
Requirements Analysis, System
Architecture and Evaluation of a

Privacy-First Web Application
Framework

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering/Internet Computing

by

Stefan Gussner
Registration Number 01527253

ausgeführt am
Institut für Information Systems Engineering
Forschungsbereich Business Informatics
Forschungsgruppe Industrielle Software
der Fakultät für Informatik der Technischen Universität Wien

Advisor: Thomas Grechenig

Wien, 28th August, 2024

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Declaration of Authorship

Stefan Gussner

I hereby declare that I have written this thesis independently, that I have completely
specified the utilized sources and resources and that I have definitely marked all parts of
the work – including tables, maps and figures – which belong to other works or to the
internet, literally or extracted, by referencing the source as borrowed. I further declare
that I have used generative AI tools only as an aid, and that my own intellectual and
creative efforts predominate in this work. In the appendix “Overview of Generative AI
Tools Used” I have listed all generative AI tools that were used in the creation of this
work, and indicated where in the work they were used. If whole passages of text were
used without substantial changes, I have indicated the input (prompts) I formulated and
the IT application used with its product name and version number/date.

Vienna, 28th August, 2024
Stefan Gussner

iii

Danksagung

An dieser Stelle möchte ich mich bei allen bedanken, die zum Gelingen dieser Diplomarbeit
beigetragen haben.

Mein besonderer Dank gilt Thomas Grechenig für die Betreuung meiner Arbeit. Ich
schätze die Möglichkeit, unter seiner Anleitung an diesem Thema arbeiten zu dürfen.

Ein herzlicher Dank gilt auch Clement Hlauschek, der mir als Kontaktperson wertvolle
Unterstützung und konstruktives Feedback gegeben hat. Seine Anregungen und seine
Zeit haben maßgeblich zur Fertigstellung dieser Arbeit beigetragen.

Des Weiteren möchte ich meiner Familie und meinen Freunden danken, die mich während
des gesamten Studiums unterstützt haben.

Vielen Dank!

v

Acknowledgements

At this point, I would like to thank everyone who contributed to the success of this thesis.

My special thanks go to Thomas Grechenig for supervising my work. I appreciate the
opportunity to work on this topic under his guidance.

I would also like to thank Clement Hlauschek, who provided valuable support and
constructive feedback as a contact person. His suggestions and time have significantly
contributed to the completion of this work.

Furthermore, I would like to thank my family and friends who supported me throughout
my studies.

Thank you!

vii

Kurzfassung

Aus ökonomischen Gründen ist Software in den letzten Jahren zentralisierter geworden.
Webanwendungen bieten eine bequeme Möglichkeit für Benutzer, eine Anwendung zu
starten, ohne Software installieren zu müssen. Diese Bequemlichkeit geht jedoch bei tradi-
tionellen webarchitekturen auf Kosten der Privatsphäre. In dieser Arbeit schlagen wir ein
privacy-first Webanwendungsframework vor, das seine Abhängigkeit von zentralisierter
Infrastruktur minimiert. Wir präsentieren eine Anforderungsanalyse, die Systemarchi-
tektur und eine Bewertung des Frameworks anhand von drei Beispielanwendungen. Wir
zeigen, dass das Framework die Entwicklung von Peer-to-Peer-Anwendungen ermöglicht,
die resistent gegen Zensur sind. Es gibt jedoch Einschränkungen in Browser-APIs und der
Verfügbarkeit von Bibliotheken für die Webplattform, die die Anwendungen, die derzeit
mit dem Framework entwickelt werden können, einschränken.

Keywords: privacy, web application, peer-to-peer, CRDT, censorship resistance

ix

Abstract

Due to economic reasons, software has grown more centralized in recent years. Web
applications offer a convenient way for users to start using an application without the
need to install software. However, this convenience comes at the cost of privacy. In
this work we propose a privacy-first web application framework that minimizes its
dependency on centralized infrastructure. We present a requirements analysis, the system
architecture and an evaluation of the framework based on three sample applications. We
demonstrate that the framework allows for the development of peer-to-peer applications
that are resistant to censorship. However, there are restrictions in web browser APIs
and availability of libraries for the web platform that restrict the applications that can
currently be developed with the framework.

Keywords: privacy, web application, peer-to-peer, CRDT, censorship resistance

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Problem Description . 1
1.2 Goals . 2

2 Methodological Approach 5

3 Related Work 9
3.1 DHT / Overlay Networks . 9
3.2 Privacy-Enhancing Technologies . 11
3.3 Attacks on System Components . 14

4 Fundamentals 19
4.1 Definitions . 19
4.2 The CIA Triad . 19
4.3 Browser Capabilities . 20
4.4 Sender-Recipient Unlinkability . 24

5 Requirements Analysis of the Privacy-First Web Application Frame-
work 27
5.1 Sample Web Applications . 27
5.2 Requirements . 32
5.3 User Stories . 35

6 System Architecture of the Privacy-First Web Application Framework 37
6.1 Overview . 37
6.2 Data Storage Abstraction . 38
6.3 RPC Abstraction . 42
6.4 Peer-to-Peer Bootstrapping . 47

xiii

6.5 Simulation and the Importance of Correct Bootstrap Parameters . . . 49
6.6 Time-Based Addresses . 51
6.7 Unlinking Time-Based Addresses From Static Identifiers 52
6.8 Censorship Resistance vs Anonymity 53
6.9 Encryption and Communication . 54
6.10 Encryption of Persistent Data . 55
6.11 Anonymity . 57

7 Evaluation 59
7.1 Functionality . 59
7.2 Security and Privacy . 60
7.3 Performance . 71
7.4 Developer Usability . 81
7.5 End-User Usability . 82
7.6 Generalizability . 82
7.7 Research Questions . 87
7.8 Limitations . 89

8 Future Research 91
8.1 Censorship Resistance . 91
8.2 Developer Experience . 91
8.3 Accessing the Tor Network . 92
8.4 Applications of the Framework in Combination with Blockchain Technology 92
8.5 User Experience . 92

9 Conclusions 93

List of Figures 95

List of Algorithms 95

Bibliography 97

Appendix 107
Overview of Generative AI Tools Used . 107

CHAPTER 1
Introduction

In this chapter, we introduce the topic of this work, describe the problem, and outline
the goals.

1.1 Problem Description
In recent years, there is a push for centralization in the software development world.
Applications need to be scalable to billions of users to collect user data for targeted
advertising to be profitable. To reverse this trend and protect the privacy of individuals,
the European Union created the General Data Protection Regulation (GDPR) [1]. GDPR
requires that the processing of personal data shall be “limited to what is necessary
in relation to the purposes for which they are processed (‘data minimization’)” and
“processed in a manner that ensures appropriate security of the personal data, including
protection against unauthorized or unlawful processing and against accidental loss,
destruction, or damage, using appropriate technical or organizational measures (‘integrity
and confidentiality’)”.

The traditional web architecture consists of a back-end with an application server
processing plain-text information and storing data centralized and unencrypted in one or
multiple databases [2], [3], [4]. Compromising a database reveals user data to an attacker.

Attacks on centralized and unencrypted database systems are not restricted to those
outside of the organization running such systems. Insider attacks, where employees leak
or abuse data, are also a threat. In 2019, insiders leaked 153 audio recordings captured
by the “Google Assistant” smart speaker system to a news outlet1.

Inside attacks are sometimes mandated by national governments. In 2021, a man sent
pictures of his naked son to a doctor for diagnosis and is reported to the police for

1https://siliconangle.com/2019/07/11/privacy-fail-audio-recorded-google-
assistant-leaked-belgian-news-outlet/ (last visited 2024-08-28)

1

https://siliconangle.com/2019/07/11/privacy-fail-audio-recorded-google-assistant-leaked-belgian-news-outlet/
https://siliconangle.com/2019/07/11/privacy-fail-audio-recorded-google-assistant-leaked-belgian-news-outlet/

1. Introduction

suspected child abuse by Google. Android phones can easily be set up to automatically
upload all pictures taken to the Google Photos cloud, and Google uses a neural network
to detect pictures of naked children among all uploaded pictures. Even after the police
complete the investigation and found no violation of the law, the man did not get
his Google account, which contains all his email, contacts, and photos, back2. Data
commonly collected by web applications can be exploited in various ways, such as price
discrimination, spam, and identity theft [5].

Even though centralized data collection claims to anonymize their records, Deußer et al.
[6] argue that while it may be possible to store single coarsened clicks anonymously, any
collection of higher complexity will contain large amounts of pseudonymous data.

Among others, Fuller et al. [7], Lewi et al. [8], and Wagner et al. [9] propose encrypted
databases as part of a solution for privacy concerns in centralized applications. However,
Poddar et al. [10] have demonstrated that applications using encrypted databases can
still leak information to an attacker. Centralized systems allow for a wide range of data to
be collected, including metadata such as the time a client is active. Centrally stored data
is inherently more attractive to attackers as it allows the compromise of many accounts
at once rather than having to perform multiple individual attacks.

1.2 Goals
To circumvent the privacy and security problems of unencrypted centralized data storage
for web applications processing sensitive data, this work proposes a JavaScript framework
named “Applink” offering an interface for decentralized applications for secure persistent
data storage and partial transactional state replication. Applink should support latest
version of the three major web browsers Google Chrome3, Mozilla Firefox4, and Apple
Safari5 from now on called “current web browsers”. Applink sends messages that are
encrypted and authenticated between instances of the web application. To reduce enrty
barriers for users6, Applink does not rely on web browser extensions and is transparent
to the users. This work will not implement the full functionality of Applink but will
instead focus on prototyping key parts of the framework to determine the feasibility of
the approach.

Such a framework poses the following research questions:

The investigation (1) evaluates the possibility of implementing the Applink JavaScript
framework with the APIs provided by current web browsers without extensions. This
is especially important for web browsers on mobile devices, which often cannot install

2https://www.nytimes.com/2022/08/21/technology/google-surveillance-toddler-
photo.html (last visited 2024-08-28)

3https://www.google.com/chrome/ (last visited 2024-08-28)
4https://www.mozilla.org/firefox/ (last visited 2024-08-28)
5https://www.apple.com/safari/ (last visited 2024-08-28)
6“users” always refers to the users of a web application; “developers” always refers to the developers

using Applink to develop a web application

2

https://www.nytimes.com/2022/08/21/technology/google-surveillance-toddler-photo.html
https://www.nytimes.com/2022/08/21/technology/google-surveillance-toddler-photo.html
https://www.google.com/chrome/
https://www.mozilla.org/firefox/
https://www.apple.com/safari/

1.2. Goals

extensions. This work (2) explores and documents methods to ensure data consistency
in a partially replicated system within the constraints of a web application. The use of
hardware security tokens for authentication has been standardized by the W3C7. This
work (3) explores the possibility of using hardware security tokens and other mechanisms
in web browsers to encrypt application data in a user-friendly way without relying on
passwords. Last but not least, the investigation (4) compares the performance of Applink
to the performance of centralized web applications.

In this chapter, we have established that the current architecture of web applications
poses a privacy risk to users. We have also outlined the goals, which aim to develop a
JavaScript framework that provides the basis for decentralized web applications. In the
next chapter, we will discuss the methodological approach to achieving these goals.

7https://www.w3.org/TR/2021/REC-webauthn-2-20210408/(last visited 2024-08-28)

3

https://www.w3.org/TR/2021/REC-webauthn-2-20210408/

CHAPTER 2
Methodological Approach

The methodological approach [11] consists of the following eight steps:

1. The first step is to conduct a review of the academically published literature.
The focus of the literature review is on distributed database systems, in-browser
encryption, and message exchange methods. This step includes analyzing the
reasons why browser extensions have been used in the past

2. The second step is to conduct a use-case analysis of three sample applications. This
step uses three different applications to evaluate the generalizability of the proposed
approach.

2.1 The first sample application is a beer credit system (BCS). The BCS allows
users to pay for beer in advance and keep track of remaining credit. Adminis-
trators must approve deposits. Users can purchase beer using credits at any
time without approval. The implementation of the BCS demonstrates how
administrative functionality can be implemented in Applink.

2.2 The second sample application is an invoicing system (IS). The IS allows users
to receive invoices from other applications. Users can view the invoices and see
statistics about their purchases. The implementation of the IS demonstrates
how to send data between different applications (Cross-Origin Resource Sharing
(CORS)1) using Applink. This ability is not only important for application
interoperability but also for censorship resistance, as applications could transfer
user data to the same application running on a new domain to circumvent a
domain takedown. This is possible because the web application can outlive a
takedown for multiple days using the Service Worker API2.

1https://www.w3.org/TR/2020/SPSD-cors-20200602/ (last visited 2024-08-28)
2https://www.w3.org/TR/service-workers/ (last visited 2024-08-28)

5

https://www.w3.org/TR/2020/SPSD-cors-20200602/
https://www.w3.org/TR/service-workers/

2. Methodological Approach

2.3 The third sample application is a note app. The note app allows one or
multiple users to create and edit text notes. The implementation of the
note app demonstrates how collaborative editing can be implemented using
Applink.

3. The third step is to derive the requirements (including a threat model) for Applink
based on the use-case analysis.

4. The fourth step is to explore techniques and APIs to implement Applink based
on the requirements derived in the previous step. The exploration is performed
by implementing key parts of the prototype framework, such as communication
and data storage, using multiple approaches and comparing the performance and
reliability of the approaches.

5. The fifth step is to use the techniques and APIs found in the previous step to
implement Applink to the extent possible in current web browsers. Any developer
familiar with web technologies should be able to use Applink.

6. The sixth step is to document the pain points and limitations of implementing
such a framework. This occurs in parallel with the development of the prototype
framework.

7. The seventh step is to implement the sample applications using the prototype
framework.

8. The eighth step is to evaluate the prototype framework in terms of performance,
end-user experience, security, and privacy. This step includes testing if the prototype
applications meet the requirements derived from the use-case analysis.

8.1 The performance analysis is conducted using the developer tools of a current
web browser. The three sample applications are evaluated for their adherence
to the goals stated in the RAIL model3 based on the work of Nielsen et al. [12].
The RAIL model limits the response time to user input to under 100ms, time
to draw a frame to under 16ms, time to load the page to under 5000ms, and
idle processing time to under 50ms. The performance analysis is performed
using Google Chrome4 on a Google Pixel 6 Pro running the Android Operating
System.

8.2 The end-user experience is argued based on the requirements described in step
three.

8.3 The security of Applink is systematically (but without formal proof) analyzed
and argued based on the threat model and the security requirements described
in step three.

3https://web.dev/rail/ (last visited 2024-08-28)
4https://www.google.com/chrome/ (last visited 2024-08-28)

6

https://web.dev/rail/
https://www.google.com/chrome/

8.4 The privacy of Applink is systematically (but without formal proof) analyzed
and argued based on the threat model and the privacy requirements described
in step three. The analysis of the privacy of Applink includes a statistical anal-
ysis of the timings and packet sizes of the messages exchanged. Furthermore,
the privacy analysis includes reasoning about the possibility of an adversary
being able to reconstruct the state of an application based on observing the
exchanged messages.

In this chapter, we have outlined the methodological approach to achieve the goals of
this work. In the next chapter, we will discuss related work.

7

CHAPTER 3
Related Work

In this chapter, we outline relevant related work, focusing on two main areas: privacy-
enhancing technologies for web applications and various attacks on system components
relevant to Applink.

3.1 DHT / Overlay Networks
Because Applink is a decentralized web application framework, it requires a decentralized
network to facilitate communication between users. In this section, we discuss related work
on overlay network technologies and potential attack vectors targeting these networks.

Stoica et al. [13] describe the Chord protocol, a distributed hash table (DHT)-based
overlay network that provides a scalable and efficient method for locating data in a
decentralized network. DHT systems are widely used in peer-to-peer overlay networks to
facilitate efficient data retrieval and storage.

DHTs form the foundation of many decentralized systems. One such system is the
InterPlanetary File System (IPFS)1, a peer-to-peer data storage and retrieval system.
Prünster et al. [14] describe an eclipse attack on the IPFS network by precomputing Sybil
nodes and using them to eclipse a target node. They identify a flaw in the DHT peer
scoring mechanism that awards points for unsolicited advertisement of content results
and other non-supportive behavior, highlighting the need for improved peer scoring
mechanisms to prevent such attacks. Prünster et al.’s work underscores the importance
of robust peer scoring mechanisms in DHT-based systems to prevent eclipse attacks.

Another approach to storing data in a decentralized fashion is used by the Bitcoin network.
The Bitcoin network employs a gossip protocol because every full node must know about
all transactions that have occurred on the network. Heilman et al. [15] describe an

1https://ipfs.tech/ (last visited 2024-08-28)

9

https://ipfs.tech/

3. Related Work

eclipse attack on the Bitcoin network, where an attacker controls all connections to a
node in a peer-to-peer network. This control enables the attacker to carry out a double
spend attack with less than 50% of mining power. They propose several countermeasures,
including evicting peers based on hash collisions of their IP addresses, testing known
peers and replacing them only if they are offline, and using Tor-style guard nodes to
enhance security.

Tran et al. [16] describe a stealthier eclipse attack compared to that of Heilman et al.
on the Bitcoin network that can be performed by a more powerful adversary capable
of controlling (or spoofing) a significant portion of the network. This type of attack is
feasible only for state-sponsored network adversaries, emphasizing the threat posed by
attackers with substantial resources.

Bienstock et al. [17] propose the ASMesh protocol, an augmentation of the Signal protocol
tailored for the unique characteristics of mesh networking. They introduce a message
anonymizer that symmetrically encrypts double ratchet encrypted packets using some
of the established key material from the ratchet and a key derivation function (KDF),
enhancing privacy and security in mesh networks.

To encrypt messages in a decentralized network, developers can use the libsignal library2.
The Signal protocol is used in popular messaging applications such as WhatsApp3,4

and Signal5. Albrecht et al. [18] reveal that using libsignal, the library at the core of
the privacy-focused Signal chat application, alone does not guarantee confidentiality.
Their investigation into the offline messaging application Bridgefy identified a security
vulnerability in the application’s compress-then-encrypt schema, which can be exploited
by analyzing ciphertext lengths within a small set of possible plaintexts. Additionally,
they note that an adversary can use publicly visible user IDs to build communication
graphs. Our work attempts to address the issue of publicly visible user IDs, aiming to
enhance privacy and security.

In recent years, neural networks have become a popular tool for providing users with
convenience functions, such as the autocomplete functionality of the Google Keyboard,
as described by Yang et al. [19]. These neural networks can be trained in a decentral-
ized manner using federated learning. However, this approach is only effective if the
participants are honest, as it can leak information about the training data.

Wink et al. [20] describe a method for the distributed training of neural networks using a
secure average computation to summarize model weights. Their method protects against
model reverse engineering but does not safeguard against dishonest participants who
submit incorrect model weights.

2https://github.com/signalapp/libsignal (last visited 2024-08-28)
3https://signal.org/blog/whatsapp-complete/ (last visited 2024-08-28)
4https://faq.whatsapp.com/820124435853543/?helpref=hc_fnav (last visited 2024-08-

28)
5https://signal.org/ (last visited 2024-08-28)

10

https://github.com/signalapp/libsignal
https://signal.org/blog/whatsapp-complete/
https://faq.whatsapp.com/820124435853543/?helpref=hc_fnav
https://signal.org/

3.2. Privacy-Enhancing Technologies

Luqman et al. [21] demonstrate that distributed training of neural networks is vulnerable
to membership inference attacks due to the tendency of neural networks to memorize
data.

This thesis uses a DHT-based overlay mesh network to facilitate communication between
users. The related work in the area outlines potential pitfalls and vulnerabilities that need
to be addressed. Our design aims to provide a usable abstraction over the DHT-based
overlay mesh network to aid developers in building privacy-friendly, censorship-resistant
web applications.

3.2 Privacy-Enhancing Technologies
This section delves into a comprehensive analysis of privacy-enhancing technologies
proposed and implemented in recent years, highlighting their significance and mechanisms.

Goldberg et al. [22] summarize the inventions of the early days of privacy-enhancing
technologies, such as remailers, anonymizing web proxies, and anonymous digital cash.
Remailers and anonymizing web proxies fundamentally rely on the concept of introducing
anonymizing intermediaries between the sender and receiver, thereby obfuscating the
origin of the communication. A widely deployed implementation of this approach is
the Tor anonymity network by Dingledine et al. [23]. Every anonymity system requires
ongoing research to develop defenses against novel attack vectors. For example Bahramali
et al. [24] describe how deep neural networks can be trained to de-anonymize users of the
Tor network. Danezis et al. [25] propose a provably secure message format called Sphinx.
Building on top of Sphinx, Danezis et al. [26] propose HORNET, a high-speed mixnet.
Kuhn et al. [27] discover a novel attack on the security proof of Sphinx and HORNET.

Encrypting centralized social media features, such as exchanging text and multimedia
messages between two or more individuals, has become a well-established concept within
digital communications. Schillinger et al. [28] describe a sophisticated web-based social
network written in JavaScript that utilizes the crypto.subtle API6. This network enables
encrypted messaging between individual users and groups, with all messages securely
stored on a central server. They introduce the innovative concept of concealed addresses,
which allows for the addressing of information while ensuring that the server does not
learn contact relationships. This is achieved through the use of zero-knowledge proofs,
which authorize the server to verify that a message can be accessed by a client without
revealing the actual content. In their subsequent work, the authors tackle the issue
of metadata leakage in encrypted social networks by employing onion-routing style
“concealed channel” [29].

Dodson et al. [30] describe a social media application designed specifically for Android
smartphones. In this system, central servers are used to host message queues of encrypted
messages. The application assigns a public/private key pair to each device, enhancing

6https://www.w3.org/TR/WebCryptoAPI/#Crypto-attribute-subtle (last visited 2024-
08-28)

11

https://www.w3.org/TR/WebCryptoAPI/#Crypto-attribute-subtle

3. Related Work

security and privacy. The authors propose an intriguing method for key distribution by
leveraging traditional social media platforms, such as Facebook. They provide APIs to
manage common application styles, including turn-based games, where players take turns
sequentially, which can operate on top of the social media application, thereby extending
its functionality and increasing user engagement.

