techniques.

The crucial property of σ-defining sets S ⊆ [1, n] is that their complement S = [1, n] \ S
characterizes the weight vectors uniquely. This is made more precise in the following
lemma.

Lemma 2 ([GSW24, Lemma 4.8]). Let σ and ρ be two periodic sets with the same period
m ≥ 2. Let L ⊆ An be a sparse language with a σ-defining set S for σ⃗(L) = {σ⃗(x) | x ∈ L}.
Then, for any two strings x, y ∈ L with σ⃗(x) = σ⃗(y) we have

w⃗(x)[S] = w⃗(y)[S] implies x = y.

Proof. The central ideas of the lemma and proof are attributed to Focke et al. [FMI+23b,
Lemma 4.9].

Let L and S be like in the statement of the lemma, and x, y ∈ L with σ⃗(x) = σ⃗(y) and
w⃗(x)[S] = w⃗(y)[S]. Consider an arbitrary position i ∈ S. As i is a position in S and S is
a σ-defining set, we know that there must exist vectors w1,i and w0,i ∈ σ⃗(L) such that
w1,i[S \ i] = w0,i[S \ i] and w1,i[i] = 1, w0,i[i] = 0.

First, we show that (w⃗(x)− w⃗(y)) ·w1,i ≡m 0. For this purpose, consider that w1,i ∈ σ⃗(L),
and hence, there is a z ∈ L such that σ⃗(z) = w1,i. Using the property that L is a sparse
language, we see that σ⃗(z) · w⃗(x) ≡m σ⃗(x) · w⃗(z) and σ⃗(z) · w⃗(y) ≡m σ⃗(y) · w⃗(z). Using
the assumed property that σ⃗(x) = σ⃗(y), we obtain σ⃗(z) · w⃗(x) ≡m σ⃗(z) · w⃗(y) which yields
the claim after simple rearrangements. We can show that (w⃗(x) − w⃗(y)) · w0,i ≡m 0 the
same way.
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Using these properties, we now see that

(w⃗(x) − w⃗(y)) · (w1,i − w0,i) = (w⃗(x) − w⃗(y)) · w1,i − (w⃗(x) − w⃗(y)) · w0,i

≡m 0 − 0
= 0.

Now, we have 0 ≡m (w⃗(x) − w⃗(y)) · (w1,i − w0,i). Furthermore, by w⃗(x)[S] = w⃗(y)[S] and
w1,i[S \ i] = w0,i[S \ i], we also have

(w⃗(x) − w⃗(y)) · (w1,i − w0,i) = (w⃗(x)[i] − w⃗(y)[i]) · (w1,i[i] − w0,i[i]).

Altogether we now have

0 ≡m (w⃗(x) − w⃗(y)) · (w1,i − w0,i)
= (w⃗(x)[i] − w⃗(y)[i]) · (w1,i[i] − w0,i[i])
= (w⃗(x)[i] − w⃗(y)[i]) · (1 − 0)
= (w⃗(x)[i] − w⃗(y)[i]).

And as this implies that w⃗(x)[i] ≡m w⃗(y)[i], and entries of the weight vectors range in
[0, m − 1], we actually have w⃗(x)[i] = w⃗(y)[i], concluding the proof.

Using these facts, we can already bound the size of sparse languages, and therefore the
size of any realized language.

Lemma 3 ([GSW24, Lemma 4.9]). Let σ and ρ denote two periodic sets with the same
period m ≥ 2. Every sparse language L ⊆ An satisfies |L| ≤ mn.

Proof. We restate the proof of Greilhuber et al. [GSW24].

Let L ⊆ An be a sparse language, and S a σ-defining set for σ⃗(L) = {σ⃗(x) | x ∈ L}. A
string x ∈ L is uniquely determined by its σ vector and its weight-vector.

Count the elements of L by first fixing a σ-vector. We know that |σ⃗(L)| ≤ 2|S| per the
definition of σ-defining sets. Then, we know that the elements in S uniquely determine
the weight-vector of a string per Lemma 2, and as we have already fixed the σ-vector,
the full string. We conclude that

|L| ≤ 2|S| · m|S| ≤ mn.

The lemma above can be seen as the key property that enables the quick algorithm. The
only remaining challenge is that also the join operation of the dynamic program must be
done efficiently. For the join operation, the algorithm iterates over the intersection of the
σ-vectors of the languages that should be joined, and then joins them by combining the
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weight vectors of strings with the same σ-vector. For this purpose, a quick convolution
algorithm due to van Rooij [van20] is employed. It is not sufficient to directly employ it,
though. While the size of a sparse language is small, each weight-vector can stem from
a fairly large space, concretely of size mn. To make the convolution quick enough, it is
necessary to move to a significantly smaller space.

Luckily, computing the convolution sufficiently fast is possible by using a compression
of the weight vectors. Concretely, given a σ-defining set S, the positions of S uniquely
determine the remaining positions of a weight-vector in such a way, that they can be
fully recovered even when they are completely dropped. Thus, the compression of weight-
vectors is simply the projection to the positions on S, and these then stem from a space
of size m|S|, which is small enough.

The final algorithm is then a simple dynamic program which additionally utilizes this
fast join operation. The quick running time is obtained because (1) it could be proven
that the number of strings tracked at each bag of the tree decomposition is small due to
Lemma 3 and (2) using the compression, the join-nodes can be handled in the required
running time. The final Theorem expressing the obtained running time is repeated here.

Theorem 2 ([GSW24, Main Theorem 1]). Let σ, ρ be periodic sets with the same period
m ≥ 2. Then, in time mtw · |G|O(1) we can decide simultaneously for all s if a given input
graph G has a (σ, ρ)-set of size s when a tree decomposition of width tw is provided with
the input.

As we can actually decide whether a solution of a specific size exists for all possible sizes
at the same time, this algorithm not only solves the decision, but also the minimization
and maximization versions of (σ, ρ)-GenDomSet.

With a simple modification of the dynamic program, one can also handle the case where
an additional shift-vector is part of the input. The shift-vector essentially provides
starting values for the number of selected neighbors of the vertices, that is, even though
a vertex has, say, 0 selected neighbors in a solution, its count of selected neighbors might
be 1, because a shift of 1 for this particular vertex is defined in the input. Using this
notion of shift-vectors, one can solve the Lights Out problem (both for closed and open
neighborhoods) for arbitrary starting configurations [GSW24].
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CHAPTER 3
Intermediate Lower Bound

We can now finally proceed to the main contribution of the thesis, that is, establishing
the lower bound for (σ, ρ)-GenDomSet with sets σ, ρ having the same period m. The
original content of this section is also presented in [GSW24, Section 5] in a similar
manner.

The central idea behind the reduction from k-SAT to (σ, ρ)-GenDomSet is that we first
reduce to q-CSP-B (this reduction due to Lampis [Lam20] was covered in Theorem 1),
then reduce to a hybrid between q-CSP-B and (σ, ρ)-GenDomSet, and then finally
to (σ, ρ)-GenDomSet. The general strategy was previously used by Curticapean and
Marx [CM16], Marx et al. [MSS21, MSS22], and in particular also utilized by Focke et al.
[FMI+23c] for showing their lower bounds for (σ, ρ)-GenDomSet (for finite and cofinite
sets σ, ρ). In this chapter, we cover the reduction to the intermediate hybrid problem.

Given that Focke et al. [FMI+23c] present a lower bound for the case where σ and ρ are
finite, it is tempting to think that one can easily reduce from the problem with finite
sets σ and ρ, or at least use the construction by Focke et al. as it is. Unfortunately, this
turns out to not be the case, as the problem with periodic sets sometimes behaves quite
different from the problem with finite sets. For instance, the approach by Focke et al.
heavily exploits the fact that σ and ρ have a largest element, which is no longer the case
for periodic sets. Thus, while the general strategy for proving the lower bound remains
the same and, especially in this section, a good deal of concepts and ideas were reused
by us, also many non-trivial adaptions need to be made, and new gadgets have to be
created to make it work for the considered case.

The Hybrid Problem

Before getting into the details of the reduction to the hybrid problem, we must first define
it. The problem is a natural extension of (σ, ρ)-GenDomSet to graphs with relations,
which is the concept defined next.
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3. Intermediate Lower Bound

Definition 11 (Graph with relations; [FMI+23c, Definition 4.1]). A graph with relations
G = (V, E, C) is a triple, where (V, E) is a graph, and C a set of constraints. Concretely,
each C ∈ C is a pair (scp(C), acc(C)), where scp(C) is a subset of V , and acc(C) ⊆ 2scp(C)

is a |scp(C)|-ary relation that specifies the allowed selections within scp(C). We also say
that C observes scp(C).

The size of G is defined to be |G| = |V | + ∑︁
c∈C |acc(C)|. Slightly abusing notation, we

may not distinguish between G and the graph (V, E), and refer to both objects as G
depending on the context.

The definition of graph with relations already suggests how the hybrid problem, called
(σ, ρ)-GenDomSetRel, will extend (σ, ρ)-GenDomSet, namely by taking a graph with
relation as input, and respecting its constraints. For this purpose, we first define the
notion of (σ, ρ)-sets on such graphs.

Definition 12 ((σ, ρ)-set of a graph with relations; [FMI+23c, Definition 4.3]). Let
G = (V, E, C) be a graph with relations. A set S ⊆ V is a (σ, ρ) set of G if it is a
(σ, ρ)-set of (V, E), and S ∩ scp(C) ∈ acc(C) for all C ∈ C.

The definition of the hybrid problem (σ, ρ)-GenDomSetRel naturally follows. Note that
the definition stems from [FMI+23c, Definition 4.8].

(σ, ρ)-GenDomSetRel

Input: Graph with relations G = (V, E, C)
Question: Is there a (σ, ρ)-set of G?

As we parameterize by structural parameters which are only defined on graphs thus far,
we must also define them on graphs with relations. The definitions are chosen in a way
that allows us to later move from a graph with relations to a regular graph without
increasing the parameter too much.

Definition 13 (Width measures for graphs with relations; [FMI+23c, Definition 4.4]).
Let G = (V, E, C) be a graph with relations. Let Ĝ be the graph we obtain from (V, E) by
introducing a complete set of edges on scp(C) for all C ∈ C. The treewidth of a graph with
relations G is the treewidth of the graph Ĝ. Analogously, we define tree decomposition,
path decomposition, and pathwidth of G as the corresponding concepts in the graph Ĝ.

An important property of this definition is that for any relation and any tree or path
decomposition, there must be a bag of the decomposition that contains all vertices
of the relation scope. The reason for this is that for any clique of a graph, any such
decomposition must contain a bag which contains all vertices of the clique (see e.g.
[BM93]).
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3.1 The Idea
We now present the main ideas behind the reduction from q-CSP-B to the hybrid problem
(σ, ρ)-GenDomSetRel. We are looking for a lower bound for the problem parameterized
by treewidth, however, we can actually prove the bound for the parameter pathwidth,
which implies the bound for treewidth. As we are aiming for a lower bound of the form
(m − ε)pw · |G|O(1), we reduce from q-CSP-B where B = m, that is, from q-CSP-m.

There are four main challenges that the reduction must overcome, we will list these
challenges and sketch how they are solved next.

Low Pathwidth

When provided with a q-CSP-m instance on n variables and ℓ constraints, it must be
ensured that the pathwidth of the output graph is only marginally larger than n. To
achieve this, the output graph will follow the general structure of an n × ℓ grid. The
output graph contains one row for each variable and one column for each constraint.
Note that, since the output graph is a graph with relations, we must also ensure that
each relational constraint does not observe too many vertices.

Encoding the Assignment

One of the central tasks of the reduction is bridging the gap between a constraint
satisfaction problem and a graph problem. Each variable of the input instance can take
up to m values, and we must somehow encode these values by states of vertices in the
output graph. For this purpose, so-called information vertices are introduced, and we
have one such vertex for every row and every column of the output graph. The state of
an information vertex (in a solution) is determined by the number of selected neighbors
it has. The construction ensures that each information vertex can have m different states,
and hence, we achieve a direct correspondence between the states of information vertices
and the values that the variables can take. The neighbors are provided to the information
vertices through specific gadgets which we call managers. Their creation will be described
in the first step of the reduction.

Consistency of the Assignment

To keep the pathwidth low, we have ℓ different information vertices for each variable of
the input q-CSP-m instance. It must be guaranteed that all of these different information
vertices have the same state, otherwise, a solution to the q-CSP-m instance might not
correspond to a variable-assignment at all. Luckily, this property can be achieved by
introduction consistency relations with a sufficiently small scope.

Encoding the Constraints

Finally, we must also ensure that a solution to the (σ, ρ)-GenDomSetRel problem
not only corresponds to a variable assignment of the input instance, but actually to
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3. Intermediate Lower Bound

a satisfying assignment. For this purpose, we must introduce the constraints of the
q-CSP-m instance into the output instance in some manner. To do this, we can add ℓ
additional relations to the output instance, one relation for each constraint of the input
instance. Each such constraint relation will observe vertices of a different column, and
ensure that the states of the information vertices correspond to assignments that satisfy
the constraint of the column.

3.2 Managers
Now, we will proceed with the actual construction. One important module that is used
within it are the managers, which are the subgraphs of the output instance that provide
neighbors to the information vertices. In [GSW24], the managers provided by Focke et
al. [FMI+23c] are used in a black-box fashion, which is perfectly sufficient. To keep this
thesis self-contained, we will present how they can be created here. This choice also
simplifies some definitions and proofs. We first provide the formal definition of a manager.
This definition is a simplified version of Definition 4.7 in Focke et al. [FMI+23c] adapted
to periodic sets, which is sufficient for our purposes.

Definition 14 (A-manager; Compare [FMI+23c, Definition 4.7]). Consider two sets σ
and ρ that are both periodic with period m. For a set A ⊆ A, an A-manager is an infinite
family ((Gℓ, Uℓ))ℓ≥1 of pairs (Gℓ, Uℓ) such that

• Gℓ is a graph and

• Uℓ = {u1, . . . , uℓ} ⊆ V (Gℓ) is a set of ℓ distinguished vertices.

Moreover, there is a non-negative integer b (that depends only on σ and ρ) such that the
following holds for every ℓ ≥ 1:

• The vertices from V (Gℓ)\Uℓ can be partitioned into 2ℓ vertex-disjoint sets B1, . . . , Bℓ

and B1, . . . , Bℓ (called blocks), such that

– |Bi| ≤ b and |Bi| ≤ b for all i ∈ [1, ℓ],
– N(ui) ⊆ Bi ∪ Bi for all i ∈ [1, ℓ],
– there are no edges between two distinct blocks.

• Each x ∈ Aℓ ⊆ Aℓ is managed in the sense that there is a (σ, ρ)-set Sx of Gℓ such
that for all i ∈ [1, ℓ]:

– If x[i] = σs, then ui ∈ Sx. Moreover, ui has exactly s neighbors in Bi ∩ Sx

and exactly (min σ − s) mod m neighbors in Bi ∩ Sx.
– If x[i] = ρr, then ui /∈ Sx. Moreover, ui has exactly r neighbors in Bi ∩ Sx

and exactly (min ρ − r) mod m neighbors in Bi ∩ Sx.
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{u}

Ks+1

Ks+1

Ks+1

Ks+1

(a) The partial solution compatible with
σs mod m.

{u}

Ks+1

Ks+1

Ks+1

Ks+1

(b) The partial solution compatible with
ρr mod m.

Figure 3.1: The {ρr mod m, σs mod m}-provider from Lemma 4 sketched for the case r = 2
and s = 4. The figures are adaptions of [FMI+23c, Figure 5.1 (a)].

We refer to (Gℓ, Uℓ) as the A-manager of rank ℓ.

Given a manager and distinguished vertex ui, we sometimes refer to Bi as the left block
of vertex ui and to Bi as the right block of vertex ui.

The manager we will use will itself consist of several smaller gadgets, called providers.
Recall the notion of compatible strings and providers from Definitions 7 and 8. We first
show that certain providers exist. The proof is a direct consequence of a Lemma provided
by Focke et al. [FMI+23c], and restated here for completeness.

