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Kurzfassung

Algebraic Answer Set Counting (AASC) eignet sich zum Lösen einer Vielzahl von
Problemen wie z.B. probabilistisches Schließen, präferenzielles Schließen, und Optimi-
sierungsprobleme. Dazu wird eine Erweiterung von Answer Set Programming (ASP)
verwendet, in der über einem Semiring Gewichtungen für Answer Sets berechnet werden.
Die Evaluierung von AASC erfordert einen hohen Rechenaufwand (Komplexitätsklas-
se #P/OptP/NP-schwer, je nach verwendetem Semiring). Daher besteht für AASC
besonderes Interesse darin, effiziente Evaluierungsansätze zu finden.

Ausgehend von einem Evaluierungsansatz, in dem AASC auf Algebraic Model Counting
(AMC) reduziert wird, präsentieren wir mehrere Modifikationen dieses Ansatzes mit dem
Ziel, die Effizienz zu verbessern. Wir fokussieren uns dabei insbesondere auf den Spezialfall
von AASC über idempotenten Semiringen, für den wir beweisen, dass zusätzliche Cycle-
Breaking-Algorithmen anwendbar sind, die im allgemeinen Fall von beliebigen Semiringen
nicht verwendet werden können. Für den allgemeinen Fall beweisen wir weiters die
Anwendbarkeit einer Preprocessing-Technik für AMC namens B+E, bei der Defined-
Variables durch Variable-Forgetting eliminiert werden. Zusätzlich beschreiben wir ein
abgeänderte Version für idempotente Semiringe, bei der neben Defined-Variables noch
weitere Variablen eliminiert werden.

Die theoretischen Resultate bezüglich des Preprocessings setzten wir in die Praxis um,
indem wir den AASC-Solver aspmc um die beschriebenen Preprocessing-Techniken
erweitern. Dafür adaptieren wir eine existierende Implementation von B+E. Unsere
Experimente zur Evaluierung der Performance des Preprocessors zeigen, dass durch
dieses Feature die benötigte Zeit für die nachfolgenden Evaluierungsschritte (Knowledge-
Compilation und Counting) reduziert wird. Allerdings erhöht sich die Gesamtzeit für die
Evaluierung, aufgrund der zusätzlichen Zeit, die für das Preprocessing selbst benötigt
wird.
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Abstract

Algebraic Answer Set Counting (AASC) is a reasoning task that has recently gained
interest. It is defined over an extension of Answer Set Programming (ASP) with weights
over semirings, called ASP with algebraic measures. What makes AASC particularly
interesting is that it can be used to model a variety of different problems, such as
probabilistic reasoning, preferential reasoning, and optimization problems. At the same
time, AASC is a computationally hard task (#P/OptP/NP-hard, depending on the
semiring). Therefore, one of the goals in current research is to find efficient evaluation
techniques for this task.

Starting with an evaluation approach that reduces AASC to Algebraic Model Counting
(AMC), we propose modifications intended to improve efficiency. We focus in particular on
the special case of AASC over idempotent semirings, for which we show the applicability
of alternative cycle breaking algorithms that are not applicable in the general case.
We establish further theoretical results regarding the preprocessing of AMC instances.
Here, we first show, for the general case of arbitrary semirings, the applicability of the
preprocessor B+E, which uses variable forgetting to eliminate defined variables. Then
we modify the technique for idempotent semirings so that further variables, i.e. not just
defined ones, are eliminated.

We put our theoretical results regarding preprocessing to practical use by adding the
proposed preprocessor to the AASC solver aspmc. For this we adapt an existing imple-
mentation of B+E. Our experiments for evaluating the performance of the preprocessor
show that it reduces the time for the evaluation steps that follow, which are knowledge
compilation and counting. However, the total time needed to solve instances may increase
due to the additional time needed for the preprocessing itself.
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CHAPTER 1
Introduction

In this introduction a short overview on the topic of this thesis is given. After some
background information, we motivate the topic with a practical example. Then we
define the scope of this thesis and state concrete objectives. Furthermore, we provide an
overview on literature related to this thesis.

1.1 Background
Answer Set Programming (ASP) (Brewka et al. 2011; Eiter et al. 2009) is a declarative
problem solving paradigm, where problems are encoded as non-monotonic logic programs.
An answer set program consists of rules that describe the problem instance, rather than
a concrete algorithm that computes the solutions. Such a program can be submitted to
an ASP solver, which then outputs the solutions (answer sets) of the program.

Algebraic Answer Set Counting (AASC) (Eiter et al. 2021) is a task that generalizes
a variety of problems, such as e.g. probabilistic reasoning, preferential reasoning, or
optimization problems. AASC is defined on an extension of Answer Set Programming
(ASP) (Eiter et al. 2009; Brewka et al. 2011), called ASP with algebraic measures. In
this extension, a weight is calculated for each answer set of a given logic program; AASC
then amounts to summing up the weights of some or all of the answer sets of the program.
Depending on the problem that is modeled, the weights may represent different concepts,
such as e.g. probabilities, cost, etc.

The semantics is highly general due to being defined for arbitrary semirings. We recall
that a semiring R = (R, ⊕, ⊗, e⊕, e⊗) is a structure with operators for addition (⊕)
and multiplication (⊗) over a set R, with the respective identity elements e⊕ and e⊗,
satisfying a characteristic set of axioms. For the natural numbers N, we get answer set
counting as a special case of AASC.
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1. Introduction

Figure 1.1: A TSP instance

a b

c d

7

4
5

2

3

1

As the title of this thesis indicates, we intend to find efficient evaluation techniques for
AASC over idempotent semirings. Idempotent semirings are a subclass of semirings
where adding a value to itself results in the same value, i.e. ∀r ∈ R : r ⊕ r = r holds.

1.2 Motivation

AASC instances are in general hard to solve (Eiter and Kiesel 2021). Thus there is a
rising interest in finding efficient evaluation techniques. We want to contribute to this
with improved evaluation techniques for the special case of idempotent semirings. There
are various idempotent semirings that are useful for modeling a variety of problems
(Friesen and Domingos 2016; Kimmig et al. 2017; Larrosa et al. 2010).

For example, the semiring (R+, max, ·, 0, 1) can be used for Most Probable Explanation
(MPE) inference (Pearl 1988), a probabilistic reasoning task. For MPE inference, one is
given some evidence (truth values of some variables), and the task is to find the most
likely interpretation of the non-evidence variables.

Rmax = (N ∪ {−∞}, max, +, −∞, 0) and Rmin = (N ∪ {∞}, min, +, ∞, 0), called the
tropical semirings, are useful for modeling optimization problems, such as e.g. Rmax for
MAX-SAT. Another well-known example for an optimization problem is the Traveling
Salesman Problem (TSP). This problem has as input a list of cities with distances for
each pair of cities. The task is to find the shortest route through all cities, visiting no
city twice and returning at the starting city. This amounts to finding the shortest path
in an undirected weighted graph, with the first and last vertex being the same and every
other vertex occurring exactly once. The following is an example for how AASC can be
used to solve a TSP instance.

Example 1. Consider the TSP instance depicted in Figure 1.1. We can write a program
Π where first the edges are guessed and then all models are eliminated, where not all
vertices are visited exactly once.

2



1.2. Motivation

Guessing the edges:

vertex(a)
vertex(b)
vertex(c)
vertex(d)
{edge(X, Y )} ← vertex(X), vertex(Y ), X &= Y.

Eliminating unwanted models:

start(a)
visited(Y ) ← edge(X, Y ), start(X)
visited(Y ) ← edge(X, Y ), visited(X)
← vertex(X), not visited(X)
← edge(X, Y ), edge(X, Z), Y &= Z

← edge(X, Y ), edge(Z, Y ), X &= Z.