End-to-end encryption for specific applications has also seen innovative proposals. Hu et al.
[31] focus on Google Docs, intercepting and encrypting messages used for communicating
document updates via a web browser extension. This approach is particularly notable
as it modifies the functionality of an existing application without requiring significant
changes to the application itself, thereby maintaining user convenience while enhancing
security.

A different approach to providing privacy to users was proposed by Wang et al. [32].
They propose a rule-based system for data usage and access, utilizing a client proxy
and remote attestation, built on the existing TLS and DNS infrastructure. This system
allows clients to define DNS domains permitted to process, aggregate, and store data,
enforcing these rules through remote attestation. The authors suggest that organizations
such as the EFF could define these rule sets, thus alleviating the need for end-users to
invest significant effort and expertise in specifying rules.

Tor was initially designed for web-browsing, but its low-latency can even be used for
phone calls as demonstrated by Bromberg et al. [33] who propose a Voice over IP (VoIP)
system that employs Tor as its transport layer. By splitting the traffic over multiple
Tor circuits, they achieve a higher quality of experience for users, addressing one of the
common challenges associated with using Tor for VoIP.

Shafagh et al. [34] propose a decentralized data access control service designed for time-
series data that can be selectively shared. Their approach leverages blockchain technology
to store access control policies and uses a DHT-based storage network, ensuring both
security and scalability.

Kogan et al. [35] present a system for private blocklist lookups. This system allows a
client to determine if a particular string appears on a server-held blocklist without leaking
the string to the server. They achieve this in sublinear time, significantly increasing
server throughput by 6.7x, demonstrating the system’s efficiency and practicality.

Khandelwal et al. [36] propose a privacy settings enforcement controller browser extension.
This extension enables users to specify their privacy choices and automatically navigates
the privacy menus of websites to enforce these choices. Additionally, they propose an
automated cookie notice enforcer [37], which can disable all non-essential cookies through
GDPR-mandated consent forms with a high success rate of 91%.

In privacy-enhancing distributed systems, synchronizing data across devices is a difficult
problem. Khare et al. [38] propose extending the Representational State Transfer (REST)
architecture for decentralized systems. Their approach allows agents within a distributed
system to make decisions about data values based on estimations, using a centralized

12

3.2. Privacy-Enhancing Technologies

mutex to ensure total serialization of all updates to a resource. This approach enhances
the consistency and reliability of decentralized systems.

One approach to synchronizing state across devices could be snapshotting state and
transferring that snapshot to another device. Lo et al. [39] propose a generic method for
migrating (i.e., storing and restoring) the current state of a website. They detail how
function closures, event handlers, I/O events, and timers can be serialized, in addition to
the trivially serializable state of a JavaScript-based web application, thereby preserving
the full state of a web application across different sessions or environments.

Barradas et al. [40] describe PROTOZOA, a censorship circumvention system that
utilizes covert channels over WebRTC video streams. PROTOZOA requires an out-of-
band channel to exchange video-chatroom information, which is necessary to establish
the WebRTC session and ensure that the communication remains hidden from censors.

Newman et al. [41] propose a high-bandwidth, metadata-private file broadcasting system.
This system is designed to allow a small number of broadcasters to share a file with many
subscribers, ensuring that the metadata remains private and secure.

The Tor project offers multiple censorship circumvention systems. One of them uses
domain fronting, as described by Fifield et al. [42], and WebRTC data channels7. These
mechanisms enhance the ability of users to bypass censorship and access information
freely.

Smart Contracts on the Ethereum blockchain enable arbitrary code execution by anyone
while presenting an eventually consistent world state [43]. There are multiple Ethereum
clients, such as the Metamask web browser extension8, which facilitate web applications’
interaction with the Ethereum blockchain. The web browser extension is essential because
the Ethereum network protocol cannot be directly implemented in a web browser.

Bowe et al. [44] extend this concept with ZEXE, which allows both code and data to be
encrypted, thereby hiding them from third parties. A transaction in this system takes
approximately 1 minute, in addition to the computation time required, highlighting its
efficiency and security.

While Smart Contracts are a promising solution for managing distributed state replication,
they face several unresolved issues that hinder their feasibility for general-purpose
applications. These issues include the significant environmental impact associated with
proof-of-work blockchains as described by Goodkind et al. [45] and the low transaction
throughput as described by Bez et al. [46] and Samuel et al. [47], which currently limit
their practical applications.

While there are many privacy-enhancing technologies available, the shift to smartphones,
where software can only be obtained through a centrally controlled app store that

7https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/
snowflake/-/wikis/Technical%20Overview

8https://metamask.io/ (last visited 2024-08-28)

13

https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/wikis/Technical%20Overview
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/wikis/Technical%20Overview
https://metamask.io/

3. Related Work

sometimes delists applications upon government requests, can hinder the use of these
technologies. This thesis aims to address this issue by providing a privacy-enhancing
technology that can be accessed through a web browser on a smartphone, thereby
enhancing the accessibility and availability of privacy-enhancing technologies.

3.3 Attacks on System Components
This section provides an in-depth discussion on various attacks targeting system compo-
nents, particularly focusing on cryptography, DHT/mesh networks, and web browsers,
which are relevant to our design.

3.3.1 Cryptography
In this subsection, we discuss related work concerning the cryptographic primitives
employed in our design. Our selection of cryptographic primitives is based on the
available cipher suites in modern web browsers (see subsection 4.3.1). We utilize AES in
both GCM and CTR modes. For key exchange, we employ RSA and ECDH. For digital
signatures, we use ECDSA.

Len et al. [48] demonstrate a partitioning oracle attack on AES-GCM by using a key
multi-collision algorithm to find a collision in the GCM authentication tag. This attack
highlights potential vulnerabilities in the implementation of AES-GCM and underscores
the importance of rigorous cryptographic validation.

Bock et al. [49] investigated nonce reuse issues with the AES-GCM block cipher mode
in TLS. They discovered that 184 HTTPS servers were repeating nonces and 70,000
servers were using random nonces, which can potentially lead to nonce reuse. This finding
emphasizes the need for proper nonce management to ensure the security of encrypted
communications.

Shakevsky et al. [50] uncovered an IV reuse attack on the TrustZone hardware in
Samsung devices. The TrustZone is designed to protect cryptographic key material from
being accessible to the main operating system, ensuring that keys are secure even if the
main operating system is compromised. However, Samsung’s implementation allowed an
attacker to choose the IV of the AES-GCM algorithm within the TrustZone, enabling
the extraction of wrapped keys and demonstrating a critical security flaw.

Jager et al. [51] describe a private key recovery attack on TLS-ECDH as described by
Dierks et al. [52], which exploits faulty ECDH implementations that fail to validate
whether a point is on a specific curve. This attack underscores the importance of proper
validation in cryptographic implementations to prevent key recovery attacks.

Moghimi et al. [53] discovered an execution-time side-channel attack against TPM 2.0
devices deployed on commodity computers. They successfully recovered the 256-bit
private keys used for ECDSA and ECSchnorr signatures, demonstrating the vulnerability
of TPM devices to side-channel attacks and the need for improved security measures.

14

3.3. Attacks on System Components

Alem et al. [54] describe a side-channel attack on OpenSSL’s RSA implementation. They
use analog signals produced by the processor during the execution of the RSA algorithm
to extract key material, highlighting the risks associated with side-channel attacks and
the importance of securing cryptographic implementations against such vulnerabilities.

Boneh et al. [55] provide a comprehensive overview of 20 years of attacks on the RSA
cryptosystem, covering both elementary attacks on RSA’s mathematical properties and
implementation attacks.

Mus et al. [56] describe a key recovery attack for RSA and ECDSA using the Rowhammer
attack as described by Kim et al. [57], a hardware bug that allows an attacker to flip
bits in memory by repeatedly accessing nearby memory locations. This attack highlights
the vulnerability of cryptographic systems to hardware-level exploits and the necessity of
robust protection mechanisms.

Takahashi et al. [58] describe fault attacks against OpenSSL’s implementation of elliptic
curve cryptography. They demonstrate a full key recovery attack by injecting faults
to create an EC key file with explicit curve parameters and a compressed base point,
emphasizing the importance of securing cryptographic implementations against fault
injection attacks.

Addressing metadata leakage from Signal’s sealed sender protocol9, Martiny et al. [59]
propose ephemeral mailboxes, which enable two parties to exchange messages without
disclosing their identity to the service provider. This approach relies on the assumption
that the IP addresses of the communicating parties are hidden, highlighting a novel
method for enhancing privacy in communication protocols.

Cherubin et al. [60] evaluate the viability of website fingerprinting attacks on the
Tor network. Website fingerprinting utilizes machine learning techniques to identify
websites based on the timing, volume, and direction of packets. They achieve above 95%
accuracy when monitoring five websites, but the accuracy degrades to less than 80%
when monitoring as few as 25 websites.

3.3.2 Web Browsers
Tim Berners-Lee et al. [61] describe the World Wide Web (W 3) model, a client-server
architecture with three main components: (1) a common naming scheme for documents,
(2) a common network access protocol, and (3) a common data format for hypertext.
The W 3 client is also known as a web browser. Since its introduction in 1992 by Tim
Berners-Lee et al. [61], the W 3, also known as the World Wide Web, has become
widely adopted and has added capabilities for dynamic content with the introduction
of JavaScript in 1995 [62]. This gradual evolution and wide adoption has lead to web
browsers being a complex software system.

Squarcina et al. [63] found web application session integrity attacks by showing that the
same-origin policy can be violated by a same-site (subdomains) cookie tossing attack.

9https://signal.org/blog/sealed-sender/ (last visited 2024-08-28)

15

https://signal.org/blog/sealed-sender/

3. Related Work

They describe how cookies, even HTTP-only cookies, can be evicted and overwritten
by JavaScript. The “__Host-” prefix for cookies was intended to prevent this attack.
However, an attacker can use nameless cookies and serialization collisions to circumvent
these protections. Their research contributed to 12 CVEs, 27 vulnerability disclosures,
and updates to the cookie standard, highlighting the ongoing challenges in maintaining
web security.

Roth et al. [64] investigated inconsistent configurations of opt-in web browser security
mechanisms sent by different web servers, such as HTTP Strict Transport Security
(HSTS), a HTTP header signalign to the web browser that this origin should only be
loaded with the TLS encrypted version of HTTP, HTTPs. They found that 321 out
of 8,174 websites had inconsistent configurations either over time, between different
web browsers, or from different source IP addresses. This inconsistency undermines
the effectiveness of security mechanisms and emphasizes the need for standardized and
consistent security practices.

Kim et al. [65] describe an attack vector to break the same-origin policy by leveraging web
browser extensions that lack input validation and are poorly designed. They successfully
extracted passwords and keys from password manager extensions, stole cryptocurrency,
and performed universal cross-site scripting10. This study underscores the significant
security risks posed by poorly designed browser extensions.

Lehmann et al. [66] describe binary exploitation of WebAssembly. WebAssembly allows
compilation of memory-unsafe languages such as C and C++ to run in the web browser.
Application vendors with large legacy codebases can compile their existing code to
WebAssembly instead of rewriting it. However, WebAssembly does not offer the same
protection mechanisms as native binaries, such as Address Space Layout Randomization
(ASLR) as originally described by Forrest et al. [67], and stack canaries as described
by Wagle et al. [68]. ASLR and stack canaries are techniques to make it more difficult
to exploit memory corruption vulnerabilities. They found potential cross-site scripting
attacks by exploiting WebAssembly programs, highlighting the need for enhanced security
measures in WebAssembly implementations.

Eriksson et al. [69] analyze the security of web browser extensions and discover novel
password-stealing, traffic-stealing, and inter-extension attacks. Furthermore, they identify
4,410 extensions that perform traffic-stealing attacks, emphasizing the pervasive nature
of security vulnerabilities in web browser extensions and the need for improved vetting
and security practices.

Calzavara et al. [70] describe inconsistencies in the click-jacking protection of web browsers.
Modern web browsers support two different mechanisms for white-listing domains allowed
to frame a website: X-Frame-Options and Content-Security-Policy. They found that 10%
of the distinct framing control policies in the wild are inconsistent, highlighting the need
for unified and consistent framing control policies to prevent click-jacking attacks.

10And you know it’s a bad day if universal cross-site scripting is the third entry in such a list.

16

3.3. Attacks on System Components

Gierlings et al. [71] describe abusing the site-isolation mechanism in web browsers
to perform resource exhaustion attacks using fork bombs and UDP port exhaustion.
Additionally, they demonstrate the feasibility of a DNS cache poisoning attack building
upon their UDP port exhaustion attack with a success rate of 37%. This study underscores
the importance of robust resource management and security mechanisms in web browsers.

Snyder et al. [72] describe a side-channel attack on modern web browsers that allows
cross-origin communication between conspiring websites by exhausting limited resources
managed by the web browser, such as WebSockets, web workers, and server-sent events.
This attack highlights the potential for resource exhaustion to compromise web security
and the need for improved resource management in web browsers.

Agarwal et al. [73] describe an exploit of the Spectre vulnerability in Chromium-based
web browsers. This vulnerability breaks the site-isolation mechanism of the web browser,
allowing an attacker to read the memory of other web pages as well as the LastPass
password manager browser extension. This exploit demonstrates the pervasive nature of
hardware vulnerabilities and the importance of mitigating such risks in web browsers.

Chinprutthiwong et al. [74] demonstrate the potential for XSS attacks to persist in a
web browser using the service worker API. This study highlights the need for robust
input validation and security practices to prevent persistent XSS attacks in modern web
applications.

Mirheidari et al. [75] describe an improvement of the Web Cache Deception attack
discovered by Mirheidari et al. [76]. They explain how misconfigured CDN caches can be
exploited to retrieve private information from other users by crafting malicious URLs
that trigger the caching of private information. This can be achieved, for example, by
adding “.css” to the end of a URL. They propose a novel detection method and find 1,188
vulnerable websites, emphasizing the need for proper configuration and security practices
in CDN caches.

The contribution of this master’s thesis is to evaluate the feasibility of implementing
privacy-friendly, censorship-resistant web applications in modern web browsers. Addi-
tionally, this thesis outlines an application architecture that does not rely on centralized
data storage while maintaining the look and feel of traditional web applications. This is
particularly relevant, as the traditional threat model for web applications assumes that
the server is trusted and the client is untrusted, and web browsers have been designed
around this threat model.

Our JavaScript framework, named Applink, aims to address the challenges associated with
implementing the cryptographic layers of privacy-friendly, censorship-resistant web appli-
cations by providing a reference implementation that avoids pitfalls and vulnerabilities
identified in the literature.

In this chapter, we have outlined related academically published work that is relevant
to this thesis. In the next chapter, we will discuss the fundamentals of the technologies
used in this thesis.

17

CHAPTER 4
Fundamentals

This chapter provides a comprehensive overview of the essential concepts and technologies
necessary for implementing a distributed application framework. The discussion covers
critical definitions, security principles, web browser capabilities, and relevant APIs for
cryptography, data storage, and communication.

4.1 Definitions
To ensure clarity and consistency throughout this thesis, we define several key terms:

(i) Peer: An application running in a web browser that participates in the network.

(ii) Contact: A peer included in the contact list of another peer.

(iii) Trusted Peer: A peer that is trusted by a contact. This property is transitive,
meaning if Peer A trusts Peer B and Peer B trusts Peer C, then Peer A trusts Peer C.
This forms a web of trust model. The transitivity of trust may be limited to a certain
depth to prevent extending trust to all peers in the network.

4.2 The CIA Triad
The CIA triad, as described by Rhodes-Ousley [77], is a foundational model used to
evaluate the security of a system. The triad comprises three core principles:

1. Confidentiality: Ensures that information is accessible only to those authorized to
have access. The system must prevent unauthorized access to sensitive information.

2. Integrity: Ensures that information remains accurate and unaltered during storage,
transmission, and processing. The system must prevent unauthorized modifications to
information.

19

4. Fundamentals

3. Availability: Ensures that information and resources are accessible to authorized users
whenever needed. The system must prevent unauthorized denial of access to information.

While availability is generally understood to mean that a system or service can be
connected to and used, it is equally important to consider social availability. Social
availability refers to the awareness and acceptance of particular software by normal users
and the social implications of its usage. For example, if the use of certain software
is criminally punishable, even if not actually enforced, it affects the software’s social
availability.

4.3 Browser Capabilities
This section provides an overview of the relevant web browser APIs associated with
cryptography, persistent data storage, and communication that are currently available
in modern web browsers. These capabilities are essential for implementing secure and
efficient distributed applications.

4.3.1 Cryptography
Web browsers implement the SubtleCrypto interface, which provides a set of methods for
performing various cryptographic operations. These functionalities include symmetric
and asymmetric encryption, creating and verifying digital signatures, and key generation.

The W3C WebCrypto specification recommends that the following algorithms should be
implemented1:

HMAC us ing SHA−1
HMAC using SHA−256
RSASSA−PKCS1−v1_5 us ing SHA−1
RSA−PSS us ing SHA−256 and MGF1 with SHA−256.
RSA−OAEP us ing SHA−256 and MGF1 with SHA−256.
ECDSA us ing P−256 curve and SHA−256
AES−CBC

However, in practice, web browsers support a broader range of algorithms2:

RSASSA−PKCS1−v1_5 , RSA−PSS , ECDSA, HMAC,
RSA−OAEP, AES−CTR, AES−CBC, AES−GCM,
SHA−1, SHA−256 , SHA−384 , SHA−512 ,
ECDH, HKDF, PBKDF2,
AES−KW

1https://www.w3.org/TR/WebCryptoAPI/#algorithm-recommendations-
implementers (last visited 2024-08-28)

2https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto (last visited
2024-08-28)

20

https://www.w3.org/TR/WebCryptoAPI/#algorithm-recommendations-implementers
https://www.w3.org/TR/WebCryptoAPI/#algorithm-recommendations-implementers
https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto

4.3. Browser Capabilities

The storage of key material is not specified by the WebCrypto API, and it may be
extractable by other, non-privileged processes on the operating system outside the web
browser3 if stored in the persistent storage of the web browser. One of our research
questions is to investigate the possibility for web applications to use the WebAuthn API
to encrypt key material before storing it in persistent storage.

WebAuthn

The W 3C WebAuthn specification provides a signature-based authentication scheme
where an authenticator signs a challenge with a private key. According to the specification,
the authenticator can be implemented in software, on a secure coprocessor, or on a physical
token accessible via USB, Bluetooth, or NFC4.

A Pseudo Random Function (PRF) is a cryptographic function that is indistinguishable
from a random oracle for a polynomial-time adversary. A random oracle is a function
that maps every value in the possible input set to a value in the possible output set,
returning a random value for each input but always the same value for the same input. It
is impossible for an adversary to predict the output value from the input value without
access to the oracle.

A web application can use the proposed PRF Extension to WebAuthn to encrypt data in
the web browser by generating a random seed and storing it in plain text. When the
application is opened, the PRF provided by WebAuthn derives an encryption key from
the seed, which is then used to encrypt data stored in persistent storage5.

4.3.2 Persistent Storage
Web browsers offer multiple methods for storing data, with the primary differences being
storage duration and the ability to structure data.

SessionStorage and LocalStorage

SessionStorage enables developers to store key-value pairs in storage managed by the
web browser until the page is closed. Both keys and values must be of the string type6.
SessionStorage can be used to store data across multiple tabs but is not suitable for
long-term storage, as it gets cleared when the page is closed.

LocalStorage is similar to SessionStorage but with one key difference: LocalStorage data
has no expiration time, meaning it persists even after the web browser is closed and
reopened, while SessionStorage data is cleared when the page session ends7.

3https://www.w3.org/TR/WebCryptoAPI/#security-developers (last visited 2024-08-28)
4https://www.w3.org/TR/webauthn-2/ (last visited 2024-08-28)
5https://w3c.github.io/webauthn/#prf-extension (last visited 2024-08-28)
6https://html.spec.whatwg.org/multipage/webstorage.html (last visited 2024-08-28)
7https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage (last

visited 2024-08-28)

21

https://www.w3.org/TR/WebCryptoAPI/#security-developers
https://www.w3.org/TR/webauthn-2/
https://w3c.github.io/webauthn/#prf-extension
https://html.spec.whatwg.org/multipage/webstorage.html
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

4. Fundamentals

IndexedDB

IndexedDB is a built-in database that allows for storing structured data within the
web browser. It operates as a key-value store capable of storing JavaScript objects.
IndexedDB is asynchronous and uses transactions to ensure data consistency. It also
supports storing binary data. However, by default, the data is not encrypted and can
be accessed by other, non-privileged processes on the operating system outside the web
browser8.

Cache

The W 3C created the ServiceWorker specification to allow developers to create web
applications that can continue to function while a device is unable to communicate with
the applications web server after the application has cached the necessary resources.
Caches are part of the W 3C ServiceWorker specification and allow developers to store
key-value pairs where the key is a URL string of the resource and the value is a response
object. This enables the storage of both text and binary data9.

File System API

The File System API allows web applications to read and write files to the user’s local
file system. It offers access to the file system of the device by letting the user select files
or directories and read or write files. Additionally, it offers the Origin private file system,
which is a sandboxed file system that is unique to the origin of the web application10.
Safari and Firefox only implement the Origin private file system, while Chrome and Edge
implement both the Origin private file system and the user’s file system11.

4.3.3 Data Exchange

This section provides an overview of the relevant web browser APIs associated with data
exchange that are currently available in modern web browsers.

Origin

The origin of a web page is defined as the combination of the protocol, domain, and port
of the URL. The Same Origin Policy restricts web applications to interact with resources
from different origins. This policy is enforced by web browsers to prevent malicious
websites from accessing sensitive data from other websites12.

8https://www.w3.org/TR/IndexedDB/ (last visited 2024-08-28)
9https://www.w3.org/TR/service-workers/#cache-objects (last visited 2024-08-28)

10https://fs.spec.whatwg.org/ (last visited 2024-08-28)
11https://developer.mozilla.org/en-US/docs/Web/API/File_System_API (last visited

2024-08-28)
12https://www.w3.org/Security/wiki/Same_Origin_Policy (last visited 2024-08-28)

22

https://www.w3.org/TR/IndexedDB/
https://www.w3.org/TR/service-workers/#cache-objects
https://fs.spec.whatwg.org/
https://developer.mozilla.org/en-US/docs/Web/API/File_System_API
https://www.w3.org/Security/wiki/Same_Origin_Policy

4.3. Browser Capabilities

Fetch Requests

Fetch requests allow JavaScript to make HTTP(s) requests, enabling the retrieval of
resources from web servers. This mechanism is restricted by the Same Origin Policy13.