Lemma 4 (Follows from [FMI+23c, Lemma 5.1]). Let σ and ρ be periodic sets with
period m, and r ∈ ρ with r > 0, s ∈ σ. Then, there is a {ρr mod m, σs mod m}-provider
(G, {u}).

Proof. The proof is due to Focke et al. [FMI+23c]. The graph G consists of 2r cliques
X1, . . . , Xr, Y1, . . . , Yr on s + 1 vertices each. Denote the i-th vertex of clique Xj as
x

(j)
i , and the i-th vertex of clique Yj as y

(j)
i . Connect vertex x

(j)
i to vertex y

(j)
i for all

i ∈ [1, s + 1] and all j ∈ [1, r]. This concludes the construction of G, for the portal vertex
u, simply set u = x

(1)
1 . The graph is visualized in Fig. 3.1.

We now argue that (G, {u}) is indeed a {ρr mod m, σs mod m}-provider. As we deal with
periodic sets, we count neighbors modulo m, and in particular, it would be sufficient to
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U

P P
. . .

P

m− 1

(a) The provider with an exemplary selection
that leads to the state ρ1.

U

P P
. . .

P

m− 1

(b) The provider with an exemplary selection
that leads to the state ρm−1.

Figure 3.2: The provider from Lemma 5. The figures are adaptions of [FMI+23c, Figure
5.2]. The graphs P represent the copies of the provider from Lemma 4, from each copy
only the portal vertex is shown.

show that there exists a solution in which u is selected and has s selected neighbors, and
a solution in which u is not selected and has r selected neighbors.

Consider the set that consists of the vertices of all cliques Yi. Then, each vertex of such
a clique has exactly s neighbors that are selected. Moreover, each vertex of a clique Xi

is adjacent to exactly r vertices of the Y -cliques, which is also sufficient. Hence, the
described set is a (σ, ρ)-set in which u is not selected and has r selected neighbors, which
is exactly what we need.

Similarly, when we select all vertices of the X-cliques, then each vertex of those cliques has
s neighbors that are selected, and each vertex of the Y -cliques has r selected neighbors.
We once again have a (σ, ρ)-set of G, and u is selected and has s selected neighbors itself,
as required.

This provider (G, u) is very useful, because vertex u can be both selected or unselected.
Hence, if we add a vertex v to G that is unselected and make it adjacent to u, we can
switch between vertex u providing a selected neighbor to v, and vertex u not providing a
selected neighbor to v. Using this idea, we can immediately create a {ρ0, ρ1, . . . , ρm−1}-
provider, which is an extremely versatile gadget. Once again, this was already shown by
Focke et al. [FMI+23c], and we restate their statement and proof in slightly different
words here.

Lemma 5 (Compare [FMI+23c, Lemma 5.3]). Let σ and ρ be periodic sets with the
same period m. Then, there is a {ρ0, ρ1, . . . , ρm−1}-provider.

Proof. The proof is attributed to Focke et al. [FMI+23c].

Take the disjoint union of m − 1 copies of the provider of Lemma 4 for arbitrary s ∈ σ
and r ∈ ρ with r > 0. A good choice would, for instance, be s = min σ and r = min ρ+m.
Add another vertex u to the graph, and connect this vertex to the portal vertex of each
of the m − 1 copies. The provider is sketched in Fig. 3.2.
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Figure 3.3: The manager from Lemma 6 of rank ℓ. The graphs P in the figure represent
the copies of the {ρ0, . . . , ρm−1}-provider from Lemma 5 (excluding their portal vertex).

Since each of the copies has a partial solution in which the respective portal vertex is
selected and a partial solution in which the respective portal vertex is not selected, we
can easily see that for any i ∈ [0, m − 1], there is at least one partial solution in which
vertex u is unselected and receives i selected neighbors.

Using this powerful provider, we can now construct the manager we will use in the
reduction.

Lemma 6 (Compare [FMI+23c, Lemma 6.1]). Let σ and ρ be periodic sets with the
same period m. Then, there is a R-manager.

Proof. The proof is due to Focke et al. [FMI+23c].

Fix any ℓ ≥ 1. Add the provider from Lemma 5 to the graph ℓ times, and denote the
providers as P1, P2, . . . , Pℓ. Add the same provider ℓ more times and denote the providers
as P 1, P 2, . . . , P ℓ. Identify the portal vertex of Pi with the portal vertex of P i and denote
the resulting vertex as ui for all i ∈ [1, ℓ]. Then, (Gℓ, {u1, . . . , uℓ}) forms the desired
manager of rank ℓ. The blocks of the manager are provided by setting Bi = V (Pi) \ {ui}
and Bi = V (P i) \ {ui} for all i ∈ [1, ℓ]. Look at Fig. 3.3 for an illustration of the manager
of rank ℓ.
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Figure 3.4: A sketch of the output instance GI where m = 5, n = 4 and ℓ = 3. A similar
illustration is presented in [GSW24, Figure 2].

It is easy to see that the constructed graph is indeed the R-manager of rank ℓ. In
particular, the distinguished vertices only have neighbors in two blocks each, and the
blocks are not directly connected to each other. Moreover, the size of each used provider
depends only on σ and ρ, and is thus constant as these sets are fixed. Furthermore, the
neighborhood of the distinguished vertices lies entirely within the associated blocks.

Then, for any x ∈ Rℓ, we can manage x by selecting vertices according to a (σ, ρ)-set
that does not select any distinguished vertex, and for each i, r neighbors in Bi where
x[i] = ρr, and (min ρ − r) mod m neighbors in Bi. Such a selection possible because each
block essentially forms a {ρ0, ρ1, . . . , ρm−1}-provider.

3.3 The Reduction
Now, we have all components available that we will require for the actual reduction.
Since it is relatively intricate, we will first formally define the output instance, and then
prove properties about it in a second step.

3.3.1 Construction of the Graph
Let the input instance of q-CSP-m be I = (X, C), where X = {x1, . . . , xn} and C =
{C1, . . . , Cℓ}. We will output an equivalent instance GI of (σ, ρ)-GenDomSetRel, which
has sufficiently low pathwidth. As mentioned earlier, the structure of the graph is grid-like.
To make our notation easier to understand, we will often refer to objects by row and
column, and we use the convention that the row is written as subscript index, while the
column is written as superscript index.

We can now describe the construction of GI :
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• For all i ∈ [1, n] and all j ∈ [1, ℓ], the output graph Gi contains a vertex wj
i , which

is called an information vertex.

• For all j ∈ [1, ℓ] there is a R-manager M j of rank n (provided by Lemma 6), where
{wj

i | i ∈ [1, n]} is the set of distinguished vertices of M j . We write Bj
i and B

j
i for

the vertices of the corresponding blocks of the manager.

• For all i ∈ [1, n], j ∈ [1, ℓ − 1] we create a consistency relation Rj
i with scope

B
j
i ∪ Bj+1

i ∪ {wj
i , wj+1

i }, which we define in the following paragraphs.

• For all i ∈ [1, n] we similarly create a relation R0
i with scope B1

i , which we also
define in the following paragraphs.

• For all j ∈ [1, ℓ] we finally create a constraint relation Cj with scope ⋃︁
xi∈scp(Cj) Bj

i ,
whose definition we give in the following paragraphs.

Since we have not yet defined the allowed assignments of our relations, we proceed to
formally define them now. Let S be a subset of V (GI), and set Sj

i = S ∩ scp(Rj
i ) for all

i ∈ [1, n], j ∈ [1, ℓ − 1]. Moreover, we denote the number of selected neighbors that vertex
wj

i has in its left block by bj
i , that is, we define bj

i = |N(wj
i ) ∩ Bj

i ∩ S|. We similarly
define the selected neighbors in the right block as b

j
i = |N(wj

i ) ∩ B
j
i ∩ S|.

Relation Rj
i accepts set Sj

i if and only if

• wj
i and wj+1

i are both not in S, i.e., they are unselected, and

• bj+1
i = (min ρ − b

j
i ) mod m.

Due to the modulo reduction the second condition implies that bj+1
i ∈ [0, m − 1].

Relation R0
i accepts S0

i = S ∩ scp(R0
i ) if and only if b1

i ∈ [0, m − 1]. While this is anyway
the case for the managers we use, we still use this relation to stay more agnostic about
how the manager looks concretely.

The only definition that is still missing is that of the constraint relations. For each
j ∈ [1, ℓ], denote the variables of the constraint Cj as scp(Cj) = (xλ1 , . . . , xλq ). Then,
S ∩ scp(Cj) is accepted by Cj if and only if (bj

λ1
+ 1, . . . , bj

λq
+ 1) ∈ acc(Cj). That is,

the states given to the information vertices corresponding to the variables of the j-th
constraint must correspond to an assignment satisfying the constraint. The only reason
why we add the constant one to each selected neighbor count is that the original definition
of q-CSP-m, which we use, uses variables from the range [1, m], whereas the selected
neighbor counts range in [0, m − 1]. See Fig. 3.4 for an illustration of the output instance
GI .
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3.3.2 Properties of GI

We will now prove the crucial properties of GI . Concretely, we will show that the instance
GI is equivalent to the input instance, that it is sufficiently small, and that it has low
pathwidth.

Lemma 7 ([GSW24, Lemma 5.5]). If I is a satisfiable instance of q-CSP-m, then the
(σ, ρ)-GenDomSetRel instance GI has a solution.

Proof. We restate a slightly adapted variant of the proof of [GSW24].

Recall that the input q-CSP-m instance I contains the variables x1, . . . , xn and constraints
C1, . . . , Cℓ. Now, assume that I is a yes-instance. Then, there exists a variable assignment
π that satisfies all constraints.

We select vertices of the graph according to a (σ, ρ)-set that ensures that we have
bj

i = π(xi) − 1 for all i ∈ [1, n], j ∈ [1, ℓ]. Note that this is possible because ρπ(xi)−1 ∈ R,
and then such a solution must exist by Definition 14. Since this selection S already
provides a (σ, ρ)-set, all that remains is arguing that also all relational constraints of the
(σ, ρ)-GenDomSetRel instance are fulfilled.

We first examine the consistency relation Rj
i for i ∈ [1, n], j ∈ [1, ℓ − 1]. We can quickly

see that all information vertices are unselected, and hence wj
i and wj+1

i are unselected,
as required. It is also required that bj+1

i = (min ρ − b
j
i ) mod m. To see that this is indeed

fulfilled, first notice that wj
i must have a selected neighbor count that is congruent to

min ρ modulo m, as otherwise, we would not have a (σ, ρ)-set at all. Moreover, we have
bj+1

i = bj
i by construction. Hence, we see that bj+1

i +b
j
i ≡m min ρ, which can be rearranged

to bj+1
i ≡m min ρ − b

j
i . Since bj+1

i ∈ [0, m − 1], this finally yields bj
i = (min ρ − b

j
i ) mod m,

as desired.

The relations R0
i are fulfilled for any i ∈ [1, n] since they only constrain the number of

selected vertices of the left block of some information vertices, and we select at most
m − 1 vertices of any such block.

It remains to argue that also the constraint relations are fulfilled. This follows directly
from the fact that we select vertices such that bj

i = π(xi)−1 for all i ∈ [1, n] and j ∈ [1, ℓ],
and that π is a satisfying assignment for the input instance. Thus, all relations are
fulfilled, and GI is indeed a yes-instance of (σ, ρ)-GenDomSetRel.

We now proceed to the second direction of the correctness.

Lemma 8 ([GSW24, Lemma 5.6]). If the (σ, ρ)-GenDomSetRel instance GI has a
solution, then the q-CSP-m instance I is satisfiable.

Proof. A similar proof is given in [GSW24].
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3.3. The Reduction

Let S be a (σ, ρ)-set of GI (which also satisfies all relations). We first show that S implies
a consistent variable assignment, that is, we show that bj

i = bj+1
i for all i ∈ [1, n] and

j ∈ [1, ℓ − 1].

For this purpose, fix arbitrary i ∈ [1, n] and j ∈ [1, ℓ − 1]. Per definition of Rj
i , we

have bj+1
i = (min ρ − b

j
i ) mod m. Moreover, the relation guarantees that wj

i and wj+1
i

are both unselected. Since wj
i must have a neighbor count in the set ρ, and we are

dealing with periodic sets with period m, we have bj
i + b

j
i ≡m min ρ. Rearranging this

expression yields b
j
i ≡m min ρ − bj

i . Combining this with the previous observation, we
obtain bj+1

i ≡m min ρ − (min ρ − bj
i ) ≡m bj

i . The relations Rj−1
i and Rj

i also ensure that
bj

i , bj+1
i ∈ [0, m − 1], and hence, we obtain bj

i = bj+1
i overall.

Having ensured consistency across the rows of the construction, we can now proceed to
define a variable assignment π by setting π(xi) = b1

i + 1 for all i ∈ [1, n].

Now, consider an arbitrary constraint Cj for some j ∈ [1, ℓ], and let the scope of the
constraint be scp(Cj) = (xλ1 , . . . , xλq ). Relation Cj ensures that (bj

λ1
+ 1, . . . , bj

λq
+ 1) ∈

acc(Cj), which directly gives that π satisfies constraint Cj . Thus, π is indeed a satisfying
assignment of I, and I is satisfiable.

We have now shown that the instances I and GI are equivalent. Of course, this alone is
not sufficient for our purposes, we must also ensure that the size of GI is not too large,
and in particular, that the pathwidth of GI is low.

Lemma 9 ([GSW24, Lemma 5.8]). There is a function f depending only on the sets σ
and ρ such that GI has size at most n · ℓ · f(q), pathwidth at most n + f(q), and arity at
most f(q).

Proof. We restate the proof of [GSW24] with slight adaptions.

We first elaborate on the number of vertices of GI . Graph GI contains ℓ copies of an
R-manager of rank n. By Definition 14, the size of each block of an R-manager is at
most b, for some constant b depending only on σ and ρ. Since each manager consists of
exactly 2n blocks as well as n information vertices, we see that GI consists of at most
ℓ · (2n · b + n) vertices. Observe that

ℓ · (2n · b + n) = n · ℓ · cv

for an appropriately chosen constant cv only depending on σ and ρ.

For the arity of the relations, we notice that each consistency relations has arity at most
2 · (b + 1), each constraint relation has arity at most q · b. Hence, the maximum arity of
each relation is bounded by O(q · b).

Recall from Definition 11, that the size of a graph with relations is defined as the number
of vertices plus the size of each relation (which might be exponential in the arity). The
graph GI contains exactly n · ℓ consistency relations and ℓ constraint relations.
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3. Intermediate Lower Bound

Combining our knowledge of the number of vertices, with the maximal arity of any
relation, and the number of relations, we can conclude that the size of GI is bounded by

n · ℓ · cv + n · ℓ · 2O(q·b) = n · ℓ · f1(q, σ, ρ),

for an appropriately chosen function f1(q, σ, ρ).

It remains to bound the pathwidth of GI . We do this by the standard approach
of providing a node search-strategy (see [CFK+15, Section 7.5] for example). From
Definition 13, we know that the pathwidth of a graph G with relations is defined as the
pathwidth of the graph we obtain when making the vertices in the scope of each relation
a clique. Let GÎ be the graph obtained from GI by this modification (while keeping all
indexed vertices/sets the same).

The graph is cleaned in ℓ + 1 stages, where each stage consists of n rounds. Intuitively,
each stage is responsible for cleaning the left side of one column of the construction, and
each round for cleaning a block of the column.

For each round, we list the vertices on which searchers are placed. This makes it clear
that one can go from one stage to the next without recontaminating already cleaned
parts and without the use of additional searchers. For notational convenience, we define

• wj
i as a dummy vertex that is not part of the graph ĜI whenever i ̸∈ [1, n] or

j ̸∈ [1, ℓ],

• Bj
i and B

j
i to be the empty set whenever i ̸∈ [1, n] or j ̸∈ [1, ℓ],

• scp(Cj) to be the empty set when j ̸∈ [1, ℓ].

Let Sj
i denote the set of vertices on which searchers are placed in round i of stage j. We

define this set as

Sj
i = {wj−1

x | i ≤ x ≤ n} ∪ {wj
x | 1 ≤ x ≤ i}

∪ B
j−1
i ∪ Bj

i

∪ scp(Cj).