We then choose the semiring Rmin = (N ∪ {∞}, min, +, ∞, 0) and define the following
weights:

β(edge(a, b)) = β(edge(b, a)) = 7
β(edge(a, c)) = β(edge(c, a)) = 4
β(edge(a, d)) = β(edge(d, a)) = 5
β(edge(b, c)) = β(edge(c, b)) = 2
β(edge(b, d)) = β(edge(d, b)) = 3
β(edge(c, d)) = β(edge(d, c)) = 1.

The weight of one single answer set is calculated by "multiplying" the weights of all edges.
However, since in the case of Rmin, + is used as the multiplication operator, this actually
amounts to summing up the edge weights. Therefore, the weight of one answer set is the
distance of the route it represents. Similarly, "summing up" the weights of all answer
sets amounts to taking the minimum, since min is used as the addition operator. This
gives us as a result the distance of the smallest route.

As this example shows, there are still relevant applications of idempotent semirings. What
makes this restricted variant interesting is that in terms of evaluation the restriction
can be exploited in order to increase efficiency. Namely, for evaluation over idempotent
semirings there are weaker requirements in terms of preserving models, as compared to
the general case.

3



1. Introduction

1.3 Research Focus
There are multiple approaches to evaluating AASC. We focus on one that reduces an
AASC instance to an instance of Algebraic Model Counting (AMC) (Kimmig et al.
2017). The main difference between these two problems is that the AMC instance has a
propositional theory as part of the input instead of an answer set program. Our overall
aim is to modify this approach according to the weakened requirements for idempotent
semirings.

We focus on two particular steps in the evaluation. The first one is cycle breaking, which
has the purpose of removing cyclic dependencies in the input program. The second one
is preprocessing of the AMC instance. For this step we first show the applicability of a
preprocessing technique for general AASC. We then modify it to obtain an improved
version for idempotent AASC.

1.4 Contributions
Concretely, we make the following contributions:

• We show that the cycle breaking algorithms by Hecher (2020) and Lin and Zhao
(2003) are applicable in the evaluation of AASC over idempotent semirings. Both
algorithms are not applicable in the general case.

• We show that the preprocessing technique B+E by Lagniez et al. (2020) is applicable
in the evaluation of AASC in the general case.

• We modify B+E so that further variables are eliminated. We then show that this
modified version is still applicable for idempotent semirings.

• Based on an existing implementation of B+E, we add both versions of the prepro-
cessor (general and idempotent) to the aspmc solver (Eiter et al. 2021).

• We perform empirical experiments (benchmarks) to assess the impact of the pre-
processor on the performance of aspmc.

The results of the benchmarks show that preprocessing does reduce the time needed
for the subsequent evaluation steps (knowledge compilation and counting). However,
preprocessing itself takes too much time and as a consequence enabling preprocessing
increases the total time. Thus, while the preprocessor looks promising, the current
implementation does not have a beneficial effect yet.

1.5 Related Work
The idea of AASC has been introduced by Eiter and Kiesel (2020) as weighted LARS
in the context of stream reasoning. Eiter et al. (2021) then consider algebraic measures
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for just ASP, without the formalism for stream reasoning. Problog (De Raedt et al.
2007), and especially its algebraic extension (Kimmig et al. 2011), is a similar formalism.
Problog itself is a probabilistic extension of the logic programming language Prolog.
Compared to AASC as described by Eiter et al. (2021) there are a few differences. First,
Problog does not support the full syntax of ASP (in essence there is no negation in
Problog, only guesses). Second, it only allows so-called factorized measures, where answer
set weights are computed as a product of the values of the literals.

The idea of the evaluation approach that we consider has been described by Fierens et al.
(2015) for Problog. There, inference on Problog programs is reduced to Weighted Model
Counting (WMC), of which AMC is a generalization. According to Eiter et al. (2021)
the approach of reducing AASC to AMC has certain advantages as compared to some
alternatives: first, with clingo (Gebser et al. 2014), answer set counting can be done by
enumeration, which is only feasible if the number of answer sets is not too high. Second,
the dynASP2.5 solver (Fichte et al. 2021) uses an algorithm that is only feasible for
programs with very low treewidth.

One of the aspects that separates our work from the work mentioned above is that we
specifically consider the case of idempotent semirings. Kimmig et al. (2017) mention
some examples of AMC tasks over idempotent semirings and also consider idempotence
in the evaluation, but only for AMC and not AASC.

In the translation to propositional logic, we primarily focus on cycle breaking. Cycle
breaking has been studied for plain ASP and one can, in general, use existing algorithms
from the literature (Janhunen 2003; Hecher 2020; Lin and Zhao 2003). An additional
requirement for AASC is that models are preserved bijectively (like e.g. by Janhunen’s
method), which is not necessarily true for all cycle breaking algorithms. Examples for
this are the two cycle breaking algorithms by Hecher (2020) and by Lin and Zhao (2003)
described later in Chapter 4.

Eiter et al. (2021) did not use an existing algorithm but introduced a new cycle breaking
method that is inspired by TP -compilation (Vlasselaer et al. 2016). Its advantage is that
it only slightly increases the program’s treewidth. The treewidth of a program is an
important parameter that gives performance guarantees for AASC.

We are not aware of any work on preprocessing for AMC. The preprocessor that we
make use of (Lagniez et al. 2020) has been designed for model counting and uses the
concepts of definability and variable forgetting. Definability and variable forgetting in
propositional logic have been extensively studied in the past, cf. Lin and Reiter (1994),
Lang et al. (2003), Lang and Marquis (2008), and Su et al. (2009).
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CHAPTER 2
Preliminaries

This chapter introduces basic concepts relevant to this thesis. Answer Set Programming
(ASP) (Brewka et al. 2011; Eiter et al. 2009) is the foundation that we start with in
Section 2.1. It is a declarative problem solving paradigm and is well-suited for modeling
a multitude of different types of problems. There exist numerous extensions of the core
language. They serve the purpose of increasing expressiveness and/or allowing for more
convenient ways of representing certain problems. One such extension is ASP with
algebraic measures (Eiter et al. 2021). In this extension a weight, defined over a semiring
(Section 2.2), is assigned to each answer set. Section 2.3 introduces Algebraic Answer Set
Counting (AASC) which is performed on ASP with algebraic measures. For all necessary
definitions we follow the notation from Eiter et al. (2021).

We assume the reader is familiar with the basics of propositional logic. In Section 2.4 we
present a brief recap of the concepts necessary for this thesis. For a more comprehensive
overview see e.g. Kleine Büning and Lettmann (1999) and Enderton (2001).

2.1 Answer Set Programming
The idea of answer set programming is to encode problems as non-monotonic logic
programs. The solutions of such a program are called answer sets. They represent the
solutions of the described problem.

Definition 1 (Normal Answer Set Program). A (normal) answer set program Π is a
finite set of rules

a ← b1, ..., bm, not c1, ..., not cn

where a, b1, ..., bm, c1, ..., cn are propositional variables (i.e. propositional atoms). The
head of a rule is defined as H(r) := a, the positive/negative body as B+(r) := {b1, ..., bm}
and B−(r) := {c1, ..., cn} respectively. The set of propositional variables occurring in Π
is denoted by Var(Π).

7



2. Preliminaries

The negation "not" is called default negation. The negative body of a rule r is satisfied in
the absence of evidence for any variable occurring in B−(r). The use of default negation
can lead to non-monotonic behavior, i.e. solutions may be retracted under additional
evidence.

Example 2. Let Π1 be the answer set program consisting of the following rules:

a ← not b

b ← not a

c ← a

This program models a choice between a and b, where in the case of a being true, c is
also true.

2.1.1 Semantics
For the semantics of answer set programs, we first define under what circumstances an
interpretation satisfies a program.

Definition 2 (Interpretation). An interpretation of a program Π is a subset of Var(Π).