WebRTC

Web Real-Time Communication (WebRTC) was originally designed to enables web
applications to capture and optionally stream audio and video and arbitrary media
between browsers. WebRTC provides an encrypted peer-to-peer connection between
web browsers. To establish a connection, the two communicating web browsers need
to exchange two messages, an offer and an answer. The specification omits how these
messages are exchanged. WebRTC offers the option to proxy traffic through turn servers
[78] to allow web browsers to bypass strict NAT rules14

Push API

The Push API15 enables sending push notifications to a web browser. Upon receiving
a push notification, the web browser starts the Service Worker16 of the corresponding
website, even if the website is not currently open, and dispatches the “push” event. This
mechanism allows for arbitrary code execution within the service worker on demand
without user interaction.

The Push API17 allows the transmission of arbitrary data, which is encrypted using
Elliptic Curve Diffie-Hellman on the P-256 curve and a symmetric secret combined with
the ECDH key using the HMAC-based key derivation function [79].

Because the HTTP endpoints for sending push notifications block CORS requests (until
September 2022, Mozilla Firefox accepted CORS requests to its Push Server18), websites
cannot directly send push notifications and must go through a web server that strips the
CORS header.

To send push notifications, the sender must have a push registration from the recipient.
The push registration includes the recipient’s p256dh public key, the recipient’s auth
secret, and the recipient’s endpoint URL. The sender encrypts the payload using the
recipient’s public key and then sends the encrypted payload to the recipient’s endpoint
URL.

13https://fetch.spec.whatwg.org/#fetch-method (last visited 2024-08-28)
14https://www.w3.org/TR/webrtc/ (last visited 2024-08-28)
15https://www.w3.org/TR/push-api/ (last visited 2024-08-28)
16https://www.w3.org/TR/service-workers/ (last visited 2024-08-28)
17https://www.w3.org/TR/push-api/#dom-pushsubscription (last visited 2024-08-28)
18https://github.com/w3c/push-api/issues/303 (last visited 2024-08-28)

23

https://fetch.spec.whatwg.org/#fetch-method
https://www.w3.org/TR/webrtc/
https://www.w3.org/TR/push-api/
https://www.w3.org/TR/service-workers/
https://www.w3.org/TR/push-api/#dom-pushsubscription
https://github.com/w3c/push-api/issues/303

4. Fundamentals

WebSockets

WebSockets provide a full-duplex communication channel between a client and a server
over a single, long-lived connection [80]. This allows for real-time data exchange and
reduces latency compared to traditional HTTP requests. WebSockets can be used for
signaling in WebRTC as well as for other real-time communication needs in a distributed
application framework.

Various server-side technologies support WebSockets, including Node.js, Python, Java,
Ruby, Go, and .NET19.

4.3.4 WebAssembly
WebAssembly (Wasm) is a binary instruction format for a stack-based virtual machine20.
It is designed as a portable target for the compilation of high-level languages like C,
C++, and Rust, enabling deployment on the web for both client and server applications21.
WebAssembly can be used to run computationally intensive tasks at near-native speed in
web browsers22.

4.4 Sender-Recipient Unlinkability
A desirable property of a system is to prevent adversaries from learning which people
are communicating with each other. When applications communicate over a network
it is possible for an adversary to observe how packets are flowing through the network
for example by writing down every packet passing through a network switch. The naive
solution to prevent an adversary from learning the recipient of a network packet is to
sent the packet to every possible recipient at once. The sender of such a packet is still
known of course.

Kuhn et al. [81] introduce the concept of sender-recipient unlinkability (MSR), represent-
ing an adversary’s inability to determine the sender or recipient of a message within a
network. A Chaumian mixnet, as described by Chaum [82], can achieve MSR by routing
messages through a series of intermediary nodes, also known as relays, each of which only
knows the previous and next node in the chain.

A widely adopted implementation of such a system is Tor – the onion router by Dingledine
et al. [23], which has been in development since 2002. Tor routes packets through a
“circuit”, a series of intermediary nodes. Tor uses three nodes by default for a circuit.
Tor calls the first intermediary node a client connects to the “entry” node, and the last
node (typically the third node) the “exit” node. Because the entry node knows the IP

19https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API (last visited
2024-08-28)

20https://webassembly.org/ (last visited 2024-08-28)
21https://developer.mozilla.org/en-US/docs/WebAssembly/Concepts (last visited

2024-08-28)
22https://www.w3.org/TR/2022/WD-wasm-web-api-2-20220419/ (last visited 2024-08-28)

24

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://webassembly.org/
https://developer.mozilla.org/en-US/docs/WebAssembly/Concepts
https://www.w3.org/TR/2022/WD-wasm-web-api-2-20220419/

4.4. Sender-Recipient Unlinkability

address of the client, the entry node is chosen from a preselected pool of nodes called
“guard” nodes. The guard nodes are chosen by the client and are kept for a long time
to avoid malicious nodes being selected as the entry node. Web servers can use the Tor
network to hide their IP address by running a “hidden service” on the Tor network.

Tran et al. [83] discuss compromising DHT-based onion routing by skewing relay
selection towards malicious peers. This threat can be countered by using a directory of
trustworthy onion routers from the peer set, necessitating a central authority for directory
maintenance.

Schuchard et al. [84] propose a DHT-based relay selection algorithm that attempts to
prevent skewed relay selection by having peers vouch for the authenticity of routing
tables by signing them.

Erdin et al. [85] have identified 16 classes of attacks on anonymity networks such as onion
routing, seven of which are network-level attacks and the remaining nine are application-
level attacks. According to Erdin et al., application-level attacks occur through the use
of applications that do not take privacy into account during implementation. As this
work is concerned with the implementation of a privacy-focused application framework,
we will focus on the network-level attacks.

1. Intersection Attacks: An attacker can observe the set of active users at a given time
interval and identify communicating users by observing the intersection of the sets.

2. Flow Multiplication Attacks: An attacker controlling the entry and exit nodes of
a circuit can introduce, modify, or drop packets (or cells) and observe this change at
the other end of the circuit. This allows the attacker to deanonymize the source and
destination of a circuit.

3. Timing Attacks (also known as flow correlation attacks): The timing attack observes
the traffic volume and timing of tunneled connections to correlate the sender and recipient.
Bahramali et al. [24] describe how deep neural networks can be trained to automate this
attack.

4. Fingerprinting Attacks: The fingerprinting attack described by Erdin et al. [85] is so
similar to the timing attack that we will not distinguish between the two.

5. Congestion Attacks: An attacker can observe the traffic at an exit node and flood
other nodes with traffic to determine if a particular node is part of a circuit.

6. Resource Attacks: An adversary can set up a large number of relay nodes to increase
the probability of being selected as a node in a circuit. This allows the adversary to
observe more traffic and potentially deanonymize users.

7. Denial of Service Attacks: An ISP can block access to publicly known Tor relays or
attempt to overwhelm the relays with traffic (DDoS) to prevent users from accessing the
network. The Tor Project has developed a countermeasure to blocking relays by using
bridges, which are not publicly known relays that can run various protocols.

25

4. Fundamentals

Evers et al. [86] have identified attacks on the Tor implementation of onion routing.
These attacks mostly overlap with the findings of Erdin et al. [85]. Evers et al. [86]
describe two additional classes of attacks on onion routing:

1. Supportive Attacks: These attacks do not directly aim to deanonymize users or disrupt
the overlay network but rather aim to support other attacks. 1.1 The guard selection of
Tor can be manipulated by an adversary with access to the client’s path to the entry
node (e.g., ISP). The adversary can block all but one guard node a user connects to,
forcing a new round of guard selection in the hope that an adversary-controlled relay
will be selected as a guard node. 1.2 The sybil attack involves an adversary creating a
large number of nodes in the network to increase the probability of being selected as a
node in a circuit.

2. Revealing Hidden Services: An adversary can attempt to become the first node on the
path of a hidden service to gain a direct connection to the hidden service and reveal its IP
address. Additionally, an adversary can compare the clock skew of a hidden service and
a normal web server running on the same machine to reveal the location of the hidden
service.

In this chapter, we have discussed the CIA triad, web browser capabilities, and the
concept of sender-recipient unlinkability. We have also reviewed the attacks on onion
routing networks and the countermeasures that have been proposed. In the next chapter,
we will discuss the requirements for Applink.

26

CHAPTER 5
Requirements Analysis of the

Privacy-First Web Application
Framework

As this work aims to investigate the possibility of implementing applications using a
privacy-preserving, partially replicated, decentralized, peer-to-peer JavaScript framework,
it is essential to define realistic requirements for the sample applications to identify any
obstacles to implementation with currently available web browser APIs.

This chapter outlines the requirements for Applink based on the requirements of the
sample applications. First, we define some general requirements for all sample applications
as well as specific requirements for each application in section 5.1. Then, we outline
the requirements for Applink in section 5.2. Finally, we describe the user stories for the
sample applications in section 5.3.

5.1 Sample Web Applications
This section specifies the requirements for three sample applications.

In addition to the specific requirements of the sample applications, the following require-
ments shall be met by all sample applications:

For a decentralized framework to be adopted, it needs to be comparable to or better in
terms of user experience than a centralized web application.

The application shall perform within the constraints established by Miller [87] on a
smartphone:

1. The application shall respond to user input within 100ms.

27

5. Requirements Analysis of the Privacy-First Web Application Framework

2. The application shall draw a frame within 16.6ms (60fps).

3. The application shall load within 5000ms.

Furthermore, the application shall always present a consistent (but possibly stale) state
across the entire user interface:

1. Data shall be consistent within a page1.

2. Data shall be consistent across page navigation.

3. Data shall be consistent across multiple tabs of the same application within a web
browser.

The application shall inform the user in case an action fails, provide a reason why, and
give a recommendation on how to proceed.

These general requirements ensure the user experience is comparable to that of a central-
ized web application.

5.1.1 Note Application
Users should be able to use the note application to take notes for themselves, share them
with friends and family, and synchronize them between their devices. This application is
a good fit for Applink because there are few interactions with other users and therefore
few synchronization events that can lead to inconsistent data across different users.

The following requirements are based on the use-case diagram of the note application
(see Figure 5.1).

1. The application shall allow a user to create, update, and delete a note.

2. The application shall allow a user to view their notes.

3. The application shall allow a user to share their note with other users (0..∗).

4. The application shall allow a shared note to be edited by all users it has been
shared with.

5. The application shall allow a user to synchronize their notes with other devices.

6. The application shall not allow users to view, modify, or delete the notes of other
users without explicit permission.

1This is relevant when multiple elements on a page are based on common data. For example, a chart
of money spent this month shall update when a user enters a new transaction.

28

5.1. Sample Web Applications

Figure 5.1: Use-Case Diagram Note Application

7. The application shall not reveal the set of users with access to a note to users
without access to the note.

8. The application shall not allow anyone to prevent anyone else from using the
application.

5.1.2 Beer Credit System
In a student bar, students can deposit money ahead of time and buy drinks using their
deposit. To keep track of these deposits, we implement the “Beer Credit System (BCS)”.
Deposits must be approved by an administrator. The BCS is a poor fit for our Applink
Javascript Framework as most of the data needs to be validated by a centralized group
of administrators. This application is included in the set of prototype applications to
tests edge cases of Applink.

The following requirements are based on the use-case diagram of the beer credit system
(see Figure 5.2).

1. The application shall allow a user to read their account balance.

2. The application shall allow a user to request a deposit.

3. The application shall allow a user to buy a drink.

29

5. Requirements Analysis of the Privacy-First Web Application Framework

Figure 5.2: Use-Case Diagram Beer Credit System

4. The application shall allow a user to retrieve and store invoices in an invoice
application of choice.

5. The application shall allow administrative users to approve a deposit.

6. The application shall allow administrative users to view the account balances of
any user.

7. The application shall allow administrative users to modify the set of administrators.

30

5.1. Sample Web Applications

8. The application shall allow administrative users to bulk download the already
existing invoices.

9. The application shall not allow a user to read another user’s balance.

10. The application shall not allow a user to buy a drink with insufficient credit.

5.1.3 Invoicing System
The beer credit system (see subsection 5.1.2) shall send invoices in a machine-readable
format to the invoicing system. The invoicing system can then display detailed information,
such as the sum of individual goods purchased per time period (e.g., week). The invoicing
system demonstrates how different applications can exchange data without sacrificing
the goals of Applink.

Figure 5.3: Use-Case Diagram Invoicing System

The following requirements are based on the use-case diagram of the invoicing system
(see Figure 5.3).

1. The application shall allow a user to view a list of their invoices.

2. The application shall allow a user to view an invoice.

31

5. Requirements Analysis of the Privacy-First Web Application Framework

3. The application shall allow an external application to store an invoice on behalf of
the user.

4. The application shall prevent a user from reading invoices issued to other users.

5. The application shall offer anonymity for the sender and recipient of invoices for
other users of the system and external observers.

5.2 Requirements
This section outlines the requirements for the Applink JavaScript framework based on
the requirements of the sample applications.

5.2.1 Functional Requirements
The functional requirements are:

1. Applink shall provide an appropriate interface for persisting and retrieving data.

2. Applink shall provide a signal when data is modified. This signal should always
be sent when the data in the persistence layer is modified, even if it happens by
another tab or other context with access to the same origin.

3. Applink shall provide the ability to replicate its state to other web browsers.

4. Applink shall provide the ability to remotely call functions of other users.

5. Applink shall provide a mechanism for determining the caller of a remote procedure
call. This indication is meant for authorization checks and shall therefore be
guaranteed to be authentic. The duty of authorization lies with the application
code.

6. Applink shall provide a mechanism for pairing a new browser with the role of the
other browser being administrator, another user, or the same user.

5.2.2 Threat Model for Privacy-First Web Applications
This section outlines our threat model for privacy-first web applications. Our threat
model considers three roles: censors, malicious users, and malicious administrators.

We assume censors to have read access to all centralized infrastructure such as web servers.
Additionally, censors control some nodes in the peer-to-peer network and some fraction
of routers on the network. Censors can perform active and passive attacks against the
network. Censors can order ISPs to block certain websites using IP and DNS blocking.
When publishers use a CDN to host static content, censors can only use DNS blocking as
IP blocking would result in over-blocking [88]. Furthermore, we assume censors will not
shut down the push-notification infrastructure as this would cause too much disruption.

32

5.2. Requirements

Malicious administrators have access to all data on the web server. They can turn off
the server entirely, either voluntarily or involuntarily2. Administrators might want to
discriminate against certain information or users and might want to build micro-targeting
profiles of users.

Malicious users do not have access to centralized data. They can use active and passive
attacks against other users. They can send arbitrary data to arbitrary users and observe
all traffic routed through nodes controlled by them. The attack goals of malicious users
are to access information of other users without permission or to identify the contacts of
specific users3.

We assume that for every user there exists a set of trusted contacts. These trusted
contacts are assumed to not perform active attacks and are assumed to be less likely to
be malicious compared to other users participating in the overlay network4. The contacts
trusted by trusted contacts can also be presumed to be more trustworthy compared to
unknown peers, allowing the construction of a web of trust.

Metadata and Side-Channels

We define user data to include not just data that is entered by users into the application
or collected from other sensors by the application, but also metadata that is not actively
collected by the application code. When an application sends a packet, the content of the
packet is not the only data an attacker can collect. The attacker can also collect the time
the packet was sent, the size of the packet, the address of the sender and recipient, etc.
When the timing of certain events unintentionally discloses information, this is called a
side-channel. We consider metadata and side-channels to be accessible by passive and
active attackers and therefore needs to be addressed by Applink.

5.2.3 Cross-Application Data Exchange

Applications often need to exchange data between them. For example, an application
might import a friend list from a different application or share a link via a messaging
service.

Traditional web applications can use CORS requests5 to communicate with other appli-
cations. CORS requests require a central server to function and therefore once again
reintroduce the privacy drawbacks this framework aims to avoid. Therefore, a different
mechanism for data transmission between web applications on different origins is required.

2Censors might force a project to stop. e.g., the NSA appears to have forced TrueCrypt to stop
development [89]

3e.g., an ex-boyfriend wants to figure out who his ex-girlfriend is dating now
4As creating malicious peers that are trusted by a user is considerably more difficult but not impossible
5https://fetch.spec.whatwg.org/#cors-request

33

5. Requirements Analysis of the Privacy-First Web Application Framework

5.2.4 Performance Requirements
Based on the constraint of applications to draw a frame within 16ms to render 60 frames
per second, Applink needs to take up less than 16ms minus the time it takes the web
browser to draw a frame to allow the web browser to render the page at 60 fps. If Applink
exceeds 16ms of uninterrupted JavaScript execution, the web browser cannot draw a
frame in time. Therefore, Applink shall not cause JavaScript execution of more than
10ms.

Users experience two different scenarios when it comes to the synchronization of data.
Either the user has two devices with the web application open at the same time, or the
user makes changes on one device and then later looks at the same data on a different
device.

If a user has the web application open on two devices at the same time, the expectation
is that the changes propagate in real-time. This work considers a delay of two seconds
acceptable for this scenario. Two seconds are chosen because it provides an acceptable
delay for collaborative tasks.

5.2.5 Developer Usability Requirements
A framework should improve the developer experience when building decentralized web
applications. Any framework should only include abstractions that are easier to use than
building equivalent functionality from scratch.

Developers need a way of keeping the user interface in a consistent state. Multiple
components of the user interface might depend on the same database value. Therefore,
Applink needs to notify all components that accessed a value when that value is modified
or deleted.

Transactions are essential to any application. Their success or failure might trigger
complex correction algorithms or just display a message to a user. The webpage might
be closed by the user during a transaction. The promise6 callback system is not suitable
for this kind of transaction logic because if the JavaScript virtual machine is closed,
the context of the promise (e.g., the remaining promise chain7, the Closure8) is lost.
Therefore, Applink needs to provide a way to handle transactions that are not lost when
the JavaScript virtual machine is closed.

Applink shall provide a way to call functions running in a different web browser and
respond to the result. This remote procedure call syntax shall be easily understandable
because developers need to reason about their program to avoid bugs and vulnerabilities.

6https://tc39.es/ecma262/multipage/control-abstraction-objects.html#sec-
promise-objects

7https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_
promises#chaining (last visited 2024-08-28)

8https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures (last visited
2024-08-28)

34

https://tc39.es/ecma262/multipage/control-abstraction-objects.html#sec-promise-objects
https://tc39.es/ecma262/multipage/control-abstraction-objects.html#sec-promise-objects
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises#chaining
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises#chaining
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures

5.3. User Stories

5.2.6 Economic Requirements
Applications built with Applink shall not burden the organizations or individuals running
them with high infrastructure costs. Hosting of a web application can never be zero
because the static assets of a web application (html, JavaScript, css) need to be served
to the users. In order for the costs to stay sustainable this work defines the following
upper limits:

The costs of hosting the server logic of an Applink application shall not be more than
the costs of serving the static content (html, JavaScript, css) of the application by more
than 200%. E.g. if it costs 1€ to host the static content of an application, it shall not
cost more than 3€ to host the entire application including all server side logic.

5.3 User Stories
This section describes the user stories for the sample applications.

5.3.1 User Stories: Note Application
Here, we outline the user stories derived from the requirements of the note application.

1. As a user, I want to create a note so that I can write down my thoughts.

2. As a user, I want to edit a note so that I can correct mistakes or add additional
information.

3. As a user, I want to delete a note so that I can remove notes I no longer need.

4. As a user, I want to share a note with another user so that I can collaborate with
them.

5. As a user, I want to see notes shared with me so that I can read them.

6. As a user, I want to see notes shared with me updated in real-time so that I can
see changes made by other users.

5.3.2 User Stories: Beer Credit System
Here, we outline the user stories derived from the requirements of the beer credit system.

1. As a user, I want to see my account balance so that I can see how much money I
have left.

2. As a user, I want to request a deposit so that I can buy drinks.

3. As a user, I want to buy a drink so that I can quench my thirst.

35

5. Requirements Analysis of the Privacy-First Web Application Framework

4. As a user, I want to retrieve and store invoices in an invoice application of choice
so that I can keep track of my expenses.

5. As an administrator, I want to approve a deposit so that I can prevent users from
buying drinks with insufficient credit.

6. As an administrator, I want to view the account balances of any user so that I can
see how much money users have left.

7. As an administrator, I want to modify the set of administrators so that I can add
or remove administrators.

8. As an administrator, I want to bulk download the already existing invoices so that
I can archive them.

5.3.3 User Stories: Invoicing System
Here, we outline the user stories derived from the requirements of the invoicing system.

1. As a user, I want to view a list of my invoices so that I can see how much money I
have spent.

2. As a user, I want to view an invoice so that I can see the details of a specific invoice.

3. As a user, I want external applications to be able to store an invoice on my behalf
so that I can import invoices from other applications.

In this chapter, we defined the requirements for the sample applications and the Applink
JavaScript framework. In the next chapter we will discuss the system architecture of
Applink.

36

CHAPTER 6
System Architecture of the

Privacy-First Web Application
Framework

As explained in the threat model in subsection 5.2.2, we assume that censors and malicious
administrators have access to data stored on centralized infrastructure. One solution
to prevent centralized authorities from being able to access the personal data of all
users of a system is to encrypt all data using a key accessible only to the intended
recipient. However, this approach still allows the centralized authority to control the
permitted communication links between users and the ability to ban users from the
service. Additionally, centralized data storage burdens a central entity with infrastructure
costs, which may become unsustainable when a system is used by a large number of users.
Consequently, we opted for a peer-to-peer architecture for our framework, assuming that
lower operating costs and ease of deployment would benefit both administrators and
users.

6.1 Overview
Applink offers two main features: an abstraction for data storage based on IndexedDB
described in section 6.2 and an RPC interface described in section 6.3 for peer-to-peer
communication.

The RPC interface uses WebRTC with Web Push as a signaling channel described in
section 6.4.

The WebRTC connections allow message routing using a DHT based on the k-bucket1

library. Peers can perform further WebRTC handshakes over the established WebRTC
1https://github.com/tristanls/k-bucket (last visited 2024-08-28)

37

https://github.com/tristanls/k-bucket

6. System Architecture of the Privacy-First Web Application Framework

connections to minimize reliance on the centralized Web Push infrastructure. To choose
the correct parameters for the DHT, we implemented a simulation described in section 6.5.

