
Towards understanding
Multi-Block Maximal Extractable

Value in Ethereum

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Jakob Brachmann, BSc
Matrikelnummer 01525526

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.-Prof. Dipl.-Ing. Mag. Dr.techn. Edgar Weippl
Mitwirkung: Mag. Nicholas Stifter, Bakk. techn.

Wien, 2. September 2024
Jakob Brachmann Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Towards understanding
Multi-Block Maximal Extractable

Value in Ethereum

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Jakob Brachmann, BSc
Registration Number 01525526

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.-Prof. Dipl.-Ing. Mag. Dr.techn. Edgar Weippl
Assistance: Mag. Nicholas Stifter, Bakk. techn.

Vienna, September 2, 2024
Jakob Brachmann Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Jakob Brachmann, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen,
die ohne substantielle Änderungen übernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT- Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

Wien, 2. September 2024
Jakob Brachmann

v

Acknowledgements

I want to wholeheartedly thank my supervisor, Nicholas Stifter, for providing invaluable
feedback, motivating me, and, of course, for the exciting discussions that inspired me
during my work.

vii

Kurzfassung

Die Erfindung von Ethereum und seinen Smart-Contract-Fähigkeiten hat den Aufstieg von De-
centralized Finance (DeFi) vorangetrieben und ein neues, Blockchain-basiertes Paradigma für
Finanzdienstleistungen geschaffen. DeFi-Nutzer stehen jedoch vor einer erheblichen Bedrohung,
die monatliche Verluste in Millionenhöhe verursacht: Maximal Extractable Value (MEV).
MEV bezeichnet den Gewinn, der durch die Manipulation der Reihenfolge von Transaktionen
innerhalb eines Blocks erzielt wird. In Ethereum ist dies möglich, weil Validatoren in der Lage
sind, Blöcke vorzuschlagen und dardurch deren Transaktionsreihenfolge zu bestimmen. Außerdem
ist ein Marktplatz entstanden, auf dem Validatoren den Inhalt des ihnen zugewiesenen Blocks
verkaufen wodurch professionelle Akteure MEV-Möglichkeiten ausnutzen können.
In den letzten Jahren hat das Problem von MEV in Ethereum zugenommen und damit erhebliches
Forschungsinteresse geweckt. Eine Schwierigkeit in der Erforschung von MEV ist allerdings, dass
Akteure monetäre Anreize haben, ihre Strategien zu verbergen, da deren Offenlegung zur Nachah-
mung führen würde. Es wurden sogar Bots beobachtet, welche die in Transaktionen enthaltenen
Stragegien nachahmen, um davon zu profitieren, ohne die zugrunde liegenden Strategien zu
verstehen.
Obwohl Methoden zur Identifizierung und Quantifizierung von MEV existieren, bleiben Heraus-
forderungen bestehen, insbesondere bei komplexeren Strategien wie Blockchain übergreifendes
MEV und Multi-block MEV.
Diese Masterarbeit zielt darauf ab, das Verständnis von Multi-block MEV zu vertiefen. Sie beginnt
mit einer umfassenden Übersicht über die aktuelle Literatur zu MEV und identifiziert Ungenauig-
keiten und Diskrepanzen in der MEV-Quantifizierung, selbst in Single-Block-Szenarien. Erhebliche
Diskrepanzen wurden in den Ergebnissen von MEV Quantifizierungs-Tools wie MEV-Inspect und
EigenPhi gefunden, was den Bedarf an zuverlässigeren MEV-Erkennungsmethoden unterstreicht.
Um sich diesen Problemen zu widmen, verbessert diese Arbeit die MEV-Erkennungskapazitäten
des Open-Source-Tools MEV-Inspect und führt innovative Heuristiken zur Berechnung von
Liquidationsgewinnen ein. Auf diesen Verbesserungen aufbauend wird eine Untersuchung von
Multi-block MEV durchgeführt. Eine Missed-Block-Strategie wird formuliert und deren theoreti-
sche finanzielle Machbarkeit bewertet. Darüber hinaus zeigt die Analyse, dass block builder mehr
für aufeinanderfolgende Blöcke zahlen, was darauf hindeutet, dass Multi-block MEV-Strategien
bereits eingesetzt werden.

ix

Abstract

The emergence of Ethereum and its Smart Contract capabilities has spurred the rise of
Decentralized Finance (DeFi), creating a new, blockchain-based paradigm for financial
services. However, DeFi users face a significant threat that results in millions of dollars
in monthly losses: Maximal Extractable Value (MEV).

MEV refers to the profit gained by manipulating the order of transactions within a block.
In Ethereum, this is possible because validators have the authority to propose blocks
and determine their transaction order. Furthermore, a marketplace has emerged where
validators sell this block space, allowing professional actors to participate and thus also
exploit MEV opportunities.

In recent years, the issue of MEV has become increasingly prevalent in Ethereum, thus
attracting significant research attention. This research, however, is complicated by the
monetary incentives for players to conceal their strategies, as revealing them would lead to
their replication by others. Even bots have been observed copying other MEV-exploiting
transactions to profit from them without understanding the underlying strategies. While
methods for identifying and quantifying MEV exist, challenges remain, especially with
more complex strategies such as cross-chain MEV and Multi-block MEV.

This thesis aims to advance the understanding of Multi-block MEV. It begins with a
comprehensive review of the current literature on MEV, identifying major blind spots and
discrepancies in MEV quantification, even in single-block settings. Notably, significant
discrepancies are found in the results generated by tools designed for MEV detection, such
as MEV-Inspect and EigenPhi, underscoring the need for more reliable MEV detection
methodologies.

To address these challenges, this thesis enhances the MEV detection capabilities of
the open-source tool MEV-Inspect and introduces innovative heuristics for calculating
Liquidation profits. Building on these improvements, a preliminary investigation into
Multi-block MEV is conducted. A simple Missed-Block strategy is formulated, and
its theoretical financial feasibility is assessed. Furthermore, the analysis reveals that
block builders pay a premium for consecutive blocks, suggesting that Multi-block MEV
strategies are already employed.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Objectives & Research Questions . 3
1.2 Outline . 4

2 Technical Background 7
2.1 Bitcoin . 7
2.2 Ethereum . 9

3 MEV - Maximal Extractable Value 25
3.1 Characterization of MEV . 26
3.2 Multiple Dimensions of MEV . 28
3.3 Negative externalities of MEV . 29
3.4 Mitigation . 30
3.5 Conclusion . 35

4 A systematic literature review of state-of-the-art MEV detection 37
4.1 Methodology . 38
4.2 Anylysis of the selected works . 46

5 State-of-the-art MEV detection 59
5.1 Comparison MEV-Inspect and EigenPhi 60
5.2 Improving found inconsistencies in MEV-Inspect 69

6 Multi-Block MEV 83
6.1 Data retrieval . 83
6.2 Building a Multi-Block sequence . 86
6.3 Missed slot strategy . 90
6.4 Conclusion . 93

xiii

7 Conclusion 95
7.1 Results . 95
7.2 Future Work . 97

Overview of Generative AI Tools Used 99

List of Figures 101

List of Tables 103

Bibliography 105

Appendix 113

CHAPTER 1
Introduction

In 2008, the person or group behind the pseudonym Satoshi Nakamoto introduced the
first blockchain [Nak08]. A blockchain is a permissionless, distributed ledger consisting
of blocks containing transactions. Each block is cryptographically linked to the previous
block by hash functions to ensure the immutability of the blockchain. Transactions
propagate in a peer-to-peer network, and eventually, so-called block proposers propose
new blocks to be added on top of the blockchain.

Ethereum is another widespread blockchain that introduced the concept of Smart
Contracts [B+14]. Smart contracts are small programs deployed on the Ethereum
blockchain that enable various decentralized applications. These Smart Contracts have
spurred the rise of Decentralized Finance (DeFi), creating a new, blockchain-based
paradigm for financial services. However, DeFi users face a significant threat that
results in millions of dollars in monthly losses: Maximal Extractable Value (MEV)
[DGK+20, QZG22, Eig24a, Wun23, PJL+23].

MEV refers to the profit gained by manipulating the order of transactions within a
block. This manipulation is possible in blockchains because block proposers can choose
which transactions to include in a block and their order. Furthermore, a marketplace has
emerged where validators sell this block space, allowing professional actors to participate
and thus also exploit MEV opportunities.

In recent years, the issue of MEV has become increasingly prevalent in Ethereum, thus
attracting significant research attention [DGK+20, OSS+21, YZH+22, HW22, RK20].
This research, however, is complicated by the monetary incentives for players to conceal
their strategies, as revealing them would lead to their replication by others. Even bots
have been observed copying other MEV-exploiting transactions to profit from them
without understanding the underlying strategies.
Due to the specific Proof of Stake (PoS) implementation in Ethereum, the validators

1

1. Introduction

allowed to propose a block in a slot are known two 1 epochs ahead of time 2. This
predictability of when a validator is allowed to propose a slot simplifies the process
of outsourcing block-building to specialized block builders. This outsourcing is called
Proposer-builder separation (PBS). Block builders create blocks with transactions they
pick up through the peer-to-peer network and their optional MEV exploiting transactions.
They then offer these blocks to the validators, together with a fee. In the most distributed
PBS implementation MEV-Boost 3, block builders submit their blocks to relays, which
validate the block content. After validation, the relays submit the block’s header without
its content and the offered fee to the validator, who then chooses the most profitable
block. After the validator cryptographically signs and commits to publishing the block,
the relay sends the actual block content to the validator.
This mechanism opens the theoretical opportunity for Multi-block MEV (MMEV). MMEV
is MEV that is extracted by applying strategies that span multiple blocks. PBS simplifies
MMEV, as MEV extractors, often called MEV searchers, can buy consecutive blocks on
the marketplace. While single-block MEV is the focus of current research, little literature
exists on MMEV, and it is unclear if it is currently being actively deployed.

This thesis aims to advance the understanding of Multi-block MEV. As a foundation for
this research, this thesis offers a comprehensive review of the current literature on MEV
and a state-of-the-art analysis of Single-block MEV detection.
Single-block MEV detection is not trivial because MEV exploiters employ increasingly
complex strategies. As mentioned, these actors have a monetary incentive to conceal
their strategies, as these are at risk of being copied, decreasing their rentability.

Studying MEV is motivated by the high monetary losses it produces for regular DeFi
users [Noy21]. In addition, MEV boosts the centralization of block-building and generally
increases distrust in blockchain technology.
Since MEV is a popular topic in research, awareness of its dangers has risen over the last
few years. More and more decentralized applications and Smart Contract developers aim
to develop MEV-resistant technology.
The topic of MMEV, however, is currently not discussed broadly in the scientific and
developer community. This attack vector is, therefore, often not considered in the design
phase of decentralized applications. Successful MMEV attacks could, however, pose a
significant danger to decentralized applications’ integrity and could lead to significant
financial losses for users. Therefore, it is important to understand the MMEV landscape,
its concrete strategies, and how it is already in use today.

1At the end of epoch Nt, the validators for epoch Nt+2 are chosen. See https://ethresear.ch/t/selfish-
mixing-and-randao-manipulation/16081

2One epoch consists of 32 slots, each 12 seconds long. So, one epoch is roughly 6.4 minutes in total.
https://info.etherscan.com/epoch-in-ethereum/

3https://github.com/flashbots/mev-boost

2

1.1. Objectives & Research Questions

1.1 Objectives & Research Questions
This thesis aims to investigate the nature of Multi-block Maximal Extractable Value
attacks within the Ethereum blockchain ecosystem. To build a comprehensive under-
standing of Multi-block MEV attacks, exploring the MEV landscape’s current state is
essential. This leads to the formulation of the first research question:

RQ1: What is the current state-of-the-art in MEV attacks, and what mitigation
strategies have been implemented or proposed?

Permissionless blockchains need to be transparent to allow for decentralized and public
validation. Therefore transactions and account balances are openly available. However,
MEV exploiting techniques can be very complex, especially if they involve multiple
transactions, dedicated MEV exploiting Smart Contracts, or transactions involving
multiple blockchains. Therefore, to confidently make statements about the nature
of MMEV, one first has to understand how MEV can be detected. Therefore, the
next research question aims to understand the current state-of-the-art MEV detection
algorithms and techniques.

RQ2: What are the state-of-the-art methods for detecting and quantifying
Single-block Maximal Extractable Value in Ethereum, and what are the limi-
tations of these methods?

In exploring Multi-block MEV attacks, it is crucial to understand how an MEV searcher
could potentially exert control over a sequence of consecutive blocks. This leads to our
third research question:

RQ3: How can an MEV searcher gain control over consecutive sequences of
blocks, and are there any indications that these methods are currently being
employed?

Finally, to understand Multi-block MEV attacks, we explore the economic feasibility of a
simple form of a Multi-block MEV attack:

RQ4: Is the value of MEV in the block following a missed slot statistically
higher, and would this make an attack where the attacker intentionally misses
a block economically viable?

3

1. Introduction

1.2 Outline
1.2.1 Methodology
The following two methodological approaches were chosen to investigate the research
questions.

1. Literature Review
This review will focus on understanding the current MEV landscape, including
the various forms of MEV attacks, multiple dimensions of MEV, the negative
externalities of MEV, and mitigation mechanisms. Special focus is given to analyzing
current state-of-the-art MEV detection and quantification mechanisms. To ensure
transparency and reproducibility in the literature selection process, we will conduct
a systematic literature review by adhering to the PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) 4 guidelines.

2. Empirical Evaluation
A comprehensive analysis of blockchain data is required to determine whether
Multi-block Maximal Extractable Value (MMEV) strategies are actively employed
or if there are theoretical incentives for their deployment. This involves examining
on-chain data using a custom Ethereum beacon node to gain insights into MMEV
activities.

In addition to on-chain data analysis, various MEV analysis tools are assessed to
evaluate their effectiveness. The outputs generated by these tools for identical
data ranges are compared through statistical analyses to identify discrepancies and
measure their reliability. Furthermore, the source code of these tools is analyzed to
uncover the primary factors contributing to variations in results.

To investigate methods for securing a consecutive block sequence, we first describe
two approaches an MEV searcher might use:

• Participating as a validator in a staking pool
• Purchasing a sequence through a Proposer-builder separation (PBS) market-

place

We calculate the probability of a staking pool acquiring a consecutive sequence
of blocks and analyze on-chain data to detect such occurrences. For the PBS
marketplace approach, we analyze both on-chain Ethereum data and published
data from PBS marketplaces to study the acquisition of consecutive sequences.
Finally, we identify missed slots using a state-of-the-art Ethereum beacon node to
statistically analyze whether a block’s MEV value increases following a missed slot.

4https://www.prisma-statement.org/

4

1.2. Outline

This MEV value is calculated using advanced MEV detection tools to provide a
quantitative assessment of changes in economic value after missed slots.

1.2.2 Structure of Work

1. Introduction This chapter outlines the motivation behind this thesis and presents
the addressed research questions.

2. Technical Background This chapter provides the technical foundation for this
thesis. It covers blockchain fundamentals and offers an overview of Ethereum,
focusing on its Proof of Stake system and Decentralized Finance (DeFi) applications.

3. MEV - Maximal Extractable Value
This chapter reviews the current state of the art in MEV research, detailing the
different types of MEV attacks and characterizing various proposed and implemented
mitigation strategies.

4. A systematic literature review of state-of-the-art MEV detection This
chapter conducts a systematic literature review to evaluate the state-of-the-art MEV
detection and quantification methods. The review identifies and analyzes 16 papers
and tools, comparing and classifying their MEV detection mechanisms. Additionally,
this chapter discusses the advantages and limitations of these techniques.

5. State-of-the-art MEV detection This chapter further explores state-of-the-art
MEV detection methods by examining the output of selected detection tools. Based
on this analysis, a new heuristic for detecting Liquidations is introduced. The
chapter also discusses the challenges of MEV detection and the shortcomings of
existing approaches.

6. Multi-Block MEV This chapter investigates Multi-block MEV strategies, describ-
ing two techniques an MEV searcher might use to secure a Multi-block sequence.
It analyzes these techniques using real on-chain data and introduces a simple
Multi-block MEV technique, assessing its economic feasibility.

7. Conclusion The final chapter summarizes the research conducted, reiterates the
research questions, and presents the thesis results. It also provides insights into
potential future work on this topic.

5

CHAPTER 2
Technical Background

This chapter provides the technical foundation crucial to this thesis. We begin by
exploring the fundamental principles of blockchain technology, using Bitcoin—the first
and most well-known blockchain—as an illustrative example. Following this, we delve
into Ethereum, the blockchain at the core of our study, offering detailed insights into its
architecture and functionalities.

Key topics include Smart Contracts, the Proof of Stake (PoS) mechanism, and Decen-
tralized Finance (DeFi), all of which are vital for understanding Maximal Extractable
Value (MEV).

2.1 Bitcoin
In 2008, the popular blockchain Bitcoin was introduced by a person or group behind the
pseudonym Satoshi Nakamoto [Nak08]. The aim was to create a digital currency that
could be exchanged without involving a third party. Such an exchange, a transaction,
transfers a specific amount of Bitcoin from one user to another. Each transaction is
cryptographically signed to ensure that only the coin’s owner can transfer it.

However, signatures alone cannot prevent double-spending, where a user attempts to
spend the same coin multiple times. To counter this, the decentralized system requires a
unified view of the transaction order. This common view is established by the blockchain.
A blockchain is a distributed ledger where each block contains an ordered set of transac-
tions, defining the correct sequence of events. These blocks are linked through crypto-
graphic hashes, with each block containing the hash of the previous one. This linkage
ensures that any tampering with a block would alter the hashes of all subsequent blocks,
making the manipulation detectable. An illustration of this linkage is seen in Figure 2.1.

7

2. Technical Background

Figure 2.1: A simple illustration of the Bitcoin blockchain. Each block is linked to the
previous block by containing its hash. The Nonce field is set in the proof-of-work proof,
which secures the blockchain against manipulation attacks. [Nak08]

Deciding globally which transactions are included in a block and their order presents a
significant challenge. A simple voting system could be skewed by a single entity controlling
multiple identities, disproportionately influencing the vote. This type of attack, where
an entity mimics multiple entities, is known as a Sybil attack [Dou02].

Bitcoin itself addresses the double-spending problem with a proof-of-work mechanism.
The mechanism operates as follows: Each block contains a Nonce field. To publish a
block, a miner must find a nonce value such that the block’s hash is lower than a specified
difficulty threshold. Since this task cannot be solved efficiently through an algorithm
1, miners must use brute force to test multiple nonce values until they find one that
meets the criteria. This process requires significant computational effort, hence the term
"proof-of-work."

The difficulty level, which determines the validity of the proof-of-work, also regulates the
interval between block publications. If an increase in overall computing power reduces
the average time it takes the network to publish a new valid block, the Bitcoin protocol
adjusts the difficulty to maintain the target interval of 10 minutes between blocks. This
adjustment takes place every 2016 blocks.

This proof-of-work mechanism also enhances the blockchain’s resistance to manipulation.
Altering a block’s content would necessitate rehashing it and finding a new nonce that
satisfies the difficulty condition. Consequently, the computational work must be redone.
Since subsequent blocks are linked through the previous block’s hash, manipulating one
block would require redoing the nonce finding for all following blocks.

Miners are incentivized to spend the required computational power through the Block
Reward, a specified number of coins awarded to the miner who successfully publishes
a valid block with a valid proof-of-work. This reward motivates many miners to work
on solving the proof-of-work puzzle simultaneously. As a result, two or more blocks can

1An efficient solution would compromise the desirable properties of the cryptographic hash function,
especially preimage resistance, which is the property that makes it computationally infeasible to reverse-
engineer the original input from its hash output.

8

2.2. Ethereum

occasionally be published at nearly the same time, all building on the previous block.
Depending on the network topology, different network parts might continue building on
different blocks, creating a fork. When a node, an entity running the Bitcoin software,
encounters two forks, it applies a Fork Choice Rule. For Bitcoin, this rule is to accept the
longer chain with more invested proof-of-work. The part of the network with the majority
of computational power will eventually produce a longer chain. With the assumption that
most nodes are honest nodes, which are nodes that correctly follow the Bitcoin protocol,
all honest nodes will share a common prefix of blocks in their respective blockchains
[GKL24]. This means that while individual blockchains may differ in the most recent
blocks, the sequence of blocks leading up to that point will be identical across all honest
nodes.

2.2 Ethereum
This thesis focuses on the Ethereum blockchain, introduced in 2014 by Buterin et al.
[B+14]. While Ethereum shares fundamental principles with Bitcoin, it markets itself as
an enhanced version, offering additional functionality.

One key feature is its built-in Turing-complete programming language, which enables
the creation of small programs known as Smart Contracts. This programming capability
has spurred the development of various applications that benefit from the blockchain’s
security properties and the Ethereum community’s decentralization efforts.

Ethereum’s internal currency is Ether, abbreviated as ETH. The smallest unit of Ether
is called Wei, equivalent to 10−18 Ether.

The following section explains Ethereum’s technical concepts, including addresses, the
Ethereum Virtual Machine, and Smart Contracts. We will then discuss an application of
Ethereum: Decentralized Finance (DeFi).

2.2.1 Addresses
Ethereum utilizes the concept of Accounts, identified by addresses (160-bit identifiers)
[Eth24a]. There are two types of accounts: Externally Owned Accounts (EOAs) and
Contract Accounts.

EOAs are created by generating a public/secret key pair, with the public address derived
from the hash of the public key. The owner of the secret key controls the corresponding
address, which allows them to send Ether to other EOAs or Contract Accounts or trigger
functions in Contract Accounts.
In contrast, Contract Accounts are governed not by secret keys but by the logic of their
underlying contract code. Smart Contracts are established through a contract creation
transaction, which deploys the contract code. Like EOAs, Contract Accounts can transfer
Ether, call functions in other Contract Accounts, and even create new Contract Accounts.
However, Contract Accounts can only perform actions when triggered by an EOA or

9

2. Technical Background

another Contract Account via a transaction. As a result, autonomous cron-job-like
functionality is impossible for Contract Accounts.

2.2.2 Transactions
Generally, a valid transaction can be seen as a transition from one state to another,
affecting elements such as account balances, Smart Contracts, and contract storages
[W+14]. A transaction can modify this state in three different ways:

1. Message Call
This involves invoking a Smart Contract function, which can be initiated by an
EOA, another Smart Contract, or even a Smart Contract calling its functions. The
behavior and side effects are determined by the Smart Contract code.

2. Contract Creation
This deploys Smart Contract bytecode to the blockchain.

3. Value Transfer
A value transfer is transferring Ether between two EOAs, or one EOA and a Smart
Contract.

All transactions consume gas, representing the computational effort required and paid by
the transaction sender in Ether. Each EVM instruction (see subsection 2.2.4) consumes
a predefined amount of gas 2. The gas concept was introduced to prevent network
spamming or denial-of-service attacks by making such attacks economically unviable
due to high transaction fees. It also prevents accidental or intentional infinite loops by
allowing the transaction sender to limit the gas consumed and setting an overall gas limit
per block, currently 30,000,000 gas 3.

The transaction fee is calculated as gas used * (base fee + priority fee). The base fee,
determined by the protocol, is calculated based on previous blocks and is burned when
the transaction is included in a block, providing no incentive for block proposers to
include transactions that only pay the base fee. The sender can pay a tip by increasing
the priority fee to increase the likelihood of inclusion [Eth24b].

A transaction is a failed transaction if it is cryptographically signed by the sender but
violates other constraints, such as insufficient funds or a Smart Contract assertion viola-
tion. The blockchain still includes failed transactions, and the sender must pay the gas
fee, but these transactions do not alter the blockchain state.

A transaction consists of the following components:
2https://ethereum.org/en/developers/docs/evm/opcodes/
3https://etherscan.io/blocks

10

2.2. Ethereum

• from
The address of the transaction sender must be an EOA since only EOAs can trigger
transactions.

• to
The receiver of the transaction. If the receiver is an EOA, it is a value transfer; if
it is a contract account, it is a message transaction.

• signature
The transaction’s cryptographic signature must be signed by the sender’s secret
key corresponding to the "from" address.

• nonce
The nonce is a counter for the transaction the sender’s account sends. Including the
same transaction with the same nonce twice is prohibited, which prevents replay
attacks. In a replay attack, an attacker could attempt to republish a transaction to
receive the same amount of Ether again. For example, if address A sends 1 Ether
to address B, B could try to publish the same transaction again after it has been
included in the blockchain, attempting to receive 2 Ether. However, the second
transaction would be invalid due to the duplicate nonce.

• value
The amount of Ether sent from the sender to the recipient (denominated in Wei).

• input data
An optional field containing arbitrary data, such as encoded function names and
parameter values for contract calls or contract code for contract creation.

• gasLimit
The maximum amount of gas the transaction can consume.

• maxPriorityFeePerGas
The maximum priority fee (tip) paid to the block proposer.

• maxFeePerGas
The maximum fee the transaction can consume, including the base and priority
fees multiplied by the gas consumed.

2.2.3 Transaction propagation and MemPool
As previously mentioned, transactions are valid only when they contain a signature made
with the sender’s secret key. A state change initiated by a transaction is considered
publicly accepted once this transaction is included in a valid block of the commonly
accepted blockchain.
A transaction must be received by the block proposer to be included in a block. The
general method for disseminating transactions is to use a P2P gossip protocol through

11

2. Technical Background

which the transaction is broadcast. The transaction sender sends the signed transaction
to a connected Ethereum node. An Ethereum node is a computer running an Ethereum
client (see subsection 2.2.7). Each node validates incoming transactions by, for example,
verifying the signature against the sender’s public key and ensuring the sender has
sufficient funds. Invalid transactions are discarded, while valid transactions are broadcast
to all known nodes. This process continues until the transaction reaches a node controlled
by a block proposer, who includes it in a block and broadcasts it across the network.

When a node receives a valid block, it deletes any transactions included in that block
from its locally stored unconfirmed transactions. From this point on, the transaction
cannot be included in a future block since a nonce cannot be reused for the same account
(see subsection 2.2.2). The global view of all signed transactions not yet included in a
block is called the MemPool. Due to the asynchronous nature of transaction propagation
among Ethereum nodes, not all nodes maintain the same view of the global MemPool.
A Smart Contract transaction contains the decoded function signature in the input data
field. Since transactions are only signed and not encrypted, their information is public,
allowing all participating nodes to derive the sender’s intent. Bad actors can exploit this
transparency for their gain, often to the disadvantage of the original sender 4.
To address this issue, private MemPools have emerged, providing direct channels between
transaction senders and block proposers. According to a dashboard by Toni Wahrstätter
5, from June 3, 2024, to July 3, 2024, approximately 9.55 % of all transactions were
private.

2.2.4 Ethereum Virtual Machine
The Ethereum Virtual Machine (EVM) is responsible for executing Smart Contracts and
is a fundamental component of the Ethereum network. It deterministically specifies how
a transaction modifies the Ethereum world state, producing a new state from a given old
state and a set of valid transactions [W+14].

The EVM is a stack-based, 256-word machine with a stack size of 1024.
When a transaction triggers a Smart Contract’s function, the byte code of this Smart
Contract is used as input for the EVM’s execution. For this execution, the EVM uses
volatile storage as a word array.

Although the EVM is Turing complete, it is often described as quasi-Turing complete
[W+14] because it does not support infinite loops in practice. While it is possible
to create infinite loops through EVM instructions like JUMP or JUMPI or through
recursive function calls within or across contracts, the gas limit effectively constricts these
loops. The gas limit imposes a cap on the number of instructions that can be executed,
preventing indefinite execution and ensuring that computations are finite [B+14].

4This problem is covered in more detail in chapter 3
5https://mempool.pics/ Accessed on 2024-07-03

12

https://mempool.pics/

2.2. Ethereum

2.2.5 Smart Contracts
Smart Contracts are a key feature that distinguishes Ethereum from Bitcoin. They are
deployed through contract creation transactions, and each Smart Contract is uniquely
identified by its contract address. Once deployed, Smart Contracts offer interfaces that
can be accessed by other transactions or contracts. They can modify the blockchain state
by reading from or writing to storage or invoking other Smart Contracts.