Definition 3 (Satisfaction). An interpretation I satisfies

• the head H(r) of a rule r if H(r) ∈ I,

• the positive body B+(r) of a rule r if B+(r) ⊆ I,

• the negative body B−(r) of a rule r if B−(r) ∩ I = ∅,

• a rule r if I either satisfies H(r) or does not satisfy both B+(r) and B−(r), and

• a program Π if it satisfies every rule r ∈ Π.

If an interpretation I satisfies a program, for every rule whose body is satisfied, its head
is already in I. In other words, from the variables in I no further variables can be
derived.

Example 3. The program Π1 from Example 2 is satisfied by {a, b, c}, {a, c}, {b, c}, and
{b}, but is not satisfied by {a, b}, {a}, and ∅.

We want models to only contain variables that are necessarily true. A positive (i.e. no
default negation) answer set program Π has an unique ⊆-minimal satisfying interpretation,
called the least model of Π, or LM(Π). For programs with default negation we need
the concept of the Gelfond-Lifschitz reduct (Gelfond and Lifschitz 1988). The reduct
of a program is a positive program. Negation is removed according to a candidate
interpretation.

8



2.2. Semiring

Definition 4 (Reduct). The reduct ΠI of a program Π w.r.t. an interpretation I is
obtained by

1. removing any rule r for which B−(r) ∩ I &= ∅
2. removing the negative body from the remaining rules

Example 4. Consider the program Π1 from Example 2. Let I1 := {a, b} and I2 := {a, c}.
Then ΠI1

1 :

c ← a

and ΠI2
1 :

a

c ← a

If the candidate interpretation coincides with the least model of the reduct then it is an
answer set of the program.

Definition 5 (Answer Set). An interpretation I is an answer set of Π if I = LM(ΠI).
The set of all answer sets of Π is denoted by AS(Π).

Example 5. The least model of ΠI1
1 is {}, which is not equal to I1. The least model of

ΠI2
1 is {a, c}, which is equal to I2. Therefore I2 is an answer set of Π1 while I1 is not.

2.2 Semiring
We first recall the definition of a monoid.

Definition 6. A monoid R = (R, ◦, e) consists of a non-empty set R and a binary
operator ◦, where

• ◦ is associative, i.e. ∀a, b, c ∈ R : (a ◦ b) ◦ c = a ◦ (b ◦ c), and

• e is an identity element, i.e. ∀r ∈ R : e ◦ r = r = r ◦ e.

Furthermore, a monoid is commutative if (R, ◦) is commutative, i.e. ∀a, b ∈ R : a◦b = b◦a.

A semiring is an algebraic structure defined as follows.

Definition 7 (Semiring). A semiring R = (R, ⊕, ⊗, e⊕, e⊗) consists of a non-empty set
R and two binary operators ⊕ and ⊗, called addition and multiplication respectively,
where

9



2. Preliminaries

• (R, ⊕, e⊕) is a commutative monoid,

• (R, ⊗, e⊗) is a monoid,

• multiplication left and right distributes over addition, i.e. ∀a, b, c ∈ R : a ⊗ (b ⊕ c) =
(a ⊗ b) ⊕ (a ⊗ c) and (a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c), and

• e⊕ annihilates R, i.e. ∀r ∈ R : r ⊗ e⊕ = e⊕ = e⊕ ⊗ r.

Furthermore, a semiring is commutative if (R, ⊗) is commutative, and is idempotent if
∀r ∈ R : r ⊕ r = r.

Example 6. (Cf. Eiter et al. 2021). Some common examples of semirings:

• F = (F, +, ·, 0, 1), for F ∈ {N,Z,Q,R}, the semiring of numbers in F with addition
and multiplication,

• B = ({0, 1}, ∨, ∧, 0, 1), the Boolean semiring,

• Rmax = (N ∪ {−∞}, max, +, −∞, 0), the max-plus semiring, and

• P = ([0, 1], +, ·, 0, 1), the probability semiring.

Out of these examples, B and Rmax are idempotent semirings.

2.3 Algebraic Answer Set Counting
Algebraic Answer Set Counting (AASC)(Eiter et al. 2021) is a task that is performed on
an extension of ASP, called ASP with algebraic measures. In this extension, a weight is
assigned to each answer set of a given logic program; AASC then amounts to summing up
the weights of the answer sets of the program. The weight of an answer set is determined
by a weighted propositional formula. Calculation of the weights and summing up answer
set weights are generalized from the natural numbers to arbitrary semirings.

Definition 8 (Weighted Propositional Logic). Let R = (R, ⊕, ⊗, e⊕, e⊗) be a commuta-
tive semiring. A weighted formula α over R is defined as

α ::= k | v | ¬v | α + α | α ∗ α

where k ∈ R and v is a propositional variable. The semantics of α w.r.t. some interpreta-
tion I is denoted by �α�R(I) and is defined as

�k�R(I) = k,

�l�R(I) =
�

e⊗ l = v, v ∈ I or l = ¬v, v /∈ I,

e⊕ otherwise,�α1 + α2�R(I) = �α1�R(I) ⊕ �α2�R(I),�α1 ∗ α2�R(I) = �α1�R(I) ⊗ �α2�R(I).

10
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Definition 9 (Algebraic Measure). An algebraic measure µ = �Π, α, R
 consists of an
answer set program Π, together with a weighted formula α over a semiring R. The weight
of an answer set I ∈ AS(Π) is denoted by µ(I) and defined as

µ(I) := �α�R(I).

A query µ(a) for a ∈ Var(Π) is defined as

µ(a) :=
�

I∈AS(Π),a∈I
µ(I).

The task of evaluating such a query is called algebraic answer set counting.

Example 7. Recall Π1 from Example 2. The rules a ← not b and b ← not a represent
a choice between either a or b. Using an algebraic measure, we can assign probabilities
to these two variables. Let µ1 = �Π1, α1, P
, where α1 := 0.3 · a + 0.7 · ¬a. Π1 has two
answer sets, {a, c} and {b}, with weights µ1({a, c}) = 0.3 and µ1({b}) = 0.7. The result
of the query µ1(c), i.e. the probability of c being true, is 0.3.

One special case of algebraic measures are factorized measures, where the answer set
weights can be defined as the product of literal weights.

Definition 10 (Factorized Measure). Let µ = �Π, α, R
 be an algebraic measure and let
F ⊆ Var(Π). Then µ is factorized w.r.t. F if there is a weight function

β : F ∪ {¬f |f ∈ F} → R
s.t.

µ(I) =
�

f∈F∩I
β(f) ⊗

�
f∈F\I

β(¬f)

for all I ∈ AS(Π)

Example 8. The measure µ1 from Example 7 is factorized w.r.t. {a}, by letting β(a) = 0.3
and β(¬a) = 0.7.

Eiter et al. (2021) showed that for any algebraic measure, an equivalent factorized
algebraic measure, along with the corresponding weight function β, can be constructed
in linear time. Therefore, we can in the context of this thesis assume that we are always
dealing with factorized measures.

From now on we refer to AASC over idempotent semirings as idempotent AASC, to
distinguish it from the general case with arbitrary semirings which we call general AASC.

We refer to all variables that contribute to the calculation of the model weights as
contributing variables. These are

• the query variable and

11
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• the variables occurring in the weighted formula.

For factorized measures we can further restrict the set of contributing variables to those
that have unequal weights for the positive and negative literal. This also includes the
query variable, since it can be thought of as having weight e⊗ for the positive, weight e⊕
for the negative literal.

Note that in order to determine the result of a query µ(a) to �Π, α, R
 it is sufficient to
know the values of all contributing variables for all models of Π.

Example 9. In Example 7, for the query µ1(c), both a and c are contributing variables.
For the query µ1(a), only a is a contributing variables.