First observe that every vertex and both endpoints of every edge are contained in some
set Sj

i . It remains to argue that the graph does not get recontaminated. Consider the
intersection of the vertices from two consecutive rounds of the same stage, that is,

Sj
i ∩ Sj

i+1 ={wj−1
x | i + 1 ≤ x ≤ n} ∪ {wj

x | 1 ≤ x ≤ i} ∪ scp(Cj).

As these vertices form a separator of the graph, the cleaned part of the graph does not
get recontaminated.
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3.4. Combining the Results

When moving from one stage to the next one, we can use the same technique by observing
that

Sj
n ∩ Sj+1

1 = {wj
x | 1 ≤ x ≤ n}

separates the graph. We conclude that the node search number of GÎ is at most

max
i∈[1,n],j∈[1,ℓ+1]

⃓⃓⃓
Sj

i

⃓⃓⃓
= n + 1 + 2b + q · b,

which means that the pathwidth of GÎ and thus, of GI is at most

n + f2(q, σ, ρ),

for an appropriately chosen function f2(q, σ, ρ). This concludes the proof by choosing
the function f from the statement as the maximum of f1 and f2.

3.4 Combining the Results
Having proven the correctness of the reduction and bounds on the size of the output
graph, the arity, and the pathwidth, we can now combine these to proof the lower bound
under the Strong Exponential Time Hypothesis.

Theorem 3 ([GSW24, Lemma 5.9]). Let σ and ρ be two periodic sets with the same
period m ≥ 2.

Then, for all ε > 0, there is a constant d such that (σ, ρ)-GenDomSetRel on instances
of arity at most d cannot be solved in time (m − ε)pw · |G|O(1), where pw is the width of a
path composition provided with the input graph G, unless the SETH fails.

Proof. We restate the proof provided in [GSW24].

We assume for contradiction’s sake, that, for some ε > 0, there exists an algorithm that
can solve (σ, ρ)-GenDomSetRel in time (m − ε)pw · |G|O(1) when the input contains a
graph G and a path decomposition of G of width pw.

Let q be the arity from Theorem 1 such that there is no algorithm that can solve q-CSP-m
in time (m − ε)n · (n + ℓ)O(1) for an instance with n variables and ℓ constraints.

Given an arbitrary q-CSP-m instance I as input, let GI denote the corresponding (σ, ρ)-
GenDomSetRel instance from Section 3.3 together with its provided path decomposition.
Then, we run the hypothetical algorithm for (σ, ρ)-GenDomSetRel on this instance and
return the output as the output of the q-CSP-m instance.

Since, by Lemmas 7 and 8, the instance GI has a solution if and only if I is satisfiable,
this algorithm correctly decides if the q-CSP-m instance I is satisfiable.

It remains to analyze the running time of the algorithm. The construction of GI (which
bounds the size) takes time polynomial in the size of I (and thus, also in GI). By
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3. Intermediate Lower Bound

Lemma 9, the width of the given path decomposition is at most n + f(q). Hence, the
final algorithm runs in time

(m − ε)n+f(q) · (n + ℓ)O(1) = (m − ε)n · (n + ℓ)O(1)

since q is a constant that only depends on σ and ρ, which are fixed sets and thus, not
part of the input. Therefore, this directly contradicts SETH by Theorem 1 and concludes
the proof.
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CHAPTER 4
Realizing Relations

The lower bound established in Theorem 3 for the problem (σ, ρ)-GenDomSetRel is
not yet sufficient for our purpose; we must get rid of the relational constraints. That is,
we are looking for a reduction from (σ, ρ)-GenDomSetRel instances of bounded arity
and bounded pathwidth to (σ, ρ)-GenDomSet instances with a similar pathwidth. This
chapter provides such a reduction, and as the idea behind the reduction is the realization
of the relations as graph gadgets, we fittingly call it “Realizing Relations”. The original
content presented here is also presented in [GSW24, Section 6].

The first main goal is proving Theorem 4, which then easily allows us to prove the main
result of the thesis.

Theorem 4 ([GSW24, Lemma 6.8]). Let σ and ρ be two difficult periodic sets with the
same period m. For all constants d, there is a polynomial-time reduction from (σ, ρ)-
GenDomSetRel on instances with arity d given with a path decomposition of width pw
to (σ, ρ)-GenDomSet on instances given with a path decomposition of width pw + O(2d).

4.1 Replacing Arbitrary Relations With Simple Relations
Following the ideas of [CM16, MSS21, MSS22, FMI+23c], we first replace the arbitrary
relations by relations that are much simpler, which can then be handled more easily.
These easier relations are hamming-weight and equality relations, which are defined next.

Definition 15 (Hamming-weight and equality relations; [FMI+23c, Definition 4.2]). Let
U be a set of vertices with |U | = d. The hamming-weight 1 relation of arity d, denoted
by HW(d)

=1, with relation scope U is the relation that accepts S ⊆ U if and only if |S| = 1,
that is, exactly one vertex of the relation scope is selected.
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4. Realizing Relations

The equality relation of arity d, denoted by EQ(d), with relation scope U accepts S ⊆ U if
and only if |S| = 0 or |S| = d, that is, either all vertices in the relation scope are selected,
or none of them.

Note that we may drop the arity from the notation of a relation if it is clear from the
context which arity is meant. The overall goal of this section is to show that we can
actually replace arbitrary relations by hamming-weight 1 relations without dramatically
increasing the pathwidth of the graph. This result was shown by Focke et al. [FMI+23c],
and although they use the result for finite and cofinite sets, we can directly use it for our
scenario as well. To keep the thesis self-contained, we also present their result in detail.

Lemma 10 ([FMI+23c, Corollary 8.8]). Let σ, ρ be non-empty sets and ρ ≠ {0}. For all
constants d there is a polynomial-time reduction from (σ, ρ)-GenDomSetRel on instances
of arity at most d and pathwidth pw to (σ, ρ)-GenDomSetRel on instances of arity at
most 2d + 1 and pathwidth pw + O(1), where each relation is a hamming-weight 1 relation.

In the proofs of this chapter, the central idea is that we can replace a relation by a graph
gadget (which itself might use other, simpler relations). We formally define this notion
of realizing relations, and the required notion of graphs with relations and portals, next.

Definition 16 (Graph with relations and portals; [FMI+23c, Definition 4.6]). Let
G = (V, E, C) be a graph with relations, and U ⊆ V . Then, (G, U) is a graph with
relations and portals. A set X ⊆ V is a partial solution of (G, U) if

• X is a partial solution of ((V, E), U), and

• X ∩ scp(C) ∈ acc(C) for all C ∈ C.

The notions of compatible strings, L-providers, and L-realizers, given in Definitions 7
and 8 generalize in the natural way.

Definition 17 (Realization of a relation; [FMI+23c, Definition 8.2]). For a set of vertices
S with d = |S| let R ⊆ 2S denote a d-ary relation. For an element r ∈ R we write xr for
the length d string that is σ0 at every position v ∈ r and ρ0 at the remaining positions,
i.e.,

xr[v] =
{︄

σ0 if v ∈ r,

ρ0 otherwise.

We set LR = {xr | r ∈ R}. Let G = (V, E, C) be a graph with relations, and let
U = {u1, . . . , ud} ⊆ V be a set of portals of G. Slightly overloading notation, we say that
(G, U) realizes R if (G, U) realizes LR. We say that R is realizable if there is a graph
with d portals that realizes R.

In a first step, we replace arbitrary relations with equality and hamming-weight relations.
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4.1. Replacing Arbitrary Relations With Simple Relations

Lemma 11 ([FMI+23c, Lemma 8.3]). Let σ, ρ be non-empty sets with ρ ̸= {0}, S a set
of vertices with |S| = d, and let R ⊆ 2S denote an arbitrary d-ary relation. Then R is
realizable by a graph G with relations and portals with the following properties:

• All relations used in G are HW=1 or EQ relations with arity at most 2d + 1.

• The size of G is in O(2d · d).

Proof. We present the proof by Focke et al. [FMI+23c] with slight changes.

Let U = {u1, . . . , ud} be the set of d vertices in the relation scope. Let R = {r1, . . . , rx}
(where ri ⊆ [1, d]) be a d-ary relation that, slightly abusing the notation, describes the
allowed selections from U via the indexes of the vertices in U . Our output graph (G, U),
where G is a graph with portals and relations and U ⊆ V (G) will consist of many copies
of the provider from Lemma 4, and d singleton vertices, as well as many relations that
ensure the correct behavior.

Start from the graph that contains only the vertices in U . For each i ∈ [1, x] and all
j ∈ [1, d] \ ri add a copy (Hj

i , {sj
i }) of the provider from Lemma 4 (for some suitable

constants r ∈ ρ, s ∈ σ) to the graph. Add one more such provider (Ti, {ti}) to the graph
for all i ∈ [1, x]. Next, we proceed to add the necessary relations to the graph. For every
i ∈ [1, x], add an EQ(|[1,d]\ri|+1) relation with relation scope {ti} ∪ {sj

i | j ∈ [1, d] \ ri}.
Moreover, add a HW(x)

=1-relation to the graph that with relation scope {ti | i ∈ [1, x]}.
Finally, for each j ∈ [1, d], add a HW=1 relation with scope {uj} ∪ {sj

i | i ∈ [1, x], j /∈ ri} to
the graph with relations. The gadget is visualized in [FMI+23c, Figure 8.1] using slightly
different notation than in this proof.

Then, (G, U) realizes the relation R. We proof this by first showing that there is a
(σ, ρ)-set Si of G such that Si ∩ U = {uj | j ∈ ri} for all i ∈ [1, x]. Fix an ri, and set Si

to be the set that selects the vertices uj for all j ∈ ri, the vertex ti, and the vertices sj
i

for all j ∈ [1, d] \ ri. From within the providers, choose a vertex selection that is feasible,
which is always possible. It remains to argue that all relations of G are satisfied by this
selection. It is easy to see that the equality relations are satisfied, because the s-vertices
with subscript index i and the t-vertex with index i are all selected, whereas the s-vertices
with an index different from i and the remaining t-vertices are all unselected. Moreover,
the hamming-weight 1 relation between the t-vertices is satisfied because exactly one
such vertex is selected. Finally, we need to argue about the hamming-weight 1 relation of
the remaining vertices. For this purpose, consider a vertex uj such that j ̸∈ ri. Then, uj

is not selected. However, the HW=1 relation that has uj in its scope also has the vertices
{sj

ℓ | ℓ ∈ [1, x], j /∈ ri} within its scope. As we have j ̸∈ ri, we know that sj
i is selected,

and it is the only selected vertex from the set, fulfilling the relation. Now, consider a
vertex uj with j ∈ ri. The HW=1 relation that has uj in its scope has no s-vertex with
subscript index i in its scope. Hence, vertex uj is the only selected vertex of the relation
scope.
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4. Realizing Relations
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Figure 4.1: The gadget from Lemma 12. Two different solutions corresponding to the
two allowed selections of the portal vertices are sketched. From the provider, only the
portal vertex v is drawn for the sake of visibility. The figure is originally from [FMI+23c,
Figure 8.2].

Now, we show that any (σ, ρ)-set S of G must select vertices of U corresponding to some
set ri. First, notice that the hamming-weight 1 relation with the t-vertices in its relation
scope forces exactly one such vertex to be selected. Let ti be the single selected t-vertex.
Then, the equality relations force the vertices {sj

i | j ∈ [1, d] \ ri} to be selected, and all
other s-vertices to be unselected. Consider an arbitrary vertex uj for j ̸∈ ri. Vertex sj

i is
selected, and hence, uj is not selected due to the hamming-weight 1 relation that has
both sj

i and uj in its scope. On the other hand, consider uj for j ∈ ri. Then, uj must be
selected because all the vertices together in the hamming-weight 1 relation with uj are
not selected.

We have thus established that (G, U) indeed realizes the relation. To see that bound on
the size, notice that the x equality relations have arity at most d + 1, and the relation
between the t-vertices has arity at most 2d. Moreover, the d hamming-weight 1 relations
containing vertices of U have arity at most 1 + 2d. Hence, the maximum arity is bounded
by 2d + 1.

For the number of vertices of the output graph, notice that it contains d singleton vertices,
at most 2d · d providers for the s-vertices, and at most 2d providers for the t-vertices. As
the size of each provider is constant, we see that the number of vertices is in O(2d · d),
and, together with the information in the previous paragraph and our knowledge of the
size of hamming-weight 1 and equality relations, so is the size of the whole graph.

In a next step, we want to get rid of the equality relations by replacing them with
HW(2)

=1-relations.
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4.1. Replacing Arbitrary Relations With Simple Relations

Lemma 12 ([FMI+23c, Lemma 8.6]). Let σ and ρ be non-empty sets with ρ ̸= {0}.
Then, for any k ≥ 1, there is a graph G with relations and portals that realizes EQ(k) such
that G has the following properties:

• All relations used in G are HW(2)
=1 relations.

• The size of G is in O(k).

• G has pathwidth O(1).

Proof. The proof is due to Focke et al. [FMI+23c].

When k = 1, we can trivially realize the relation by taking the single vertex in the
relation scope as the whole graph. For k ≥ 2, we construct a graph with relations and
portals (G, U), where U = {u1, . . . , uk} are the vertices in the scope of the relation. We
add a single provider from Lemma 4 (for arbitrary, but fixed r, s) to the graph. Note
that this provider has constant size, and let v be the portal vertex of the provider. For
each i ∈ [1, k], we add a HW(2)

=1-relation with scope v, ui to the graph. Fig. 4.1 depicts the
realization.

It is easy to see that this gadget realizes EQ(k). In particular, if all vertices of U are
selected, v can be unselected, and we can easily obtain a solution by extending the
selection to the provider. Similarly, we can select v if all vertices of U are unselected.
However, it is not possible that some vertices of U are selected and others are not, as the
HW(2)

=1-relations could then not be fulfilled anymore.

For the size of G, it is easy to see that it is O(k) because G contains k portal vertices
and k relations with constant size, and because the size of the provider is constant. For
the pathwidth, we notice that, when we replace each relation with a clique, we essentially
end up with a star graph, which has constant pathwidth, plus the provider. By putting
all vertices of the provider in a bag with its portal vertex, we can see that the pathwidth
of G is constant.

Now, we are finally ready to prove the main lemma of this section.

Lemma 10 ([FMI+23c, Corollary 8.8]). Let σ, ρ be non-empty sets and ρ ̸= {0}. For all
constants d there is a polynomial-time reduction from (σ, ρ)-GenDomSetRel on instances
of arity at most d and pathwidth pw to (σ, ρ)-GenDomSetRel on instances of arity at
most 2d + 1 and pathwidth pw + O(1), where each relation is a hamming-weight 1 relation.

Proof. The proof is attributed to Focke et al. [FMI+23c].

Let G be a graph with relations, such that each relation is of arity at most d, and assume
that we are provided with a path decomposition of width pw. We first utilize Lemma 11
to replace all relations with equality and hamming-weight 1 relations. Then, we use
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4. Realizing Relations

Lemma 12 to get rid of the equality relations, leaving us with an equivalent instance that
only contains hamming-weight 1 relations.

As replacing arbitrary relations leads to an arity bound of 2d + 1, and removing equality
relations does not change this, the output instance has arity at most 2d + 1. For the
pathwidth, we can proceed by taking the original path composition of G, and enhancing
it a bit. Concretely, we know that a path decomposition of G is a path composition of Ĝ,
where Ĝ is G in which the vertices in the scope of each relation form a clique. Hence,
for each relation, there exists a bag in the decomposition that contains the vertices in
its scope. Now, let G′ be the output graph of the reduction. We can obtain a path
decomposition of G′ˆ by taking the decomposition of Ĝ, and, for each relation of G that
is realized in G′, we copy the bag of the decomposition that contains the vertices in the
relation scope twice (and connect the copies), and add the vertices of the realization to
the center copy of the overall three copies. This way, we obtain a valid decomposition.
Notice that we increase the pathwidth at most by the number of vertices in the gadgets
that realize a relation. We see that the replacement of the arbitrary relations leads to
a graph with O(2d · d) vertices, and by replacing the equality relations, this number
is increased by at most O(2d), as that is an upper bound on the number of equality
relations that need replacement, and each replacement increases the number of vertices
by a constant amount (the number of vertices of a provider). Hence, the output path
decomposition has pathwidth in pw + O(1), as d is constant.