Smart Contracts can manage Ether similarly to EOAs, but unlike EOAs, they do not
possess a secret key and, therefore, cannot directly sign transactions. Consequently,
sending Ether from a Smart Contract must be explicitly implemented in the contract’s
logic and can only be triggered by a transaction initiated from an EOA. As a result, Smart
Contracts typically incorporate their own authentication and permission mechanisms.

The code for a Smart Contract, deployed through a contract creation transaction, is
written in Ethereum Virtual Machine (EVM) bytecode. Several high-level programming
languages have been created to facilitate Smart Contract development, including Solidity
6, Vyper 7, and Cairo 8. Among these, Solidity is the most widely used 9.

In the following section, we will examine the functionality of Solidity through the example
of a Smart Contract deployed at address 0xba1...bf2c8 10. For clarity and brevity, the
Solidity code has been pruned and modified. We will focus on key features relevant to
the blockchain environment, including security.

The contract (Listing 2.1) is an implementation of a flash loan. A flash loan is a type
of loan that must be repaid within the same transaction. This means that tokens can
be borrowed temporarily, but if they are not returned by the end of the transaction,
the entire transaction is reversed. Flash loans are commonly utilized by MEV searchers
because they minimize the need for locked capital.

1 // SPDX-License-Identifier: GPL-3.0-or-later
2 pragma solidity ^0.7.0;
3 pragma experimental ABIEncoderV2;
4
5 import "../lib/helpers/BalancerErrors.sol";
6 import "../lib/openzeppelin/IERC20.sol";
7 import "../lib/openzeppelin/ReentrancyGuard.sol";
8 import "../lib/openzeppelin/SafeERC20.sol";
9

10 import "./Fees.sol";
11 import "./interfaces/IFlashLoanRecipient.sol";
12
13
14 abstract contract FlashLoans is Fees, ReentrancyGuard, TemporarilyPausable {
15 using SafeERC20 for IERC20;

6https://soliditylang.org/ Accessed on 2024-07-03
7https://docs.vyperlang.org/en/stable/ Accessed on 2024-07-03
8https://www.cairo-lang.org/ Accessed on 2024-07-03
9https://defillama.com/languages Accessed on 2024-07-03

10https://etherscan.io/address/0xba12222222228d8ba445958a75a0704d566bf2c8#code

13

2. Technical Background

16
17 function flashLoan(
18 IFlashLoanRecipient recipient,
19 IERC20[] memory tokens,
20 uint256[] memory amounts,
21 bytes memory userData
22) external override nonReentrant whenNotPaused {
23 InputHelpers.ensureInputLengthMatch(tokens.length, amounts.length);
24
25 uint256[] memory feeAmounts = new uint256[](tokens.length);
26 uint256[] memory preLoanBalances = new uint256[](tokens.length);
27
28 // Used to ensure `tokens` is sorted in ascending order, which

ensures token uniqueness.
29 IERC20 previousToken = IERC20(0);
30
31 for (uint256 i = 0; i < tokens.length; ++i) {
32 IERC20 token = tokens[i];
33 uint256 amount = amounts[i];
34
35 require(token > previousToken, token == IERC20(0) ? "ZERO_TOKEN"

: "UNSORTED_TOKENS");
36 previousToken = token;
37
38 preLoanBalances[i] = token.balanceOf(address(this));
39 feeAmounts[i] = _calculateFlashLoanFeeAmount(amount);
40
41 require(preLoanBalances[i] >= amount, "

INSUFFICIENT_FLASH_LOAN_BALANCE");
42 token.safeTransfer(address(recipient), amount);
43 }
44
45 recipient.receiveFlashLoan(tokens, amounts, feeAmounts, userData);
46
47 for (uint256 i = 0; i < tokens.length; ++i) {
48 IERC20 token = tokens[i];
49 uint256 preLoanBalance = preLoanBalances[i];
50
51 // Checking for loan repayment first (without accounting for fees

) makes for simpler debugging, and results
52 // in more accurate revert reasons if the flash loan protocol fee

percentage is zero.
53 uint256 postLoanBalance = token.balanceOf(address(this));
54 require(postLoanBalance >= preLoanBalance, "

INVALID_POST_LOAN_BALANCE");
55
56 // No need for checked arithmetic since we know the loan was

fully repaid.
57 uint256 receivedFeeAmount = postLoanBalance - preLoanBalance;
58 require(receivedFeeAmount >= feeAmounts[i], "

INSUFFICIENT_FLASH_LOAN_FEE_AMOUNT");
59
60 _payFeeAmount(token, receivedFeeAmount);

14

2.2. Ethereum

61 emit FlashLoan(recipient, token, amounts[i], receivedFeeAmount);
62 }
63 }
64 }

Listing 2.1: Example Smart Contract representing a Flash Loan written in Solidity

The logic of this contract in Listing 2.1 revolves around a function called flashLoan.
Users who invoke this function specify the tokens and amounts they wish to borrow.
The contract first verifies that it has adequate funds to cover the loan (lines 41 and 42)
and calculates the fee associated with each loaned token (line 39). Subsequently, the
requested funds are sent to the recipient.

In line 45, the contract calls a function on the recipient, which must be a Smart Contract
with a receiveFlashLoan callback function. This function allows the recipient to utilize
the borrowed tokens in any way they see fit. For instance, MEV searchers might leverage
these tokens to exploit arbitrage opportunities by buying and selling other tokens. After
the recipient’s Smart Contract completes its operations, control returns to the flash loan
contract, which then proceeds to the second part of its logic. At this stage, the borrower
must have repaid the entire loan amount along with any fees. The contract checks the
repayment and fee payment in this second phase to ensure correctness.

In the following, we will highlight the specifics of Solidity and its Smart Contract
development.

Compiler instructions

Lines 2 and 3 of the contract in Listing 2.1 specify compiler directives. Line 2 sets the
minimum required version of the Solidity compiler, while Line 3 enables an experimental
feature. This feature was experimental until version v0.8.0 and is part of the compiler in
higher versions 11.

Inheritance

As an object-oriented programming language, Solidity supports inheritance, allowing
contracts to be derived from one or more base contracts. In this example (Line 14), the
contract inherits from Fees, ReentrancyGuard, and TemporarilyPausable, demonstrating
how inheritance facilitates code reuse and separation of concerns.

Modifiers

Modifiers in Solidity function similarly to aspects in aspect-oriented programming. They
are executed before the body of a function and can alter the function’s behavior. Modifiers
are commonly used to enforce preconditions or guards for functions, ensuring that certain
conditions are met before the function executes. For instance, in the example contract,

11https://docs.soliditylang.org/en/v0.8.0/080-breaking-changes.html

15

2. Technical Background

the flashLoan() function is protected by two modifiers: nonReentrant and whenNotPaused
(Line 22). These modifiers help prevent reentrancy attacks and ensure the contract is not
paused before the function proceeds.

1 /**
2 * @dev Reverts if the contract is paused.
3 */
4 modifier whenNotPaused() {
5 require(_isNotPaused(), Errors.PAUSED);
6 _;
7 }

Listing 2.2: Example of a modifier in Solidity

Listing 2.2 presents a simplified definition of the whenNotPaused modifier. By calling
the _isNotPaused() function, this modifier ensures the contract is not paused. The _;
syntax in the modifier indicates where the body of the modified function will be inserted
and executed.

Key Solidity Features for Smart Contract Development

Solidity is a specialized programming language designed to develop Smart Contracts
on the Ethereum platform. It offers features specifically crafted to meet the unique
requirements of Smart Contract development. The following will present the most
important features based on the flashLoan example.

require()

The require() statement helps ensure the integrity and security of a Smart Contract. It
allows the definition of conditions, e.g., invariants, that must be met before the code
execution can continue. It takes as an argument a boolean condition that must be
evaluated to be true for the code execution to continue. If this condition fails, then the
transaction gets reverted, which results in the reversion of all state changes caused by
the transaction.

Line 58 of the example contract shows such a require() usage. It checks that the value of
the variable postLoanBalance must be greater or equal to the value of preLoanBalance.
This ensures that the flash loan lender has repaid the loan. If this condition is evaluated
as false, then this transaction and its state changes will be reverted, and an exception
with the passed message will be thrown.

Address Type and Ether Transfer

Solidity includes a built-in address type representing an Ethereum address, which can be
either an externally owned account (EOA) or a Smart Contract address. Additionally,
Solidity offers an address payable type specifically for handling addresses that can receive
Ether, providing convenient functions like transfer and send for sending Ether 12.

12https://docs.soliditylang.org/en/latest/types.html#address

16

2.2. Ethereum

Events

Solidity enables Smart Contracts to emit events 13, which serve as a form of logging.
These logs are stored by the Ethereum Virtual Machine (EVM) and can be subscribed
to by external applications through an Ethereum client. This allows them to be notified
about state changes in decentralized applications. Line 61 illustrates an example of such
an event emission, notifying all listeners that a flash loan has been executed.

Fallback and Receive Functions

Solidity allows the definition of special 14 functions specifically tailored for Smart Contract
development. One such function is the receive function, called when Ether is transferred
to the Smart Contract without any accompanying data (calldata). This indicates a plain
Ether transfer, not a function call.

Another special function is the fallback function. This function is invoked when no receive
function is defined for handling plain Ether transfers. Additionally, it is called if no other
function matches the provided function signature.

This and Self-Destruct

Solidity provides a way for a smart contract to reference itself through the this keyword.
This can be utilized to check the contract’s Ether balance. One can retrieve the Smart
Contract balance in Wei by calling address(this).balance.

Another key Solidity feature is the selfdestruct function. This function enables a contract
to remove itself from the blockchain and transfer its remaining Ether to a designated
address.

2.2.6 Proof of Stake
Ethereum initially employed a Proof of Work (PoW) consensus mechanism. In 2022,
it transitioned to Proof of Stake (PoS) through an upgrade known as "The Merge."
According to the Ethereum Foundation, this transition reduced the energy consumption
of the Ethereum network by 99.95% 15.

In the following, we will present the building blocks of Proof of Stake Ethereum.

Validators

The primary participants in the Ethereum PoS mechanism are validators. To become
a validator, an individual must deposit 32 ETH into a deposit contract. Validators are
responsible for validating and proposing new blocks.

Ethereum time is divided into epochs, each comprising 32 slots. Slots occur at 12-second
intervals, with each slot capable of containing one block or remaining empty. The

13https://docs.soliditylang.org/en/latest/contracts.html#events
14https://docs.soliditylang.org/en/latest/contracts.html#special-functions
15https://ethereum.org/en/roadmap/merge/

17

2. Technical Background

RANDAO algorithm, which generates pseudo-random values in a decentralized setting,
determines which validators can propose a block in each slot.
When a validator’s assigned slot arrives, it aggregates transactions into a bundle, known
as the execution payload. Validators may prioritize transactions by gas price to maximize
profits or employ other MEV strategies (see chapter 3). A valid Ethereum block consists
of the execution payload and additional consensus information.
Attestations and Committees
Attestations are a critical part of the PoS consensus mechanism. They are signatures
from validators confirming the validity of a block. To manage the attestation process
efficiently, validators are divided into committees, with each committee responsible for
attesting to a specific slot within an epoch. Each validator is expected to vote once per
epoch.
To reduce network congestion, 16 validators from each committee are chosen as aggregators.
Validators send their attestations to the aggregators, who combine them into a final
aggregation in the block.
Incentives and Penalties
Validators are financially motivated by rewards for participating in the consensus process,
such as signing attestations. Block proposers also receive priority fees from transactions
within their blocks and possible MEV revenue.
Two primary mechanisms ensure validators behave correctly: their stake and slashing
penalties. By staking 32 ETH, validators have a financial incentive to maintain the
network’s integrity. Any attack that undermines Ethereum would also decrease the value
of their staked ETH.
Slashing penalties are enforced for incorrect behavior, such as proposing two different
blocks, attesting to multiple blocks in the same slot, or attesting to a block that contradicts
a finalized block. Slashed validators are automatically removed from the validator set
and incur a reduction in their stake.
Finality and fork choice rule
Finality in Ethereum is managed by the Gasper protocol [BG17]. Finality is the point
at which a transaction is considered immutable. In Bitcoin, there technically exists no
point at which a block is immutable, but the probability of the block being forked drops
with each following block, which is why in practice after six blocks, a block is considered
safe. Ethereum uses a voting mechanism to determine finality. A block is justified if
two-thirds of validators vote for it at the end of an epoch. If the subsequent epoch is
also justified, the block is considered finalized.
Ethereum’s fork choice rule prioritizes the chain with the most attestations over chains
with fewer attestations, contrasting with Bitcoin’s preference for the longest chain. This
mechanism ensures that the network converges on a single, agreed-upon history, enhancing
the blockchain’s security and reliability.

18

2.2. Ethereum

2.2.7 Ethereum Client Implementations

An Ethereum node is a computer that participates in the Ethereum network. To minimize
complexity and facilitate parallel development, the functionality of a node is divided into
multiple client types.

Firstly, an Ethereum node runs an execution client. This client accepts incoming
transactions, executes and verifies them within a local Ethereum Virtual Machine (EVM)
instance, and stores the current EVM state.

Secondly, an Ethereum node must run a consensus client or Beacon node. This client
synchronizes with the blockchain by receiving new blocks, validating them with the
execution client’s help, and propagating the known blocks to peers. The consensus client
also applies the fork choice rule to resolve any forks in the blockchain.

If the node is operated by a validator, it also runs a validator client. This software
proposes and attests to blocks, leveraging the consensus and execution of clients to
perform its duties.

Since Ethereum’s inception, many such clients have been developed. The most popular
execution client is Geth 16, while the most popular consensus client is Prysm 17. It is
crucial for the network’s resilience that diverse clients are used to avoid single points of
failure. If a client with over 1/3 of the market share encounters a consensus bug, it will
prevent the network from reaching finality, which requires a 2/3 majority. Nodes running
the faulty client would face significant costs due to an inactivity leak mechanism that
slashes the stakes of non-participating validators until finality is restored.

In the worst-case scenario, a corrupted client with a 2/3 majority could finalize invalid
blocks [@jm22].
These risks highlight the importance of client diversity.

According to clientdiversity.org, as of July 13, 2024, execution and consensus clients
exhibit an unhealthy distribution. Prysm, the leading consensus client, holds a 36.44%
market share, while the most popular execution client has a 55% market share. Promoting
client diversity is essential to mitigate the risks associated with such concentrations.

2.2.8 Decentralized Finance in Ethereum

One of Ethereum’s primary functionalities is sending Ether. However, introducing Smart
Contract functionality has enabled so-called decentralized applications (dApps). These
dApps encompass various domains, from games and lotteries to voting contracts and an
extensive ecosystem of Decentralized Finance (DeFi). In the following section, we will
introduce the DeFi ecosystem, as this thesis specifically addresses MEV in the context of
DeFi. We will start by introducing tokens, which are crucial tradable assets. Following

16https://geth.ethereum.org/
17https://github.com/prysmaticlabs/prysm

19

2. Technical Background

that, we will delve into the core of DeFi by exploring key concepts such as Automated
Market Makers and Lending Protocols.

Tokens

Tokens are digital assets implemented as Smart Contracts on the Ethereum blockchain.
They inherit the blockchain’s security guarantees, which protect transactions from
tampering and ensure that the Token rules and methods for proving ownership, which
are defined within the smart contract code, are upheld. The two most important token
standards are ERC20 and ERC721. ERC20 tokens are fungible, and ERC721 tokens are
non-fungible, meaning each ERC721 token is unique.

ERC20-Tokens

ERC20 18 tokens are fungible, meaning that each token is identical to another. The
ERC20 token standard defines a set of functions and events each implementing token
must support.

The first four functions are administrative:

• name() Returns the name of the token.

• symbol() Returns the token’s symbol.

• decimals() Returns the number of decimal places the token uses.

• totalSupply() Returns the total supply of tokens.

The subsequent functions are essential for managing the token assets:

• balanceOf(address _owner) Allows querying the balance of ERC20 tokens for a
given address.

• transfer(address _to, uint256 _value) Allows a token holder to transfer tokens to
another address.

• transferFrom(address _from, address _to, uint256 _value) Allows transferring
tokens on behalf of another address, which is useful for delegated transactions.

The last function demonstrates an interesting aspect: the ability to send tokens on behalf
of another user. This capability is facilitated by the approve and allowance functions.
The approve(address _spender, uint256 _value) function allows a token holder to approve
another address to spend up to a specified number of tokens. The allowance(address
_owner, address _spender) function enables the spender to check how many tokens they
can transfer on behalf of the owner.

18https://eips.ethereum.org/EIPS/eip-20

20

2.2. Ethereum

ERC721-Token

ERC721 19 is the standard for Non-Fungible Tokens (NFTs). Unlike ERC20 tokens, each
ERC721 token is unique. The uniqueness is represented by a tokenId, a unique identifier
for each token under a given contract. Thus, the Smart Contract’s address and tokenId
combination is globally unique. Similar to the ERC20 standard, the ERC721 standard
defines an interface for transferring and approving token transfers:

• balanceOf(address _owner) Returns the number of NFTs owned by _owner.

• ownerOf(uint256 _tokenId) Returns the owner of the NFT specified by tokenId.

• transferFrom(address _from, address _to, uint256 _tokenId) Transfers ownership
of the NFT from one address to another.

• approve(address _approved, uint256 _tokenId) Approves another address to transfer
the given NFT.

These functions provide a standardized method for managing unique digital assets, making
ERC721 tokens ideal for applications such as digital collectibles, houses, and other unique
assets.

Key ERC20 Tokens

This section will introduce two crucial ERC-20 tokens in the DeFi landscape: WETH
and USDC. While USDC is an example of a stablecoin, WETH serves a different but
crucial role.

Wrapped Ether (WETH) The ERC-20 standard provides a unified interface for
trading and exchanging tokens on the Ethereum network. However, Ethereum’s native
currency, Ether (ETH), does not natively adhere to the ERC-20 standard. To address
this, WETH (Wrapped Ether) was created. WETH is essentially a wrapper around ETH
that conforms to the ERC-20 standard.

The WETH Smart Contract allows users to deposit ETH and receive an equivalent
amount of WETH in return. This conversion ensures that one WETH is always valued
like one ETH. Conversely, users can also deposit WETH into the contract and receive
ETH back. This functionality is crucial for integrating Ether into DeFi protocols that
require ERC-20 compatibility.

USDC Another notable token is USDC, which exemplifies the concept of stablecoins.
One of the original goals of blockchain technology was to replace traditional currencies.
However, since their introduction, cryptocurrencies have often exhibited higher volatility
than traditional currencies. This volatility is problematic for their use as a stable means

19https://eips.ethereum.org/EIPS/eip-721

21

2. Technical Background

of exchange, as the value can fluctuate even between the selection of a product and the
payment.

Stablecoins aim to address this issue by maintaining a value close to that of traditional
currencies. USDC is a type of stablecoin designed to closely mirror the value of the
US Dollar (USD). It achieves this stability by being fully backed by real USD held
in reserve. Each USDC token is backed 1:1 by a corresponding USD held by trusted
financial institutions. This ensures that one USDC can be exchanged for exactly one USD.
However, this backing introduces centralization concerns, as the reserve USD is managed
by traditional financial institutions, which requires placing trust in these entities.

Automated Market Makers (AMMs)

One example of decentralized services is Automated Market Makers (AMMs), such as
Curve 20, Sushiswap21, and Uniswap 22. AMMs facilitate the automatic exchange of
assets without a centralized authority, typically dealing with ERC20 tokens. These tokens
utilize the approve() and transfer() functions to enable automatic trading by AMMs. In
traditional settings, buyers and sellers place orders specifying prices and quantities for
asset exchanges. A centralized exchange then matches these orders, with asset prices
being determined by supply and demand.

In contrast, AMMs allow users to interact with a liquidity pool and a price function
that algorithmically determines the asset’s price. This setup enables users to exchange
assets directly and atomically with an AMM without waiting for another user to match
their desired trade proportions [XPCF23]. AMMs employ various price determination
functions that define a price curve, ensuring the total value of the liquidity pool remains
constant. For instance, Uniswap’s constant product function x ∗ y = k23 means the
product k must remain unchanged when trading assets x and y. Thus, a trade is only
valid if the exact y amount is provided to keep k unchanged.
However, AMMs are subject to slippage, which is the difference between the expected price
of a trade and the actual price executed. Slippage occurs when asset prices significantly
fluctuate, leading to a difference between the price when a transaction is submitted to the
MemPool and when it is included in a block. For instance, a large order can significantly
alter the ratio of assets in the pool, leading to less favorable exchange rates for the trader.
To mitigate slippage, traders can set a maximum acceptable slippage percentage when
initiating a trade, ensuring that the trade will only execute if the price remains within
the specified range.

20https://curve.fi/
21https://www.sushi.com/
22https://uniswap.org/
23https://docs.uniswap.org/contracts/v2/concepts/protocol-overview/how-uniswap-works

22

2.2. Ethereum

Lending protocols

Another significant DeFi application is lending protocols, such as Aave 24 and Compound
25. Users can borrow assets by interacting with a lending Smart Contract and posting
collateral, a security deposit of higher value than the borrowed asset [QZG+21]. Given
the often volatile nature of cryptocurrency assets, the collateral’s value may fall below
the loan value. In such cases, the debt can be recovered through collateral Liquidations.
These Liquidations can occur via auctions, where the collateral is available for bidding,
or through fixed spread Liquidations, where the collateral is immediately available at a
discount.

2.2.9 Conclusion
This chapter has established the technical foundation for this thesis by exploring key
aspects of blockchain technology, with a particular focus on Ethereum. We began with
an overview of fundamental blockchain concepts using Bitcoin as an example. This was
followed by an in-depth examination of Ethereum, central to our study.

We detailed the mechanics of Ethereum addresses, transactions, and their propagation
through the MemPool. We then explored the Ethereum Virtual Machine (EVM) and
delved into Smart Contracts, illustrating their functionality with a specific example: the
Flash Loan.

Given the significance of the Proof of Stake (PoS) mechanism to Maximal Extractable
Value (MEV), we thoroughly explained its core components and operational principles.
Another vital topic for MEV is decentralized finance (DeFi), which was introduced in
this chapter. We introduced the ERC20 and ERC721 Token Standards and, finally, two
significant DeFi Applications, Automated Market Makers and Lending Protocols.

24https://aave.com/
25https://compound.finance/

23

CHAPTER 3
MEV - Maximal Extractable

Value

The ability of block proposers to manipulate transaction ordering and selectively include
or exclude transactions has introduced a new attack vector in Decentralized Finance:
Maximal Extractable Value (MEV). This chapter delves into the complexities of MEV,
exploring its various forms and the broader implications for the blockchain ecosystem.

We introduce concrete examples of MEV attacks, demonstrating how they extract value
at the expense of regular users. These attacks include Sandwich attacks, Arbitrage,
Transaction Replays, and Clogging, illustrating how MEV can be leveraged to gain unfair
advantages.

However, MEV’s disadvantages extend beyond individual user’s losses, affecting the
overall health and security of the blockchain ecosystem. Therefore, this chapter will also
explore these broader negative externalities, such as increased transaction costs, network
congestion, and potential threats to consensus security. We will discuss how MEV can
incentivize malicious behaviors among block producers, further undermining the stability
of decentralized networks.

To address these challenges, the chapter concludes with an overview of various mitigation
strategies. These strategies range from theoretical proposals to practical implementations
currently in use. We will examine MEV auction platforms that aim to create transparent
markets for block space, MEV-aware application designs that minimize vulnerabilities,
and innovative approaches to achieving order fairness in transaction processing.

Overall, this chapter aims to introduce MEV and illuminate its pressing issues and
ongoing efforts to develop effective solutions.

25

3. MEV - Maximal Extractable Value

3.1 Characterization of MEV
In the following section, we will characterize various forms of MEV. Since the initial
definition of MEV [DGK+20], research has identified numerous MEV opportunities.
We will present six types of MEV that target individual transactions: Frontrunning,
Backrunning, Sandwich Attacks, Arbitrage, Transaction Replay, and Clogging. Following
these simpler forms, we will provide a brief overview of a more complex form of MEV,
Cross-Domain MEV.

Frontrunning

Frontrunning is a transaction ordering attack where the attacker aims to insert their
transaction immediately before the victim’s transaction within a block. One method to
achieve this is by setting the gas price of their transaction just one unit higher than the
victim’s transaction. Since block proposers generally prioritize transactions by gas price,
the attacker’s transaction is expected to be included right before the victim’s.

The result of a Frontrunning attack can be twofold: Tolerant and Destructive [QZG22].
In a destructive Frontrunning attack, the attacker alters the blockchain state to cause the
victim’s transaction to fail. In a tolerant Frontrunning attack, the victim’s transaction
remains valid but executes under less favorable conditions than initially expected.

A form of destructive Frontrunning is the displacement or transaction replay attack.
For example, consider a lending contract where the loan value has dropped below the
collateral’s safety margin. Some lending contracts allow for immediate Liquidation of the
collateral at a discount. If a victim identifies this opportunity and publishes a Liquidation
transaction, an attacker monitoring the MemPool could see this transaction and publish
an identical one with a higher gas fee. As a result, the attacker’s transaction would be
processed first, allowing them to benefit from the Liquidation and causing the victim’s
transaction to fail since the collateral would already be liquidated.

Backrunning

Contrary to a Frontrunning attack, a Backrunning attack involves the attacker aiming
to include their transaction immediately after a targeted transaction to profit from the
state changes introduced by the preceding transaction. For example, consider an Oracle
update where new information is published significantly affecting an asset’s price. By
Backrunning the Oracle’s update, the attacker can be the first to capitalize on this new
information.

Sandwich Attack

A particularly lucrative form of attack is the Sandwich attack, which combines elements
of both Frontrunning and Backrunning attacks. In an Automated Market Maker (AMM)
exchange, users swap assets based on the AMM’s current state, which determines the
exchange rate. Due to the inherent delay introduced by the blockchain’s consensus

26

3.1. Characterization of MEV

mechanism — the time between publishing a transaction and its inclusion in a block
— users typically set a slippage tolerance, which is the acceptable difference between
the expected and actual prices. Transactions that exceed this slippage tolerance will
automatically fail.
In a Sandwich attack, the attacker takes advantage of this slippage tolerance by publishing
two transactions: before and after the victim’s transaction.

One way an attacker could profit is the following:

1. The attacker’s first transaction buys the same asset as the victim, driving up the
asset’s price.

2. The victim’s transaction then executes at this higher price.

3. The attacker’s second transaction sells the asset at the inflated price, thus profiting
from the price difference.

This attack allows the attacker to profit by manipulating the asset’s price to their
advantage while the victim pays more than anticipated.

Arbitrage

Arbitrage trading involves making profits by exploiting price differences for the same asset
across different exchanges. For example, if asset A costs 2.1 ETH on one decentralized
exchange (DEX) but only 2 ETH on another, an arbitrage trader can buy the asset for 2
ETH and immediately sell it for 2.1 ETH, realizing a profit of 0.1 ETH.

There are various techniques for arbitrage trading. A common method is Backrunning a
transaction, but another approach is blocked state arbitrage, where a trader monitors
blockchain states and then Frontruns all other transactions in the next block if an
arbitrage opportunity arises [QZG22]. Due to the complexity of the DeFi ecosystem,
arbitrage opportunities can involve multiple exchanges or tokens 1 [PJL+23], and even
span multiple blockchains [OSS+21]. Park et al. [PJL+23] have also researched arbitrage
opportunities that leverage Smart Contract-specific structures, such as burn and mint
mechanisms, or the coordination of multiple MEV bots to maximize profits.