For the rest of this thesis we assume, for factorized measures �Π, β, R
, that the query
variable is encoded into the weight function (using e⊗ and e⊕), and we refer to �Π, β, R

as an AASC instance. The result is computed by summing up all answer set weights.̧

2.4 Propositional Logic
A propositional formula is built from propositional variables and the logical connectives
∧, ∨, and ¬, called conjunction, disjunction, and negation respectively. A literal is a
propositional variable v or its negation ¬v. A clause is a disjunction l1 ∨ ... ∨ lk, k ≥ 1
of literals li. A formula is in Conjunctive Normal Form (CNF) if it is a conjunction
c1 ∧ ... ∧ cm, m ≥ 1 of clauses ci.

Let ϕ be a propositional formula. The set of immediate subformulas of ϕ is defined as
follows:

• if ϕ = ¬ϕ1 then ϕ1 is an immediate subformula,

• if ϕ = ϕ1 ∧ ϕ2 or ϕ = ϕ1 ∨ ϕ2 then ϕ1 and ϕ2 are immediate subformulas.

The set of subformulas is defined as the reflexive transitive closure of the immediate
subformulas.

A substitution is defined as simultaneously replacing in a formula ϕ every occurrence of a
variable x by a formula ψ and the result is denoted by ϕ[x := ψ].

A formula ϕ is defined over a set of variables, denoted Var(ϕ). This includes, but is not
limited to, the set of all variables that occur in the formula. An interpretation I ⊆ Var(ϕ)
is a model of ϕ if it satisfies ϕ according to the classical truth table, where I satisfies an
atom v if v ∈ I. The set of all models of ϕ is denoted by Mod(ϕ).

Let ϕ and ψ be propositional formulas. Then ψ is a logical consequence of ϕ, denoted
ϕ � ψ, if every model of ϕ is a model of ψ.

12



CHAPTER 3
Evaluation of Idempotent AASC

We start off this chapter with an evaluation approach for general AASC which amounts
to reducing AASC to algebraic model counting. Then we describe how the restriction
to idempotent semirings weakens some requirements for the evaluation algorithm. This
offers attack points, where the presented general approach can be modified for idempotent
AASC.

3.1 Reducing AASC to Algebraic Model Counting
There are multiple possible ways of evaluating AASC. The approach that we chose is
used for inference on Problog programs (Kimmig et al. 2017). Its use for evaluating
AASC has been described by Eiter et al. (2021). The main idea is to reduce AASC to a
task called Algebraic Model Counting (AMC), for which available solvers can be used.
Fierens et al. (2015) provided a detailed step-by-step description of the workflow. It is
written in the context of Problog but the general idea remains the same in our setting.

3.1.1 Algebraic Model Counting
Kimmig et al. (2017) introduced Algebraic Model Counting (AMC) as a generalization
of Weighted Model Counting (WMC). In the context of this thesis, we can view AMC as
a black box. We are thus primarily interested in how the input to AMC looks like.

Definition 11 (AMC Problem). An AMC instance �Γ, β, R
 consists of

• a propositional logic theory Γ,

• a commutative semiring R = (R, ⊕, ⊗, e⊕, e⊗), and

• a labeling function β : L → R, where L is the set of literals of the variables in Γ.
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3. Evaluation of Idempotent AASC

Figure 3.1: AASC evaluation by reduction to AMC

answer set program

tight program

propositional formula

CNF labeling function

weighted formula

cycle breaking

Clark’s completion

Tseitin’s transformation

preprocessing

AASC instance

AMC instance

Algebraic model counting describes the task of computing the sum of the values of all
models, where the value of a model is defined as the product of the values of its literals,
i.e. �

I∈Mod(Γ)

�
a∈I

β(a) ⊗
�
a/∈I

β(¬a)

where Mod(Γ) denotes the set of models of Γ.

3.1.2 Obtaining an AMC Instance
To obtain an AMC instance from an AASC instance, there are two main objectives,
namely constructing a propositional logic theory and a labeling function. Moreover,
we want the propositional theory to be a formula in CNF, so we can apply certain
preprocessing techniques. Figure 3.1 visualizes the necessary steps in this approach. In
the following we take a closer look at these steps.

As described in Section 2.3, we can assume that we are only dealing with factorized
measures. Therefore, by definition we have a weight function β that can be used as the
labeling function in the AMC instance.

The translation of an answer set program to propositional logic involves a bit more work.
However, the task is not specific to AASC, as it does not involve the weighted formula
and the semiring. This allows one to consider existing translations for plain ASP, as
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3.1. Reducing AASC to Algebraic Model Counting

long as the necessary model-preserving properties are fulfilled. Namely, as opposed to
some tasks like e.g. ASP consistency, in AASC in general every individual answer set is
relevant to the result. This requires a one-to-one correspondence between the answer sets
of the original program and the models of the CNF of the AMC instance. We capture
this with a property called bijective faithfulness.

Definition 12 (Bijective Faithfulness). Let Γ and Δ be propositional theories. A
translation from Γ to Δ is bijectively faithful w.r.t. a set of variables F , if there exists a
bijection µ : Mod(Γ) → Mod(Δ), s.t. for every I ∈ Mod(Γ), I ∩ F = µ(I) ∩ F holds.

The property is defined for propositional theories, of which both answer set programs
and propositional formulas are special cases. To ensure that the result of any query
is preserved, we require for each step in the translation bijective faithfulness w.r.t. all
contributing variables.

Theorem 1. If a translation from an AASC instance �Π, β, R
 to an AMC instance
�{ϕ}, β, R
 is bijectively faithful w.r.t. all contributing variables, then the AASC result
is preserved.

Proof. By definition of bijective faithfulness we know that each answer set of Π has exactly
one corresponding model of ϕ that has the same truth values for all contributing variables.
Therefore, these models have the same weights as their corresponding original answer
sets. Since the result of an AASC instance with a factorized measure is computed in the
same way as the result of an AMC instance, we conclude that the result is preserved.

In general the translation involves the following steps (as depicted in Figure 3.1):

1. Cycle breaking. The purpose of cycle breaking is to obtain a program without cycles
in its positive dependency graph. The positive dependency graph G of a program
Π is a directed graph, where V (G) = Var(Π) and (b, a) ∈ E(G) if for some r ∈ Π,
a ∈ H(r) and b ∈ B+(r). A program without such cyclic dependencies is also called
a tight program (Lifschitz 1996).
Cycle breaking is a well-studied topic in ASP. There are cycle breaking algorithms
designed for plain ASP that are bijectively faithful, like e.g. by Janhunen (2003).
There are also others, like by Eiter et al. (2021), that are designed with AASC in
mind and are thus also bijectively faithful.

2. Clark’s completion (Fages 1994) translates an tight program Π into a propositional
theory Ψ, s.t. Π and Ψ have the same models, i.e. Mod(Π) = Mod(Ψ).

3. Tseitin’s transformation (Tseitin 1983), is used to obtain a CNF. The fact that
Tseitin’s transformation preserves models one-to-one is commonly used in the
literature. However, as we could not find a full proof of this fact, we provide one
here.

15



3. Evaluation of Idempotent AASC

Definition 13 (Tseitin’s transformation). (Tseitin 1983) Let ϕ be a propositional
formula over Var(ϕ). The result of Tseitin’s transformation is computed as follows.

a) Let ψ be a subformula of ϕ that has no further subformulas other than itself
and simple variables. Let ϕ� be the formula obtained by replacing every
occurrence of ψ in ϕ with a fresh variable lψ.
Set ϕ := ϕ� ∧ (lψ ↔ ψ), and Var(ϕ) := Var(ϕ) ∪ {lψ}.

b) Repeat a) on subformulas of ϕ� until there are no more subformulas left to
replace.

Since each ψ contains at most one logical operator, each (lψ ↔ ψ) can easily be
transformed into a CNF.

Theorem 2. Tseitin’s transformation applied to a propositional formula ϕ is
bijectively faithful w.r.t. Var(ϕ).