Finally, it is easy to see that the procedure can be done in polynomial-time, as replacing
a relation can actually be done in constant time, given that d is a constant.

4.2 Realizing HW=1

Now, in our final step, we must get rid of the hamming-weight 1 relations in the graph
by replacing them with suitable gadgets. One challenge in directly realizing such gadgets
in our settings is, that for any vertex, having 1 selected neighbor is the same as having
m + 1 selected neighbors. Thus, we will first show that we can create a gadget that
ensures that the number of selected vertices in the relation scope is congruent 1 modulo
m. We denote the relation with this property of arity d as the HW(d)

∈ρ−min ρ+1-relation. In a
second step, we can then build the HW=1 relation for arbitrary arities d by utilizing these
HW∈ρ−min ρ+1-relations as building blocks.

Lemma 13 ([GSW24, Lemma 6.11]). Let σ and ρ be two difficult periodic sets with the
same period m. Then, the relation HW∈ρ−min ρ+1 can be realized.

Proof. The proof is also provided in [GSW24].

We consider different cases, depending on σ and ρ, and show that we can realize the
relation in each case by proving four different claims later on in this proof. Note that σ,
ρ being difficult implies that m ≥ 3 and min ρ ≥ 1.
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4.2. Realizing HW=1

𝑈 ⋯
𝑣
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(a) The case min ρ ≥ 2 illustrated for
min σ = 1, min ρ = 3.
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𝑣 𝑧
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𝐾(1)
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(b) The case min ρ = 1, min σ ≥ 2 il-
lustrated for min σ = 2, min ρ = 1 and
r = 1.𝑈 ⋯

𝑣 𝑝𝑞𝑢1 𝑤𝑣1
(c) The case min ρ = min σ = 1 illus-
trated for r = 1, s = 1.

𝑈 ⋯
𝑣ℓ𝑐

(d) The case min ρ = 1, min σ = 0.

Figure 4.2: The gadget constructions from Lemma 13. In each sketched construction we
mark vertices corresponding to a feasible solution within the gadget. From the relation
scope U , we select an arbitrary vertex. This figure and the captions are also displayed in
[GSW24, Figure 4].

• If min ρ ≥ 2, then we use Claim 1.

• If min ρ = 1 and min σ ≥ 2, then we use Claim 2.

• If min ρ = 1, min σ = 1, then we use Claim 3.

• If min ρ = 1, min σ = 0, then we use Claim 4.

Consult Fig. 4.2 for a visualization of the gadgets used in the different cases of the proof.

In the following, we describe the gadgets in the strongest-possible way, that is, we describe
the minimal requirements for the gadgets to work.

We start with the first case where min ρ ≥ 2. Clearly, m ≥ 3 implies that min σ + 1 /∈ σ.

Claim 1. Let σ and ρ be arbitrary non-empty sets such that min ρ ≥ 2 and min σ +1 /∈ σ.
Then, HW∈ρ−min ρ+1 is realizable.

Proof. For all i ∈ [1, min ρ − 1], we create a clique K
(i)
min σ+1 on min σ + 1 vertices. We

create a vertex v that is made adjacent to all vertices in the scope of the relation. Finally,
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4. Realizing Relations

we select a vertex u(i) from the clique K
(i)
min σ+1, and make v adjacent to u(i) for all

i ∈ [1, min ρ − 1].

The correctness relies on the fact that all vertices of each clique must be selected in a
solution. To see this, fix some i ∈ [1, min ρ − 1] and consider the clique K

(i)
min σ+1.

If min σ + 1 = 1, then the clique consists of a single vertex u(i) that must be selected
since u(i) only has a single neighbor, and if the vertex would be unselected, it would need
at least two neighbors because of min ρ ≥ 2.

If min σ + 1 = 2, then the clique consists of two vertices connected by an edge. Let w be
the vertex of the clique that is not u(i). Since w has only a single neighbor, vertex w
must be selected. But, since min σ = 1, this means that also u(i), the only neighbor of w,
must be selected.

If min σ + 1 ≥ 3, assume that some vertex v(i) of the clique that is not u(i) is not selected
in a solution. Then, v(i) must have two selected neighbors in the clique. At least one of
them, denote it by w(i), must be different from u(i), Hence, w(i) is selected and requires
min σ selected neighbors, which implies that all vertices of the clique must be selected,
contradicting that v(i) is not selected.

By the previous argument vertex v is adjacent to a vertex u(i) such that u(i) has exactly
min σ selected neighbors in the clique. Since min σ + 1 ̸∈ σ, vertex v cannot be selected.
Furthermore, v is adjacent to min ρ − 1 vertices that are selected, and we know that
min ρ − 1 ̸∈ ρ. Thus, at least one vertex in the scope of the relation must be selected, so
that v can have enough neighbors. Moreover, exactly r vertices from the scope must be
selected where r + min ρ − 1 ∈ ρ.

For all the remaining cases we assume that min ρ = 1. We proceed with the case where
min σ ≥ 2.

Claim 2. Let σ and ρ be arbitrary non-empty sets such that min ρ = 1, there exists an
r ∈ ρ with r + 1 /∈ ρ, min σ ≥ 2, and min σ + 1 /∈ σ. Then, HW∈ρ−min ρ+1 is realizable.

Observe that in our case choosing r = min ρ is possible.

Proof. The gadget contains the r + 2 vertices v, z, p1, . . . , pr and r cliques K
(i)
min σ+1 on

min σ + 1 vertices each where i ∈ [1, r], and ui and wi denote two distinct vertices of the
clique K

(i)
min σ+1. We make v adjacent to all vertices of the scope and to z. Vertex z is

adjacent to all ui and vertex wi is adjacent to pi for all i.

In any solution, all vertices of each clique K
(i)
min σ+1 must be selected due to vertex pi:

Vertex pi has only a single neighbor and hence, cannot be selected as min σ ≥ 2. Moreover,
since min ρ = 1, the unique neighbor wi of pi must also be selected. The selected vertex
wi then needs min σ selected neighbors, and so the whole clique must be selected. Then,
vertex ui has min σ selected neighbors, which implies that its only other neighbor z
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4.2. Realizing HW=1

cannot be selected. Since the unselected vertex z already has r selected neighbors ui,
vertex v cannot be selected as r + 1 /∈ ρ. However, as v is unselected and has no selected
neighbors, it requires to have t selected neighbors for some t ∈ ρ which have to stem
from the scope of the relation.

Next we change the requirement for min σ by assuming min σ = 1.

Claim 3. Let σ and ρ be arbitrary non-empty sets such that min ρ = 1, there exists an
r ∈ ρ with r + 1 /∈ ρ, min σ = 1, 2 /∈ σ, and there is an s ∈ σ with s + 1, s + 2 /∈ σ. Then
HW∈ρ−min ρ+1 is realizable.

Observe that this covers our case by setting r = 1 and s = 1 as m ≥ 3.

Proof. Assume we can construct a gadget F where a distinguished vertex p is forced to
be not selected, and the only possible solution also provides exactly one selected neighbor
for this vertex p. Then we can realize the relation as follows. Create r copies of F which
we denote by F1, . . . , Fr where we identify all vertices p1, . . . , pr with a new vertex p
We additionally add a vertex v and make v adjacent to all vertices in the scope of the
relation and p.

By the properties of the gadget F , the vertex p is not selected and has one neighbor in
each copy Fi. Hence, vertex v cannot be selected as r + 1 /∈ ρ. Therefore, the number of
vertices that are selected from the scope must be t for some t ∈ ρ.

It remains to construct the gadget we assumed to exist above. For this we introduce
2s + 3 vertices p, q, w and u1, v1, . . . , us, vs where p, q, w are connected to a path and
q, ui, vi are also connected to form a path for all i.

Since min ρ = min σ = 1, all vertices ui must be selected because of the requirement of
each vi. Moreover, because the only neighbor of w is q, vertex q must be selected as well.
Hence, as 2 /∈ σ and q is selected, each vertex ui forces vi to not be selected. With this
selection vertex q has s selected neighbors. Since s + 1, s + 2 /∈ σ, it is not possible to
select any of the vertices w and p which have one selected neighbor each.

This concludes the construction of the auxiliary gadget F with p as the distinguished
vertex.

For the remaining case we now assume that min σ = 0.

Claim 4. Let σ and ρ be arbitrary non-empty sets such that min ρ = 1, and 2, 3 ̸∈ ρ,
min σ = 0, and 1 /∈ σ. Then HW∈ρ−min ρ+1 is realizable.

Observe that our case is covered since m ≥ 3, min ρ = 1 and min σ = 0 implies all
conditions required by Claim 4.
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Proof. We start by creating a star graph S3 with 3 leaves. Let c be the center of the star.
Add a vertex v to the graph, and make v adjacent to one leaf of S3, and to all vertices in
the scope of the relation.

We first argue that in any solution, vertex c must be selected, and furthermore, all of
its neighbors cannot be selected. Towards a contradiction, assume that c is not selected.
Then, there are two leaves of c that must be selected to become happy. 1 However, for
c, two out of three of its neighbors are now selected, and 2 ̸∈ ρ, 3 ̸∈ ρ. Thus, c must be
selected in any solution. The leaves of c that have no other neighbors cannot be selected
now, as they have selected neighbor c and 1 ̸∈ σ.

Consider the leaf ℓ of S3 that is a neighbor of v. This leaf has two neighbors, one of
which is selected. As c is selected and 1 /∈ σ, vertex ℓ cannot be selected. Furthermore, v
cannot be selected either, because selecting v would give ℓ two selected neighbors and
2 ̸∈ ρ. Thus, v is not selected and requires at least one more selected vertex from the
scope of the relation.

Finally, we can make all vertices of the gadget happy if r ∈ ρ vertices of the relation
scope are selected. In that case, c is the only gadget vertex that must be selected. The
leaves of c are happy, because they have a single selected neighbor and are unselected.
Furthermore, vertex v is happy, because it has r selected neighbors in the scope of the
relation.

This finishes the proof of Lemma 13 by combining Claims 1 to 4.

Notice that HW∈ρ−min ρ+1 relations are the same as HW=1 relations if the arity of the
relation is small enough. This observation is formalized in the next corollary.

Corollary 1 ([GSW24, Corollary 6.4]). Let σ and ρ be two difficult periodic sets with
the same period m. Then, the relation HW(k)

=1 can be realized for k ∈ [1, 3].

Proof. A similar proof is given in [GSW24].

Because σ, ρ are difficult, we know that m ≥ 3. Per Lemma 13, we can realize the
HW∈ρ−min ρ+1 relation for these sets. Since m ≥ 3, and 1 ∈ ρ − min ρ + 1, it can be easily
observed that 2, 3, /∈ ρ − min ρ + 1. Thus, the HW∈ρ−min ρ+1 relation is the same as the
HW=1 relation for the considered arities.

Now that we can realize HW=1 for arities one, two, and three, we can already proceed to
the realization of HW=1 relations of arbitrary arity.

Lemma 14 (follows from [GSW24, Lemma 6.6]). Let σ and ρ denote periodic sets with
period m such that HW(1)

=1, HW(2)
=1, and HW(3)

=1 can be realized, and 0 ̸∈ ρ. Then, for all k ≥ 1,
the relation HW(k)

=1 can be realized by a gadget of size O(k).
1We call a selected vertex happy if the number of selected neighbors it has is in σ, and call an

unselected vertex happy if the number of selected neighbors it has is in ρ.
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𝑈𝑢1𝑢2 ⋮𝑢𝑘−1𝑢𝑘𝑢𝑘+1

HW(2)=1

HW(𝑘)=1

HW(3)=1

P{𝜎𝑠, 𝜌𝑟}
𝑣1

P{𝜎𝑠, 𝜌𝑟}
𝑣2

Figure 4.3: The gadget from Lemma 14. The figure is also presented in [GSW24, Figure
3].

Proof. The proof is also presented in [GSW24].

We use the same ideas as in the proof of [MSS21, Lemma 4.4], which uses a simple
approach of obtaining a higher degree relation by combining HW(2)

=1 and HW(3)
=1 relations in

a path-like manner.

We proceed by strong induction. The base cases, 1 ≤ k ≤ 3 hold by assumption.

For the induction step (k ≥ 4), we assume that we can realize the relation for all arities
from 1 to k, and show that we can realize the relation for arity k + 1. We first describe
the gadget construction; then we argue about its properties. Also consult Fig. 4.3 for a
visualization of the construction.

Denote by u1, . . . , uk+1 the vertices of the relation scope. First, we set s = min σ ∈ σ
and r = min ρ ∈ ρ, and we add to the graph two independent copies of the gadget from
Lemma 4 for s and r; call the portal vertices of said gadgets v1 and v2, respectively.
Next, we add the relation HW(k)

=1 with scope u1, . . . , uk−1, v1 to the graph. Then, we
add the relation HW(2)

=1 with scope v1, v2 to the graph. After that, we add the relation
HW(3)

=1 with scope v2, uk, uk+1 to the graph. Finally, we replace all relations with the
respective realization gadgets, which exist by assumption. For the rest of this proof, call
the resulting graph G.

Claim 5. The graph G realizes the HW(k+1)
=1 relation.

Proof. First, assume that no vertex of the relation scope is selected. In this case, both
v1, and v2 must be selected, which is not possible due to the HW(2)

=1 relation.

Next, it is not possible that two vertices of u1, . . . , uk−1 or two vertices of uk, uk+1 are
selected, due to the HW(k)

=1 and HW(3)
=1 relations. If one vertex of u1, . . . , uk−1 and one vertex
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of uk and uk+1 are selected, then both v1, and v2 cannot be selected, which is once again
impossible in any solution.

Finally, if one vertex of u1, . . . , uk+1 is selected, then exactly one of v1 and v2 must be
selected, and all relations are fulfilled. Moreover, the vertices v1 and v2 can always receive
a feasible number of neighbors, regardless of their selection status.

To conclude the proof, we analyze the size of the gadget. The gadgets for arities 1, 2 and
3, and the gadgets from Lemma 4 have constant size each. Hence, the size of the gadget
grows only by a constant amount as we go from one arity to the next, proving that the
size of the gadget for arity k is linear in k.

Having the ability to realize HW=1-relations for arbitrary arities, we can now prove the
main result of the section.

Theorem 4 ([GSW24, Lemma 6.8]). Let σ and ρ be two difficult periodic sets with the
same period m. For all constants d, there is a polynomial-time reduction from (σ, ρ)-
GenDomSetRel on instances with arity d given with a path decomposition of width pw
to (σ, ρ)-GenDomSet on instances given with a path decomposition of width pw + O(2d).

Proof. We restate the proof of Lemma 6.8 of [GSW24] almost exactly as stated there.

Let σ and ρ denote sets as in the statement of the lemma. Further, let I1 denote an instance
of (σ, ρ)-GenDomSetRel, let pw denote the pathwidth of the graph corresponding to I1,
and let d denote the arity of the graph corresponding to I1.

First, we apply Lemma 10 to obtain an equivalent instance I2 of (σ, ρ)-GenDomSetRel

with pathwidth pw + O(1) and arity 2d + 1 in which all relations are hamming-weight 1
relations. By Corollary 1 and Lemma 14, we can replace all remaining relations of the
graph with their realizations. To do this, observe that any remaining relation is a HW=1
relation. To replace such a relation with a graph, we add the graph that realizes this
relation, and unify its portal vertices with the vertices of the relation. Write I3 to denote
the resulting instance of (σ, ρ)-GenDomSetRel.

Claim 6. The instances I2 and I3 are equivalent.

Proof. First, assume that I2 is a yes-instance. Then, selecting the same vertices that
are selected in I2, and extending this solution to the newly added graphs results in a
solution for instance I3. Because all relations of I2 are fulfilled, such an extension is
indeed possible by Definition 17.

Now, assume that I3 is a yes-instance. Since no solution can select neighbors of vertices
of I3 that were not yet present in I2, restricting the solution of I3 to graph I2 ensures
that all vertices of I2 receive a feasible number of neighbors. Moreover, the gadgets that
were added to replace the relations ensure that exactly one vertex of each relation of I2
must be selected in any solution, hence, this solution also fulfills all relations.
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Claim 7. The instance I3 has a pathwidth of pw + O(2d).