Transaction Replay

In a transaction replay attack, an attacker monitors the MemPool for public information
in unconfirmed transactions. The attacker then acts on this information before the initial
transaction is confirmed. For instance, they might copy and modify a transaction to
redirect potential profits to a wallet they control. A notable example of this type of
attack was described by Robinson and Konstantopoulos [RK20]. In this case, someone

1https://www.odos.xyz/arbitrage

27

3. MEV - Maximal Extractable Value

accidentally sent tokens to a Smart Contract that allowed anyone to retrieve those tokens
by calling a specific function.

Robinson and Konstantopoulos attempted to call this function to rescue the tokens.
However, by doing so, they inadvertently exposed the vulnerability. An attacker observing
the MemPool noticed this vulnerability and quickly published a transaction to exploit it,
resulting in the loss of the tokens to the attacker.

Clogging

A clogging attack is a censorship attack where an adversary spams the blockchain with
transactions to prevent others from issuing their transactions. Imagine a Smart Contract-
based game or lottery in which an attacker gains an advantage by flooding the blockchain
with their transactions, blocking others from interacting with the Smart Contract.

An example of a clogging attack occurred during the first round of the game Fomo3D
[EMC20]. Fomo3D is a game where the winner is the last person to buy a ticket before
the timer runs out. Each ticket purchase extends the timer by 30 seconds. In the first
round, many players used automated scripts to buy tickets just before the timer ended,
potentially prolonging the game indefinitely. However, on August 22, 2018, a player won
the first iteration of this game and was rewarded 10,469 Ether. The winner employed
a clogging attack by purchasing a ticket and then submitting numerous high gas price
transactions. Miners prioritized these transactions due to their higher fees, including
them in the subsequent blocks. Given Ethereum blocks have a total gas limit 2, the other
players’ purchases were excluded from these blocks. This allowed the attacker to secure
the last ticket purchase and ultimately win the game.

3.2 Multiple Dimensions of MEV
The complex nature of blockchains and DeFi has created numerous opportunities for
adversaries to profit by reordering transactions. While the previous examples focused on
relatively simple attacks targeting single transactions, the following sections will briefly
discuss two more sophisticated MEV opportunities: Cross-Domain MEV and Multi-block
MEV.

Cross-Domain MEV

To the best of our knowledge, Obadia et al. [OSS+21] were the first to formalize the
concept of cross-domain MEV. Cross-domain MEV refers to the value that can be
extracted by influencing transaction orders across multiple blockchains. DeFi applications
like Automated Market Makers are not confined to a single blockchain like Ethereum.
For instance, multiple instances of Sushiswap operate on different blockchains.

2https://ethereum.org/en/developers/docs/gas/#block-size

28

3.3. Negative externalities of MEV

Different blockchains use various consensus mechanisms and protocols, making cross-chain
communication challenging. Bridges are protocols that facilitate communication between
blockchains and allow users to move assets across them.

As AMMs exist on different blockchains, they likely have different liquidity pool sizes
and prices for the same assets. Any imbalance in these factors across blockchains creates
cross-domain arbitrage opportunities. Unlike simpler MEV examples, cross-domain MEV
is complicated because cross-domain trades are not atomic.

The importance of atomic cross-domain transactions is particularly evident when consid-
ering arbitrage opportunities, as described in section 3.1. In these scenarios, a user or bot
relies on completing two transactions: a buy order (e.g., for 2 ETH) and an immediate
sell order (e.g., for 2.1 ETH). If the two unbalanced decentralized exchanges are on
different blockchains, the lack of atomicity increases the risk that only one or neither
of the transactions will be finalized. This risk is further compounded if multiple bots
compete for the same arbitrage opportunity.

Multi Block MEV

In Ethereum, validators and committee members are selected using the RANDAO
mechanism, which pseudo-randomly and unpredictably selects these roles. However, at
the end of epoch N − 1, the proposers for epochs N and N + 1 are known [JvWR23].
It is possible, and not uncommon, for up to five or even seven consecutive slots to be
assigned to a single pool. Additionally, mechanisms such as MEV Boost 3 allow users to
pay fees to validators to include proposed blocks (see section 3.0.5). This setup allows
MEV searchers to influence multiple blocks to exploit MEV opportunities.

An example of a Multi-block MEV extraction strategy involves a builder censoring all
sell transactions to an AMM, thereby increasing the asset’s price. After this period, the
searcher can Frontrun all other transactions by selling their assets at an inflated price.
The next naive proposer would then naturally include all the previously censored sell
transactions, resulting in a balanced price.

3.3 Negative externalities of MEV
Most previously discussed examples highlight the direct negative impacts of MEV on
individual victims. For instance, a user who buys assets through an AMM and is subjected
to a Sandwich attack ends up paying a much higher price than anticipated. However,
MEV also generates broader negative externalities that can affect all blockchain users
and compromise the security of the blockchain consensus.

Daian et al. [DGK+20] illustrated the issue of Priority Gas Auctions (PGAs). Many
MEV opportunities represent pure revenue possibilities, often because executing multiple

3https://github.com/flashbots/mev-boost

29

3. MEV - Maximal Extractable Value

actions atomically within a Smart Contract is possible. These pure profit opportunities
lead to competition among MEV bots.

To secure these opportunities, MEV bots frequently raise the gas prices of their trans-
actions to ensure inclusion in the finalized blockchain. This behavior leads to network
congestion, reduced transaction throughput, and increased gas prices for all users. More-
over, MEV can incentivize attacks on consensus security. Block producers capture many
MEV profits [MKV23], which might tempt them to alter blockchain history to capitalize
on past MEV opportunities.

One such attack is the undercutting attack, where a miner forks a high-fee block and
withholds fees to attract other miners to build on the new fork [CKWN16]. Another
potential attack is the time bandit attack, where an attacker identifies lucrative MEV
opportunities in a past block. If the MEV opportunity is substantial, the attacker forks
the block and uses rented hash power to rewrite the blockchain history up to the current
height, ensuring the new fork is accepted by all clients [DGK+20].
Qin et al. [QZG22] found that when MEV is four times higher than the block reward,
a miner with 10 percent mining power might prefer forking the blockchain over honest
mining. Between December 1, 2018, and August 5, 2021, they identified at least 2,407
blocks with MEV opportunities that met this condition. In another study, Piet et al.
[PFW22] discovered four blocks in 12 days that would have made time bandit attacks
profitable.
To shield themselves from MEV attacks, many users might resort to private communication
with mining or staking pools, leading to increasingly centralized and permissioned systems.
This shift could raise entry barriers for users without access to such systems. Furthermore,
private communication between entire trading firms and staking pools could increase
centralization within the ecosystem [HG22].

3.4 Mitigation
As discussed in section 3.3, MEV poses a significant problem that degrades the user
experience on blockchain networks and threatens the security of the underlying consensus
mechanism.

Since the publication of the Flashboys 2.0 paper [DGK+20], numerous approaches to
address and mitigate the effects of MEV have been proposed. Some of these proposals have
been implemented and are actively used by many users, while others remain theoretical
research outputs.

This section introduces three proposed Solutions to mitigate the negative externalities of
MEV: Auction Platforms, Order Fairness, and MEV-aware application Design.

3.4.1 MEV Auction Platforms
MEV auction platforms do not primarily aim to prevent MEV exploitation; they seek to
make MEV activities transparent, distribute MEV profits more equitably, and mitigate

30

3.4. Mitigation

some of MEV’s negative externalities. By creating a market for block space, these
platforms help to avoid the vertical integration of block producers, MEV searchers,
decentralized exchanges (DEXs), and other entities [HG22].

MEV auction platforms typically allow users to bid on block space. Proposers sell block
space to MEV exploiters/searchers or regular users. These platforms generally promise
privacy for submitted bundles/transactions and ensure atomicity (either the entire bundle
is included or none is) [YZH+22]. MEV searchers use these platforms to secure their
MEV opportunities without revealing their transactions before confirmation. Regular
users might use them to maintain privacy, especially from MEV searchers.

Creating a market for block builders, Proposer-builder separation (PBS), is planned to be
integrated into the Ethereum protocol itself [VNSA+21]. In the meantime, several projects
have implemented forms of PBS, the most prominent being Flashbots’4 MEV-Boost 5.

In MEV-Boost, block builders construct blocks based on the public MemPool and
potentially their MEV-exploiting transactions and then submit them to one or more
relays. These blocks typically include a fee paid to the block proposer if they choose
the block. The relays select the block with the highest fee and forward it to connected
block proposers, who publish these blocks. To prevent proposers from ignoring the
proposed block and using the contained information themselves, the relay sends only the
block’s header information to the proposer. Only after the proposer has signed this so-
called blinded block 6 does the relay reveal the full block body, including its transactions.
Thus, the relays remain trusted entities upon which both block builders and proposers rely.

While these auctions create a competitive market for builders, potentially reducing
negative externalities such as centralization efforts and network congestion, the MEV
profits primarily benefit block builders and proposers, not the users who created the
MEV opportunities.

In the following, we explore two solutions designed to share MEV profits with users:

• Transaction Auctions by M. Köppelmann [Kö23]
This approach focuses on transaction-level auctions instead of auctioning entire
blocks. In these auctions, users sell the slot immediately following their transaction.
MEV searchers bid on these Backrunning opportunities and must pay the users
based on the auction outcome.

• MEV Share by Flashbot [BAH+23]
MEV Share follows a similar strategy. Users have control over which transaction
information to reveal, such as omitting the contract address, calldata, or logs

4https://www.flashbots.net/
5https://github.com/flashbots/mev-boost
6https://ethereum.github.io/builder-specs/#/Builder/submitBlindedBlock

31

3. MEV - Maximal Extractable Value

included in a transaction 7. A middleware called Matchmaker shares selective
transaction data, respecting the users’ privacy preferences. MEV searchers then
submit bundles of transactions, similar to MEV-Boost, with optional indications
of where the private transactions might be included. The Matchmaker attempts
to match these bundles with the users’ private transactions by simulating various
combinations to maximize MEV profits. These matched bundles are sent to builders
with the condition that users receive a portion of the generated MEV. Initially,
this condition is not enforced permissionlessly, so the Matchmaker only interacts
with trusted builders. This process could be enhanced using trusted hardware or
cryptoeconomic 8 solutions such as security bonds posted by builders.

MEV auction platforms are among the most widely adopted mitigation strategies, partic-
ularly the open-source MEV-Boost 9 platform by Flashbots. According to a dashboard
provided by Anton Wahrstätter, over 90% of blocks are published using MEV-Boost 10.
While auction platforms do not eliminate MEV or all of its negative externalities, they
at least make MEV activities transparent and help mitigate some centralization forces.

3.4.2 Order Fairness
The next class of mitigation strategies aims to address the problem of MEV by achieving
fair ordering. The primary objective is to prevent single malicious actors from manipulat-
ing transaction ordering. There are two main approaches to achieving this. One approach
to achieve this is time-based order fairness. The goal here is that if a transaction T1 is
received by a majority of honest nodes before transaction T2, then T1 should be placed
before T2 in the confirmed block [KZGJ20]. This ensures transactions are ordered based
on the time they are received by the network, reducing the potential for manipulation.

Another approach is content-agnostic ordering. This method prevents order manipulation
based on transaction content by ensuring that those responsible for ordering transactions
do not know the details of the transactions.

Time-Based Order Fairness

As described before, strict time-based order fairness is a FIFO mechanism. It is, however,
impossible to achieve this, as shown by Kelkar et al. [KZGJ20]. The following is their
example, which shows that it is impossible in an asynchronous network.

Three nodes, A, B, and C receive transactions [x, y, z] in the following order: A: [x, y, z],
B: [y, z, x], and C: [z, x, y]. In this example, most nodes received x before y, but most
also received y before z and z before x. This example called the Condorcet paradox

7https://docs.flashbots.net/flashbots-auction/searchers/advanced/rpc-
endpoint#eth_sendprivatetransaction

8https://policyreview.info/pdf/policyreview-2021-2-1553.pdf
9https://github.com/flashbots/mev-boost/

1014-day share of 91.6% https://mevboost.pics/, accessed on 2023-12-01

32

3.4. Mitigation

[DC+85], makes it obvious, that it is not possible to define a protocol in which the
majority of nodes, two of three nodes, agree on the same ordering.
Therefore, mitigation strategies have to weaken the assumption of order fairness.
Protocols proposed are for example, the Fair Sequencing Service (FSS) by Chainlink11,
the espresso sequencer12, or the Aequitas protocols by Kelkar et al.[KZGJ20]. While
these and other protocols achieve increasing levels of fairness, they are prone to attacks
by hackers with better network connections [HW22]. Attacks can always listen to the
network and Frontrun transactions with lower latency than the honest nodes. Additionally,
Backrunning is even harder to prevent, although its effects are generally less severe than
the effects of Frontrunning [HW22].

Content-Agnostic Ordering

With content-agnostic ordering, cryptographic techniques ensure that the nodes respon-
sible for ordering transactions do not know their content. Typically, users commit to
their transactions cryptographically, revealing only certain data fields, such as fees, to
the ordering nodes [YZH+22]. The ordering nodes then arrange the transactions based
on their receipt order. In a subsequent reveal phase, the encrypted content is decrypted
and executed according to the predetermined order.

Several techniques support this commit-and-reveal scheme, including threshold encryption,
timelock encryption, and off-chain methods [HW22].

Threshold encryption can be employed to prevent users from selectively revealing only
beneficial transactions. In this scheme, a committee of n members generates a public key
that users use to encrypt their transactions. These transactions can then be decrypted
by l out of n committee members. Examples of threshold encryption implementations
include Shutter Network 13, Osmosis 14, and Sikka 15.

Another approach is time-locked encryption, which ensures that the decryption of com-
mitments occurs after a probabilistically set time [RSW96]. Protocols such as TeX
[KGF19], a trustless exchange, and Multi-Party Timed Commitments [DE20], are based
on time-locked encryption.

The downside of commit-and-reveal schemes is that they often operate on the blockchain,
consuming more space than simple transactions and increasing transaction costs. Addi-
tionally, there is a significant delay between the commit and the reveal phases and the
final confirmation of the transactions. This delay might be impractical for users trading
volatile assets [HW22].

11https://chain.link/
12https://hackmd.io/@EspressoSystems/EspressoSequencer
13https://blog.shutter.network/
14https://osmosis.zone/
15https://sikka.tech/projects/

33

3. MEV - Maximal Extractable Value

3.4.3 MEV-Aware Application Design

This section explores design choices that decentralized exchanges and Smart Contracts
can implement to mitigate MEV issues. Generally, these design choices are tailored to
the specific types of MEV that a Smart Contract expects to encounter.

One straightforward MEV mitigation strategy is setting a limit on gas prices within a
Smart Contract [EMC20]. This strategy caps the maximum gas price for transactions
interacting with the contract, aiming to prevent Frontrunning attacks that rely on Priority
Gas Auctions (PGAs). Users can set their gas prices at or near the limit, thus preventing
other transactions from bypassing theirs by offering a higher gas price.

Another method to minimize MEV attack surfaces is adjusting slippage parameters to
smaller values. However, this involves a trade-off: lower slippage reduces MEV exposure
but increases the risk of transaction failure, while higher slippage increases MEV risk
[YZH+22].

To counter the threat of Backrunning, the A2MM market maker automatically collects
arbitrage opportunities within the transaction interacting with the customer [ZQG21].
Another approach is to conduct part of the matchmaking process offline, as Hashflow 16

does. While this strategy mitigates MEV risk, it moves the reordering attack surface
off-protocol.

Executing auctions in batches is another MEV-aware strategy. By aggregating trans-
actions into batches at discrete time intervals, all transactions within those batches
are executed simultaneously [YZH+22]. CowSwap 17 is an example of a market maker
employing batch transactions.

One idea for preventing Sandwich attacks in the context of decentralized exchanges is
to only allow trades against a fixed state. This concept is inspired by Bitcoin’s unspent
transaction output (UTXO) model. In Bitcoin, users do not have account balances but
spend the outputs from previous transactions consumed in new transactions. The eUTXO
model proposes storing liquidity pools in UTXOs [Lan21]. When transacting, a user
must specify a particular eUTXO liquidity pool, ensuring the transaction is executed in
a specific state and cannot be executed in another. This approach is akin to setting the
slippage parameter to zero. However, it significantly limits throughput, allowing only
one transaction per block.

While the previous examples offered technical approaches to mitigating MEV through
application design, the example shown in Figure 3.1 illustrates an MEV-aware graphical
user interface (GUI) design. Before executing a trade within this GUI, users are alerted
that Sandwich attacks commonly target this particular trading pair. The interface warns
users and recommends reducing the slippage tolerance to mitigate the risk of such attacks.

16https://www.hashflow.com/
17https://swap.cow.fi

34

3.5. Conclusion

Figure 3.1: An example of MEV-Aware application design. [vro23]

3.5 Conclusion
This chapter has provided an in-depth exploration of Maximal Extractable Value (MEV)
and its significant implications for blockchain and Decentralized Finance (DeFi) ecosys-
tems.

We identified two categories of MEV: Single-transaction MEV and Multi-Dimensional
MEV. Single-transaction MEV includes Frontrunning, Backrunning, Sandwich attacks,
arbitrage, transaction replay, and clogging. Multi-dimensional MEV encompasses Cross-
Domain MEV and Multi-block MEV.

While there is an obvious disadvantage to users targeted by MEV attacks, broader
negative externalities also exist. These include network congestion, increased gas prices,
and threats to consensus security through reordering attacks.

Various mitigation strategies have been proposed and implemented to address these
challenges. MEV auction platforms aim to make MEV activities more transparent

35

3. MEV - Maximal Extractable Value

and distribute MEV profits more equitably. Order fairness protocols seek to ensure
that transactions are processed fairly and transparently. MEV-aware application design
minimizes the attack surface for Smart Contracts and decentralized exchanges.

36

CHAPTER 4
A systematic literature review of

state-of-the-art MEV detection

To confidently understand Multi-block MEV, it is essential to understand MEV detection
in a Single-block setting. This chapter aims to investigate the current state-of-the-art
of MEV detection and quantification. It focuses on answering the following research
question:

RQ2: What are the state-of-the-art methods for detecting and quantifying
Single-block Maximal Extractable Value in Ethereum, and what are the limi-
tations of these methods?

To do this, we will review current literature and MEV detection tools to understand the
techniques used to quantify MEV.

The review is conducted through a systematic literature review guided by the PRISMA
(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines
[PMB+21a, PMB+21b].

Our literature search encompassed Google Scholar, arXiv, TU Wien Library, ACM Digital
Library, IEEE Xplore, and Springer Link. Inclusion criteria included studies on MEV
detection, quantification, and qualification within the Ethereum blockchain. We excluded
studies related to MEV in other blockchains and papers published in languages other
than English and German.

From an initial pool of 1004 papers, 16 were deemed eligible. These selected studies
revealed two predominant MEV detection approaches: rule-based and machine-learning-
based methods. Our analysis thoroughly examines these approaches, highlighting their
methodologies, strengths, and limitations.

37

4. A systematic literature review of state-of-the-art MEV detection

This chapter will first present the steps of our systematic literature review before sum-
marizing and classifying the select papers.

4.1 Methodology
To answer the research question, we will conduct a systematic review of the current
state-of-the-art. This review will be guided by the PRISMA (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses) statement [PMB+21a, PMB+21b], which
provides a framework for transparent and comprehensive reporting of systematic reviews.
By adhering to the PRISMA guidelines, we aim to enhance the reproducibility and
reliability of our review, ensuring that it is detailed enough to assess its trustworthiness
and the applicability of its findings.

The PRISMA statement provides specific guidelines and offers resources such as a checklist
and a tool 1 for generating a flow diagram that visualizes the different phases of the
review process. These resources are available on the PRISMA website 2. We will utilize
the checklist and the flow diagram tool 3 and document their use in this thesis to provide
a clear and structured overview of our review process.
The checklist is documented in the Appendix, in Table 1.

Although PRISMA’s primary focus is to provide guidelines for systematic reviews in
the healthcare sector, its principles are widely applicable to systematic reviews in other
fields, including blockchain and cryptocurrency research [PMB+21b]. Following these
guidelines ensures that our review of Single-Block MEV detection methods in Ethereum
is conducted rigorously and transparently, providing valuable insights into the current
methodologies and their limitations.

4.1.1 Inclusion and Exclusion criteria
The following inclusion and exclusion criteria were used when searching for literature
handling MEV detection.

Inclusion criteria

The work focuses on the following topics:

• MEV detection in Ethereum

• MEV quantification in Ethereum

• Analysis of MEV searcher strategies in Ethereum

• The work is a Scientific Paper, open-source Tool or Blog-Entry
1https://www.eshackathon.org/software/PRISMA2020.html
2https://www.prisma-statement.org/ Accessed on 2024-07-17
3https://www.eshackathon.org/software/PRISMA2020.html

38

4.1. Methodology

• It focuses on MEV extraction on layer 1 Ethereum

• The main focus of this work is to detect and quantify MEV, or quantifying MEV is
an important part of the work

• The work quantifies one of the following forms of MEV: Priority Gas Auctions,
Sandwich attacks, Frontrunning, Backrunning, Clogging, Atomic Arbitrage, Replay

• The work quantifies MEV transactions using on-chain data

• The work reports the concrete strategy used to quantify MEV

Exclusion criteria

• The work is not written in English and German

• The work is not publically available for a student using the TU Wien network

• The work focuses on another blockchain besides Ethereum

• The work does not describe how MEV is calculated but only presents data

• The work title does not indicate that the work handles MEV detection.

• The work introduces a new protocol or system and does not focus on measuring
MEV

• The work is a whitepaper, introducing a new system

4.1.2 Sources
For this research, online resources were exclusively used. The following resources were
used:

• Google Scholar 4, last search on 2024-07-18

• Arxiv 5, last search on 2024-07-18

• TU Wien Library 6, last search on 2024-07-18

• ACM Digital Library 7, last search on 2024-07-18

• IEEE Xplore 8, last search on 2024-07-18

• Springer Link 9, last search on 2024-07-18
4https://scholar.google.com/
5https://arxiv.org/
6https://catalogplus.tuwien.at/primo-explore/search
7https://dl.acm.org/
8https://ieeexplore.ieee.org/Xplore/home.jsp
9https://link.springer.com/

39

4. A systematic literature review of state-of-the-art MEV detection

4.1.3 Search strategy

The PRISMA guidelines recommend providing a complete search strategy for each source.
A previous version of these guidelines [MLTA09] suggested that the strategy be presented
for only one source. However, we will present the search strategy for all sources to
enhance the reader’s ability to reproduce and understand it. This aligns with the revised
and updated PRISMA guidelines [PMB+21a]. Table 4.1 lists the exact search strings for
each source.

Source Search String
Google Scholar ("Maximal Extractable Value" AND "Ethereum") AND

("quantification" OR "mea- surement" OR "analysis" OR
"evaluation" OR "assessment")

Arxiv order: announced_date_first; size: 50; date_range: from
2015-01-01 ; classification: Computer Science (cs); in-
clude_cross_list: True; terms: AND abstract="Ethereum"
OR "Smart Contract"; AND all="quantification" OR "mea-
surement" OR "analysis" OR "evaluation" OR "assessment";
AND abstract="Maximal Extractable Value" OR "MEV"

TU Wien Library query=title,contains,"Maximal Ex-
tractable Value" OR "Miner Extractable
Value",AND&query=title,contains,"quantification" OR
"measurement" OR "analysis" OR "evaluation" OR assess-
ment",AND&pfilter=dr_s,exact,20150101,AND&pfilter=dr_e,
exact,99991231

ACM Digital Library [[Abstract: maximal extractable value] OR [Abstract: miner
extractable value] OR [Abstract: ethereum]] AND [[Title:
quantification] OR [Title: measurement] OR [Title: analysis]
OR [Title: evaluation] OR [Title: assessment]] AND [E-
Publication Date: (01/01/2015 TO *)]

IEEE Xplore ("Abstract":MEV OR "Abstract":Maximal Extractable
Value OR "Abstract":Miner Extractable Value)
AND ("Abstract":Ethereum) AND ("Full Text &
Metadata":quantification OR "Full Text & Meta-
data":measurement OR "Full Text & Metadata":evaluation
OR "Full Text & Metadata":assessment)

Springer Link "Ethereum" AND ("Maximal Extractable Value" OR "MEV"
) AND ("quantification" OR "measurement" OR "evaluation"
OR "assessment")

Table 4.1: The search strings used for each source in this systematic review.

40

4.1. Methodology

4.1.4 Selection Process
According to PRISMA Item 8, the selection process should be clearly defined, "including
how many reviewers screened each record and each report retrieved, whether they
worked independently, and, if applicable, details of automation tools used in the process"
[PMB+21b]. Only one person was available to screen all the results for this study.

First, all data was imported into the tool JabRef 10. JabRef has a built-in function for
entering a search query, automatically querying search engines, and importing the results.
This, however, only worked in the case of the ACM Digital Library. For all other cases,
the JabRef Chrome Browser Extension was used to import entries from all study sites
manually. A total of 1004 results were imported into JabRef. Using JabRef’s duplication
removal tool, duplicate entries were removed, resulting in 787 entries.
The initial selection was based on reviewing the titles of all works. Entries were removed
if they did not meet the inclusion criteria or if they met any exclusion criteria. After this
first screening, 118 entries remained.

All abstracts were read in the second round of the selection process to determine whether
the work met the inclusion/exclusion criteria. This second round resulted in 27 remaining
entries. Among these, 4 duplicates not previously detected by JabRef were found,
resulting in 23 entries.
In the third and last round, all 23 entries were read to determine if they were relevant
to this study. In this round, 16 entries were deemed relevant for this systematic study.
Table 4.2 lists all selected works.

Table 4.2: All works retrieved during the systematic selection process

Title Authors Year
[Wun23] Exploring Maximal Extractable Value in

the Ethereum Ecosystem
Wunderlich, Se-
bastian

2023

[TC+21] Frontrunner jones and the raiders of the
dark forest: An empirical study of fron-
trunning on the ethereum blockchain.

Torres et. al 2021

[PFW22] Extracting Godl [sic] from the Salt Mines:
Ethereum Miners Extracting Value

Piet et. al 2022

[CHHW24] Remeasuring the Arbitrage and Sandwich
Attacks of Maximal Extractable Value in
Ethereum

Chi et. al 2024

[WTNRS22] A flash(bot) in the pan: measuring maxi-
mal extractable value in private pools

Weintraub et.
al

2022

[ZNW21] Analyzing and preventing sandwich at-
tacks in ethereum

Züst et. al 2021

Continued on next page

10https://www.jabref.org/

41

4. A systematic literature review of state-of-the-art MEV detection

Title Authors Year
[YHL+] Mecon: A Gnn-Based Graph Classifica-

tion Framework for Mev Activity Detec-
tion

Yao et. al 2022

[DGK+20] Flash boys 2.0: Frontrunning in decentral-
ized exchanges, miner extractable value,
and consensus instability

Daian et. al 2020

[QZG22] Quantifying blockchain extractable value:
How dark is the forest?

Qin et. al 2022

[Han22] Arbitrage in crypto markets: An analysis
of primary ethereum blockchain data

Hansson, Mag-
nus

2022

[LZWD24] A Geth-based real-time detection system
for sandwich attacks in Ethereum

Li et. al 2024

[MKV23] A large scale study of the ethereum arbi-
trage ecosystem

McLaughlin et.
al

2023

[LLPL24] GasTrace: Detecting Sandwich Attack Ma-
licious Accounts in Ethereum

Liu et. al 2024

[PJL+23] Unraveling the MEV Enigma: ABI-Free
Detection Model using Graph Neural Net-
works

Park et. al 2023

[Eig24a] EigenPhi (Tool) Cheng et. al n/a
[SHM21] MEV-Inspect (Tool) Miller et. al n/a

4.1.5 Data Extraction Process
Per the PRISMA Statement [PMB+21a], we outline the Data Extraction Process. One
person conducted the Data Extraction Process. All 16 entries were reviewed, and the
following questions were systematically answered for each work to extract the necessary
information:

• Which exact forms of MEV does this work quantify?