Proof. We show that each step, transforming ϕ = ϕ�[lψ := ψ] over Var(ϕ) into
ϕ� ∧ (lψ ↔ ψ) over Var(ϕ) ∪ {lψ}, is bijectively faithful w.r.t. Var(ϕ).

Consider the mapping µ : Mod(ϕ) → Mod(ϕ� ∧ (lψ ↔ ψ)), where

µ(I) =
�

I ∪ {lψ} if I � ψ

I if I &� ψ.

If I � ϕ, then µ(I) � ϕ� ∧ (lψ ↔ ψ). Therefore, µ is a valid mapping. Also, µ
is injective, i.e. maps distinct elements in the domain to distinct elements in the
codomain.

For bijectivity, it remains to be shown that µ is surjective. For this, assume J
is a model of ϕ� ∧ (lψ ↔ ψ). This can only be the case if J � lψ ⇐⇒ J � ψ.
Therefore, it follows that J \ {lψ} � ϕ and µ(J \ {lψ}) = J .

These are the basic steps needed for the reduction to AMC. Additionally one can do some
preprocessing on the resulting CNF in order to simplify the AMC instance. According
to Lagniez et al. (2020), preprocessing is a valuable component in various automated
reasoning tasks, like e.g. SAT solving (Eén and Biere 2005; Biere et al. 2021). To
our knowledge, preprocessing techniques for algebraic model counting have not been
extensively studied. It is, however, likely that some existing techniques for other reasoning
tasks can be re-used for AMC. In this thesis we show in Chapter 5 that the preprocessing
technique described by Lagniez et al. (2020) for model counting is bijectively faithful
and thus applicable in evaluating general AASC.
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3.2 Exploiting Idempotence
In the case of idempotent AASC, bijective faithfulness is a stronger requirement than
we need. Therefore, in this section we describe a weaker (but sufficient) requirement.
When summing up the weights of the answer sets, the idempotent addition operator is
used. This means that multiplicity is ignored, i.e. multiple answer sets that have the
same weight are only counted once.

Example 10. Assume we have two answer set programs, Π1 and Π2, that have the
following weights, using the semiring Rmax:

• Π1: 1, 1, 1, 1, 3, 3, 4

• Π2: 1, 3, 4, 4

"Summing up" (using the max-operator) we get 4 as a result for both programs.

In the translation to an AMC instance we thus only need to make sure that each distinct
model weight is preserved. For this we define faithfulness.

Definition 14 (Faithfulness). Let Γ and Δ be propositional theories. A translation from
Γ to Δ is faithful w.r.t. a set of variables F , if for every model I of Γ there exists some
model J of Δ s.t. I ∩ F = J ∩ F , and vice versa.

Similarly to general AASC, to ensure that query results are preserved in the translation
from an AASC instance to an AMC instance, we require faithfulness for each step in the
translation, w.r.t. all contributing variables.

Theorem 3. If a translation from an AASC instance �Π, β, R
, where R is idempotent,
to an AMC instance �{ϕ}, β, R
 is faithful w.r.t. all contributing variables, then the
AASC result is preserved.

Proof. By definition of faithfulness, we know that for each answer set of Π there is at
least one corresponding model of ϕ that has the same truth values for all contributing
variables, and vice versa. Therefore, each weight of an answer set also occurs as the
weight of at least one model, and no models with new weights are introduced. Since
idempotence lets us disregard multiplicities of weights when summing up, we conclude
that the result of AASC is preserved.

This means that in the general approach presented in 3.1.2 one can replace the presented
bijectively faithful algorithms for the individual steps by others that are only faithful.
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CHAPTER 4
Non-bijective Cycle Breaking

In this chapter we show the applicability of two non-bijective cycle breaking algorithms
(Hecher 2020; Lin and Reiter 1994) for idempotent AASC. As elaborated in the previous
chapter, this requires a proof that they are faithful.

4.1 Algorithm 1
The first algorithm is by Hecher (2020) and is designed for deciding consistency of an
answer set program, i.e. whether there exists an answer set. It is originally defined
for head-cycle-free programs (Ben-Eliyahu and Dechter 1994), which generalize normal
answer set programs. In head-cycle-free programs, the head of a rule can be a disjunction
of variables, as long as in the positive dependency graph there is no cycle containing
two variables from the same rule head. As the output of this cycle breaking algorithm
already is a propositional formula, Clark’s completion in a separate step is not needed
here. In the following we refer to this algorithm as Algorithm 1.

Algorithm 4.1: Algorithm 1
Input: a head-cycle-free program Π and a tree decomposition T = (T, χ) of GΠ
Output: a propositional formula ϕ

The correctness of the translation (w.r.t. ASP consistency) is proven by the following
theorem.

Theorem 4 (Correctness). (Hecher 2020) Algorithm 1 is correct in that for each answer
set of Π there is a model of ϕ and vice versa.

The proof of this theorem involves, in the one direction, extending an arbitrary model of
Π to a model of ϕ. In the other direction, it is shown that the intersection of Var(Π) and
an arbitrary model of ϕ is a model of Π. This allows us to also conclude faithfulness.
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Corollary 1. Algorithm 1 is faithful, w.r.t. the variables of the input program.

4.2 Algorithm 2
The second algorithm, which we will refer to as Algorithm 2, is by Lin and Zhao (2003).

For this algorithm we need the concept of a strongly connected component: a set S of
variables in a program Π is called a Strongly Connected Component (SCC) of Π if there
is a path in the dependency graph GΠ of Π from every node a to every node b, with
a, b ∈ S, and S is ⊆-maximal.

Definition 15 (Algorithm 2). Let Π be an answer set program. Let the output program
Ψ be empty initially.

1. Let r ∈ Π be of the form

a ← b1, ..., bn, d1, ..., dm, not c1, ..., not cs

where b1, ..., bn and a are in the same SCC while d1, ..., dm are all not in a SCC
with a. We add the following rules into Ψ:

ar ← not right(a, b1), ..., not right(a, bn), b1, ..., bn, d1, ..., dm, not c1, ..., not cs

a ← ar

right(bi, a) ← ar

right(X, a) ← ar, right(X, bi)

where 1 ≤ i ≤ n and X is instantiated with all variables in the same SCC as a.

2. For every r ∈ Π that is a constraint, add r to Ψ

The intuition behind right(X, Y ) is that it records X being used to derive Y . This
predicate is used to block the application of a rule whose head variable has been used to
derive a variable in the rule’s positive body.

While an output program of Algorithm 2 is not necessarily tight, Lin and Zhao (2003)
show that for each output program Π it still holds that Π and its completion have the
same models.

It is also claimed that this translation is bijectively faithful w.r.t. the variables of the
input program, which however is not true. The following is a counterexample.

Example 11. Let Π be defined as follows:

a

b

a ← b

b ← a.
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Applying Algorithm 2 results in the following program Π�:

a1

a ← a1

b2

b ← b2

a3 ← not right(a, b), b

a ← a3

right(b, a) ← a3

right(a, a) ← a3, right(a, b)
right(b, a) ← a3, right(b, b)
b4 ← not right(b, a), a

b ← b4

right(a, b) ← b4

right(b, b) ← b4, right(b, a)
right(a, b) ← b4, right(a, a).

Π has exactly one answer set, namely {a, b}, while Π� has two answer sets, namely
{a, a1, b, b2, a3, right(b, a)} and {a, a1, b, b2, b4, right(a, b)}.

4.2.1 Applicability in Idempotent AASC
While the translation is not bijectively faithful, we can still show faithfulness.

Theorem 5. Application of Algorithm 2 to an answer set program Π is faithful, w.r.t.
Var(Π).

Proof. Let Ψ be the result of applying Algorithm 2 to Π. We need to show that for every
answer set I of Π there exists an answer set Iext of Ψ, s.t. Iext ∩ Var(Π) = I, and vice
versa.

" =⇒ "-direction: Assume I is an answer set of Π. We extend I to Iext as follows.