To mitigate the risk of impersonation and session correlation, we use time-based addresses
described in section 6.6 for addressing peers in the DHT.

The cryptographic layer uses ECDH-AES-GCM for link encryption within the DHT layer
and RSA-OAEP-SHA256 for message encryption for intended recipients. An additional
application encryption layer, accessible only to direct contacts using permanent keys,
ensures further privacy. We describe the encryption and communication process in
section 6.9.

We also implemented encryption of data stored in persistent storage using the WebAuthn
PRF extension described in section 6.10.

The details of our approach to anonymity are described in section 6.11.

An overview of the communication architecture is shown in Figure 6.1. The application
code interacts with the dht-transport-manager (Dht TM), which translates from contact
addresses to time-based addresses described in section 6.6 and is responsible for boot-
strapping the DHT by establishing some initial WebRTC connections via the Web Push
API.

The Dht TM then injects the bootstrapped connections into the Dht class, which is
responsible for maintaining the DHT and routing messages. The Dht class establishes
further WebRTC connections to peers discovered in the DHT.

The WebRTC connections are managed by the WebRTC class, which is responsible for
containing the implementation details of establishing and maintaining the WebRTC
connections.

6.2 Data Storage Abstraction
Because web browsers have a key-value database, called IndexedDB, built in, and the only
other options for storing data in a web browser are localStorage which is synchronous
and has a small storage limit, and the cache api which does not guarantee that the data
will be preserved, we chose to use IndexedDB as the data storage for our framework.

We wanted to provide a storage abstraction that feels similar to an orm for the developer
because we believe that developers are used to working with ORMs and that this would
make it easier for developers to write code that runs in the web browser. We also needed
this abstraction to store the data the framework needs to function.

This data storage abstraction automatically migrates the database when the web applica-
tion is loaded, creating all stores that are declared by the framework and developers and
dropping any stores that are no longer needed.

We define a BaseDto class that specifies the structure of the data that can be stored in
IndexedDB. The BaseDto defines an id field that is used as the key for the corresponding

38

6.2. Data Storage Abstraction

Figure 6.1: Overview of communication architecture.

IndexedDB object store as well as a static dbName field that defines the name of the
object store. The BaseDto definition is shown in Listing 6.1.

Listing 6.1: BaseDTO definition
1 export interface BaseDto {
2 id?: string;
3 }
4
5 export interface DtoClass {
6 new(...args: any[]): BaseDto;
7 get dbName(): string;
8 }

The data storage is initialized using the DbFactory class, which automatically creates
the object stores for the Dtos that are registered with it. The TransactionManagers
init function seen in Listing 6.2 is responsible for checking which stores already exist in
the web browsers IndexedDB (line 6), then deletes the stores that are no longer needed
(lines 8-12), and creates the stores that are not present in IndexedDB (lines 13-17). The
DbFactory class creates a transactionManager object that creates all the object stores

39

6. System Architecture of the Privacy-First Web Application Framework

for the Dtos that are registered with it and removes object stores that are no longer
needed. IndexedDb only calls the upgrade function when the version of the database
is increased. Because the framework did not want to rely on the application developer
to increase a version number when the schema changes because this is easy to forget,
the DbFactory class uses the current time as the version number. This ensures that the
upgrade function is called every time the application is loaded.

The DbFactory class needs to be a singleton because it opens the IndexedDB database,
which can only be done once per origin at a time. If this is attempted a second time, the
promise to open the IndexedDB will hang indefinitely.

Listing 6.2: Creating IndexedDB object when the framework is initialized when the
application is loaded

1 init(dbName: string): Promise<void> {
2 return this.initPromise = (async () => {
3 const tmThis = this;
4 this.db = await openDB(dbName, new Date().getTime(), {
5 upgrade(db) {
6 const existingStores = Array.from(db.objectStoreNames);
7 // Synchronize the declared object stores with IndexedDB
8 for (const oldName of existingStores) {
9 if (!tmThis.stores.includes(oldName)) {

10 db.deleteObjectStore(oldName);
11 }
12 }
13 for (const storeName of tmThis.stores) {
14 if (!existingStores.includes(storeName)) {
15 db.createObjectStore(storeName, {
16 keyPath: ’id’,
17 autoIncrement: false
18 }).createIndex(’id’, ’id’, { unique: true });
19 }
20 }
21 },
22 });
23 })();
24 }

The database initialization logic is abstracted away, and to use it, we can simply call the
getDao method of the DbFactory class with the DtoClass that we want to use and then
call the CRUD methods of the ObjectStore that is returned, as shown in Listing 6.3.

Listing 6.3: PushTransport.ts
1 this._pushTransportStore =
2 await this.dbFactory
3 .getDao<ObjectStore<PushTransportDto>>(PushTransportDto);
4 await this._pushTransportStore!.add(new PushTransportDto(userId, address));

This abstraction also supports transactions. This is a non-trivial feature to implement
because IndexedDB closes a transaction when the microtask queue is empty. Therefore,

40

6.2. Data Storage Abstraction

we need to collect all the operations that are part of a transaction and execute them in a
single microtask. If code has to wait for information from a previous operation in the
transaction, the transactionManager provides a wait function that returns a promise that
resolves when the previous operations have finished. This allows the transactionManager
to resolve all dependencies of a transaction, such as cryptographic operations, network
requests, etc., before starting a transaction and then executing the entire transaction
within a single microtask.

An example of a transaction is shown in Listing 6.4. In this example, we add a contact
and reference the contact from the contact address store. To get the ID of the contact,
we need to wait for the contact to be added to the contact store before adding the contact
address. To do this, we use the wait function provided by the transactionManager.

Listing 6.4: Running transactions
1 await this.dbFactory.transactionManager
2 .runTransaction(async (dbTransaction, wait) => {
3 //await other promises here first
4
5 this.contactDao!.add(contactDto, dbTransaction)
6 (async()=> {
7 await wait();
8 this._contactAddressDao!
9 .add(contactDto.id, ownAddressDto, dbTransaction);

10 })();
11 });

The implementation of the runTransaction method, shown in Listing 6.5, first awaits
the callback function, resolving all dependencies of the transaction and collecting the
operations that can be performed synchronously. Then it iterates over the entries of the
transaction, executing the onExecute defined by the CRUD methods of the ObjectStore
class. If an error occurs, the transaction is aborted and the error is thrown.

Listing 6.5: Implementation of runTransaction
1 async runTransaction(
2 callback: (dbtransaction: Transaction, wait: CallableFunction) => void)
3 : Promise {
4 await this.lock();
5 try {
6 if (!this.initPromise) {
7 throw new Error(’TransactionManager not initialized’);
8 }
9 await this.initPromise;

10 if (!this.db) {
11 return;
12 }
13 const transaction = new Transaction();
14 const wait = async () => {
15 while (transaction.hasNextEntry()) {
16 await transaction.getNextEntry().onExecute();

41

6. System Architecture of the Privacy-First Web Application Framework

17 }
18 };
19 await callback(transaction, wait);
20 const tx = this.db.transaction(
21 Array.from(transaction.entityNames), ’readwrite’);
22 try {
23 while (transaction.hasNextEntry()) {
24 await transaction.getNextEntry().onExecute();
25 }
26 await tx.done;
27 } catch (e) {
28 console.error(e);
29 await tx.abort();
30 throw e;
31 }
32
33 const postTransactionStateList =
34 (await Promise.all(transaction.completeEntries
35 .filter(entry => entry.onGetPostTransactionState)
36 .map(entry => entry.onGetPostTransactionState?.())
37 .filter(entry => entry !== undefined)))
38 for (const { listener, type } of this.dataChangeListeners) {
39 for (const entry of postTransactionStateList) {
40 if (entry.id?.startsWith(type.dbName + ’:’)) {
41 listener(entry);
42 }
43 }
44 }
45 }
46 finally {
47 this.unlock();
48 }
49 }

This abstraction allows for promise-based atomic transactions that can be used in the
RPC interface to ensure that the data is in a consistent state across peers.

6.3 RPC Abstraction
The abstraction chosen for our framework is a Remote Procedure Call (RPC) interface
that facilitates calling functions on other peers identified by a unique ID. To communicate
with a peer, one must know the peer’s address, which consists of the unique ID and
additional metadata enabling the establishment of a secure connection. This address can
be serialized and shared in a manner deemed appropriate by the developer. For instance,
the information could be exchanged out of band (e.g., using a link) or through mutual
peers.

Once a peer is known, developers can invoke functions on that peer, akin to interacting
with smart contracts on the Ethereum blockchain. The code is written from a peer’s
perspective and may permit calls from other peers.

42

6.3. RPC Abstraction

To inform developers that a function is accessible remotely, functions registered with the
RPCInterface abstraction must start with “_r_”. This should allow developers to easily
identify which functions are accessible remotely and account for this when writing and
reviewing code.

In Listing 6.6, we illustrate an implementation of such a calling structure. The func-
tion importDocumentShare initiates the calling chain by invoking documentShared on the
owning peer of the document. It is important to note that the call to documentShared

specifies an expected callback to documentSharedAck. This mechanism enables devel-
opers to define which callbacks they expect to be triggered by an RPC call. If the
callback to documentSharedAck is not executed within the specified timeout, the call
to documentShared will result in an error. In such cases, the call to documentShared is
retried until successful. This allows exceptions to be handled by the invoking function
even if the error occurs in a callback, as the stack trace is preserved by the RPCInterface.

To illustrate this, imagine an interaction between Peers A and B. importDocumentShare
on Peer A calls function _r_documentShared on Peer B, which in turn calls
_r_documentSharedAck on Peer A. If function _r_documentSharedAck fails, the stack trace
contains _r_documentSharedAck and importDocumentShare and the invoking stack trace of
the call to importDocumentShare. This allows developers to better understand exceptions
and what caused them.

Every invocation of a function includes the userId of the invoker. Authenticity and
integrity are provided by the application encryption layer as described in section 6.9.
Functions can only be invoked by contacts known to a peer.

RPCInterface allows type checking with the TypeScript compiler, making it easier to
write correct code. The TypeScript compiler can validate the function name and the
parameters in the call to a function and the function that is registered to be called.

However, a malicious user might still pass incorrect types to the function. Developers
should therefore validate the type of the parameters of the function on top of other input
validation before using them. An example of this is shown in Listing 6.7. The function
“f” is defined to take a parameter “a” and return the length of “a”. However, multiple
types implement the “length” property. In the first call, a string is used, in the second
call, an array, and in the third call, an object with a “length” property. Note that the
third call returns an array instead of an integer.

The TypeScript compiler does not add checks to the function body to ensure that
a parameter is of a certain type. This can lead to vulnerabilities and should be a
consideration in development and code review processes.

43

6. System Architecture of the Privacy-First Web Application Framework

Listing 6.6: NoteStore.ts
1 interface NoteShareParameterMap {
2 ’documentShared’: { noteId: string, challenge: string };
3 ’documentSharedAck’: { noteId: string };
4 ’documentUpdated’:
5 { noteId: string, updateVector: string, origin: string };
6 }
7
8 export class NoteShareController {
9 //...

10 constructor() {
11 this._initPromise = this._init();
12 }
13
14 async _init() {
15 //...
16 this.rpci =
17 new RPCInterface<NoteShareParameterMap>(this.signalDht, ’notes’);
18 this.rpci.register(’documentShared’, this._r_documentShared.bind(this));
19 this.rpci.register(’documentSharedAck’,
20 this.r_documentSharedAck.bind(this));
21 this.rpci.register(’documentUpdated’,
22 this._r_documentUpdated.bind(this));
23 }
24
25
26 async importDocumentShare
27 (from: string, docId: string, challenge: string, isSameUser = false) {
28 //...
29 await this.noteShareDao!
30 .add(new NoteShareDto(docId, from, challenge, isSameUser));
31 //...
32 /* retry sharing until successful */
33 while (true) {
34 try {
35 /* call documentShared on the owner of the document
36 * we expect documentSharedAck to be called within 10 seconds,
37 otherwise we retry
38 */
39 await this.rpci!
40 .call(’documentShared’, from, { noteId: docId, challenge },
41 { functionName: ’documentSharedAck’, timeout: 10000 });
42 /* the documentSharedAck was called, we can break */
43 break;
44 } catch (e) {
45 console.error(e);
46 }
47 }
48 }
49
50
51 async _r_documentShared
52 (

44

6.3. RPC Abstraction

53 from: string,
54 { noteId, challenge }: NoteShareParameterMap[’documentShared’]
55) {
56 await this._initPromise;
57 const noteShares = await this.noteShareDao!.getAll();
58 const existingNoteShare = noteShares
59 .find(noteShare => noteShare.noteId === noteId
60 && noteShare.userId === from);
61
62 /* if the note is already shared with the user,
63 * we still tell the user in case they didn’t get the ack last time
64 */
65 if (existingNoteShare) {
66 await this.rpci?.call(’documentSharedAck’, from, { noteId });
67 return;
68 }
69 const note = noteShares
70 .find(noteShare => noteShare.noteId === noteId
71 && noteShare.challenge === challenge
72 && noteShare.userId === null);
73 if (!note) {
74 throw new Error(‘got invalid documentShared‘);
75 return;
76 }
77 note.userId = from;
78 note.challenge = null;
79 await this.noteShareDao!.update(note);
80 //...
81 /* this rpc call does not include an expected callback
82 * as it is the end of this exchange
83 */
84 await this.rpci!.call(’documentSharedAck’, from, { noteId });
85 /* send the current state of the document to the new user */
86 await this.rpci!.call(’documentUpdated’, from,
87 { noteId, updateVector: noteVector, origin: null! });
88 }
89
90 async r_documentSharedAck
91 (from: string, { noteId }: NoteShareParameterMap[’documentSharedAck’]) {
92 await this._initPromise;
93 const note = (await this.noteShareDao!.getAll())
94 .find(noteShare => noteShare.noteId === noteId
95 && noteShare.userId === from);
96 if (!note) {
97 console.error(‘got invalid documentSharedAck‘);
98 return;
99 }

100 note.challenge = null;
101 await this.noteShareDao!.update(note);
102 if (!note.isSameUser) {
103 this.documentListUpdateListener?.(UpdateType.ADD, noteId);
104 }
105 else {

45

6. System Architecture of the Privacy-First Web Application Framework

106 this.updateSameUserAddresses();
107 }
108 }}

Listing 6.7: JS Function Parameter vulnerability
1 > var f = (a)=>a.length
2 undefined
3 > f(’asdf’)
4 4
5 > f([1,2,3,4])
6 4
7 > f({’length’:[1,2,3,4]})
8 [1, 2, 3, 4]

46

6.4. Peer-to-Peer Bootstrapping

6.4 Peer-to-Peer Bootstrapping
As outlined in section 4.3.3, WebRTC necessitates a two-way handshake, facilitated
through an auxiliary channel, to establish a connection.

Applications using a web server to establish peer connections face potential censorship
by ISPs, either through server shutdowns or DNS-record modifications to block server
access.

To mitigate reliance on a single central server, applications can utilize the Web Push
API (push), deemed too critical to block, for bootstrapping. Once a node establishes a
WebRTC connection with another node, it can tunnel additional handshakes through the
existing connections.

As seen in the sequence diagram Figure 6.2, a peer A starts the bootstrapping process by
sending a push notification containing a handshake request to one of its known contacts,
B. When a user launches the application for the first time, they do not have a contact
B to perform the bootstrapping with because they do not know any push registrations.
Our solution to this is to require an out of bands “invite” link that contains the push
registration of the inviter. This way, the new user can establish a connection to the
inviter and then establish connections to the inviter’s contacts.

If the recipient is currently online, it responds with a push notification containing a
handshake that includes WebRTC signaling information.

The initiating peer, A, then sends another push notification with the handshake response,
including its WebRTC signaling information.

After these initial three push notifications, WebRTC can establish a connection between
the two peers. To finish the initial connection establishment, peer B sends a connection
established call to peer A via WebRTC. This call lets peer A know that the connection
has been established and that peer B is ready to receive messages.

After the initial WebRTC connection has been established, the DHT class automatically
discovers other peers using the “FindNode” call. Upon learning of new peers from the
“FoudNode” call, the DHT class will attempt to establish WebRTC connections to the
new peers until the connection limit is reached.

Because the handshake calls via WebRTC are sent at a time when peer A does not know
its address neighborhood, regular DHT routing of messages will not work, which is why
the HandshakeWith call includes a respondVia field. In our example, peer C would
then wrap its response in a layered packet akin to onion routing, with the outer packet
addressed to peer B and the inner packet addressed to peer A.

Given WebRTC’s inherent need for a two-way handshake via centralized infrastructure,
it’s impossible to conceal application usage. If, as in the case of our framework, web push
is used as a signaling channel for WebRTC, peers need to know the push registration
of some participants in the network. This can either be well-known peers, which would

47

6. System Architecture of the Privacy-First Web Application Framework

Figure 6.2: Connection Establishment Sequence Diagram

introduce reliability on those peers being online, or the push registrations of their contacts,
which reveals a subset of every peer’s contacts to the push server when they establish a
connection using push.

Push provides the benefit that it is assumed to not be taken down. Even if some servers
that we use to proxy traffic to the push infrastructure are taken down, it is enough that
every peer can reach at least one server to establish a connection. Furthermore, if clients

48

6.5. Simulation and the Importance of Correct Bootstrap Parameters

A and B want to connect to each other, they do not need to be able to connect to the
same proxy server. This means that even if we have only two proxy servers and client A
can only connect to the first and client B can only connect to the second, they can still
establish a connection.

In September 2022, Mozilla Firefox ceased accepting CORS requests to its Push Server2,
complicating Push API-based connections. We propose circumventing this limitation
through several HTTPS proxies that relay messages to the Push API, operated by
volunteers. Applications can incorporate functionalities to automatically distribute these
proxies among trusted contacts.

After a connection to an initial peer is established, a peer can use the WebRTC DHT
to find and connect to other peers. This reveals to everyone who can query the DHT a
list of peers that are online. This list can be used to track the online status of a peer.
Additionally, if a malicious actor wants to impersonate a peer and analyze who is trying
to communicate with them, there is nothing stopping them. We propose mitigating these
problems using time-based addresses as described in section 6.6.

6.5 Simulation and the Importance of Correct Bootstrap
Parameters

We wrote a simulation to determine the parameters for the bootstrapping process as well
as the DHT. We wrote it in JavaScript and used the force-graph3 library to visualize the
resulting network.

The simulation mimics the behavior of the DHT network with a few simplifications:
Instead of using time-based addresses (see section 6.6), we use random addresses because
it does not impact the DHT behavior, as we can just hold a reference to all contacts of a
peer instead of that peer needing to come up with a pseudo-random identifier that only
their contacts can find. We assumed that every peer knows five contacts on average and
we simulate a population of 300 peers. We assume that in every step of the simulation,
every peer has a 1 percent chance to go online or offline.

When a peer goes online, it will try to establish a connection analogous to DhtTrans-
portManager: It first connects to N known contacts, then connects to up to 20 more
peers. The first N connections are simulated as if they were push notifications. They
select a random contact from the address book, and the connection is only successfully
established if the contact is online in that tick. The additional peers have to be connected
to peers that are already connected to the peer. This simulates the DHT behavior where
a peer can only connect to peers that are in their address neighborhood.

To find the number N, we ran the simulation with different values of N and observed the
resulting graph. In Figure 6.3, we observe that with N=1, the network tends to form

2https://github.com/w3c/push-api/issues/303 (last visited 2024-08-28)
3https://github.com/vasturiano/force-graph?tab=readme-ov-file (last visited 2024-

08-28)

49

https://github.com/w3c/push-api/issues/303
https://github.com/vasturiano/force-graph?tab=readme-ov-file

6. System Architecture of the Privacy-First Web Application Framework

Figure 6.3: Simulation of the DHT network with N=1, blue=online, red=offline.

islands of connectivity. This appears to happen because once a peer establishes the first
connection, it can only discover peers that are in that initial connected cluster.

When we configure peers to connect to two known contacts before connecting to additional
peers, the network is almost fully connected as seen in Figure 6.4. This appears to be
because every peer has a chance of bridging the gap between two clusters of peers.

Comparing the two simulations, we can see that the choice of N has a significant impact
on the connectivity of the network. We can conclude that the choice of N should be at
least 2 to ensure that the network is well connected. Because the initial connections to
contacts require the push notification service, we should keep N as low as possible. We
set N to 2 in the prototype implementation.

The simulation can be paused and resumed to observe snapshots of the network at any
given moment in time.

We further extended the simulation to estimate the number of successful message deliveries
in the network. We describe these extensions in subsection 7.3.3.

50

6.6. Time-Based Addresses

Figure 6.4: Simulation of the DHT network with N=2, blue=online, red=offline.

Another extension we made to the simulation was to add malicious peers to simulate the
impact of honest-but-curious attackers. We describe this extension in subsection 7.2.5.

6.6 Time-Based Addresses
When users’ addresses do not change over time, it is easy for an attacker who controls
some peers in the network and observes messages sent through the network to correlate
the sessions of users.

Such an attacker can observe which peers are listed in the DHT and therefore online at
the same time and count packets exchanged between them. Because users’ addresses do
not change, such an attacker has plenty of time to observe communication patterns and
build a complete social graph of the network.

To frustrate the attacker described above attempting to build social graphs of the
overlay network, we introduce time-based addresses. A time-based address, inspired by
the Time-Based One-Time Password (TOTP) algorithm [90], is generated by hashing

51

6. System Architecture of the Privacy-First Web Application Framework

the concatenation of the user ID and a timestamp. This process yields a transient,
pseudo-random address to use in the DHT.

Definition:
At = H(Au + floor(t

I
)) (6.1)

Where:

At is the time-based address at time t

Au is the user ID

t is the current time

I is the interval at which the address At changes (in our implementation, 24 hours)

H is a secure hash function where it is impossible for a polynomial time-bounded adversary
to find the preimage of a hash

Time-based addresses decouple the user ID from the DHT address. Their time dependence
and the fact that they rotate all at the same time across the network prevent a passive
attacker from correlating sessions of users not in their contact list based on observing
the DHT entries. An active attacker could still connect to a peer directly and obtain a
WebRTC handshake containing the IP address of that peer.

