
Umschreiben oder nicht umschreiben:
Entscheidungsfindung bei der Anfrageoptimierung

von SQL Anfragen

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Data Science

eingereicht von

Daniela Böhm, BSc.
Matrikelnummer 11918462

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Mag.rer.nat. Dr.techn. Reinhard Pichler
Mitwirkung: Univ.Ass. Dipl.-Ing. Alexander Selzer

Assistant Prof. Dipl.-Ing. Dr.techn. Matthias Lanzinger

Wien, 21. August 2024
Daniela Böhm Reinhard Pichler

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





To rewrite or not to rewrite: Decision making in
query optimization of SQL queries

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Data Science

by

Daniela Böhm, BSc.
Registration Number 11918462

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Mag.rer.nat. Dr.techn. Reinhard Pichler
Assistance: Univ.Ass. Dipl.-Ing. Alexander Selzer

Assistant Prof. Dipl.-Ing. Dr.techn. Matthias Lanzinger

Vienna, August 21, 2024
Daniela Böhm Reinhard Pichler

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Erklärung zur Verfassung der
Arbeit

Daniela Böhm, BSc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen,
die ohne substantielle Änderungen übernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT- Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

Wien, 21. August 2024
Daniela Böhm

v





Danksagung

An erster Stelle möchte ich mich bei meinem Betreuer Prof. Dr. Reinhard Pichler für den
Themenvorschlag sowie die zeitliche und inhaltliche Unterstützung, die weit über das
übliche Maß hinausgegangen ist, ganz herzlich bedanken. Mein Dank gilt weiters Dipl.-Ing.
Alexander Selzer für das stets prompte und kompetente Antworten auf meine Fragen
zum Programmierteil und Prof. Dr. Matthias Lanzinger für die hilfreiche Unterstützung
beim Machine Learning Teil. Es ist etwas Besonderes, so intensiv von einem Team bei
der Masterarbeit unterstützt zu werden.

Die Arbeit wurde im Rahmen des Forschungsprojekts, das vom Wiener Wissenschafts-,
Forschungs- und Technologiefonds (WWTF) [10.47379/ICT2201] gefördert wird, durch-
geführt. Weiters wurde diese Arbeit durch die dataLAB/Big Data Infrastruktur der TU
Wien ermöglicht. Ich danke dem TU.it dataLAB Big Data-Team der TU Wien für die
Unterstützung.

Ein besonderer Dank gebührt meinen Eltern, die immer hinter mir stehen und mich darin
bestärken, meinen Weg zu gehen. Ohne ihre kontinuierliche Unterstützung wäre ich heute
nicht da, wo ich bin. Außerdem möchte ich mich bei meiner Familie und meinem Umfeld
explizit dafür bedanken, dass sie mich von klein auf ermutigt haben, auch als Mädchen
und Frau ein Interesse an mathematischen und technischen Bereichen zu entwickeln und
mir mein Studium zugetraut haben.

Unglaublich dankbar bin ich für die beste Lerngruppe, Paul Czapka und Hannes Mayr-
hofer, ohne die das Studium nicht in dieser Form möglich gewesen wäre. Die gemeinsame
Zeit, die Freundschaft und das gegenseitige Unterstützen sind unbezahlbar. Meine Part-
nerschaft mit Pauli ist das Allerschönste, das aus dieser Lerngruppe entstehen konnte,
und dafür bin ich unendlich dankbar.

vii





Acknowledgements

First of all, I would like to thank my supervisor Prof. Dr. Reinhard Pichler for the thesis’
topic suggestion as well as the support in terms of time and content, which went far
beyond the usual. Additionally, I would like to thank Dipl.-Ing. Alexander Selzer for his
fast and competent answers to my questions about the programming part and Prof. Dr.
Matthias Lanzinger for his support concerning the Machine Learning part. It is truly
special to receive such intensive support throughout the work on the master thesis.

The work on this thesis was carried out in the context of the research project funded by
the Vienna Science and Technology Fund (WWTF) [10.47379/ICT2201]. The production
of this work has been enabled by the dataLAB/Big Data infrastructure @TU-Wien. I
acknowledge the assistance of the TU.it dataLAB Big Data team at TU-Wien.

Special thanks to my parents for always having my back and for encouraging me to follow
my path. Without their continous support I would not be, where I am today. Furthermore,
I would like to thank my family and those around me, who always encouraged me to
follow my interests in mathematical and techinal fields, even as a girl and as a woman,
and who believed in me and my ability to finish my studies.

I am incredibly thankful for the best study group, Paul Czapka and Hannes Mayrhofer,
without whom it would not have been possible to study in the way we did. The time
spent together, the friendship and the support of each other are priceless. The romantic
relationship with Pauli is the most beautiful thing that could have come from that study
group and I am infinetely grateful for that.

ix





Kurzfassung

Eine typische Herausforderung für Datenbankmanagementsysteme (DBMSs) ist es, Que-
ries effizient auszuwerten. Die einfachsten Queries sind Conjunctive Queries (CQs), die in
SQL SELECT-FROM-WHERE Queries entsprechen, bei denen im WHERE statement
nur Gleichheitsbedingungen und logische Unds (AND) erlaubt sind. Sogar das Auswerten
dieser fundamentalen Queries ist ein NP-vollständiges Problem.

In der Praxis ist ein erheblicher Teil aller Queries azyklisch oder fast azyklisch, die
CQs mit einfacheren Strukturen sind. DBMSs berücksichtigen strukturelle Eigenschaften
im Normalfall nicht, wohingegen in der Theorie mit dem Yannakakis Algorithmus eine
effiziente Auswertungsmethode für azyklische Queries existiert. Um eine auf Yannakakis
basierende Auswertungsmethode zu nutzen, muss die Query umgeschrieben werden,
sodass das DBMS gezwungen wird, die Query in der Art auszuführen, die Yannakakis
vorschlägt. Es gibt einen Ansatz, der solch eine Umschreibungsmethode, die on-top von
einigen DBMSs benutzt werden kann, für azyklische CQs mit zusätzlichen Aggregaten
bereitstellt. Theoretisch wird der asympotitische Worst-Case immer besser, wenn man
diese Methode benutzt. Allerdings werden in der Praxis zusätzliche Overheads produziert
und es ist unklar und schwierig zu entscheiden, ob die Umschreibungsmethode oder das
Auswerten mit dem ursprünglichen DBMS vorteilhafter ist.

Daher wird ein Entscheidungsprogramm benötigt, um herauszufinden, ob es besser ist,
die Query umzuschreiben oder in ihrer originalen Form zu verwenden. Die Aufgabe dieser
Arbeit ist es, solch ein Entscheidungsprogramm zu entwickeln und zu implementieren. Das
wird mit Hilfe von umfangreichen Tests auf Benchmarkdatensätzen gemacht, um Features
zu finden, mit denen man die Queries unterscheiden kann. Auf Basis dieser Features wird
das Entscheidungsprogramm entwickelt und programmiert. Das Entscheidungsprogramm
ist ein Machine Learning Modell, das aus einigen modernen Machine Learning Modellen
ausgewählt wird.

Bei unseren quantitativen und qualitativen Analysen zeigt sich, dass der Decision Tree
am besten funktioniert. Dafür werden Metriken benutzt, die fehlklassifizierte Fälle
untersuchen und statistische Tests herangezogen. Weiters sind Decision Trees Modelle, die
interpretiert werden können und die keinen hohen Rechenaufwand erfordern. Mit diesem
Decision Tree als Entscheidungsprogramm können wir drei komplett unterschiedliche
DBMSs, nämlich PostgreSQL, DuckDB and SparkSQL, übertreffen.

xi





Abstract

A common challenge for database management systems (DBMSs) is efficiently evaluating
queries. The most basic queries are conjunctive queries (CQs), which are SELECT-
FROM-WHERE queries only allowing equality conditions with logical ands (AND) in
the WHERE statement in SQL. Even the evaluation of these fundamental queries is an
NP-complete problem.

In practice a significant portion of queries is acyclic or almost acyclic, which are CQs with
easier structures. DBMSs generally do not consider structural properties, but in theory
Yannakakis’ algorithm gives us an efficient evaluation for acyclic queries. To make use of
Yannakakis-style evaluation the query has to be rewritten such that the DBMS is forced
to execute the query like Yannakakis’ algorithm would suggest. There is an approach
providing such a rewriting method applicable on-top of several DBMSs for acyclic CQs
allowing additional aggregates. In theory, the asymptotic worst case always gets better
using this method. Nevertheless, in practice additional overheads are produced and it is
unclear and hard to decide, whether it is preferable to use the rewriting method or the
plain DBMS for the evaluation.

Therefore, a decision program is needed to determine, if the query should be rewritten or
evaluated in its original form. The purpose of this work is to design and implement such
a program. This is done by using extensive testing on benchmark datasets to find out
which features can be used to distinguish the queries. Based on these features the decision
method is designed and implemented. The decision program is a Machine Learning model
chosen out of a range of modern Machine Learning models.

We see that the decision tree performs best in terms of quantitative and qualitative
analysis, based on metrics, inspection of misclassifications and statistical tests. Moreover,
decision trees are interpretable models, which are computationally not expensive. With
this decision tree as decision program we can outperform three completely different
existing DBMSs, namely PostgreSQL, DuckDB and SparkSQL.

xiii





Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1

2 Related Work 5

3 Conjunctive queries 9
3.1 Conjunctive queries (CQs) . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Complexity of evaluating CQs . . . . . . . . . . . . . . . . . . . . . . . 12

4 Hypergraphs and acyclicity 13
4.1 Hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Acyclicity and join trees . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 GYO-reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Yannakakis’ algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Decompositions and beyond CQs 25
5.1 Tree decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Hypertree decompositions (HDs) . . . . . . . . . . . . . . . . . . . . . 26
5.3 Generalized hypertree decompositions (GHDs) . . . . . . . . . . . . . 28
5.4 Computational properties . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.5 Beyond CQs: 0MA queries . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Machine Learning 31
6.1 Supervised Learning Models . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2 Data augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.3 Experiment design: Model selection . . . . . . . . . . . . . . . . . . . 40

7 Methodology 45
7.1 Benchmark Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

xv



7.2 Rewriting method and implementation . . . . . . . . . . . . . . . . . . 49
7.3 DBMSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.4 Decision program with ML models . . . . . . . . . . . . . . . . . . . . 52

8 Results 61
8.1 PostgreSQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.2 DuckDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.3 SparkSQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.5 Final model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9 Conclusion 93

A Results of Machine Learning Models 95
A.1 PostgreSQL: Basic features . . . . . . . . . . . . . . . . . . . . . . . . 96
A.2 PostgreSQL: Basic features + POS features . . . . . . . . . . . . . . . 99
A.3 DuckDB data: Basic features . . . . . . . . . . . . . . . . . . . . . . . 102
A.4 DuckDB data: Basic features + DuckDB features . . . . . . . . . . . . 105
A.5 SparkSQL data: Basic features . . . . . . . . . . . . . . . . . . . . . . 108
A.6 SparkSQL data: Basic features + POS features . . . . . . . . . . . . . 111
A.7 Cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
A.8 Best models for 3 classes with cut-offs 0.1, 0.05, 0.01 . . . . . . . . . . 116
A.9 Feature importances for final model . . . . . . . . . . . . . . . . . . . 117
A.10 Visualizations of final model (decision tree) . . . . . . . . . . . . . . . 118

Overview of Generative AI Tools Used 121

List of Figures 123

List of Tables 125

List of Algorithms 129

Bibliography 131



CHAPTER 1
Introduction

Background Over the past few years the amount of available data has been and is still
increasing enormously. Consequently, there is a significant amount of research in data-
driven areas aimed at efficiently storing and working with data. Database management
systems (DBMSs) play an important role, since they give us the opportunity to access data
stored in databases using queries. The most basic queries are conjunctive queries (CQs).
In SQL they are SELECT-FROM-WHERE queries only allowing equality conditions
with logical ands (AND) in the WHERE statement. In the context of relational algebra,
they are SELECT-PROJECT-JOIN statements with equality conditions.

Even the evaluation of these fundamental queries is an NP-complete problem, which
was shown by Chandra and Merlin, 1977. Because of that the evaluation of big join
queries can lead to an explosion of the intermediate results and to very long execution
times. Classical DBMSs try to use heuristics to find a join order, which reduce to huge
intermediate results, but they cannot eliminate the problem.

A reason for that is, that DBMSs rarely use the query structure to decide which execution
plan would be the best. In theory, there are results, which lead to efficient evaluation
times of acyclic join queries based on Yannakakis’ algorithm, introduced in Yannakakis,
1981, using the query structure. Even if acyclicity looks like a severe restriction, in
practice a significant portion of the queries is alcyclic or almost acyclic as shown by
Bonifati et al., 2017 and Fischl et al., 2021. Yannakakis-style query evaluation is not yet
implemented in DBMSs.

Problem Statement Since it is not an easy process to change one or multiple DMBSs
in a way that they use the theoretical results for evaluation, another possibility is an
on-top-rewriting procedure. This means that the query is rewritten in a way, that it
forces the DBMS to execute the query like Yannakakis’ algorithm would suggest. That
approach is not only easier to implement, it also gives us the possibility to use the
rewriting on top of multiple DBMSs with only very small changes necessary.

1



1. Introduction

Such an on-top-rewriting has recently been implemented in Gottlob et al., 2023. It uses
a Yannakakis-based approach. This means, it evaluates the query in three stages, the
bottom-up, the top-down and a second bottom-up traversal of the join tree. During
the first two traversals only semi-joins are used and all dangling tuples, which means
tuples, that do not contribute to the final result, are eliminated. In the end, joins are
performed to get the final result, but these joins only produce tuples, which are part of
the final result. This approach automatically leads to a good join order and prevents any
unnecessary intermediate results. In theory, the used approach is always faster (or the
same) than the plain evaluation for the asymptotic worst case. Unfortunately, in practice
it can be worse, because an overhead is produced. This means the semi-join results need
to be saved in auxiliary tables and the three traversals can lead to additional workload,
which sometimes does not pay off, e.g. when no or only a few dangling tuples exist. The
method proposed in Gottlob et al., 2023, which is our basis, significantly reduces the
evaluation time for about half of the queries, but for the other half the plain DBMS is
faster. Therefore, neither version should be preferred in general. Unfortunately, there is
no clear pattern to identify which version will be the faster one. Therefore, there is the
need for a program deciding if the query should be rewritten or evaluated in its original
form.

Goal The purpose of this thesis is to design such a program, which makes the right
decision in as many cases as possible. The decision program is a Machine Learning
model. One goal is to find out which model type performs best and should be the
final decision program. We use the following modern Machine Learning models as
candidates: k-nearest neighbors, decision trees, random forests, support vector machines,
multi-layer perceptrons, hypergraph neural networks and a combination of the latter two.
Additionally, the hyperparameters of each model are varied and compared to achieve
better results. The features for the Machine Learning models are structural properties
and/or data properties of the queries. It is another goal to find out, which features are
suitable for our task and help making a good decision. The third big aim is then to
observe, if it is possible to outperform existing DBMSs. Outperforming means to be in
the same or a smaller order of magnitude regarding the evaluation time. The evaluation
of the decision program and the execution of the query with the chosen version should
be faster than the evaluation of the query on the plain DBMS. For cases where rewriting
gains performance, we want to decide to rewrite, perform rewriting and evaluate faster
than the DBMS. For cases where we decide not to rewrite, we will be slower, since we
add the time of deciding and then executing in the same way as the DBMS does anyway,
but we want to keep this additional effort as small as possible.

Approach To be able to achieve goals mentioned above, we perform extensive testing.
On the one hand, we use three completely different DBMSs, namely PostgreSQL, DuckDB
and SparkSQL. PostgreSQL is a well-established relational DBMS, whereas DuckDB is
an in-process, column-oriented DBMS, and SparkSQL is part of a distributed cluster
environment. Therefore, these three give a good coverage of the existing DBMSs. On
the other hand, we try to find as many suitable benchmark datasets as possible and

2



evaluate the queries of them once in their original form and once as rewritten version.
These runtimes are the responses for our Machine Learning models (either as labels,
if the original or rewritten version is faster as classification, or as time differences for
regression). Additionally, we use different features from the literature, e.g. Abseher et al.,
2017, and design some on our own, which then are the input features for our Machine
Learning models.

As benchmark datasets we use the STATS dataset introduced by Han et al., 2021, the
SNAP (Stanford Network Analysis Project) dataset introduced by Leskovec and Krevl,
2014, the JOB (Join Order Benchmark) dataset introduced by Leis et al., 2015, the
LSQB (Large-Scale Subgraph Query Benchmark) dataset introduced by Mhedhbi et al.,
2021 and the HETIONET dataset introduced by Himmelstein et al., 2017. They all have
different purposes like testing the join order or query optimizers, using different joins and
foreign key relations and representing graph datasets of real world data. For our purpose
it is important to have these different datasets to represent a broad range of use cases.

Results Using this approach with the mentioned DBMSs and benchmark datasets, we
achieve our main goal, to correctly decide which version is the faster one, in most cases.
The final model is the decision tree and achieves high accuracy scores of at least 82%
and up to about 94% and high precision values (up to 96%). Moreover, we are able to
outperform the existing DBMSs as we show with statistical tests, the mean and median
runtimes are significantly smaller for the decision program than for the plain DBMS. This
is the case for all our settings for all DBMSs. Additionally, most of the misclassifications
are cases, where the original and rewritten runtimes are very similar anyway, which
means the negative effect of the misclassification is negligable. Moreover, decision trees
are interpretable and computationally not expensive. Furthermore, we use the structure
of the decision tree to find out, which features are most important.

Structure of the thesis In Chapter 2 we start by providing related work to our topic.
Then, the theoretical background of CQs and their characteristics are given in Chapter 3,
followed by explaining hypergraphs and acyclicity in Chapter 4. This includes providing
the GYO-reduction for recognizing acyclicity and Yannakakis’ algorithm, which is the
basis for fast evaluation of acyclic queries. Based on that, Chapter 5 recalls several query
decomposition methods to give an overview of how more complex queries can be handled,
including the 0MA query class, which has recently been introduced in Gottlob et al., 2023.
Afterwards, we give a short introduction to Machine Learning in Chapter 6, where we
describe all used models and the experiment design of model selection, which we perform
to choose the "best" model as our decision program. In Chapter 7 the methodology and
workflow of the practical part of the thesis are described, followed by the obtained results
in Chapter 8. In the end the results, limitations and future work are summarized in
Chapter 9.

3





CHAPTER 2
Related Work

Yannakakis’ algorithm in Database Theory
To obtain several complexity results of query enumeration the following papers are
given, where Yannakakis’ algorithm is one substantial part for obtaining each of these
results. Bagan et al., 2007 discuss the enumeration complexity of ACQs with additional
disequality conditions. They show that there is a big subclass of CQs (self-join-free
ACQs) which can be efficiently enumerated with constant delay. This means (after a
linear time precomputation) each enumeration result of the query can be generated after
the last one in constant time. This is a good computational result.
Additional results of enumeration complexity are given in Carmeli and Kröll, 2020. For
CQs with functional dependencies they show that the enumeration can be done with
constant delay and following linear-time preprocessing, which was previously considered
not true. If there are no such dependencies the enumreration does not have such favorable
behaviour. Afterwards they showed that unions of CQs can also be enumarted with
constant delay and following linear-time preprocessing, even if some or sometimes all
single CQs of them are does not have this characteristic in Carmeli and Kröll, 2021.
In Carmeli et al., 2021 algorithms for efficient access to ordered query results using
direct access or selection are discussed for conjunctive queries without self-joins. They
also find some conditions when the algorithms are applicable and study the influence
of functional dependencies on this problem. In Carmeli et al., 2022 the authors further
inspected the behaviour using random access and random-order enumeration. They
show that free-connex ACQs (i.e. query body is acyclic and is still acyclic, when head is
added as additional atom) can be executed with constant delay and following linear-time
prepocessin for enumeration, random enumeration and random access, whereas all other
queries cannot. Geck et al., 2022 show if for an ACQ a rewriting with an equivalent
result exists, then there exists at least one rewriting, which is acyclic, too.
Yannakakis-style evaluation in Database Systems
After discussing some theoretical results, we want to present works using Yannakakis’

5



2. Related Work

algorithm for practical purposes. One of the first Yannakakis-style methods is introduced
in Ghionna et al., 2007. They extend the hypertree decomposition notion for query
optimization and implement an optimizer for PostgreSQL using structure-guided query
processing.

In Tu and Ré, 2015 Yannakakis’ algorithm and a second (worst-case optimal) algorithm
introduced by Ngo et al., 2012 are compared and used to explore query planning. The
join order of queries is often not optimal and in this paper generalized hypertreee
decompositions are used together with the two algorithms to achieve better results.
Based on this, Perelman and Ré, 2015 discuss a query compiler (DunceCape), which
outperforms traditional RDBMS algorithms. Upon this EmptyHeaded, a new high-level
join engine architecture is built by Aberger et al., 2017, which outperforms several existing
systems.