1. We start with Iext := I.

2. Consider some sequence s ∈ (ΠI)∗ of rules that computes LM(ΠI), i.e. each
a ∈ LM(ΠI) is in the head of some rule in s and the body of each rule in s is
satisfied by the head variables of the previous rules in the sequence. We assume
our sequence contains all rules that are applicable (i.e. body is satisfied), except
for any rule whose head variable has already been used to derive some variable in
its body.
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3. For each rule
a ← b1, ..., bn, d1, ..., dm

in this sequence, for every 1 ≤ i ≤ n and for every x with right(x, bi) ∈ Iext, add
ar, right(bi, a) and right(x, a) to Iext.

By construction of the sequence s, we know that for every rule

a ← b1, ..., bn, d1, ..., dm

in s, there is no right(a, bi) in Iext. Therefore, for each such rule, the rules

ar ← b1, ..., bn, d1, ..., dm

a ← ar

are in ΨIext . Therefore, LM(ΨIext) will contain all a ∈ LM(ΠI), and, by definition
of Algorithm 2, all variables that we added to I in order to construct Iext. Therefore,
Iext ⊆ LM(ΨIext).
Now for the sake of contradiction assume LM(ΨIext) contains additional variables that
are not in Iext. W.l.o.g. we can assume this is a variable of the form ar, derived by the
rule

ar ← not right(a, b1), ..., not right(a, bn), b1, ..., bn, d1, ..., dm, not c1, ..., not cs

in Ψ, with right(a, bi) /∈ Iext for 1 ≤ i ≤ n. But since Iext∩Var(Π) = I, the corresponding
rule

a ← b1, ..., bn, d1, ..., dm

would be in ΠI , and it would be applicable. Because we also know that a has not been
used to derive any bi, the rule has to be in s. Therefore, ar also has to be in Iext.
" ⇐= "-direction: Assume Iext is an answer set of Ψ. Let I := Iext ∩ Var(Π).
Every a ∈ I is in LM(ΨIext). Since for every two rules

ar ← b1, ..., bn, d1, ..., dm

a ← ar

in ΨIext , the rule
a ← b1, ..., bn, d1, ..., dm

must be in ΠI , every a ∈ I is also in LM(ΠI).
Now for the sake of contradiction assume LM(ΠI) contains an additional variable a that
is not in I. The rule used to derive a also has to be in ΨIext , except if it got removed
due to some right(a, b) ∈ Iext. However, this would mean that a is used to derive b.
Therefore, a would be in Iext and thus also in I.
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CHAPTER 5
AMC Preprocessing

In this chapter we describe a preprocessing technique that simplifies the input CNF of
AMC instances. Concretely, we modify an existing technique by Lagniez et al. (2020). The
latter is designed for propositional model counting, where it shows promising empirical
results. The general idea is to eliminate variables that are definable in terms of other
variables. We transfer the technique to our setting and show that it is applicable in AASC
(excluding contributing variables from elimination), even in the general case. Furthermore,
we show that in the evaluation of idempotent AASC one can safely eliminate further
non-contributing variables, using the same elimination technique.

5.1 Preliminaries
For this chapter we need some basic definitions concerning variable forgetting (Lang et al.
2003; Delgrande 2017) and definability in propositional logic (Lang and Marquis 2008).
Notation-wise we mostly follow Lagniez et al. (2020).

5.1.1 Variable Forgetting
We want to be able to eliminate certain variables from a CNF formula, while preserving
logical consequences that do not involve these variables. This is captured by the concept
of variable forgetting.

Definition 16. A formula ϕ is independent of a set X of variables if ϕ is equivalent to
a formula ψ s.t. Var(ψ) ∩ X = ∅.

Definition 17 (Variable Forgetting). Let ϕ ∈ LP and X ⊆ Var(ϕ). The forgetting of X
in ϕ, denoted as ∃X.ϕ, is defined over Var(ϕ)\X and is the strongest logical consequence
of ϕ, that is independent of X. "Logically strongest" means that for every formula ψ
independent of X it holds that ϕ � ψ implies ∃X.ϕ � ψ.
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5. AMC Preprocessing

If ϕ is a CNF, ∃X.ϕ can be computed by recursively eliminating each x ∈ X by
applying the resolution principle, i.e. resolving every clause containing x with every clause
containing ¬x.

Example 12. Let ϕ be the CNF consisting of the following clauses:

(a ∨ b) (b ∨ c)
(¬a ∨ e ∨ f) (¬b ∨ ¬e)

Then ∃{a}.ϕ:

(b ∨ e ∨ f) (b ∨ c)
(¬b ∨ ¬e)

and ∃{b, a}.ϕ = ∃{b}.(∃{a}.ϕ):

(c ∨ ¬e)

We cannot always forget variables without changing the AASC result. This is where we
need the concept of definability, which we can later use to define a necessary prerequisite.

5.1.2 Definability
We introduce a formal definition of definability, i.e. the ability to derive the value of a
variable in a formula from the values of some of the other occurring variables.

Definition 18 (Definability). Let ϕ ∈ LP , X ⊆ Var(ϕ), and y ∈ Var(ϕ). Then ϕ defines
y in terms of X if there exists a formula ψX over X s.t. ϕ � (ψX ↔ y).

For the preprocessing, we are interested in finding a set of variables defined in terms of
the remaining variables in the formula.

Definition 19 (Definability Partition). Let ϕ ∈ LP . A definability partition is a pair
�I, O
, s.t. I ∪ O = Var(ϕ), I ∩ O = ∅, and ϕ defines every x ∈ O in terms of I. A
definability partition is subset-minimal if there exists no definability partition �I �, O�

with I � ⊆ I.

If ϕ is given in the context, we refer to O as a set of defined variables, actually meaning
that �Var(ϕ) \ O, O
 is a definability partition.

5.2 Forgetting of Defined Variables
In this section we first present the existing preprocessing algorithm by Lagniez et al.
(2020) which eliminates defined variables . In the second part we show that this algorithm
is applicable in general AASC.
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5.2. Forgetting of Defined Variables

Figure 5.1: (Lagniez et al. 2020) Algorithm B

Figure 5.2: (Lagniez et al. 2020) Algorithm E

5.2.1 Algorithm B+E

Algorithm B+E consists of two parts. In the first part (Figure 5.1) a definability partition
�I, O
 to an input CNF formula ϕ is computed.

The second part (Figure 5.2) takes φ and the set of defined variables O as input. It then
computes a formula that is equal to the forgetting of E in ϕ for some E ⊆ O.

Both algorithms are proven to be correct w.r.t. their input/output specifications (Lagniez
et al. 2020). This allows us to view them as a black box.

Note that not all variables in O are forgotten. The reason for this is that for some variables,
elimination would increase the number of clauses in the formula. After computing the
set of resolvents, the clauses properly subsumed by other clauses are removed. Then
there is a check for whether the resulting set of clauses of the formula is larger than
before the elimination. For variables where this would be the case, their elimination is
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postponed. This ensures that as a result we get a CNF formula that has fewer (or not
more) variables than the input formula, while at the same time the size is not increased
(or only by a negligible factor) (Lagniez et al. 2020).

5.2.2 Applicability in General AASC
In propositional model counting, for which B+E is designed, the requirement to the
preprocessor is that the number of models stays the same. This property is not sufficient
in our case. Instead we need bijective faithfulness.

We start by showing that variable forgetting does not introduce new models.

Lemma 1. Let ϕ ∈ LP and X ⊆ Var(ϕ). Then every model of ∃X.ϕ can be extended
to a model of ϕ.

Proof. Let M ∈ Mod(∃X.ϕ). Let γ := �
x∈Var(∃E.ϕ)∩M

x ∧ �
x∈Var(∃E.ϕ)\M

¬x. Clearly

γ ∧ ∃E.ϕ is consistent, thus
∃X.ϕ &� ¬γ.