In case of a leak of the Au, all At are compromised. To mitigate this, a user should
be given the option to migrate to a new Au with a new DHT signing key and inform
their contacts of the new Au and signing key. This mechanism is not implemented in
the prototype but would essentially involve creating a new Au and corresponding signing
key and broadcasting the change to all online contacts. The contacts would then update
their address book with the new Au and key. This broadcasting to contacts would have
to continue until all contacts acknowledge the change because not all contacts might
be online to receive the message. This message must be signed with the old Au’s key;
otherwise, the contacts would not accept the message.

The time-based address allows peers that have the contact information of a peer to find
them in the DHT while not allowing adversaries without access to the contact information
to do the same.

When receiving a message, every peer needs to determine which peer it came from to
verify the message signature. To do this, we generate a rainbow table containing all
time-based addresses of all contacts upon loading the application.

6.7 Unlinking Time-Based Addresses From Static
Identifiers

Joining the overlay network requires exchanging web push registrations, which are linked
to a specific web browser on a specific device and generally do not change over time and

52

6.8. Censorship Resistance vs Anonymity

are linkable to a specific user account by the push server. For example Google Chrome
uses Firebase Cloud Messaging (FCM) which is is owned by Google. Therefore if a user
uses Google Chrome, Google can link the push registration to the user’s Google account.

We consider the scenario, where a user wants to share their push-notification registration
with untrusted peers to give those untrusted peers the ability to come online even if none
of their contacts are online. When such an untrusted peer then connects to the user
described above, the untrusted peer then learns the relationship between the users time-
based address and the push registration. If this happens multiple times, the untrusted
peer can link the users time-based addresses over time.

Even in a scenario, where only trusted users are given the push registration of the user
described above, because the bootstrapping of new peers always starts at one of their
contacts, a passive network observer can observe the contact relationship between the
two time-based addresses.

To mitigate this, we propose a double onion circuit bootstrapping process.

Consider peers A and B. peer A wants to join the network and peer B is already connected
to the network. First, peers A and B exchange their push notifications and establish
a WebRTC tunnel. Peer B then establishes an onion circuit to peer C and tunnels all
packets of peer A through peer C. peer A then establishes an onion circuit to peer D and
tunnels all his packets through peer D. This way, both peer A and B can be certain that
their initial connection can not be linked to their time-based addresses.

Only at this point does peer A reveal his time-based address to the network and establishes
a new WebRTC connection to a fresh peer E. After establishing the connection to peer E,
peer A drops his connection to peer B and the onion circuits to peers C and D are closed.
Peer A is now connected to the network and neither peer B learned the time-based
address of peer A nor did peer A learn the time-based address of peer B. Furthermore,
as far as a passive network observer is concerned, peer A just appeared in the network at
a random peer who is unrelated to peer A.

This process is illustrated in Figure 6.5.

6.8 Censorship Resistance vs Anonymity

Web applications using WebRTC as a transport layer and Time-Based Addresses as
described in section 6.6 still need to consider that directly connected peers can observe
each other’s IP addresses. To avoid this, the application can tunnel their WebRTC traffic
through a turn server and filtering the WebRTC signaling information to exclude IP
addresses that are not the turn server. WebRTC offers web applications the option to
tunnel the WebRTC communication channel through a turn server to bypass restrictive
NAT configurations. A web application can specify a list of turn servers it wants to use.
We can abuse this feature to hide the IP addresses of the peers from each other.

53

6. System Architecture of the Privacy-First Web Application Framework

Figure 6.5: Double Onion Circuit, dottet-line: onion circuit, solid line: WebRTC connec-
tion

However, when using a turn server, the turn server can potentially be shut down by an
adversary, preventing communication or forcing the application to reveal the IP address
of its network connection.

6.9 Encryption and Communication
As peers periodically alter their addresses, corresponding updates to their DHT encryption
keys are essential. Each user’s DHT record includes their time-based address, public key,
and a signature of this public key, authenticated with a permanent RSA-PSS-SHA256
keypair. The public key of this RSA-PSS-SHA256 pair, shared only with direct contacts,
validates the signature of the peer’s session encryption keys. Employing ECDH for
this purpose would be inadvisable due to its potential for public key recovery, linking
time-based addresses4.

An overview of the encryption and communication process is shown in Figure 6.6.

For link encryption within the DHT layer, we employ ECDH-AES-GCM with a dynamic
key authenticated with the RSA-PSS-SHA256 key. Message encryption for intended

4https://www.secg.org/sec1-v2.pdf (last visited 2024-08-28)

54

https://www.secg.org/sec1-v2.pdf

6.10. Encryption of Persistent Data

recipients utilizes RSA-OAEP-SHA256 with the dynamic key also authenticated with
the RSA-PSS-SHA256 key.

Beyond the DHT layer, an additional application encryption layer, accessible only to
direct contacts using permanent keys, ensures further privacy. This layer adopts either
ECDH-AES-GCM or the Double Ratchet Algorithm as implemented by the Libsignal
protocol5 or ECDH-AES-GCM.

As the Double Ratchet Algorithm requires a handshake for each communication partner,
it makes key distribution more complex. Think of a note application, where a note can be
shared with a group of users. By using the ECDH-AES-GCM encryption layer, all public
keys of the group members can be stored in the metadata of the note. This way, updates
to the note can be shared with all group members without requiring a key-exchange
protocol to have taken place between all members of the group. The Double Ratchet
Algorithm, on the other hand, would require an “introduction” of the new group member
to all other group members. Alternatively, every group member could share a list of
prekey bundles in the metadata, but this would still risk two new group members picking
the same prekey bundle, causing a conflict.

Figure 6.6: Encryption Diagram

6.10 Encryption of Persistent Data
To prevent other non-privileged applications running on the operating system from
accessing the data stored by the application storage in persistent storage, such as
IndexedDB, we propose encrypting the data using the WebAuthn PRF extension described
in section 4.3.1. At the time of writing, this extension to the WebAuthn Standard is only
available in the Google Chrome web browser.

5https://signal.org/docs/specifications/doubleratchet/ (last visited 2024-08-28)

55

https://signal.org/docs/specifications/doubleratchet/

6. System Architecture of the Privacy-First Web Application Framework

We implemented a getEncryptionKey function that runs a string generated when the
application is first run through the WebAuthn PRF. This string can then be used to
encrypt the data stored in the IndexedDB. The implementation of this function is shown
in Listing 6.8. The function returns a base64 encoded string that can be used as an
encryption key.

Implementing Applink with this enabled by default could be annoying for users because
this requires users to tap their security key every time they load or reload the application.
Furthermore, it requires a security key to use the application.

Therefore, we propose to make this an opt-in feature that users can enable in the settings
of the application once the API is implemented in more web browsers.

Listing 6.8: Create a PRF credential on a security key
1 async function getEncryptionKey(){
2 if(!localStorage.getItem(’encryptionKey’)){
3 const keyBuffer = new Uint8Array(32);
4 crypto.getRandomValues(keyBuffer);
5 localStorage.setItem(’encryptionKey’,
6 btoa(String.fromCharCode.apply(null, keyBuffer)));
7 await navigator.credentials.create({
8 publicKey: {
9 rp: {name: "privdb"},

10 user: {
11 id: new Uint8Array(16),
12 name: "anonymous@privdb.org",
13 displayName: "Anonymous"
14 },
15 pubKeyCredParams: [{type: "public-key", alg: -7}],
16 timeout: 60000,
17 authenticatorSelection: {
18 authenticatorAttachment: "cross-platform",
19 residentKey: "required",
20 },
21 extensions: {prf: {}},
22
23 // unused without attestation so a dummy value is fine.
24 challenge: new Uint8Array([0]).buffer,
25 }
26 });
27 }
28
29 const c = await navigator.credentials.get({
30 publicKey: {
31 timeout: 60000,
32 challenge: new Uint8Array([
33 /* does not matter for this use-case */
34 1,2,3,4,
35]).buffer,
36 extensions: {
37 prf: {
38 eval: {first: new TextEncoder()

56

6.11. Anonymity

39 .encode(localStorage.getItem(’encryptionKey’))}
40 }
41 },
42 },
43 });
44 return btoa(String.fromCharCode.apply(null, new Uint8Array(
45 c.getClientExtensionResults().prf.results.first)));
46
47 }

6.11 Anonymity
As we described in section 4.4, sender-recipient unlinkability can be achieved by using an
onion routing network. Because of the requirement of onion routing that onion routers are
not conspiring, relying strictly on the DHT for discovering onion routers is not feasible.
Even though our framework provides some level of confidence in the authenticity of the
peers in the DHT network through signed time-based addresses, one can either only pick
trusted peers as onion routers, which would considerably reduce the anonymity set, or
pick peers at random, risking connecting to a malicious peer. Therefore, a set of trusted
onion routers maintained by a trusted entity is required.

Given this constraint, it makes sense to take advantage of an existing anonymity system,
such as Tor, to benefit from and further strengthen the existing anonymity set. Tor has a
Rust implementation called Arti6 with an open issue to enable the WASM target7. This
would allow for the implementation of a bridge to the Tor network accessible using only
a web browser.

However, the timeframe for the implementation of the WASM compiler compatibility is
uncertain. It requires, among other changes, removing the dependency on TCP sockets
in the codebase. This is a non-trivial task, as the codebase is designed to work with TCP
sockets.

In this chapter, we have described our proposed system architecture for Applink and
explained the reasoning behind our design decisions. In the next chapter, we will evaluate
Applink in terms of security, performance, generalizability, and usability.

6https://gitlab.torproject.org/tpo/core/arti (last visited 2024-08-28)
7https://gitlab.torproject.org/tpo/core/arti/-/issues/103 (last visited 2024-08-

28)

57

https://gitlab.torproject.org/tpo/core/arti
https://gitlab.torproject.org/tpo/core/arti/-/issues/103

CHAPTER 7
Evaluation

In this chapter, we discuss the prototype implementation of the three sample applications
defined in section 5.1. We evaluate the functionality, security, privacy, and performance
of Applink based on these applications. Additionally, we assess the performance and
privacy of Applink in a simulated environment.

In section 7.1, we discuss general remarks about the functionality of Applink and possible
techniques for building applications with it. We then discuss the security and privacy
of applications built with Applink in section 7.2. In section 7.3, we examine Applink’s
performance. We evaluate the developer usability of Applink when building applications
in section 7.4. Our evaluation of the end-user usability of applications built with Applink
is discussed in section 7.5. We discuss the generalizability of Applink in section 7.6. In
section 7.7, we discuss the results of the research questions we defined in section 1.2.
Finally, we discuss the limitations of Applink in section 7.8.

7.1 Functionality
Applink facilitates communication between peers who know each other’s addresses and
are online simultaneously. The requirement for peers to be online at the same time to
synchronize state is restrictive in Applink’s applicability. Currently, web browsers do
not allow ServiceWorkers to access the WebRTC API, which would enable background
synchronization of application state at the cost of power consumption. A workaround
for this is to store the definitive state for every user on a peer that is always online. We
envision an extension of this framework capable of running on a Raspberry Pi or a similar
low-power, stationary device, serving as the definitive source of truth for a user, akin to
a federated server architecture. The “installation” of such applications on the Raspberry
Pi could be managed through a separate application installed on the device. However,
this approach may hinder widespread adoption due to the technical setup required.

59

7. Evaluation

Applications suitable for implementation using a Conflict-Free Replicated Data Type
(CRDT) [91] are well-matched for Applink. We have developed a rudimentary Connection
Provider for the Yjs CRDT framework [92]. With this integration, any Yjs document
can be shared among a designated user group without the need for passwords, while
maintaining confidentiality and integrity. This also allows the development of applications
that are fully available offline and resynchronize when reconnecting to the internet.

Another design pattern that fits well with Applink is the event-sourcing pattern [93]. We
can view CRDTs as a specialized version of event-sourcing: The updates to the document
are the events and the document is the state. As Applink has demonstrated its ability to
synchronize CRDTs, it is possible to extend Applink to support event-sourcing. This
would require a mechanism to determine the missed events of a peer, such as a merkle
tree of events similar to most blockchain implementations.

As WebRTC allows connections between pages of different origins, Applink enables
applications to communicate directly. Since all messages are authenticated based on
the userId, which is unique per origin and web browser, this is not a security problem,
as incoming messages are authenticated against and authorized based on the userId.
Furthermore, sharing a userId and address with another application strengthens the DHT
overlay network because the DHT layer treats peers running different applications the
same.

However, this poses a usability challenge. For an application to establish a connection
between peers, the address must be exchanged out of band. This can be done via a link
that can be shared. Establishing a connection between different applications of the same
user can be tricky. In the case of the invoicing application and the BCS, we chose to
copy the address to the clipboard. This is a suboptimal solution, as pasting this address
into the wrong application could lead to spam invoices being deposited into the invoice
tracking system.

One limitation of Applink is that it only allows one web browser tab to be open at a time.
This is because Applink performs an IndexedDB database upgrade when the page is
loaded to ensure the database schema is up to date. A possible workaround is to display
a placeholder page until a database connection is established, informing the user that
only one instance of the application can be open at a time.

For administrators hosting applications developed with Applink, the savings on hosting
costs are significant. Applink requires only a static server to host the source code and a
push server to relay messages. All the user data is stored on the user’s device, reducing
hosting costs for user-generated content.

7.2 Security and Privacy

In this section, we evaluate the security and privacy of applications built with Applink.

60

7.2. Security and Privacy

7.2.1 Security
As Applink allows arbitrary users to invoke calls, applications are at risk of novel
vulnerabilities similar to those found in smart contracts on the Ethereum blockchain
[94], such as broken access control or arithmetic bugs. For instance, an application
author might forget to validate the origin of a function call. Consider the code snippet
in Listing 7.1, which evaluates to true despite the two numbers not being equal.

Listing 7.1: JavaScript integer overflow
1 Number.MAX_SAFE_INTEGER + 100 == Number.MAX_SAFE_INTEGER + 101
2 output: true

There are multiple libraries for input validation in JavaScript, such as validatorjs1 and
is22. Application authors can utilize these libraries to validate input and prevent such
bugs. Because the controller class of the MVC pattern can be the same class that allows
RPC calls, the application author can spot inconsistencies in input validation more easily.
Due to the implicit public-key-based authentication, users are not required to remember
passwords or use password managers.
We designed the DHT protocol to not respond with a large payload to requests with a
small payload to avoid request amplification attacks. Moreover, Applink establishes an
implicit web of trust through the distribution of push addresses. Without knowing at
least one peer in a trusted overlay network, an attacker cannot connect to it. Even if
a WebRTC connection is established, messages will not be processed unless a contact
establishment handshake via Push has occurred beforehand, which requires knowing the
full contact information of the peer. This significantly reduces the attack surface for an
attacker who is not a contact of the victim.
Claim: A peer will only process a message if it is from a known contact.
Security Argument:
(0) Consider the _r_onMessage function from Listing 7.2 of the DhtTransport class. This
is the only function in that class that invokes the message listeners.
(1) The function call to contactManager.getAddressFromTimeBasedAddress will throw an
error if the time-based address does not belong to a contact. Therefore, a message will
only be processed if the time-based address belongs to a known contact.
(2) Since the message is from a contact, and it has been decrypted using RSA-OAEP-AES,
the sender must know the private key of the RSA key pair with which the message was
encrypted.
(3) All calls to rsaOaepeAesMessage.addContact are preceded by a call to contactManager.verify,
which checks the signature of the RSA-OAEP-AES public key against the RSA-PSS-
SHA256 public key associated with the time-based address if the sender is a contact,
which is confirmed by (1).

1https://www.npmjs.com/package/validatorjs
2https://www.npmjs.com/package/is2

61

https://www.npmjs.com/package/validatorjs
https://www.npmjs.com/package/is2

7. Evaluation

(4) Producing this signature requires the private key of the RSA-PSS-SHA256 key
pair. Therefore, we infer that the sender, who has access to the private key of the
RSA-OAEP-AES key pair, also knows the private key of the RSA-PSS-SHA256 key pair.

(5) Because the RSA-PSS key pair signed the RSA-OAEP-AES key pair (as noted in 4)
and is associated with the time-based address (as noted in 3), we can conclude that the
RSA-OAEP-AES key pair belongs to a known contact.

(6) Given (2) and (5), we can conclude that the message is indeed from a known contact.

(7) From (0), (1), and (6), we can finally conclude that a message will only be processed
if it is from a known contact.

Listing 7.2: _r_onMessage function of the DhtTransport class
1 async _r_onMessage(from: string,
2 { message, to, ttl }: DhtParameterMap[’send’]) {
3
4 if (to === await this.contactManager.getOwnTimeBasedAddress()) {
5 message =
6 (await this.rsaOaepeAesMessage.decryptMessage(message))
7 .payload;
8
9 /* if this message can be interpreted

10 by the longAsyncRF of the DhtTransport, do so */
11 if (!(await this.longAsyncRF.messageRecieved(from, message))) {
12 /*otherwise, pass it to the listeners */
13
14 /* resolve time based address
15 (only works for contacts, will throw if not a contact) */
16 from = await this.contactManager
17 .getAddressFromTimeBasedAddress(from);
18 this.listeners.forEach(listener => listener(from, message));
19 }
20 } else {
21 //if the message is not for us, forward it
22 if (ttl > 0) {
23 await this.send(to, message, false, from, ttl);
24 console.log(‘forwarded message from ${from} to ${to}‘);
25 }
26 }
27 }

One potential attack vector for de-anonymizing the time-based address is to perform a
handshake with a peer to obtain its public IP address. This can be mitigated by limiting
WebRTC traffic to run through TURN servers. However, this channels all traffic through
centralized infrastructure, increasing the attack surface and causing a financial burden
on the TURN server operator.

62

7.2. Security and Privacy

Double Onion Circuit Anonymity Security Argument

In section 6.7, we describe the double onion circuit protocol to unlink time-based addresses
from static identifiers.

Claim: A peer can unlink their static identifier from their time-based address.
Security Argument:

Assumptions:

(A1) An onion circuit between two peers, Y and Z, guarantees sender-recipient unlink-
ability between Y and Z, such that no other peer can observe the communication link
between Y and Z. Furthermore, only the peer who establishes an onion circuit can identify
the link between the hops of the onion circuit.

(A2) The overlay network uses time-based addresses, which are used to route messages
within the overlay network.

(A3) To join the overlay network, a peer can use a random, single-use address as a
time-based address for the initial connection.

Steps:

(1) Two peers, A and B, have established a direct WebRTC connection through web push
and therefore know each other’s static push identifiers.

(2) Peer B establishes an onion circuit, BC, to peer C and tunnels all of A’s traffic through
C. This is done in such a way that no peer other than B can relate the traffic exiting C
back to B.

(3) Due to (2), peer A and peer C are unable to observe the origin of the onion circuit BC,
thereby preventing the linking of B’s static identifier (push registration) to B’s time-based
address.

(4) Peer A establishes an onion circuit, AD, to peer D and tunnels all of their traffic
through it. This is done in such a way that no peer other than A can relate the traffic
exiting D back to A.

(5) Due to (2), the onion circuit AD is routed through the onion circuit BC.

(6) Due to (A1) and (2), even if peer B does not establish an onion circuit, A’s exit node
is D, and B cannot correlate any traffic exiting D with A.

(7) Due to (6), A can use their time-based address to establish a direct WebRTC
connection with any peer on the overlay network using the routing of the overlay network,
without any other peer being able to link this traffic to A’s static identifier.

Given (3) and (7), a peer can unlink their static identifier from their time-based address.

ProVerif Verification

We have verified the unlinkability of addresses over time, as well as the unlinkability of
time-based addresses, using ProVerif [95]. The ProVerif code is shown in Listing 7.3.

63

7. Evaluation

Listing 7.3: Proverif code for unlinkability of time-based addresses and message confiden-
tiality

1 free c:channel.
2 type key.
3
4 fun senc(bitstring,key):bitstring.
5 reduc forall m:bitstring, k:key; sdec(senc(m,k),k) = m.
6
7 type skey.
8 type pkey.
9

10 type address.
11 type tbaddress.
12
13
14 fun pk(skey):pkey.
15 fun aenc(bitstring, pkey):bitstring.
16
17 reduc forall m:bitstring, k:skey; adec(aenc(m, pk(k)), k) = m.
18
19 fun sign(bitstring, skey):bitstring.
20
21 reduc forall m:bitstring, k:skey; checksign(sign(m,k), pk(k)) = m.
22
23 fun signPk(pkey, skey):bitstring.
24
25 reduc forall m:pkey, k:skey; checksignPk(signPk(m,k), pk(k)) = m.
26
27
28 fun timeBasedAddress(address, bitstring):tbaddress.
29
30 reduc forall a:address, ts:bitstring; timeBasedAddressDecode(timeBasedAddress(a, ts), a, ts) = a.
31
32 fun associate(address, pkey):bitstring.
33
34 reduc forall a:address, pubk:pkey; getPkByAddress(associate(a, pubk), a) = pubk.
35
36
37 free Message:bitstring [private].
38 free Timestamp:bitstring.
39 free AddrB:address [private].
40
41 event sent(bitstring).
42 event recieved(bitstring).
43
44 let Alice(skA:skey, ltPkB:pkey, addrB:address) =
45 in(c, pkBMsg:bitstring);
46 let pkB = checksignPk(pkBMsg, ltPkB) in
47 let ass = associate(addrB, pkB) in
48 in(c, tbaB:tbaddress);
49 in(c, ms:bitstring);
50 let addrM = timeBasedAddressDecode(tbaB, addrB, Timestamp) in
51 let pkM = getPkByAddress(ass, addrM) in

64

7.2. Security and Privacy

52 let me = checksign(ms, pkM) in
53 let m = adec(me, skA) in
54 event recieved(m);
55 0.
56
57 let Bob(ltskB:skey, pkA:pkey, addrB:address, m:bitstring) =
58 (* create a fresh keypair, sign the public key with the long term signature key and publish it*)
59 new skB:skey;
60 out(c, signPk(pk(skB), ltskB));
61 out(c, timeBasedAddress(addrB, Timestamp));
62 (* encrypt the message with the public key of the other party and sign it with the fresh key *)
63 let me = aenc(m, pkA) in
64 let ms = sign(me, skB) in
65 event sent(m);
66 out(c, pk(skB));
67 out(c, ms);
68 0.
69
70 query attacker(Message).
71 query attacker(AddrB).
72
73 query x1:bitstring; event(recieved(x1)) ==> event(sent(x1)).
74
75 process
76 new ltskA:skey;
77 new ltskB:skey;
78 ((!Alice(ltskA, pk(ltskB), AddrB) | !Bob(ltskB, pk(ltskA), AddrB, Message)))

OWASP Top 10

Next, we will discuss the OWASP top 103 vulnerabilities and their applicability to
Applink.