Proof. Recall from Definition 13 that the pathwidth of I2 is defined as the pathwidth of
the graph obtained by forming a clique out of all vertices in the relation scope for each
relation. Let Î2 denote the graph that is obtained from I2 by applying the aforementioned
transformation. Consider a path decomposition of Î2. For any relation, there exists a bag
of the decomposition in which all vertices of the relation are present. We can duplicate
this bag and reconnect the bags in the natural way. Then, we simply add all vertices of
the gadget that realizes the relation to the duplicated bag. It is easy to see that one can
obtain a path decomposition of I3 by performing this operation for each relation such
that we never add the vertices of two realization gadgets to the same bag. The width of
this decomposition is the width of the decomposition of I2 plus the size of the largest
gadget that was added to the graph. Using Lemma 14, we observe that this results in a
decomposition of width pw + O(2d), as desired.

Combining Claims 6 and 7, we obtain the claimed result.

4.3 Finalizing the Proof
In Chapter 3, we have presented a lower bound for (σ, ρ)-GenDomSetRel under the
SETH in Theorem 3. Using the reduction from Theorem 4, we can now prove that also
(σ, ρ)-GenDomSet does not admit a faster algorithm unless the SETH is false. This is
the main theorem of the thesis.

Main Theorem 1 ([GSW24, Main Theorem 2]). Write σ, ρ ⊆ N for difficult periodic
sets that both have the same period m ≥ 2. Unless SETH fails, for all ε > 0, there is no
algorithm that can decide in time (m − ε)pw · |G|O(1) whether the input graph G has a
(σ, ρ)-set, when a path decomposition of width pw is given with the input.

Proof. The proof is also given in [GSW24].

Assume we are given a faster algorithm for (σ, ρ)-GenDomSet for some ε > 0. Let
d be the constant from Theorem 3 such that there is no algorithm solving (σ, ρ)-
GenDomSetRel in time (m − ε)pw · |G|O(1) when the input instance G is given with a
path decomposition of with pw.

Consider an instance G of (σ, ρ)-GenDomSetRel with arity d along with a path decom-
position of width pw(G). We use Theorem 4 to transform this instance into an instance
G′ of (σ, ρ)-GenDomSet with a path decomposition of width pw(G′) = pw(G) + O(2d).

We apply the fast algorithm for (σ, ρ)-GenDomSet to the instance G′ which correctly
outputs the answer for the original instance G of (σ, ρ)-GenDomSetRel . The running
time of this entire procedure is

|G|O(1) + (m − ε)pw(G′) · ⃓⃓
G′ ⃓⃓O(1) = (m − ε)pw(G)+O(2d) · |G|O(1) = (m − ε)pw(G) · |G|O(1)

57



4. Realizing Relations

since d is a constant only depending on ε. This contradicts SETH and concludes the
proof.
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CHAPTER 5
Turn The Lights Off!

In this chapter, we deal with the non-trivial cases of (σ, ρ)-GenDomSet for periodic
σ, ρ with the same period, that we did not yet cover. As mentioned in Chapter 2,
the decision problem is solvable in polynomial time if m = 2. Recall that we refer
to the problem where σ = {0, 2, 4, . . . }, ρ = {1, 3, 5, . . . } as Refl-AllOff, and the
problem where σ = ρ = {1, 3, 5, . . . } as AllOff. As these problems correspond to
natural board games, we are interested in the optimization variants of them, which are
NP-hard [Sut88, HKT00b, CGK01].

In this chapter, we use the constructions by Sutner [Sut88], as presented in [FY13], as
a basis, and extend/modify them to yield tight complexity lower bounds under SETH.
Concretely, we prove Main Theorem 2. In Section 5.1, we deal with the minimization
problem of Refl-AllOff, and in Section 5.2, we cover the minimization version of
AllOff. The content of Sections 5.1 and 5.2 is also presented in [GSW24, Section 7].

Main Theorem 2 ([GSW24, Main Theorem 3]). Unless SETH fails, for all ε > 0, there
is no algorithm for each of the problems Refl-AllOff and AllOff deciding in time
(2 − ε)pw · |G|O(1) whether there exists a solution of size at most k for a graph G that is
given with a path decomposition of width pw.

Finally, we also deal with the maximization problems in Section 5.3 which culminates in
Main Theorem 3. Since the maximization problem is difficult even if 0 ∈ ρ, we show the
lower bound for the maximization problem for all four different combinations of σ, ρ with
period 2. The content of Section 5.3 is presented in this thesis for the first time.

Main Theorem 3. Let σ, ρ be periodic sets with period 2. Unless SETH fails, for all
ε > 0, there is no algorithm for (σ, ρ)-GenDomSet deciding in time (2 − ε)pw · |G|O(1)

whether there exists a solution of size at least k for a graph G that is given with a path
decomposition of width pw.
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5.1 Lower Bound for Refl-AllOff
In the following we prove the lower bound for Refl-AllOff by a reduction from k-SAT
to an equivalent instance of the minimization version of Refl-AllOff with small
pathwidth.

Theorem 5 ([GSW24, Theorem 7.1]). Unless the SETH fails, for all ε > 0, there is
no algorithm for Refl-AllOff that can decide in time (2 − ε)pw · |G|O(1) whether there
exists a solution of size at most α for a graph G that is given with a path decomposition
of width pw.

Proof. The proof is also presented in [GSW24].

We prove the lower bound by a reduction from k-SAT. Fix some ε > 0 for this and let k
be the smallest integer such that k-SAT does not have a (2 − ε)n · (n + m)O(1) algorithm
where n is the number of variables and m the number of clauses.

Consider an arbitrary k-SAT formula φ with n variables x1, . . . , xn and m clauses
C1, . . . , Cm as input.1 In the following we construct a graph Gφ as an instance of Refl-
AllOff. The graph is built based on variable gadgets, clause gadgets, and a single
negation gadget.

We first construct the gadgets and then describe how they are connected. For every
variable xi where i ∈ [1, n], the variable gadget Vi consists of the two vertices vi and v̄i

that are connected by an edge.

For every clause Cj = λj
1 ∨ · · · ∨ λj

k where j ∈ [1, m], the clause gadget Dj contains the
following vertices and edges. There are k literal vertices tj

1, . . . , tj
k where each vertex

corresponds to one literal of the clause. Moreover, the gadget Dj contains so-called subset
vertices sj

L for all L ⊊ [1, k], that is, for every proper subset of the literals of the clause,
there exists a vertex labeled with this subset (and the gadget index). For each subset
L ⊊ [1, k], the subset vertex sj

L is connected to the literal vertex tj
ℓ if and only if ℓ ∈ L.

Moreover, all subset vertices together form a clique on 2k − 1 vertices.

The negation gadget consists of three vertices q0, q1, and q2 that are connected to a path
on three vertices with q1 in the middle.

As a last step it remains to connect the vertices of the different gadgets. Intuitively, each
literal vertex of the clause gadget is connected to the corresponding variable vertex of
the variable gadgets. Consider literal λj

ℓ , that is, the ℓth literal in the jth clause. If this
literal is positive, i.e., if λj

ℓ = xi for some variable xi, then the vertex tj
ℓ is adjacent to

vertex vi. If the literal is negative, i.e., if λj
ℓ = ¬xi for some variable xi, then the vertex

tj
ℓ is also adjacent to vertex vi but additionally also to vertex q1.

1We assume that every clause contains exactly k literals. This restriction is not of technical nature,
as the constructions works for the general case, but rather to keep notation simple and clean.
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Negation
gadget

𝑞0 𝑞2
𝑞1

𝐾7

𝑡1 𝑡2 𝑡3
𝑠{2}
𝑠{1,3}𝑠{1,2}𝑠{1} 𝑠{2,3} 𝑠{3}
𝑠∅

Figure 5.1: A depiction of the clause gadget for the clause x1 ∨ x2 ∨ ¬x3 as well as the
negation gadget. Some indices are omitted for simplicity. This figure is also presented as
[GSW24, Figure 5].

This concludes the description of Gφ. See Fig. 5.1 for an illustration of the clause gadget
and the negation gadget. To prove the correctness of this reduction we set m + n + 1 as
the upper bound for the number of selected vertices.

Claim 8. If φ is a yes-instance of k-SAT, then Gφ has a solution for Refl-AllOff of
size at most n + m + 1.

Proof. Let π be a satisfying assignment for the k-SAT formula φ. We select the following
vertices:

• In the variable gadget of variable xi, we select vi if π(xi) = 1 and v̄i otherwise.

• In the clause gadget of clause Cj , let L ⊊ [1, k] be the set of literal indices of this
clause that are not satisfied. (This is well-defined as π is a satisfying which means
that not all literals are unsatisfied.) We select vertex sj

L.

• We select vertex q1 from the negation gadget.

Let S denote the set of all selected vertices.

Since we select exactly one vertex from each gadget, the size of S is precisely n+m+1. It
remains to prove that S is indeed a solution, that is, S is a (σ, ρ)-set where σ = {0, 2, 4, . . . }
and ρ = {1, 3, 5, . . . }.

First, consider the vertices of the negation gadget. Since only vertex q1 is selected, the
vertices q0 and q2 have exactly one selected neighbors. As none of the literal vertices are
selected, vertex q1 is adjacent to zero selected vertices.
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Consider any vertex of the variable gadgets and observe that none of them have a selected
neighbor outside the gadget. By our choice of S, exactly one of the two vertices is selected
and has no selected neighbors, while the other vertex is not selected and has exactly one
selected neighbor, the one in the variable gadget.

It remains to check the vertices of the clause gadget. For the subset vertices we notice
that in every clause gadget exactly one of them is selected. Recall that all subset vertices
of one clause gadget are connected to each other, and they are not connected to any other
vertices outside the gadget but only to the unselected literal vertices of the gadget. This
implies that exactly one of the subset vertices is selected and has no selected neighbors,
whereas the other subset vertices are not selected and have exactly one selected neighbor.

Next we check the literal vertices. Consider a positive literal, say λj
ℓ = xi. By our

selection tj
ℓ is unselected and has vertex vi as selected neighbor if π(xi) = 1. In this

case no subset vertex sj
L with ℓ ∈ L is selected by definition of S. Hence, the vertex has

exactly one selected neighbor. If π(xi) = 0, then the literal does not satisfy the clause
and hence, by the definition of S, a vertex sj

L is selected where ℓ ∈ L.

As a last step we check the literal vertices corresponding to negated variables, say tj
ℓ = ¬xi.

Once more, this vertex is not selected but always adjacent to the selected vertex q1 from
the negation gadget. If π(xi) = 1, then also the neighboring vertex vi is selected. However,
this is not a problem since in this case the literal does not satisfy the clause and hence,
a subset vertex sj

L with ℓ ∈ L must be selected. Thus, the literal vertex is adjacent to
three selected vertices. If π(xi) = 0, then the literal satisfies the clause and no subset
vertex sj

L with ℓ ∈ L is selected; the literal vertex has exactly one selected neighbor.

We conclude that every selected vertex of the graph has no selected neighbors, whereas
every unselected vertex has either exactly one or exactly three selected neighbors.

As a next step we show the reverse direction of the correctness.

Claim 9. If Gφ has a solution for Refl-AllOff of size at most n + m + 1, then φ is a
yes-instance of k-SAT.

Proof. Consider a solution S of the Refl-AllOff instance of size at most n + m + 1.
Recall that S is a (σ, ρ)-set for Gφ where σ = {0, 2, 4, . . . } and ρ = {1, 3, 5, . . . }.

In the negation gadget at least one vertex must be selected as q0 and q2 must be selected
themselves or require one selected neighbor which can only be q1. Similarly, in each
variable gadget Vi, the set S contains at least one vertex; vertex v̄i is either selected itself
or it requires a selected neighbor (which must be vi).

In each clause gadget Dj , we must also select at least one vertex which must be a subset
vertex. Indeed, the subset vertex sj

∅ must either be selected or have a selected neighbor.
As all neighbors of this subset vertex are also subset vertices, the claim follows.
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Hence, we see that any solution S of size at most n + m + 1 must select exactly one
vertex of each variable gadget, as well as exactly one subset vertex of each clause gadget,
and vertex q1 of the negation gadget.

Based on these observations we define an assignment π for the formula φ by setting
π(xi) = 1 if and only if vi ∈ S and π(xi) = 0 otherwise.

In the following we prove that π satisfies φ. For this consider an arbitrary clause Cj .
By the above discussion, we know that there is some selected subset vertex sj

L of the
clause gadget Dj . Since L ⊊ [1, k], there is, by the construction of Gφ, a literal vertex tj

ℓ

where ℓ ∈ [1, k] \ L. Since this vertex tj
ℓ is not selected, it must have an odd number of

neighbors in S. We first consider the case that the corresponding literal λj
ℓ is positive,

that is, λj
ℓ = xi for some variable xi. In this case the only selected neighbor of tj

ℓ is vi.
From vi ∈ S the definition of π gives π(xi) = 1 which implies that the clause Cj is
satisfied by literal λj

ℓ. Now consider the case when λj
ℓ = ¬xi for some variable xi. In

this case vertex tj
ℓ is adjacent to the selected vertex q1 of the negation gadget, by the

construction of Gφ and the above observations. As the literal vertex is still unselected
and only adjacent to unselected subset vertices and one additional variable vertex, the
variable vertex vi cannot be selected. Hence, the definition of the assignment π gives
π(xi) = 0 which directly implies that the clause Cj is satisfied by the literal λj

ℓ .

Before we combine all parts of the proof to obtain the lower bound, we first provide a
bound on the pathwidth of the constructed graph.

Claim 10. Gφ has pathwidth at most 2k + k + n.

Proof. If we delete vertex q1 and, for all i ∈ [1, n], the variable vertex vi, then the graph
decomposes into small components of size at most 2k − 1 + k. This allows us to get a
path decomposition of small width.

Concretely, we create a node for every variable gadget, clause gadget, and the negation
gadget. We add the vertices of the corresponding gadgets to the bag of the node. We
connect these nodes in an arbitrary way to form a path. As a last step we extend all
bags by adding the vertices in {vi | i ∈ [1, n]} ∪ {q1}. It is easy to see that this is a valid
path decomposition.

The bags corresponding to the variable gadgets have size 1 + (n + 1) and the bags of the
clause gadgets have size 2k − 1 + k + (n + 1). Finally, the bag of the negation gadget has
size 2 + (n + 1). Hence, the pathwidth of the graph is bounded by 2k + k + n.

Recall that we fixed some ε > 0 and set k to the smallest integer such that k-SAT
does not have an algorithm with running time (2 − ε)n · nO(1) where n is the number of
variables. For a given k-SAT formula φ with n variables and m clauses we constructed
an Refl-AllOff instance Gφ that has a solution of size n + m + 1 if and only if φ is
satisfiable.
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Towards a contradiction, assume that the minimization variant of Refl-AllOff can be
solved in time (2 − ε)pw · NO(1) on instances of size N . Applying this algorithm to the
constructed instance Gφ and asking for a solution of size at most n + m + 1, yields, by
using Claims 8 to 10, an algorithm for k-SAT with running time

(2 − ε)pw · (n + m)O(1) ≤ (2 − ε)2k+k+n · (n + m)O(1) = (2 − ε)n · (n + m)O(1)

as the constant k only depends on the fixed value ε. This directly contradicts SETH and
finishes the proof.

5.2 Lower Bound for AllOff
We now proceed to AllOff, that is, (σ, ρ)-GenDomSet with σ = ρ = {1, 3, . . . }.

Theorem 6 ([GSW24, Theorem 7.5]). Unless the SETH is false, for all ε > 0, there is
no algorithm for AllOff that can decide in time (2 − ε)pw · |G|O(1) whether there exists
a solution of size at most α for a graph G that is given with a path decomposition of
width pw.

Proof. The proof is also presented in [GSW24].

Similar to Theorem 5, we prove the bound by a reduction from k-SAT. For this fix some
ε > 0 and let k be the smallest integer such that k-SAT has no (2 − ε)n · (n + m)O(1)

algorithm under SETH where n is the number of variables and m the number of clauses.