As ∃X.ϕ is the strongest logical consequence of ϕ, and γ is independent of X, we have
that

ϕ &� ¬γ.

This then implies that γ ∧ ϕ is consistent. Thus, ϕ has a model that extends M.

Now we can show bijective faithfulness, given that the input is a set of defined variables.

Theorem 6. Let ϕ ∈ LP and let �I, O
 be a definability partition of ϕ. Let E ⊆ O.
Then a translation from ϕ to ∃E.ϕ is bijectively faithful w.r.t. Var(∃E.ϕ).

Proof. We show the theorem by establishing that the mapping

µ :Mod(ϕ) → Mod(∃E.ϕ)
N $→ N ∩ Var(∃E.ϕ)

is a bijection.

First, µ is a valid mapping since by definition every model of ϕ is a model of ∃E.ϕ. For
bijectivity we need to show injectivity and surjectivity:

• injectivity:
Let M ∈ Mod(∃E.ϕ). We know that ϕ defines every x ∈ E in terms of I.
Furthermore, I ⊆ Var(ϕ) \ E = Var(∃E.ϕ) Thus, if there exists an extension
of M to a model of ϕ it is unique. This implies that µ maps distinct models of ϕ
to distinct models of ∃E.ϕ.
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• surjectivity:
This follows from Lemma 1.

This result additionally implies that the number of models does not change, which is a
weaker property proven by Lagniez et al. (2020).

Corollary 2. Let ϕ ∈ LP and let �I, O
 be a definability partition of ϕ. Let E ⊆ O.
Then |Mod(ϕ)| = |Mod(∃E.ϕ)|

When implementing this preprocessing technique, one has to consider that for the variables
that are eliminated their values will not be calculated in AMC. Since all contributing
variables are needed to determine the model weights, these variables have to be excluded
from elimination. One can do this by, after computing the definability bipartition �I, O
,
simply moving all contributing variables that are in O into I. Or one can modify B to
not put contributing variables into O when computing the definability partition.

5.3 Forgetting Non-contributing Variables
In this section we propose a modification of the described preprocessing that is applicable
for idempotent AASC and eliminates any variable that is non-contributing. Theorem 7
proves that the forgetting of any set of variables is faithful.

Theorem 7. Let ϕ ∈ LP and let E ⊆ Var(ϕ). Then a translation from ϕ to ∃E.ϕ is
faithful w.r.t. Var(∃E.ϕ).

Proof. By definition every model of ϕ is a model of ∃E.ϕ. The other direction follows
from Lemma 1.

Again, for applying this technique to idempotent AASC, we require E to be a subset
of the non-contributing variables. This gives us faithfulness w.r.t. all contributing
variables. Therefore, since this is our only restriction on the input variables, our proposed
preprocessing technique consists of running Algorithm E on the set of all non-contributing
variables.
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CHAPTER 6
Implementation of AMC

Preprocessing

This chapter describes a way of using the two preprocessing techniques described in
Chapter 5 in practice. We have incorporated them into the algebraic answer set counter
aspmc (Eiter et al. 2021), by modifying an implementation of B+E accordingly. Our
code is publicly available, both the preprocessor module 1 and its invocation in aspmc 2.

Furthermore, we present the results of benchmark tests designed to assess the impact of
this preprocessing on the time needed to solve instances.

6.1 Implementation

Our first approach was to use the exact implementation3 of B+E described in Lagniez et al.
(2020). There, we encountered two problems. (1) When running E alone, the variables
that were actually forgotten were not listed in the output. However, this information is
needed to get the correct result in counting, as forgotten variables need special treatment.
Theoretically they are no longer part of the set of variables over which the formula is
defined. In practice one can to the same effect assume a fixed value for each of them, e.g.
set all of them to be true. This problem of missing output regarding forgotten variables
required only minor changes to the code and was resolved by the authors upon request.

(2) The second problem is that some variables seem to disappear during the preprocessing.
The following is an example where we could observe this behavior.

1https://github.com/martin5598/sharpsat-td-preprocessor
2https://github.com/raki123/aspmc
3https://github.com/crillab/b-plus-e
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6. Implementation of AMC Preprocessing

Example 13. For the CNF over {a, b, c, d} consisting of the following clauses

(¬a) (¬c)
(¬a ∨ d) (a ∨ ¬d)
(d ∨ ¬b) (¬d ∨ b)

one would expect as a result of forgetting c and d, the CNF

(¬a) (¬b)

over {a, b}. However, the result of running E on c and d as input variables is an empty
clause set over the variables {a, b, c, d} (i.e. no variables are forgotten, but still all clauses
disappear).

We suspect that this behavior is due to some additional simplification technique. However,
due to this the required output specifications, as described for Algorithm E, are not met
and thus faithfulness is not guaranteed. This can be seen in the above example, where
the input formula has one model I, but for the output formula every interpretation is a
model.

To resolve this second problem we estimated more extensive changes to be necessary.
Thus, we decided to consider a different implementation of B+E, namely the one used
in the preprocessor of SharpSAT-TD4, which we estimated to be easier to adapt to our
setting. It differs in some details from B+E as it is described in Lagniez et al. (2020), but
the elimination of variables is implemented in the same way. Therefore, we get as output
the forgetting of some of the input variables, which is consistent with the specifications of
B+E. We added a mode for idempotent semirings that implements the modified version
described in Section 5.3. The other changes necessary to incorporate the preprocessor
into aspmc were mostly of a technical nature.

6.2 Experiments
In this section we describe how the benchmark tests were conducted and then present
the results thereof.

6.2.1 Experimental Questions
With our experiments we intend to answer the following questions:

Q1 Does preprocessing decrease the time needed for knowledge compilation / counting?

Q2 Does the overall performance (wall clock time) improve with preprocessing, i.e.
does the speedup of compilation/counting make up for the additional overhead of
preprocessing?

4https://github.com/Laakeri/sharpsat-td
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6.2. Experiments

Q3 Regarding the overall performance impact of preprocessing, are there different
results depending on instance size?

For Q1, we expected preprocessing to reduce the time needed for both compilation and
counting. For Q2, we expected that it would improve the overall performance. For Q3, we
expected instance size not to be a factor in whether preprocessing increases or decreases
the total time.

6.2.2 Setup

Benchmarking Instances We use five different benchmarking sets, all publicly avail-
able5. The set (1) simple_paths contains the graph representations of public transport
networks from several transport agencies over the world. This set has been used by Eiter
et al. (2021) for benchmarking. The set (2) smokers contains instances of the well-known
smokers example (Fierens et al. 2015). In this example, for a group of people each one
(with a certain probability) either smokes or does not, and each person who smokes may
(with a certain probability) influence their friends to start smoking too. We generated
the the instances ourselves, using randomly generated power law graphs that are known
to resemble social networks (Barabási and Bonabeau 2003). The sets (3) gh and (4) gnb
contain artificially generated programs with an increasing number of head variables and
negated body variables respectively. The set (5) blood contains instances that model the
inheritance of blood types, with an increasing number of ancestors. All three of gh, gnb,
and blood are from Bellodi et al. (2020).

The simple_paths set consists of instances for answer set counting. The other sets consist
of AASC instances over the probabilistic semiring. In addition gh, gnb, and blood are
also suitable for Most Probable Explanation (MPE) inference (Pearl 1988), using the
idempotent maxtimes semiring. Recall that MPE inference is finding the most likely
interpretation of non-evidence variables, given some evidence (truth values of some
variables).

Hardware Specifications We use a cluster consisting of 12 nodes. Each cluster has
two Intel Xeon E5-2650 CPUs with 2.2 GHz clock speed and access to 256 GB shared
RAM. For the benchmarking we limit each run of an instance to 8GB RAM and specify
a timeout of 1800 seconds.