(1) Broken Access Control: Access control is application-specific. Applink, particularly
through the RPCInterface interface, encourages developers to authenticate and authorize
every function call, as the first parameter of every remotely callable function is the userId
of the caller.

(2) Cryptographic Failures: Applink’s reliance on the WebCrypto API, rather than
requiring application developers to implement cryptographic functionality, reduces the
likelihood of cryptographic failures.

(3) Injection: Cross-site scripting remains a threat to applications using this framework.
Modern templating frameworks like Lit partially mitigate this risk by automatically
escaping user input4.

(4) Insecure Design: Applink, especially with its RPCInterface abstraction, aims to
clarify which functions can be invoked by any remote peer. It facilitates local testing and

3https://owasp.org/Top10/A00_2021_Introduction/ (last visited 2024-08-28)
4https://github.com/lit/lit.dev/issues/448

65

https://owasp.org/Top10/A00_2021_Introduction/
https://github.com/lit/lit.dev/issues/448

7. Evaluation

simplifies code reasoning. However, centralized applications, which can monitor activities
more easily and store all data in a central database, reduce the mental load for developers
associated with partitions.

However, developers could accidentally break some of the anonymity features of Applink,
for example by sharing user IDs. Developers could even completely break the anonymity
benefits of Applink by storing all data in a central database, adding tracking scripts such
as Google Analytics5, including monitoring scripts such as Rollbar6 or Sentry7, or by
using a centralized authentication service such as Auth08.

(5) Security Misconfiguration: Applink’s reduction of dependency on a properly func-
tioning server decreases the attack surface. However, security headers such as HTTP
Strict Transport Security (HSTS) and Content Security Policy (CSP) should be set by
the application developer/administrator.

(6) Vulnerable and Outdated Components: As highlighted by Zahan et al. [96], supply
chain vulnerabilities in the JavaScript and NodeJS ecosystems are a growing concern.
This framework does not directly address this issue.

(7) Identification and Authentication Failures: Applink’s requirement for users to exchange
initial connection information out of band makes it vulnerable to information leakage to
attackers. Ideally, Applink would store the address in the DHT and exchange the DHT
address and a decryption key out of band, deleting the DHT entry after establishing the
connection.

(8) Software and Data Integrity Failures: Developers should ideally be able to sign their
applications for web browser-independent validation, allowing for integrity protection
even when multiple servers serve application code due to censorship events. Validating
any signature in JavaScript would be ineffective, as attackers could modify the validation
code. A possible solution involves using a web browser extension for validation, but this
contradicts the initial assumption that web browser extensions cannot be relied upon,
especially in mobile web browsers.

(9) Security Logging and Monitoring Failures: Applink’s lack of support for centralized
logging supports privacy but potentially detracts from security. Proper pre-deployment
application testing is essential for security. A possible approach involves defining a set of
events that can be reported to a centralized server managed by a trusted entity, although
this does not fully resolve the logging issue.

(10) Server-Side Request Forgery: Applink is not vulnerable to server-side request forgery,
as it only uses a server to relay push messages.

5https://analytics.google.com (last visited 2024-08-28)
6https://rollbar.com (last visited 2024-08-28)
7https://sentry.io
8https://auth0.com/ (last visited 2024-08-28)

66

https://analytics.google.com
https://rollbar.com
https://sentry.io
https://auth0.com/

7.2. Security and Privacy

Censorship Resistance

Applications utilizing Applink can be easily deployed to a web server and accessed via a
QR code, providing a straightforward distribution method. Furthermore, even if the web
server is blocked, the ServiceWorker API allows for offline storage of all application code,
enabling continued application use.

The web server, which removes the CORS header for the push service, can also be easily
deployed and distributed automatically to trusted contacts.

Blocking the push service or WebRTC is impractical, as they are widely used, and
protocols cannot be blocked on an application-by-application basis. Applications built
with Applink are as usable as regular websites, making them accessible to computer
novices.
Social Availability

Because applications built upon this framework run in a web browser and are similar to
other web applications, it would be hard to stigmatize usage of those applications the
same way some organizations have attempted to stigmatize usage of the Tor browser,
such as this page run by the Austrian government quoting Josef Pichlmayr advising
people that:

Es gibt eigentlich keinen Grund, im Darknet zu sein. Außer man ist Jour-
nalistin oder Journalist, studiert Cybersicherheit oder macht soziologische
Studien. Ansonsten hat man dort nichts verloren. Dinge, die im Clear Web
nicht erhältlich sind, gibt es dort aus guten Gründen nicht.

——
English translation produced with GPT-4o:
There is actually no reason to be on the dark web. Unless you are a journalist,
studying cybersecurity, or conducting sociological studies, you have no business
there. Things that are not available on the clear web are not available there
for good reasons.

a.
aJosef Pichlmayr interviewed by https://www.onlinesicherheit.gv.at/Services/News/

Darknet-Ueberblick.html (last visited 2024-08-28)

Or attempts by the European Union to undermine privacy law and human rights by
deploying mass surveillance technology under the pretense of preventing child abuse [97]9.

Given the ease of deployment and the option to transfer all data to a different domain
that our framework provides, it would be difficult to stigmatize or block applications
built with Applink faster than they can be redeployed.

9https://edri.org/our-work/how-a-hollywood-star-lobbies-the-eu-for-more-
surveillance/ (last visited 2024-08-28)

67

https://www.onlinesicherheit.gv.at/Services/News/Darknet-Ueberblick.html
https://www.onlinesicherheit.gv.at/Services/News/Darknet-Ueberblick.html
https://edri.org/our-work/how-a-hollywood-star-lobbies-the-eu-for-more-surveillance/
https://edri.org/our-work/how-a-hollywood-star-lobbies-the-eu-for-more-surveillance/

7. Evaluation

7.2.2 Privacy
Because Applink does not store user data on centralized infrastructure and does not
require users to sign up, it enhances user privacy over centralized applications.

Transformer-based language models can analyze user data [98] as well as retrieve data
matching search queries, especially in edge cases where exact keywords are hard to find,
such as searching for specific user records [99].

Therefore, it is crucial to limit the amount of data accessible to any single entity, such as
data stored unencrypted on centralized infrastructure.

As described in section 4.4, Applink could be extended to support sender-recipient
unlinkability through onion routing. However, implementing onion routing entails years
of development, testing, and user adoption. A more viable approach might be to utilize
the Tor onion routing network, which the project is currently exploring but has not yet
implemented.

It should be noted that applications using this framework can still implement tracking
mechanisms alongside it. JavaScript can initiate arbitrary connections to any server, and
Applink does not prevent this.

7.2.3 Threat Model
As outlined in the threat model in subsection 5.2.2, we identify three types of adversaries:
(1) Censors are limited in their ability to shut down applications using Applink.

Applink can utilize a list of proxies to send messages to the push infrastructure. These
proxies can be automatically distributed through applications without user intervention,
making it difficult to block messages sent to push infrastructure.

We assume the delivery of messages by the push infrastructure will not be shut down.
Therefore, we only concern ourselves with solving for the path from the client to the
push infrastructure.

Even if an application’s domain is blocked, users can still access the application if it
employs web browser caching via the Service Worker API. Furthermore, the entire
application state can be automatically transferred to an identical application hosted on a
different domain.

As the process of blocking IP addresses or domains for censorship purposes is slow, a
dedicated community can outpace a censor. This was exemplified by the Tor project’s
experience in Russia, where lists of IP addresses were compiled into Excel spreadsheets
and emailed to the censors10. The servers proxying the push traffic can also require a
pre-shared key and be distributed only to a trusted set of contacts to prevent active
probing of the infrastructure.

10https://youtu.be/g5ZiBYR-1MM?si=JygB7VziJ21QM06S&t=1224 (last visited 2024-08-28)

68

https://youtu.be/g5ZiBYR-1MM?si=JygB7VziJ21QM06S&t=1224

7.2. Security and Privacy

(2) Malicious administrators cannot prevent individual users from accessing or using an
application built on Applink. However, they can introduce malicious code into a website.
One possible solution to this problem is to monitor the code of an application for changes.
This could be in the form of a third-party website where users sign up to receive a
notification if malicious code is detected.

Because detecting malicious code is difficult to automate, this would require human
review. There might be the possibility of automating this review using machine learning,
specifically transformer-based pre-trained language models.

(3) Malicious users can attempt to send malicious messages to other users that exploit
vulnerabilities in the application or framework. Given that Applink has not been exten-
sively reviewed, we must assume some vulnerabilities might eventually be discovered.
Applications are encouraged to authenticate a request as the first step in its invocation,
meaning a malicious user must first be added as a contact to launch an attack against
more complex and, therefore, more error-prone parts of an application.

Applications should be tested with unexpected data types (e.g., arrays or objects instead of
strings) in their parameters to anticipate potential attack scenarios. One aid in improving
application security could be to create a fuzzer for RPCInterface that automates testing
for common error causes.

Malicious users can only determine that communication between peers is happening if
they know both addresses (to correlate time-based addresses) and if the user is part of the
path between these peers. Since every peer changes their time-based address regularly
and at the same time, correlating communication sessions and consistently being part of
the path between peers is made more difficult as the address in the DHT is determined
by a secure hash function and a connection through a web-of-trust is required to establish
a connection. This is because joining the DHT requires knowing the push registration
information of a peer that is already part of the DHT.

7.2.4 Confidentiality
Assuming a correct application implementation, all data is stored by Applink on the
user’s devices and transmitted only to authenticated and authorized users. No central
authority can read or modify the data of applications.

However, social engineering attacks on individual users can lead to attackers gaining
access to the information of a user. Application authors should keep this in mind and
design their applications to minimize the impact of such attacks.

7.2.5 Simulation of Malicious Honest-but-Curious Attacker Peers
We extended the simulation described in section 6.5 to include malicious peers that are
honest-but-curious. These peers count the packets they receive and send and from whom
to whom they are sent. Subsequently, the peers guess which peers are communicating
with each other based on the number of packets sent and received. In our simulation,

69

7. Evaluation

Figure 7.1: Success rate of packet-counting attack

we guess that communication above the mean number of packets sent and received is
communication between two peers. We always simulate five malicious peers with a
varying number of other peers.

The results are shown in Figure 7.1. The median success rate of the packet counting
attack with five malicious and five honest peers is less than 5% better compared to
random guessing across all simulated numbers of peers (10, 20, 50, 100, 200, 300, 600).
For 600 peers with five malicious peers, we compared random guessing peer relationships
to packet counting peer relationships and found that the packet counting attack has a
2% advantage over random guessing as shown in Figure 7.2.

This experiment demonstrates the need for additional measures to provide sender-recipient
unlinkability. However, it also demonstrates that time-based addresses can significantly
reduce the cross-session tracking capabilities of malicious peers. This reduction in tracking
capabilities is due to the difficulty for an attacker to determine if two communicating
peers are the same as in the previous time-based address interval. We are ignoring the
fact that direct connections via WebRTC reveal the IP address of the peer, as the IP
address can be obfuscated by a peer with the help of a VPN.

70

7.3. Performance

Figure 7.2: Advantage over random guessing through packet counting

7.3 Performance

We evaluated three main performance metrics for Applink: page load time, connection
establishment time, and synchronization overhead.

The page load time is the time it takes for the application to be usable after the user
navigates to the application’s URL.

The connection establishment time is the time it takes for a peer to establish a connection
with another peer.

Synchronization overhead is the CPU overhead generated by Applink when synchronizing
application state between peers. We evaluated these metrics using the notes application
because it is the application that works best with Applink and is the most feature-complete
prototype implementation.

71

7. Evaluation

LCP

400

450

500

550

600

650

700

T
im

e
(m

ill
ise

co
nd

s)
Largest Contentful Paint (LCP) Time

Figure 7.3: Boxplot of Largest Contentful Paint (LCP) for the notes application on Pixel
6 Pro Running Chrome 121.0.6167.178 on Android 14.

7.3.1 Page Load and Bootstrapping

We measured the Largest Contentful Paint (LCP)11 metric using Chrome DevTools, as
seen in Figure 7.4, for the notes app to assess page load performance. In the case of the
notes application, the LCP event fires when the user’s notes are visible on the screen.

The measurements, conducted on a Pixel 6 Pro running Chrome 121.0.6167.178 on
Android 14 and served over a local network, show a median LCP of 449ms, with the
25th percentile at 407ms and the 75th percentile at 500ms, and the highest outlier at
713ms (N=20). These results meet Applink’s performance requirements. It is important
to note that this measure is independent of network latency, as all application data can
be loaded from web browser storage. A boxplot of the LCP times is shown in Figure 7.3.

11https://web.dev/articles/lcp#what-is-lcp (last visited 2024-08-28)

72

https://web.dev/articles/lcp#what-is-lcp

7.3. Performance

Figure 7.4: Page load time of the notes application on a Pixel 6 Pro running Chrome
121.0.6167.178 on Android 14.

7.3.2 Connection Establishment
The bootstrapping process requires the exchange of two push notifications between peers
containing the WebRTC offer and answer.

Our initial assumption was that the bottleneck of this process would be the push
notification delivery time. While this is true for most cases, ICE candidate gathering can
also be a bottleneck.

In some circumstances, the bootstrapping can be unacceptably slow (40-50 seconds on a
Pixel 6 Pro running Chrome 121.0.6167.143 connecting to a desktop PC running Chrome
121.0.6167.140, with both devices on the same local network), as gathering the ICE
candidates for WebRTC encounters a 40-second timeout if a STUN server cannot be
reached12.

This timeout occurred with the Pixel 6 Pro but not with the desktop machine in our
testing setup due to only IPv4 connectivity being available. On the desktop machine,
the median connection time is 1,446ms, with the 25th percentile of 1,331ms and a 75th
percentile of 7,972ms (N=20). The highest outlier was 15,820ms. This high span is
caused by a race condition when two peers attempt to connect to each other at the same
time. If both peers enter the state where they start a handshake, they will wait for a
random timeout before trying again. Once a connection is established, Android devices
running Google Chrome keep the website running in the background, allowing for limited
synchronization while the application is not open. By shortening the ice-gathering stage
of the WebRTC connection, as shown in Listing 7.4, connection time on Android devices
is reduced to 10-20 seconds. With the fix applied, we measured the connection times as
seen in Figure 7.5.

12https://stackoverflow.com/questions/76491417 (last visited 2024-08-28)

73

https://stackoverflow.com/questions/76491417

7. Evaluation

Desktop to Desktop Desktop to Smartphone
0

2

4

6

8

10

12

14

16

T
im

e
(s

ec
on

ds
)

Connection Establishment Time

Figure 7.5: Boxplot of Time to first connection established for the notes application.

We evaluated how long a Pixel 6 Pro running Chrome 121.0.6167.178 on Android 14 keeps
the notes app running in the background and found it to be 5 minutes when plugged
into power and 3 minutes when unplugged, with battery saver mode turned off.

74

7.3. Performance

Listing 7.4: Shortcut for the ice gathering stage of the WebRTC connection
1 const icePromise = new Promise<string>(resolve => {
2 connection.onicegatheringstatechange = () => {
3 if (connection?.iceGatheringState === ’complete’) {
4 resolve(JSON.stringify({ candidates, offer }));
5 }
6 };
7 });
8 return await Promise.race<string>([icePromise,
9 (async () => {

10 await timeout(10000);
11 if (candidates.length > 0) {
12 return JSON.stringify({ candidates, offer });
13 }
14 return icePromise;
15 })()
16]);

7.3.3 Synchronization
Chrome DevTools indicates that synchronizing the application state during user inter-
action does not noticeably affect the application’s performance. As demonstrated in
Figure 7.6, the notes application’s input events have a 60ms presentation delay. This is
within our target of 100ms for responding to user input. The presentation delay occurs
because most of the encryption work is handled by the WebCrypto API, which operates
in a separate thread, preventing the web browser from blocking while rendering a frame.
The notes application uses libsignal’s JavaScript implementation of curve25519, as it is
not yet supported by the WebCrypto API13. Performance could be further improved
by moving the curve25519 implementation to a web worker. The execution time of
curve25519 in JavaScript is shown in Figure 7.7. The execution time is less than 10ms
and, therefore, within our performance requirements defined in subsection 5.2.4.

We used the simulation described in section 6.5 to evaluate the expected success rate
of message delivery without relying on storing data on a central server or on peers that
are not involved in a given data exchange. For this, we assumed that peers’ interaction
frequencies follow a Zipfian distribution [100] and used the zipfian npm package14 to
generate the distribution. Our simulation uses discrete time steps (“ticks”). For every
tick, every peer has a 1% chance to go online or offline. Online peers that have established
at least one connection attempt to send five messages to their contacts per tick according
to their fixed contact frequency distribution determined by the Zipfian distribution.
Online peers attempt to connect to one additional peer per tick using the logic of the
k-bucket DHT library15. We define the success rate as the percentage of messages that
can be delivered in the DHT network at that point in time. The simulation is run for

13https://github.com/w3c/webcrypto/pull/362 (last visited 2024-08-28)
14https://github.com/willscott/zipfian (last visited 2024-08-28)
15https://www.npmjs.com/package/k-bucket (last visited 2024-08-28)

75

https://github.com/w3c/webcrypto/pull/362
https://github.com/willscott/zipfian
https://www.npmjs.com/package/k-bucket

7. Evaluation

Figure 7.6: Synchronization of the notes application on a Pixel 6 Pro.

Figure 7.7: Execution of curve25519 in JavaScript on a Pixel 6 Pro.

76

7.3. Performance

Figure 7.8: Number of online peers over time

300 ticks with 300 peers. The results are shown in Figure 7.9a. As the number of online
peers approaches 50% of all peers, the success rate in the median is about 45%. The
number of online peers over time is shown in Figure 7.9a. We ran the simulation with
a uniform contact distribution instead of the Zipfian distribution, and the results are
shown in Figure 7.9b. There is no significant difference in the success rate of message
delivery between the two distributions. This shows that the Zipfian distribution of contact
frequencies does not have a significant impact on the success rate of message delivery.
The discrepancy between the number of online peers and the success rate of message
delivery is caused by our simplified simulation code for bootstrapping peers.

In the real world, it is likely that peers that want to communicate with each other are
online at the same time, at least in some use cases such as collaborative editing of a
document while in a meeting or sending instant messages. This would increase the success
rate of message delivery.

The code simulating the DHT network routing is shown in Listing 7.5. We set the
time-to-live of a packet to 20. If the current peer is not online or the time-to-live is
zero, the packet is considered failed. If the packet reaches its destination, the packet

77

7. Evaluation

(a) Number of successful messages delivered

(b) Number of successful messages delivered with uniform contact frequency distribution

Figure 7.9: Simulation of the DHT network with 300 peers

78

7.3. Performance

is considered successful. Our routing logic allows packets to not be sent to the nearest
contact if the packet came from that contact, as this would simply create a loop until the
time-to-live hit zero. This can happen if the closest contact is still in their bootstrapping
phase or when the recipient of a packet is offline.

We track the observed traffic per peer to analyze the viability of a packet counting attack
as described in subsection 7.2.5.

79

7. Evaluation

Listing 7.5: sendPacket function of the simulation
1 /**
2 *
3 * @param {Peer} from
4 * @param {Peer} to
5 * @returns
6 */
7 sendPacket(from, to, ttl = 20) {
8 if (!this.isOnline) {
9 this.failedPackets++;

10 return;
11 }
12 if (!this.observedTraffic.has(from.timeBasedAddress)) {
13 this.observedTraffic.set(from.timeBasedAddress, new Map());
14 }
15 if (
16 !this.observedTraffic
17 .get(from.timeBasedAddress).has(to.timeBasedAddress)
18) {
19
20 this.observedTraffic.get(from.timeBasedAddress)
21 .set(to.timeBasedAddress, 0);
22 }
23 this.observedTraffic.get(from.timeBasedAddress)
24 .set(to.timeBasedAddress,
25 this.observedTraffic.get(from.timeBasedAddress)
26 .get(to.timeBasedAddress) + 1);
27
28 if (to === this) {
29 this.successfulPackets++;
30 return;
31 }
32 if (ttl <= 0) {
33 this.failedPackets++;
34 return;
35 }
36 const closestEntries =
37 this.kbucket.closest(to.encodedTimeBasedAddress, 3);
38
39 for (const contactKEntry of closestEntries) {
40 const contact = this.connections
41 .find(c => c.encodedTimeBasedAddress === contactKEntry.id);
42
43 if (contact === from && closestEntries.length > 1) {
44 continue;
45 }
46 if (contact) {
47 contact.sendPacket(this, to, ttl - 1);
48 return;
49 } else {
50 throw new Error(’Contact not found’);
51 }
52 }

80

7.4. Developer Usability

53 this.failedPackets++;
54 }

7.4 Developer Usability
Applink can save developers time to deal with authentication on the backend, as applica-
tions built with Applink run entirely in the web browser. Additionally, Applink provides
a built-in contact system that can be further developed. The two components of the
Notes application that are not related to the user interface, the NoteShareController
and the PrivDbProvider, contain fewer than 400 lines of code. This demonstrates that
Applink is suitable for small applications and prototypes. Moreover, the RPCInterface

abstraction allows for local testing without a web browser, provided that the tested
component does not rely on a web browser-only API.

However, exposing functions of an object to be called by anyone without this being clearly
marked in the code can lead to mistakes. Applink enforces the naming of functions
registered in an RPCInterface to contain “_r_” to remind developers that these functions
can be called by any remote peer. However, data types are not enforced by Applink in the
current implementation. Proper input validation is still the responsibility of the developer
and is a potential source of bugs. Therefore, we plan to implement Zod schemas16 for
input validation in the future.

Monitoring a distributed privacy-focused application without compromising the privacy
of the users is a challenge. Applink does not provide a solution to this problem.