• In what period (time, blocks) does this work quantify MEV?

• Does the work use solely On-Chain data? If not, what external data does this work
use?

• What is the exact strategy to detect MEV transactions?

In addition, we extracted the following metadata for each work:

• Full Title

42

4.1. Methodology

• Author Name(s)

• Type (Tool, Conference Paper, Thesis,...)

• Date of Publication

4.1.6 Risk of bias assessment and Synthesis methods
The following questions were asked to assess the risk of bias, as required by the PRISMA
statement. These questions are loosely based on the Joanna Briggs Institute (JBI)
Critical Appraisal Tools [AFG+15]. As with the systematic review, one person was used
to analyze these questions. The goal was to have an additional assessment of the quality
of the work. The result can be seen in Table 4.3.

• Q1 Did the authors justify the selection of the study timeframe and ensure that it
is appropriate for capturing relevant data on MEV quantification?

• Q2 Did the authors report their funding sources, and/or did they provide an
assessment of how the funding might influence the results?

• Q3 Did the authors report any potential conflicts of interest and discuss how these
might impact the study’s findings?

• Q4 Did the authors provide a clear and detailed description of the study design
and methodology for MEV quantification?

• Q5 Were the data collection methods and analysis techniques appropriate and
adequately described to ensure applicability?

• Q6 Did the authors address any potential biases or limitations in the data collection
process?

• Q7 Did the authors provide access to their data or analysis code, if applicable, to
allow for verification of results?

As the PRISMA guidelines primarily focus on understanding medical, mostly empirical
studies, they also focus on synthesizing data and quantitative measures. In this study,
however, we want to focus on understanding the techniques used to extract and quantify
MEV. We explicitly do not want to cumulate or synthesize the measured MEV transactions.
Therefore, we will apply a narrative synthesis [PRS+06].
To this goal, all selected papers will be read and categorized based on their applied MEV
detection category. Based on that, we will compare all techniques based on complexity,
accuracy, and maintainability and highlight strengths and weaknesses.

4.1.7 PRISMA Flow diagram
We present the PRISMA Flow diagram for this review in Figure 4.1. It was created with
the PRISMA Flow diagram tool [HPPM22].

43

4. A systematic literature review of state-of-the-art MEV detection

Paper Qualtiy and Bias Criteria

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

[Wun23] ✓ ✗ ✗ ✓ ✓ ✗ ✓
[PFW22] ✗ ✗ ✗ ✓ ✓ ✗ ✗

[CHHW24] ✗ ✗ ✗ ✓ ✓ ✗ ✓
[WTNRS22] ✗ ✓ ✗ ✓ ✓ ✓ ✓

[ZNW21] ✗ ✗ ✗ ✓ ✓ ✗ ✓
[YHL+] ✓ ✗ ✗ ✓ ✓ ✓ ✗

[DGK+20] ✗ ✓ ✗ ✓ ✓ ✓ ✓
[QZG22] ✗ ✗ ✗ ✓ ✓ ✓ ✗

[Han22] ✗ ✗ ✗ ✓ ✓ ✗ ✗

[LZWD24] ✗ ✓ ✓ ✓ ✗ ✗ ✓
[MKV23] ✓ ✓ ✗ ✓ ✓ ✓ ✓
[LLPL24] ✗ ✓ ✗ ✗ ✗ ✗ ✓
[PJL+23] ✓ ✗ ✗ ✓ ✓ ✓ ✓

Table 4.3: Result of the Bias and Quality assessment (Questions are from subsection 4.1.6)

4.1.8 Excluded studies
Following the PRISMA guidelines Item # 16b, we will list items that "might appear
to meet the inclusion criteria, but which were excluded" [PMB+21b]. Due to the large
number of exclusions, we will provide a representative selection illustrating various
exclusion reasons.
Sjursen et al. [SMC23] wrote a conference paper on quantifying Cross-Domain MEV
Value using Uniswap data from different domains to detect cross-domain arbitrage.
Although the work focuses on MEV transactions, it was excluded because it dealt with
cross-domain MEV, which is not the focus of this study.
Other examples of studies excluded due to their focus on different domains of MEV
include works by Torres et al. [TMW+24], Yan et al. [YLK+24], and Ilisei et al. [Ili24].
Chaurasia et al. [CDG+24] provide an overview of the evolution of the MEV ecosystem,
from Priority Gas Auctions as described by Daian et al. [DGK+20] to the present SUAVE
11 by Flashbots. However, this work does not introduce a novel method for quantifying
MEV.
Öz et al. [ÖKV+23] offer an insight into the role of time in the context of MEV. This
study was excluded due to its focus on timing games, which is not the focus of this study.
Ji et al.. [JG24] Several papers focus on the legal or regulatory aspect of MEV. Our
study focuses exclusively on MEV quantifying, so we have excluded such papers.
Öz et al. The article "A Study of MEV Extraction Techniques on a First-Come-First-
Served Blockchain" by Öz et al. [ÖRG+24] focuses on MEV extraction techniques in
the blockchain Algorand. Another example would be the work of Carrillo et al. [CH23]

11https://writings.flashbots.net/mevm-suave-centauri-and-beyond Accessed on 2024-07-23

44

4.1. Methodology

Figure 4.1: The PRISMA Flow diagram, generated with [HPPM22]

focusing on MEV in Terra Classic. This study focuses exclusively on Ethereum, which is
why they were excluded.
Yan et al. Yan et al. use data science methods to quantify Proof-of-Stake rewards.
While they mention that MEV is an income source for Stakers in Proof of Stake Ethereum,
they do not focus on quantifying it but on other rewards, such as attestation, proposer,
and sync committee rewards.
Mao et al. [MZVL24] Is an example of several excluded papers due to their missing
focus on MEV quantification. Although they offer some MEV quantification, they focus
on introducing an MEV mitigation mechanism rather than presenting a novel method.
Heimbach et al. This work [HPS24] focuses on identifying Non-Atomic Arbitrage
in DeFi. This work was excluded as this study focuses on atomic arbitrage detection,
meaning arbitrages within a single transaction.
Zhou et al. focuses on identifying arbitrage opportunities [ZQC+21], not the analysis of
such transactions once they were confirmed.

45

4. A systematic literature review of state-of-the-art MEV detection

4.2 Anylysis of the selected works

The following section will introduce the methods described in the selected works.

Daian et al.

One of the first papers to shed light on the problem of MEV was the work of Daian et al.
[DGK+20], called Flash Boys 2.0: Frontrunning, Transaction Reordering, and Consensus
Instability in Decentralized Exchanges.
This paper focused on a specific form of MEV, so-called pure revenue opportunities. Pure
revenue opportunities are possible in Ethereum since Smart Contracts can invoke multiple
other Smart Contracts in a single transaction. If any of those invocations fails, the whole
transaction is reverted, guaranteeing an atomic execution of all invocations. With the
help of this aspect, bots can now create transactions that are guaranteed to profit or
fail. However, since these risk-free guaranteed profits exist, competition among MEV
bots emerges. These bots increase their bribe bids in the form of gas prices to motivate
proposers to have their transactions included on-chain. An economically rational block
proposer is expected to prioritize transactions with a higher bribe. Daian et al. named
this process Priority Gas auctions (PGAs).

Since only the winner of a PGA is included in the blockchain, Daian et al. could not simply
investigate on-chain data to quantify PGAs. Instead, they deployed six geographically
distributed nodes that recorded transactions relayed to them. These nodes ran a modified
version of the GETH client 12, since in a PGA, transactions would often be replaced,
and the standard GETH client would not relay replaced transactions. Storing every
transaction relayed to these nodes would be infeasible. Therefore, they focused on a
list of pre-defined suspected MEV bots. In addition, this list was updated every time a
transaction was seen with gas prices, which were considerably higher than the current
market level.
To detect all transactions in the auction, they used heuristics to identify transactions
within a time frame around an observed winning PGA transaction. They also aggregated
data to calculate the latency trends of the observed bots.
In addition to quantifying PGAs, they also provided a conservative estimate of pure
revenue opportunities.

Their data shows that not every pure revenue opportunity results in a PGA, meaning that
bots can profit uncontested from these opportunities. To provide a conservative estimation
of pure revenue opportunities, they inspected transaction logs to detect transactions that
contain more than two trades executed by a Smart Contract. A pre-defined list of known
DEXes was used, meaning that transactions from unsupported DEXs were ignored.

12https://geth.ethereum.org/

46

4.2. Anylysis of the selected works

Qin et al.

The work of Qin et al. [QZG22], called Quantifying blockchain extractable value: How
dark is the forest? relies on predefined DEXs, such as Uniswap V1/V2/V3, Sushiswap,
Curve, and more.
This work focuses on detecting five types of MEV: Sandwich Attacks, Liquidations,
Arbitrage, Clogging, and Transaction Replay. The authors aimed to find concrete
examples of the first four types of MEV, but in the last case, Transaction Replay,
they focused on transactions that could be replayed. This, however, means that these
transactions would have been potential opportunities but not proven attacks.
For each type of MEV, a slightly different strategy was used. In their evaluation, they
used publicly available blockchain data and applied heuristics to identify the concrete
attack forms.

In the case of Sandwich attacks, the heuristics ensure

• that all three transactions are in the same block,

• that every Frontrunning transaction maps to exactly one Backrunning transaction,

• that the Frontrunning transactions swaps X to Y and the Backrunnning transaction
Y to X,

• that the Frontrunning and Backrunning transactions are from the same user address
or two different addresses, but the output of these transactions are channeled to
the same Smart Contract

• that the amount of the assets sold in the Backrunning transaction is within 80 %
and 120 % of the amount bought in the Frontrunning transaction.

Liquidations is the next form of MEV covered by Qin et al. [QZG22]. Their focus
is on fixed-spread Liquidations, which allow liquidators to repay the discounted debt
in exchange for the collateral. Identifying a Liquidation itself is easy since they are
implemented as Smart Contract functions, and calls to them can be detected when
analyzing transaction logs 13. They differentiate between Frontrunning and Backrunning
Liquidation strategies. A bot observes a Liquidation opportunity on a blockchain Bi

in Frontrunning strategies. It uses Frontrunning to place their transaction before all
other possible Liquidation transactions at block Bi+1. In Backunning strategies, the bot
observes a transaction in the MemPool (private or public) that would create a Liqui-
dation opportunity. The bot then tries to Backrun this transaction with a Liquidation
transaction.
To classify the detected Liquidations in Frontrunning vs. Backrunning Liquidations, they
use the observation that a Frontrunning Liquidation in block Bi acts on a Liquidation

13For example, Aave’s LiquidationCall: https://docs.aave.com/developers/core-
contracts/pool#liquidationcall

47

4. A systematic literature review of state-of-the-art MEV detection

opportunity that, per definition, exists in block Bi−1. Therefore, they check for each
Liquidation whether or not this position was liquidatable in the block Bi−1; if it was, it
is classified as a Frontrunning - and if not, a Backrunning Liquidation.

The next investigated form of MEV is Arbitrage. As with Sandwich detection, heuristics
were used to detect Arbitrage transactions. These Arbitrage transactions had to be
included in a single transaction and, therefore, be atomic. They must have had more
than one swap operation. Each swap operation must have used the output of the previous
swap operation. In addition to that, the first swapped asset must have also been the last
swapped asset. This heuristic is visualized in Figure 4.2.

A / B B / C { ... } C / D D / A

Figure 4.2: Illustration of the arbitrage detection heuristic used by Qin et al. [QZG22].
Each node indicates a swap operation.

The heuristics used by Qin et al. to detect Clogging are as follows. One address must
consume more than 80 % of gas in at least five consecutive blocks.

The last form of MEV is transaction replay. To find replayable transactions, they tried
to simulate a transaction replay of every transaction observed in the study timeframe.
Simulating a transaction replay means duplicating this transaction and replacing the
sender address with an adversary-controlled one. This modified transaction is then
simulated locally and tested to see if it yielded a positive profit for the attacker. This
technique does not require any insight into what the original transaction is doing since
it only checks if the simulation yields a profit for the attacker. For each simulated
transaction, Qin et al. had to download the block state of this transaction from an
archival node to simulate it in the context of the transaction.

Additionally, Qin et al. used another heuristic to distinguish between public MemPool
and private transactions. Private transactions are transactions that were sent to the
proposer through a private collaboration channel. They identified private transactions by
a gas price of 0. Usually, Ethereum clients do not relay such transactions to prevent DoS
attacks; therefore, it is assumed that they have been submitted privately to the block
builder.

Piet et al.

The work of Piet et al. [PFW22] in the paper Extracting godl [sic] from the salt mines:
Ethereum miners extracting value. focuses on extracted MEV via private transactions.
As the previous work presented here, this work also relies on known ABIs to understand

48

4.2. Anylysis of the selected works

transactions. In this case, the ABI data is fetched from Etherscan 14 and 4byte 15.
On-chain data does not indicate whether a transaction was propagated over the public
MemPool or submitted to the block builder over private channels. Therefore, to classify
transactions into private or public MemPool transactions, the authors ran a modified Geth
client 16, that locally stored all incoming transactions, along with their timestamp, hash,
and source node. As the client receives a new block over the network, its transactions
can be compared with the locally stored transactions. Therefore, whether a transaction
was publicly known before being included in a block could be determined.
In addition to classifying private or public MemPool transactions, they quantified MEV
in the observed dataset. This is done using a graph-based algorithm, in which the
vertices are Ethereum addresses and the edges are internal transactions of one or more
transactions. This algorithm classifies MEV transactions by identifying a cycle in this
graph. This cycle has the following properties:

• Each internal transaction occurs in the cycle in the same order as in the transaction.

• Edges are connected with the same asset or part of a swap event.

• At least two different assets occur in the cycle.

• Each asset in the cycle must be part of a swap event.

• The start currency is the same as the end currency.

A cycle is, therefore, a transaction that uses swaps to profit on market inefficiencies.
Characterizing these cycles into Arbitrage, Sandwich, or Backrunning is done using these
cycles. If several assets are included, it is classified as arbitrage; if it is the same asset but
spread on different DEX, it is Backrunning. If the cycle spans over multiple transactions,
where the first transaction performs some swaps and the last transaction reverses them,
then it is a Sandwich.

Torres et al.

The paper Frontrunner Jones and the Raiders of the Dark Forest: An Empirical Study
of Frontrunning on the Ethereum Blockchain [TC+21] empirically studies three forms of
MEV: Transaction Replay, Sandwich Attack, and Clogging.

This work focuses exclusively on Transaction Replay attacks involving MEV contracts in
which both the attacker’s transaction and the victim’s transaction land on-chain. Due to
the vast number of transactions in the blockchain, comparing all transactions would result
in an impractical number of combinations. This work, therefore, split the blockchain
into windows of 100 blocks, which were then analyzed in parallel. To further prefilter

14https://etherscan.io/, Accessed on 2024-04-27
15https://www.4byte.directory/, Accessed on 2024-04-27
16https://geth.ethereum.org/

49

4. A systematic literature review of state-of-the-art MEV detection

the number of transactions, the input bytes of each transaction were split into n-grams
of 4 bytes, then compared with all other transactions in a window to determine if 95 %
of n-grams have been observed before in that window. To efficiently determine this, a
bloom filter [Blo70] was used. A bloom filter is a probabilistic data structure that can
tell if an element has been seen with a specific false positive rate but can confidently
state that an element has not been seen before.

The following heuristics were then used to find two transactions in the prefiltered
transactions that were part of a transaction replay attack, in which an attacker transaction
TA replaced a victim transaction TV .

• The sender of TA and TV , as well as the receiver of TA and TV must be different.

• The replaced transaction TV must have a lower gas price than the replacing
transaction TA.

• 25 % of the input bytes of TV must match the input bytes of TA

The last heuristic’s low requirement originates from the assumption that MEV bots use
contracts to perform the replacement attack and send additional control instructions to
the Smart Contract in addition to the input of the victim’s transaction. In addition to
the mentioned heuristics, they identified a pair of transactions as part of a transaction
replay attack if a simulated execution of TV before TA resulted in a different state than
when executing TA before TV .

In the work of Torres et al., the detection of Sandwich attacks focuses solely on Sandwiches
achieved by an attacker who sets the gas price of the Frontrunning transaction slightly
higher and the gas price of the Backrunning transaction marginally lower than the
victim’s transaction. The focus lies exclusively on Sandwiches in AMM trading ERC-20
17 tokens. The ERC-20 token standard defines transfer events that signal which tokens
are transferred in what amount and in what direction. To classify a triple of transactions
as a Sandwich attack, the Frontrunning transaction and the victim transaction must
buy the same token, and the Backrunning transaction must sell this token to the AMM.
Additionally, the amount of tokens bought in the Frontrunning transaction and the
amount sold in the Backrunning transaction must be similar, with a one-percent allowed
tolerance.

The third investigated MEV attack is the one of Clogging. The authors defined three
strategies an attacker could use to consume the allowed gas in a block and hinder other
transactions: controlled gas loop, uncontrolled gas loop, and assert. In the controlled gas
loop strategy, a Smart Contract would execute instructions that consume gas in a loop.
The attacker would control this loop by checking how much gas is left and eventually
exiting the loop before the gas is consumed. In an uncontrolled gas loop strategy, the loop
would run until the transaction runs out of gas and an out-of-gas exception is raised. In

17https://ethereum.org/de/developers/docs/standards/tokens/erc-20/

50

4.2. Anylysis of the selected works

the assert strategy, an attacker would create a contract with a statement that evaluates
to assert(false), which would consume all provided gas 18. Under the assumption that
an attacker would use a contract to perform a Clogging attack, the detection of these
attacks starts with clustering transactions with the same receiver. All transactions in
such a cluster must consume more than 21,000 gas; this condition was introduced to
filter out transactions that do not execute code and instead transfer ether. A cluster of
transactions must also use up to 99 % of the block gas limit. If such a cluster is detected,
at least one neighboring block must contain it to classify it as a Clogging attack. Finally,
the EVM instructions are analyzed to distinguish the different clogging strategies 19.

Weintraub et al.

The paper A Flash(bot) in the Pan: Measuring Maximal Extractable Value in Private
Pools [WTNRS22] focuses on measuring the efficiency of Flashbots Auction [Fla]. In this
analysis, the paper quantified three forms of MEV: Sandwich attacks, Arbitrage, and
Liquidation.

In the analysis of Sandwiches, the heuristics from Torres et al. (section 4.2) were used
and applied for transactions from the following exchanges: Bancor 20, SushiSwap 21, as
well as Uniswap 22. The profit was calculated by defining the costs as the transaction
fees for the Front- and Backrunning transactions, as well as the miner bribers, and the
revenue as the difference between the tokens bought in the Frontrunning transaction and
the tokens sold in the Backrunning transaction.
In the case of Arbitrage, the author applied the heuristics developed by Qin et al.
(section 4.2) for the following exchanges: 0x Protocol 23, Balancer 24, Bancor 25, Curve
26, SushiSwap 27 and Uniswap 28. The costs of an arbitrage transaction are calculated by
adding the transaction fees and the miner bribe, the revenue by calculating the assets
that the transaction sender gained, including tokens and Ether.

Liquidations were detected by parsing transaction events for Liquidation events, such as

18This was true for Solidity before version 0.8.0 https://docs.soliditylang.org/en/latest/control-
structures.html#error-handling-assert-require-revert-and-exceptions

19More than ten sequences of [GAS, GT, ISZERO, JUMPI] for a controlled gas loop.
More than ten sequences of [SLOAD, TIMESTAMP, ADD, SSTORE] in addition to an exception for an
uncontrolled gas loop.
Checking a Panic Exception for the assert strategy.

20https://bancor.network/
21https://www.sushi.com/
22https://uniswap.org/
23https://0x.org/
24https://balancer.fi/
25https://bancor.network/
26https://curve.fi/#/ethereum/swap
27https://www.sushi.com/
28https://uniswap.org/

51

4. A systematic literature review of state-of-the-art MEV detection

Bot A / B { ... } D / E E / A Bot

(a)

Bot A / C Bot { ... } Bot D / A Bot

(b)

Figure 4.3: Illustration of the two types of arbitrage detection heuristics used by MEV-
Inspect.
(a) illustrates an arbitrage transaction using fully routed swaps, in which the received
token in a swap is directly used as an "in" token for the next swap
(b) illustrates an arbitrage transaction, where the tokens are always returned to the bot

Aave’s LiquidationCall event 29 and Compounds’s LiquidateBorrow event 30. Based on
these events, the collateral and liquidated debt were retrieved. The Liquidation events
of the following platforms were parsed: Aave 31 and Compound 32. The costs of such
a Liquidation were calculated by adding the transaction fees, the miner payments, and
the value of the liquidated debt. As revenue in the profit calculation, the value of the
liquidated collateral was used.

MEV-Inspect

MEV-Inspect 33 is an open-source MEV analysis tool by flashbots 34. It analyses two
types of MEV: Arbitrage and Liquidation.

To do that, it uses transaction traces and known ABIs to classify them. The inspection
starts by classifying swaps, identified by the knowledge of the known ABIs, to classify
arbitrages. As defined by MEV-Inspect, an arbitrage starts with a bot selling a token
from a decentralized exchange and ends with the same bot buying the token. In between
lies a series of swaps with two strategies as seen in Figure 4.3.

The first heuristic in Figure 4.3 (a) is a fully routed swap. The second Figure 4.3 (b) is a
heuristic in which the trades always return to the bot. According to MEV-Inspect 35, the
first strategy Figure 4.3 (a) is the most common case, which occurs in over 99 % of cases.
The profit of an arbitrage is calculated by taking the out amount of the last swap minus
the in amount of the first swap. In addition to that, the miner bribe is also considered.

29https://docs.aave.com/developers/guides/liquidations
30https://docs.compound.finance/v2/ctokens/
31https://aave.com/
32https://compound.finance/
33https://github.com/flashbots/mev-inspect-py
34https://www.flashbots.net/
35https://github.com/flashbots/mev-inspect-py/blob/main/mev_inspect/arbitrages.py

52

4.2. Anylysis of the selected works

Similar to the work of Weintraub et al. (section 4.2), Liquidations are detected by
classifying the transaction trace logs. The profit of such Liquidations is calculated by
subtracting the amount paid for the debt plus the miner bribe and transaction fees from
the value of the purchased collateral.

Park et al.

The work of Park et al. in the paper Unraveling the MEV enigma: Abi-free detection model
using graph neural networks focuses on MEV detection using Graph Neural Networks
[PJL+23]. It detects Sandwiches and Arbitrages. For Sandwich detection, all transactions
of a block are parsed, and Sandwich attacks are identified using the following heuristics:

• Both transactions have the same recipient.

• There must be at least two tokens traded in each transaction.

• All token transfers in the Frontrunning transaction must be negative (token bought)

• All tokens traded in the Backrunning transaction can not have a profit of 0 (either
bought or sold)

• The tokens traded in the Frontrunning and Backrunning transaction must be the
same.

• In the sum of all trades of the Front- and Backrunning transaction, the attacker
must have increased their owned tokens.

Arbitrage detection begins by generating a token transfer graph and extracting 14 features
for each node from the ERC-20 token transfer data (see Figure 4.4). These features
capture various aspects of the transactions and addresses involved. The constructed
token transfer graph is then processed by several Graph Neural Network (GNN) layers,
specifically Graph Convolutional Networks (GCN), GraphSAGE, and Graph Attention
Networks (GAT). These layers compute hidden states for the node features, effectively
capturing the complex relationships and patterns within the token transfer data.

After the GNN layers compute the hidden states, a readout layer calculates the global
mean of these hidden states across all nodes. This aggregated information is then passed
through a linear layer that performs the final binary classification. The classification
results are output to two nodes representing the MEV (Miner Extractable Value) and
non-MEV classes.
The training data for this Arbitrage detection model was compiled by labeling Arbitrage
transactions as ’1’ and non-Arbitrage transactions as ’0’. Labeling an arbitrage transaction
as ’1’ was based on five identified forms of Arbitrage.

53

4. A systematic literature review of state-of-the-art MEV detection

Figure 4.4: The structure of the GNN as used in the work of Park et al. [PJL+23]

EigenPhi

EigenPhi [Eig24a] is a data analysis firm specializing in MEV and liquidity data analysis.
It provides a public website, www.eigenphi.io, that offers the visualization of MEV
data. It offers a visualization of the transaction calls in a single transaction and estimates
the MEV value. Figure 4.5 shows an example of a transaction visualized in EigenPhi.
EigenPhi detects three forms of MEV: Sandwich, Arbitrage, and Liquidations.
To detect any of these types, it starts by filtering the transfers of a transaction [Eig24b].
Next, it calculates the balance changes of each involved contract or address. Revenue is
then defined as the sum of all balance changes of the addresses or contracts belonging to
the MEV searcher, typically identified by the "from" and "to" addresses. The corresponding
exchange rates adjust these balance changes to get the total revenue of a transaction.
Transaction costs are the sum of the builder’s payment and transaction fees.
To our knowledge, EigenPhi has not published the concrete implementation of this
algorithm.

Figure 4.5: An example of a transaction visualization by EigenPhi.

Wunderlich et al.

Wunderlich et al. [Wun23] build their work on MEV-Inspect (see section 4.2). This
work’s Sandwich and Arbitrage detection method was based on existing approaches.

54

www.eigenphi.io

4.2. Anylysis of the selected works

Sandwich attacks were analyzed using the heuristics by Torres et al. [TC+21], while the
heuristics from Qin et al. [QZG22] were utilized for Arbitrage detection.
Liquidations were calculated over the transaction receipts and filtering Liquidation Events.
Only Aave V1, V2, and Compound events were filtered for these Liquidation receipts.
Once a Liquidation has been identified, its profit or loss is calculated by calculating the
difference between debt and collateration.

Chi et al.

Chi et al.’s work, Remeasuring the Arbitrage and Sandwich Attacks of Maximal Extractable
Value in Ethereum, [CHHW24] focuses on measuring Arbitrage and Sandwich attacks.

To detect Arbitrage transactions, they first identify swap events and initialize a graph
based on all swaps in a transaction. If this graph includes a cycle, they check if this
Arbitrage was profitable. If a graph does not include a cycle or is not profitable, it is not
considered an Arbitrage.
Whether an Arbitrage is profitable or not is determined in the following way: First,
ERC-20 Events are parsed for transfer events, and based on them, the balance changes
for each type of token are calculated. It then aggregates all token changes and determines
profit tokens as tokens where the gained amounts are higher than the lost amounts. If
the swap ratio between the token-in and token-out amounts is too high, then this swap
is not considered. Chi et al. argue that this step prevents errors in determining whether
the transaction is profitable due to excessive conversion between tokens. For pairs with
acceptable ratios, the algorithm simulates exchanging the lost token for the gained token
using the directed graph representing token swaps. It checks if the gained token’s balance
is still positive after the exchange and adjusts the token balances based on the simulated
exchanges. If all token balances are positive, then this algorithm considers a transaction
a positive Arbitration transaction.
The next type of MEV quantified by Chi et al. is Sandwich attacks. Contrary to previous
Sandwich identification mechanisms, this algorithm aims to detect Sandwich attacks
that target multiple victim transactions. This is done by iterating over all possible
pairs of transactions in a block where the first transaction’s from address is the second
transaction’s to address. For all of these transactions, it calculates whether all balances
of an attacker were positive, and if so, it labels it as a Sandwich attack.

4.2.1 Summary and Discussion
This review identified 16 significant works addressing MEV detection and quantification,
including 14 papers or theses and two MEV detection tools.

Table 4.4 classifies the papers and tools mentioned in section 4.2.

Qin et al. [QZG22] analyzed the longest timeframe, spanning 32 months, while Li et al.
[LZWD24] covered only 12 months and 28 hours.

55

4. A systematic literature review of state-of-the-art MEV detection

Four papers use both on-chain and off-chain data for MEV analysis. In this analysis,
ABIs and exchange rates were not classified as off-chain data.