For free-connex ACQs a dynamic version of Yannakakis’ algorithm was designed in Idris
et al., 2017. It allows constant-delay enumeration and constant-time lookups, handles
updates efficiently and the amount of memory and storage is linearly proportional to the
size of the database for these queries. In addition, the authors prove a general dynamic
version of Yannakakis’ algorithm, which also allows theta-joins in the queries in Idris
et al., 2020 and provide a new algorithm for computing query plans in this framework. Q.
Wang et al., 2023 use the idea of Yannakakis to replace joins with semi-joins to avoid big
intermediate results, which are saved as materialized views in classical change propagation
frameworks. The new framework they create still achieves constant-delay enumeration
and outperforms existing systems. Predicates of a query, which are comparisons between
at least two tables, cannot be pushed down efficiently in many cases. Therefore, in Q.
Wang and Yi, 2022 a new algorithm is provided for evaluating such queries. Additionally,
they found a class of queries, where this can be done in linear time.

A further interesting topic in practice is data security and processing of private data. To
ensure privacy a secure two-party computation model can be used, where the data does
not need to be revealed while evaluating a query. Y. Wang and Yi, 2021 propose a secure
version of Yannakakis’ algorithm to meet the privacy requirement, but also improve the
evaluation time enormously compared to the state-of-the art model before.

In contrast to the algorithms and standalone models explained until now, Hu and Wang,
2023 are to the best of our knowledge the only ones, who are using a model on top of
existing DBMSs. Despite this fact, their approach is different to ours. They are studying
the set-difference of query results of several (small) queries.

Machine Learning for database system applications
In general, Machine Learning (AI/Deep Learning) and database systems can help im-
proving each other. W. Wang et al., 2016 and Zhou et al., 2022 list applications, where
Deep Learning can be used to solve or improve database problems such as cardinality
estimation, knob tuning, join order selection or index creation. On the other hand,
databases can help to access AI more easily, improve the training process and allow better
parallelization. We want to focus on how Machine Learning can be used to improve some

6



aspects of databases, especially the join order selection and the selectivity estimation.

For query evaluation the join order, which is chosen by the database systems often based
on heuristics, is crucial. Nevertheless, in pratice it is not always optimal and there
are different approaches to address this issue. We want to present some papers using
Reinforcement Learning or Deep Learning models to achieve a better join order. Marcus
and Papaemmanouil, 2018 state the idea of using feedback of how well the chosen join
order worked out for some queries, to learn from mistakes and adjust to them using a
Reinforcement Learning agent. In Marcus et al., 2019 a new query optimizer based on
deep learning models is introduced. To design the optimization model, bootstrapping
of the optimization models of existing optimizers is used and upon this each new query
is used to help the optimizer to learn how good the chosen join order was. A different
approch of designing an optimizer is given by X. Yu et al., 2020. The current query is
split into several subqueries and using Reinforcement Learning the optimal join order of
the whole query is created. Another optimizer based on Reinforcement Learning with a
tree-structured long short-term memory (LSTM) model is provided by Trummer et al.,
2021. It takes the join tree into consideration for deciding the optimal join order and
allows to change the database schema when this is beneficial.

The basis of choosing the join order and estimating the cost is the cardinality estimation,
which also can be done by using Machine Learning techniques. In Kipf et al., 2018 a
deep learning approach, namely a convolutional neural network, is provided to predict
correlation between join tables, which can be used for the selectivity estimation. Dutt
et al., 2019 use neural networks, too, but also compare them to tree-based ensembles and
decide to treat the problem as regression problem. They additionally adjust the features
as well as transform the regression response to outperform existing methods. Hasan et al.,
2020 again provide a supervised lightweight neural network, but also consider another
simple approach, which is using density estimation to estimate the joint probability
distribution to gain insights into the selectivity.

In contrast to the three provided approaches before, Hilprecht et al., 2020 do not want
to use pairs of queries and selectivities for training a model, but they want to introduce
a data-driven approach. This means the database schema and database components
are used for training a deep probabilistic model, which then is also able to predict the
selectivity, but based on the data and not on the given queries. This approach allows
to adjust to changes of the DBMS immediately and no queries are needed for training,
but like for all data-driven approaches a lot of data is needed to make this model work.
Wu and Cong, 2021 then combine the data-driven and the query-driven approaches and
design a deep autoregressive model using both datatypes to estimate the joint probability,
which again can be used for selectivity estimation.

Further research using Machine Learning in the database context is for example done by
deciding, which indexes to use (e.g. Ding et al., 2020, Nathan et al., 2020, Kossmann
et al., 2020) and by learning the database configurations (e.g.Van Aken et al., 2017,
Zhang et al., 2019, Kunjir and Babu, 2020).

7





CHAPTER 3
Conjunctive queries

Database management systems (DBMSs) are used to interact with databases. Databases
store data in a structured way as tables with rows and columns. With DBMSs a user can
create, adjust, control and access the data in the database(s). A widely used approach
is to access the databases with queries. Multiple actions like selecting columns, joining
tables, filtering, grouping or counting can be performed by writing queries in a DBMS.
In Section 3.1 we take a closer look at conjunctive queries, a class of simple queries.
We provide different notations for those queries, namely in relational algebra notation,
datalog notation and as SQL statements. Additionally, we line out that conjunctive
queries are not only useful in the context of DBMSs, but also an important field of
Artificial Intelligence and Operations Research applications. Finally, we talk about the
complexity of the evaluation of conjunctive queries, which is NP-complete in Section 3.2.

3.1 Conjunctive queries (CQs)
The class of conjunctive queries (CQs) is arguably the most fundamental type of queries
(for a definition see Chandra and Merlin, 1977). These are queries only allowing projec-
tions, equi-joins and selections with equality conditions combined by logical "AND"s. In
relational algebra notation CQs have the form

π(σ(R1 ▷◁ ... ▷◁ Rn))

where π represents the projections, σ the selections and ▷◁ the equi-joins. For each of
these operations, for real world examples, the columns or conditions corresponding to
the projection, selection or join are provided next to the symbol as subscripts.

9



3. Conjunctive queries

To give some examples throughout this thesis based on a database, we define a database
schema. We consider a database consisting of data about a university. There is a table
student with the name, the immatriculation number and the study program of every
enrolled student. Then, there is a table masterthesis, where the immatriculation
number of all students writing a master thesis is listed together with the title of their
thesis and a unique identification code of the professor, who is their advisor. The third
table professor contains the name and the identification code of all professors. Addi-
tionally, a table room lists the room numbers of every office in the university, together
with the identification code of the professor sitting there. In the table program all study
programs are saved with the study program label and the faculty they belong to.

Our example database schema looks like the following:
student(name, immatriculation_number, study_program)
masterthesis(title, immatriculation_number, advisor_code)
professor(name, identification_code)
room(number, identification_code)
program(name, label, faculty)

In this chapter we are only using the relations student and professor. To simplify
the statements, we only use the first letter for each relation and column, which means
S[N,I,S] and P[P,C].

A CQ in relational algebra notation could now look like this

πP.P (σS.N=P.P (S ▷◁S.I=P.C P ))

giving us the names of all professors, who are also students.

After defining CQs formally and with an example, we look at some properties they fulfill.
Since only equality conditions are allowed, we could also write π(R1 ▷◁ ... ▷◁ Rn) without
loss of generality. We are shortly explaining the two possible cases, either having two
relations or one relation in the equality condition, and why we can rewrite it without
selections in both cases. If a condition includes two relations in one equality condition, it
is equivalent to an equi-join and we can add the condition to the equi-joins and do not
need the selection anymore. As an example, we take the same CQ as before and rewrite
it without a selection.

πP.P (σS.N=P.P (S ▷◁S.I=P.C P )) ⇔ πP.P (S ▷◁S.I=P.C∧S.N=P.P P ))

In the second case, if a condition only includes columns of one relation, it is a filter and
we can apply it separately on the relation and only use the filtered relations for the joins.

10



3.1. Conjunctive queries (CQs)

Here is an example with a selection only using the relation S in the selection

πP.P (σS.I=11918450(S ▷◁S.I=P.C P )) ⇔ πP.P ((σS.I=11918450S) ▷◁S.I=P.C P ))
⇔ πP.P (S̃ ▷◁S̃.I=P.C P )

where S̃ contains only the tuples of relation S, where S.I = 11918450.

Another property which we are going to use is that the equi-joins with the equality
conditions are equivalent to natural joins after renaming some columns accordingly. Using
the same relations again, one example is

πP.P (S ▷◁S.I=P.C P ) ⇔ πP.P ((ρC←IS) ▷◁ P )

where ρC←I represents the renaming of the attribute "immatriculation_number" to
"identification_code". So, after this operation student has the form S[N,C,S] instead of
S[N,I,S].

After looking at some properties of CQs, we provide different notations for queries. In
contrast to the relational algebra, which is an operational notation, we want to mention
SQL as declarative query language. Very often SQL is used to interact with databases.
Relational algebra expressions can be expressed with an equivalent SQL statement. CQs
in SQL are SELECT-FROM-WHERE statements allowing only equality constraints
together with ANDs. As an example πP.P (S ▷◁S.I=P.C P ) corresponds to

SELECT P.name
FROM student as S, professor as P
WHERE S.immatriculation_number = P.identification_code;

using the full name of the relations and attributes here.

Finally, we want to present datalog notation as a powerful notation combining opera-
tional and declarative concepts. It is very common to write CQs in datalog notation,
which looks like this

Q(→
x) : −R1(→

z1), ..., Rn(→
zn)

where Q(→
x) is called the head of the CQ and R1(→

z1), ..., Rn(→
zn) the body with atoms

Ri(
→
zi). Atom is a more commonly used word for relation in this context.

The same example as above can be written as

Q(P ) : −S(N, C, S), P (P, C)

in datalog notation.

11



3. Conjunctive queries

3.1.1 Boolean conjunctive queries (BCQs)
Additionally, we want to talk about a subclass of the CQs, namely the boolean con-
junctive queries (BCQs). BCQs have only "yes" or "no" as their output. There is no
need for listing all tuples fulfilling the given conditions. It is sufficient to check if there is
at least one tuple fulfilling these conditions. In many cases this simplifies the evaluation,
since only one tuple needs to be found (if the answer is "yes").

For our example the question now can be if there is any professor, who is also a student.
In datalog notation a BCQ has an empty head and for our example it looks like the
following:

Q() : −S(N, C, S), P (P, C)

3.1.2 CQs in other domains
Since formally solving Constraint satisfaction problems (CSPs) is model-checking of
first-order formulas, which contain only existence operators ∃ and logical ands ∧, it
can be considered equivalent to evaluating CQs. CSPs are widely used in different
areas like in Artificial Intelligence (AI) and Operations Research. In AI and Machine
Learning a general overview of CSPs was given by Tsang, 1993. Constraint Programming
is broadly used as a method for solving CSPs. An overview is provided in Dechter,
2003. Among others Constraint Programming for Data Mining processes to solve CSPs
is given by De Raedt et al., 2010 or for learning optimal decision trees by Verhaeghe
et al., 2020. In Operations Research Constraint Programming was for instance used for
Resource-Constrained Project Scheduling Problems by Geibinger et al., 2019 and for
solving vehicle routing plans by Backer et al., 2000.

Therefore, we want to point out that optimizing the evaluation of CQs is not only useful
in database theory applications, but also can influence topics in the domains AI and
Operations research.

3.2 Complexity of evaluating CQs
Since CQs are very simple queries as explained above, e.g. in SQL they are SELECT-
FROM-WHERE statements only allowing equality conditions connected with ANDs,
one could assume that evaluating queries of this class should be easy. But Chandra and
Merlin, 1977 showed, that they are even NP-complete. This means in the worst case the
evaluation time of CQs increases exponentially with the size of the query.

In the last decades a lot of research was done to find classes of CQs, which still can
be evaluated in polynomial time and there have been successes. Some of them will be
introduced in the next chapters of this thesis (for example see Section 4.4 and 5.5).

12



CHAPTER 4
Hypergraphs and acyclicity

In Section 4.1 we introduce hypergraphs, which can be seen as abstractions of CQs. With
this concept, we can use the queries’ structure on a higher level. In Section 4.2 we explain
join trees and how they correspond to hypergraphs. Together with the definition of join
trees we can also introduce acyclic queries, a subclass of CQs. If a query has a join tree
and therefore is acyclic, can be checked with the GYO-reduction algorithm, which we
present in Section 4.3. Finally, after knowing a query is acyclic, it can be evaluated in
polynomial time using Yannakakis’ algorithm, which is given in Section 4.4.

4.1 Hypergraphs
This section is used to introduce hypergraphs, as well as explaining the connection
between hypergraphs and CQs. Since a hypergraph is based on a graph, we first formally
define what a graph is.

Definition 4.1.1 (Graph). A graph G(V, E) consists of a set of vertices V and a set of
edges E. The edges are connections between two vertices and can be written as tuples of
vertices: E ⊆ {(v1, v2)|v1, v2 ∈ V }.

A hypergraph is a graph with edges, which are then called hyperedges, where each of
them can also have more than two vertices. Formally a hypergraph can be defined as the
following.

Definition 4.1.2 (Hypergraph). A hypergraph H(V, E) consists of a set of vertices V
and a set of hyperedges E. Each hyperedge is a non-empty set of vertices: E ⊆ 2V \{∅}.

The structure of a CQ is crucial for properties like detecting acyclicity and the possibility
to evaluate it efficiently (for an explanation see Section 4.2). Therefore, a hypergraph is

13



4. Hypergraphs and acyclicity

a useful abstraction of the CQ since it reflects its structure. The edges of the hypergraph
correspond to the atoms of the CQ and the variables occurring in an atom of the CQ
correspond to the vertices in an edge of the hypergraph. Therefore, the structure of the
CQ is exactly represented by the hypergraph. Only the projections are neglected when
using the hypergraph representation.

As an example we use the following query.

Q(F, R) : −program(S,L,F),student(N,I,S),masterthesis(T,I,C),

professor(P,C),room(R,C)

The corresponding hypergraph is shown in Figure 4.1. The hypergraph H(V, E) has the
vertices V = {L, F, S, N, I, T, C, P, R} and the edges E = {program, student, masterthesis,
professor, room} = {{L, F, S}, {S, N, I}, {I, T, C}, {C, P}, {P, R}}.

Figure 4.1: Example hypergraph.

As we said before, we can see that the structure of this query is represented by the
hypergraph, but the final projection on F and R is not represented.

From now on we use hypergraphs and CQs as equivalent terms and we should always
keep in mind that they represent the same underlying structure.

4.2 Acyclicity and join trees
In this section we want to introduce acyclicity and we are defining it using join trees.
For summaries about acyclicity see Brault-Baron, 2016 and Fagin, 1983. Therefore, we
introduce join trees first. The formal definition of a tree can be done like the following.

Definition 4.2.1 (Tree). A rooted tree T (N, L) is a connected, acyclic graph with a
root node. The set of nodes (= vertices) of a tree is denoted as N and the set of links (=
edges) as L.

We use the terms nodes/links for trees and vertices/edges for graphs for easy distinction.
Each node in the tree can have multiple children and exactly one parent node corre-
sponding to the hierarchy. The root node is an exception since it has no parent. The leaf
nodes are the ones with no children.

Using the definition of a tree and a hypergraph we can define join trees now.

14



4.2. Acyclicity and join trees

Definition 4.2.2 (Join tree). A join tree T (N, L) of a hypergraph H(V, E) is a tree
which fulfills the following conditions:

• N = H(E)
• ∀v ∈ H(V ): {e ∈ H(E)|v ∈ e} induces a connected subtree of T .

The second condition of a join tree’s definition is often called "connectedness condition".
For one hypergraph there can be multiple join trees with different roots. This is used in
Section 5.5 for aggregate queries.

The definition of a join tree goes hand in hand with the definition of α-acyclicity of a
hypergraph.

Definition 4.2.3 (Acyclicity). A hypergraph H(V, E) is α-acyclic if it has a join tree.

In the following, when we use the term acyclic, we mean α-acyclicity (see Fagin, 1983,
Brault-Baron, 2016). An acyclic conjunctive query (ACQ) is a CQ, whose corresponding
hypergraph is acyclic.

In Figure 4.2 we can see two join trees corresponding to the example hypergraph in
Section 4.1, which we plot here again for better comparability.

(a) Hypergraph. (b) Join tree. (c) Join tree.

Figure 4.2: Example of corresponding hypergraph and join trees.

This hypergraph is acyclic since it has a corresponding join tree. The join trees T (N, L)
have the nodes N = H(E) = {{S, L, F}, {N, I, S}, {T, I, C}, {P, C}, {R, C}} and un-
named links in between them. The difference between the join trees in our example is,
that they have different root nodes. For join tree 4.2b the node {T, I, C} is the root,
whereas join tree 4.2c has {S, L, F} as its root. Additionally, the connectedness condition
can be checked. It can be seen that the variables L, F, N, T, P and R only occur once.
Therefore, they fulfill the connectedness condition trivially. For the variables S, I and C
we have to check if all hyperedges they appear in are connected. This is the case and we
illustrate the connected subtrees for join tree 4.2b in Figure 4.3.

Note that a join tree can be seen as query plan. The joins can be executed from the
bottom of the tree up to the root node.

15



4. Hypergraphs and acyclicity

(a) Connected subtree for S. (b) Connected subtree for I. (c) Connected subtree for C.

Figure 4.3: Illustration of the connectedness condition.

4.2.1 Complexity of evaluating ACQs

Yannakakis, 1981 introduced an algorithm enabling efficient evaluation of ACQs, demon-
strating that their evaluation is tractable. This is a remarkable result, since we heard in
Section 3.2 that the evaluation of CQs is NP-complete. The complexity of evaluating
ACQs is bounded by ˜︁O (||Q|| ∗ ||D|| + ||Q(D)||), where ˜︁O is the complexity hiding a log
factor, ||D|| represents the size of the input database instance, ||Q|| the size of the ACQ
Q and ||Q(D)|| the output size of the query (Grohe et al., 2001). This complexity is
often called total polynomial time or output polynomial time. It’s important to note
that although the algorithm’s time complexity is polynomial, the output size can still be
exponential in relation to the input size.
For boolean ACQs Gottlob et al., 1998 showed that the evaluation is even LOGFCL-
complete. This means boolean ACQs can not only be evaluated in polynomial time, but
are highly parallelizable.
Even if this is a favorable property, only a few real world queries are acyclic. Nevertheless,
we can use this efficient evaluation of ACQs as basic case, which can be extended to bigger
classes of queries via various notions of decompositions (see Section 4.4 and Section 5.5).

4.3 GYO-reduction

To check if a query has a join tree and if so to build one, we can use the GYO-reduction
algorithm, which was introduced by Graham, 1979 and C. Yu and Ozsoyoglu, 1979 at
the same time. With this algorithm a join tree can be computed efficiently if one exists.
The procedure works as defined in Algorithm 4.1.

In words, the GYO-reduction applies two rules on a hypergraph exhaustively until no
longer possible. The first rule is that hyperedges, which do not share any vertex with
another hyperedge, are eliminated. The second rule is that hyperedges are eliminated if
there is a witness for them. This means each vertex of the hyperedge is either exclusively
part of the hyperedge itself or present in another hyperedge, which is then called "witness".
Using these witnesses, we also get a join tree corresponding to the hypergraph. In this
join tree every witness of a hyperedge is a parent node of the node of the hyperedge. The

16



4.3. GYO-reduction

Algorithm 4.1: GYO-reduction
Input: A hypergraph H(V, E)

1 Procedure: GYO-REDUCTION(H(V, E))
2 while possible do
3 if ∃e ∈ E : ∀v ∈ e : ∄e′ ∈ E \ {e} : v ∈ e′ then
4 delete e
5 end
6 if ∃e ∈ E : ∃w ∈ E \ {e} : ∀v ∈ e : (v ∈ w ∨ ∄e′ ∈ E \ {e} : v ∈ e′) then
7 assign w as witness of e and delete e
8 end
9 end

10 return E;

hyperedges which only contain vertexes part of the hyperedge itself can be added to any
node of the join tree. If the result of the GYO-reduction is empty, a join tree exists.

We illustrate one possible GYO-reduction using the hypergraph which we also used in
the last two sections. It has the following vertices V = {L, F, S, N, I, T, C, P, R} and
hyperedges E = {{S, L, F}, {N, I, S}, {T, I, C}, {P, C}, {R, C}} and is represented again
in Figure 4.4.

Figure 4.4: Example hypergraph.

We start with this set of hyperedges: E = {{S, L, F}, {N, I, S}, {T, I, C}, {P, C}, {R, C}}.
As a first step we check if there is a hyperedge which does not share any vertex with another
one. There is no such case. Therefore, we next eliminate a hyperedge which has a witness.
We decide to take {S, L, F}, which has {N, I, S} as witness. The new set looks like this:
E = {{N, I, S}, {T, I, C}, {P, C}, {R, C}}. Again there is no hyperedge, which does not
share any vertex with another hyperedge. So, we go to step two again and eliminate
{N, I, S} with witness {T, I, C}. This gives us: E = {{T, I, C}, {P, C}, {R, C}}. The
first check again tells us, that there is no such hyperedge to eliminate. Next we eliminate
{R, C} and assign {P, C} as witness. Be aware that in this case also {T, I, C} could
be the witness. We get this set: E = {{T, I, C}, {P, C}}. We again cannot eliminate a
hyperedge with step one. The next elimination is {P, C} with witness {T, I, C}. Now
only this set remains: E = {{T, I, C}}. Therefore, the remaining hyperedge does not
share any vertex with another hyperedge and we eliminate it, which gives this set: E = {}.