Let φ be an arbitrary k-SAT instance with n variables x1, . . . , xn and m clauses
C1, . . . , Cm as input.2 We construct a graph Gφ that consists of variable and clause
gadgets. See Fig. 5.2 for an illustration of the construction.

For every variable xi where i ∈ [1, n], the graph Gφ contains a variable gadget Vi. Gadget
Vi consists of a cycle of length four on the four vertices vi, wi, v̄i, and w̄i (in this order).

For every clause Cj = λj
1 ∨ · · · ∨ λj

k where j ∈ [1, m], the graph Gφ contains a clause
gadget Dj . This gadget Dj contains k literal vertices tj

1, . . . , tj
k, that is, one distinguished

vertex for every literal of the clause. Additionally, Dj contains, for every subset L ⊊ [1, k],
a so called subset-vertex sj

L, that is, for every proper subset of the literals of the clause,
there exists a vertex labeled with the subset (and the gadget index). These subset
vertices are used to indicate which literals of the clause are not satisfied by the encoded
assignment. As a last vertex there is an additional vertex hj (for happy) in Dj . There
are two different groups of edges in the gadget; first, each subset vertex sj

L is connected
to each literal vertex tj

ℓ if and only if ℓ ∈ L. Second, the vertex hj is connected to all
subset vertices of the gadget Dj .

2As for the proof of Theorem 5 we assume purely for the ease of the presentation that each clause
contains exactly k literals.
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𝑣𝑖
𝑤𝑖

𝑤𝑖
𝑣𝑖

(a) A depiction of the variable gadget.

𝑡1 𝑡2 𝑡3
𝑠{2}
𝑠{1,3}𝑠{1,2}𝑠{1} 𝑠{2,3} 𝑠{3}

ℎ𝑠∅
(b) A depiction of the clause gadget for the
clause x1 ∨ x2 ∨ ¬x3.

Figure 5.2: A depiction of a literal gadget and a clause gadget from the proof of the
lower bound for AllOff. Some indices are omitted for simplicity. This figure is also
presented as [GSW24, Figure 6].

As a last step of the construction we describe the edges encoding the appearance of
variables in the clauses. Intuitively each literal vertex of the clause gadget is connected
to the corresponding variable vertex of the variable gadgets. Formally, if the ℓth literal of
the jth clause is positive, i.e., if λj

ℓ = xi for some variable xi, then vertex tj
ℓ is adjacent to

vertex vi. If the ℓth literal is negative, i.e., if λj
ℓ = ¬xi for some variable xi, then vertex

tj
ℓ is again adjacent to vertex vi but also to vertex hj .

This concludes the description of Gφ. We prove in the following that the AllOff
instance Gφ has a solution of size at most 2m + 2n if and only if φ is satisfiable.

We first show that if the k-SAT formula φ is satisfiable, then the constructed AllOff
instance is a yes-instance.

Claim 11. If φ is a yes-instance of k-SAT, then Gφ has a solution for AllOff of size
at most 2m + 2n.

Proof. Consider a satisfying assignment π for φ. We select the following vertices:

• For all i ∈ [1, n], if π(xi) = 1, then we select the two vertices vi and wi. If π(xi) = 0,
then we select the other two vertices of the variable gadget, which are v̄i and w̄i.

• For all j ∈ [1, m], we select in the clause gadget the vertex hj . Moreover, let
L ⊊ [1, k] be the set of all positions of the literals of the clause that are not satisfied
by π. Since the clause is satisfied by the assignment, the set L cannot contain all
literals of the clause. Thus, there is a subset vertex sj

L corresponding to this set L.
We select this vertex sj

L.

Let S denote the set of all selected vertices. Clearly, this set contains exactly 2m + 2n
vertices as we select exactly two vertices from every gadget. It remains to show that S is
indeed a solution, that is, every vertex of Gφ has an odd number of neighbors in S.

65



5. Turn The Lights Off!

Consider any vertex of the variable gadgets and observe that none of them have a selected
neighbor outside the gadget. With this it is easy to see that each vertex of a variable
gadget has exactly one selected neighbor in S.

Each subset vertex of a clause gadget Dj has exactly one selected neighbor, namely
vertex hj . Furthermore, vertex hj has exactly one selected neighbor, namely the selected
subset vertex of the clause gadget. Now consider an arbitrary literal vertex tj

ℓ. First
assume that the corresponding literal is positive, that is, λj

ℓ = xi for some variable xi. If
this literal is satisfied, the vertex vi in the variable gadget is selected, otherwise if the
literal is not satisfied, then vertex tj

ℓ is a neighbor of the selected subset vertex.

Now assume that the corresponding literal is negative, that is, λj
ℓ = ¬xi for some

variable xi. If the variable xi is not satisfied by π, then the only selected neighbor of tj
ℓ

is hj . If the variable xi is satisfied by π, then the literal λj
ℓ is not satisfied which implies

that the literal vertex is adjacent to the selected subset vertex of this clause gadget.
Moreover, vertex tj

ℓ is adjacent to vi and thus, to three selected vertices which is a valid
number.

We conclude the proof by observing that every vertex has either one or three selected
neighbors and thus, we constructed a valid solution.

As a next step we prove the reverse direction of the correctness.

Claim 12. If Gφ has a solution for AllOff of size 2m + 2n, then φ is a yes-instance
of k-SAT.

Proof. Consider a solution S to the AllOff instance of size at most 2m + 2n. Recall
that every vertex of Gφ is adjacent to an odd number of vertices in S.

We first start with some observations about the solution S. In each variable gadget Vi,
vertex v̄i must have a selected neighbor in S (which is either wi or w̄i), and this selected
neighbor itself requires a selected neighbor in S (which is either vi or v̄i). Hence, at least
two vertices must be selected from each variable gadget.

In each clause gadget Dj , the vertex sj
∅ must have a selected neighbor which forces its

only neighbor, which is vertex hj , to be selected. The vertex hj also requires a selected
neighbor. If this neighbor was a literal vertex, say vertex tj

ℓ , then, the subset vertex sj
{ℓ}

would have exactly two selected neighbors, namely hj and tj
ℓ . As 2 is neither in σ nor in

ρ, we see that the selected neighbor is not a literal vertex, and must thus be a subset
vertex. From the given bound on the solution size, we conclude that in every variable
gadget and every clause gadget exactly two vertices are selected. Moreover, from each
clause gadget Dj exactly one subset vertex, and vertex hj are selected.

We define the assignment π for the variables of φ such that π(xi) = 1 if and only if vi ∈ S
and π(xi) = 0 otherwise.
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It remains to show that π satisfies φ. To prove this, consider an arbitrary clause Cj .
Let sj

L be the selected subset vertex from the clause gadget Dj . As L ̸= [1, k] by the
construction of Gφ, there is some literal vertex tj

ℓ such that ℓ /∈ L. If the corresponding
literal is positive, i.e., if λj

ℓ = xi, then tj
ℓ is not adjacent to hj . As tj

ℓ must have one
selected neighbor in S and since the vertex is not adjacent to any selected subset vertex,
the only remaining neighbor of tj

ℓ , i.e., vertex vi, must be selected which implies that π
was defined such that π(xi) = 1.

If the literal is negative, i.e., if λj
ℓ = ¬xi, then the vertex tj

ℓ is adjacent to hj by the
construction of Gφ. Since hj is selected, vertex tj

ℓ cannot have further selected neighbors
as all other adjacent subset vertices are unselected. Hence, the vertex vi is also unselected
which implies that, by the definition of π, the variable xi is not satisfied but the literal
λj

ℓ is satisfied which makes the clause Cj true.

As a last step we prove a bound on the pathwidth of the constructed graph.

Claim 13. Gφ has pathwidth at most n + k + 1.

Proof. Intuitively the idea is as follows. If we delete all the variable vertices vi for all
i ∈ [1, n] in the variable gadgets, the graph decomposes into small components. We
use this to construct a path decomposition in the following by providing a node search
strategy (see e.g. [CFK+15, Section 7.5]).

We start by placing one searcher on each vertex vi for every i ∈ [1, n]. Each of the
variable gadget can be cleaned by using 3 additional searchers which we just place on all
vertices.

For the clause gadgets we use a more complex approach to clean all vertices. Fix a
clause gadget Dj for this. We first place k new searchers on the k literal vertices of the
gadget and one more searcher on the vertex hj . The remaining subset vertices can then
be cleaned by using one additional searcher which we put one subset vertex after the
other. Repeating this procedure for all clause gadgets cleans the entire graph without
recontamination.

This approach uses at most n + k + 2 searchers simultaneously. Thus, the claimed bound
on the pathwidth follows immediately.

Recall that we fixed some ε > 0 and chose k as the smallest integer such that k-SAT has
no (2 − ε)n · (n + m)O(1) algorithm under SETH where n is the number of variables and
m the number of clauses. For a given k-SAT instance φ with n variables and m clauses
we constructed an AllOff instance Gφ that has a solution of size 2m + 2n if and only if
φ is satisfiable together with a path decomposition.

For the sake of a contradiction, now assume that the minimization version of AllOff
can be solved in time (2 − ε)pw · NO(1) on graphs of size N . If we apply this algorithm to
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the constructed instance and ask for a solution of size at most 2m + 2n, we also solve, by
Claims 11 to 13 the k-SAT instance in time

(2 − ε)pw · NO(1) ≤ (2 − ε)n+k+1 · (n + m)O(1) = (2 − ε)n · (n + m)O(1)

as k depends only on the fixed value ε and thus, only contributes a constant factor to
the running time. This then directly contradicts SETH and finishes the proof.

Now, our first main result of this section follows immediately.

Main Theorem 2 ([GSW24, Main Theorem 3]). Unless SETH fails, for all ε > 0, there
is no algorithm for each of the problems Refl-AllOff and AllOff deciding in time
(2 − ε)pw · |G|O(1) whether there exists a solution of size at most k for a graph G that is
given with a path decomposition of width pw.

Proof. Is a direct consequence of Theorems 5 and 6.

5.3 Maximization Variants
In the previous sections, we showed that, under the SETH, the minimization versions of
AllOff and Refl-AllOff cannot be solved in time (2 − ε)pw · |G|O(1). This leaves the
question of the complexity of the second optimization problem, the maximization variant,
still open. We now show that the same lower bound holds for these problem variants.
Moreover, the maximization problem is also interesting for the cases where 0 ∈ ρ, which
were trivial for the minimization problem. Hence, we show the lower bound for all four
maximization problems, where σ, ρ are sets with period 2.

Similar to the approach in [HKT00b], we will first show the lower bound for the problem
where σ = ρ = {0, 2, 4, . . . }, and later extend this result to the other problems via simple
reductions.

5.3.1 The Gadgets
The proof for the case where σ = ρ = {0, 2, 4, . . . } relies on two somewhat specific gadgets,
the unselection gadget and satisfiability gadget. These gadgets will be utilized many times
within the construction, and since their properties are less-obvious than those of the
gadgets for the minimization problems, we will prove their essential properties separately.

Unselection Gadget

The first gadget we need is the so-called unselection gadget, which is a gadget that has
an additional parameter k as part of its definition. This parameter k allows us to tweak
the number of selected neighbors the portal vertex receives in one of the solutions.

Definition 18 (Unselection gadget). A graph with portals G′ = (G, {u}) is an unselection
gadget with advantage k and order c if and only if
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{u}

· · ·
k′ − 1

Figure 5.3: The unselection gadget for σ = ρ = {0, 2, 4, . . . } and odd order. The
highlighted solution is the largest partial solution that does not select the portal vertex.

• there is a partial solution S of G′ that does not select u in which u has exactly c
selected neighbors,

• for all partial solutions S′ ̸= S of G′ we have |S| − |S′| ≥ k.

We now show that these gadgets can be created for a fixed c and suitable k values.

Lemma 15. Let σ = ρ = {0, 2, 4, . . . }. There exists a

• unselection gadget with odd order, advantage at least k, size in O(k), pathwidth in
O(1), and there exists a

• unselection gadget with even order, advantage at least k, size in O(k), pathwidth in
O(1),

for all integers k ≥ 1.

Proof. We first proof the existence of the gadget with odd order. Set k′ to the smallest
odd integer that is larger or equal to max(k, 3).

Let G′ be the graph created as follows. Start with a graph consisting of a center vertex
u, and k′ pendants ℓ1, . . . , ℓk′ attached to u. That is, the graph thus far is a star graph
with k′ leaves. Moreover, add k′ − 1 vertices v1, . . . , vk′−1, and connect vertex vi to ℓi

and ℓi+1 for all i ∈ [1, k′ − 1]. The gadget is then the graph with portals G = (G′, {u}).
We depict it in Fig. 5.3.

The size bound is clear. Regarding the pathwidth, note that the graph consists of a path
on 2k′ − 1 vertices, and center vertex u. Hence, the pathwidth is constant, as we can
simply take a path decomposition of the path of length 2k′ − 1 and add u to all bags.

Consider the set S = {ℓi, | i ∈ [1, k′]}. Then, each vertex ℓi has zero selected neighbors,
which is allowed. For all i ∈ [1, k′ − 1] vertex vi has two selected neighbors, which is also
fine. Hence, S is a partial solution of size k′.
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Now, consider an arbitrary partial solution S′. We first argue that it cannot be the case
that u ∈ S′. For this purpose, assume that u ∈ S′. We know that vertex ℓ1 requires
either 0 or 2 selected neighbors, and since its neighbor u is selected, it requires 2 selected
neighbors, which means that vertex v1 is necessarily selected too. Then, vertex ℓ2 has
selected v1 and u as neighbors, and hence its only other neighbor, v2, cannot be selected.
By continuing this chain of reasoning, we see that vi, for i ∈ [1, k′ − 1], is in S′ if and
only if i is odd. However, vertex ℓk′ requires that vertex vk′−1 is selected, but k′ − 1 is
even, and thus vk′−1 is not selected, a contradiction. Thus, we have u /∈ S′. Due to this,
we immediately see that vertex v1 cannot be in S′, as otherwise ℓ1 would only have a
single selected neighbor, which is not allowed. Then, v2 cannot be in S′ either because of
ℓ2. We see that vertex vi cannot be in S′ for any i ∈ [1, k′ − 1].

Now, assume that for some i the vertex ℓi is not in S′. Then, vi forces ℓi+1 (if that vertex
exists) to not be in S′ either, and similarly vi−1 ensures that also ℓi−1 (if it exists) is not
in S′. Hence, no vertex of the graph can be selected, and the solution is the empty set,
which is sufficiently small. Overall, we see that the only partial solutions that exist are
the empty set of size 0, and the solution of size k′ ≥ k, hence the advantage claim is
proven.

Next, we construct the gadget with even order. The idea is, that we can simply use the
same gadget we used for the odd case twice.

Let (G1, {u1}) and (G2, {u2}) be two distinct copies of the gadget with advantage at
least k and odd order we constructed in the previous paragraphs. Create graph G′ by
taking the disjoint union of G1 and G2 and identifying u1 and u2 into the new vertex u.
Then, (G′, {u}) is the gadget we were looking for.

It is clear that the size is in O(k), and that the pathwidth is constant. Moreover, the
number of neighbors of the center vertex is clearly even, as it is two times an odd number.
Thus, we have a partial solution of even size, which is just the union of the two large
partial solutions for (G1, {u1}) and (G2, {u2}). Moreover, we know that (G1, {u1}) and
(G2, {u2}) only have the empty set, and the large partial solution as possible selections.
Hence, it is clear that we have an advantage of at least k, as already each of the two
parts of the final gadget admits this advantage.

Satisfiability Gadget

The satisfiability gadget is defined next. This gadget will behave differently from the
previous one, in particular, the solution that selects the portal vertex will actually be
the larger solution. Hence, in a large solution for the overall graph, the portal vertex of
these gadgets will usually have to be selected. Within the construction, these gadgets
are employed to ensure that each clause is satisfied, hence the name.

Definition 19 (Satisfiability gadget). A graph with portals G = (G′, {u}) is a satisfiability
gadget with advantage k if
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• there is a (σ, ρ)-set S1 of G′ that selects u, and a (σ, ρ)-set S2 of G′ that does not
select u,

• |S1| ≥ k and |S2| = 0,

• S1 and S2 are the only partial solutions of G.

Again, we show the existence of such a gadget for the considered sets σ and ρ.