One possible solution is to ask tech-savvy users to send stack traces from their web
browser console to the developer. However, this is very limited as obtaining logs from
a mobile web browser is not possible without connecting the device to a computer. It
could be near impossible to obtain a stack trace from a not-trivial-to-reproduce bug.

To mitigate this, best practices should be followed during development, such as testing,
linting, and code reviews. Furthermore, developers should consider using TypeScript to
catch type errors at compile time or build core application logic in Rust and compile it
to WebAssembly, which is becoming increasingly common17,18,19.

Applink fulfills the requirements outlined in subsection 5.2.5. It offers support for building
distributed applications with a focus on privacy and security.

Furthermore, Applink allows developers to build transactional flows with the RPCInterface
abstraction. Especially with the ability to declare an expected callback to be called

16https://zod.dev/ (last visited 2024-08-28)
17https://2021.stateofjs.com/en-US/other-tools/#non_js_languages (last visited

2024-08-28)
18https://2022.stateofjs.com/en-US/other-tools/#non_js_languages (last visited

2024-08-28)
19https://2022.stateofjs.com/en-US/features/other-features/ (last visited 2024-08-

28)

81

https://zod.dev/
https://2021.stateofjs.com/en-US/other-tools/#non_js_languages
https://2022.stateofjs.com/en-US/other-tools/#non_js_languages
https://2022.stateofjs.com/en-US/features/other-features/

7. Evaluation

within a timeframe, as shown in Listing 6.6, Applink allows developers to build robust
applications that can recover from network failures.

It also allows for applications to exchange data across origins as described in subsec-
tion 5.2.3. API endpoints accessible from other origins can be implemented using the
RPCInterface abstraction. Because all calls to the RPCInterface can come from any other
peer, the threat model does not change because of this feature. We ensure that RPC calls
can only be invoked from trusted contacts rather than relying on the same-origin policy.

7.5 End-User Usability
For end-users, Applink improves the initial application experience by not requiring a
signup to get started using an application. However, this could also lead to user confusion
as it does not adhere to the common patterns users are familiar with.

Adding other devices can be implemented to be similar to the process of logging in on a
new device in a centralized application such as Discord20 and Steam21. Users can use a
QR code to pair a new device with the application. If such a flow is implemented, the
application state can be synchronized between the existing and the new device because
both applications need to be open to scan the QR code and to present the QR code.

However, users could be confused by the fact that changes do not synchronize across
devices unless their devices are online at the same time. This could be worked around on
a per-application basis depending on the privacy requirements.

Furthermore, users who are unaware of Applink storing all data on-device might not
expect their data to be available offline and therefore not take advantage of this feature,
further diminishing the benefits of Applink.

Some users will probably choose the convenience of not adapting to a new concept such
as this framework over the privacy benefits it provides. We assume this to be especially
true for users who are not privacy-conscious.

7.6 Generalizability
This section outlines the experience of implementing different kinds of applications using
Applink. Applink works well when used in conjunction with CRDTs in applications that
can tolerate eventual consistency, such as the notes application.

7.6.1 Notes Application
The notes application is a good fit for Applink. Notes can be represented by the Yjs text
primitive and sending links to other users to share notes is an interaction pattern that is

20https://support.discord.com/hc/articles/360039213771 (last visited 2024-08-28)
21https://help.steampowered.com/en/faqs/view/7EFD-3CAE-64D3-1C31#qrlogin

(last visited 2024-08-28)

82

https://support.discord.com/hc/articles/360039213771
https://help.steampowered.com/en/faqs/view/7EFD-3CAE-64D3-1C31#qrlogin

7.6. Generalizability

also used by centralized note applications such as OneNote22.

The notes application allows users to just start creating notes without having to sign
up or log in. All notes can be synchronized to a different device or web browser by
copy/pasting a link to that device to pair it once.

A screenshot of the notes application is shown in Figure 7.10. The notes application is
currently deployed at https://privdb.org.

The requirements of the notes application have been met as the following list shows:

1. The application allows a user to create, update, and delete a note.

2. The application allows a user to view their notes.

3. The application allows a user to share their note with other users (0..*). Sharing
a note is as easy as sharing a link in a centralized application. However, syn-
chronization of notes is only possible when both users are online at the same
time.

4. The application allows a shared note to be edited by all users it has been shared
with. This is achieved by using Yjs as the underlying data structure for the notes.

5. The application allows a user to synchronize their notes with other devices. This is
achieved by sharing the note with the other device and both devices (or a transitory
device) being online at the same time.

6. The application does not allow users to view, modify, or delete the notes of other
users without explicit permission. This can be achieved by validating the userIDs
of incoming requests, which this application does.

The last two items of the requirements of the notes application include two more points
that have not been fully met.

(7) The application shall not reveal the set of users with access to a note to users without
access to the note. A shared note can be inferred by a user who knows the addresses of
both peers that share a note and is part of the DHT network path between the peers.
One possible solution to this is to add onion routing to Applink. However, as discussed
in section 4.4, this is out of scope for this project.

(8) The application shall not allow anyone to prevent anyone else from using the application.
It is difficult to completely eliminate the possibility of a denial-of-service attack. However,
Applink provides some censorship resistance, making it more difficult to restrict the
availability of an application for individual users.

22https://www.microsoft.com/de-at/microsoft-365/onenote/digital-note-
taking-app (last visited 2024-08-28)

83

https://privdb.org
https://www.microsoft.com/de-at/microsoft-365/onenote/digital-note-taking-app
https://www.microsoft.com/de-at/microsoft-365/onenote/digital-note-taking-app

7. Evaluation

Figure 7.10: Notes application

84

7.6. Generalizability

7.6.2 Beer Credit System
The main problem in implementing the BCS is keeping track of a user’s current balance. In
Blockchain systems such as Bitcoin, all transactions are known to all peers. Because only
administrators are allowed to know about all transactions, synchronizing the transaction
list between administrators is key.

Consider the case of an administrator who comes online to confirm one credit transaction
and goes offline immediately after granting this transaction. No other administrator is
aware of the user’s increase in balance, and all of them will refuse purchases until the
granting administrator is back online and shares this data with the other administrators.

One solution to this problem is to have one administrator permanently online. However,
this defeats all privacy advantages of a decentralized system such as this framework.
Another possible solution would be to keep track of the user’s balance and item prices in
a smart contract. However, this would move all functionality into the blockchain and
diminish the need for Applink.

One use case for Applink in the BCS could be a customer support chat. This would work
well as it is sufficient for one administrator to be online to answer a customer’s question,
and consistency is not a hard requirement for this type of application.

Therefore, the BCS is not a good fit for Applink. A possible workaround is to use a
blockchain to process transactions, but this diminishes the need for Applink.

The requirements of the BCS cannot be fully implemented. Here, the list of requirements
and their status is listed:

1. The application allows a user to read their account balance.

2. The application allows a user to request a deposit. This is even possible when
no administrator is currently online, as the request will be rebroadcast when an
administrator comes online.

3. The application allows a user to buy a drink.

4. The application allows a user to retrieve and store invoices in an invoice application
of choice. This is a bit clunky because the user must open the invoice application
and the BCS application at the same time to synchronize the invoices.

5. The application allows administrative users to approve a deposit. This is only
possible when the approving administrator is online at the same time as the user
requesting the deposit.

6. The application allows administrative users to view the account balances of any
user. This can only be consistent when all administrators are online at the same
time.

7. The application allows administrative users to modify the set of administrators.

85

7. Evaluation

Figure 7.11: Beer Credit System – User requesting credit

8. The application allows administrative users to bulk download the already existing
invoices. This is possible as long as the administrative user has synchronized all
transactions with other administrators.

9. The application does not allow a user to read another user’s balance. This can be
achieved by validating the userIDs of incoming requests, which this application
does.

10. The application shall not allow a user to buy a drink with insufficient credit. This
could be violated if administrators have an inconsistent view of the user’s balance.

As explained above, requirements 10 and 7 cannot be implemented within Applink.

The user flow of the BCS, where a user first requests a deposit, is shown in Figure 7.11.
The admin view of the BCS of the request is shown in Figure 7.12.

7.6.3 Invoicing System
The limiting factor for the usability of the invoicing system is the constraint that an
application can only receive data while it is open. Therefore, we designed the flow
of receiving invoices to be a manual user request. This is quite cumbersome. The
conventional way of delivering invoices by email seems much more flexible and practical.

1. The application allows a user to view a list of their invoices. This is possible with
all invoices being even available offline.

86

7.7. Research Questions

Figure 7.12: Beer Credit System – Admin View

2. The application allows a user to view an invoice. This is possible with all invoices
being even available offline.

3. The application allows an external application to store an invoice on behalf of the
user. This is possible as long as the invoice system is open at the same time the
external application attempts to store it.

4. The application prevents a user from reading invoices issued to other users. This can
be achieved by validating the userIDs of incoming requests, which this application
does.

5. The application offers anonymity for the sender and recipient of invoices for other
users of the system and external observers. This is the case with the caveats
described in subsection 7.2.4.

A screenshot of the invoicing system is shown in Figure 7.13.

7.7 Research Questions
In this section, we evaluate the research questions stated in section 1.2: (1) Evaluating if
Applink can be implemented in current web browsers without extensions: Applink cannot
be fully implemented without relying on centralized proxy servers for push messages that
can potentially be blocked by a censoring entity.

We attempt to propose mitigations to this limitation, such as having a list of proxy servers
that forward messages to the push infrastructure and making it possible to self-host such
proxy servers and share these self-hosted proxies only with trusted contacts.

87

7. Evaluation

Figure 7.13: Invoicing System

Applink can be implemented without web browser extensions. However, the WebRTC
connection establishment time can be unacceptably slow on some devices. This can be
mitigated by shortening the ice-gathering stage of the WebRTC connection, as shown
in Listing 7.4. This workaround works by checking if the ice-gathering has yielded any
candidates after 10 seconds and returning the candidates if they are available.

(2) Explore and document methods to ensure data consistency in a partially replicated
system with the constraints of a web application: The notes application demonstrates
that sharing Yjs documents between users is a viable way to maintain multiple documents
that are shared with a set of users. The set of users a document is shared with can be
defined for every document. The DhtTransportManager and RPCInterface abstractions
allow application developers to build robust interactions between peers to resynchronize
application state when a user comes online. CRDTs and Event Sourcing are two methods
to achieve robust eventual consistency for applications built with Applink.

(3) The WebAuthn API is only implemented in the Chrome web browser and therefore
not yet an option. However, it would allow Applink to encrypt all application data using
a security key, preventing other applications with access to the web browser’s storage
from stealing information or impersonating users.

(4) Evaluate the performance of Applink compared to centralized web applications:
Applink performs on-par or better compared to centralized applications when it comes

88

7.8. Limitations

to page-load times.

However, the time until an initial connection is established can be significantly longer
than loading even poorly performing centralized web applications. This is due to the
WebRTC connection establishment time.

Once a connection is established, Applink performs well in terms of synchronization
overhead and is on-par with the user experience of centralized applications.

7.8 Limitations
We designed Applink and its APIs and implemented all sample applications and have
therefore a biased view about the ease-of-use of Applink despite our best efforts to
be critical. We did not implement a large application using Applink, which could
lead to unforeseen complexities arising in larger applications not present in the sample
applications.

Furthermore, we did not test the scalability of Applink with a large number of users.
Testing was restricted to a small number of users in Vienna, Austria. However, we did
validate the fundamental scaling behavior in a simulation as described in subsection 7.3.3.

Applink’s censorship resistance relies on the push infrastructure, which introduces a single
point of failure controlled by a central entity. The push infrastructure can theoretically
be blocked by a censor, and it is not possible to determine the reactions of censors in
advance.

Generally, the security and especially the censorship resistance of a framework like the
one described in this work can only be tested over time with real-world usage, which we
have not yet done.

Designing a good reputation system for the peer-to-peer network was not within the
scope of this work. Without a reputation system in place, it is much easier to launch an
eclipse attack on specific peers in the network.

In this chapter, we have evaluated the security, performance, developer usability, end-user
usability, and generalizability of Applink, as well as the research questions stated in
section 1.2. We have also outlined the limitations of this work. In the next chapter, we
will discuss future research directions.

89

CHAPTER 8
Future Research

In this chapter, we discuss the new research questions that have arisen from the work
presented in this thesis.

8.1 Censorship Resistance

The censorship resistance of Applink has not been tested in a real-world scenario. The
mechanisms we designed to resist censorship have not yet been tested in a practical
censorship scenario. This testing can only take place with a wide deployment of Applink
where it is actively attacked by a censor. Specifically, our assumption that the push
infrastructure will not be censored needs to be tested in practice.

8.2 Developer Experience

The speed of development and robustness of applications written in Applink by developers
not involved with Applink’s development have not been evaluated. We identify three
questions for future research:

(1) How easy is it for developers to build applications with Applink? This question can
be evaluated in a user-study.

(2) What are common pitfalls? This question can be answered once more developers
build applications with Applink.

(3) Is it possible to sufficiently test applications before rolling them out to significantly
reduce the need for monitoring and debugging? This question can be answered by a
survey of developers using Applink.

91

8. Future Research

8.3 Accessing the Tor Network
Applink could potentially be used to provide a transport for the Tor network. This would
allow users to access Tor hidden services or the public internet through an onion circuit
without the need to download the Tor Browser Bundle. This would require the Rust
implementation of the Tor protocol called Arti1 to be compilable to WebAssembly.

8.4 Applications of the Framework in Combination with
Blockchain Technology

Hash Time Locked Contracts (HTLCs) [101] could be a good fit for Applink and allow
for secure payment channels. Given the authentication and encryption mechanisms of
Applink, HTLCs could be used for anonymous micro-payments for content such as news
articles.

Blockchains can also be used to establish the time order of transactions. Consider a
ticket auction application where the order of bids is important. The event information
could be shared via Applink, and just the bidding process could be implemented on the
blockchain. Furthermore, a commit-reveal scheme could be implemented where the reveal
phase is done via Applink.

8.5 User Experience
The user experience of applications built with this framework has not been evaluated.
Whether users prefer applications built with this framework over traditional web applica-
tions remains an open question.

Applink in its current form does not include any functionality to export backups of
the database, neither for users nor for developers. This is a feature that should be
implemented in the future. One significant drawback for users is that they have to
manage backups themselves, which could be a hurdle for non-technical users.

In this chapter, we have discussed the new research questions that have arisen from this
work. In the next chapter, we will discuss our conclusions.

1https://gitlab.torproject.org/tpo/core/arti (last visited 2024-08-28)

92

https://gitlab.torproject.org/tpo/core/arti

CHAPTER 9
Conclusions

The modern web landscape necessitates robust privacy and security measures, particularly
as centralized infrastructures become more prone to censorship and control. This thesis
explored the potential of leveraging existing web technologies – namely the WebRTC API,
the Crypto.subtle API, and the Push API-to develop a decentralized, privacy-first web
application framework. Despite inherent limitations and reliance on certain centralized
components, our framework demonstrates the feasibility of deploying censorship-resistant
peer-to-peer applications within modern web browsers.

Our research introduced an abstraction for peer-to-peer remote procedure calls (RPCs),
facilitating authenticated and authorized communications between users. This mechanism
supports the development of applications that maintain data confidentiality and integrity,
even in the absence of a central authority.

The successful implementation and evaluation of a notes application, utilizing conflict-
free replicated data types for synchronization, highlighted the practical viability of our
framework. The notes application effectively showcased Applink’s ability to support
real-time collaboration and offline availability.

Key contributions of this thesis include: (1) Framework Design and Implementation:
We designed and implemented a peer-to-peer web application framework that leverages
modern web technologies to enhance user privacy and data security. (2) Abstraction for
Peer-to-Peer RPCs: Our framework introduces a mechanism for secure and authenticated
remote procedure calls, supporting decentralized application functionality. (3) Sample
Applications and Evaluation: We developed and evaluated sample applications, demon-
strating Applink’s advantages and limitations compared to centralized web applications.
(4) Performance and Security Analysis: Evaluations of functionality, performance, and
security demonstrate Applink’s strengths and identified areas for further optimization.

While our framework represents a step forward in the development of decentralized web
applications, several challenges and areas for future research remain. These include

93

9. Conclusions

real-world testing of censorship resistance mechanisms and exploring mechanisms for
privacy-preserving monitoring.

94

List of Figures

5.1 Use-Case Diagram Note Application . 29
5.2 Use-Case Diagram Beer Credit System . 30
5.3 Use-Case Diagram Invoicing System . 31

6.1 Overview of communication architecture. 39
6.2 Connection Establishment Sequence Diagram 48
6.3 Simulation of the DHT network with N=1, blue=online, red=offline. . . . 50
6.4 Simulation of the DHT network with N=2, blue=online, red=offline. . . . 51
6.5 Double Onion Circuit, dottet-line: onion circuit, solid line: WebRTC connec-

tion . 54
6.6 Encryption Diagram . 55

7.1 Success rate of packet-counting attack . 70
7.2 Advantage over random guessing through packet counting 71
7.3 Boxplot of Largest Contentful Paint (LCP) for the notes application on Pixel

6 Pro Running Chrome 121.0.6167.178 on Android 14. 72
7.4 Page load time of the notes application on a Pixel 6 Pro running Chrome

121.0.6167.178 on Android 14. 73
7.5 Boxplot of Time to first connection established for the notes application. . 74
7.6 Synchronization of the notes application on a Pixel 6 Pro. 76
7.7 Execution of curve25519 in JavaScript on a Pixel 6 Pro. 76
7.8 Number of online peers over time . 77
7.9 Simulation of the DHT network with 300 peers 78
7.10 Notes application . 84
7.11 Beer Credit System – User requesting credit 86
7.12 Beer Credit System – Admin View . 87
7.13 Invoicing System . 88

95

List of Algorithms

6.1 BaseDTO definition . 39
6.2 Creating IndexedDB object when the framework is initialized when the

application is loaded . 40
6.3 PushTransport.ts . 40
6.4 Running transactions . 41
6.5 Implementation of runTransaction . 41
6.6 NoteStore.ts . 44
6.7 JS Function Parameter vulnerability 46
6.8 Create a PRF credential on a security key 56
7.1 JavaScript integer overflow . 61
7.2 _r_onMessage function of the DhtTransport class 62
7.3 Proverif code for unlinkability of time-based addresses and message confi-

dentiality . 64
7.4 Shortcut for the ice gathering stage of the WebRTC connection 75
7.5 sendPacket function of the simulation 80

96

Bibliography

[1] Council of European Union, “Regulation (eu) 2016/679 of the european parliament
and of the council of 27 april 2016 on the protection of natural persons with regard
to the processing of personal data and on the free movement of such data, and
repealing directive 95/46/ec,” 2016. https://eur-lex.europa.eu/legal-
content/EN/ALL/?uri=celex:32016R0679 (last visited 2024-08-28).

[2] H. Barrigas, D. Barrigas, M. Barata, P. Furtado, and J. Bernardino, “Overview of
facebook scalable architecture,” in Proceedings of the International Conference on
Information Systems and Design of Communication (ISDOC), ISDOC ’14, (New
York, NY, USA), pp. 173–176, Association for Computing Machinery, 2014. ISBN:
9781450327138.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo: Amazon’s highly
available key-value store,” in Proceedings of Twenty-First ACM SIGOPS Symposium
on Operating Systems Principles, SOSP ’07, (New York, NY, USA), pp. 205–220,
Association for Computing Machinery, 2007. ISBN: 9781595935915.

[4] T. Cerny, M. J. Donahoo, and M. Trnka, “Contextual understanding of microservice
architecture: Current and future directions,” SIGAPP Appl. Comput. Rev., vol. 17,
pp. 29–45, jan 2018.

[5] A. Acquisti, C. Taylor, and L. Wagman, “The economics of privacy,” Journal of
economic Literature, vol. 54, no. 2, pp. 442–92, 2016.

[6] C. Deußer, S. Passmann, and T. Strufe, “Browsing unicity: On the limits of
anonymizing web tracking data,” in 2020 IEEE Symposium on Security and Privacy
(SP), pp. 777–790, 2020.

[7] B. Fuller, M. Varia, A. Yerukhimovich, E. Shen, A. Hamlin, V. Gadepally, R. Shay,
J. D. Mitchell, and R. K. Cunningham, “Sok: Cryptographically protected database
search,” in 2017 IEEE Symposium on Security and Privacy (SP), pp. 172–191,
2017.

[8] K. Lewi and D. J. Wu, “Order-revealing encryption: New constructions, applications,
and lower bounds,” in Proceedings of the 2016 ACM SIGSAC Conference on

97

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex:32016R0679
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex:32016R0679

Computer and Communications Security, CCS ’16, (New York, NY, USA), pp. 1167–
1178, Association for Computing Machinery, 2016. ISBN: 9781450341394.

[9] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches on
encrypted data,” in Proceeding 2000 IEEE Symposium on Security and Privacy.
S&P 2000, pp. 44–55, 2000.

[10] R. Poddar, S. Wang, J. Lu, and R. A. Popa, “Practical volume-based attacks on
encrypted databases,” in 2020 IEEE European Symposium on Security and Privacy
(EuroS P), pp. 354–369, 2020.

[11] T. Wilde and T. Hess, “Methodenspektrum der wirtschaftsinformatik: Überblick
und portfoliobildung,” tech. rep., 2006.

[12] J. Nielsen, Usability engineering. Morgan Kaufmann Publishers Inc., 1994. ISBN:
978-0125184069.

[13] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek, F. Dabek, and
H. Balakrishnan, “Chord: a scalable peer-to-peer lookup protocol for internet
applications,” IEEE/ACM Transactions on Networking, vol. 11, no. 1, pp. 17–32,
2003.

[14] B. Prünster, A. Marsalek, and T. Zefferer, “Total eclipse of the heart–disrupting
the InterPlanetary file system,” in 31st USENIX Security Symposium (USENIX
Security 22), pp. 3735–3752, 2022.

[15] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on
Bitcoin’speer-to-peer network,” in 24th USENIX security symposium (USENIX
security 15), pp. 129–144, 2015.

[16] M. Tran, I. Choi, G. J. Moon, A. V. Vu, and M. S. Kang, “A stealthier partitioning
attack against bitcoin peer-to-peer network,” in 2020 IEEE Symposium on Security
and Privacy (SP), pp. 894–909, IEEE, 2020.