17



4. Hypergraphs and acyclicity

Now both rules cannot be applied anymore. Since the result is an empty set, we know
that a join tree exists and that the hypergraph is acyclic. Moreover, we know the exact
join tree using the witnesses. Since the GYO-reduction can give us different results due
to the decisions in which order we eliminate the hyperedges and which witnesses we
choose, there is no unique join tree, but several possible ones. The one corresponding to
our example is the same one we already showed in Figure 4.2b.

4.4 Yannakakis’ algorithm
Once we have a join tree for a query, we can apply Yannakakis’ algorithm introduced by
Yannakakis, 1981. It consists of three stages, the first bottom-up traversal, the top-down
traversal and the second bottom-up traversal. The idea is to use only semi-joins to delete
all dangling tuples, which are tuples that do not contribute to the final result and then
only join the remaining, necessary tuples. By using this process for the evaluation of
acyclic queries, we get a tractable evaluation time (for details see Chapter 4.2.1).

This algorithm can only be applied if the hypergraph is acyclic. Therefore, we also can
construct a corresponding join tree using the GYO-algorithm. We take one join tree and
the relations corresponding to each node of the join tree and these are the inputs to the
algorithm.

The first bottom-up traversal performs semi-joins from the bottom up the tree. This
means for each node in the join tree, which has at least one child node, we apply semi-joins
on this node with each of its children starting at the bottom of the tree. After this
traversal each node contains those tuples, that can be extended to form joins with all
child nodes in the whole subtree.

The top-down traversal does exactly the same as the first bottom-up except that it starts
at the top and performs semi-joins with the corresponding parent node for each node
except the root. At this point, after the first two traversals, all dangling tuples have been
deleted.

This leads us directly to the final stage. We can join all relations now and by construction
all tuples, which are part of these joins, will be needed for the result, too. Therefore, we
handled all unnecessary intermediate results in a way that there are none of them anymore
and additionally we get a good join order. This traversal is again done bottom-up and
the relation at the root node contains the result of the query in the end.

To ensure that the result of Yannakakis’ algorithm (using the traversals and semi-joins)
is the required result of the query, we provide the following correctness conditions
(Eq. 4.1, 4.2, 4.3). For the used join tree T (N, L) we denote a subtree of T rooted at
the node n ∈ N as Tn(Nn, Ln). The relation corresponding to a node n ∈ N is called Rn

and depending on the result of the first, second and third traversal the corresponding
relations are denoted as R

′
n, R

′′
n and R

′′′
n respectively. The columns of a relation Rn at

the node n are denoted as col(n) and the columns of all joined relations of a subtree
Tn(Nn, Ln) at the node n are denoted as col(Nn).

18



4.4. Yannakakis’ algorithm

After the first traversal each relation has the following form

∀n ∈ N : R
′
n = πcol(n)(▷◁m∈Nn)Rm (4.1)

where (▷◁m∈Nn)Rm means, that the relations of all nodes of the subtree Tn(Nn, Ln) are
joined together. This equation tells us that after the first traversal each relation contains
the same values as if we would have performed joins in the subtree of that relation and
projected on the columns of that relation.
After the second traversal we have the results of joins in the whole tree projected on the
columns of the relation we look at.

∀n ∈ N : R
′′
n = πcol(n)(▷◁m∈N )Rm (4.2)

In the end, after the third traversal each relation has those values, which correspond to
joining all relations and projecting on the relations of the whole subtree.

∀n ∈ N : R
′′′
n = πcol(Nn)(▷◁m∈N )Rm (4.3)

Using these correctness conditions, we directly get that after the last traversal the root
contains the result of the query. Equation 4.3 looks like that R

′′′
r = πcol(Nr)(▷◁m∈N )Rm

= πcol(N)(▷◁m∈N )Rm = (▷◁m∈N )Rm for the root node r. Therefore we get the overall
join result of all tables (projected on all columns of all relations, which is equal to no
projection).

In Algorithm 4.2 we provide the pseudo-code for Yannakakis’ algorithm. In lines 2-17 we
introduce boolean flags to ensure that the join order is indeed bottom-up or top-down,
depending on the stage. For the two bottom-up traversals we only perform (semi-)joins
on those nodes, which have child nodes, and for the top-down only for the ones, which
have a parent. This is ensured in lines 19-21. The first bottom-up traversal is given
in lines 22-28, followed by the top-down traversal in lines 29-33 and in lines 34-38 the
second bottom-up traversal is performed. As result we return the final relation at the
root node, which now contains the query result by construction.

Furthermore, evaluating BCQs even gets easier (assuming that they are acyclic) and less
complex (for details see Chapter 4.2.1). For the evaluation of BCQs the first bottom-up
traversal is sufficient. In this traversal, we check if at least one tuple of the root node can
be extended to form a join with all other nodes. Using Equation 4.1 for the root node r
we get R

′
r = πcol(r)(▷◁m∈Nr )Rm = πcol(r)(▷◁m∈N )Rm and we can see that we get the join

result of all relations projected on the columns of the relation at the root node. For the
BCQ it is sufficient to know if there is or if there is not at least one tuple in the result.
This behaviour can be used for 0MA queries as well, which are explained in Chapter 5.5.

To show how Yannakakis’ algorithm works, we give an example using the database
schema we defined in 3.1. The query we want to evaluate is the same we used in the last
sections. We showed in Section 4.3 that it is acyclic and Yannakakis’ algorithm can be
applied. We will use the join tree we provided before and refer to it as "the" join tree in
the rest of this section, but be aware that we could also use different join trees.

19



4. Hypergraphs and acyclicity

Algorithm 4.2: Yannakakis’ algorithm
Input: A join tree T (N, L) and ∀n ∈ N a corresponding relation Rn, the set of

child nodes C(n) = {c1(n), ..., ck(n)} and the parent node p(n)
1 Procedure: YANNAKAKIS(T (N, L))
2 for n ∈ N do
3 if n is a leaf node then
4 up1_flagn = TRUE
5 down_flagn = FALSE
6 up2_flagn = TRUE
7 end
8 else if n is the root node then
9 up1_flagn = FALSE

10 down_flagn = TRUE
11 up2_flagn = FALSE
12 end
13 else
14 up1_flagn = FALSE
15 down_flagn = FALSE
16 up2_flagn = FALSE
17 end
18 end
19 NC1 := {n ∈ N |C(n) ̸= ∅}
20 NP := {n ∈ N |∃ p(n)}
21 NC2 := {n ∈ N |C(n) ̸= ∅}
22 while ∃ n ∈ NC1 : ∀ ci(n) ∈ C(n) : up1_flagn = TRUE do
23 for i ∈ {1, ..., k} do
24 Rn := Rn ⋉ Rci(n)
25 end
26 up1_flagn = TRUE
27 NC1 := NC1 \ {n}
28 end
29 while ∃ n ∈ NP : down_flagp(n) = TRUE do
30 Rn := Rn ⋉ Rp(n)
31 down_flagn = TRUE
32 NP := NP \ {n}
33 end
34 while ∃ n ∈ NC2 : ∀ ci(n) ∈ C(n) : up2_flagn = TRUE do
35 Rn := Rn ▷◁ Rci(n)
36 up2_flagn = TRUE
37 NC2 := NC2 \ {n}
38 end
39 return Rr = the relation of the root node;

20



4.4. Yannakakis’ algorithm

masterthesis
title imm._number advisor_code

Fraud Detection 11918450 4470
Hyperheuristics 11918451 4473

Reinforcement Learning 11918457 4475
Reinforcement Learning 11918459 4476

Algebra 11918453 4477

student
name imm._number study_prog.
Paul 11918450 Data Science

Hannes 11918451 Data Science
Julia 11918452 Tech. Mathematik

Christoph 11918453 Tech. Mathematik
Simon 11918454 Tech. Mathematik

Katharina 11918455 Biomedical Eng.
Christoph 11918456 Informatik

Philip 11918457 Data Science
Julian 11918458 Data Science
Jakob 11918459 Statistik

professor
name id._code

Benjamin 4470
Alexandra 4471

Gernot 4472
Magdalena 4473

Ingrid 4474

program
name label faculty

Data Science DC WINF
Tech. Mathematik TM MATH

Statistik ST MATH
Wirtschaftsmathematik WM MATH
Wirtschaftsinformatik WINF WINF

room
number id._code

1 4470
2 4470
3 4471
3 4472
5 4473
6 4475

Figure 4.5: Example join tree with instances.

The query looks like the following:

Q(F, R) : −program(S,L,F),student(N,I,S),masterthesis(T,I,C),

professor(P,C),room(R,C)

Before starting with the algorithm, we have to define instances for our relations. We
provide them together with the schematic representation of the join tree in Figure 4.5.

21



4. Hypergraphs and acyclicity

masterthesis
title imm._number advisor_code

Fraud Detection 11918450 4470
Hyperheuristics 11918451 4473

Reinforcement Learning 11918457 4475
Reinforcement Learning 11918459 4476

Algebra 11918453 4477

student
name imm._number study_prog.
Paul 11918450 Data Science

Hannes 11918451 Data Science
Julia 11918452 Tech. Mathematik

Christoph 11918453 Tech. Mathematik
Simon 11918454 Tech. Mathematik

Katharina 11918455 Biomedical Eng.
Christoph 11918456 Informatik

Philip 11918457 Data Science
Julian 11918458 Data Science
Jakob 11918459 Statistik

professor
name id._code

Benjamin 4470
Alexandra 4471

Gernot 4472
Magdalena 4473

Ingrid 4474

program
name label faculty

Data Science DC WINF
Tech. Mathematik TM MATH

Statistik ST MATH
Wirtschaftsmathematik WM MATH
Wirtschaftsinformatik WINF WINF

room
number id._code

1 4470
2 4470
3 4471
3 4472
5 4473
6 4475

Figure 4.6: Example join tree with instances after the first top-down traversal.

After the first bottom-up traversal, which performs semi-joins beginning at the bottom
and then going up the tree, some tuples have been deleted. The relations look like in
Figure 4.6 now. To get this result we take the relation student and perform a semi-join
with program, which only leaves those tuples that find a join partner. The same is done
for relation professor with room. Afterwards semi-joins between masterthesis
and student and between masterthesis and professor are performed.

22



4.4. Yannakakis’ algorithm

masterthesis
title imm._number advisor_code

Fraud Detection 11918450 4470
Hyperheuristics 11918451 4473

Reinforcement Learning 11918457 4475
Reinforcement Learning 11918459 4476

Algebra 11918453 4477

student
name imm._number study_prog.
Paul 11918450 Data Science

Hannes 11918451 Data Science
Julia 11918452 Tech. Mathematik

Christoph 11918453 Tech. Mathematik
Simon 11918454 Tech. Mathematik

Katharina 11918455 Biomedical Eng.
Christoph 11918456 Informatik

Philip 11918457 Data Science
Julian 11918458 Data Science
Jakob 11918459 Statistik

professor
name id._code

Benjamin 4470
Alexandra 4471

Gernot 4472
Magdalena 4473

Ingrid 4474

program
name label faculty

Data Science DC WINF
Tech. Mathematik TM MATH

Statistik ST MATH
Wirtschaftsmathematik WM MATH
Wirtschaftsinformatik WINF WINF

room
number id._code

1 4470
2 4470
3 4471
3 4472
5 4473
6 4475

Figure 4.7: Example join tree with instances after the bottom-up traversal.

Similarly semi-joins for the top-down traversal are performed. Note that only tuples that
have been left after the first traversal are used now. The semi-joins here are done between
student and masterthesis, between professor and masterthesis, between
program and student and between room and professor. In Figure 4.7 we can see
the resulting relations without dangling tuples as a result after the bottom-up traversal.

23



4. Hypergraphs and acyclicity

Finally, in the second bottom-up traversal joins between the relations having only tuples
left, which are contributing to the result, are performed, again starting at the bottom.
In this case it would also work to do a top-down traversal. Nevertheless be aware that
a random order would not work, since most of the tables do not share a join column
then. For our example in this final traversal we start with joining student on attribute
"study_prog." with the attribute "name" of the program relation. This join result is then
joined on "imm._number" with masterthesis on the "imm._number" attribute. We
call that intermediate result masterthesis1 for now. After that we join professor
with room on "id._code", which is then joined with masterthesis1 on "advisor_code".
The result of Yannakakis’ algorithm is therefore one table consisting of all columns and
the remaining rows at the root node. For our example, the result is presented in Table 4.1.

Join result
T N I S L F P C R

Fraud Detection Paul 11918450 Data Science DC WINF Benjamin 4470 1
Fraud Detection Paul 11918450 Data Science DC WINF Benjamin 4470 2
Hyperheuristics Hannes 11918451 Data Science DC WINF Magdalena 4473 5

Table 4.1: Join result of Yannakakis’ algorithm.

In the Figures 4.5, 4.6, 4.7 we used recognizable abbreviations for some of the attribute
names. In this result table we decided to only use single letters because of space issues
again. These letters correspond to the letters used in the query we want to evaluate. "T"
corresponds to "title" of the relation masterthesis. The "name" of the student is
represented with "N". "I" is the "imm._number" (="immatriculation_number") of both
masterthesis and student. The "study_prog." (= "study_program") of student
was joined with "name" of program and called "S" now. "L" and "F" are the "label"
and "faculty" of the program. The attribute "name" of professor is represented
with "P". Then "C" is the "advisor_code" of masterthesis and the "id._code" (=
"identification_code") of both professor and room. And "R" represents the attribute
"number" of the relation room.

Yannakakis’ algorithm is finished here, but the query still has a projection on the
attributes "F" and "R". The final evaluation result of that query is given in Table 4.2.

Query result
F R

WINF 1
WINF 2
WINF 5

Table 4.2: Evaluation result of the example query.

24



CHAPTER 5
Decompositions and beyond CQs

In this chapter we introduce several decompositions of trees and graphs with their
corresponding width measure. Decompositions can be useful to split complex structures
and computational problems into smaller problems, which can be calculated more
efficiently. Additionally, they can be used to transform cyclic queries into acyclic ones.
The width notions are often used to quantify the complexity of graphs and problems.

In Section 5.1 we introduce tree decompositions, then in Section 5.2 hypertree decom-
positions (HDs) and in Section 5.3 generalized hypertree decompositions (GHDs). In
Section 5.4 we consider the computational properties of finding and using decompositions,
which includes connecting and comparing join trees, HDs and GHDs.

Decompositions and width measures are highly useful in our context, since Bonifati et al.,
2017 and Fischl et al., 2021 analyzed millions of benchmark queries and query logs, where
nearly every query of those is "almost acyclic" in a sense of having HDs width smaller or
equal to two. Similar methods as for acyclic queries can be applied to "almost acyclic"
queries, which leads to efficient evaluation (Gottlob et al., 1999).

The other part of this chapter is about going beyond CQs. Even if CQs are fundamental
queries and are present in real-world applications, this class of queries is very restricted.
Therefore, we want to allow some additional properties to broaden the class of queries
we consider. In Section 5.5 we look at CQs with additional aggregates and introduce the
zero-materialisation answerable (0MA) queries from Gottlob et al., 2023.

5.1 Tree decompositions
The first decomposition of a graph, which we consider, is the tree decomposition with
the tree width introduced by Robertson and Seymour, 1983. Formally we can define tree
decompositions like in the following using trees and graphs like in Definition 4.2.1 and
Definition 4.1.1.

25



5. Decompositions and beyond CQs

Definition 5.1.1 (Tree Decomposition). A tree decomposition < T , χ > of a graph
G(V, E) is a tree T (N, L) with a labelling function χ : n ∈ N → χ(n) ⊆ V , which fulfills
the following conditions:

1. For each graph vertex v ∈ V there exists a tree node n ∈ N : v ∈ χ(n).
2. For each graph edge (v1, v2) ∈ E there exists a tree node n ∈ N : (v1, v2) ⊆ χ(n).
3. For each graph vertex v ∈ V the set {n ∈ N |v ∈ χ(n)} induces a connected subtree

T ′ of T (connectedness condition).

A tree decomposition is a tree, which corresponds to a graph and is connected through
the labelling function. Each graph vertex has to be contained in a tree node and each
graph edge has to be a subset of a tree node. The connectedness condition says that for
each vertex the nodes in the tree where it appears have to be connected.

Now we can introduce the corresponding width measure of a graph, the tree width.

Definition 5.1.2 (Tree width). The width of a tree decomposition < T , χ > with
T (N, L) is max

n∈N
(|χ(n)| − 1). The tree width tw(G) of a graph G is the minimum width

over all its tree decompositions.

We give an example for a tree decomposition with width 2 in Figure 5.1.

(a) Graph. (b) Tree decomposition.

Figure 5.1: Example tree decomposition.

Each vertex A-G is contained in at least one node in the tree. Each edge {{A, B}, {A, C},
{B, C}, {C, D}, {D, E}, {D, F}, {E, F}, {D, G}} is contained in one node in the tree and
the connectedness condition is also fulfilled since the subgraphs for each vertex are
connected.

5.2 Hypertree decompositions (HDs)
The hypertree decomposition (HD) is a generalization of the tree decomposition. Descrip-
tions of the HD and width are given in Gottlob et al., 1999. We first have to introduce
hypertrees.

26



5.2. Hypertree decompositions (HDs)

Definition 5.2.1 (Hypertree). A hypertree <T , χ, λ> of a hypergraph H(V, E) is a
rooted tree T (N, L) with two labeling functions χ and λ. The functions assign a set of
vertices or edges for each tree node: χ : n ∈ N → χ(n) ⊆ V and λ : n ∈ N → λ(n) ⊆ E.

With that definition we can formally define HDs now.

Definition 5.2.2 (Hypertree Decomposition (HD)). A hypertree decomposition HD =
< T , χ, λ > of a hypergraph H(V, E) is a hypertree with the rooted tree T (N, L) and
the two labelling functions χ and λ, which fulfills the following conditions:

1. For each hypergraph edge e ∈ E there exists a hypertree node n ∈ N : e ⊆ χ(n).
2. For each hypertree node n ∈ N : χ(n) ⊆ var(λ(n)).
3. For each variable in the hypergraph y ∈ var(H): {n ∈ N |y ∈ χ(n)} induces a

connected subtree of T (connectedness condition).
4. For each hypertree node n ∈ N : var(λ(n)) ∩ χ(Tn) ⊆ χ(n) (special condition).

In this definition Tn denotes the subtree of T rooted at n. So, the definition tells us,
which conditions the hypertree of the hypergraph has to fulfill to be a HD. First, for
each hypergraph edge there has to be a hypertree node, such that all variables of the
hypergraph edge are covered by that node of the hypertree. For each hypertree node the
vertices at that node are a subset of the variables assigned by the labelling function λ(n),
which gives the edges that cover this node. The third condition is the connectedness
condition again, like we had for the tree decompositions. For the special condition for
each hypertree node the variables assigned by λ(n) intersected with the vertices of the
subtree rooted at the node have to form a subset of the vertices at the node n. In other
words if a vertex, which is covered by the edges that cover one node (λ(n)), does not
appear in the bag of vertices of that node, it must not reappear anywhere in the subtree.

The corresponding hypertree width is defined as:

Definition 5.2.3 (Hypertree width). The width of a hypertree <T , χ, λ> with T (N, L)
is max

n∈N
(|λ(n)|).

The hypertree width hw(H) of a hypergraph H is the minimum width over all its hypertree
decompositions.

(a) Hypergraph. (b) Hypertree decomposition.

Figure 5.2: Example hypertree decomposition.

27



5. Decompositions and beyond CQs

To illustrate the HD we provide an example in Figure 5.2. We can see a hypergraph and
its corresponding HD including the edge cover, which represents the labelling function λ.
It gives the edges, which cover the vertices in the node.

The first condition is fulfilled, since all hypergraph edges: {{A, B}, {C, D}, {C, E, F},
{B, D, G, H, I}, {I, J}, {J, K}, {K, L, M}, {M, N}} appear in one of the nodes of the
hypergraph. For checking the second condition we can use the edge cover. For the
node {B, C, D} the var(λ(n)) = {B, D, G, H, I, C, D}, so the subset condition is fulfilled.
For all other nodes it is fulfilled with equality. The connectedness condition can be
checked vertex by vertex and it can be seen that they induce subtrees each time. For the
special condition we have to take all variables in the edge cover and intersect it with all
variables in the subtree for each node and we can see that they are indeed subsets of the
variables at node n. For example for the node {B, C, D} we get {B, D, G, H, I, C, D} ∩
{A, B, C, E, F} = {B, C} ⊂ {B, C, D}.

But if for example the node {A, B} would be {A, B, G} this condition would not be
fulfilled ({B, D, G, H, I, C, D} ∩ {A, B, G, C, E, F} = {B, G, C} ̸⊂ {B, C, D}).
The width of this HD is 2.