Lemma 16. If σ = ρ = {0, 2, 4, . . . }, there exists a satisfiability gadget with advantage
at least k and pathwidth at most 1, and size in O(k) for all integers k ≥ 1.

Proof. Let G′ be the path v1, . . . , v2k−1. Then, (G′, {v1}) is the desired gadget.

It is clear that the pathwidth is at most 1, and that the size is in O(k).

Moreover, the set S = {v1, v3, . . . , v2k−1} is a solution, every selected vertex has no selected
neighbor, every unselected vertex two selected neighbors. The set S has cardinality k
exactly.

Now, consider an arbitrary partial solution S′. Since v2k−1 requires an even number of
selected neighbors, vertex v2k−2 cannot be selected. Then, if v2k−1 ∈ S′, we know that
v2k−3 must be selected to ensure that v2k−2 has an even number of selected neighbors.
Continuing the argumentation, we see that S′ must be equal to S exactly. In the other
case, v2k−1 /∈ S′. Then, also v2k−3 /∈ S′ as v2k−2 would otherwise have an odd number of
selected neighbors. We see that in this case, one obtains S′ = ∅, and that there are no
other partial solutions. The advantage claim is thus true.

5.3.2 The Reduction
We can now prove the lower bound for σ = ρ = {0, 2, 4, . . . }, that is, we prove Lemma 17.

Lemma 17. Unless SETH fails, there is no algorithm that can decide whether a graph G,
provided together with a path decomposition of width pw, has a ({0, 2, 4, . . . }, {0, 2, 4, . . . })-
set of size at least α in time (2 − ε)pw · |G|O(1) for any ε > 0.

Proof. We follow the same proof template as for the other proofs in this chapter. Fix
some ε > 0, and let k be the smallest integer such that k-SAT cannot be solved in time
(2 − ε)n · (n + m)O(1) for instances with n variables and m clauses.

We will output a graph G of sufficiently small pathwidth, such that this graph has a
large (σ, ρ)-set if and only if the input k-SAT instance is satisfiable. Let the variables of
the input instance be x1, . . . , xn and the clauses C1, . . . , Cm. 3

By Lemma 15, we can create unselection gadgets for the considered sets with constant
pathwidth, advantage at least c and even/odd order for any integer c ≥ 1. By Lemma 16,

3We again assume that each clause contains exactly k variables for the sake of a simpler exposition.
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we can also build satisfiability gadgets with constant pathwidth and advantage c for any
positive integer c.

For all these gadgets, it also holds that their size is linear in the lower bound on their
advantage.

The definitions of the unselection gadgets and satisfiability gadgets allow us to play
with the difference of the solution size of the solutions that select or don’t select the
portal vertex. For the unselection gadgets, these values will be chosen such that we can
guarantee that the portal vertex is never selected. For the satisfiability gadgets, these
values are chosen such that the portal vertex is only rarely unselected.

Concretely, we will use the smallest satisfiability gadgets with advantage at least n + 1,
and define selSzS to be the size of the single solution that selects the portal vertex. Then,
let au = n + m · selSzS + 1, and observe that, au is polynomial in n · m. We will utilize
the smallest unselection gadgets with advantage at least au of both even and odd order.
Let unselSzo be the size of the largest solution of the unselection gadget with odd order,
and unselSze be the size of the largest solution of the unselection gadget with even order.

For each i ∈ [1, n], we create a variable gadget Vi for variable xi, that simply consists of
a singleton variable vertex vi.

For each clause Cj (for j ∈ [1, m]) consisting of the literals λ1, . . . , λk, we create a clause
gadget. For each i ∈ [1, k], the gadget contains an unselection gadget T j

i :

• If λi is a positive literal, then T j
i is the unselection gadget with even order.

• If λi is a negative literal, then T j
i is the unselection gadget with odd order.

Denote the portal vertex of T j
i as the literal vertex tj

i .

Moreover, for each L ⊊ [1, k], we create a copy of the satisfiability gadget called Sj
L.

Denote the portal vertex of Sj
L as the subset vertex sj

L. Connect vertex tj
i to vertex sj

L if
and only if i ∈ L.

Next, add a copy of the unselection gadget with even order to the graph. Denote the
portal vertex of this copy as f j . Make f j adjacent to all subset vertices of the clause
gadget of Cj . Finally, for all i ∈ [1, k], let xℓ be the variable appearing in literal λi.
Connect vertex tj

i to vertex vℓ of the variable gadgets.

This concludes the description of the output graph G.

Let unselSzo be the number of unselection gadgets of odd order, and unselSze be the
number of unselection gadgets of even order. Then, the input instance is a yes-instance if
and only if G has a (σ, ρ)-set of size at least m · (2k −2) · selSzS +co ·unselSzo +ce ·unselSze.

Claim 14. If the input k-SAT instance is satisfiable, then the graph G has a (σ, ρ)-set
of size at least m · (2k − 2) · selSzS + co · unselSzo + ce · unselSze.
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Proof. Let π be a variable assignment that satisfies the input k-SAT instance.

From the variable gadgets, we select vi if and only if π(xi) = 1.

From all unselection gadgets, we select the vertices according to the largest solution that
does not select the portal vertex.

Only the selection within the satisfiability gadgets is unclear. For this purpose, consider
the clause gadget of clause Cj . Because π is a satisfying assignment, not all literals of Cj

are unsatisfied by π. Let the literals of the clause be λ1, . . . , λk, and L be the indexes of
the set of literals that are not satisfied by π. From the satisfiability gadget that contains
vertex sj

L, we select no vertex. From the other satisfiability gadgets in the same clause
gadget, we choose vertices according to the solution that does select the portal vertex.

Let us now examine the size of the solution we obtain this way. From the unselection
gadgets, we always select vertices according to the solution that does not select the portal
vertex. This means that we select co · unselSzo + ce · unselSze vertices in all unselection
gadgets combined. Finally, we select 0 vertices from m satisfiability gadgets (one per
clause), and selSzS vertices from the remaining m · (2k − 2) satisfiability gadgets. Hence,
we select at least m · (2k − 2) · selSzS + co · unselSzo + ce · unselSze vertices overall, which
meets the requirement.

All that remains is showing that the selection, call it S, is a (σ, ρ)-set of G. First, consider
the variable gadgets. There, we know that the single vertex of such a gadget has no
selected neighbors, and it is thus happy regardless of whether it is selected itself.

Now, let us take a look at the clause gadget of clause Cj for some j ∈ [1, m]. The first
vertex we examine is vertex f j . This vertex is adjacent to 2k − 2, an even number,
of selected subset vertices, as exactly one of the 2k − 1 subset vertices of the clause
gadget is not selected. The vertex receives an even number of selected neighbors from
its unselection gadget, hence, it has an even number of selected neighbors overall, as
required.

Each subset vertex is happy because it has no selected neighbor outside its own satisfia-
bility gadget, and within the gadget the selection represents a solution.

Let us now examine the literal vertices. If literal vertex tj
i corresponds to a literal that is

satisfied by π, then, all neighbors of tj
i that are subset vertices are selected. Hence, tj

i

has 2k−1 − 1 selected neighbors that are subset vertices, which is an odd count.

If the literal of tj
i is positive, then tj

i receives an even number of selected neighbors from
its unselection gadget. This means that from the clause gadget, tj

i overall receives an
odd number of selected neighbors. As the literal is satisfied by π, the only neighbor of
tj
i outside its own gadget, a variable vertex, is selected, and tj

i has an even number of
selected neighbors in total.

If the literal of tj
i is negative, then tj

i receives an odd number of selected neighbors from
its unselection gadget, and an odd number of selected subset vertices. The overall even
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number of selected neighbors is allowed, as the literal is negative and satisfied by π, the
variable vertex it has as a neighbor is not selected.

A similar chain of arguments shows that the vertex also receives a number of neighbors
that is in ρ if it corresponds to a literal that is not satisfied by π. In particular, in that
case, the literal vertex has an even number of selected subset vertices as neighbors. This
difference compared to the case that the literal is satisfied is then offset by the fact that
its adjacent variable vertex is unselected if the literal is positive, and selected if it is
negative.

All other vertices are only adjacent to vertices within their own gadget, and happy
because we select vertices according to a solution within each gadget.

Next, we proof the second direction of correctness.

Claim 15. If G has a (σ, ρ)-set of size at least m·(2k−2)·selSzS +co·unselSzo+ce·unselSze,
then the input k-SAT instance is satisfiable.

Proof. Let S be a (σ, ρ)-set of G of size at least m·(2k−2)·selSzS+co·unselSzo+ce·unselSze.
We first need to argue that no literal vertex is selected, and all except for one subset
vertex of each clause is selected in S.

Consider any variable gadget, unselection gadget, or satisfiability gadget. Per the
definitions of these gadgets, there are very specific properties of partial solutions of them.
In particular, these properties guarantee that specific solutions do not exist, even when
the portal vertices are connected to other vertices in the rest of the graph. From each
variable gadget, one can clearly select at most one vertex. Moreover, S can select at most
unselSzo vertices of each unselection gadget with odd order, at most unselSze vertices of
each unselection gadget with even order. Finally, S can select at most selSzS vertices of
each satisfiability gadget. The output graph G contains no vertices outside one of these
gadgets. We see that the maximum solution size is already quite close to the lower bound
we require. In particular, we have just established an upper bound on the solution size of
exactly n + m · (2k − 1) · selSzS + ce · unselSze + co · unselSzo.

The different between the lower bound of |S| and the upper bound is only n + m · selSzS .
However, the advantage of any unselection gadget is larger than that, and hence, the
solution within such a gadget must be the largest solution that does not select the portal
vertex. Thus, the unselection gadgets fulfill their job of ensuring that their portal vertices
cannot be selected, and the job of providing an odd/even number of selected neighbors
to the portal vertex.

Next, consider an arbitrary clause Cj . Within the clause gadget of Cj , vertex f j is not
selected, moreover, the number of selected neighbors of f j within the unselection gadget
is even. Hence, the number of selected subset vertices within the clause gadget must be
even, and in particular, not all subset vertices can be selected, as there is an odd number
of them in the gadget.
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This means that in each of the m clause gadgets, at most 2k − 2 of the subset vertices
can be selected. Each subset vertex is part of a satisfiability gadget, and has no selected
neighbors outside the gadget. There is only a single solution for the satisfiability gadget
that selects the portal vertex, and only a single solution (of size 0) that does not select
it. Hence, within a clause gadget, we can select at most (2k − 2) · selSzS vertices of the
satisfiability gadgets.

We know that the solution has size at least m · (2k −2) · selSzS + co ·unselSzo + ce ·unselSze.
Moreover, at most n vertices of the variable gadget, and at most unselSzo, respectively
unselSze, vertices from unselection gadgets with odd and even order can be in S. This
means that we must select at least m · (2k − 2) · selSzS − n vertices from the satisfiability
gadgets. Recalling that each satisfiability gadget has advantage at least n + 1, we see
that S must contain all subset vertices except for exactly one of each clause gadget.

Consider the variable gadget of variable xi. We define a variable assignment π that sets
variable xi to true if and only if vi ∈ S.

We now argue that π is a satisfying assignment. Consider a clause Cj , and let the
unselected subset vertex of the respective clause gadget be sj

L. Then, as L ̸= [1, k], there
is some i ∈ [1, k] such that i ̸∈ L.

Hence, all subset vertices adjacent to tj
i are selected, and we have previously also

established that tj
i , which is the portal vertex of an unselection gadget, is not selected.

Moreover, this means that vertex tj
i has exactly 2k−1 − 1 selected subset vertices as

neighbors, which is an odd number. In the coming arguments, let λi be the ith literal of
Cj , and let xℓ be the variable appearing in λi.

If λi is a positive literal, then tj
i has an even number of selected neighbors from its

unselection gadget. Since tj
i requires an even number of neighbors overall, its only other

neighbor, vℓ, is selected, and then π(xℓ) = 1, satisfying the clause.

If λi is a negative literal, then tj
i has an odd number of selected neighbors from its

unselection gadget. Since tj
i requires an even number of neighbors overall, its only other

neighbor, vℓ, cannot be selected, and then π(xℓ) = 0, satisfying the clause.

We see that all clauses are satisfied by π, concluding the proof.

Claim 16. The output graph G has pathwidth n + O(1) and size polynomial in n + m.

Proof. We prove this by sketching how a path decomposition of such a width can be
obtained and by arguing about the size of the gadgets. When the n variable vertices of
the graph are deleted, the graph is decomposed into connected components, such that
each connected component can only contain vertices of a single clause gadget.

Each clause gadget consists of 2k − 1 satisfiability gadgets, and k + 1 unselection gadgets.
Each unselection gadget and satisfiability gadget has constant pathwidth, and size
polynomial in n + m. As k is a constant also the size of the clause gadget is polynomial in

75



5. Turn The Lights Off!

n + m, and it follows that the size of the output instance is polynomial in n + m overall.
Regarding the pathwidth of a clause gadget, observe that we can arbitrarily connect the
path decompositions of the smaller gadgets within it, and add the k literal vertices and
vertex f j to each bag. This way, we obtain a path decomposition of a clause gadget that
still has constant pathwidth.

Finally, we can obtain a path decomposition of G of width n + O(1) by connecting the
decompositions of each individual gadget in an arbitrary path, and adding the n variable
vertices to each bag.

To finish the proof, we proceed as usual. Assume that one can decide whether a graph
G provided with a path decomposition of width pw has a (σ, ρ)-set of size at least α in
time (2 − ε)pw · |G|O(1) for some ε > 0. Then, we can take an input instance of k-SAT,
and compute the reduction described in this section in polynomial time. We can also
compute a path decomposition of width n + O(1) in polynomial time, let pw be the width
of that decomposition. When applying the hypothetical fast algorithm on this output
instance, we can decide k-SAT in time

(2 − ε)pw · |G|O(1) = (2 − ε)n+O(1) · (n + m)O(1) = (2 − ε)n · (n + m)O(1),

which contradicts the SETH.

5.3.3 The Other Variants
Now, we will quickly reduce this case where σ = ρ = {0, 2, 4, . . . } to the cases where
σ, ρ are different, but still periodic with period 2. Concretely, we will repeat reductions
introduced in [HKT00b], and show that they are also pathwidth preserving.

Lemma 18 (See [HKT00b, Theorem 6]). Let G be an arbitrary graph, and G′ the graph ob-
tained by adding a pendant to each vertex in G. Then G′ has a ({1, 3, 5, . . . }, {0, 2, 4, . . . })-
set of size 2k if and only if G has a ({0, 2, 4, . . . }, {0, 2, 4, . . . })-set of size k. Moreover,
all ({1, 3, 5, . . . }, {0, 2, 4, . . . })-sets of G′ have even cardinality.

Proof. The proof is attributed to [HKT00b].

Let G and G′ be like in the statement of the lemma. For any vertex v ∈ V (G) denote its
unique pendant that is present in G′ but not in G as v′.

Assume that G has a ({0, 2, 4, . . . }, {0, 2, 4, . . . })-set X. Then, the set S = X ∪ {v′ |
v ∈ X} is a ({1, 3, 5, . . . }, {0, 2, 4, . . . }) set of G′. If v ∈ V (G′) was in V (G) too, it had
an even number of selected neighbors in X. If v was itself selected by X, the selected
neighbor count is now odd, otherwise it remains even. If v is a new pendant, it has either
zero selected neighbors if v is not in S, or one selected neighbor if v is in S, both numbers
are fine.

Now, assume that G′ has a ({1, 3, 5, . . . }, {0, 2, 4, . . . })-set S∗. Then, the set S∗ ∩ V (G)
is a ({0, 2, 4, . . . }, {0, 2, 4, . . . })-set of G. To see this, consider an arbitrary vertex v of G.
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If v is in S∗, then the pendant of v in G′ must have been selected too, as 1 /∈ {0, 2, 4, . . . }.
As v had an odd number of selected neighbors in S∗, the number of neighbors from
within G is even. If v is not in S∗, then its pendant in G′ must have not been selected
because 0 /∈ {1, 3, 5, . . . }. Thus, v also has an even number of selected neighbors in S∗.