[17] A. Bienstock, P. Rösler, and Y. Tang, “Asmesh: Anonymous and secure messaging
in mesh networks using stronger, anonymous double ratchet,” in Proceedings of the
2023 ACM SIGSAC Conference on Computer and Communications Security, CCS
’23, (New York, NY, USA), pp. 1–15, Association for Computing Machinery, 2023.
ISBN: 9798400700507.

[18] M. R. Albrecht, R. Eikenberg, and K. G. Paterson, “Breaking bridgefy, again:
Adopting libsignal is not enough,” in 31st USENIX Security Symposium (USENIX
Security 22), pp. 269–286, 2022.

[19] T. Yang, G. Andrew, H. Eichner, H. Sun, W. Li, N. Kong, D. Ramage, and F. Bea-
ufays, “Applied federated learning: Improving google keyboard query suggestions,”
2018.

98

[20] T. Wink and Z. Nochta, “An approach for peer-to-peer federated learning,” in
2021 51st Annual IEEE/IFIP International Conference on Dependable Systems
and Networks Workshops (DSN-W), pp. 150–157, 2021.

[21] A. Luqman, A. Chattopadhyay, and K.-Y. Lam, “Membership inference vulner-
abilities in peer-to-peer federated learning,” SecTL ’23, (New York, NY, USA),
Association for Computing Machinery, 2023. ISBN: 9798400701818.

[22] I. Goldberg, D. Wagner, and E. Brewer, “Privacy-enhancing technologies for the
internet,” in Proceedings IEEE COMPCON 97. Digest of Papers, pp. 103–109,
1997.

[23] P. Syverson, R. Dingledine, and N. Mathewson, “Tor: The secondgeneration onion
router,” in Usenix Security, pp. 303–320, USENIX Association Berkeley, CA, 2004.

[24] A. Bahramali, A. Bozorgi, and A. Houmansadr, “Realistic website fingerprinting
by augmenting network traces,” CCS ’23, (New York, NY, USA), pp. 1035–1049,
Association for Computing Machinery, 2023. ISBN: 9798400700507.

[25] G. Danezis and I. Goldberg, “Sphinx: A compact and provably secure mix format,”
in 2009 30th IEEE Symposium on Security and Privacy, pp. 269–282, 2009.

[26] C. Chen, D. E. Asoni, D. Barrera, G. Danezis, and A. Perrig, “Hornet: High-speed
onion routing at the network layer,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, CCS ’15, (New York,
NY, USA), pp. 1441–1454, Association for Computing Machinery, 2015. ISBN:
9781450338325.

[27] C. Kuhn, M. Beck, and T. Strufe, “Breaking and (partially) fixing provably secure
onion routing,” in 2020 IEEE Symposium on Security and Privacy (SP), pp. 168–
185, 2020.

[28] F. Schillinger and C. Schindelhauer, “End-to-end encryption schemes for online
social networks,” in Security, Privacy, and Anonymity in Computation, Communi-
cation, and Storage (G. Wang, J. Feng, M. Z. A. Bhuiyan, and R. Lu, eds.), (Cham),
pp. 133–146, Springer International Publishing, 2019. ISBN: 978-3-030-24907-6.

[29] F. Schillinger and C. Schindelhauer, “Concealed communication in online social
networks,” in Applied Cryptography in Computer and Communications (B. Chen
and X. Huang, eds.), (Cham), pp. 117–137, Springer International Publishing, 2021.

[30] B. Dodson, I. Vo, T. Purtell, A. Cannon, and M. Lam, “Musubi: Disintermediated
interactive social feeds for mobile devices,” in Proceedings of the 21st International
Conference on World Wide Web (WWW), WWW ’12, (New York, NY, USA),
pp. 211–220, Association for Computing Machinery, 2012. ISBN:9781450312295.

99

[31] Y. Hu, A. Trachtenberg, and P. Ishwar, “Collaborative privacy for web applica-
tions,” in 2019 57th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pp. 460–469, 2019.

[32] F. Wang, R. Ko, and J. Mickens, “Riverbed: Enforcing user-defined privacy
constraints in distributed web services,” in 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), (Boston, MA), pp. 615–630,
USENIX Association, Feb. 2019. ISBN: 978-1-931971-49-2.

[33] Y.-D. Bromberg, Q. Dufour, D. Frey, and E. Rivière, “Donar: Anonymous VoIP
over tor,” in 19th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 22), pp. 249–265, 2022.

[34] H. Shafagh, L. Burkhalter, S. Ratnasamy, and A. Hithnawi, “Droplet: Decentralized
authorization and access control for encrypted data streams,” in 29th USENIX
Security Symposium (USENIX Security 20), pp. 2469–2486, 2020.

[35] D. Kogan and H. Corrigan-Gibbs, “Private blocklist lookups with checklist,” in
30th USENIX Security Symposium (USENIX Security 21), pp. 875–892, 2021.

[36] R. Khandelwal, T. Linden, H. Harkous, and K. Fawaz, “PriSEC: A privacy settings
enforcement controller,” in 30th USENIX Security Symposium (USENIX Security
21), pp. 465–482, 2021.

[37] R. Khandelwal, A. Nayak, H. Harkous, and K. Fawaz, “Automated cookie notice
analysis and enforcement,” in 32nd USENIX Security Symposium (USENIX Security
23), pp. 1109–1126, 2023.

[38] R. Khare and R. Taylor, “Extending the representational state transfer (rest)
architectural style for decentralized systems,” in Proceedings. 26th International
Conference on Software Engineering (ICSE), pp. 428–437, 2004.

[39] J. T. K. Lo, E. Wohlstadter, and A. Mesbah, “Imagen: Runtime migration of browser
sessions for javascript web applications,” in Proceedings of the 22nd International
Conference on World Wide Web (WWW), WWW ’13, (New York, NY, USA),
pp. 815–826, Association for Computing Machinery, 2013. ISBN: 9781450320351.

[40] D. Barradas, N. Santos, L. Rodrigues, and V. Nunes, “Poking a hole in the
wall: Efficient censorship-resistant internet communications by parasitizing on
webrtc,” in Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, pp. 35–48, 2020.

[41] Z. Newman, S. Servan-Schreiber, and S. Devadas, “Spectrum: High-bandwidth
anonymous broadcast,” in 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), pp. 229–248, 2022.

100

[42] D. Fifield, C. Lan, R. Hynes, P. Wegmann, and V. Paxson, “Blocking-resistant com-
munication through domain fronting.,” Proc. Priv. Enhancing Technol., vol. 2015,
no. 2, pp. 46–64, 2015.

[43] G. Wood et al., “Ethereum: A secure decentralised generalised transaction ledger,”
Ethereum project yellow paper, vol. 151, no. 2014, pp. 1–32, 2014. (last visited
2024-08-28).

[44] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, and H. Wu, “Zexe: Enabling
decentralized private computation,” in 2020 IEEE Symposium on Security and
Privacy (SP), pp. 947–964, 2020.

[45] A. L. Goodkind, B. A. Jones, and R. P. Berrens, “Cryptodamages: Monetary value
estimates of the air pollution and human health impacts of cryptocurrency mining,”
Energy Research & Social Science, vol. 59, p. 101281, 2020.

[46] M. Bez, G. Fornari, and T. Vardanega, “The scalability challenge of ethereum: An
initial quantitative analysis,” in 2019 IEEE International Conference on Service-
Oriented System Engineering (SOSE), pp. 167–176, 2019.

[47] C. N. Samuel, S. Glock, F. Verdier, and P. Guitton-Ouhamou, “Choice of ethereum
clients for private blockchain: Assessment from proof of authority perspective,” in
2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC),
pp. 1–5, 2021.

[48] J. Len, P. Grubbs, and T. Ristenpart, “Partitioning oracle attacks,” in 30th USENIX
security symposium (USENIX Security 21), pp. 195–212, 2021.

[49] H. Böck, A. Zauner, S. Devlin, J. Somorovsky, and P. Jovanovic, “Nonce-
Disrespecting adversaries: practical forgery attacks on GCM in TLS,” in 10th
USENIX Workshop on Offensive Technologies (WOOT 16), 2016.

[50] A. Shakevsky, E. Ronen, and A. Wool, “Trust dies in darkness: Shedding light
on samsung’s TrustZone keymaster design,” in 31st USENIX Security Symposium
(USENIX Security 22), pp. 251–268, 2022.

[51] T. Jager, J. Schwenk, and J. Somorovsky, “Practical invalid curve attacks on
tls-ecdh,” in Computer Security – ESORICS 2015 (G. Pernul, P. Y A Ryan, and
E. Weippl, eds.), (Cham), pp. 407–425, Springer International Publishing, 2015.
ISBN: 978-3-319-24174-6.

[52] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version
1.2,” RFC 8656, RFC Editor, aug 2008.

[53] D. Moghimi, B. Sunar, T. Eisenbarth, and N. Heninger, “TPM-FAIL:TPM meets
timing and lattice attacks,” in 29th USENIX Security Symposium (USENIX Security
20), pp. 2057–2073, 2020.

101

[54] M. Alam, H. A. Khan, M. Dey, N. Sinha, R. Callan, A. Zajic, and M. Prvulovic,
“One&Done: A Single-DecryptionEM-Based attack on OpenSSL’sConstant-Time
blinded RSA,” in 27th USENIX Security Symposium (USENIX Security 18), pp. 585–
602, 2018.

[55] D. Boneh et al., “Twenty years of attacks on the rsa cryptosystem,” Notices of the
AMS, vol. 46, no. 2, pp. 203–213, 1999.

[56] K. Mus, Y. Doröz, M. C. Tol, K. Rahman, and B. Sunar, “Jolt: Recovering tls
signing keys via rowhammer faults,” in 2023 IEEE Symposium on Security and
Privacy (SP), pp. 1719–1736, 2023.

[57] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and
O. Mutlu, “Flipping bits in memory without accessing them: An experimental study
of dram disturbance errors,” in 2014 ACM/IEEE 41st International Symposium on
Computer Architecture (ISCA), pp. 361–372, 2014.

[58] A. Takahashi and M. Tibouchi, “Degenerate fault attacks on elliptic curve param-
eters in openssl,” in 2019 IEEE European Symposium on Security and Privacy
(EuroS&P), pp. 371–386, 2019.

[59] I. Martiny, G. Kaptchuk, A. Aviv, D. Roche, and E. Wustrow, “Improving signal’s
sealed sender,” NDSS. The Internet Society, 2021.

[60] G. Cherubin, R. Jansen, and C. Troncoso, “Online website fingerprinting: Eval-
uating website fingerprinting attacks on tor in the real world,” in 31st USENIX
Security Symposium (USENIX Security 22), pp. 753–770, 2022.

[61] T. Berners-Lee, R. Cailliau, J.-F. Groff, and B. Pollermann, “World-wide web: the
information universe,” Internet Research, vol. 2, no. 1, pp. 52–58, 1992.

[62] A. Rauschmayer, Speaking JavaScript: an in-depth guide for programmers. O’Reilly
Media, Inc., 2014. ISBN: 9781449364991.

[63] M. Squarcina, P. Adão, L. Veronese, and M. Maffei, “Cookie crumbles: breaking
and fixing web session integrity,” in 32nd USENIX Security Symposium (USENIX
Security 23), pp. 5539–5556, 2023.

[64] S. Roth, S. Calzavara, M. Wilhelm, A. Rabitti, and B. Stock, “The security lottery:
Measuring Client-Side web security inconsistencies,” in 31st USENIX Security
Symposium (USENIX Security 22), pp. 2047–2064, 2022.

[65] Y. M. Kim and B. Lee, “Extending a hand to attackers: browser privilege escalation
attacks via extensions,” in 32nd USENIX Security Symposium (USENIX Security
23), pp. 7055–7071, 2023.

102

[66] D. Lehmann, J. Kinder, and M. Pradel, “Everything old is new again: Binary
security of WebAssembly,” in 29th USENIX Security Symposium (USENIX Security
20), pp. 217–234, 2020.

[67] S. Forrest, A. Somayaji, and D. H. Ackley, “Building diverse computer systems,”
in Proceedings. The Sixth Workshop on Hot Topics in Operating Systems (Cat. No.
97TB100133), pp. 67–72, IEEE, 1997.

[68] P. Wagle, C. Cowan, et al., “Stackguard: Simple stack smash protection for gcc,”
in Proceedings of the GCC Developers Summit, vol. 1, Citeseer, 2003.

[69] B. Eriksson, P. Picazo-Sanchez, and A. Sabelfeld, “Hardening the security analysis
of browser extensions,” SAC ’22, (New York, NY, USA), pp. 1694–1703, Association
for Computing Machinery, 2022. ISBN: 9781450387132.

[70] S. Calzavara, S. Roth, A. Rabitti, M. Backes, and B. Stock, “A tale of two headers:
A formal analysis of inconsistent Click-Jacking protection on the web,” in 29th
USENIX Security Symposium (USENIX Security 20), pp. 683–697, 2020.

[71] M. Gierlings, M. Brinkmann, and J. Schwenk, “Isolated and exhausted: attacking
operating systems via site isolation in the browser,” in 32nd USENIX Security
Symposium (USENIX Security 23), pp. 7037–7054, 2023.

[72] P. Snyder, S. Karami, A. Edelstein, B. Livshits, and H. Haddadi, “Pool-Party:
Exploiting browser resource pools for web tracking,” in 32nd USENIX Security
Symposium (USENIX Security 23), pp. 7091–7105, 2023.

[73] A. Agarwal, S. O’Connell, J. Kim, S. Yehezkel, D. Genkin, E. Ronen, and Y. Yarom,
“Spook.js: Attacking chrome strict site isolation via speculative execution,” in 2022
IEEE Symposium on Security and Privacy (SP), pp. 699–715, 2022.

[74] P. Chinprutthiwong, R. Vardhan, G. Yang, Y. Zhang, and G. Gu, “The service
worker hiding in your browser: The next web attack target?,” in Proceedings of
the 24th International Symposium on Research in Attacks, Intrusions and De-
fenses, RAID ’21, (New York, NY, USA), pp. 312–323, Association for Computing
Machinery, 2021. ISBN: 9781450390583.

[75] S. A. Mirheidari, M. Golinelli, K. Onarlioglu, E. Kirda, and B. Crispo, “Web cache
deception escalates!,” in 31st USENIX Security Symposium (USENIX Security 22),
pp. 179–196, 2022.

[76] S. A. Mirheidari, S. Arshad, K. Onarlioglu, B. Crispo, E. Kirda, and W. Robertson,
“Cached and confused: Web cache deception in the wild,” in 29th USENIX Security
Symposium (USENIX Security 20), pp. 665–682, 2020.

[77] M. Rhodes-Ousley, Information security the complete reference. McGraw Hill
Professional, 2013.

103

[78] T. Reddy, A. Johnston, P. Matthews, and J. Rosenberg, “Traversal Using Relays
around NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT
(STUN),” RFC 8656, RFC Editor, feb 2020.

[79] M. Thomson, “Message encryption for web push,” RFC 8291, RFC Editor, Novem-
ber 2017.

[80] A. M. I. Fette, “The websocket protocol,” RFC 6455, RFC Editor, December 2011.

[81] C. Kuhn, M. Beck, S. Schiffner, E. Jorswieck, and T. Strufe, “On privacy notions
in anonymous communication,” Proceedings on Privacy Enhancing Technologies,
vol. 2, pp. 105–125, 2019.

[82] D. L. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms,” Communications of the ACM, vol. 24, no. 2, pp. 84–90, 1981.

[83] A. Tran, N. Hopper, and Y. Kim, “Hashing it out in public: Common failure modes
of dht-based anonymity schemes,” in Proceedings of the 8th ACM Workshop on
Privacy in the Electronic Society, WPES ’09, (New York, NY, USA), pp. 71–80,
Association for Computing Machinery, 2009. ISBN: 9781605587837.

[84] M. Schuchard, A. W. Dean, V. Heorhiadi, N. Hopper, and Y. Kim, “Balancing
the shadows,” in Proceedings of the 9th Annual ACM Workshop on Privacy in the
Electronic Society, WPES ’10, (New York, NY, USA), pp. 1–10, Association for
Computing Machinery, 2010. ISBN: 9781450300964.

[85] E. Erdin, C. Zachor, and M. H. Gunes, “How to find hidden users: A survey
of attacks on anonymity networks,” IEEE Communications Surveys & Tutorials,
vol. 17, no. 4, pp. 2296–2316, 2015.

[86] B. Evers, J. Hols, E. Kula, J. Schouten, M. Den Toom, R. van der Laan, and
J. Pouwelse, “Thirteen years of tor attacks,” 2016. (last visited 2024-08-28).

[87] R. B. Miller, “Response time in man-computer conversational transactions,” in
Proceedings of the December 9-11, 1968, Fall Joint Computer Conference, Part
I, AFIPS ’68 (Fall, part I), (New York, NY, USA), pp. 267–277, Association for
Computing Machinery, 1968. ISBN: 9781450378994.

[88] J. Holowczak and A. Houmansadr, “Cachebrowser: Bypassing chinese censor-
ship without proxies using cached content,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, CCS ’15, (New
York, NY, USA), pp. 70–83, Association for Computing Machinery, 2015. ISBN:
9781450338325.

[89] J. Naude and L. Drevin, “The adversarial threat posed by the nsa to the integrity
of the internet,” in 2015 Information Security for South Africa (ISSA), pp. 1–7,
2015.

104

[90] D. M’Raihi, J. Rydell, M. Pei, and S. Machani, “TOTP: Time-Based One-Time
Password Algorithm,” Tech. Rep. 6238, May 2011.

[91] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-free replicated
data types,” in Stabilization, Safety, and Security of Distributed Systems: 13th
International Symposium, SSS 2011, Grenoble, France, October 10-12, 2011. Pro-
ceedings 13, pp. 386–400, Springer, 2011.

[92] P. Nicolaescu, K. Jahns, M. Derntl, and R. Klamma, “Yjs: A framework for near
real-time p2p shared editing on arbitrary data types,” in Engineering the Web in
the Big Data Era: 15th International Conference, ICWE 2015, Rotterdam, The
Netherlands, June 23-26, 2015, Proceedings 15, pp. 675–678, Springer, 2015.

[93] M. Overeem, M. Spoor, and S. Jansen, “The dark side of event sourcing: Managing
data conversion,” in 2017 IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pp. 193–204, 2017.

[94] H. Rameder, “Systematic review of ethereum smart contract security vulnerabilities,
analysis methods and tools,” 2021.

[95] B. Blanchet, “An efficient cryptographic protocol verifier based on prolog rules,” in
14th IEEE Computer Security Foundations Workshop (CSFW-14), pp. 82–96.

[96] N. Zahan, T. Zimmermann, P. Godefroid, B. Murphy, C. Maddila, and L. Williams,
“What are weak links in the npm supply chain?,” in Proceedings of the 44th Inter-
national Conference on Software Engineering: Software Engineering in Practice,
ICSE-SEIP ’22, (New York, NY, USA), pp. 331–340, Association for Computing
Machinery, 2022. ISBN: 9781450392266.

[97] R. Anderson, “Chat control or child protection?,” arXiv preprint arXiv:2210.08958,
2022.

[98] K. Nassiri and M. Akhloufi, “Transformer models used for text-based question
answering systems,” Applied Intelligence, vol. 53, no. 9, pp. 10602–10635, 2023.

[99] Y. Liu, W. Lu, S. Cheng, D. Shi, S. Wang, Z. Cheng, and D. Yin, “Pre-trained
language model for web-scale retrieval in baidu search,” in Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining, KDD ’21,
(New York, NY, USA), pp. 3365–3375, Association for Computing Machinery, 2021.
ISBN: 9781450383325.

[100] G. K. Zipf, “Relative frequency as a determinant of phonetic change,” Harvard
studies in classical philology, vol. 40, pp. 1–95, 1929.

[101] C. Decker and R. Wattenhofer, “A fast and scalable payment network with bitcoin
duplex micropayment channels,” in Stabilization, Safety, and Security of Distributed
Systems (A. Pelc and A. A. Schwarzmann, eds.), (Cham), pp. 3–18, Springer
International Publishing, 2015. ISBN: 978-3-319-21741-3.

105

Appendix

Overview of Generative AI Tools Used
We use the GPT-4 and GPT-4o models from OpenAI1 to suggest spelling and grammar
corrections of this entire work. Relevant commits to the thesis repository contain the
text “gpt” or “GPT”. The prompt used for the suggestions is:

P lease c o r r e c t the s p e l l i n g and grammar o f t h i s document :
−−−
<text>
−−−

where <text> is the text to be corrected. The suggestions are reviewed and manually
applied to the document.

Furthermore, we used Github Copilot2 to suggest code snippets for the implementation
of Applink and the sample applications. The code has been reviewed and adapted to fit
the requirements of Applink.

1https://chatgpt.com/ (last visited 2024-08-28)
2https://github.com/features/copilot (last visited 2024-08-28)

107

https://chatgpt.com/
https://github.com/features/copilot

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Description
	Goals

	Methodological Approach
	Related Work
	DHT / Overlay Networks
	Privacy-Enhancing Technologies
	Attacks on System Components

	Fundamentals
	Definitions
	The CIA Triad
	Browser Capabilities
	Sender-Recipient Unlinkability

	Requirements Analysis of the Privacy-First Web Application Framework
	Sample Web Applications
	Requirements
	User Stories

	System Architecture of the Privacy-First Web Application Framework
	Overview
	Data Storage Abstraction
	RPC Abstraction
	Peer-to-Peer Bootstrapping
	Simulation and the Importance of Correct Bootstrap Parameters
	Time-Based Addresses
	Unlinking Time-Based Addresses From Static Identifiers
	Censorship Resistance vs Anonymity
	Encryption and Communication
	Encryption of Persistent Data
	Anonymity

	Evaluation
	Functionality
	Security and Privacy
	Performance
	Developer Usability
	End-User Usability
	Generalizability
	Research Questions
	Limitations

	Future Research
	Censorship Resistance
	Developer Experience
	Accessing the Tor Network
	Applications of the Framework in Combination with Blockchain Technology
	User Experience

	Conclusions
	List of Figures
	List of Algorithms
	Bibliography
	Appendix
	Overview of Generative AI Tools Used