The most analyzed MEV strategies are Sandwiches and Arbitrages. Conversely, only one
paper examined PGAs, and two covered Replay attacks.

The strategies utilized by these works fall into two main categories: rule-based approaches
and learning-based approaches. Most studies use rule-based MEV detection, including
works by [DGK+20], Qin et al. [QZG22], Piet et al. [PFW22], [TC+21], Weintraub et al.
[WTNRS22], EigenPhi [Eig24a], as well as MEV-Inspect [SHM21].

Rule-based MEV detection typically follows this process: first, transaction information
from relevant blocks is extracted, and transaction logs are parsed. A graph is created,
with nodes representing EOAs or Smart Contracts and edges representing transactions
or sub-transactions. Concrete heuristics are applied to these graphs to identify the
characteristics of MEV transactions. This method requires understanding various MEV
strategies and high maintenance effort as new strategies must be incorporated into the
detection mechanism. This can lead to false negatives if the strategies are unknown to
the developer. Some studies in this review rely on a predefined set of ABIs and known
decentralized exchange addresses to detect relevant transactions. The number of known
ABIs in these studies ranges from 1 to 62, with up to 100,000 known DEX addresses.
This increases maintenance efforts and the potential for false negatives, as transactions
involving unknown decentralized exchanges may be missed.

McLaughlin et al. [MKV23] propose a rule-based detection mechanism that does not use
predefined ABIs but relies solely on Transfer Events from the ERC-20 Token standard.
This approach eliminates the need to store hard-coded AMM addresses and properties.
Still, it introduces a new challenge: exchange aggregators like CowSwap 37 aggregate
user transactions, which are not influenced by users’ order. Relying only on Transfer
Events in such transactions can lead to false positives.

The other approach for detecting and quantifying MEV is machine learning. This method
requires creating a labeled dataset to train machine learning algorithms to detect MEV.
Examples include Graph Neural Network (GNN) algorithms used by Yao et al. [YHL+]
and Park et al. [PJL+23], and Cascading Classifiers by Liu et al. [LLPL24]. This strategy
does not depend on known ABIs or addresses or requires understanding specific MEV
strategies.

37https://docs.cow.fi/

56

4.2. Anylysis of the selected works

Pa
pe

r

T
im

e
of

St
ud

y

St
ra

te
gi

es

Ru
le

-b
as

ed
/

M
ac

hi
ne

-b
as

ed

D
at

a
So

ur
ce

#
o

of
A

BI
s

(#
of

Ex
ch

an
ge

s)

PG
A

SW A
R

B

LI
Q

C
LG

R
PL

[DGK+20] 9 months ✓ ✗ ✗ ✗ ✗ ✗ RB On & Off 6 (-)

[QZG22]
32 months

2018-12-01 -
2021-08-05

✗ ✓ ✓ ✓ ✓ ✓ RB On 8 (60 830)

[PFW22]
12 days

2022-02-12 -
2022-02-24

✗ ✓ ✓ ✗ ✗ ✗ RB On & Off n/a

[TC+21]
1941 days

2015-07-30 -
2020-11-21

✗ ✓ ✗ ✗ ✓ ✓ RB On 4

[WTNRS22]
688 days

2020-05-04 -
2022-03-23

✗ ✓ ✓ ✓ ✗ ✗ RB On & Off 7

[SHM21] n.a (Tool) ✗ ✗ ✓ ✓ ✗ ✗ RB On 12 (>75)
[Eig24a] n.a (Tool) ✗ ✓ ✓ ✓ ✗ ✗ RB On n/a

[Wun23]
365 days

2022-03-23 -
2023-03-23

✗ ✓ ✓ ✓ ✗ ✗ RB On 10

[PJL+23]
928 days 36

2020-05-04 -
2022-11-18

✗ ✓ ✓ ✗ ✗ ✗ RB/ML On & Off 62 (62)

[CHHW24]
89 Months
July 2015 -

August 2023
✗ ✓ ✓ ✗ ✗ ✗ RB On n/a

[LLPL24] 1834 TXs
(Training Set) ✗ ✓ ✗ ✗ ✗ ✗ ML On n/a

[ZNW21] 2 367 980 blocks ✗ ✓ ✗ ✗ ✗ ✗ RB On n/a
[YHL+] 6 Months ✗ ✓ ✓ ✓ ✗ ✗ ML On n/a
[Han22] 18 Months ✗ ✗ ✓ ✗ ✗ ✗ RB On 1

[LZWD24] 28h ✗ ✓ ✗ ✗ ✗ ✗ RB On n/a

[MKV23]
28 months

2020-02-28 -
2022-07-10

✗ ✗ ✓ ✗ ✗ ✗ RB On 1 (100,000)

Table 4.4: Summary of all works covered in chapter 5. Abbreviations: PGA Priority Gas
Auction, SW Sandwich, ARB Arbitrage, LIQ Liquidation, CLG Clogging, RPL Replay,
RB Rule-Based, ML Machine Learning Based, On On-Chain Data, Off Off-Chain Data

57

CHAPTER 5
State-of-the-art MEV detection

This chapter aims to enhance the understanding of state-of-the-art detection methods by
analyzing the output of selected MEV detection tools.

Not all papers mentioned in section 4.2 published their raw data, and among those that
did, the study timeframes did not always overlap.

Therefore, we have chosen to compare the open-source tool MEV-Inspect [SHM21] with
data from the EigenPhi [Eig24a] website. A key advantage of these tools is the flexibility
to select our study timeframe freely.
This comparison reveals some unexpected differences in MEV-Inspect and EigenPhi
detection capabilities. We present case studies of specific transactions, highlighting the
discrepancies between the tools’ results and comparing them with our manually calculated
MEV values. Based on these case studies, we will enhance the detection capabilities of the
open-source tool MEV-Inspect. Finally, we will introduce our heuristics for Liquidation
detection, developed from the insights gained through the systematic review and analysis
of these case studies.

5.0.1 Methodology and setup
Analyzing MEV transactions over the entire Ethereum blockchain requires significant
resources and is beyond the scope of this thesis, we therefore decided to limit the study
to the blocks 179801461 to 18580146 2, or slot number 7166892 to 7771817 which consists
of exactly 600,000 slots. To effectively compare the different datasets, we set up a
PostgreSQL database to store all the data required for this study.

MEV-Inspect uses the block number as an argument for a function that calculates all
forms of MEV for the given block. To calculate MEV, MEV-Inspect requires price

1https://etherscan.io/block/17980146
2https://etherscan.io/block/18580146

59

5. State-of-the-art MEV detection

information on tokens and Ether. We used the CoinGeckoApi 3 to fetch this information.
MEV-Inspect also requires an Ethereum node supporting transaction traces to analyze
transactions. This study used a node from Grove 4 that supports the eth-trace module.
MEV-Inspect allows the analysis of multiple blocks 5. However, it turned out that
our local hardware could not analyze all blocks at once because MEV-Inspect analyzes
all blocks in a given range and stores all intermediate results in RAM before writing
all results into the database at once. Since running the analysis on all 600,000 blocks
was infeasible, we wrote a script that iterated over all 600,000 block numbers of our
study blocks. This loop triggered the MEV-Inspect analysis in each iteration to analyze
one block at a time. MEV-Inspect stores its results in a PostgreSQL database to be
further analyzed. We then adapted MEV-Inspect to store its results in our already-set-up
database to facilitate future comparisons. To fetch the EigenPhi Data for the timeframe,
we used its API to fetch all MEV data. This API requires the transaction hash as an
argument. To get this transaction hash, we queried a geth-node hosted at the University
of Vienna in the version "Geth/v1.12.0-stable-e501b3b0/linux-amd64/go1.20.2". This
geth-node provided all transaction hashes of a given block number. These transaction
hashes were stored in a database so that this data could be used to fetch the data from
EigenPhi. The calculated MEV values, profit, cost, revenue, and MEV type were then
stored in the same PostgreSQL database as the MEV-Inspect calculations. This database
then functioned as the basis for all analyses. For historical exchange rates between crypto
assets and the USD, we are using the CoinGecko API 6.

5.1 Comparison MEV-Inspect and EigenPhi
In the timeframe, as mentioned in subsection 5.0.1, MEV-Inspect labeled 72,804 and
EigenPhi 800,833 transactions. Figure 5.1 compares the number of labeled transactions
by the MEV types Sandwiches, Arbitrages, and Liquidations.
As one can see from this graph, there is a considerable difference in the quantitative
detection between these tools, with EigenPhi detecting ten times more transactions than
MEV-Inspect. MEV-Inspect does not detect Sandwiches. Therefore, we can only compare
Arbitrages and Liquidations. The most interesting difference is the number of Arbitrages
detected, where MEV-Inspect detected 74,188 transactions, whereas EigenPhi detected
342,297 transactions, more than four times more. With the last category, Liquidations,
EigenPhi (940 transactions) still counts more than double Liquidations compared to
MEV-Inspect (426 transactions).
After analyzing the quantitative differences of the raw number of transactions, we continue
to analyze the qualitative difference in the detection, meaning comparing the concrete
differences in the calculated MEV profits.

3https://www.coingecko.com/ Accessed on 2024-08-01
4https://www.grove.city/ Accessed on 2024-06-13
5https://github.com/flashbots/mev-inspect-py?tab=readme-ov-file#inspect-many-blocks Accessed on

2024-06-13
6https://docs.coingecko.com/reference/coins-id-market-chart

60

5.1. Comparison MEV-Inspect and EigenPhi

Total Sandwich Attacks Arbitrages Liquidations
0

0.2

0.4

0.6

0.8

1
·106

74,614
0

74,188
426

8.01 · 105

4.58 · 105

3.42 · 105

940

N
um

be
r

of
la

be
le

d
M

EV
tr

an
sa

ct
io

ns

MEV-Inspect EigenPhi

Figure 5.1: Comparison of the number of labeled MEV transactions between MEV-Inspect
and EigenPhi in the block range of 79801461 to 18580146

Since MEV-Inspect does not detect Sandwich attacks, we will only compare MEV-Inspect
with EigenPhi data from which the Sandwich attacks are excluded.

Figure 5.2 shows boxplots of the total calculated profits by MEV-Inspect and EigenPhi of
blocks in the range of 79801461 to 18580146. This graph shows that EigenPhi analyzed
a higher profit range for MEV transactions in this study timeframe. Figure 5.3 compares
all transactions labeled as Arbitrage transactions. This plot looks very similar to the one
of all transactions. This is not surprising since Arbitrages make up most of all labeled
transactions both in MEV-Inspect and Eigenphi, as visualized in Figure 5.1 and therefore,
the exclusion of the few Liquidation transactions has no real effect on the overall boxplot.

Figure 5.4 shows a more surprising difference in calculating Liquidations between the
tools MEV-Inspect and EigenPhi. MEV-Inspect calculated a higher range of profits with
the third quartile of 55.31 $ while EigenPhi had a third quartile of 5.03 $.

Negative MEV values Negative MEV values, as shown in Figure 5.2, Figure 5.3
and Figure 5.4, indicate that there exist transactions which result in a negative profit.
This is particularly interesting since many forms of MEV can be executed atomically
through Smart Contracts. One possible explanation for these negative results is that
these transactions involve non-atomic types of MEV, such as Sandwich Attacks or Cross-

61

5. State-of-the-art MEV detection

EigenPhi MEV-Inspect

−2

0

2

4

6

Pr
ofi

t
in

U
SD

Figure 5.2: Comparison of the calculated MEV profits between MEV-Inspect and
EigenPhi among all transactions in the block range 79801461 to 18580146, excluding
Sandwich attacks from EigenPhi

Domain MEV. Alternatively, the negative reports could arise from strategies only partially
detected by the heuristics used in MEV quantification and detection tools. While a
detailed investigation of this phenomenon is beyond the scope of this thesis, it represents
an interesting area for future research.

5.1.1 Manual transaction comparison of outliers

The differences in the results between those two tools motivate the following section,
which involves manual transaction analysis, to understand the differences in the MEV
calculation. For this reason, transactions were manually selected where the calculated
profit between those two tools had the highest differences. Then, we manually investigated
these transactions using the transaction call trace to understand the token flow and
invoke contract calls.

After that, we manually calculated the MEV for each transaction and compared the
results to the ones of MEV-Inspect and EigenPhi. Then, we tried to understand why
the respective tools calculated what they calculated. We relied on code analysis for
MEV-Inspect and tried to understand EigenPhi’s results by reverse engineering its logic
based on the calculated profit. In the following we will use $ to denote US Dollars.

62

5.1. Comparison MEV-Inspect and EigenPhi

EigenPhi MEV-Inspect

−2

0

2

4
Pr

ofi
t

in
U

SD

Figure 5.3: Comparison of the calculated MEV profits labeled as Arbitrage transactions
between MEV-Inspect and EigenPhi, in the block range of 79801461 to 18580146

EigenPhi MEV-Inspect
−40

−20

0

20

40

60

80

100

120

Pr
ofi

t
in

U
SD

Figure 5.4: Comparison of the calculated MEV profits for Liquidations between MEV-
Inspect and EigenPhi, in the block range of 79801461 to 18580146

Transaction 0x652...c4555 - Arbitrage

We begin the analysis with the transaction 0x652...c4555 7 8. This transaction is classified
as an Arbitrage transaction by both MEV-Inspect and EigenPhi. This transaction is

7https://etherscan.io/tx/0x652a043db7b712c011846cfdaf3468761e0689b6e93ec29ab215ad3582bc4555
8The following section will abbreviate the addresses to save space and increase readability.

63

5. State-of-the-art MEV detection

interesting because of a very different profit calculation between these two tools, with
MEV-Inspect reporting 297.72 $, while EigenPhi only reports a profit of 0.08 $.
This transaction starts with a call to the MEV contract 0x0000E0C...00000 9. This
contract executes the Arbitrages by a total of four calls.
The first call is for the UniswapV3Pool 0xbcc...39295 10 with the function swap 11 and the
arguments as documented in Listing 5.1. The argument zeroForOne has the value ’true’,
which means that token0 is traded against token1. To understand what token0 and token1
are in the context of this Uniswap contract, one has to look at the contract creation,
which happened in the transaction 0x90d...b7019 12. The details of the contract creation
reveal that token0 is WETH 13, and token1 is the PAW token 14. Therefore, this swap is
a swap of WETH for PAW, with the searcher sending 0.177 WETH (amountSpecified
parameter) to the AMM. The swapped 33,396,945,714.92 PAW tokens, however, are not
returned to the searcher contract but forwarded to the recipient 0x0dba...37fdc9 15, this
swap recipient is specified by the parameter ’recipient’.

1 recipient = 0x0dba3dfee43d9b6450c716c58fdae8d3be37fdc9,
2 zeroForOne = true,
3 amountSpecified = 177258274143804789,
4 sqrtPriceLimitX96 = 34178342921871622695108088071910978,
5 data = 0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2dc63269ea166b70d
6 4780b3a11f5c825c2b761b0100271000000000000000000000000000000000000
7 000006be94e56eccec8e5d5ae3456

Listing 5.1: Arguments of the first swap call in transaction 0x652...c4555

The next call by the MEV contract 0x0000E0C...00000 is another swap with an Uniswap
V2 AMM 0x428...347ed 16 with the arguments as documented in Listing 5.2 17. Like the
previous AMM, this AMM trades a pair of PAW and WETH. In this swap, 0.15 WETH
is swapped against 29,821,201,008.33 PAW. Similarly to the previous swap, the PAW
tokens are sent to the recipient 0x0dba...37fdc9 18.
This transaction ends with a call by the searcher contract 0x0000E0C...00000 to the
contract 0x0dba...37fdc9 19, which was the recipient of the first two swaps.
This contract is also an AMM that trades WETH and PAW tokens. This trade, however,
is in the opposite direction. The 63,218,146,723.25 PAW tokens that were previously sent
to this AMM were now swapped against a total of 0.34 WETH, which were sent back to

9https://etherscan.io/address/0x0000e0ca771e21bd00057f54a68c30d400000000
10https://etherscan.io/address/0xbcc489a50f0e2f09aec2d6f33ffe950cb6c39295
11https://docs.uniswap.org/contracts/v3/reference/core/UniswapV3Pool#swap
12https://etherscan.io/tx/0x90d4307904500dcc4262082a8969879e94f7158acfe25a4eb923598ed8bb7019
13https://etherscan.io/address/0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2
14https://etherscan.io/address/0xDc63269eA166b70d4780b3A11F5C825C2b761B01
15https://etherscan.io/address/0x0dba3dfee43d9b6450c716c58fdae8d3be37fdc9
16https://etherscan.io/address/0x428b03ccd51ee4fcff7df6c7deae4139a4b347ed
17In the following we will omit the information in what transaction the AMM was created and only

focus on the traded pairs
18https://etherscan.io/address/0x0dba3dfee43d9b6450c716c58fdae8d3be37fdc9
19https://etherscan.io/address/0x0dba3dfee43d9b6450c716c58fdae8d3be37fdc9

64

5.1. Comparison MEV-Inspect and EigenPhi

the MEV contract 0x0000E0C...00000.
To summarize this transaction, the MEV contract swaps 0,323 WETH against
63,218,146,723.25 PAW through two AMMs. These PAW tokens are then swapped
against 0.344 WETH, which is transferred back to the MEV contract 0x0000E0C...00000.
Therefore, the MEV contract has a revenue of 0.0211 WETH (0.344 WETH - 0.323
WETH).
For this day, the CoinGecko API returned a value of 1675.70 $ per WETH, which
results in a raw revenue of 35.32 $. We must subtract all the gas fees from this raw
revenue to get the lower profit bound. According to Etherscan 20, the transaction fee
(Gas used * Gas Price) equals to 0.021 ETH. With an ETH price of 1679.12 $ of this
day, this results in 35,31 $. Therefore, this transaction’s profit is 0.013 $ (35,32 $ - 35,31 $).

1 amount0Out = 0, amount1Out = 29821201008326332378845249547,
2 to = 0x0dba3dfee43d9b6450c716c58fdae8d3be37fdc9, data = 0x

Listing 5.2: Arguments of the second swap call in transaction 0x652...c4555

This result is the closest to EigenPhi’s result, which reports a profit of 0.083 $. A slightly
different exchange rate might explain this difference compared to our manually calculated
profit.
Next, we will analyze the difference between our manual and MEV-Inspect results.

MEV-Inspect noted this transaction as an Arbitrage MEV transaction with a start value
of 0.146 WETH and an end amount of 0.344 WETH. The difference of this start and
end value leads to a reported gross profit of 0.198 WETH, or 332.35 $. This start value
explains the difference in the result, as the start value of 0.146 WETH was only one part
of the invested amount by the MEV contract. The MEV contract additionally spends
0.1772 WETH by swapping it in the first call by this contract. Leaving out half of the
swaps made in this transaction leads to MEV-Inspect overestimating this transaction’s
profit.
As mentioned in section 4.2, MEV-Inspect, when calculating the profit of Arbitrages,
looks for fully routed swaps with the following strategy: BOT -> A/B -> B/C -> C/A
-> BOT 21. This arbitrage, however, follows this strategy: BOT -> A/B, BOT -> A/B
-> B->A, B->A, A->BOT.

Transaction 0x98f...3f107 - Arbitrage

Contrary to the previously analyzed transaction, for this transaction, EigenPhi reports a
higher transaction profit than MEV-Inspect. This transaction, 0x98f...3f107 22, has a
reported profit by EigenPhi of 60.83 $ and only 1.54 $ by MEV-Inspect.

20https://etherscan.io/tx/0x652a043db7b712c011846cfdaf3468761e0689b6e93ec29ab215ad3582bc4555
21https://github.com/flashbots/mev-inspect-py/blob/b3438d73536412c39f7b8dc64660b992e5f9b206/

mev_inspect/arbitrages.py#L34
22https://etherscan.io/tx/0x98f6b1c48091e1a1e6c21411c34f76f648a1c30195dcffa80bd5a9303dd3f107

65

5. State-of-the-art MEV detection

The transaction sender is the address 0x425...88959 23, which starts this transaction by
invoking the MEV contract 0xca8...e08dc 24.

This contract triggers a swap call to the UniswapV3Pool 0x11b...697f6 25. The arguments
for this swap call are listed in Listing 5.3. In this swap, the MEV contract sends 7.417
WETH to the AMM, which returns 11,871.84 USDT to the MEV contract 0xca8...e08dc.
When calling a Uniswap V3 swap call, the sender must implement the
IUniswapV3SwapCallback 26 interface, which provides a function uniswapV3SwapCallback,
which the AMM triggers after sending their token to the defined recipient. When the
call for this function ends, the token owed by the sender must be sent to the AMM;
otherwise, the transaction will revert. In this uniswapV3SwapCallback function the
contract 0xca8...e08dc triggers another swap call of SolidlyV3Pool - 0x3198...5ed7e 27, in
which 11,812.11 USDT are sent from 0xca8...e08dc in exchange of 7.422 WETH.

The final call of this transaction is by the MEV contract 0xca8...e08dc to the with-
draw function of the WETH 28 contract, withdrawing 0.0056 Ether.
To summarize this transaction, there were two swaps performed, one with UniswapV3Pool
29 and one to SolidlyV3Pool 30. First, 7.417 WETH were swapped against 11,871.84
USDT, and then, in the next call, only 11,821.11 USDT were sent to be swapped against
7.422 WETH.
To calculate the profit of this transaction, we have to investigate what the MEV contract
gains by this Arbitrage. As mentioned, it gained the ETH of 0.0056 Ether, but it also
gained 59.73 USDT. This is the difference between the USDT received by the first swap
and the USDT spent in the second swap. When considering the fee paid to the miner of
7.12 $, we define the profit of this arbitrage as 61.28 $.
Again, this profit is so close to the profit calculated by EigenPhi (60.83 $) that we assume
that different exchange rates best explain the difference.
MEV-Inspect, on the other hand, reported a much lower profit in the amount of 1.54
$. The gained WETH, which was later withdrawn to ETH, adjusted by the exchange
rate of this day, amounts to exactly 8.659 $. Subtracting the miner’s payment of 7.12 $
results in 1.539 $, which is the MEV profit returned by MEV-Inspect. This leads to the
conclusion that MEV-Inspect only calculated the gain in ETH while failing to consider
the USDT that the MEV contract gained by this transaction.

1 recipient = 0xca8acfdcee7531be980e7670d9e6b80b8c2e08dc, zeroForOne = true,
2 amountSpecified = 7416920663287467259, sqrtPriceLimitX96 = 4295128740

Listing 5.3: Arguments for the first swap call of transaction 0x98f...3f107. The data
argument of the transaction was removed for brevity.

23https://etherscan.io/address/0x425a4a539c085ff2568e19ee1304e97a92688959
24https://etherscan.io/address/0xca8acfdcee7531be980e7670d9e6b80b8c2e08dc
25https://etherscan.io/address/0x11b815efb8f581194ae79006d24e0d814b7697f6
26https://docs.uniswap.org/contracts/v3/reference/core/interfaces/callback/IUniswapV3SwapCallback
27https://etherscan.io/address/0x3198eadb777b9b6c789bfc89491774644e95ed7e
280xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2
29https://etherscan.io/address/0x11b815efb8f581194ae79006d24e0d814b7697f6
30https://etherscan.io/address/0x3198eadb777b9b6c789bfc89491774644e95ed7e

66

5.1. Comparison MEV-Inspect and EigenPhi

Transaction 0x419...6b03a - Liquidation

The next transaction that is manually investigated is the transaction 0x419...6b03a 31.
The calculated MEV value differs greatly between the two compared tools, EigenPhi and
MEV-Inspect. While EigenPhi reports a profit of 167.09 $, MEV-Inspect reports only
1.87 $.
This transaction was sent by 0x200...00002 32 and started with a call to the MEV contract
0xcbed...df827 33. This contract starts taking a flash loan from 0xba1...bf2c8 34, Balancer
Vault of 166.33 USDC 35, without any fees. Any recipient who calls this contract’s
flashloan call must implement the IFlashloanRecipient interface, which provides the
receiveFlashLoan function. The Balancer Vault calls this receiveFlashLoan function,
which triggers further calls by the MEV contract 0xcbed...df827.
This contract approves 166.33 USDC via a Proxy contract 36 for the Aave lending protocol
0x793...bffcb 37. This is the ERC20 approve function 38, which allows the Aave lending
protocol 0x793...bffcb to spend the specified amount.
The next call is the liquidationCall 39of the Aave Protocol 0x793...bffcb. The collateral is
WETH; the debt is USDC, the borrower 0x26b...23076 40, and the debt to cover is 166.33
USDC. The MEV contract receives 0.1066 WETH for this Liquidation in exchange for
the debt of 166.33 USDC.
Next to this call, the searcher swaps the 0.1066 WETH to 0.09933 wstETH (Wrapped
liquid staked Ether 2.0 - 0x7f3...e2ca0 41).
Next, a swap of this wstETH in exchange for 174.09 USDC on a Uniswap V3 AMM
follows.
The searcher then pays back the flash loan of 166.33 USDC.
After the flash loan’s payback, the transaction performs two more swaps: 7.754 USDC
to 7.749 USDT and 7.749 USDT to 0.004748 WETH. The transaction ends with the
withdrawal of this 0.004748 WETH by the searcher contract and sending 0.004748 ETH
to the contract 0x00000639...e4df700000 42 via the fallback function 43.
Since this last contract 0x00000639...e4df700000 only appears at the end of this transaction
and does not trigger any further calls, we assume that the original transaction sender
controls this contract. This assumption is also strengthened by the fact that this contract
also interacts with the searcher contract 0xcbed...df827 at other transactions, for example,

31https://etherscan.io/tx/0x41909f70701c5126aaf74fe09c2e9d4b5e59441a53435aa337ea0a4c08c6b03a
32https://etherscan.io/address/0x2000043a2d343a172bd34929bc308a89ab000002
33https://etherscan.io/address/0xcbed8b1b92c6e4f86a58f66da7ba26a7172df827
34https://etherscan.io/address/0xBA12222222228d8Ba445958a75a0704d566BF2C8
35The USDC contract has six decimals: https://etherscan.io/token/

0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48
360xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48
37https://etherscan.io/address/0x7937d4799803fbbe595ed57278bc4ca21f3bffcb
38https://eips.ethereum.org/EIPS/eip-20
39https://docs.aave.com/developers/core-contracts/pool#liquidationcall
40https://etherscan.io/address/0x26b63e5c83238c2f614d287252e61b0398123076
41https://etherscan.io/address/0x7f39c581f595b53c5cb19bd0b3f8da6c935e2ca0
42https://etherscan.io/address/0x00000639caea2f4991b946c1f68686e4df700000
43https://solidity-by-example.org/fallback/

67

5. State-of-the-art MEV detection

in transaction 0x339...7185a 44.
The first approach to calculating this transaction’s profit is to calculate the difference
between the gained collateral and the paid-back flash loan. From the received collateral of
0.1066 WETH, which eventually was swapped to 174.09 USDC, we subtract the amount
paid back to the flash loan lender, which is 166.33 USDC, resulting in a profit of 7.76
USDC. The costs of this transaction can be quantified with the transaction fee of 0.00434
Ether, or 7.15 $.

Based on the reported values of the two tools, one can assume that EigenPhi reports
only the collateral gained by the Liquidation and MEV-Inspect the Liquidation’s profits
minus the flash loan.