5.3 Generalized hypertree decompositions (GHDs)
The generalized hypertree decomposition (GHD) is a further generalization of the hyper-
tree decomposition. Insights can be gained in Gottlob et al., 2011, as well as comparisons
of the different width measures in Gottlob et al., 2016.
We introduce GHDs formally.

Definition 5.3.1 (Generalized Hypertree Decomposition (GHD)). A hypertree decom-
position GHD =< T , χ, λ > of a hypergraph H(V, E) is a hypertree with the rooted
tree T = (N, L) and the two labelling functions χ and λ, which fulfills the following
conditions:

1. For each hypergraph edge e ∈ E there exists a hypertree node n ∈ N : e ⊆ χ(n).
2. For each hypertree node n ∈ N : χ(n) ⊆ var(λ(n)).
3. For each variable in the hypergraph y ∈ var(H): {n ∈ N |y ∈ χ(n)} induces a

connected subtree of T (connectedness condition).

This definition is exactly the same as the hypertree decomposition definition, except that
the last condition of the HD does not have to be fulfilled by a GHD.
The corresponding width is defined equivalently as before as:

Definition 5.3.2 (Generalized hypertree width). The width of a hypertree <T , χ, λ>
with T (N, L) is max

n∈N
(|λ(n)|).

The generalized hypertree width ghw(H) of a hypergraph H is the minimum width over
all its GHD.

28



5.4. Computational properties

We do not provide another example here, since we have got the example for an HD above,
which is also a GHD. Additionally, we mentioned before, that if the node {A, B} would
be {A, B, G} the special condition would not be fulfilled, which means it would not be a
HD anymore, but it would be a GHD.

5.4 Computational properties
In this section we want to provide computational properties of decompositions, which
includes finding and using them. Additionally, this gives us connections and comparisons
between the different decomposition concepts.

Starting with comparing HDs and GHDs, one could ask, why we should ever use HDs,
since they restrict the class of GHDs. This is due to the complexity of computing the
decompostitions. Given a CQ and computing if the width is smaller or equal a fixed
number (mostly 2 or 3) is NP-complete for the generalized hypertree decomposition/width,
but tractable for the hypertree decomposition/width. Additionally, Fischl et al., 2021
showed, that the hypertree width and the generalized hypertree width are the same for
most real-world queries. This means hypertree decompostitions can be computed faster
and are most of the time not worse than GHDs.

After getting a HD we would like to have the same favorable behaviour than join trees.
This can be achieve very easily. We just have to join the relations in each node of
the hypertree together and this gives us a join tree, which can then be processes as in
Section 4.4 with Yannakakis’ algorithm.

5.5 Beyond CQs: 0MA queries
The class of CQs is a basic class of queries, only allowing selections, projections and
equi-joins. We now want to introduce a class of queries, where aggregates are allowed. As
mentioned in Section 4.4 BCQs can be evaluated by using only one traversal of Yannakakis’
algorithm. This decreases the evaluation time enormously. That is the reason why the
zero-materialisation answerable (0MA) class was introduced recently in Gottlob
et al., 2023. 0MA queries are queries, which can be answered after the first traversal
of Yannakakis’ algorithm. Naturally, BCQs are a subclass of 0MA, but additionally
all queries with the aggregates MIN and MAX and aggregates in combination with
DISTINCT, like COUNT(DISTINCT ...), are 0MA. To formally define the class of 0MA
queries, we need some other definitions, starting with queries in aggregation normal form.

Definition 5.5.1 (Aggregation normal form of a query). A query Q is in aggregation
normal form ⇔ it is of the form γU (πS(Q′)), where Q′ is a CQ.

In this definition γU represents a group-by of the attributes and aggregate expressions
contained in U and πS a projection on the attributes S. Since the group-by implicitly
also projects on some attributes, the πS would not be required formally.

29



5. Decompositions and beyond CQs

Using this we can introduce guarded queries.

Definition 5.5.2 (Guarded query). A query Q in aggregation normal form, i.e. Q =
γU (πS(Q′)), is guarded ⇔ ∃ relation R in Q′: Att(U) ⊂ Att(R).

Guarded therefore means, that all attributes in the group-by clause occur in the relation
R. So R "guards" the query Q or is the "guard" of Q.

Now, we define what set-safe queries are.

Definition 5.5.3 (Set-safe query). A query Q in aggregation normal form, i.e. Q =
γU (πS(Q′)), is set-safe ⇔ Q = γU (δ(πS(Q′))).

Here δ represents duplicate elimination. This means a query is set-safe if duplicate
elimination before the group-by does not change the output of the query.

Now we have all we need to introduce 0MA queries formally.

Definition 5.5.4 (Zero-materialisation answerable/0MA query). A query Q in ag-
gregation normal form is zero-materialisation answerable (0MA) ⇔ Q is guarded and
set-safe.

Therefore, 0MA queries have one node containing all aggregation attributes. As we heard
before hypergraphs have several join trees and we then choose the join tree with the node
containing the attributes as root. This enables that only one traversal of Yannakakis’
algorithm is sufficient.

A further extension would be to consider counting-based aggregate queries, which are
guarded, but do not need the set-safety anymore. We are not considering them in this
thesis, but this class is presented in Lanzinger et al., 2024.

30



CHAPTER 6
Machine Learning

In this chapter we want to explain some Machine Learning (ML) concepts such as the
models, which we can use for our decision problem of the thesis. Machine Learning can
be considered as part of Artificial Intelligence (AI), which has experienced a big hype
in the last few years and still is. Machine Learning has three common sub-disciplines:
Unsupervised (Machine) Learning, Supervised (Machine) Learning and Reinforcement
Learning. An overview of Machine Learning in general, definitions and models are given
in Mitchell, 1997 and Mohri et al., 2012.
Unsupervised Learning methods are applied on unlabelled data and the goal is to find
clusters, groups, patterns or outliers in the data. A review of different unsupervised
methods is given by Naeem et al., 2023. One of the most common tools of unsupervised
ML is clustering, about which Rodriguez et al., 2016 give an overview.
Supervised Learning works with labelled data, which means a response variable is given
for the training data. The goal is to design a model, which is able to predict the label
for unseen data. Overviews of some supervised ML techniques are given by Nasteski,
2017 and Alloghani et al., 2020. A comparison of different supervised ML methods on
real-world data is done by Crisci et al., 2012.
In Reinforcement Learning methods an agent takes actions in a given environment
and learns a policy in order to maximize the cumulative reward. An introduction to
Reinforcement Learning is provided by Sutton and Barto, 2018.
We are going to use Supervised Machine Learning, since we are dealing with labelled
data. Supervised ML is divided into two big concepts: Classification and Regression.
Classification methods are used, when the response variable has values of a predefined
set of classes, whereas the response variable for Regression tasks is continuous. In
Choudhary and Gianey, 2017 an overview of regression methods and classification methods
is provided. Caruana and Niculescu-Mizil, 2006 give an empirical comparison of eight
supervised ML models on eleven different binary classification datasets. Almaghrebi
et al., 2020 compare three regression models on a prediction task.

31



6. Machine Learning

We start with describing several supervised learning methods in Section 6.1 for classi-
fication and regression. Additional to the models that are used other things like data
preparation and evaluation are crucial tasks for ML. We will describe the concept of data
augmentation in Section 6.2, which helps creating data if there are not enough training
samples. In Section 6.3 we then provide the experiment design of a model selection
workflow to be able to compare the different models.

6.1 Supervised Learning Models
There is a wide range of available ML models and we decided to use and describe six of
them (plus one combination of two of these). In Section 6.1.1 we introduce the k-Nearest
Neighbors (k-NN) model, which is a lazy learner, but easy interpretable. In Section 6.1.2
we explain decision trees, which are easy to understand and interpret, but sometimes are
prone to overfitting. Therefore, in Section 6.1.3 we introduce random forests, which are a
combination of several decision trees to avoid the overfitting, but they are computationally
more expensive. For high dimensional data support vector machines are very useful, but
they only can be applied for binary problems. We will explain them in Section 6.1.4.
In Section 6.1.5 multi-layer perceptrons are introduced, which can be considered as
deep learning models. They are highly flexible and powerful, but need a lot of training
data and are often not interpretable. Similarly, we use a hypergraph neural network,
which is a deep learning model, but takes a hypergraph as input instead of numerical
features (Section 6.1.6). To combine the information of the numerical features and the
hypergraph, we design a neural network, which combines two multi-layer perceptrons
and the hypergraph neural network in Section 6.1.7. These models can all be applied for
classification and regression with some modifications.

6.1.1 k-Nearest Neighbors (k-NN)

One of the most straightforward ML models is the k-Nearest Neighbour algorithm. The
k-NN is mostly used for classification, which is why we start to explain the k-NN classifier.
Afterwards we will extend it to regression.

Given a new instance the k-NN classifier searches for the k nearest training set instances
based on a chosen distance metric and takes the majority class of those neighbors as
prediction. This very easy approach is a big advantage and k-NNs are often used as first
model applied to a task. Nevertheless, the k-NN model is a lazy learner. This means
it calculates everything at that time, when the new instance is given to the algorithm.
So, if we have a lot of data we want to get predictions for, the computation is done at
the classification step for each single instance, since there is no training phase before.
This can lead to very long running times. Also, depending on the size of the training
set, the running times can increase enormously, since every new instance is compared to
every instance in the training set to get the nearest ones. Moreover, the choice of the
parameter k and the used distance measure are crucial for the result. The k-NN model is

32



6.1. Supervised Learning Models

highly sensitive to local noise and not robust. An overview of k-NN classifiers is given in
Cunningham and Delany, 2007.

(a) k = 1. (b) k = 3. (c) k = 5.

Figure 6.1: Illustration of the k-NN classifier with two classes, Euclidean distance and
different values of k.

To illustrate the k-NN classifier we provide Figure 6.1. For this example we decided to
use the euclidean distance and two classes, which are yellow circles or blue rectangles.
For a given new instance, the white diamond, we want to predict the class for k = 1, k =
3 and k = 5. It is common to use k equal to a number, which cannot be divided by the
number of classes to avoid ties. In Figure 6.1a we can see that the predicted class would
be circle/yellow, but for the other two examples in Figure 6.1b and 6.1c rectangle/blue
would be the prediction.

For a k-NN regression the k nearest neighbors based on the given features are taken
and the average (or weighted average) of their values is the new predicted value. In
Figure 6.2 we show a simple regression example, where x is the given feature and y should
be predicted. We want to predict the value at x = 4. For k = 1 we get the value 2, for k
= 3 we get 2.67 and for k = 5 the value is 3.2.

(a) k = 1. (b) k = 3. (c) k = 5.

Figure 6.2: Illustration of a simple k-NN regressor using the average and different values
of k.

33



6. Machine Learning

6.1.2 Decision Tree
Decision trees are models with resulting trees (see Definition 4.2.1), where each inner
node represents a decision and the leaf nodes the prediction. Decision trees are highly
explainable and therefore widely used. They can be applied to both classification and
regression and additionally for a mixture of them. At each node there is an equality or
inequality condition for a feature with a value/class. It is also possible that multiple
conditions for the same or different features are given at one node. This divides the
feature space in sections, where each section gets an assigned label. After the training
process the decision tree gets a new instance and just has to check the conditions at the
nodes and assign the label or value at the leaf node, where the instance belongs to. An
introduction of decision trees is given by Quinlan, 1986.

A decision tree tries to separate all instances in the training set by setting conditions
based on the values of the features, such that each training instance is correctly classified.
If some instances are similar, but the predictions different, the decision tree tries to
distinguish the features further and further. Therefore, decision trees are prone to
overfitting.

Figure 6.3: Illustration of a decision tree classifier.

In Figure 6.3 we provide an example of a decision tree. On the left the training set is
given as well as the instances we try to predict. We have the age, sex and education of a
person and want to find out if the person is married or not. On the right we can see a
decision tree with three decision nodes and four leaf nodes for the prediction. For the
new samples we can go through the decision tree to get the predictions. Starting from
the root, when analyzing the new sample 1, we proceed to the left side, since the sex is
M. Here, we further examine the age, which is greater than 25, which indicates marital
status based on our decision tree. Similarly for new sample 2 we get the prediction that
the person is not married.

6.1.3 Random Forest
One way to avoid the overfitting of the decision tree is to train multiple decision trees
and use them together. This is what random forests do. After training several decision
trees the new samples are given to each of the decision trees and the prediction of the

34



6.1. Supervised Learning Models

random forest is the majority of the predicted classes of the decision trees (classification)
or the average of the predicted values of the decision trees (regression). This method is
of course computationally more expensive and less interpretable. On the other hand, it
not only reduces overfitting and handles noisy data well, it is also able to produce useful
results for big datasets.

Such methods like the random forest approach, which combine several models are called
ensemble learning techniques. Random forests were introduced by Ho, 1995.

6.1.4 Support Vector Machine
Support Vector Machines (SVMs) separate the classes by defining a hyperplane in the
feature space, where the margin between the classes should be as big as possible. In this
context the margin is the distance between the hyperplane and the nearest data point.
One big advantage is that they cannot only do this with a linear decision boundary, but
also using the "kernel trick", which is explained in the following. Each side of the decision
boundary defines the space, where one class is predicted for new instances. Disadvantages
of SVMs are that they are sensitive to parameter choices and the classical version of
SVMs are only binary classifiers. SVMs were introduced by Boser et al., 1992.

We are going to explain how an SVM works using Figure 6.4 and perform classification
with two classes starting with a linear decision boundary. On the left, in Figure 6.4a,
we can see two classes, which are separated by a simple linear function. This is what a
Perceptron does (a simple ML model). SVMs are based on this concept, but maximize
the margin between the classes. This can be seen in Figure 6.4b, where the solid black
line is the linear separation and the gap between the two dashed lines is the margin.

(a) Perceptron. (b) SVM.

Figure 6.4: Illustration of a perceptron and a support vector machine.

To define SVMs mathematically we introduce the labels -1 and 1 for our two classes. The
training instances are called xi with the corresponding true label ti and the predicted

35



6. Machine Learning

label of the SVM d(xi), where i = 1, ..., N with N equal to the total number of instances.
The first condition that has to be fulfilled is d(xi)ti ≥ 1, since the true label and the
predicted label have to be the same. Since our decision boundary is linear this can be
written as (wT xi + w0) ∗ ti = wT xiti + w0ti ≥ 1, where w is the coefficient vector and w0
is the bias. The second condition is that the margin should be as big as possible. We
define the margin as 2

||w|| (see Figure 6.4b where the distance between the solid line and
each dashed line is 1

||w||). Maximizing the margin is equivalent to minimizing ||w|| or
minimizing ||w||2 = wT w. The whole SVM can then be formulated as Lagrange problem:

L(w, α) = 1
2wT w −

N∑︂
i=1

αi(wT xiti + w0ti − 1) (6.1)

Since it is a Lagrange problem this primal version can be rewritten as dual formulation.
To do that, we calculate the derivatives for our parameters w and w0. This gives us the
following conditions: w =

N∑︁
i=1

αitix
T
i and

N∑︁
i=1

αiti = 0. Substituting that into the primal
formulation of the Lagrange problem and rearranging the terms gives us the dual:

L(α) = −1
2

N∑︂
i=1

N∑︂
j=1

αiαjtitjxT
i xj +

N∑︂
i=1

αi, αi ≥ 0 (6.2)

Now the x vectors are only appearing in an inner product here. This is important since
we now only looked at the linear case, but as mentioned above, the SVM is working for
higher dimensional cases, too. This can be achieved by using different decision boundaries
like illustrated in Figure 6.5a. Additionally, instead of having the problem of defining
inner products in a higher dimensional space, we can replace the inner product by a
kernel function like a sigmoid or polynomial function and since x only appears in inner
products as we can see in Equation 6.2 it is sufficient to define a high dimensional kernel.
This is called the "kernel trick". The corresponding dual Lagrange problem looks like the
following, were K(xi, xj) represents the kernel:

L(α) = −1
2

N∑︂
i=1

N∑︂
j=1

αiαjtitjK(xi, xj) +
N∑︂

i=1
αi, αi ≥ 0 (6.3)

This gives us the possibility to achieve perfect separation even in very high-dimensional
spaces. On the other hand, the behaviour in the plot in the middle of Figure 6.5 is
not always the most desirable one, since these two classes could be linearly separated
with only one misclassification. This means if we use the formulation of an SVM like in
Equation 6.3 overfitting is very likely. Therefore, SVMs with soft margins are very useful
because of the possibility to regularize the dimensionality of the decision boundary. What
is the difference between a "classical" SVM and one with a soft margin? The SVM with
a soft margin allows some instances to be on the wrong side of the decision boundary.

36



6.1. Supervised Learning Models

(a) SVMs with high-dim. decision boundaries. (b) SVM with constraints.

Figure 6.5: Illustration of support vector machines with kernel or constraints.

The misclassified instances still have to be within a provided ϵ range. As example we can
see the SVM with a soft margin in Figure 6.5b. Be aware that the data points in the
middle and right plot of Figure 6.5 are the same.

After formulating the SVM with a soft margin as Lagrange problem and reformulating
it, we get the following dual formulation, which only has one additional constraint in
comparison to the SVM dual formulation:

L(α) = −1
2

N∑︂
i=1

N∑︂
j=1

αiαjtitjK(xi, xj) +
N∑︂

i=1
αi, 0 ≤ αi ≤ C

N
(6.4)

In contrast to the introduced SVMs for classification it also works for regression. The goal
has to be reformulated from maximizing the margin between the classes to minimizing
the error between the true and predicted values, while still trying to keep the margin
as big as possible. The concept is the same and again kernel functions can be used to
represent higher dimensional relationships, as well as a soft margin formulation is possible.
An overview of SVM regression is given by Smola and Schölkopf, 2004.

6.1.5 Multi-Layer Perceptron
Multi-layer perceptrons (MLPs) are highly flexible Neural Networks (NNs) and can be
considered as deep learning models. This provides a lot of possibilities like deciding which
architecture to use. Moreover, MLPs are good at handling high dimensional data and
learning complex patterns. On the other side, they are often computationally expensive
and less interpretable. An overview of MLPs and NNs in general is given in Popescu
et al., 2009.

As the name suggests they are combinations of several perceptrons. One example of a
perceptron is already shown in Figure 6.4a. As a function a perceptron looks like this:
y = w0 + wT x. This formula represents the multiplication of the input vector with the
weight matrix and the addition of the bias.

37



6. Machine Learning

Now we want to be able to represent higher dimensional relationships. Therefore, we
add activation functions. Examples of activation functions are the sigmoid function,
tangens hyperbolicus (tanh) and the Rectified Linear Unit (RELU). We denote an
activation function with σ. The new formula looks like this y = σ(w0 + wT x). To get
an MLP we additionally add at least one hidden layer. This means we multiply the
input with weights and a bias and apply the chosen activation function on it and then we
take these intermediate outputs and repeat the same procedure: multiply with weights,
add the bias, apply the activation function. For one hidden layer the formula then is:
y = σ2((w0)2 + wT

2 (σ1((w0)1 + wT
1 x))). This can then be extended as far as wanted

and needed. The activation function(s) and the number and size of the hidden layers
can be chosen in any way. The training consists of giving inputs and outputs to the
MLP and learning the weights in between. The procedure used for this process is called
backpropagation, since it starts at the outputs and learns the weights back through the
network to the input layer. This method is based on gradient descent and was described
by Rumelhart and McClelland, 1987.

In Figure 6.6a we can see a schematic representation of MLPs with arbitrarily many
hidden layers and chooseable sizes of the layers. In Figure 6.6b we can see one MLP
architecture. It has two hidden layers with sizes 5 and 3. The input vector has size 4
and the prediction is a 1-dimensional output.

(a) Schema of MLPs. (b) Example MLP.

Figure 6.6: Illustration of fully-connected multi-layer perceptrons.

In this whole section we introduced the MLPs as fully-connected MLP, which means each
unit of each layer has a connection with each unit of the next layer. This is not necessarily
always the case. This additional flexibility allows for the selection of connections based
on specific needs.

6.1.6 Hypergraph Neural Network
Neural Networks in general are highly flexible and as just mentioned for the MLP the
number of layers and nodes, the activation function and a lot of other components can

38



6.1. Supervised Learning Models

be chosen based on different purposes. Until now, the inputs to the neural networks
were numerical feature vectors. If a hypergraph is the basis of an ML problem, it can
be a method to try to find features, which represent important characteristics of the
hypergraph, but the structure of the hypergraph(s) contains so much information, that it
would be nice to feed the whole hypergraph into the neural network, which learns the
structure.

This is were Hypergraph Neural Networks (HGNNs) come into play. The idea is to
represent the hypergraph somehow in a vector space and perform message passing through
the neural network (Feng et al., 2019). If this is done, all possible layers can be stacked
again to build a neural network on top of the hypergraph vector space.

We briefly want to introduce two common concepts used as neural layers: the convolutional
layer and the pooling layer. Convolutional layers are kernels, which slide over the tensor
of one layer and are multiplied with each part. The purpose is to learn patterns of the
data by learning the weights of these kernels. In contrast to that, the purpose of pooling
layers is to reduce the dimensionality by taking the average or maximum of some parts of
the tensor. In Figure 6.7 both concepts are visualized. The functionality of MLPs, which
is to multiply weights with the whole vector/tensor, is also called linear layer. Being
aware of these different types of layers, one can be very creative in designing all kinds of
neural networks.