Run Configurations All instances were run with aspmc in Problog mode (i.e. us-
ing Problog syntax), using the arguments -m problog -dt <t> -c, except for the
simple_paths instances which are run in ASP mode, using -m asp -dt <t> -c. The
timeout <t> for computation of a tree decomposition was set to 10 seconds for the sets
containing large instances, and to 1 second otherwise. The sets gh, gnb, and blood are

5https://doi.org/10.5281/zenodo.6428320
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Figure 6.1: Wall clock times for the set smokers, part 1 of 2.

additionally run using the idempotent semiring (R+, max, ·, 0, 1), by adding the argument
-s maxtimes.

Each instance is run with and without preprocessing, three repetitions each. To enable
preprocessing, the additional argument -p is used. Some instances may fail due to
reaching the specified timeout or memory limit. Furthermore, in some cases we get an
error because no tree decomposition is found within the specified timeout for computation
of a tree decomposition. For interpreting the results we discard instances that have less
than two runs out of three completed for either mode (preprocessing disabled/enabled).
The following values are obtained as results from the runs:

• total wall clock time,

• knowledge compilation time,

• counting time,

• preprocessing time.

The times for knowledge compilation, counting, and preprocessing are measured and
printed out by aspmc. Thus, we were able to parse these values from the output.

6.2.3 Experimental Results
For the sets gh, gnb, blood all runs were completed. For smokers and simple_paths some
runs failed. Also, in the latter case, due to the large number of instances we ended the
experiment after about 24 hours, before all runs could be started. A complete collection
of all the results plus the scripts used to parse and plot the results are publicly available6.

We first have a look at the results concerning Q2. An improvement in overall performance
can not be observed in general. Our preprocessing more often seems to have a mixed (see

6https://github.com/martin5598/benchmark-results
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Figure 6.2: Wall clock times for the set smokers, part 2 of 2.

Figure 6.3: Wall clock times for the set gnb.

Figure 6.4: Wall clock times for the set gnb, using an idempotent semiring.
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Figure 6.5: Wall clock times for the set gh.

Figure 6.6: Detailed times for the set gnb, using an idempotent semiring.

Figures 6.1 and 6.2) or even negative (see Figures 6.3 and 6.4) impact on performance.
An example where the preprocessed runs are faster is depicted in Figure 6.5, but this is a
rather small set with small instances.

To get an insight as to why the preprocessor is performing badly, we have a look at Q1.
For this we plot the individual times for compilation, counting, and preprocessing as
stacked bars. For each pair of columns, the first one represents times with preprocessing
disabled, the second one with preprocessing enabled. Figures 6.6 and 6.7 show that
preprocessing does decrease the time needed for compilation and counting in almost all
of the depicted instances. Here the problem is that preprocessing itself takes too much
time. In particular for the larger instances of these sets the preprocessing times seem to
explode.

In the case of the smokers set (Figure 6.8) there seems to be another reason for some
of the instances taking longer with preprocessing enabled. Here, preprocessing time
accounts for only a small fraction of the total time. And while for some instances it is
beneficial for performance, for others it increases compilation and counting time. We
could not figure out an apparent reason for this behavior.
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Figure 6.7: Detailed times for the set blood.

Figure 6.8: Detailed times for the set smokers, part 2.

Figure 6.9: Relative change in wall time depending on instance size, using instances from
all sets.

35



6. Implementation of AMC Preprocessing

To answer Q3, we plot the instances of all sets together in a scatter plot (Figure 6.9). The
X-axis represents the instance size, for which we use the wall time without preprocessing
as a measure. The Y-axis represents the relative change in wall time caused by enabling
preprocessing. Below the red line preprocessing decreases wall time, i.e. it improves
performance. The plot shows no clear correlation with instance size. It holds for both
small and large instances that our preprocessor implementation is sometimes beneficial
but more often disadvantageous.

6.2.4 Summary
Considering these results we conclude that this implementation of the preprocessor B+E
does not have the impact on performance that we hoped for, given that for a majority
of instances the total wall time increases with preprocessing enabled. Therefore, at the
moment we do not recommend using this feature in aspmc.

As for a possible cause of these long running times, we could not definitely make out one.
The most likely cause is the generation of the resolvents and the removal of redundant
clauses (that are subsumed by other clauses) afterward. This quickly becomes expensive
for variables that appear in more than a few clauses. In the implementation that we
used, there is a limit for the number of clauses a variable may appear in, in order to be
considered for elimination. However, this is checked only once at the beginning, before
any variable is eliminated.

A positive takeaway is that the preprocessor decreases (or does not increase) the time
needed for compilation and counting (except for a few instances in the smokers set).
Therefore if, hypothetically, the large preprocessing times are due to some efficiency issue
with the preprocessor implementation that we use, one might by fixing that issue get
a preprocessor that is actually beneficial. Another promising option might be to use a
different implementation altogether.
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CHAPTER 7
Conclusion

We can divide the contributions of this thesis into a theoretical and a practical part. In
the theoretical part we established the applicability

• of two algorithms for cycle breaking in the evaluation of idempotent AASC,

• and of an algorithm for preprocessing in the evaluation of general AASC, with an
extended version for idempotent AASC.

For the cycle breaking algorithm by Hecher (2020), applicability in our setting already
follows from the original correctness proof. The second algorithm by Lin and Zhao (2003)
is claimed to be bijectively faithful which would make it applicable for general AASC.
However, we found this not to be true and provided a counterexample. Then we showed
that despite not being bijectively faithful the algorithm can still be used for idempotent
AASC.

Concerning the preprocessing step, we first established applicability of the B+E prepro-
cessor (originally designed for model counting) in the evaluation of general AASC. We
were able to prove applicability without modifications to the original algorithms. We also
proposed a modified version that makes use of the restriction to idempotent semirings.
Here, the restriction that only defined variables can be forgotten does not apply anymore
and can thus be dropped. This allowed us to consider all non-contributing variables for
forgetting. Contributing variables are excluded in both versions, so that the answers to
AASC are preserved.

In the practical part of this thesis, we added a preprocessing feature to aspmc, based on
our theoretical results. For this we adapted an existing implementation of B+E. Besides a
few necessary technical adaptations, we also implemented the mode for idempotent AASC.
This mode may turn out to be more efficient, since more variables can be eliminated and
at the same time no computation of a definability bipartition is necessary.
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7. Conclusion

To evaluate the impact on the time needed to solve instances, we performed benchmark
tests on a computer cluster. The results indicate that while our preprocessor imple-
mentation reduces the time needed for the subsequent steps (knowledge compilation
and counting), the additional overhead introduced by the preprocessing itself negates
this effect. More often than not the time needed for solving increased with enabling
preprocessing, which is the opposite of what we want. These observations apply to both
versions (general and idempotent). As for possible causes for this inefficiency, we suspect
that much of the preprocessing time can be attributed to the variable elimination part,
more specifically the computation of resolvents and the removal of redundant clauses
afterwards. However, to get to the bottom of this, a deeper investigation is necessary.

Future Work The next step would be to find out whether the inefficiency of our
preprocessor is (at least partly) due to some inefficiency in the implementation that can
be fixed. One option would be to examine the selection of variables that are actually
eliminated. In the implementation that we used, this is dependent on the number of
clauses a variable appears in. Furthermore, this is for all variables only checked once,
before any variable is actually eliminated.

As an alternative to fixing the current implementation, it may be worthwhile considering
a different implementation of B+E altogether, like the one1 we initially attempted to
adapt.

Besides the preprocessor that we considered, one can also explore other ways of AMC
preprocessing. In general, to the best of our knowledge, there is not much previous work
on preprocessing for AMC. Looking at further existing techniques for similar tasks such
as model counting, weighted model counting, etc. might be promising.

In this thesis we presented cycle breaking algorithms that could be used as an alternative
to currently used ones. It remains to be examined whether these alternatives have
advantages in complexity and whether an implementation of them would outperform the
currently used cycle breakings.

1https://github.com/crillab/b-plus-e
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