Transaction 0xb0d...0faa5 - Liquidation

The following transaction analyzed in this chapter is the Liquidation transaction with the
transaction hash 0xb0d...0faa5 45. As opposed to the previously analyzed Liquidation,
this transaction has a higher reported profit in MEV-Inspect, 47,986.21 $, as opposed to
the 3,715.65 $ as reported by EigenPhi.
The transaction is triggered by the address 0x3b2...9b655 46, with a call to the MEV
contract 0x80d...72a13 47, which delegates the logic to the contract 0x455...ddd81 48.
This contract starts with a swap, exchanging 410,311.09 USDC against 12.21 Wrapped
BTC with the uniswap contract 0x99ac...abc35 49.
After that, the contract triggers the Liquidation call on the Aave Lending Pool 0x7d2...dc7a9
50. The collateral of this liquidated debt is USDC, the debt WBTC, and the debt to
cover is 12.21 WBTC.
For this debt, the searcher contract pays this 12.21 WBTC and receives 414,104.93 USDC.
The Liquidation call was the last in this transaction.
To sum up this transaction, the Liquidation itself was an exchange of WBTC valued
366,338.81 $ in exchange of USDC valued 414,363.44 $ 51. The difference in value between
the debt and the received collateral is, therefore, 48,024.63$.
However, the searcher contract did not start with the WBTC used in the Liquidation; it
had to swap USDC to gain WBTC. Therefore, the more accurate view of the profit is to
consider the USDC gain that the MEV contract made. It started with 410,311.09 USDC
and ended with 414,104.93 USDC, gaining 3,793,84 USDC or 3,796.21$.
To calculate the costs of this transaction, we take the transaction fee of 0.023 Ether,
which is equivalent to 38.42 $ at an exchange rate of 1664.57. Altogether, this transaction
gained a profit of 3796.21 $ - 38.42 $ = 3,757.79 $.

44https://etherscan.io/tx/0x33930adf996583e430e5be336de5c4db05a8f41258a83189d3e192179917185a
45https://etherscan.io/tx/0xb0d1f0a56488b3dc6cd3cb3a4f860ca4fc83f2b30a84869ab92702360450faa5
46https://etherscan.io/address/0x3b2d2afeaff10f05ebeba4a6c14dff787fd9b655
47https://etherscan.io/address/0x80d4230c0a68fc59cb264329d3a717fcaa472a13
48https://etherscan.io/address/0x45576a1fba3b5f38b43232a720aec7482ecddd81
49https://etherscan.io/address/0x99ac8ca7087fa4a2a1fb6357269965a2014abc35
50https://etherscan.io/address/0x7d2768de32b0b80b7a3454c06bdac94a69ddc7a9
51Exchange rate of USDC on 2023-10-23: 1.000624272752208

68

5.2. Improving found inconsistencies in MEV-Inspect

The result of EigenPhi is much closer to our calculated profit than MEV-Inspect’s result.
MEV-Inspect reported 47,986.21 $, which is the profit made by the Liquidation itself
(48,024.63 $) minus the transaction costs of 38.42 $.
Therefore, and this is supported by the code analysis, especially with the MEV-Inspect’s
Liquidation query in Listing 1, we conclude that MEV-Inspect only considered the value
gained by the Liquidation itself. However, it failed to consider the MEV contract’s costs
to retrieve the correct token amount to liquidate this debt.

Transaction 0x350...d640c - Liquidation

The last Liquidation transaction analyzed is the transaction 0x350...d640c 52. EigenPhi
quantifies the MEV value of this transaction with a profit of 19.32 $ 53, while MEV-Inspect
quantifies it with 405.24 $.
This transaction starts with a call from 0x41d...daa1c 54 to the contract 0xb20...da1aa 55.
After that, the first swap happens, where the searcher contract swaps 1126.814 Chainlink
(LINK) Token in exchange for 7.9675 WETH.
Then follows the Liquidation call to the Aave Pool 0x878...fa4e2 56. The liquidated debt
is 1,126.8140 LINK in exchange for 15,598.967 USDC collateral.
Two swaps follow this Liquidation: First, swapping the 15,598.967 USDC against
15,591.674 USDT and then this 15,591.674 USDT in exchange for 8.2491 WETH.
The revenue of the Liquidation itself is 15,606.94 $ (15,598.967 USDC) - 14,689.52 $
(1,126.8140 LINK) = 917.42 $. When considering the swaps before and after the transac-
tion, we observe that the contract started sending 7.9675 WETH and received 8.2491
WETH in the last swap. This difference of 0.282 WETH was valued at 531.4667 $.
The costs of this transaction were valued at 512.178 $. This includes the transaction
fees for the gas, as well as a direct miner payment of 0.2545 ETH to the block builder
beaverbuild 57.
To conclude, we would estimate the transaction MEV profit at 19.289 $.
This result, again, is closest to the profit calculated by EigenPhi. Our conclusion, in terms
of MEV-Inspect’s calculation, is the same as with the previous transaction: MEV-Inspect
only calculated the profit from the transaction itself but failed to consider the swaps
made before and after the Liquidation.

5.2 Improving found inconsistencies in MEV-Inspect
In section 5.1, we observed a noticeable difference in the results of the two tools EigenPhi
and MEV-Inspect. In the following subsection 5.1.1, we’ve analyzed handpicked transac-

52https://etherscan.io/tx/0x350ca80a3db7d792d37a200933d88a3dfd472cfdd2cd11f127d73f26767d640c
53https://eigenphi.io/mev/ethereum/liquidation/tx/

0x350ca80a3db7d792d37a200933d88a3dfd472cfdd2cd11f127d73f26767d640c
54https://etherscan.io/address/0x41d32ac20ceb0441cab159444af1acc47f3daa1c
55https://etherscan.io/address/0xb206ebe579be55f5b57119bb2e7cc63708eda1aa
56https://etherscan.io/address/0x87870bca3f3fd6335c3f4ce8392d69350b4fa4e2
57https://etherscan.io/address/0x95222290dd7278aa3ddd389cc1e1d165cc4bafe5

69

5. State-of-the-art MEV detection

tions with a substantial difference in the calculated MEV.
In this section, we focus on improving some of the inconsistencies found in MEV-Inspect.
Since MEV-Inspect is an open-source tool and, to the best of our knowledge, EigenPhi
has not made its source code and algorithms public, we focus on improving MEV-Inspect.
We start by analyzing MEV-Inspect’s source code and try to understand the profit
calculation by following the execution paths of concrete transactions. We have found one
concrete shortcoming in MEV-Inspect, for which we offer a concrete solution.
Later in this chapter, we will define a new Liquidation heuristic that includes the learnings
from subsection 5.1.1. We will offer concrete changes to the MEV-Inspect code base,
including this new heuristic.

5.2.1 Missing Padding

First, we examine the last Liquidation transaction, 0xb0d...0faa5, analyzed in section 5.1.1,
which is the simplest because it has a low number of calls.
MEV-Inspect begins every analysis of a transaction by classifying its traces. This
classification is based on stored ABIs and a concrete classification strategy for each ABI.
A classification of the Uniswap mechanism, which is called in this transaction, already
exists. However, the hardcoded mapping between ABI and contract addresses did not
include the Uniswap contract address 0x99ac...abc35. Therefore, the first step to fix
this transaction analysis was to include the address 0x99ac...abc35 to the valid contract
addresses for Uniswap.
After adding the contract address to the known addresses, it did not, however, lead to
the detection of the swap call. A deep investigation of the MEV-Inspect Code led to the
detection of the root cause of the problem. MEV-Inspect uses the contract ABI of a
function to decode the Calls’ Calldata.
Calldata is a hexadecimal encoded string that resembles the function of a call and its
parameters. The swap call that was not recognized by MEV-Inspect has the following
call data:

0x128acb0800000000000000000000000080d4230c0a68fc59cb264329d3a717
fcaa472a1300
00
5f88725734000000000000000000000000fffd8963efd1fc6a506488495d951d
5263988d2500
00000000a000
000000002ba0b86991c6218b36c1d19d4a2e9eb0ce3606eb482260fac5e5542a
773aa44fbcfedf7c193bc2c599000bb8

After the ’0x’ hexadecimal identifier, 128acb08, the first four bytes represent the function
selector. Following are the encoded function call values of the types [address, bool, int256,
uint160, bytes]. However, the last parameter, which represents the data parameter of the

70

5.2. Improving found inconsistencies in MEV-Inspect

swap call 58 is of type bytes.
The library that MEV-Inspect uses for decoding the calldata is eth-abi. This library
failed to decode the calldata, since the last parameter was not padded to a multiple of
32 59. In this case, the fix was to pad the last parameter with 0s until its length was a
multiple of 32. This fix led to the swap being recognized by MEV-Inspect.

5.2.2 Including swaps for the Liquidation Calculation
Both Liquidation transactions 0xb0d...0faa5 and 0x350...d640c analyzed in section 5.1.1
have a common fault in MEV-Inspect: They both calculate the MEV by including only
the value difference of the debt and collateral.
Listing 1 shows the query used to calculate the MEV-value of all Liquidations.
Listing 1: The query used by MEV-Inspect to calculate the MEV of a Liquida-
tion. Commit: https://github.com/flashbots/mev-inspect-py/commit/
b3438d73536412c39f7b8dc64660b992e5f9b206.

1

2 INSERT INTO mev_summary (
3 SELECT
4 NULL,
5 l.block_number,
6 b.block_timestamp,
7 l.protocol as protocol,
8 l.transaction_hash,
9 'liquidation' as type,

10 l.received_amount*
11 (
12 SELECT usd_price
13 FROM prices
14 WHERE token_address = l.received_token_address
15 AND timestamp <= b.block_timestamp
16 ORDER BY timestamp DESC
17 LIMIT 1
18)
19 /POWER(10, received_token.decimals)
20

21 -
22

23 l.debt_purchase_amount*
24 (

58https://etherscan.io/address/0x99ac8ca7087fa4a2a1fb6357269965a2014abc35#code
59https://docs.soliditylang.org/en/v0.8.26/abi-spec.html

71

https://github.com/flashbots/mev-inspect-py/commit/b3438d73536412c39f7b8dc64660b992e5f9b206
https://github.com/flashbots/mev-inspect-py/commit/b3438d73536412c39f7b8dc64660b992e5f9b206

5. State-of-the-art MEV detection

25 SELECT usd_price
26 FROM prices
27 WHERE token_address = l.debt_token_address
28 AND timestamp <= b.block_timestamp
29 ORDER BY timestamp DESC
30 LIMIT 1
31)
32 /POWER(10, debt_token.decimals) as gross_profit_usd,
33 (
34 (
35 ((mp.gas_used * mp.gas_price) +

mp.coinbase_transfer) /↪→
36 POWER(10, 18)
37) *
38 (
39 SELECT usd_price
40 FROM prices p
41 WHERE
42 p.timestamp <= b.block_timestamp
43 AND p.token_address =

'0xee'↪→
44 ORDER BY p.timestamp DESC
45 LIMIT 1
46)
47) AS miner_payment_usd,
48 mp.gas_used,
49 mp.gas_price,
50 mp.coinbase_transfer,
51 mp.gas_price_with_coinbase_transfer,
52 mp.miner_address,
53 mp.base_fee_per_gas,
54 ct.error as error,
55 ARRAY[l.protocol]
56 FROM liquidations l
57 JOIN blocks b ON b.block_number = l.block_number
58 JOIN tokens received_token
59 ON received_token.token_address =

l.received_token_address↪→
60 JOIN tokens debt_token
61 ON debt_token.token_address = l.debt_token_address
62 JOIN miner_payments mp ON
63 mp.block_number = l.block_number AND
64 mp.transaction_hash = l.transaction_hash

72

5.2. Improving found inconsistencies in MEV-Inspect

65 JOIN classified_traces ct ON
66 ct.block_number = l.block_number AND
67 ct.transaction_hash = l.transaction_hash
68 WHERE
69 b.block_number >= :after_block_number AND
70 b.block_number < :before_block_number AND
71 ct.trace_address = '{}' AND
72 l.debt_purchase_amount > 0 AND
73 l.received_amount > 0 AND
74 l.debt_purchase_amount <

1157920892373161954235709850086879↪→
75 07853269984665640564039457584007913129639935
76)

This query does not consider any swaps; it calculates the MEV by subtracting the
debt’s value from the received collateral’s value. However, the analyses of both these
transactions show that omitting the swaps in the calculation can lead to big differences
in the calculated MEV value.
Therefore, to improve the MEV calculation by MEV-Inspect, we aim to include the token
swaps before or after the Liquidation.
We define a new heuristic for the Liquidation’s value calculation. This new heuristic
requires the exact localization of each call in a transaction. This localization is done
using the trace address of each call.
The trace address is included in the trace module of the Ethereum JSON RPC 60. It
allows the exact localization of each call in the transaction trace, including the precise
localization of recursive calls. Figure 5.5 shows a screenshot of the transaction order
of transaction 0x350...d640c 61 made with the tool EthTx [Eth21], which visualizes
this transaction trace. The trace begins with the transaction’s sender, who begins the
transaction by calling the contract 0xb20...da1aa. Each line represents a contract call,
internal function execution, or emitted event. The structure of this visualization includes
the following information:

• Call Order: The order of the lines represents the chronological sequence of calls
and events

• Call Hierarchy: The Indentation level represents the hierarchical relationship of
calls. A sub-call has an increased indentation level compared to its parent call.

This visualization was derived from the raw transaction trace provided by the Ethereum
JSON RPC trace module. An array of integers represents this raw transaction trace in

60https://openethereum.github.io/JSONRPC-trace-module
61https://etherscan.io/tx/0x350ca80a3db7d792d37a200933d88a3dfd472cfdd2cd11f127d73f26767d640c

73

5. State-of-the-art MEV detection

Figure 5.5: Screenshot of the execution trace of the transaction 0x350...d640c [Eth21]

the data provided by the RPC trace module. Figure 5.6 shows the first few lines of the
raw execution trace of the same transaction 0x350...d640c.

Figure 5.6: The beginning of the raw execution trace of 0x350...d640c

The column trace_address represents this execution trace. The integer value represents
the call order. For example, the last line has the value of {0,0,0,1}, while the line before
has the value of {0,0,0,0}. The increased integer value of the last line signals that this
line was called after the line before.

The length of the array represents the call hierarchy. Each new sub call increases the
length of this array, as seen in the first two lines. The first call, from the transaction
sender to the contract, has an empty array {}. The following subcall increases the array
length to {0}.

This trace feature allows the ordering of transaction calls, which is essential for our newly
defined Liquidation calculation heuristic. This heuristic is defined as follows:
It starts with the ordering of all calls of a transaction in the order according to the

74

5.2. Improving found inconsistencies in MEV-Inspect

trace_address. We continue filtering all swap and Liquidation events with these ordered
transaction calls. Each swap event has an "in" value and an "out" value. The "in" value
is the number of tokens sent to the AMM, and the "out" value is the number of tokens
received from the AMM. In this terminology, a Liquidation’s "in" value is the debt sent to
the Lending contract, and the "out" value is the collateral received. Figure 5.7 visualizes
this flow of tokens for the transaction 0x350...d640c, Figure 5.8 visualizes the simpler
token flow of transaction 0xb0d...0faa5.

Figure 5.7: Visualization of the flow of tokens between the swaps and Liquidation of
transaction 0x350...d640c.

Figure 5.8: Visualization of the flow of tokens between the swap and Liquidation of
transaction 0xb0d...0faa5.

The latter shows that this heuristic also allows a transaction to end with a Liquidation
instead of a Swap.
If such a token flow can be constructed and the first "in" token is the same token as
the last "out" token, then the Liquidation MEV value is calculated as the difference
between the last "out" value and the first "in" value. Suppose such a token flow can not
be constructed or the first "in" token is not the same as the last "out" token. In that case,
the Liquidation MEV value is calculated as the difference between the collateral’s and
debt’s values.
To implement this heuristic efficiently in MEV-Inspect, a view was created that represents
this filtered token flow. This view combines and filters the swaps and Liquidation of a
transaction and allows the ordering by the trace_address. Figure 5.9 shows the token
flow in this view of the transaction 0x350...d640c.

75

5. State-of-the-art MEV detection

Figure 5.9: SQL view that combines swaps and Liquidations to represent the token flow
of the transaction 0x350...d640c. The SQL query is documented in Listing 3

The full update of the Liquidation calculation in MEV-Inspect was implemented by
overwriting the existing SQL query, which calculates the MEV value of Liquidations.
This new query is listed in Listing 2.
Listing 2: Our suggested query for the MEV calculation of Liquidations, that implements
our defined Heuristic

1 SELECT * FROM
2

3 SELECT
4 NULL,
5 received_token.token_address,
6 debt_token.token_address,
7 l.block_number,
8 b.block_timestamp,
9 l.protocol as protocol,

10 l.transaction_hash,
11 'liquidation' as type,
12 (
13 CASE
14 WHEN first.token_in_address =

last.token_out_address THEN
last.token_out_amount

↪→
↪→

15 ELSE l.received_amount
16 END
17)
18 *
19 (
20 SELECT usd_price
21 FROM prices
22 WHERE token_address = received_token.token_address
23 AND timestamp <= b.block_timestamp
24 ORDER BY timestamp DESC
25 LIMIT 1

76

5.2. Improving found inconsistencies in MEV-Inspect

26)
27 /POWER(10, received_token.decimals)
28

29 -
30

31 (
32 CASE
33 WHEN first.token_in_address =

last.token_out_address THEN
first.token_in_amount

↪→
↪→

34 ELSE l.debt_purchase_amount
35 END
36)
37 *
38 (
39 SELECT usd_price
40 FROM prices
41 WHERE token_address = debt_token.token_address
42 AND timestamp <= b.block_timestamp
43 ORDER BY timestamp DESC
44 LIMIT 1
45)
46 /POWER(10, debt_token.decimals) as gross_profit_usd,
47 (
48 (
49 ((mp.gas_used * mp.gas_price) +

mp.coinbase_transfer) /↪→
50 POWER(10, 18)
51) *
52 (
53 SELECT usd_price
54 FROM prices p
55 WHERE
56 p.timestamp <= b.block_timestamp
57 AND p.token_address =

'0xee'↪→
58 ORDER BY p.timestamp DESC
59 LIMIT 1
60)
61) AS miner_payment_usd,
62 mp.gas_used,
63 mp.gas_price,
64 mp.coinbase_transfer,

77

5. State-of-the-art MEV detection

65 mp.gas_price_with_coinbase_transfer,
66 mp.miner_address,
67 mp.base_fee_per_gas,
68 ct.error as error,
69 ARRAY[l.protocol]
70 FROM liquidations l
71 LEFT JOIN swaps_liquidations_merged first ON

first.transaction_hash = l.transaction_hash AND
first.trace_address =

↪→
↪→

72 (
73 SELECT first_inner.trace_address FROM

swaps_liquidations_merged first_inner↪→
74 WHERE first_inner.transaction_hash = l.transaction_hash
75

76 ORDER BY first_inner.trace_address ASC
77 LIMIT 1
78)
79 LEFT JOIN swaps_liquidations_merged last ON

last.transaction_hash = l.transaction_hash AND
last.trace_address =

↪→
↪→

80 (
81 SELECT last_inner.trace_address FROM

swaps_liquidations_merged last_inner↪→
82 WHERE last_inner.transaction_hash = l.transaction_hash
83

84 ORDER BY last_inner.trace_address DESC
85 LIMIT 1
86)
87 JOIN blocks b ON b.block_number = l.block_number
88 JOIN tokens received_token ON
89 (
90 CASE
91 WHEN first.token_in_address = last.token_out_address

THEN received_token.token_address =
last.token_out_address

↪→
↪→

92 ELSE
93 received_token.token_address = l.received_token_address
94 END
95)
96 JOIN tokens debt_token ON
97 (
98 CASE

78

5.2. Improving found inconsistencies in MEV-Inspect

99 WHEN first.token_in_address = last.token_out_address
THEN debt_token.token_address =
first.token_in_address

↪→
↪→

100 ELSE debt_token.token_address = l.debt_token_address
101 END
102)
103

104

105 JOIN miner_payments mp ON
106 mp.block_number = l.block_number AND
107 mp.transaction_hash = l.transaction_hash
108 JOIN classified_traces ct ON
109 ct.block_number = l.block_number AND
110 ct.transaction_hash = l.transaction_hash
111

112 WHERE
113 ct.trace_address = '{}' AND
114 l.debt_purchase_amount > 0 AND
115 l.received_amount > 0 AND
116 l.debt_purchase_amount < 11579208923731619542357098500
117 8687907853269984665640564039457584007913129639935

Validation of the new Liquidation Query

To validate the new Liquidation calculation, we first reran the MEV calculation by
inspection of the previously analyzed transactions (analyzed in section 5.1.1 and in
section 5.1.1. The transaction 0xb0d...0faa5 now reports a profit of 3,757.79 $ and
0x350...d640c a profit of 18.53 $. These values represent exactly the manually calculated
profit of these transactions in section 5.1.1 and in section 5.1.1.
In total, MEV-Inspect identified 426 Liquidations in the study’s block range. Of these 426
Liquidations, 161 have a different profit calculated with the new Liquidation heuristic.

Figure 5.10 compares the result of the unchanged EigenPhi Liquidation calculation
with the results from MEV-Inspect with the modified Heuristics and the results from
the unmodified version of MEV-Inspect. It shows that the results of the modified
MEV-Inspect heuristics are much closer to the results of the original EigenPhi results.

5.2.3 Conclusion and Discussion
This chapter compared two tools for detecting and quantifying MEV in transactions. The
comparison revealed significant differences in the number of detected MEV transactions,
with EigenPhi identifying ten times more transactions than MEV-Inspect. We then
conducted case studies on specific MEV transactions, analyzing them trace log by trace

79

5. State-of-the-art MEV detection

EigenPhi MEV-Inspect (new Heuristic) MEV-Inspect

−50

0

50

100
Pr

ofi
t

in
U

SD

Figure 5.10: Comparison of Liquidation results, in the block range of 79801461 to
18580146. The first boxplot shows the results from EigenPhi, the second shows the results
from MEV-Inspect after applying our new heuristic, and the third boxplot shows the
original MEV-Inspect result.

log, and compared the results from these two tools with our own calculations. These case
studies exposed several shortcomings in both MEV-Inspect and EigenPhi.

We identified a bug in the MEV detection logic based on these shortcomings and proposed
a fix. Additionally, we introduced our own Liquidation heuristic, which considers the
value gained from the difference between the bought debt and the acquired collateral,
accounting for all swaps made before and after the Liquidation event.

This chapter reiterates some shortcomings previously mentioned in subsection 4.2.1.
MEV-Inspect and EigenPhi are rule-based MEV detection tools, functioning on heuristics
that identify transaction strategies. The differences highlighted in this chapter illustrate
the challenges of rule-based MEV detection mechanisms, as their success relies on the
quality of the heuristics. Unknown strategies remain undetected by design, necessitating
continuous efforts to keep such tools up to date.

One problem that has accompanied MEV quantification is that since its first introduction
by Daian et al. [DGK+20], no formal, clear, and exact definition of MEV has been
established. While the community has proposed various definitions, this has only added
to the confusion.

Initially, MEV stood for Miner Extractable Value, but it was later changed to Maximal
Extractable Value to encompass not only PoW blockchains but also value extracted by
actors other than miners. Another factor complicating MEV estimation is the influence
of external factors, such as other cryptocurrencies, cross-chain interactions, and changes
in existing cryptocurrencies.

80

5.2. Improving found inconsistencies in MEV-Inspect

Estimating MEV involves navigating a complex, probabilistic, and dynamic environment.
Certain actors’ behavior, resources, and capabilities can only be estimated [JSSW21]. For
example, the pseudonymous nature of cryptocurrencies makes it difficult to determine all
the assets or addresses of a specific MEV actor. When analyzing an MEV extracting
transaction, it is possible that the sender’s address does not profit directly but rather
another address linked to the searcher. The MEV searcher could even profit indirectly on
another blockchain by utilizing bridges, i.e. extracting cross-chain MEV. This complexity
makes it especially challenging to estimate an upper bound for MEV.

The value of MEV has been made more explicit by introducing Proposer-builder separation
(PBS) in Ethereum. Although PBS is not included in the Ethereum consensus protocol, a
market has emerged where block builders can purchase block space from block proposers.
As of July 27, 2024, 89.97 % 62 of blocks have been proposed through a PBS mechanism.
Block builders bid against each other to purchase this block space. These bids can be
seen as a lower bound of MEV, as it is implied that an economically rational actor would
aim to pay less for the block space than it can gain from MEV.

If MEV searching is relatively decentralized and MEV searchers generally employ similar
strategies, they will compete against each other, driving up bids to match the block’s
MEV value. In this scenario, the MEV Boost value would closely approximate the actual
MEV.

62https://mevboost.pics/, In a timeframe of 14 days

81

CHAPTER 6
Multi-Block MEV

In this chapter, we will explore Multi-block MEV. First, we will introduce two strategies
an MEV searcher can use to build a consecutive sequence of blocks: controlling a sizable
percentage of the overall stake, e.g., operators of staking pools or other large entities
such as exchanges that perform staking on behalf of their clients and using MEV-Boost.
We will then analyze these strategies to identify any indications of their current use.
Following this, we will propose a straightforward Multi-block strategy and evaluate the
Ethereum blockchain to assess its economic viability. We will begin by explaining our
data collection process.

6.1 Data retrieval
To conduct the analyses in this chapter, we required the following data:

• Block data Block Number, Slot Number, Block Proposer

• Validator data Public Key, Staking Pool Association

• MEV data MEV per transaction

• MEV-Boost data Proposer Public Key, Builder Public Key, Value paid to
Proposer

• Slot data Associated Block, missed / not missed

An in-depth analysis of the entire Ethereum blockchain for MMEV requires significant
resources and is beyond the scope of this thesis. We therefore focused on blocks 17,980,146

83

6. Multi-Block MEV

1 to 18,580,146 2, corresponding to slot numbers 7,166,892 to 7,771,817, which comprise
600,000 slots.

We decided to store all data in a PostgreSQL database because of our familiarity with
PostgreSQL. Initially, we hosted the database on an AWS instance 3. However, as the
data grew, we moved it to a server the Security and Privacy Group at the University of
Vienna provided to reduce costs. The database was run on the server using Docker and
Docker Compose, along with an instance of Adminer 4, which provides a web GUI to
execute SQL queries and browse the data.

The first step was to fetch the block data. We began by writing a JavaScript program
connected to a Lighthouse client 5, hosted at the University of Vienna. The Lighthouse
version on this server was "Lighthouse/v4.2.0-c547a11/x86_64-linux." 6. This JavaScript
program looped through all slots within the study timeframe and queried the Lighthouse
API 7 to obtain the block information for each slot.

If the API returned a 404 status code for a specific slot, we stored this slot in the
missed_slot table; otherwise, we stored the block information in the block table. Due
to the many slots, these calls were parallelized using Node.js Worker Threads 8. Out of
600,000 blocks, we identified 4,925 missed slots, which accounts for 0.82 % of all slots.

We further needed the information on whether a validator was part of a staking pool.
This alliance with a staking pool is not recorded on the Ethereum blockchain. However, it
is publicly known which proposer proposed each block. A proposer’s public key becomes
public when they deposit 32 ETH into the deposit contract. Once a validator is added to
the set of validators, a validator_index is used to reference a ValidatorRecord containing
the public key 9. The Beacon API’s/eth/v1/beacon/states/state_id/validators endpoint
10 allows you to query this validator’s public key and index. We used this Beacon API
endpoint to extract the proposer’s public key.

Anton Wahrstätter published a dataset 11 containing mappings between proposers’ public
keys and their pool alliances. We imported this dataset into our local PostgreSQL
database and added it to our validator information by mapping it using the public key.
Using the proposer_index in the block header, we labeled each block with the Staking
Pool information.

1https://etherscan.io/block/17980146
2https://etherscan.io/block/18580146
3https://aws.amazon.com/rds/postgresql/ Last access 2024-08-01
4https://hub.docker.com/_/adminer/ Accessed on 2024-08-01
5A popular Beaconchain client, for more details, see subsection 2.2.7
6Queried at 2023-12-01
7Endpoint eth/v2/beacon/blocks/<slot>, Reference: https://ethereum.github.io/beacon-

APIs/#/Beacon/getBlockV2
8https://nodejs.org/api/worker_threads.html
9https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md Accessed on

2024-03-09
10https://ethereum.github.io/beacon-APIs/#/Beacon/getStateValidators Accessed on 2024-03-09
11https://mevboost.pics/data.html Accessed on 2024-07-31

84

6.1. Data retrieval

To gather information on MEV-Boost, we used the published MEV-Boost data from Anton
Wahrstätter 12. This dataset contains block rewards recorded by several MEV-Boost
relays and the public keys of validators and builders for all blocks.