(a) Convolutional layer. (b) Pooling layer.

Figure 6.7: Illustration of neural network layers.

6.1.7 Combination of MLP and HGNN

Knowing of all the tools explained in the last two subsections, it is easy to combine both
variants with an additional neural network. This can be done in various ways and we will
provide one possibility. The MLP can get (numerical) features as input, apply multiple
linear layers on it and get an output vector vMLP . In a similar way, the hypergraph
can be put into the HGNN, which e.g. consists of several convolutional layers and a
pooling layer, and leads to the output vector vHGNN . Now these two vectors vMLP and
vHGNN can be concatenated to one new numerical vector, which can be taken as input
for another neural network. Again, all possible layers could be stacked for that one, e.g.
some linear layers. In the end the output vector represents the input of the features and
the hypergraph and the whole network learns to combine these information.

39



6. Machine Learning

6.2 Data augmentation
Machine Learning models are always trained on data. Therefore, having enough train-
ing data is very often crucial for the performance and generalizability of the model.
Nevertheless, for real world applications, it can be challenging to have/find a sufficient
amount of data. In order to be able to use the desired models, data augmentation
plays an important role. Data augmentation is the process of creating new training
data based on the existing ones by changing something. There are a lot of existing data
augmentation methods. Depending on the underlying data and data type they can vary
a lot. Typical examples for tabular data is adding noise to some variables, shifting the
data or oversampling the minority classes to handle class imbalances. For text data it is
very common to replace letters or words randomly, with a probability or by synonyms.
Data augmentation for visual data is very often used since images are very complex.
Here, mirroring the image, changing contrast and brightness or adding random noise are
typical examples. An overview of data augmentation techniques for different data types
is given in Volkova, 2024.

6.3 Experiment design: Model selection
In this section we want to explain the experiment design of model selection, which is a
framework for selecting the best performing model. An overview of the steps of such
workflows is given in Raschka, 2020 and in Muller and Guido, 2018.

There are different ways to do this and several stages of this process can be performed in
different ways. The experiment design, which we will use, is visualized in Figure 6.8.

Figure 6.8: Experiment design.

The input to this workflow is the raw data or preprocessed data, which can be used
for further steps. Preprocessing often consists of handling missing values or outliers
depending on the available data. Then, data augmentation can be done if necessary,
which we explained in Section 6.2.

One very important step is to split the data into a train and test set, where the test
set is never used during the training process. This is important to be able to get a

40



6.3. Experiment design: Model selection

meaningful and reliable result, since the data we want to apply to the model later on, is
also not known in the training process. Very often an additional split is performed to get
a train, validation and test set. In this case the validation set is used to compare the
performance of the different models and the different hyperparameter settings on data,
which the model (trained on the train set) did not use for the training. An alternative to
the train-validation split is cross-validation, which is similar to several train-validation
splits and inter changing the parts on which the training is done and the validation part.
This is done to be able to use everything at least once for the training and meanwhile to
ensure that the validation is always done on a set, which is not used for this training
run. Again the cross-validation is done to compare the results of the different models
and to compare the performance of different hyperparameters of the models, but the
results are not that depend of the split, since each part of the dataset is used once for
the validation. The best performing model on the validation set(s) is then used for the
next steps. The test set is never touched during the whole process and only the chosen
best model is applied on the test set in the end. Be aware that the terms validation and
test set might be swapped in the literature sometimes.

As mentioned before several models are trained on the train set. The models are executed
with different settings of the model parameters, which are often called hyperparameters
(hyperparameter tuning). The model (with a set of hyperparameters) performing "best" on
the validation set is chosen as "best" model. To figure out what "best" means, evaluation
metrics are used to compare the different models and hyperparameter settings. We
provide some of the most common evaluation metrics here.

For the validation set we have the true labels and we also get the predicted labels from
one model. Starting with classification, we provide the confusion matrix for two labels
("positive" and "negative") in Table 6.1.

Predicted
positive negative

True positive TP FN
negative FP TN

Table 6.1: Confusion matrix.

If both labels are "positive" we get a true positive (TP), if both are "negative" we get a
true negative (TN). Those are the cases we want, since it means our model classified the
instance correctly. If the true label is "positive", but the model predicted "negative", we
get a false negative (FN) and the other way around a false positive (FP).

Using these values we can define several metrics. The accuracy (acc) is defined as all
correctly classified instances divided by all instances. The recall (rec) measures the
proportion of the correctly classified positive classified instances of all actual positive
ones, whereas the precision (prec) measures the proportion of the correctly classified
positive classified instances of all predicted positive ones. Each of these metrics ranges
between 0 and 1, where higher values are more desirable.

41



6. Machine Learning

The formulas look like the following:

acc = TP + TN

TP + TN + FP + FN
, prec = TP

TP + FP
, rec = TP

TP + FN

It is advisable to look at the whole confusion matrix and each of these values, since
one alone can often not fully express the behaviour of the model. For example a model
classifying everything as positive, would achieve a recall of 100%. Furthermore, if recall
or precision is more important depends on the problem and should be thought about,
to choose the more suitable metric to evaluate the models for the given task. Be aware
that the goal is to get high values for all those measures, but precision and recall have a
trade-off relationship. An increase of one of them often leads to a decrease of the other
one.

These concepts can of course be extended to multi-class classifications. For the accuracy
the correctly classified instances for all classes are added and divided by the whole number
of instances. For precision and recall there are two common methods for the multi-class
case, which are micro-averaging and macro-averaging. Macro-averaging calculates the
precision or recall for each class and then takes the average, whereas for micro-averaging
the TP/FP/FN/TN over all classes are calculated and summed up first and then inserted
in the precision or recall formula.

For regression tasks we have the true continuous values xi and get the predicted ones yi,
where i = 1, ..., N , with N representing the total number of instances. One metric that
can be used for regression is the Mean Absolute Error (MAE), which uses the average
over all instances of the absolute difference between the true and predicted value. The
Mean Squared Error (MSE) is very similar, but replaces the absolute differences by
squared differences. This penalizes big differences between true and predicted value more.
Additionally the Root Mean Square Error (RMSE) is often used, which, as the name tells
us, takes the root of the MSE. For all of these metrics smaller values indicate a better
model fit.

MAE = 1
n

N∑︂
i=1

|xi − yi|, MSE = 1
n

N∑︂
i=1

(xi − yi)2, RMSE =

⌜⃓⃓⎷ 1
n

N∑︂
i=1

(xi − yi)2

Finally, we want to mention the R2-value, which represents how good the variance of the
input variables is represented by the output and ranges between 0 and 1, where higher
values indicate a better model fit. It is defined as the following

SSR =
N∑︂

i=1
(xi − yi)2, SST =

N∑︂
i=1

(yi − ȳ)2, R2 = 1 − SSR

SST

This gives us the possibility to compare and choose between different models. Coming
back to our experiment design workflow we now have the tools to choose the best
performing model on the test set. This is the model we select for the application case.

42



6.3. Experiment design: Model selection

To get an idea of how well that might perform on new unseen data, we now take our
unused test set and apply this one model on it. The error (again measured with a suitable
metric) between the true and predicted values of the test set is called generalization error.
It should tell us how well it generalizes on unseen data and what performance we can
expect in the future.

43





CHAPTER 7
Methodology

In this methodology chapter we describe the workflow of the thesis. An overview of this
workflow is given in Figure 7.1. Each step is then described in more detail in the sections
of this chapter. We start by describing the benchmark datasets we use including the

Figure 7.1: Methodology workflow.

45



7. Methodology

data augmentation process in Section 7.1. Then, we explain the rewriting method and
implementation in Section 7.2. Afterwards, we provide the DBMSs we use and some
information about the query evaluation process in Section 7.3. Finally, in Section 7.4 we
summarize how we get the decision program for the thesis’ goal using ML models and
describe the features we use.

The whole programming parts are provided in Github: https://github.com/danielaboehm/
Query_optimization-Decision_program.

7.1 Benchmark Data Sets
We use several datasets to get data from different domains and designed for different
tasks. We choose five benchmark datasets of different sizes and we explain them now
briefly.

The STATS dataset introduced by Han et al., 2021 is designed to contain large scale
joins on a join schema with several tables and different join forms as well as complex
distributions and diverse workloads of real-world queries. The SNAP (Stanford Network
Analysis Project) datasets are commonly used graph datasets. We decided to use four
of them: cit-Patents, wiki-topcats, web-Google and com-DBLP (Leskovec and Krevl,
2014). The JOB (Join Order Benchmark) was designed by Leis et al., 2015 based on
the real-world IMDB dataset. The purpose of this dataset is to test query optimizers.
Therefore, it contains different numbers of joins and filter conditions to test the join
ordering. The LSQB (Large-Scale Subgraph Query Benchmark) introduced by Mhedhbi
et al., 2021 consists of nine queries based on an underlying graph and allowing to scale
up to test query optimizers. The HETIONET dataset is based on a heterogeneous
information network of biochemical data with the purpose of connecting multiple different
sources into one real-world dataset introduced by Himmelstein et al., 2017.

In our thesis we only want to use CQs (for an explanation see Section 3.1). The queries
in the benchmark dataset are CQs with additional filter conditions, but they can be
considered to be CQs, since the filter conditions are only applied on single tables. This
means, these filters are applied on the tables before joining, which leads to a CQ of the
filtering step.

Some queries of the benchmark datasets are "SELECT MIN(...) FROM ..." queries and
the others are "SELECT * FROM ...". For the latter ones we decide to transform them to
"SELECT MIN(...) FROM ..." queries, in order to have 0MA queries (for an explanation
see Section 5.5). The table we choose in the minimum is one random table occurring in
the query and one column of this table (mostly the first column in the table). Soon we
will see that it makes no huge difference which table we choose, as we exchange them
anyway.

Additionally, we can use only acyclic queries, which we describe in Section 4.2 and this
leads to dropping some of the queries from the benchmark datasets. The amount of
(acyclic) queries of each dataset and the purpose of the datasets are given in Table 7.1.

46

https://github.com/danielaboehm/Query_optimization-Decision_program
https://github.com/danielaboehm/Query_optimization-Decision_program


7.1. Benchmark Data Sets

Dataset Purpose # queries # acyclic queries
STATS real-world, all rel. 146 146
SNAP graph queries 40 40
JOB real-world, foreign key rel. 33 5
LSQB test optimizers 9 2
HETIONET real-world, graph queries 26 26

Table 7.1: Benchmark datasets.

Overall, we have 219 acyclic queries. Since we want to train an ML model this is not
enough training data. Therefore, we do data augmentation. The general concept of
data augmentation is explained in Section 6.2. For our data we decided to use two
self-designed steps for data augmentation: the "filter augmentation" and the "aggregate-
attribute augmentation". This can be seen in Figure 7.2.

Figure 7.2: Steps of data augmentation.

With the filter augmentation we want to get duplicates of all queries having filters and
then change some filters in a way that the sizes of the tables vary between these queries. If
the query had only one filter we change the specific value it is equal to, greater or smaller
of the filter condition. For these cases we get twice as many queries as before. For all
queries having two or more filters we choose two filters, which we change each at a time.
This is done by hand and we try to replace the filters in a way that once the number of
answer tuples gets bigger and once smaller. This gives us triples for each of these queries.
As an example the STATS query 005-024 could be filter-augmented in the following
way, where the first one is the "original" query and the other two are the augmented
ones. In this case, once the filter condition "v.BountyAmount>=0" is transformed to
"v.BountyAmount>=40" and the other time "u.DownVotes=0" to "u.DownVotes=10".

47



7. Methodology

005-024: SELECT MIN(v.Id)
FROM votes as v, badges as b, users as u
WHERE u.Id = v.UserId AND v.UserId = b.UserId

AND v.BountyAmount>=0 AND v.BountyAmount<=50
AND u.DownVotes=0

005-024-augF1: SELECT MIN(v.Id)
FROM votes as v, badges as b, users as u
WHERE u.Id = v.UserId AND v.UserId = b.UserId

AND v.BountyAmount>=40 AND v.BountyAmount<=50
AND u.DownVotes=0

005-024-augF2: SELECT MIN(v.Id)
FROM votes as v, badges as b, users as u
WHERE u.Id = v.UserId AND v.UserId = b.UserId

AND v.BountyAmount>=0 AND v.BountyAmount<=50
AND u.DownVotes=10

The "aggregate-attribute augmentation" is to exhaustively exchange the table we give
into the MIN. This is done in a way that each table, which appears in the query, appears
once in the MIN. The column of the chosen table is random, which means we just take
the first column of the table. Depending on the number of tables involved in the query
this leads to a different number of new queries per query. For the example STATS query
this can look like the following, where the three tables are each represented once in the
minimum.

005-024: SELECT MIN(v.Id)
FROM votes as v, badges as b, users as u
WHERE u.Id = v.UserId AND v.UserId = b.UserId

AND v.BountyAmount>=0 AND v.BountyAmount<=50
AND u.DownVotes=0

005-024-augA1: SELECT MIN(b.Id)
FROM votes as v, badges as b, users as u
WHERE u.Id = v.UserId AND v.UserId = b.UserId

AND v.BountyAmount>=0 AND v.BountyAmount<=50
AND u.DownVotes=0

005-024-augA2: SELECT MIN(u.Id)
FROM votes as v, badges as b, users as u
WHERE u.Id = v.UserId AND v.UserId = b.UserId

AND v.BountyAmount>=0 AND v.BountyAmount<=50
AND u.DownVotes=0

Be aware that all filter augmented queries also get aggregate-attribute augmented. For
example for this query we get 9 queries after the whole augmentation.

48



7.2. Rewriting method and implementation

In Table 7.2 we summarize the queries we have got after each step of the augmentation.
The SNAP and LSQB queries do not have filter conditions, which means there is no
filter-augmentation for them. Overall, we get 2936 queries, which we use in the next
steps of the workflow.

Dataset # acyclic queries after filter aug. after filter + agg aug.
STATS 146 432 1876
SNAP 40 40 244
JOB 5 45 264
LSQB 2 2 14
HETIONET 26 72 538

Table 7.2: Number of queries with augmentation.

7.2 Rewriting method and implementation
The rewriting method is the process of taking one query and getting a sequence of new
SQL queries, which give the same result, but force the DBMS to evaluate the query
with a method based on Yannakakis’ algorithm. We take the existing rewriting method
of Gottlob et al., 2023 and Spark code from Lanzinger et al., 2024, which is given
at https://github.com/arselzer/spark/blob/v3/sql/catalyst/src/main/scala/org/apache/
spark/sql/catalyst/optimizer/RewriteJoinsAsSemijoins.scala and implement it in Scala
to add the possibility of using filter conditions and aggregates in the SQL statement.

Figure 7.3: Scala implementation for rewriting the queries.

49

https://github.com/arselzer/spark/blob/v3/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/RewriteJoinsAsSemijoins.scala
https://github.com/arselzer/spark/blob/v3/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/RewriteJoinsAsSemijoins.scala


7. Methodology

As visualized in Figure 7.3 the SQL query is first transformed into a hypergraph, which
we described in Section 4.1. With the GYO-reduction we get a join tree if the query
is acyclic. This procedure is explained in Section 4.3. If the query is not acyclic, our
program would stop and print that the query is cyclic. In case that the query is acyclic,
which is the case for our used 219 queries (see previous chapter Table 7.1), we get a join
tree from the GYO-reduction. The aggregate always consists of a column of one table
and this table now should be the root to give us the possibility to evaluate the query
with only one traversal of the join tree. This is possible since we have 0MA queries (for
further explanation see Section 5.5). After this "rerooting" we get a join tree, which
gives us the desired join order and since a join tree can be seen as a query execution
plan (Section 4.2), we can use it to create the new sequence of SQL query. This is done
from the leaf nodes of the join tree up the tree by creating a "CREATE VIEW ..." or
"CREATE TABLE ..." command for each of the nodes of the join tree. At the root node
the aggregation is added and the last command is to select everything from the root
node to get the result. For the STATS query 005-024-augA2, which we already used
as example in the last section, the query before and the sequence of queries after the
rewriting looks like the following:

005-024-aug2: SELECT MIN(u.Id)
FROM votes as v, badges as b, users as u
WHERE u.Id = v.UserId AND v.UserId = b.UserId

AND v.BountyAmount>=0 AND v.BountyAmount<=50
AND u.DownVotes=0

005-024-rewr1: CREATE VIEW E3 AS SELECT *
FROM users AS users
WHERE users.DownVotes = 0

005-024-rewr2: CREATE VIEW E2 AS SELECT *
FROM badges AS badges

005-024-rewr3: CREATE UNLOGGED TABLE E3E2 AS SELECT *
FROM E3 WHERE EXISTS (SELECT 1

FROM E2
WHERE E3.Id=E2.UserId)

005-024-rewr4: CREATE VIEW E1 AS SELECT *
FROM votes AS votes
WHERE CAST(votes.BountyAmount AS INTEGER) >= 0

AND CAST(votes.BountyAmount AS INTEGER) <= 50
005-024-rewr5: CREATE UNLOGGED TABLE E3E2E1 AS

SELECT MIN(Id) AS EXPR$0
FROM E3E2 WHERE EXISTS (SELECT 1

FROM E1
WHERE E3E2.Id=E1.UserId)

005-024-rewr6: SELECT * FROM E3E2E1

50



7.3. DBMSs

Be aware that the table, which is contained in the minimum, is sometimes not the root
node. This is possible if the attribute in the minimum is one, which is part of a equi-join.
Then, the other table of the join can be the root, since then same attribute is still in
the minimum, just with another table. For our example the rerooted join tree could
also have votes or badges as root, since the minimum is on users.id, but this is equal to
votes.UserId and badges.UserId.

Moreover, in the rewriting of the example query, we can see that users and badges are
joined first, even if they did not have an equality condition together in the original query.
This is again due to the fact that the three tables are joined on the same attribute.

In the implementation we additionally add a function, which gives us a sequence of DROP
statements to be able to delete the created tables of the rewriting after the evaluation
again.

Furthermore, some features for the ML models we use later for the decision program are
based on the join tree and calculated and saved in the Scala program. The features are
described in more detail in Section 7.3.

7.3 DBMSs
Now we can evaluate the query as "original" or "rewritten" version. The evaluation is
done with three different DBMSs: PostgreSQL, DuckDB and SparkSQL. PostgreSQL is
a well-established relational DBMS, whereas DuckDB is an in-process, column-oriented
DBMS and SparkSQL is part of a distributed cluster environment. We decide to use
these three DBMSs since they have different architectures and therefore give a good
overview of the range of existing DBMSs.

Figure 7.4: Workflow of the query evaluation.

In Figure 7.4 we illustrate this part of the workflow. Each query is once evaluated without
taking the time. Then, the query is evaluated five times with taking the time for each

51



7. Methodology

of the evaluations with both variants (original and rewritten query). The first run is
considered as a warm-up, so that the time to load a table into memory for the first time
does not affect the results.
The whole evaluation is done on a server with 128GB RAM, 16 virtual CPUs and 100GB
disk storage.

7.4 Decision program with ML models
To get the decision programs using ML models, we follow the experiment design for
model selection provided in Section 6.3. The part with the specific ML models and their
input and output are visualized in Figure 7.5.

We get several decision models for each of the three DBMSs, depending on different
features and settings. We compare them in Section 8. In this section we provide the
general approach to get one decision program and describe all features we use in at least
one of the ML models.

Figure 7.5: Inputs and output of the used ML models.

As described in the experiment design, we split the data into train, validation and test
set. The train set contains 80% of the data and the other two 10% each. The splitting is
done with stratification, which means each of our five benchmark datasets is represented
in each of the three sets approximately with the same proportion.

The data we have consists of the queries and their evaluation times. Now we create
features, which we then put into the ML models as inputs, together with the evaluation
times as response values. There are different kinds of features we would like to use. We

52



7.4. Decision program with ML models

have features based on the query structure, we use features based on the join tree and
features, which we get from the databases PostgreSQL or DuckDB.

7.4.1 Features
We start by describing the features, which we get for each query just by "looking" at the
query itself.
Number of relations: This feature is representing the number of all relations part of
the query.
Number of conditions: For this feature the number of (in)equality conditions in the
WHERE clause of the CQ are counted.
Number of filters: Here, only the (in)equality conditions, which are filters, are counted.
Number of joins: For this feature the number of joins, which can also be computed by
looking at the equality conditions, are calculated. Be aware that sometimes two equality
conditions belong to one join.