By the fact that pendant v′ of v ∈ V (G) is selected in a solution for G′ if and only if v is
also selected, we see that solutions of size k are mapped to solutions of size 2k and the
other way around, and that the cardinality of any ({1, 3, 5, . . . }, {0, 2, 4, . . . })-set of G′ is
even.

Lemma 19 (See [HKT00b, Theorem 6]). Let G be a graph, and G′ the graph obtained by
adding three new vertices xi, yi, zi for every vi ∈ V (G), and adding the edges xiyi, xizi, xivi.
That is, we attach the center vertex of a new path on three vertices to each vertex of
G. Then, G′ has a ({0, 2, 4, . . . }, {1, 3, 5, . . . })-set of size |V (G)| + 2k if and only if
G has a ({0, 2, 4, . . . }, {0, 2, 4, . . . })-set of size k. Moreover, the cardinality of any
({0, 2, 4, . . . }, {1, 3, 5, . . . })-set of G′ is |V (G)| + 2c for some non-negative integer c.

Proof. The proof is attributed to [HKT00b].

Let G, G′ be like in the statement of the lemma, and assume that the input graph G has
a ({0, 2, 4, . . . }, {0, 2, 4, . . . })-set S1 of size k. Then, we define

S′
1 = S1 ∪ {xi | vi ∈ V (G), vi /∈ S1} ∪ {yi, zi | vi ∈ S1}.

It is easy to see that all vertices of V (G) are happy in G′ under the selection S′
1, if the

vertex was selected, it has no new neighbor that is selected now, if it was unselected,
it has a new selected neighbor, and its number of selected neighbors is thus now odd.
The vertices of G′ which were not part of G are also all happy, in any case the selected
vertices have no selected neighbors, and the unselected vertices have one or three selected
neighbors. The size of S′

1 is exactly |V (G)| + 2k.

Now, assume that G′ has a ({0, 2, 4, . . . }, {1, 3, 5, . . . })-set S′
2 of size |V (G)| + 2k. Take

a look at the newly attached paths of length three for some vi ∈ V (G). If vertex xi is
selected, then vertices yi and zi must be unselected since 1 /∈ {0, 2, 4, . . . }. Then, vertex
vi must also be unselected, as xi would otherwise have exactly one selected neighbor.
On the other hand, if xi is not selected, then yi and zi must necessarily be selected.
To avoid an even selected neighbor count for xi, vertex vi must also be selected. We
see that, if xi is selected, then vi is unselected and the number of selected neighbors vi

has in the rest of the graph must be even. If xi is unselected, vi is selected, and the
number of selected neighbors of vi in the remaining graph must already be even. Thus,
the set S2 = S′

2 ∩ V (G) is a ({0, 2, 4, . . . }, {0, 2, 4, . . . })-set of G. Regarding the size we
notice that, as only two selections are possible in the attached gadgets, a solution of size
|V (G)| + 2k can only be reached if we select the solution that selects vi in k gadgets, and
hence |S2| = k. Finally, any ({0, 2, 4, . . . }, {1, 3, 5, . . . })-set of G′ must have a cardinality
of the form |V (G)| + 2c due to the possible selections in the attached gadgets.
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Lemma 20 (See [HKT00b, Theorem 6]). Let G be a graph, and G′ the graph obtained by
adding fresh vertices xi, yi, zi, wi to the graph for each vi ∈ V (G), and connecting yi, zi, wi

to form a clique of size three, and adding edges between xi and vi and between xi and yi.
Then, G′ has a ({1, 3, 5, . . . }, {1, 3, 5, . . . })-set of size 2 · |V (G)| + 2k if and only if G has
a ({0, 2, 4, . . . }, {0, 2, 4, . . . })-set of size k. Moreover, any ({1, 3, 5, . . . }, {1, 3, 5, . . . })-set
of G′ must have a cardinality of the form 2 · |V (G)| + 2c for some non-negative integer c.

Proof. The proof is attributed to [HKT00b].

Let G, G′ be like in the statement of the lemma. Assume that the input graph G has a
({0, 2, 4, . . . }, {0, 2, 4, . . . })-set S1 of size k. Then, we can build

S′
1 = S1 ∪ {xi, zi, wi | vi ∈ S1} ∪ {xi, yi | vi ∈ V (G), vi /∈ S1},

which is a ({1, 3, 5, . . . }, {1, 3, 5, . . . })-set of G′. As xi is selected for all vi ∈ V (G), the
number of selected neighbors of vi in G′ is odd. Moreover, xi, yi, zi, wi have exactly one
or three selected neighbors in any case. The size of S′

1 is exactly as required.

Now assume that G′ has a ({1, 3, 5, . . . }, {1, 3, 5, . . . })-set S′
2 of size 2 · |V (G)| + 2k. We

inspect the graph induced by xi, yi, zi, wi, vi for an arbitrary vi ∈ V (G). As vertex xi has
exactly two neighbors, we know that either vi or yi must be selected, but not both. If yi

is selected, then neither wi nor zi can be selected, as one of them would otherwise have
exactly two selected neighbors, which is not allowed. However, vertex yi still requires a
selected neighbor, so xi is selected. If yi is not selected, then vi must be selected. Then,
both zi and wi must be in the solution too, as these vertices would otherwise not have a
selected neighbor. Now, as yi requires an odd number of selected neighbors, xi must be
selected as well. We see that there are only two possible selections, and the selection that
selects vi selects four vertices of the gadget, the selection that does not select vi selects
two vertices of the gadget. Moreover, vi gets a selected neighbor from the attached gadget
in any case. Thus, the set S2 = S′

2 ∩ V (G) is a ({0, 2, 4, . . . }, {0, 2, 4, . . . })-set of G of size
exactly k. Finally, also the claim about the cardinalities of ({1, 3, 5, . . . }, {1, 3, 5, . . . })-sets
of G′ follows since only two selections are possible within each attached gadget.

Having these reductions out of the way, we can prove the final main result of the thesis.

Main Theorem 3. Let σ, ρ be periodic sets with period 2. Unless SETH fails, for all
ε > 0, there is no algorithm for (σ, ρ)-GenDomSet deciding in time (2 − ε)pw · |G|O(1)

whether there exists a solution of size at least k for a graph G that is given with a path
decomposition of width pw.

Proof. By Lemma 17 the statement holds when σ = ρ = {0, 2, 4, . . . }. For the other
cases, the reductions given in Lemmas 18 to 20 provide reductions that extend the claim
to these problems.

Concretely, they all prove claims about graphs G′ that are created from an input graph G
by attaching constant sized gadgets to each vertex of G. Given a path decomposition of
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G and a vertex v ∈ V (G), we can take an arbitrary bag that contains v, copy it, and add
all vertices of the gadget attached to v to the bag. If we do this cleverly, we will obtain
a path decomposition of G′ and only increase the pathwidth by a constant amount, as
the vertices of at most one gadget are added to a single bag. So, it is clear that we can
create a path decomposition of width pw + O(1) for G′ in polynomial time when having
a path decomposition of width pw of G as input.

We now consider the remaining three cases individually. If we have σ = {1, 3, 5, . . . }, and
ρ = {0, 2, 4, . . . }, then we use Lemma 18 that shows G′ has a ({1, 3, 5, . . . }, {0, 2, 4, . . . })-
set of size 2k if and only if G has a ({0, 2, 4, . . . }, {0, 2, 4, . . . })-set of size k. If we
have σ = {0, 2, 4, . . . }, ρ = {1, 3, 5, . . . }, then Lemma 19 shows that the graph G′ has
a ({0, 2, 4, . . . }, {1, 3, 5, . . . })-set of size |V (G)| + 2k if and only if the graph G has a
({0, 2, 4, . . . }, {0, 2, 4, . . . })-set of size k. Similarly, Lemma 20 works for the case that
σ = ρ = {1, 3, 5, . . . }.

The argumentation works the same way for all three of these cases, so it will be illustrated
for the case that σ = {0, 2, 4, . . . }, ρ = {1, 3, 5, . . . }. If G has a ({0, 2, 4, . . . }, {0, 2, 4, . . . })-
set of size at least k, then G′ has a ({0, 2, 4, . . . }, {1, 3, 5, . . . })-set of size |V (G)| + 2k. On
the other hand, if G′ has a ({0, 2, 4, . . . }, {1, 3, 5, . . . })-set S of size at least |V (G)| + 2k,
then, by Lemma 19, |S| = |V (G)| + 2c for some non-negative integer c ≥ k. Hence, G
has a ({0, 2, 4, . . . }, {0, 2, 4, . . . })-set of size c ≥ k.

An algorithm for the maximization variant where σ = {0, 2, 4, . . . }, ρ = {1, 3, 5, . . . } with
running time (2−ε)pw · |G|O(1) would immediately yield an algorithm with a running time
of the same form for the case where σ = ρ = {0, 2, 4, . . . }, because the reduction above
can be performed in polynomial time, and a path decomposition of G can be transformed
into a path decomposition for G′ in polynomial time while only increasing the pathwidth
by a constant amount. By Lemma 17 this would contradict the SETH.
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CHAPTER 6
Conclusion

The thesis dealt with the (σ, ρ)-GenDomSet problem with periodic sets σ and ρ, that
is, σ and ρ are residue classes modulo m, for some fixed m ≥ 2. The problem was
investigated using the paradigm of parameterized complexity, concretely utilizing the
common parameter treewidth. Literature related to the topics treewidth, parameterized
complexity, (σ, ρ)-GenDomSet and the natural problem Lights Out was examined.

In the main contribution, the focus was on proving lower bounds based on the Strong
Exponential Time Hypothesis. Concretely, it was shown that as long as σ, ρ are not
residue classes modulo 2 and 0 ̸∈ ρ, it is not possible to decide whether a (σ, ρ)-set exists
for a given input graph G provided with a path decomposition of width pw in time
(m − ε)pw · |G|O(1) for any ε > 0, unless the SETH is false. Moreover, for the case where
σ, ρ are residue classes modulo 2, it was shown that under the SETH the maximization
problem cannot be solved in time (2 − ε)pw · |G|O(1), and if 0 ̸∈ ρ, the same holds true
for the minimization problems. Thus, assuming the SETH, the precise complexity for
the problem is known in all scenarios for sets with the same period, except for the cases
where the period is larger than 3 and 0 ∈ ρ.

Together with the results by Focke et al. [FMI+23a], we have now obtained a reasonable
picture of the exact complexity of the problem. Still, there are numerous further possibili-
ties that should be examined. Firstly, although Focke et al. [FMI+23a] conclusively settle
the question of the complexity for finite σ, ρ for the decision problem, the complexity of
the maximization problem is not yet clear. In particular, their bounds do not apply to
the case where 0 ∈ ρ, however, one would expect the maximization problem to be hard
in that case.

Similarly, our bounds only work for the case where 0 ∈ ρ when the period is 2. Hence,
showing tight lower bounds for 0 ∈ ρ and a larger period is still an open problem. The
case where 0 ∈ ρ generally presents a challenge, as the empty set is always a solution,
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and hence, interesting interactions between vertices can only be obtained by considering
the solution size. Thus, studying the problem with 0 ∈ ρ could be of interest.

The considered scenario where σ and ρ are periodic sets with the same period is only a
first step in providing algorithms for sets that are neither finite nor cofinite. In general,
we only know that the problem is FPT when σ and ρ are ultimately periodic sets [Cha10],
and that it is presumably not FPT in certain cases. It would be a good next step to
precisely classify which properties σ and ρ must have for the problem to be FPT.

Moreover, bounds for the problem for different infinite sets than those we have considered
are also of interest. For instance, one could consider the scenario where σ, ρ are periodic
sets with a different period, or the scenario where one set is finite and the other periodic.
For this situation, we do not even know what the concrete running time should be
(although our work and the work by Focke et al. [FMI+23a] indicates a certain running
time). Then, when an algorithm is obtained, showing that it is optimal under SETH
would of course also be the ultimate goal. Another natural scenario would be considering
sets σ, ρ that have the form c + m · N, that is, σ, ρ are residue classes modulo m which
are shifted by a potentially large constant. Especially in this scenario, the creation of a
quick algorithm could be interesting, as it seems that one would perhaps even require
new convolution techniques to obtain a good running time. Finally, considering sets
that are unions of different residue classes, that is, unions of periodic sets with the same
period, is another natural extension of our setting that one might want to take a look at.

As one can see by this discussion, we are far from settling the complexity of (σ, ρ)-
GenDomSet parameterized by treewidth. Nonetheless, this work represents a first
important step into the domain of sets that are neither cofinite nor finite, and it can
serve as reference and basis for further work in the area.
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Übersicht verwendeter Hilfsmittel

Es wurden keine generativen KI-Tools zur Erstellung der Arbeit verwendet.
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[PW10] Mihai Pǎtraşcu and Ryan Williams. On the possibility of faster SAT algo-
rithms. In Moses Charikar, editor, Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas,
USA, January 17-19, 2010, pages 1065–1075. SIAM, 2010.

[RS83] Neil Robertson and Paul D. Seymour. Graph minors. I. Excluding a forest.
J. Comb. Theory, Ser. B, 35(1):39–61, 1983.

[RS86] Neil Robertson and Paul D. Seymour. Graph minors. II. algorithmic aspects
of tree-width. Journal of Algorithms, 7(3):309–322, 1986.

[RW13] Liam Roditty and Virginia Vassilevska Williams. Fast approximation algo-
rithms for the diameter and radius of sparse graphs. In Dan Boneh, Tim
Roughgarden, and Joan Feigenbaum, editors, Symposium on Theory of Com-
puting Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages
515–524. ACM, 2013.

[Sut88] Klaus Sutner. Additive Automata On Graphs. Complex Syst., 2(6), 1988.

[Sut89] Klaus Sutner. Linear cellular automata and the garden-of-eden. The Mathe-
matical Intelligencer, 11(2):49–53, March 1989.

[Tel94] Jan Arne Telle. Complexity of domination-type problems in graphs. Nord. J.
Comput., 1(1):157–171, 1994.

[TP93] Jan Arne Telle and Andrzej Proskurowski. Practical algorithms on partial
k-Trees with an application to domination-like problems. In Frank K. H. A.
Dehne, Jörg-Rüdiger Sack, Nicola Santoro, and Sue Whitesides, editors,
Algorithms and Data Structures, Third Workshop, WADS ’93, Montréal,
Canada, August 11-13, 1993, Proceedings, volume 709 of Lecture Notes in
Computer Science, pages 610–621. Springer, 1993.

[van20] Johan M. M. van Rooij. Fast algorithms for join operations on tree decom-
positions. In Fedor V. Fomin, Stefan Kratsch, and Erik Jan van Leeuwen,
editors, Treewidth, Kernels, and Algorithms - Essays Dedicated to Hans L.
Bodlaender on the Occasion of His 60th Birthday, volume 12160 of Lecture
Notes in Computer Science, pages 262–297. Springer, 2020.

[van21] Johan M. M. van Rooij. A generic convolution algorithm for join operations
on tree decompositions. In Rahul Santhanam and Daniil Musatov, editors,
Computer Science - Theory and Applications - 16th International Computer
Science Symposium in Russia, CSR 2021, Sochi, Russia, June 28 - July 2,
2021, Proceedings, volume 12730 of Lecture Notes in Computer Science, pages
435–459. Springer, 2021.

92



[vBR09] Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic
programming on tree decompositions using generalised fast subset convolution.
In Amos Fiat and Peter Sanders, editors, Algorithms - ESA 2009, 17th
Annual European Symposium, Copenhagen, Denmark, September 7-9, 2009.
Proceedings, volume 5757 of Lecture Notes in Computer Science, pages 566–
577. Springer, 2009.

93


	Kurzfassung
	Abstract
	Contents
	Introduction
	Preliminaries and Related Work
	Notation
	Parameterized Complexity and Treewidth
	Lower Bounds based on the (Strong) Exponential Time Hypothesis
	Generalized Dominating Set

	Intermediate Lower Bound
	The Idea
	Managers
	The Reduction
	Combining the Results

	Realizing Relations
	Replacing Arbitrary Relations With Simple Relations
	Realizing HW=1
	Finalizing the Proof

	Turn The Lights Off!
	Lower Bound for Refl-AllOff
	Lower Bound for AllOff
	Maximization Variants

	Conclusion
	Übersicht verwendeter Hilfsmittel
	Bibliography