The data was provided as a Parquet file and imported using PyArrow 13. We utilized
the Python data analysis library Pandas 14 to filter Wahrstätter’s data to match our
test block range. The dataset covers blocks from 17,980,146 to 18,373,887, encompassing
393,230 blocks. Since this was a raw dataset, various validation and cleaning steps were
necessary.

First, we identified 1,133 blocks in our database’s MEV-Boost data recorded as missed
slots. These blocks did not make it into the finalized blockchain due to forking, validator
inactivity, or late publication. We could delete these entries since we had a finalized view
of this data range and knew these were missed slots.

Further validation revealed multiple rows for each block number, primarily because
different relays recorded the same block in 918,676 cases. The data came from multiple
relays 15, and we assume builders submit their blocks to multiple relays to increase their
chances of inclusion in the finalized chain, resulting in multiple entries. We removed these
duplicates, leaving 362 blocks for the same slot with different mevboost_value entries,
which indicate how much the block builder pays for block space. Some rows also had
different proposer public keys, likely because each relay reported one "winning" block
for its auction. However, only one slot per block can be published, so we focused on
identifying rows that ended up in the finalized blockchain.

We used the previously retrieved public validator key to eliminate rows containing a
proposer public key different from the one that ended in the finalized blockchain.

The final step in data cleaning was merging blocks with the same builder. Some rows
had identical data except for a different builder public key. We used a key label index by
Anton Wahrstätter to label these builders and remove duplicates.

After cleaning, the dataset contains 393,230 rows, with one entry per block that is not
missed. We now have a lower bound of the number of blocks proposed using MEV-
Boost, the validator and builder public keys, and the proposer and builder’s staking pool
affiliations.
The next data needed are the MEV values for all transactions, which we obtained in
section 6.1.

12https://mevboost.pics/data.html Accessed on 2024-03-22
13https://arrow.apache.org/docs/python/index.html Accessed on 2024-07-30
14https://pandas.pydata.org/ Accessed on 2024-07-30
15https://github.comnerolationmevboost.picsblobmainscriptsparse_data_api.py Accessed on 2024-03-

22

85

6. Multi-Block MEV

6.2 Building a Multi-Block sequence
This section will discuss how an MEV searcher can build a Multi-block sequence. We
will first discuss two potential forms to secure a consecutive sequence of blocks through
the Proof of Stake protocol and using MEV-Boost. After that, we will analyze these two
strategies in a custom date range to find evidence of Multiple block MEV.

6.2.1 Consecutive blocks in Ethereum through Proof of Stake protocol
In Proof of Work Ethereum, the miner who solved the puzzle was unknown beforehand.
The selection depended on the miner’s proportional hash power and luck. In Proof of
Stake Ethereum, the next proposer is chosen using a pseudo-random algorithm called
RANDAO. This mechanism selects all proposers for an epoch t at the end of epoch t − 2
16, making the entities who propose in an epoch publicly known.

As of July 30, 2024, Ethereum has 1,050,134 validators 17. This large number of validators
makes the probability of selection minimal and the likelihood of being selected multiple
times in an epoch or for consecutive slots even smaller. However, validators often
collaborate in pools, allowing entities to participate as validators even without the
required 32 Ether. All participants’ stakes are combined and managed as a single entity
in these pools 18. While there are potential centralization concerns, staking pools control
more deposited stakes and, therefore, more slots than individual stakes. For example,
as of July 30, 2024, the staking pool Lido controls 8.84 % of validators in Ethereum 19.
This increases the likelihood of a pool being selected to propose blocks and, consequently,
the possibility that a pool can propose multiple blocks in sequence.
To calculate the probability of k consecutive events in a trial of n = 32 (one epoch), for a
pool with a share of p, Alvaro Revuelta [Rev22] proposes the following approximation:

qn ≈ 1 − px

(k + 1 − kx) (1 − p)
1

xn+1

where x is the closest real root to the result of 1 − x + (1 − p)pkxk+1 = 0.

Figure 6.1 shows the calculated probabilities using Revuelta’s formula for a pool controlling
a share of p validators to obtain k consecutive blocks in an epoch. This estimation suggests
that if a staking pool controls 10 % of all validators, it has a probability of controlling
two consecutive blocks of nearly 25 %. This probability applies to every epoch, which
occurs approximately every 6.4 minutes. Thus, it demonstrates that a sufficiently sizeable
staking pool can control consecutive blocks solely due to its significant share of validators.

16https://ethresear.ch/t/selfish-mixing-and-randao-manipulation/16081
17https://beaconcha.in/
18There are other pool designs where the pool does not act as a single entity, but for simplicity, we

consider staking pools as single entities, i.e., pool operators control how all participating individuals act.
19https://beaconcha.in/pools#distribution

86

6.2. Building a Multi-Block sequence

Figure 6.1: Probabilities of staking pools gaining a consecutive sequence of blocks. p
denotes the relative size of a staking pool compared to all validators and k the length of
a consecutive sequence of blocks. Figure from [Rev22]

6.2.2 Consecutive blocks through MEV-Boost
The Ethereum Foundation plans to include Proposer-builder separation (PBS) in the
Ethereum protocol. Meanwhile, MEV-Boost by Flashbots has established itself as a
widespread PBS implementation that is not part of the official Ethereum protocol. As
of July 27, 2024, according to Anton Wahrstätter, MEV-Boost is widely accepted, with
89.97 % 20 of all blocks being proposed using this mechanism.

MEV-Boost creates a marketplace for block space by introducing a relay between block
proposers (validators) and block builders. It is an optional extra client that validators
can run. This client communicates with the consensus client and forwards blocks to it
for publication. Block builders aggregate bundles into profitable blocks and send them
to the MEV-Boost relay. These relays verify the blocks and forward only a block header,
without any transactions, back to the MEV-Boost client. The transactions are withheld
to prevent block validators from stealing and publishing the transaction bundles for their
own gain.

The header indicates how much the block builder will pay for the block space. The
validator can then select the highest-paying block, sign it, and return it to the relay.
Once the relay receives the signed header, it returns the payload to the MEV-Boost client
and the validator, who then publishes the block.
This sealed-bid auction marketplace allows builders without sufficient stake to purchase
block space by making competitive bids. As discussed in subsection 6.2.1, it is extremely
unlikely to publish multiple blocks in a row for an individual validator. [Fla24]

PBS through MEV-Boost enables a block searcher to purchase multiple blocks. One can
secure a sequence of blocks by offering the highest price for consecutive blocks. However,
unlike staking pools, which have guaranteed multiple consecutive blocks (as explained in
subsection 6.2.1), the MEV searcher does not have a guaranteed sequence of blocks using

20https://mevboost.pics/, In a timeframe of 14 days

87

6. Multi-Block MEV

MEV-Boost. The MEV-Boost auction runs in the slot before the target slot. To secure a
consecutive sequence of k slots, the searcher must outbid all other searchers k times in a
row. Because strategies running over multiple blocks are not atomic, the searcher risks
only partially executing their strategy and potentially not profiting or even incurring
losses.

6.2.3 Analysis
In the following section, we will analyze the two methods for acquiring a consecutive
sequence of blocks using the data gathered and described in section 6.1. We aim to
determine whether blocks within a sequence contain more MEV than others.
We will use MEV data to assess whether consecutive sequences assigned to staking pools
have an increase in MEV value. For sequences built through MEV-Boost, we will use the
MEV-Boost value, which is the amount paid to the block proposer, as a metric.

Consecutive Block sequence through PoS Ethereum

In this analysis, we aim to determine whether the MEV (Miner Extractable Value) in
block sequences is statistically different from that in other blocks. Specifically, we focus
on blocks not proposed through MEV-Boost. We define a block sequence as a series
of blocks proposed by block proposers within the same pool, assuming that the pool
implements strategies across its various validators.
Details on how we identified which blocks were published via MEV-Boost are provided
in section 6.1. The study examines blocks numbered between 17980146 and 18373887,
during which we have an estimate of which blocks were published using MEV-Boost.
Within this period, 29,912 blocks were not published through MEV-Boost, accounting
for approximately 7.6 % of all blocks in the study timeframe.
Using the query in Listing 1, we identified all block sequences, with the results visualized
in Figure 6.2. We discovered 92 unique block sequences, most of which were of length 2,
with one sequence extending to length 7.

We retrieved MEV data using EigenPhi [Eig24a] to assess whether the MEV value differs
significantly between blocks within a sequence.
We conducted a Mann-Whitney U test to determine whether there is a statistically
significant difference in the total MEV value between these blocks. The null hypothesis
H0 posits that both samples originate from the same distribution, while the alternative
hypothesis H1 suggests they do not. We set the threshold for statistical significance at
α = 5%.

The Mann-Whitney U test was implemented in Python, utilizing psycopg2 21 to fetch
data from our database and the SciPy 22 package to conduct the test.

21https://pypi.org/project/psycopg2/ Accessed on 2024-07-31
22https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html Accessed on

2024-07-31

88

6.2. Building a Multi-Block sequence

2 3 4 5 6 7

82

5
2 1 1 1

Sequence Length

C
ou

nt
of

Se
qu

en
ce

s

Figure 6.2: Occurrences of consecutive block sequences proposed by validators belonging
to the same staking pool, in the block range of 79801461 to 1858014

The test yielded a p-value of 0.003, allowing us to reject the null hypothesis H0. We
conclude that the samples are from different distributions, indicating that the MEV value
in consecutive blocks significantly differs from that in other blocks.
However, as shown in Figure 6.3, blocks in consecutive sequences generally exhibit lower
MEV profits than non-MEV-Boost blocks. It is important to note that, to our knowledge,
all existing MEV detection mechanisms focus on Single-block MEV and do not detect
strategies deployed over consecutive blocks. Consequently, we cannot conclude that the
MEV gained by staking pools in multi-block sequences is lower than in other blocks, as
Multi-block MEV attacks were potentially undetected.

Consecutive Block sequence through MEV-Boost

In this analysis, we explore the second method of acquiring a consecutive sequence of
blocks by purchasing block space through MEV-Boost. First, we investigate the frequency
of sequences originating from the same builder within our study range. Then we analyze
the pricing of this block space to determine whether block builders pay more for blocks
in a sequence than for individual blocks.

Using the data described in section 6.1, the next step is identifying consecutive blocks
from the same builder and analyzing changes in the mevboost_value. The mevboost_value

89

6. Multi-Block MEV

−50 0 50 100

All other blocks

Blocks in consecutive sequences

Revenue of MEV transactions in USD

Figure 6.3: A comparison of the MEV revenue reported by EigenPhi of blocks in
consecutive sequences (red) vs. other blocks (blue) for blocks that were published without
MEV-Boost, in the block range of 79801461 to 1858014

is the price a block builder pays to a block producer for the block space. Our analysis
shows that consecutive sequences are relatively common, as depicted in Figure 6.4. We
identified 47,808 sequences of at least two blocks from the same builder, indicating that
about 12 % of all blocks in our study timeframe were part of a Multi-block sequence.
Additionally, we detected some longer sequences, including one sequence of twelve blocks
and a total of 26 sequences with more than nine blocks.

We aim to investigate whether builders pay a premium for an entire sequence of blocks,
not just for individual blocks within a sequence. To do this, we calculate the total value
paid by the block builder for the entire sequence (query listed in Listing 2. We then
compare these accumulated values to the median MEV-Boost value multiplied by the
sequence length. We assume that builders who do not employ a Multi-block strategy are
unlikely to pay a premium for consecutive block sequences and would aim to pay around
the median price for the entire sequence.

The results of this analysis are visualized in Figure 6.5. The red line represents the
median price of a block multiplied by the number of blocks in the sequence, while the
blue line shows the actual payments made for consecutive blocks. This figure illustrates
that builders pay more than the expected median prices for a series of consecutive blocks
compared to individual blocks. These findings appear to confirm the conclusions of
Jensen et al. [JvWR23] and suggest that MEV searchers utilize Multi-block strategies.

6.3 Missed slot strategy
In this section, we formulate and analyze the so-called "Missed Slot" strategy. This
straightforward strategy involves a block searcher intentionally missing a slot to capitalize
on the accrued MEV. The searcher must have secured the right to propose two consecutive
blocks for this strategy to be effective. The methods by which this can be achieved are

90

6.3. Missed slot strategy

2 3 4 5 6 7 8 9 10 11 12

·104

35,778

8,448

2,427
675 254 77 37 10 7 4 1

Sequence Length

C
ou

nt
of

Se
qu

en
ce

s

Figure 6.4: Occurrences of consecutive block sequences with the same builder, in the
block range of 79801461 to 1858014

discussed in section 6.2. We utilize the retrieved data to analyze this strategy using the
methods described in section 6.1.

6.3.1 Evaluation

In 600,000 slots or 595,075 blocks, MEV-Inspect identified MEV transactions in 62,291
blocks. Within these blocks, it detected 110,084 Arbitrage trades, 327,680 Liquidations,
83,307,529 payment transactions to proposers, 590,144 Sandwich trades, and 20,015,650
swap trades.
To address the first part of RQ_2, which asks whether the value of MEV in the block
following a missed slot is higher, we first analyze the total MEV value of blocks that
do not follow a missed slot, and those that occur immediately after or two slots after a
missed slot. Because of the large number of blocks without detected MEV transactions,
the median MEV value of these blocks is 0. However, when considering only blocks
with detected MEV transactions, the median value is 8.28 $. Blocks immediately after a
missed slot have a median MEV value of 10.69 $. The blocks two slots after a missed
slot have a median MEV value of 9.42 $. An overview of these values can be seen in
Table 6.1 and in the box plots in Figure 6.6.

91

6. Multi-Block MEV

2 4 6 8 10
0

1

2

3

4

5

6

·1017

Length of consecutive sequence

M
ed

ia
n

of
M

EV
-B

oo
st

Va
lu

es
in

U
SD

Figure 6.5: The red line represents the median block value multiplied by x, where x is
the number of consecutive blocks. A rational builder is expected to pay around this value
for consecutive blocks if they are not specifically targeting them. The blue line represents
the actual amount builders pay for consecutive blocks. At x = 1, it shows the median
value of all individual blocks. It shows the median total price for a consecutive series of
two blocks at x = 2, x = 3 for a series of three blocks, and so on.

Min 1st Quantile Median 3rd Quantile Max
+1 after missed slot 10−3.068$ 4.98 $ 10.69 $ 24.72 $ 10,327.51 $
+2 after missed slot 0.17 $ 4.57 $ 9.39 $ 24.12 $ 3,294.00 $
All other blocks 10−14.613$ 4.28 $ 8.28 $ 21.02 $ 587,876.00 $

Table 6.1: Overview of MEV block values

A Mann-Whitney U test was performed to evaluate the statistical significance of the
difference in the MEV value between regular blocks and those following a missed slot.
The null hypothesis H0 states that both samples come from the same distribution, while
the alternative hypothesis H1 suggests that the two samples originate from different
distributions. Statistical significance is defined by a significance level of α = 5%.

The Mann-Whitney U test results, comparing datasets of all blocks immediately af-
ter a missed slot with all other blocks, yielded a p-value of 0.001. Therefore, we can

92

6.4. Conclusion

−20 0 20 40 60

All blocks

+1 after missed

+ 2 after missed

MEV values in USD

Figure 6.6: MEV values in all blocks, one slot after a missed slot and two slots after a
missed slots, in the block range of 79801461 to 1858014

reject the null hypothesis H0, indicating that the differences are statistically significant.
However, when comparing blocks two slots after a missed slot with all other blocks, the
p-value is 0.116, which means the null hypothesis H1 cannot be rejected.

The results of this analysis suggest that a higher MEV value can be expected immediately
after a missed slot. Comparing the medians, an MEV searcher can anticipate a 15-30 %
higher yield if they propose immediately after a missed block. However, a statistically
significant gain was not observed for two slots after a missed slot.
The median price for a block through MEV-Boost during the study timeframe was
40,227,794,367,156,850 Wei or approximately 0.0402 Ether.
With a median exchange rate of 1,643.70 $ during this period, a searcher paid roughly 66
$ for block space. Therefore, the increase in MEV from intentionally missing a slot does
not constitute an economically viable strategy.

6.4 Conclusion
In this chapter, we introduced two strategies that a block searcher could use to obtain a
consecutive sequence of blocks. The first strategy involves calculating the probability
of securing two consecutive slots. The second strategy involves purchasing block space
through the blinded auction platform MEV-Inspect.
Our data shows that the same staking pool sometimes obtains consecutive sequences, and
the MEV in these sequences is statistically different from that in other blocks. However,
since MEV detection typically focuses on Single-block MEV strategies, this analysis alone
does not prove that MEV searchers apply multiple-block strategies.
We also observed that block builders paid a premium for blocks in consecutive sequences.
Assuming economically rational behavior, this suggests that Multi-block strategies are

93

6. Multi-Block MEV

being employed using MEV-Boost to secure such sequences.
Lastly, we analyzed the "Missed Slot" strategy, where a builder intentionally misses a block
to increase MEV in the subsequent block. Although we found that blocks immediately
following a missed slot had a statistically significant increase in MEV value, the increase
was insufficient to make this strategy economically viable.

94

CHAPTER 7
Conclusion

This work focused on Maximal Extractable Value. We laid the foundation by covering
the technical aspects of Ethereum and introduced the problem and various forms of
MEV in Ethereum. A systematic literature review analyzed current state-of-the-art
MEV detection techniques, which we summarized and categorized. We investigated some
shortcomings of rule-based MEV detection techniques and introduced a new Heuristic
for quantifying the profit made by Liquidation transactions. Finally, we empirically
investigated the topic of Multi-Block MEV.

This chapter will revisit the initially proposed research questions and highlight how we
addressed them and their results. This chapter will also discuss potential Future Work
on this topic.

7.1 Results

RQ1: What is the current state-of-the-art in MEV attacks, and what mitigation
strategies have been implemented or proposed?

This research question was addressed by categorizing the currently observed MEV attacks,
which include Frontrunning, Backrunning, Sandwich attacks, Arbitrage, Transaction
Replay, and Clogging. We also explored additional dimensions of MEV, such as cross-
domain MEV and Multi-block MEV, which are not confined to Single-block targeted
attacks. Beyond the direct losses suffered by victims, we highlighted MEV’s negative
externalities, such as network congestion, reduced transaction throughput, and increased
gas prices. Furthermore, the high MEV value may encourage a new category of attacks
on the blockchain consensus, where attackers attempt to rewrite blocks to exploit past
MEV opportunities. We also introduced mitigation strategies to prevent MEV, such as

95

7. Conclusion

achieving order fairness and making MEV more transparent and accessible to reduce
centralization risks.

RQ2: What are the state-of-the-art methods for detecting and quantifying
Single-block Maximal Extractable Value in Ethereum, and what are the limi-
tations of these methods?

To address this research question, we conducted a systematic literature review. From
an initial pool of 1,004 papers and tools, we selected 16 relevant works to analyze their
MEV detection and quantification methods. We classified these works into various cate-
gories, with a significant distinction in detection strategies: some employed rule-based
heuristics to identify MEV transactions, while others utilized machine learning techniques.

Rule-based approaches have the advantage of having easily explained strategies and
detection heuristics, making their results reproducible. However, these methods require
precise knowledge of the mechanisms they detect and must be updated with each
newly published technique. Additionally, they necessitate a thorough understanding of
Application Binary Interfaces (ABIs), which must be revised for each new DeFi service
and variations of existing services that emerge. This reliance can lead to a high potential
for false negatives, as some strategies may go undetected, particularly when there are
small variations in tactics.

Conversely, machine learning approaches are not dependent on specific ABIs, reducing
the maintenance effort. However, they require a high-quality dataset, typically generated
using rule-based mechanisms. This reliance means that a machine learning-based method
is only as effective as the underlying dataset and is unlikely to detect new forms of MEV
that were not present in the training data.

In our classification of various MEV tools, we observed differing results from two rule-
based MEV detection tools, MEV-Inspect and EigenPhi. Based on case studies, a direct
comparison of these tools revealed some shortcomings. As a result of this analysis, we
proposed specific improvements to MEV-Inspect, including a new Liquidation heuris-
tic. These analyses underscored some of the limitations of rule-based MEV detection
mechanisms.

MEV detection is inherently challenging due to several factors: the lack of a clear
definition of MEV within the scientific community, the incentives for MEV searchers to
conceal their strategies, and the pseudonymous nature of blockchains, which obscures
the profiteering of some MEV strategies. We recommend using the MEV-Boost value as
a lower bound for MEV quantification. An economically rational MEV searcher would
aim to pay less for block space than the extracted MEV. If MEV searching is relatively
decentralized and searchers generally employ similar strategies, they will compete, driving
up bids to reflect the block’s MEV value. In this case, the MEV-Boost value would
closely approximate the actual MEV.

96

7.2. Future Work

RQ3: How can an MEV searcher gain control over consecutive sequences of
blocks, and are there any indications that these methods are currently being
employed?

To address the third research question, we examined two potential methods for an at-
tacker to acquire a Multi-block sequence. The first method involves leveraging chance in
Ethereum’s Proof of Stake system, where the attacker needs to hold a significant stake in
Ethereum. Realistically, this can only be achieved by participating in a staking pool. We
calculated the necessary share of the total stake required for an attacker to obtain a block
sequence naturally. Our analysis of on-chain data demonstrated that such sequences are
not uncommon and that their frequency aligns with our theoretical calculations. We also
found that the MEV in these block sequences is statistically distinct from that of other
blocks. However, this finding is limited because our MEV calculations per block relied
on rule-based detection mechanisms that did not incorporate heuristics for MMEV attacks.

The second method for obtaining a consecutive block sequence involves purchasing blocks
through a Proposer-builder separation (PBS) marketplace, the most prevalent of which is
MEV-Boost. Our analysis of published MEV-Boost data revealed that MEV searchers do,
in fact, purchase consecutive sequences and, on average, pay a premium over the typical
block price. This behavior indicates that MEV searchers are exploiting and benefiting
from MMEV opportunities.

RQ4: Is the value of MEV in the block following a missed slot statistically
higher, and would this make an attack where the attacker intentionally misses
a block economically viable?

We utilized a Beacon node to identify missed slots to address the final research question.
We employed the open-source tool MEV-Inspect to analyze the MEV value of blocks
immediately following these missed slots and blocks two slots after a missed slot. Our
analysis revealed that the MEV value of blocks immediately following a missed slot
was statistically significantly higher than that of all other slots. However, no statistical
difference was observed for blocks two slots after a missed slot.

Blocks following missed slots exhibited an MEV increase of 15-30 %. Despite this increase,
the findings do not suggest that intentionally missing a slot would be economically viable.

7.2 Future Work
MEV remains a crucial topic for research due to its significant financial impact and
negative externalities. This thesis has classified current MEV detection tools, focusing
on the primary categorization of rule-based versus machine-learning-based approaches.
Future research could compare these detection methods to determine which approach

97

7. Conclusion

offers better recall value.

Additionally, we propose to use the MEV value provided by MEV-Boost and similar
applications as a baseline for MEV detection. Future analyses could compare the results
of various detection tools with the MEV-Boost value, which serves as a lower bound for
MEV quantification.

In this work, we analyzed Multi-block MEV (MMEV) and identified indications that some
participants employed MMEV strategies. Further research could focus on understanding
these specific strategies. Potential areas of exploration include Time Weighted Average
Price (TWAP) oracles, governance contracts, and Automated Market Makers (AMMs).
TWAP oracles provide price data over multiple blocks, and a Multi-block attack that
censors only buy or sell orders could manipulate the reported price. Governance contracts
allow stakeholders to vote on proposals, execute changes, and manage the decentralized
governance of protocols and applications. They often have a block delay between
determining voter eligibility and the actual vote, and controlling a sequence of blocks
could exploit this governance mechanism. Willetts et al. [WH24] introduced a Multi-block
MEV attack on dynamic AMMs and demonstrated its feasibility in simulations. However,
to our knowledge, this attack has not been observed on-chain, making it a potential
subject for further analysis.

Another research topic could be quantifying and detecting MMEV attacks, similar to the
single-block MEV detection mechanism introduced in this thesis.

98

Overview of Generative AI Tools
Used

Grammarly
The Grammarly "Premium" Version was used as a browser extension to refine the grammar
and fix spelling mistakes.
Chat GPT (4o)
Chat GPT (4o) was used for rephrasing and rewording sentences. My written text was
copied along with the prompt: "The following text is a section from my master thesis;
find and fix mistakes and rephrase the sentences to increase the clarity and readability of
the text. List all the changes that were done.". The result was then used to improve the
phrasing and fix any mistakes.
Chat GPT was also used to generate first drafts of LATEX tables and figures.

99

List of Figures

2.1 A simple illustration of the Bitcoin blockchain. Each block is linked to the
previous block by containing its hash. The Nonce field is set in the proof-
of-work proof, which secures the blockchain against manipulation attacks.
[Nak08] . 8

3.1 An example of MEV-Aware application design. [vro23] 35

4.1 The PRISMA Flow diagram, generated with [HPPM22] 45
4.2 Illustration of the arbitrage detection heuristic used by Qin et al. [QZG22].

Each node indicates a swap operation. 48
4.3 Illustration of the two types of arbitrage detection heuristics used by MEV-

Inspect. (a) illustrates an arbitrage transaction using fully routed swaps, in
which the received token in a swap is directly used as an "in" token for the
next swap (b) illustrates an arbitrage transaction, where the tokens are always
returned to the bot . 52

4.4 The structure of the GNN as used in the work of Park et al. [PJL+23] . . 54
4.5 An example of a transaction visualization by EigenPhi. 54

5.1 Comparison of the number of labeled MEV transactions between MEV-Inspect
and EigenPhi in the block range of 79801461 to 18580146 61

5.2 Comparison of the calculated MEV profits between MEV-Inspect and EigenPhi
among all transactions in the block range 79801461 to 18580146, excluding
Sandwich attacks from EigenPhi . 62

5.3 Comparison of the calculated MEV profits labeled as Arbitrage transactions
between MEV-Inspect and EigenPhi, in the block range of 79801461 to
18580146 . 63

5.4 Comparison of the calculated MEV profits for Liquidations between MEV-
Inspect and EigenPhi, in the block range of 79801461 to 18580146 63

5.5 Screenshot of the execution trace of the transaction 0x350...d640c [Eth21] 74
5.6 The beginning of the raw execution trace of 0x350...d640c 74
5.7 Visualization of the flow of tokens between the swaps and Liquidation of

transaction 0x350...d640c. 75
5.8 Visualization of the flow of tokens between the swap and Liquidation of

transaction 0xb0d...0faa5. 75

101

5.9 SQL view that combines swaps and Liquidations to represent the token flow
of the transaction 0x350...d640c. The SQL query is documented in Listing 3 76

5.10 Comparison of Liquidation results, in the block range of 79801461 to 18580146.
The first boxplot shows the results from EigenPhi, the second shows the
results from MEV-Inspect after applying our new heuristic, and the third
boxplot shows the original MEV-Inspect result. 80

6.1 Probabilities of staking pools gaining a consecutive sequence of blocks. p
denotes the relative size of a staking pool compared to all validators and k
the length of a consecutive sequence of blocks. Figure from [Rev22] 87

6.2 Occurrences of consecutive block sequences proposed by validators belonging
to the same staking pool, in the block range of 79801461 to 1858014 . . . 89

6.3 A comparison of the MEV revenue reported by EigenPhi of blocks in consecu-
tive sequences (red) vs. other blocks (blue) for blocks that were published
without MEV-Boost, in the block range of 79801461 to 1858014 90

6.4 Occurrences of consecutive block sequences with the same builder, in the
block range of 79801461 to 1858014 . 91

6.5 The red line represents the median block value multiplied by x, where x is the
number of consecutive blocks. A rational builder is expected to pay around
this value for consecutive blocks if they are not specifically targeting them.
The blue line represents the actual amount builders pay for consecutive blocks.
At x = 1, it shows the median value of all individual blocks. It shows the
median total price for a consecutive series of two blocks at x = 2, x = 3 for a
series of three blocks, and so on. 92

6.6 MEV values in all blocks, one slot after a missed slot and two slots after a
missed slots, in the block range of 79801461 to 1858014 93

102

List of Tables

4.1 The search strings used for each source in this systematic review. 40
4.2 All works retrieved during the systematic selection process 41
4.3 Result of the Bias and Quality assessment (Questions are from subsection 4.1.6) 44
4.4 Summary of all works covered in chapter 5. Abbreviations: PGA Priority Gas

Auction, SW Sandwich, ARB Arbitrage, LIQ Liquidation, CLG Clogging,
RPL Replay, RB Rule-Based, ML Machine Learning Based, On On-Chain
Data, Off Off-Chain Data . 57

6.1 Overview of MEV block values . 92

1 The PRISMA 2020 Checklist [PMB+21a] used in the systematic Review in
chapter 4 . 113

103

Bibliography

[AFG+15] Edoardo Aromataris, Ritin Fernandez, Christina M Godfrey, Cheryl Holly,
Hanan Khalil, and Patraporn Tungpunkom. Summarizing systematic re-
views: methodological development, conduct and reporting of an umbrella
review approach. JBI Evidence Implementation, 13(3):132–140, 2015.