Next, we provide some features based on the join tree, which we get for each of our
(acyclic) queries with the GYO-reduction in the Scala programming part. These features
are inspired by Abseher et al., 2017.
Depth: For this feature the maximal distance between the root of the used join tree
and a leaf node is computed.
Container counts: Here for each variable the number of nodes it occurs in is counted.
Since we get a value for each variable we can calculate several statistics, which are the
minimum, maximum, mean, median, first and third quartile. This measure indicates how
many relations are joined on the same variable.
Branching factors: For this feature we count the number of children for each node.
This gives us different numbers again and we use the same statistics as above.
Another feature using the structure of the join tree is the balancedness factor described
in Selzer, 2021. This feature should represent how balanced the tree is. If each node
has the same amount of children, the tree is perfectly balanced. If we have a left-deep
tree or a right-deep tree, the tree is not balanced. To calculate this feature, we count
the sizes of the subtrees of each node and divide the minimum by the maximum. The
balancedness factor is the average of all those numbers. This gives interesting information
if parallelization is taken into consideration, but since we do not do this, we drop this
feature.

We call this first seven features the "basic features", since we get them for every query
and every DBMS. We can also use information from the databases. First, we describe
the feature, which we get by the EXPLAIN command in PostgreSQL. This uses the
query and provides the execution plan with some cost estimations, which we can use as
features. We refer to them as "POS features". (This is not an evaluation yet.)
Estimated total cost: The first feature is to take the estimated total cost.
Estimated single table rows: Then, we count the estimated number of rows for each
table involved in the query. This gives us the estimated row numbers after the filters
are applied on the table. This again gives us multiple values and as features we use the

53



7. Methodology

statistics, like the mean or median as mentioned above.
Estimated join rows: To gain some information about the intermediate results, which
often are the reason for long execution times, we also take the estimated number of rows
of each join into consideration. This gives us a value for each join operation part of the
execution plan, where we again can use the statistics to get our features.
Foreign key/primary key relations are indirectly represented in the estimated rows, since
PostgreSQL considers that for planning.

We get similar features for DuckDB using the EXPLAIN command for DuckDB. This
again gives information about the logical execution plan, but only provides the estimated
cardinality. We call these the "DDB features".
Estimated cardinalities: This feature gives us the estimated cardinality, which is the
number of rows after reading a table, filtering and joining tables.

SparkSQL does not provide such a command like EXPLAIN, which means that we do
not get additional features about the execution plan or other database information of
SparkSQL. For better illustration of the features, we give two examples together with all
of the features: Q1: HETIO_2-01-CbGaD, Q2: HETIO_3-06-CdGuCtD.

Q1: SELECT MIN(c.nid)
FROM compound c, binds b, gene g, associates a, disease d
WHERE c.nid = b.sid AND b.tid = g.nid

AND g.nid = a.tid AND a.sid = d.nid

Q2: SELECT MIN(c1.nid)
FROM compound c1, downregulates d1, gene g, upregulates u2,

compound c2, treats t, disease d
WHERE c1.nid = d1.sid AND d1.tid = g.nid

AND g.nid = u2.tid AND u2.sid = c2.nid
AND c2.nid = t.sid AND t.tid = d.nid

The corresponding join trees calculated by Scala are given in Figure 7.6. They help us to
identify some of the features more easily.

(a) Joint ree of Q1. (b) Join tree of Q2.

Figure 7.6: Calculated join trees of the example queries.

54



7.4. Decision program with ML models

Q1 Q2
#relations 5 7

#conditions 4 6
#filter 0 0
#join 4 6
depth 2 3

container counts 1, 1, 1, 1, 1, 2, 3 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3
min(container counts) 1 1
max(container counts) 3 3
mean(container counts) 1.43 1.27
q25(container counts) 1 1

median(container counts) 1 1
q75(container counts) 1.5 1

branching factors 3, 1 2, 3, 1
min(branching factors) 1 1
max(branching factors) 3 3
mean(branching factors) 2 2
q25(branching factors) 1.5 1.5

median(branching factors) 2 2
q75(branching factors) 2.5 2.5

POS: total cost 1175.3 10283.64

POS: table rows 23142, 25246, 137, 154076, 1552, 146276, 1510,
1, 1552 137, 1552, 20945

POS: min(table rows) 1 137
POS: max(table rows) 25246 154076
POS: mean(table rows) 10015.6 46578.29
POS: q25(table rows) 137 1531

POS: median(table rows) 1552 1552
POS: q75(table rows) 23142 83610.5

POS: join rows 1190, 2361, 626, 626 493338, 22993, 2578,
2578, 446, 446

POS: min(join rows) 626 446
POS: max(join rows) 2361 493338
POS: mean(join rows) 1200.75 87063.17
POS: q25(join rows) 626 979

POS: median(join rows) 908 2578
POS: q75(join rows) 1482.75 17889.25

DDB: cardinality
31829, 29051, 26334, 26334, 4993749, 354275, 338789, 322069,

418, 2299, 29051, 24035, 2299, 2299, 338789, 2090, 24035,
26334 2299, 322069, 418, 2090

DDB: min(cardinality) 418 418
DDB: max(cardinality) 31829 4993749
DDB: mean(cardinality) 21742.78 515790
DDB: q25(cardinality) 24035 2299

DDB: median(cardinality) 26334 24035
DDB: q75(cardinality) 29051 338789

Table 7.3: Features.

55



7. Methodology

In Table 7.3 all features of these two queries are given. Additionally, we provide all values
of the container counts, branching factor, table rows, join rows and cardinality in italic
to give an insight into how these features work. Be aware that these features are never
used all together for one model. The model construction and which features are used, is
explained in the next section.

7.4.2 Models and Evaluation
In this section, we describe which models and features we use for our experiments. In
general, we use some of the features described in the previous section as input for our
models and we want to predict, if the evaluation of the original query or the rewritten
query is faster. For our training data, we got the runtimes for each of the queries with
each of the DBMSs. The training label then can be used as classification, where it
represents if the original or the rewritten was faster (0,1 encoded), or as regression,
where the time difference between the two versions can be used. We also try another
classification, where we introduce a third class "equal", where all queries are contained,
which have almost equal runtimes. For this purpose we choose a cut-off value and if the
time difference between the queries is below this threshold, the label is changed to equal,
no matter if the original or rewritten version was a little bit faster. This is done for four
cut-offs: 0.5, 0.1, 0.05 and 0.01.

First, we apply different ML models for each of the three DBMSs using the basic features.
We use the seven models described in Section 6.1: k-NN, decision tree, random forest,
SVM, MLP, HGNN and a combination of MLP+HGNN. This gives us a very good
opportunity to compare the performance of the models for the three DBMSs. Then, we
try to get more accurate results using additional features. We use the basic features
combined with the PostgreSQL features and the PostgreSQL runtimes. Similarly, we use
the basic features and the DuckDB features together with the runtimes of DuckDB. Since
SparkSQL does not provide such additional features, we decided to use the basic features
together with the POS features, to see if that improves the results. We are interested in
comparing these models with those using only the basic features. For all these cases we
apply all the seven ML models again.

In Table 7.4 we summarize all hyperparameters used for each model. We decide to take
a fixed number of five neighbors for the k-NN and the number of combined decision trees
as 100 for the random forest. For the SVM we use three different kernels.

For the deep learning models we have to introduce additional parameters, which we did
not vary. As loss function, which measures the prediction error, we use the MSE (for
an explanation see Section 6.3) for the regression tasks and the Cross Entropy for the
classification tasks. The Cross Entropy measures the difference between the predicted
and actual probability distribution of each class. The epochs state how often the entire
dataset is used in the training process. All deep learning models want to learn weights
and the learning rate is the step size of the weight update. This means the current
calculated weight of one epoch is multiplied by the learning rate and then added to the

56



7.4. Decision program with ML models

model hyperparameter layer
k-NN k=5

Decision tree
Random forest n_estimators=100

SVM kernel=linear/poly/rbf

MLP

Loss=Cross-Entropy/MSE
Batch size=100

Epochs=300 (saving best
model)

Leaning rate=0.1

in-5-out
in-10-out
in-20-out
in-25-out
in-40-out
in-60-out

in-10-5-out
in-20-10-out
in-40-20-out
in-40-10-out
in-60-40-out
in-60-20-out
in-80-50-out

small median, best MLP
small mean, best MLP
small min, best MLP
small max, best MLP
small q25, best MLP
small q75, best MLP
custom, best MLP

HGNN

Loss=Cross-Entropy/MSE
Epochs=100 (saving best

model)
Leaning rate=0.001

Max-Pooling

kernel 3x3, 1-16-32-out
kernel 3x3, 1-32-16-out

kernel 3x3, 1-16-32-16-out
kernel 3x3, 1-32-64-out
kernel 3x3, 1-4-16-out

combined

Loss=Cross-Entropy/MSE
Epochs=100 (saving best

model)
Leaning rate=0.001

Max-Pooling

best MLP-2/best HGNN-2/4-out
best MLP-5/best HGNN-5/10-out

best MLP-5/best HGNN-5/10-20-out
best MLP-10/best HGNN-10/20-40-2

best MLP-10/best HGNN-10/20-60-20-2
in = number of features, out = number of classes (2,3 and 1 for regression)
Loss: Cross-Entropy for classification, MSE for regression

Table 7.4: Hyperparameters.

57



7. Methodology

old weight to get the new weight. Since the training sample size can be big it is often
advantageous to use smaller parts of the dataset for an update. The size of these parts is
given by the batch size. So, if there are 1000 training samples and the batch size is 100,
then there are 10 batches per epoch, which means 10 weight updates per epoch. For the
HGNN we use the max-pooling as pooling layer, which is explain in Section 6.1.6.

The number of hidden layers for the MLP is either one or two, where the number of
nodes is varied and provided in the table. Additionally, the number of features is reduced,
since several features occur multiple times as min, max, mean, median 25%- and 75%
quartiles to just one of these statistics. Another version is to add a custom layer, which
summarizes all six statistical values for one feature to one node. The HGNN has two or
three convolutional layers with a kernel size of 3x3 and then one max-pooling layer. For
the combination of the MLP and HGNN we use the best performing model of the MLPs
and the best performing model of the HGNNs and combine the outputs, where one, two
or three linear layers are applied on.

The results of all these models including the comparisons are given in Section 8, as well
as the resulting decision program(s).

Moreover, for the k-NN, decision tree, random forest and SVM cross validations are done
additionally. This means the 80% of the data, which are the training set and the 10% of
the validation set are put together and then used for 10-fold cross validation.

To be able to compare the models and decide, which are the best ones, we need to use
metrics as defined in Section 6.3. We use the accuracy for the classification and the MSE
for the regression version. Since one should not only use one quantitative metric, we
also provide an inspection of the model and the misclassified instances. In Section 8
we will get the results and choose the best three models overall. For those models we
provide additional metrics like precision and recall and do qualitative analysis of the
misclassifications.

Finally, we will get one "best" model, which we then apply on the untouched test set.
For that we do quantitative analysis (metrics) and qualitative analysis (observe the
misclassifications) similarly as before. Additionally, we perform two statistical tests to
be able to conclude if we can achieve significantly better results. The tests compare the
mean or median of the runtimes for the following two cases: 1. runtimes of the queries
of the test set with the original version and 2. runtimes of the queries of the test set
with either the original or the rewritten version, based on the decision we made by our
decision program.

Since both of these cases use the data in the test set, we need to use statistical tests,
which take this dependencies into consideration. For the median we take the Wilcoxon
sign-rank test (Wilcoxon, 1945) and for the mean we use a paired sample t-test.
Wilcoxon sign-rank test: The null hypothesis of this test for two (dependent) groups
A and B is that the medians are equal: H0 : median(A) = median(B). To get the test
statistic the differences between all pairs of group A and B are calculated and ranked.
Additionally, the sign of the difference is used, so that all ranks of the positive differences

58



7.4. Decision program with ML models

are summed and the same for the negative ones. The minimum of these two is the test
statistic, which then can be compared to the Wilcoxon signed rank table to get the
p-value. If the p-value is smaller than a chosen alpha-level, the null can be rejected and
the two cases lead to significantly different medians.
Paired sample t-test: The null hypothesis of this test for two (dependent) groups A
and B is that the means are equal: H0 : mean(A) = mean(B). Again, the differences
of the pairs of values are used to calculate the test statistic. In this case it is a t-test
statistic with n-1 degrees of freedom and looks like the following.

t = d̄
√

n

s
, with d̄ = 1

n

n∑︂
i=1

di, s =

⌜⃓⃓⎷ 1
n − 1

n∑︂
i=1

(di − d̄)2

Here the t-test tables can be used to get the p-value and again if it is smaller than alpha,
the null can be rejected and we can conclude that the means are significantly different.

59





CHAPTER 8
Results

This chapter contains all results and insights of this thesis. For each of the three DBMSs,
PostgreSQL, DuckDB and SparkSQL, general characteristics of the runtimes of the
original and rewritten queries run on them like the distribution, the order of magnitudes
and how the datasets influence the runtimes are presented. After that all ML models
applied on that data with the basic features are inspected based on their metrics and
how well they work as decision programs (for the workflow see Section 7.4). This means
the regression, too, is used for predicting the label based on a cut-off value. Additional
to that quantitative analysis, we perform qualitative analysis in a way that we observe
the misclassifications for the most promising models in more detail. In particular we
look at how big the time difference between the runtime of the original query and the
runtime of the rewritten query is, if the label is predicted wrongly. If the time difference
between the two versions is very small, which means that the runtimes are almost the
same, then it is not a big problem that the instance was misclassified, since it makes no
big difference. The same procedure is applied on the data for each DBMS, in Section 8.1
for PostgreSQL, in Section 8.2 for DuckDB and in Section 8.3 for SparkSQL, where then
additional features are added and the impact of adding them is observed.

After inspecting which results can be achieved for each DBMS, we want to find out,
which ML model suits best for the task. Therefore, the top three models are listed for
each DBMS and classification or regression. With that and the analysis of the results
before, we can decide which model is the "best" performing model for our purpose. This
is done in Section 8.4 and then, this "best" model can be applied on the final test set in
Section 8.5. The test set was untouched before and helps us to find out how well our final
model generalizes on unseen data. This is again observed with quantitative (metrics) and
qualitative (misclassifications) analysis. Moreover, statistical tests are performed to find
out if the decision method outperforms the original version in terms of mean and median
runtimes. Finally, the final "best" model is visualized and inspected as well as the most
important features are detected.

61



8. Results

In the first section we will explain some important aspects in more detail and refer to
them in the later sections, since they occur multiple times. Additionally, only the most
important numbers are provided in the tables of this chapter, but all observed results are
listed in the Appendix A.

Figure 8.1: Distributions of the features.

62



8.1. PostgreSQL

Before showing the results of the ML models, we briefly have to talk about the input.
We show the distributions of all features used in at least one model in Figure 8.1. Some
of the input features are highly skewed and have to be log-transformed to obtain more
reliable results.

The features which need a transformation are "total cost" and the minimum, maximum,
mean, median, 25%-quantile and 75%-quantile of "join rows", "table rows" and "cardinal-
ity". The transformation leads to a distribution closer to a normal distribution, which is
what we try to achieve for the input values of ML models, such that outliers do not have
too much influence. The transformed features are visualized in Figure 8.2.

Figure 8.2: Distributions of the log-transformed features.

The cross validation results are not inspected in detail in this chapter, since not all
models have a cross-validation version and additionally the results are very similar to the
train-val split results, but all values are given in Section A.7 in the Appendix.

8.1 PostgreSQL

The first DBMS, which we have used to get the runtimes of the original and rewritten
queries, is PostgreSQL. First, we take a look at the distribution of these runtimes split up
in orders of magnitude. This is done in Figure 8.3, where the original runtimes are given
on the left and the rewritten on the right. Additionally, the portions of each dataset per
order of magnitude are colored.

63



8. Results

Figure 8.3: Comparison of distributions of orders of magnitude for PostgreSQL.

We can see that there are a lot more timeouts for the original queries, especially for
SNAP queries, than for the rewritten ones. On the other hand, there are also more
queries in the original version, which are executed really fast (runtime smaller than 0.1).
This is exactly the expected behaviour, where neither version is always better than the
other one, and our decision program should help to use the better version for each query.
The SNAP and LSQB queries tend to have longer runtimes, whereas the queries of the
other three datasets often are executed very fast.

Now we partition the runtimes into classes. Either the original or the rewritten version
is faster, which gives us the two classes for the 2-class classification. As explained above
we also introduce thresholds if the runtimes are very similar to be considered as "equal"
classes. The amount of queries in each class for each version is provided in Table 8.1.

2 classes 3 classes (0.01) 3 classes (0.05) 3 classes (0.1) 3 classes (0.5)
orig 1418 1322 1007 706 240
rewr 1480 1435 1336 1243 989
equal - 141 555 949 1669

Table 8.1: Distribution of the classes for the classifications for PostgreSQL.

For the 2-class case the number of queries in both classes is very balanced. Depending
on the threshold the amount of queries in the three classes differ. We observe that more
of the queries in the equal class, which are those where the runtimes are nearly the same,
are "orig" queries. This tells us, if the rewriting is faster it improves the runtime a lot
and if the original is faster, it is often just a little bit faster than the rewriting.

After considering the classification response, we also want to inspect the regression
response. The regression response is the time difference between the two versions, where
the original runtime is subtracted from the rewritten runtime. In Figure 8.4 on the
left we can see the distribution of the time differences. The time difference has a wide

64



8.1. PostgreSQL

range and is a bit skewed. Therefore, we are going to transform it. As before with
the features, we would like to apply a log transformation. Nevertheless, since we have
negative values this cannot be applied directly. We are going to multiple the log of the
absolute values with the sign they had before. Additionally, since we have a lot of values
close to zero, which leads to very small log values, we add 1 to the absolute values before
applying the log, which is a common method. The transformation as formula looks like
the following: xnew = sgn(x) ∗ log(|x| + 1). The plot on the right shows the distribution
of the transformed time difference.

Figure 8.4: Distribution of the regression response = time difference = rewritten runtime
- original runtime for PostgreSQL.

Now the ML models can be applied and the results are given and discussed in the
following subsections for the train-test split (to be able to compare all models), once
with the basic features and once with the additional POS features.

8.1.1 Basic features

All ML models with all hyperparameters for the different classification models and the
regression model have been executed. To save some space we decided to provide the
results for each type of model, but just with the best hyperparameter combination
in Table 8.2. Additionally, we only show the 3-class classification with the 0.5 equal
threshold, since the results of the 3-class classification of all other thresholds are always
worse than the 2-class classification. The full results are provided in the Appendix
(Table A.1 - Table A.3).

For the classifications we use the accuracy and for the regression the MSE as metric.
Additionally, we highlight the best model for each type of problem. For the 2-class and
the 3-class case the combined neural network of MLP+HGNN achieves the best (highest)
accuracy values, where the 3-class classification is the better one in this case. The random
forest has the best (smallest) MSE in the regression case. Overall, the decision tree,
random forest and the combi model are the best performing models, which is why we
will use them as "inspection models" in the following and look at them in more detail.

65



8. Results

Model 2-class: Acc 3-class (0.5): Acc time diff: MSE
5-NN 79.66% 83.45% 0.5850
Decision tree 82.41% 86.21% 0.5809
Rand. forest 82.76% 84.48% 0.5560
SVM linear rbf: 71.03% linear: 73.10% rbf: 1.6447
MLP 17-60-40-2: 79.66% 17-60-40-3: 78.97% 17-60-40-1: 1.1265
MLP small 7-60-40-2,max: 78.97% 7-60-40-3,max: 78.97% 7-60-40-1,max: 1.2271
MLP custom 7-60-40-2: 78.97% 7-60-40-3: 80.34% 7-60-40-1: 1.1578
HGNN 1-16-32-2: 81.38% 1-4-16-3: 84.14% 1-32-64-1: 0.8142

Combi 17-60-40-10/1-16-32-10/ 17-60-40-10/1-16-32-10/ 17-60-40-10/1-32-64-10/
20-40-2: 86.21% 20-40-3: 90.69% 20-40-1: 0.5856

Table 8.2: Metrics of ML models for PostgreSQL with basic features (train-test split).

Regression as decision: For the regression we use the MSE as most important metric
and predict the runtime as numerical value. Since our task is still to make a decision,
we have to define a splitting value, where all values above are predicted as original and
below as rewritten. For the regression response we use the time difference such that
the original runtime is subtracted from the rewritten runtime and then transformed as
explained above.

time_diff = rewritten_runtime − original_runtime
transform(time_diff) = sgn(time_diff) ∗ log(|time_diff| + 1)

Similar to the idea of the equal class, we decide to choose the split such that if the
predicted original runtime is faster or only a little bit slower then the predicted rewritten
runtime, it should be predicted as original. This is the same as if the rewritten runtime
plus a treshold is smaller than the original runtime, the prediction should be rewriting.
Calling the split γ, this leads to a prediction of "rewr", if the time difference is smaller
than −γ.

rewritten_runtime + γ < original_runtime ⇒ label = rewr = 1 ⇔
rewritten_runtime − original_runtime < −γ ⇒ label = rewr = 1 ⇔

time_diff < −γ ⇒ label = rewr = 1

Afterwards the splitting value also has to be transformed to be able to make a decision
based on the predicted (transformed) time difference of the regression:

transform(time_diff) < transform(−γ) ⇒ label = rewr = 1 ⇔
transform(time_diff) < sgn(−γ) ∗ log(| − γ| + 1) ⇒ label = rewr = 1

We decided to try out three different γ values: 0.5, 0.1 and 0.01. In Table 8.3 we can see
the accuracy of the performance of the regression model with the different splits. We use
the three models decision tree, random forest and combi as explained above and compare
the results to the 2-class results, which are provided in italic.

66



8.1. PostgreSQL

Acc
Dec. Tree (Class) 82.41
Dec. Tree (Reg with split 0.5) 74.48
Dec. Tree (Reg with split 0.1) 78.28
Dec. Tree (Reg with split 0.01) 82.76
Rand. Forest (Class) 82.76
Rand. Forest (Reg with split 0.5) 74.14
Rand. Forest (Reg with split 0.1) 76.90
Rand. Forest (Reg with split 0.01) 82.07
Combi (Class) 86.21
Combi (Reg with split 0.5) 75.17
Combi (Reg with split 0.1) 79.66
Combi (Reg with split 0.01) 73.45

Table 8.3: Performance of regression with split as classification in comparison to the
classification for PostgreSQL with basic features (train-test split).

For the decision tree and random forest the version with γ = 0.01 is close to or slightly
better than the classification version, but overall the regression as basis for the classifi-
cation is not performing better than the direct 2-class classification independent of the
splitting value.

As next step we want to inspect the "inspection models" in more detail. Since we saw
that the 2-class classification is working very well and is most suitable for our task, we
focus on this case. Therefore, we provide the additional metrics precision and recall and
then provide the time differences of the misclassifications of these models.

Avoiding FP: The overall task is to find a decision model, which is able to decide if a
query should be executed against a DBMS in its original form or using the rewriting.
Therefore, we have two labels: "orig" or 0 if the original runtime is faster and "rewr" or 1
in the other case. We want to improve the existing DBMSs, which means we want to
make the query execution faster using the rewriting, if possible. We absolutely do not
want to predict that the rewriting version is better, if it is not.

Predicted
rewr/1 orig/0

True rewr/1 TP FN
orig/0 FP TN

Table 8.4: Confusion matrix.

Given the confusion matrix in Table 8.4 we want to avoid FP as often as possible, because
for that case the prediction is "rewr", even if the truth is "orig". This also means the
precision is more important than the recall for our application. This is important for the
inspection of the misclassifications.

67



8. Results

In Table 8.5 we can see the metrics for our inspection models for the 2-class classification.

Model Acc Prec Rec
Decision tree 82.41% 93.08% 74.34%
Rand. forest 82.76% 91.34% 76.69%
Combi 86.21% 90.20% 84.66%

Table 8.5: Accuracy, Precision and Recall for inspection models for PostgreSQL with
basic features (train-test split).

We have already seen the accuracy scores before, where the combi model is the best
among these three. But now we also provide the other metrics and we can see that the
decision tree achieves the best precision, which is an important value for our task as just
explained. The recall on the other hand is best for the combi model, which is due to the
trade-off relationship between precision and recall (see Section 6.3). But again, precision
is more important for our application.

After this quantitative analysis, we do the qualitative analysis by looking at the misclas-
sifications in more detail. As explained the FP are the misclassifications, which we try
to avoid. We look at how big the time differences are for the misclassification, since if
the label is predicted wrongly, but the time difference is very small anyway, it does not
make much difference, which version (original or rewritten) is used. Table 8.6 shows the
misclassifications for our inspection models split into orders of magnitude (in seconds)
and Figure 8.5 visualizes the distribution of the misclassification with color encoding FP
and FN.

Model Misclass. 0.01 0.1 1 10 100 TO

Decision tree FP 1 6 3 0 0 0
FN 1 12 11 3 2 0

Rand. forest FP 0 9 3 0 0 0
FN 6 12 12 3 5 0

Combi FP 0 12 3 0 0 0
FN 3 8 8 2 4 0

Table 8.6: Order of magnitude (in seconds) of the time difference of misclassifications for
the inspection models for PostgreSQL with basic features (train-test split).

This result is what we wanted to achieve, since even if there are some FP, their time
differences are very small. This means we predict that we should rewrite, even if the
original version is faster, which we want to avoid in general, but the rewritten version
is only slightly slower, which then is no big deal. Comparing the performance of the
different models, the decision tree works best here, since it has the smallest amount of
FP and the smallest amount of misclassifications in general. The combi model is the
worst one of these three with regard to the misclassifications, but still, it is performing
quite well.

68



8.1. PostgreSQL

Figure 8.5: Distribution of misclassifications for the inspection models for PostgreSQL
with basic features (train-test split).

Since avoiding FP and achieving a high precision, while still having a good accuracy is
our goal, the "best" model for PostgreSQL with basic features is the decision tree, which
is also nicely interpretable.

8.1.2 Basic features + POS features
Now we want to add some features, namely the POS features (total cost, table rows and
join rows), which we get by PostgreSQL EXPLAIN, and hopefully achieve better results
using this additional information.

In Table 8.7 the metrics are given for each type of model and the different classifications
and regression as above. Again, the full results are provided in the Appendix (Table A.4
- Table A.6).

Model 2-class: Acc 3-class (0.5): Acc time diff: MSE
5-NN 88.62% 88.62% 0.2581
Decision tree 92.76% 94.48% 0.0846
Rand. forest 94.48% 95.52% 0.0661
SVM linear rbf: 86.21% poly: 86.21% rbf: 0.9154
MLP 30-60-40-2: 91.72% 30-60-40-3: 88.97% 30-80-50-1: 0.4509
MLP small 10-60-40-2,max: 88.97% 10-60-40-3,max: 89.66% 10-80-50-1,med: 0.7646
MLP custom 10-60-40-2: 90.69% 10-60-40-3: 91.38% 10-80-50-1: 0.5671
HGNN 1-16-32-2: 81.38% 1-4-16-3: 84.14% 1-32-64-1: 0.8142

Combi 30-60-40-10/1-16-32-10/ 30-60-40-3/1-4-16-3/ -20-60-20-2: 82.76% 6-3: 78.28%

Table 8.7: Metrics of ML models for PostgreSQL with basic features+POS features
(train-test split).

We can see that the accuracy for the decision tree and random forest increased a lot,
since for the basic version we only got about 82% accuracy and now even 94% for the

69



8. Results

2-class classification. In contrast to that the combi model is worse with 82% now and 86%
before. We observe a similar behaviour for the 3-class classification and the regression,
where the decision tree and random forest outperform the versions before, but the combi
model got worse.
Here we have to mention, that the combi model could not be trained for the regression.
This is probably due to a vanishing gradient, where multiple methods exist in the
literature, but would go beyond the scope of the thesis to adjust the model accordingly,
since it only happens twice (for the combi model for regression for PostgreSQL with
additional features and SparkSQL with additional features).
Overall, the highest accuracy for this version with the additional features (random forest:
94.48%) is higher than the highest accuracy before with only the basic features (combi:
86.21%).
Again, the next step is to observe how the regression with a splitting value performs
as classification in comparison to the 2-class classification. In Table 8.8 we can see the
accuracy for the decision tree and random forest (the combi model did not work as just
explained).

Acc
Dec. Tree (Class) 92.76
Dec. Tree (0.5) 76.55
Dec. Tree (0.1) 88.28
Dec. Tree (0.01) 92.07
Rand. Forest (Class) 94.48
Rand. Forest (0.5) 78.28
Rand. Forest (0.1) 88.97
Rand. Forest (0.01) 92.41

Table 8.8: Performance of regression with split as classification in comparison to the
classification for PostgreSQL with basic features+POS features (train-test split).

Both models with each splitting value could not achieve an accuracy as high as the one
of the classification, even if it gets close for the 0.01 split.
As inspection models we again use the decision tree, random forest and combi model,
due to their good performance and for comparability. In Table 8.9 the accuracy is shown
together with the precision and recall scores.
Here the random forest is clearly the best performing model based on the metrics, since
it achieves the highest values for all three metrics. The decision tree is only slightly worse
and achieves nearly as good results as the random forest. Overall, the accuracy, precision
and recall are higher for all these models than for the models with only the basic features
before.
Looking at the qualitative results, we can see a similar pattern. Table 8.10 and Figure 8.6
show that the random forest has the fewest FP and fewest misclassifications overall and

70



8.1. PostgreSQL

Model Acc Prec Rec
Decision tree 92.76% 96.71% 90.18%
Rand. forest 94.48% 97.42% 92.64%
Combi 82.76% 86.45% 82.21%

Table 8.9: Accuracy, Precision and Recall for inspection models for PostgreSQL with
basic features+POS features (train-test split).

the decision tree performs nearly as well. The combi model is worse considering the
metrics and has much more misclassified values, even a lot of FP. Nearly every time
difference for the misclassifications is below 1 second and the majority below 0.1 seconds,
which is very nice, because only close decisions are wrongly classified. The number of
misclassifications and FP values are smaller for each model with the additional features
than for the model with only the basic features.

Model Misclass. 0.01 0.1 1 10 100 TO

Decision tree FP 0 4 1 0 0 0
FN 7 7 2 0 0 0

Rand. forest FP 0 3 1 0 0 0
FN 6 5 1 0 0 0

Combi FP 1 15 3 2 0 0
FN 5 10 11 3 0 0

Table 8.10: Order of magnitude (in seconds) of the time difference of misclassifications
for the inspection models for PostgreSQL with basic features+POS features (train-test
split).

Figure 8.6: Distribution of misclassifications for the inspection models for PostgreSQL
with basic features+POS features (train-test split).

Therefore, the best performing model for PostgreSQL with basic features and POS
features is the random forest, closely followed by the decision tree. So, it can be discussed
if the "best" model is the best performing one, namely the random forest, or only slightly

71



8. Results

worse results together with the better interpretability and the less computational effort
of the decision tree is the better choice for practice. In this case we would rather opt for
the decision tree. Moreover, most of the models with additional features perform better
than the ones with only the basic features in terms of metrics and misclassifications.

8.2 DuckDB
This section follows the same procedure as before, but now the evaluation of the queries
(original and rewritten version) has been done on the DBMS DuckDB. When looking at
the distribution of the runtimes in orders of magnitude (Figure 8.7), we can see that the
number of timeouts is much higher for the original queries than for the rewritten. The
SNAP queries seem to be harder to evaluate for DuckDB, but the JOB queries seem to
be easier in their original form than in their rewritten form. The number of very fast
evaluations is not big for either of the two versions.

Figure 8.7: Comparison of distributions of orders of magnitude for DuckDB.

In Table 8.11 we can also see that the number of queries, where the evaluation is faster
in their rewritten form, is now bigger than the original ones. On the other hand, a lot of
these queries, where the rewritten version is faster, are only slightly faster. This can be
seen in the table, because a lot of the rewritten queries are shifted to the equal classes
(especially for the 0.5 threshold).

2 classes 3 classes (0.01) 3 classes (0.05) 3 classes (0.1) 3 classes (0.5)
orig 1319 1276 1113 1009 797
rewr 1542 1503 1292 1100 549
equal - 82 456 752 1515

Table 8.11: Distribution of the classes for the classifications for DuckDB.

The time difference is transformed with the same formula as above (xnew = sgn(x) ∗

72



8.2. DuckDB

log(|x| + 1)) to get the regression response. The distribution of the time difference before
and after the transformation can be seen in Figure 8.8.

Figure 8.8: Distribution of the regression response = time difference = rewritten runtime
- original runtime for DuckDB.

8.2.1 Basic features

As first part we observe the results the models can achieve with the basic features. In
Table 8.12 the accuracy or MSE is given for the 2-class and 3-class classification or the
regression respectively (for the full results see Appendix Table A.7 - Table A.9).

Model 2-class: Acc 3-class (0.5): Acc time diff: MSE
5-NN 81.82% 77.27% 0.5873
Decision tree 83.22% 80.77% 0.4905
Rand. forest 83.57% 81.47% 0.4900
SVM linear rbf: 72.03% rbf: 74.13% rbf: 1.6184
MLP 17-80-50-2: 78.32% 17-60-20-3: 79.02% 17-60-40-1: 1.0096
MLP small 7-80-50-2,max: 75.87% 7-80-50-3,max: 79.37% 7-60-40-1,max: 1.253
MLP custom 7-80-50-2: 77.27% 7-80-50-3: 78.32% 7-60-40-1: 1.134
HGNN 1-32-64-2: 84.27% 1-4-16-3: 84.62% 1-32-64-1: 0.5969

Combi 17-80-50-5/1-32-64-5/ 17-80-50-10/1-16-32-10/ 17-60-40-10/1-32-64-10/
10-20-2: 86.36% 20-40-3: 88.46% 20-60-20-1: 0.3778

Table 8.12: Metrics of ML models for DuckDB with basic features (train-test split).

In this case the combination of the MLP and HGNN performs best for all three cases.
The HGNN alone also achieves a similar accuracy for the classification models. Otherwise
the decision tree and random forest are again the best performing not deep learning
models.

The regression split up into two classes at a value of 0.01 achieves the same (or slightly
better) results for the decision tree and random forest, but is not as good for the combi
model (Table 8.13).

73



8. Results

Acc
Dec. Tree (Class) 83.22
Dec. Tree (Reg with split 0.5) 78.67
Dec. Tree (Reg with split 0.1) 80.42
Dec. Tree (Reg with split 0.01) 83.22
Rand. Forest (Class) 83.57
Rand. Forest (Reg with split 0.5) 78.67
Rand. Forest (Reg with split 0.1) 80.77
Rand. Forest (Reg with split 0.01) 83.92
Combi (Class) 86.36
Combi (Reg with split 0.5) 80.07
Combi (Reg with split 0.1) 81.82
Combi (Reg with split 0.01) 79.02

Table 8.13: Performance of regression with split as classification in comparison to the
classification for DuckDB with basic features (train-test split).

Therefore, we again choose the decision tree, random forest and combi model as inspection
models with the 2-class case. In Table 8.14 they are provided together with their precision
and recall. In this case the combi model has the highest values for all three metrics. The
decision tree is slightly worse, but especially the precision is similar to the combi model.

Model Acc Prec Rec
Decision tree 83.22% 84.17% 77.69%
Rand. forest 83.57% 83.74% 79.23%
Combi 86.36% 86.40% 83.08%

Table 8.14: Accuracy, Precision and Recall for inspection models for DuckDB with basic
features (train-test split).

The time difference of the two versions is small for most of the misclassifications for all
three models. Table 8.15 and Figure 8.9 provide and visualize the data for us.

Model Misclass. 0.01 0.1 1 10 100 TO

Decision tree FP 2 7 8 2 0 0
FN 2 9 11 4 3 0

Rand. forest FP 2 8 8 2 0 0
FN 2 7 11 4 3 0

Combi FP 3 6 5 3 0 0
FN 2 6 9 4 1 0

Table 8.15: Order of magnitude (in seconds) of the time difference of misclassifications
for the inspection models for DuckDB with basic features (train-test split).

74



8.2. DuckDB

The number of FP are always fewer than the amount of FN, which is what we want to
have, since FP are the worse misclassifications for our application.

Figure 8.9: Distribution of misclassifications for the inspection models for DuckDB with
basic features (train-test split).

For DuckDB with basic features the combi model is performing best based on the
metrics and misclassifications. Nevertheless, the combi model is not interpretable,
highly complex and needs much more time for the computation as e.g. the decision
tree. Additionally, the decision tree performs not much worse, especially regarding the
precision and misclassifications (FP).

8.2.2 Basic features + DDB features

To the basic features we now add the cardinality estimate, which we get with the DuckDB
EXPLAIN command. This should help the models to improve the predictions due
to additional (hopefully useful) information. The important results of the models are
provided in Table 8.16 for classification and regression based on their metrics (complete
results: Appendix Table A.10 - Table A.12).

Model 2-class: Acc 3-class (0.5): Acc time diff: MSE
5-NN 86.01% 87.76% 0.3076
Decision tree 87.06% 90.21% 0.2086
Rand. forest 87.76% 89.86% 0.2055
SVM linear linear: 73.08% poly: 81.82% poly: 1.0955
MLP 23-60-20-2: 80.77% 23-60-40-3: 84.97% 23-80-50-1: 0.4525
MLP small 8-60-20-2,max: 76.92% 8-60-40-3,mean: 82.87% 8-80-50-1,min: 0.7122
MLP custom 8-60-20-2: 85.66% 8-60-40-3: 86.36% 8-80-50-1: 0.5016
HGNN 1-16-32-16-2: 87.41% 1-32-64-3: 83.92% 1-32-64-1: 0.4625

Combi 23-60-20-10/1-16-32-16-10/ 23-60-40-5/1-32-64-5/ 23-80-50-10/1-32-64-10/
20-40-2: 86.36% 10-20-3: 83.92% 20-40-1: 0.4777

Table 8.16: Metrics of ML models for DuckDB with basic features+DDB features
(train-test split).

75



8. Results

In this case the decision tree and random forest achieve the best metric scores. These two
models perform very similarly here and outperform the others. The 3-class classification
achieves a higher accuracy for the decision tree and random forest, but is worse for the
combi model than the 2-class version. In comparison to the models with only the basic
features some models could improve a lot. The decision tree and random forest had an
accuracy of about 83% before and increased to about 87% now for the 2-class case. For
the 3-class classification these two models achieve accuracy value of about 10% higher
with the additional features (80% → 90%) and the MSE is less than the half of the MSE
before for the regression model (0.49 → 0.21). The combi model achieves the same result
as before for the 2-class case, but gets worse for the 3-class and time difference cases.

The regression with splitting value 0.01 can achieve about the same accuracy as the
2-class classification, but the other splitting values and the combi model are worse, which
can be seen in Table 8.17.

Acc
Dec. Tree (Class) 87.06
Dec. Tree (Reg with split 0.5) 79.37
Dec. Tree (Reg with split 0.1) 81.82
Dec. Tree (Reg with split 0.01) 87.76
Rand. Forest (Class) 87.76
Rand. Forest (Reg with split 0.5) 79.37
Rand. Forest (Reg with split 0.1) 81.47
Rand. Forest (Reg with split 0.01) 87.06
Combi (Class) 86.36
Combi (Reg with split 0.5) 76.92
Combi (Reg with split 0.1) 80.77
Combi (Reg with split 0.01) 79.02

Table 8.17: Performance of regression with split as classification in comparison to the
classification for DuckDB with basic features+DDB features (train-test split).

The additional metrics show, that the decision tree achieves the highest precision score,
but also a lower recall, wheres the random forest has a slightly better accuracy. The
combi model has a bit smaller accuracy score and a smaller precision, but a better recall
than the decision tree (Table 8.18).

Model Acc Prec Rec
Decision tree 87.06% 89.92% 81.06%
Rand. forest 87.76% 88.80% 84.09%
Combi 86.36% 86.05% 84.09%

Table 8.18: Accuracy, Precision and Recall for inspection models for DuckDB with basic
features+DDB features (train-test split).

76



8.3. SparkSQL

The precision and recall values are higher for all three models with the additional features
than the metrics for the models with the basic features.

When observing the time differences of the misclassifications in Table 8.19 and Figure 8.10
we can see that there are fewer FP than FN and most FP have small time difference values.
Again, this means that the label is wrong, but both versions have a similar runtime
anyway. For the decision tree and the random forest the number of misclassifications
and also the amount of FP decreased for the models with the additional features.

Model Misclass. 0.01 0.1 1 10 100 TO

Decision tree FP 1 6 4 1 0 0
FN 2 15 5 2 1 0

Rand. forest FP 1 7 5 1 0 0
FN 2 12 4 2 1 0

Combi FP 0 4 13 1 0 0
FN 1 9 8 3 0 0

Table 8.19: Order of magnitude of the time difference of misclassifications for the
inspection models for DuckDB with basic features+DDB features (train-test split).

Figure 8.10: Distribution of misclassifications for the inspection models for DuckDB with
basic features+DDB features (train-test split).

We can see that the decision tree is probably the best model here together with the
random forest. Even if the accuracy for the random forest is sligthly better than for the
decision tree, the precision is higher for the decision tree and it is the easier and more
interpretable model. Overall, the models with the additional features outperform the
models with the basic features, especially for the decision tree and random forest.

8.3 SparkSQL
The third DBMS we are looking at, is SparkSQL, which has been used to run the queries
and provide the runtimes for the ML models. In the beginning we observe the distribution

77



8. Results

of the runtimes for the original and rewritten queries provided in orders of magnitude in
Figure 8.11.

Figure 8.11: Comparison of distributions of orders of magnitude for SparkSQL.

The number of timeouts is much bigger for the queries evaluated with the original form,
whereas the number of queries evaluated fast is a bit higher for the original queries.
However, the amount of queries evaluated very fast is not big for either of the two versions.
For all benchmark datasets there are parts of them, where the evaluation gets faster
using the rewriting method.

In Figure 8.12 we can see the distribution of the regression response. On the left we can
see the skewed distribution with a wide range, where most of the values are in the middle.
As before we transform the time difference with this formula xnew = sgn(x) ∗ log(|x| + 1)
to achieve a distribution closer to a normal distribution.

Figure 8.12: Distribution of the regression response = time difference = rewritten runtime
- original runtime for SparkSQL.

In Table 8.20 we can see that about half of the queries have a faster evaluation in the
original form and the other half in the rewritten form. If the original query is faster,
most of the times it is only a little bit faster, since they are mostly in the equal class
with threshold 0.5 then.