[B+14] Vitalik Buterin et al. A next-generation smart contract and decentralized
application platform. white paper, 3(37):2–1, 2014.

[BAH+23] Bert, Apriori, Hasu, Nfactorial, Masterdai, Kz, Josojo, Nikete, 0xEvan,
boz1, and et al. Mev-share: Programmably private orderflow to share mev
with users, Feb 2023.

[BG17] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget.
arXiv preprint arXiv:1710.09437, 2017.

[Blo70] Burton H Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, 1970.

[CDG+24] Yash Chaurasia, Parth Desai, Sujit Gujar, et al. Mev ecosystem evolution
from ethereum 1.0. arXiv preprint arXiv:2406.13585, 2024.

[CH23] Facundo Carrillo and Elaine Hu. Mev in fixed gas price blockchains: Terra
classic as a case of study. arXiv preprint arXiv:2303.04242, 2023.

[CHHW24] Tianyang Chi, Ningyu He, Xiaohui Hu, and Haoyu Wang. Remeasuring the
Arbitrage and Sandwich Attacks of Maximal Extractable Value in Ethereum.
Technical report, May 2024. arXiv:2405.17944 [cs] type: article.

[CKWN16] Miles Carlsten, Harry Kalodner, S Matthew Weinberg, and Arvind
Narayanan. On the instability of bitcoin without the block reward. In
Proceedings of the 2016 ACM SIGSAC conference on computer and com-
munications security, pages 154–167, 2016.

[DC+85] Nicolas De Condorcet et al. Essai sur l’application de l’analyse à la proba-
bilité des décisions rendues à la pluralité des voix. Cambridge University
Press (Digital Version), 1785.

105

[DE20] Yael Doweck and Ittay Eyal. Multi-party timed commitments. arXiv
preprint arXiv:2005.04883, 2020.

[DGK+20] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo
Bentov, Lorenz Breidenbach, and Ari Juels. Flash boys 2.0: Frontrunning in
decentralized exchanges, miner extractable value, and consensus instability.
In 2020 IEEE Symposium on Security and Privacy (SP), pages 910–927.
IEEE, 2020.

[Dou02] John R Douceur. The sybil attack. In International workshop on peer-to-peer
systems, pages 251–260. Springer, 2002.

[Eig24a] EigenPhi. Eigenphi. https://eigenphi.io/, 2024.

[Eig24b] EigenPhi. How do we calculate the profit and loss of an mev transac-
tion? https://eigenphi.substack.com/p/calculate-profit-and-cost-of-mev,
Jan 2024.

[EMC20] Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. Sok: Trans-
parent dishonesty: front-running attacks on blockchain. In Financial Cryp-
tography and Data Security: FC 2019 International Workshops, VOTING
and WTSC, St. Kitts, St. Kitts and Nevis, February 18–22, 2019, Revised
Selected Papers 23, pages 170–189. Springer, 2020.

[Eth21] EthTx. Ethtx ethereum transaction decoder (community version).
https://github.com/EthTx/ethtx_ce, 2021.

[Eth24a] Ethereum.org. Accounts. https://ethereum.org/en/developers/docs/accounts/,
Jun 2024.

[Eth24b] Ethereum.org. Gas and fees. https://ethereum.org/en/developers/docs/gas,
Mar 2024.

[Fla] Ltd Flashbots. Flashbots docs. https://docs.flashbots.net/flashbots-
auction/overview.

[Fla24] Ltd Flashbots. Flashbots docs. https://docs.flashbots.net/flashbots-mev-
boost/architecture-overview/block-proposal, Jun 2024.

[GKL24] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol: Analysis and applications. Journal of the ACM, 71(4):1–49, 2024.

[Han22] Magnus Hansson. Arbitrage in crypto markets: An analysis of primary
ethereum blockchain data. Available at SSRN 4278272, 2022.

[HG22] Hasu and Stephane Gosselin. Why run mev-boost?: Flashbots, Jun 2022.

106

[HPPM22] Neal R. Haddaway, Matthew J. Page, Chris C. Pritchard, and Luke A.
McGuinness. Prisma2020: An r package and shiny app for producing
prisma 2020-compliant flow diagrams, with interactivity for optimised
digital transparency and open synthesis. Campbell Systematic Reviews,
18(2):e1230, Jun 2022.

[HPS24] Lioba Heimbach, Vabuk Pahari, and Eric Schertenleib. Non-Atomic
Arbitrage in Decentralized Finance. Technical report, April 2024.
arXiv:2401.01622 [cs, q-fin] type: article.

[HW22] Lioba Heimbach and Roger Wattenhofer. Sok: Preventing transac-
tion reordering manipulations in decentralized finance. arXiv preprint
arXiv:2203.11520, 2022.

[Ili24] Danut Ilisei. Analyzing the role of bridges in cross-chain mev extraction.
Master’s thesis, TU München, 2024.

[JG24] Yan Ji and James Grimmelmann. Regulatory implications of mev mitiga-
tions. In Proceedings of the 5th Workshop on the Coordination of Decen-
tralized Finance, 2024.

[@jm22] @jmcook.eth. Client diversity on ethereum’s consensus
layer. https://mirror.xyz/jmcook.eth/S7ONEka_0RgtKTZ3-
dakPmAHQNPvuj15nh0YGKPFriA, Feb 2022.

[JSSW21] Aljosha Judmayer, Nicholas Stifter, Philipp Schindler, and Edgar Weippl.
Estimating (miner) extractable value is hard, let’s go shopping! Cryptology
ePrint Archive, 2021.

[JvWR23] Johannes Rude Jensen, Victor von Wachter, and Omri Ross. Multi-block
mev. arXiv preprint arXiv:2303.04430, 2023.

[KGF19] Rami Khalil, Arthur Gervais, and Guillaume Felley. Tex-a securely scalable
trustless exchange. Cryptology ePrint Archive, 2019.

[KZGJ20] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. Order-
fairness for byzantine consensus. In Advances in Cryptology–CRYPTO
2020: 40th Annual International Cryptology Conference, CRYPTO 2020,
Santa Barbara, CA, USA, August 17–21, 2020, Proceedings, Part III 40,
pages 451–480. Springer, 2020.

[Kö23] Martin Köppelmann. Reducing mev with transaction auction, Mar 2023.

[Lan21] Pi Lanningham. Sundaeswap fundamentals. https://ouroboros.mobi/wp-
content/uploads/2021/10/SundaeSwap-2021-06-01-Fundamentals.pdf, 2021.

107

[LLPL24] Zekai Liu, Xiaoqi Li, Hongli Peng, and Wenkai Li. GasTrace: Detecting
Sandwich Attack Malicious Accounts in Ethereum. Technical report, June
2024. arXiv:2405.19971 [cs] type: article.

[LZWD24] Dongze Li, Kejia Zhang, Lei Wang, and Gang Du. A Geth-based real-time
detection system for sandwich attacks in Ethereum. Discover Computing,
27(1):11, May 2024.

[MKV23] Robert McLaughlin, Christopher Kruegel, and Giovanni Vigna. A large
scale study of the ethereum arbitrage ecosystem. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 3295–3312, 2023.

[MLTA09] David Moher, Alessandro Liberati, Jennifer Tetzlaff, and Douglas G Altman.
Preferred reporting items for systematic reviews and meta-analyses: the
prisma statement. BMJ, 339, 2009.

[MZVL24] Yifan Mao, Mengya Zhang, Shaileshh Bojja Venkatakrishnan, and Zhiqiang
Lin. Flashback: Enhancing proposer-builder design with future-block
auctions in proof-of-stake ethereum. arXiv preprint arXiv:2405.09465,
2024.

[Nak08] Satoshi Nakamoto. Bitcoin whitepaper. bitcoin.org, 2008.

[Noy21] Charlie Noyes. Mev and me. https://www.paradigm.xyz/2021/02/mev-
and-me, Feb 2021.

[ÖKV+23] Burak Öz, Benjamin Kraner, Nicolò Vallarano, Bingle Stegmann Kruger,
Florian Matthes, and Claudio Juan Tessone. Time moves faster when there
is nothing you anticipate: The role of time in mev rewards. In Proceedings
of the 2023 Workshop on Decentralized Finance and Security, pages 1–8,
2023.

[ÖRG+24] Burak Öz, Filip Rezabek, Jonas Gebele, Felix Hoops, and Florian Matthes.
A study of mev extraction techniques on a first-come-first-served blockchain.
In Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing,
pages 288–297, 2024.

[OSS+21] Alexandre Obadia, Alejo Salles, Lakshman Sankar, Tarun Chitra, Vaibhav
Chellani, and Philip Daian. Unity is strength: A formalization of cross-
domain maximal extractable value. arXiv preprint arXiv:2112.01472, 2021.

[PFW22] Julien Piet, Jaiden Fairoze, and Nicholas Weaver. Extracting godl [sic]
from the salt mines: Ethereum miners extracting value. arXiv preprint
arXiv:2203.15930, 2022.

[PJL+23] Seongwan Park, Woojin Jeong, Yunyoung Lee, Bumho Son, Huisu Jang,
and Jaewook Lee. Unraveling the mev enigma: Abi-free detection model
using graph neural networks. arXiv preprint arXiv:2305.05952, 2023.

108

[PMB+21a] Matthew J Page, Joanne E McKenzie, Patrick M Bossuyt, Isabelle Boutron,
Tammy C Hoffmann, Cynthia D Mulrow, Larissa Shamseer, Jennifer M
Tetzlaff, Elie A Akl, Sue E Brennan, Roger Chou, Julie Glanville, Jeremy M
Grimshaw, Asbjørn Hróbjartsson, Manoj M Lalu, Tianjing Li, Elizabeth W
Loder, Evan Mayo-Wilson, Steve McDonald, Luke A McGuinness, Lesley A
Stewart, James Thomas, Andrea C Tricco, Vivian A Welch, Penny Whiting,
and David Moher. The prisma 2020 statement: an updated guideline for
reporting systematic reviews. BMJ, 372, 2021.

[PMB+21b] Matthew J Page, David Moher, Patrick M Bossuyt, Isabelle Boutron,
Tammy C Hoffmann, Cynthia D Mulrow, Larissa Shamseer, Jennifer M
Tetzlaff, Elie A Akl, Sue E Brennan, Roger Chou, Julie Glanville, Jeremy M
Grimshaw, Asbjørn Hróbjartsson, Manoj M Lalu, Tianjing Li, Elizabeth W
Loder, Evan Mayo-Wilson, Steve McDonald, Luke A McGuinness, Lesley A
Stewart, James Thomas, Andrea C Tricco, Vivian A Welch, Penny Whiting,
and Joanne E McKenzie. Prisma 2020 explanation and elaboration: updated
guidance and exemplars for reporting systematic reviews. BMJ, 372, 2021.

[PRS+06] Jennie Popay, Helen Roberts, Amanda Sowden, Mark Petticrew, Lisa Arai,
Mark Rodgers, Nicky Britten, Katrina Roen, and Steven Duffy. Guidance
on the conduct of narrative synthesis in systematic reviews: A product from
the ESRC Methods Programme. Lancaster University, 01 2006.

[QZG+21] Kaihua Qin, Liyi Zhou, Pablo Gamito, Philipp Jovanovic, and Arthur
Gervais. An empirical study of defi liquidations: Incentives, risks, and insta-
bilities. In Proceedings of the 21st ACM Internet Measurement Conference,
pages 336–350, 2021.

[QZG22] Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying blockchain ex-
tractable value: How dark is the forest? In 2022 IEEE Symposium on
Security and Privacy (SP), pages 198–214. IEEE, 2022.

[Rev22] Alvaro Revuelta. Multi-block mev in ethereum.
https://www.alvarorevuelta.com/posts/ethereum-mev-multiblock, May
2022.

[RK20] Dan Robinson and Georgios Konstantopoulos. Ethereum is a dark forest,
Aug 2020.

[RSW96] Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and
timed-release crypto. 1996.

[SHM21] Luke Van Seters, Guilherme Heise, and Robert Miller. Flashbots/mev-
inspect-py: an mev inspector for ethereum, Jun 2021.

109

[SMC23] Johan Hagelskjar Sjursen, Weizhi Meng, and Wei-Yang Chiu. Towards
quantifying cross-domain maximal extractable value for blockchain decentral-
isation. In International Conference on Information and Communications
Security, pages 627–644. Springer, 2023.

[TC+21] Christof Ferreira Torres, Ramiro Camino, et al. Frontrunner jones and
the raiders of the dark forest: An empirical study of frontrunning on the
ethereum blockchain. In 30th USENIX Security Symposium (USENIX
Security 21), pages 1343–1359, 2021.

[TMW+24] Christof Ferreira Torres, Albin Mamuti, Ben Weintraub, Cristina Nita-
Rotaru, and Shweta Shinde. Rolling in the shadows: Analyzing the ex-
traction of mev across layer-2 rollups. arXiv preprint arXiv:2405.00138,
2024.

[VNSA+21] Vbuterin, Nazariyv, Shymaa-Arafat, Jannikluhn, Yoavw, JustinDrake, and
Lekssays. Proposer/block builder separation-friendly fee market designs,
Jun 2021.

[vro23] vrotend. Mev-aware application design: Great visual example!
https://x.com/vrotend/status/1637106929083338752, March 2023. [Tweet].

[W+14] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper, 151(2014):1–32, 2014.

[WH24] Matthew Willetts and Christian Harrington. Multiblock mev opportunities
& protections in dynamic amms. arXiv preprint arXiv:2404.15489, 2024.

[WTNRS22] Ben Weintraub, Christof Ferreira Torres, Cristina Nita-Rotaru, and Radu
State. A flash (bot) in the pan: measuring maximal extractable value
in private pools. In Proceedings of the 22nd ACM Internet Measurement
Conference, pages 458–471, 2022.

[Wun23] Sebastian Wunderlich. Exploring Maximal Extractable Value in the
Ethereum Ecosystem. https://blockchain.hs-mittweida.de/wordpress/wp-
content/uploads/2023/08/WunderlichSebastianMasterFinal-1.pdf, 2023.

[XPCF23] Jiahua Xu, Krzysztof Paruch, Simon Cousaert, and Yebo Feng. Sok: Decen-
tralized exchanges (dex) with automated market maker (amm) protocols.
ACM Computing Surveys, 55(11):1–50, 2023.

[YHL+] Zihao Yao, Fanding Huang, Yannan Li, Wei Duan, Peng Qian, Nan Yang,
and Willy Susilo. Mecon: A Gnn-Based Graph Classification Framework
for Mev Activity Detection. Available at SSRN 4861523.

[YLK+24] Tao Yan, Shengnan Li, Benjamin Kraner, Luyao Zhang, and Claudio J
Tessone. Analyzing reward dynamics and decentralization in ethereum 2.0:

110

An advanced data engineering workflow and comprehensive datasets for
proof-of-stake incentives. arXiv preprint arXiv:2402.11170, 2024.

[YZH+22] Sen Yang, Fan Zhang, Ken Huang, Xi Chen, Youwei Yang, and Feng
Zhu. Sok: Mev countermeasures: Theory and practice. arXiv preprint
arXiv:2212.05111, 2022.

[ZNW21] Patrick Züst, Tejaswi Nadahalli, and Ye Wang Roger Wattenhofer. Analyz-
ing and preventing sandwich attacks in ethereum. ETH Zürich, pages 1–29,
2021.

[ZQC+21] Liyi Zhou, Kaihua Qin, Antoine Cully, Benjamin Livshits, and Arthur
Gervais. On the just-in-time discovery of profit-generating transactions in
defi protocols. In 2021 IEEE Symposium on Security and Privacy (SP),
pages 919–936. IEEE, 2021.

[ZQG21] Liyi Zhou, Kaihua Qin, and Arthur Gervais. A2mm: Mitigating fron-
trunning, transaction reordering and consensus instability in decentralized
exchanges. arXiv preprint arXiv:2106.07371, 2021.

111

Appendix

Table 1: The PRISMA 2020 Checklist [PMB+21a] used in the systematic Review in
chapter 4

Section and
Topic

Item
#

Checklist item Location where
item is re-
ported

TITLE
Title 1 Identify the report as a systematic re-

view.
chapter 4

ABSTRACT
Abstract 2 See the PRISMA 2020 for Abstracts

checklist.
chapter 4

INTRODUCTION
Rationale 3 Describe the rationale for the review in

the context of existing knowledge.
chapter 4 - Intro-
duction

Objectives 4 Provide an explicit statement of the ob-
jective(s) or question(s) the review ad-
dresses.

chapter 4 - Intro-
duction

METHODS
Eligibility criteria 5 Specify the inclusion and exclusion crite-

ria for the review and how studies were
grouped for the syntheses.

subsection 4.1.1

Information
sources

6 Specify all databases, registers, websites,
organisations, reference lists and other
sources searched or consulted to iden-
tify studies. Specify the date when each
source was last searched or consulted.

subsection 4.1.2

Search strategy 7 Present the full search strategies for all
databases, registers and websites, includ-
ing any filters and limits used.

subsection 4.1.3

113

Section and
Topic

Item
#

Checklist item Location where
item is re-
ported

Selection process 8 Specify the methods used to decide
whether a study met the inclusion cri-
teria of the review, including how many
reviewers screened each record and each
report retrieved, whether they worked
independently, and if applicable, details
of automation tools used in the process.

subsection 4.1.4

Data collection
process

9 Specify the methods used to collect data
from reports, including how many re-
viewers collected data from each report,
whether they worked independently, any
processes for obtaining or confirming
data from study investigators, and if ap-
plicable, details of automation tools used
in the process.

subsection 4.1.5

Data items 10a List and define all outcomes for which
data were sought. Specify whether all re-
sults that were compatible with each out-
come domain in each study were sought
(e.g. for all measures, time points, anal-
yses), and if not, the methods used to
decide which results to collect.

subsection 4.1.5

10b List and define all other variables for
which data were sought (e.g. participant
and intervention characteristics, fund-
ing sources). Describe any assumptions
made about any missing or unclear in-
formation.

subsection 4.1.5

Study risk of bias
assessment

11 Specify the methods used to assess risk
of bias in the included studies, including
details of the tool(s) used, how many re-
viewers assessed each study and whether
they worked independently, and if appli-
cable, details of automation tools used
in the process.

subsection 4.1.6

114

Section and
Topic

Item
#

Checklist item Location where
item is re-
ported

Effect measures 12 Specify for each outcome the effect mea-
sure(s) (e.g. risk ratio, mean difference)
used in the synthesis or presentation of
results.

subsection 4.1.6

Synthesis methods

13a Describe the processes used to decide
which studies were eligible for each syn-
thesis (e.g. tabulating the study inter-
vention characteristics and comparing
against the planned groups for each syn-
thesis (item #5)).

subsection 4.1.6

13b Describe any methods required to pre-
pare the data for presentation or synthe-
sis, such as handling of missing summary
statistics, or data conversions.

subsection 4.1.6

13c Describe any methods used to tabulate
or visually display results of individual
studies and syntheses.

subsection 4.1.6

13d Describe any methods used to synthe-
size results and provide a rationale
for the choice(s). If meta-analysis
was performed, describe the model(s),
method(s) to identify the presence and
extent of statistical heterogeneity, and
software package(s) used.

subsection 4.1.6

13e Describe any methods used to explore
possible causes of heterogeneity among
study results (e.g. subgroup analysis,
meta-regression).

subsection 4.1.6

13f Describe any sensitivity analyses con-
ducted to assess robustness of the syn-
thesized results.

subsection 4.1.6

Reporting bias as-
sessment

14 Describe any methods used to assess risk
of bias due to missing results in a syn-
thesis (arising from reporting biases).

n/a

Certainty assess-
ment

15 Describe any methods used to assess cer-
tainty (or confidence) in the body of
evidence for an outcome.

subsection 4.1.6

RESULTS

115

Section and
Topic

Item
#

Checklist item Location where
item is re-
ported

Study selection 16a Describe the results of the search and
selection process, from the number of
records identified in the search to the
number of studies included in the review,
ideally using a flow diagram.

subsection 4.1.7

16b Cite studies that might appear to meet
the inclusion criteria, but which were
excluded, and explain why they were
excluded.

subsection 4.1.8

Study characteris-
tics

17 Cite each included study and present its
characteristics.

section 4.2

Risk of bias in
studies

18 Present assessments of risk of bias for
each included study.

n/a

Results of individ-
ual studies

19 For all outcomes, present, for each study:
(a) summary statistics for each group
(where appropriate) and (b) an effect
estimate and its precision (e.g. confi-
dence/credible interval), ideally using
structured tables or plots.

subsection 4.2.1

Results of
syntheses

20a For each synthesis, briefly summarise the
characteristics and risk of bias among
contributing studies.

n/a

20b Present results of all statistical syntheses
conducted. If meta-analysis was done,
present for each the summary estimate
and its precision (e.g. confidence/credi-
ble interval) and measures of statistical
heterogeneity. If comparing groups, de-
scribe the direction of the effect.

n/a

20c Present results of all investigations of
possible causes of heterogeneity among
study results.

n/a

20d Present results of all sensitivity analyses
conducted to assess the robustness of
the synthesized results.

n/a

Reporting biases 21 Present assessments of risk of bias due to
missing results (arising from reporting
biases) for each synthesis assessed.

n/a

116

Section and
Topic

Item
#

Checklist item Location where
item is re-
ported

Certainty of evi-
dence

22 Present assessments of certainty (or con-
fidence) in the body of evidence for each
outcome assessed.

n/a

DISCUSSION

Discussion

23a Provide a general interpretation of the
results in the context of other evidence.

subsection 4.2.1

23b Discuss any limitations of the evidence
included in the review.

subsection 4.2.1

23c Discuss any limitations of the review
processes used.

subsection 4.2.1

23d Discuss implications of the results for
practice, policy, and future research.

subsection 4.2.1

OTHER INFORMATION

Registration and
protocol

24a Provide registration information for the
review, including register name and reg-
istration number, or state that the re-
view was not registered.

n/a

24b Indicate where the review protocol can
be accessed, or state that a protocol was
not prepared.

Table 1

24c Describe and explain any amendments
to information provided at registration
or in the protocol.

section 4.1

Support 25 Describe sources of financial or non-
financial support for the review, and the
role of the funders or sponsors in the
review.

n/a

Competing inter-
ests

26 Declare any competing interests of re-
view authors.

n/a

Availability of
data, code and
other materials

27 Report which of the following are pub-
licly available and where they can be
found: template data collection forms;
data extracted from included studies;
data used for all analyses; analytic code;
any other materials used in the review.

n/a

117

Queries
1 WITH RECURSIVE sequences AS (
2 SELECT
3 inital_b.id,
4 inital_b.number,
5 val.label,
6 1 AS sequence_length
7 FROM
8 block inital_b
9 JOIN

10 validator val ON inital_b.validator_index = val.index
11 JOIN block previous_b ON inital_b.number = previous_b.number + 1
12 JOIN validator previous_val ON previous_b.validator_index = previous_val.

index
13 WHERE inital_b.not_in_mev_boost = True AND
14 val.label <> previous_val.label -- to make sure we start at the start of

the sequence, not the nth element in a sequence
15
16
17 UNION ALL
18
19 SELECT
20 t.id,
21 t.number,
22 v.label,
23 s.sequence_length + 1 AS sequence_length
24 FROM
25 block t
26 JOIN
27 validator v ON t.validator_index = v.index
28 JOIN
29 sequences s ON t.number = s.number + 1
30 WHERE
31 t.not_in_mev_boost = True
32 AND v.label = s.label
33)
34 SELECT sequence_length, COUNT(*) FROM (
35 SELECT
36 id,
37 number,
38 label,
39 sequence_length
40 FROM
41 sequences
42 WHERE sequence_length > 1
43) grouped GROUP BY grouped.sequence_length
44 ORDER BY sequence_length DESC

Listing 1: Finding sequences in blocks not proposed through MEV-Boost that have the
same pool

118

1 WITH RECURSIVE sequences AS (
2 SELECT
3 id,
4 block_number,
5 builder,
6 mevboost_value_num::numeric,
7 1 AS sequence_length
8 FROM
9 mev_boost_pics_data_validated

10
11 UNION ALL
12
13 SELECT
14 t.id,
15 t.block_number,
16 t.builder,
17 (t.mevboost_value_num + s.mevboost_value_num) AS mevboost_value_num,
18 s.sequence_length + 1 AS sequence_length
19 FROM
20 mev_boost_pics_data_validated t
21 JOIN
22 sequences s ON t.block_number = s.block_number + 1
23 AND t.builder = s.builder
24)
25 SELECT PERCENTILE_CONT(0.5)
26 WITHIN GROUP(ORDER BY s1.mevboost_value_num)
27 FROM sequences s1
28 WHERE s1.sequence_length = 11
29 -- ORDER BY s1.sequence_length DESC, s1.mevboost_value_num DESC
30 LIMIT 100

Listing 2: Calculating the median values of blocks in consecutive sequences built with
MEV-Boost

1 SELECT
2 CONCAT(
3 SUBSTRING(token_in_address, 1, 5),
4 '...',
5 SUBSTRING(token_in_address, LENGTH(token_in_address) - 3, 4)
6) AS token_in_address,
7 CONCAT(
8 SUBSTRING(token_out_address, 1, 5),
9 '...',

10 SUBSTRING(token_out_address, LENGTH(token_out_address) - 3, 4)
11) AS token_out_address,
12 token_in_amount, token_out_amount, trace_address
13 FROM "swaps_liquidations_merged"
14 WHERE transaction_hash = '0

x350ca80a3db7d792d37a200933d88a3dfd472cfdd2cd11f127d73f26767d640c'
15 ORDER BY trace_address ASC
16 LIMIT 50

Listing 3: SQL Query used to select the tokenflow of the transaction 0x350...d640c

119

	Kurzfassung
	Abstract
	Contents
	Introduction
	Objectives & Research Questions
	Outline

	Technical Background
	Bitcoin
	Ethereum

	MEV - Maximal Extractable Value
	Characterization of MEV
	Multiple Dimensions of MEV
	Negative externalities of MEV
	Mitigation
	Conclusion

	A systematic literature review of state-of-the-art MEV detection
	Methodology
	Anylysis of the selected works

	State-of-the-art MEV detection
	Comparison MEV-Inspect and EigenPhi
	Improving found inconsistencies in MEV-Inspect

	Multi-Block MEV
	Data retrieval
	Building a Multi-Block sequence
	Missed slot strategy
	Conclusion

	Conclusion
	Results
	Future Work

	Overview of Generative AI Tools Used
	List of Figures
	List of Tables
	Bibliography
	Appendix