78



8.3. SparkSQL

2 classes 3 classes (0.01) 3 classes (0.05) 3 classes (0.1) 3 classes (0.5)
orig 1452 1412 1146 726 104
rewr 1482 1444 1351 1260 1028
equal - 78 437 948 1802

Table 8.20: Distribution of the classes for the classifications for SparkSQL.

8.3.1 Basic features
For the models using the basic features we can see the results in Table 8.21 (for full
results see Appendix Table A.13 - Table A.15).

Model 2-class: Acc 3-class (0.5): Acc time diff: MSE
5-NN 82.94% 86.35% 0.6731
Decision tree 83.62% 89.08% 0.5790
Rand. forest 83.28% 89.08% 0.5846
SVM linear rbf: 71.33% rbf: 79.86% rbf: 1.6123
MLP 17-80-50-2: 77.47% 17-60-40-3: 84.98% 17-80-50-1: 1.1241
MLP small 7-80-50-2,med: 76.79% 7-80-50-3,max: 85.67% 7-80-50-1,max: 1.2027
MLP custom 7-80-50-2: 76.79% 7-80-50-3: 86.01% 7-80-50-1: 1.1544
HGNN 1-16-32-2: 80.55% 1-32-64-3: 88.40% 1-32-64-1: 0.6577

Combi 17-80-50-10/1-16-32-10/ 17-80-50-5/1-4-16-5 17-80-50-10/1-32-64-10/
20-60-20-2: 83.96% 10-20-3: 91.13% 20-40-1: 0.4346

Table 8.21: Metrics of ML models for SparkSQL with basic features (train-test split).

For the 2-class classification the decision tree, random forest and combi model perform
very similarly. The 3-class version achieves a higher accuracy for all models than the
2-class case, where the combi model is the best, closely followed by the decision tree and
random forest. For the regression the combi model has the smallest MSE. The next best
models are the decision tree and random forest.

When inspecting the three models decision tree, random forest and the combi model in
more detail, we can see that the decision tree achieves the highest precision value (which
is important for us). The other two models are not much worse and achieve a better
recall. This can be seen in Table 8.22.

Model Acc Prec Rec
Decision tree 83.62% 86.76% 79.73%
Rand. forest 83.28% 83.67% 83.11%
Combi 83.96% 84.83% 83.11%

Table 8.22: Accuracy, Precision and Recall for inspection models for SparkSQL with
basic features (train-test split).

The regression with a splitting value performs as classification about the same as the
2-class classification for the decision tree and random forest with a split of 0.01 and better

79



8. Results

results for the 0.1 split. The other split and the combi models are worse than the direct
classification (Table 8.23).

Acc
Dec. Tree (Class) 83.62
Dec. Tree (0.5) 79.52
Dec. Tree (0.1) 84.98
Dec. Tree (0.01) 83.62
Rand. Forest (Class) 83.28
Rand. Forest (0.5) 79.52
Rand. Forest (0.1) 84.64
Rand. Forest (0.01) 83.62
Combi (Class) 83.96
Combi (0.5) 78.84
Combi (0.1) 81.91
Combi (0.01) 75.77

Table 8.23: Performance of regression with split as classification in comparison to the
classification for SparkSQL with basic features (train-test split).

We can see the distribution and the splits into orders of magnitude of the time difference
of the misclassifications in Table 8.24 and Figure 8.13.

Model Misclass. 0.01 0.1 1 10 100 TO

Decision tree FP 1 10 6 1 0 0
FN 6 16 3 3 2 0

Rand. forest FP 1 14 8 1 0 0
FN 5 14 1 3 2 0

Combi FP 2 12 7 1 0 0
FN 4 14 4 3 0 0

Table 8.24: Order of magnitude of the time difference of misclassifications for the
inspection models for SparkSQL with basic features (train-test split).

More than half of the FP for each of the three models have a time difference smaller or
equal to 0.01, which means the runtimes are very similar in the two versions (original
and rewritten). Most of the FN have a very small time difference, too. The decision tree
has the fewest FP values, but slightly more FN.

For SparkSQL with basic features the decision tree achieves the best precision and a
similar accuracy as the others. Moreover, the distribution of the time difference for the
misclassifications is the best for the decision tree and it is an easy and interpretable
model. We consider it the "best" model for this setting.

80



8.3. SparkSQL

Figure 8.13: Distribution of misclassifications for the inspection models for SparkSQL
with basic features (train-test split).

8.3.2 Basic features + POS features
Again, we want to improve the model by adding additional features. Since SparkSQL
does not provide additional information, we have decided to use the POS features here.
The model results can be seen in Table 8.25 (full results Appendix Table A.13 - Ta-
ble A.15).

Model 2-class: Acc 3-class (0.5): Acc time diff: MSE
5-NN 86.35% 94.20% 0.2863
Decision tree 88.74% 96.93% 0.0222
Rand. forest 89.08% 97.27% 0.0252
SVM linear rbf: 79.52% poly: 88.74% rbf: 1.0176
MLP 30-40-10-2: 86.35% 30-80-50-3: 94.54% 30-80-50-1: 0.3607
MLP small 10-40-10-2,max: 83.28% 10-80-50-3,med: 94.54% 10-80-50-1,min: 0.5706
MLP custom 10-40-10-2: 85.32% 10-80-50-3: 92.83% 10-80-50-1: 0.6684
HGNN 1-16-32-2: 80.55% 1-32-64-3: 88.40% 1-32-64-1: 0.6577

Combi 30-40-10-10/1-16-32-10/ 30-80-50-10/1-4-16-10/ -20-40-2: 81.57% 20-40-3: 73.72%

Table 8.25: Metrics of ML models for SparkSQL with basic features+POS features
(train-test split).

Here the random forest is the best for the classifications, slightly followed by the decision
tree and vice versa for the regression. The combi model is much worse here. For the
3-class classification the random forest achieves an accuracy of over 97%. In comparison
to the models with the basic features before, these models with the additional features
achieve a higher accuracy for the decision tree and random forest (83% → 89%), but a
lower for the combi model (84% → 81%).
As explained above we could not run the combi model for this setting for the regression
case.

The regression with a splitting value as classification cannot achieve the same accuracy

81



8. Results

values as the 2-class classification, as we can see in Table 8.26. Still, the scores are not
much worse.

Acc
Dec. Tree (Class) 88.74
Dec. Tree (0.5) 84.64
Dec. Tree (0.1) 88.05
Dec. Tree (0.01) 88.05
Rand. Forest (Class) 89.08
Rand. Forest (0.5) 84.30
Rand. Forest (0.1) 88.40
Rand. Forest (0.01) 88.05

Table 8.26: Performance of regression with split as classification in comparison to the
classification for SparkSQL with basic features+POS features (train-test split).

Using our inspection models, we can see that the decision tree and random forest achieve
precision values of 94% (Table 8.27). This is highly appreciated for our purpose. Moreover,
the values of precision and recall are higher for these models with the additional features
than the ones with the basic features.

Model Acc Prec Rec
Decision tree 88.74% 94.57% 82.43%
Rand. forest 89.08% 94.62% 83.11%
Combi 81.57% 84.06% 78.38%

Table 8.27: Accuracy, Precision and Recall for inspection models for SparkSQL with
basic features+POS features (train-test split).

Only very few FP exist for the decision tree and random forest and all of them have
time difference values of under one second. Additionally, most of them and most of
the FN even have time differences of under 0.1 seconds, which means the runtimes of
the original and rewritten version are almost the same. We can see that in Table 8.28.
This misclassification results are again slightly better than for the models without the
additional features.

The distributions of the misclassifications for the decision tree and random forest are
very close around zero, which we can see in Figure 8.14.

For the SparkSQL runtimes and basic features and POS features the decision tree and
random forest achieve very similar results. Since the decision tree has a slightly better
precision and is the easier model, we would consider it as the best model here. The
models with the additional features outperform the version with only the basic features
in terms of metrics and inspection of misclassifications.

82



8.4. Comparison

Model Misclass. 0.01 0.1 1 10 100 TO

Decision tree FP 0 5 2 0 0 0
FN 5 17 4 0 0 0

Rand. forest FP 0 4 3 0 0 0
FN 5 17 3 0 0 0

Combi FP 2 11 8 1 0 0
FN 3 13 8 3 5 0

Table 8.28: Order of magnitude of the time difference of misclassifications for the
inspection models for SparkSQL with basic features+POS features (train-test split).

Figure 8.14: Distribution of misclassifications for the inspection models for SparkSQL
with basic features+POS features (train-test split).

8.4 Comparison
After observing the results with quantitative and qualitative analysis separately for the
data of each DBMS, we now want to compare their results and find out, which model
performs best overall and obtains other insights. In the beginning we look at the runtime
distributions in orders of magnitude for the original and rewritten evaluation in Table 8.29
once more.

POS DDB SPA
Runtime orig eval. rewr. eval orig eval. rewr. eval orig eval. rewr. eval
[0,0.01] 115 1 7 0 0 0
(0.01,0.1] 797 522 101 103 35 12
(0.1,1] 1053 1937 1706 1930 1638 2179
(1,10] 434 227 638 560 598 461
(10,100] 244 208 219 219 241 282
TO (>100) 293 41 265 124 424 2

Table 8.29: Runtime distribution in order of magnitudes for both methods and all three
DBMSs.

83



8. Results

We have already seen these results as plots (Figure 8.3, Figure 8.7, Figure 8.11) for each
DBMS separately. Now we want to build a connection between them. We can see that
PostgreSQL is the only one with multiple queries evaluated faster than 0.01 seconds,
where most of these queries were in their original form. SparkSQL is the DBMS with the
slowest runtimes overall and also the one with the most timeouts. The general pattern,
that the evaluation of the original queries leads to a broader distribution with some very
fast and some very slow evaluations, can be seen for all three DBMSs. In contrast to
that the rewritten form leads to fewer timeouts, but also to less fast runtimes. This once
more confirms our initial problem: Neither the original nor the rewritten version is the
better choice for all queries, but for some cases the original is better and for some cases
the rewritten is better. This is the reason why we want to construct a decision program,
which tells us which version should be used.

This decision program will be an ML model and we now compare the performances of
different models based on the accuracy and MSE. We provide the best three models for
each DBMS and feature combination for the 2-class classifications in Table 8.30.

Data Best Second best Third best
POS: basic Combi (86.21%) Rand. Forest (82.76%) Dec. Tree (82.41%)

POS: basic+POS Rand. Forest (94.48%) Dec. Tree (92.76%) MLP (91.72%)
DDB: basic Combi (86.36%) HGNN (84.27%) Rand. Forest (83.57%)

DDB: basic+DDB Rand. Forest (87.76%) HGNN (87.41%) Dec. Tree (87.06%)
SPA: basic Combi (83.96%) Dec. Tree (83.62%) Rand. Forest (83.28%)

SPA: basic+POS Rand. Forest (89.08%) Dec. Tree (88.74%) k-NN (86.35%)

Table 8.30: Best models for 2 classes.

For all DBMSs the combi model achieves the highest accuracy, if the basic features are
used. When adding additional features the random forest is the best performing model.
Nevertheless, the accuracy is often very similar for each of the best three models and
as mentioned in the last sections, the accuracy is not the only important measure. We
also have to consider the precision (and recall), as well as the performance of the models,
i.e. observing the behaviour of the misclassifications. The decision tree is under the top
three models for five out of the six cases of DBMS and features based on the accuracy.
Often it achieves one of the best precision scores and the TP misclassifications are often
only for cases where the runtimes are similar anyway. Another very important point is
that this model is interpretable and the decisions can be explained. Additionally, it is
computationally one of the cheaper models. Therefore, we decide that the decision tree
is the "best" model for our task, since it achieves very good results with the metrics and
misclassifications and is an interpretable model, which can be computed easily.

A similar behaviour can be seen for the 3-class classification with cut-off 0.5 in Table 8.31.
The decision tree is under the top 2 in five settings. For the other cut-offs the results are
given in A.8, since they do not achieve values as good as with the 0.5 cut-off. The 0.5
cut-off 3-class version achieves higher accuracy values than the 2-class version, but it is
not suitable for our task, since we have to decide, which version should be used (original

84



8.5. Final model

and rewritten). One could argue, that for the equal class it does not really matter, which
version is used, since they have nearly equal runtimes anyway. Then, this 3-class case
performs really well and should be used.

Data Best Second best Third best
POS: basic Combi (90.69%) Dec. Tree (86.21%) Rand. Forest (84.48%)

POS: basic+POS Rand. Forest (95.52%) Dec. Tree (94.48%) MLP (91.38%)
DDB: basic Combi (88.46%) HGNN (85.66%) Rand. Forest (81.47%)

DDB: basic+DDB Dec. Tree (90.21%) Rand. Forest (89.86%) k-NN (87.76%)
SPA: basic Combi (91.13%) Dec. Tree (89.08%) Rand. Forest (89.08%)

SPA: basic+POS Rand. Forest (97.27%) Dec. Tree (96.93%) MLP (94.54%)

Table 8.31: Best models for 3 classes with cut-off 0.5.

Finally, we show the best models for the regression case based on the MSE in Table 8.32.
Again, the decision tree and random forest are under the top two (or three) models,
where the decision tree is the easier model and should be taken. Nevertheless, as we have
seen in the last sections, the regression with a splitting value as classification most of the
times does not achieve the performance of the 2-class classification and only very few
times has a similar or slightly better result.

Data Best Second best Third best
POS: basic Rand. Forest (0.5560) Dec. Tree (0.5809) k-NN (0.5850)

POS: basic+POS Rand. Forest (0.0661) Dec. Tree (0.0846) k-NN (0.2581)
DDB: basic Combi (0.3778) Rand. Forest (0.4900) Dec. Tree (0.4905)

DDB: basic+DDB Rand. Forest (0.2055) Dec. Tree (0.2086) k-NN (0.3076)
SPA: basic Combi (0.4346) Dec. Tree (0.5790) Rand. Forest (0.5846)

SPA: basic+POS Dec. Tree (0.0222) Rand. Forest (0.0252) k-NN (0.2863)

Table 8.32: Best models for time difference.

Additional insights that we get from these comparisons and the last sections are that the
models with additional features always perform better than the ones with only the basic
features. The setting with the PostgreSQL runtimes with the basic features and POS
features achieves the best results of all our models and settings.

8.5 Final model
As final model, which we apply on the untouched test set to see how well the model
generalizes, we use the decision tree as argued above. This means we use the decision
tree, which we trained on the training set and validated on the validation set (where we
saw which model with which parameter setting performed best) and now predict the
labels using this decision tree for the test set. This is done for each setting of DBMS
runtimes and feature combination.
We now observe the performance based on the metrics and inspect the misclassifications
in a similar way as before. In Table 8.33 we can see that the models perform very well on

85



8. Results

the test set. All metrics achieve values above 80% and therefore, the model generalizes
well. The PostgreSQL runtimes together with the basic features and POS features even
achieve an accuracy of about 94%, a precision of 96% and a recall of 91%, which is a
very good result. Again, the models with additional features always perform better.

Setting Acc Prec Rec
POS, basic 86.55% 92.13% 80.14%
POS, basis+POS 93.79% 96.38% 91.10%
DDB, basic 85.37% 87.60% 81.29%
DDB, basis+DDB 90.21% 92.00% 86.47%
SPA, basic 80.27% 80.54% 80.54%
SPA, basic+POS 90.14% 91.10% 89.26%

Table 8.33: Accuracy, Precision and Recall for the final model on the test set (train-test
split).

Additional to the numbers observed with the metrics, we visualize the distributions of
orders of magnitude for each setting for the final test set.

Figure 8.15: Comparison of distributions of orders of magnitude for PostgreSQL with
basic features.

Figure 8.16: Comparison of distributions of orders of magnitude for PostgreSQL with
basic features+POS features.

86



8.5. Final model

On the left the distribution is provided for the evaluation times of the original queries, in
the middle for the rewritten queries and on the right for the distribution of either the
original or the rewritten runtime based on the decision we made using our decision tree.

Figure 8.17: Comparison of distributions of orders of magnitude for DuckDB with basic
features.

Figure 8.18: Comparison of distributions of orders of magnitude for DuckDB with basic
features+DDB features.

Figure 8.19: Comparison of distributions of orders of magnitude for SparkSQL with basic
features.

87



8. Results

In Figure 8.15 this is given for PostgreSQL with basic features, in Figure 8.16 for
PostgreSQL with additional POS features, in Figure 8.17 for DuckDB with basic features,
in Figure 8.18 for DuckDB with additional DDB features, in Figure 8.19 for SparkSQL
with basic features and in Figure 8.20 for SparkSQL with additional POS features.

Figure 8.20: Comparison of distributions of orders of magnitude for SparkSQL with basic
features+POS features.

For each setting we observe that the number of timeouts and longer evaluation times is
reduced and the number of fast evaluation times is increased, which was our goal.
Now, we want to examine the misclassifications (given in Table 8.34). This is a very nice
result, too, since for all FP the time difference between the two versions (original and
rewritten) is always below 1 second and for most cases even below 0.1 seconds.

Setting Misclass. 0.01 0.1 1 10 100 TO

POS, basic FP 1 6 3 0 0 0
FN 1 12 11 3 2 0

POS, basic+POS FP 1 2 2 0 0 0
FN 2 6 5 0 0 0

DDB, basic FP 1 7 5 2 1 0
FN 2 12 4 5 3 0

DDB, basic+DDB FP 3 5 2 0 0 0
FN 2 8 5 3 0 0

SPA, basic FP 2 15 12 0 0 0
FN 1 12 8 6 2 0

SPA, basic+POS FP 1 9 3 0 0 0
FN 2 10 4 0 0 0

Table 8.34: Order of magnitude of the time difference of misclassifications for the final
model on the test set (train-test split).

There are some FN with a bit higher time differences, but the majority is below 1 second.
Again, the PostgreSQL model with basic features and POS features performs best (has
the fewest misclassifications and fewest FP and all of them have a time difference below
1 second).

88



8.5. Final model

Additionally, we provide two statistical tests, which to test the performance of the decision
program compared to the plain evaluation. In this case, this means that we test if the
mean or median of the runtimes, which we get with our decision program, is significantly
smaller than the mean/median of the original runtimes. As the test for the median we
use the Wilcoxon sign-rank test and as the test for the mean a paired sample t-test
(see Section 7.4.2). If the p-value of the statistical test is below an alpha value, which
we chose as 0.1 (a common choice), then the null hypothesis can be rejected. The null
hypotheses are that the means or medians of the two groups are the same. So, if we
reject that, we can say that the means/medians are significantly different for the two
groups and in our case that means, that using the decision program gives a significantly
better result than just taking the original queries.

In Table 8.35 we can see that all p-values are very small and we can reject the null every
time. This means the means and medians of the two groups are significantly different.
Since the means and medians of the runtimes, which we got with our decision program,
are smaller and significantly different from those of the original runtimes, we get that
the decision program leads to significantly lower means/medians of runtimes on the test
set. This is exactly what we wanted to achieve.

Setting Test Statistic p-value Reject/not reject

POS, basic Wilcoxon test 187.0 1.0710 ∗ 10−20 Reject
Paired t-test 6.2546 1.4305 ∗ 10−9 Reject

POS, basic+POS Wilcoxon test 114.0 2.5330 ∗ 10−23 Reject
Paired t-test 6.4625 1.0710 ∗ 10−10 Reject

DDB, basic Wilcoxon test 639.0 6.6518 ∗ 10−17 Reject
Paired t-test 5.3127 2.1757 ∗ 10−7 Reject

DDB, basic+DDB Wilcoxon test 204.0 3.6101 ∗ 10−20 Reject
Paired t-test 5.5709 5.8647 ∗ 10−8 Reject

SPA, basic Wilcoxon test 696.0 1.8638 ∗ 10−20 Reject
Paired t-test 7.0013 1.7362 ∗ 10−11 Reject

SPA, basic+POS Wilcoxon test 171.0 3.3822 ∗ 10−24 Reject
Paired t-test 7.2394 3.9816 ∗ 10−12 Reject

Table 8.35: Statistical tests for the final model on the test set (train-test split).

Finally, we want to visualize the decision trees, which are our final models and try to find
out which features were the most important ones. In Figure 8.21 we provide the decision
tree of our best performing model (PostgreSQL runtimes with basic features and POS
features). The visualizations of the other decision trees can be seen in the Appendix:
Figure A.1 to Figure A.5. These visualizations give us an overview of how the structure
of the decision trees look like. Nevertheless, since the depth of the six trees are between
15 and 19, it is hard/impossible to read all single decisions.

Therefore, we state the most important features of each tree. Features, which are more
often used for decision, and features, which distinguish between the groups well, are

89



8. Results

Figure 8.21: Visualization of the final model (=decision tree) for PostgreSQL with basic
features+POS features (train-test split).

considered to be more important. This can be measured with the Gini importance, which
calculates the Gini impurity for each decision and assigns importances between 0 and 1
to each feature.

In Table 8.36 the three most important features in each tree are given together with the
Gini importance value. All features with their importances are given in the Appendix
Table A.28.

Setting First Second Third

POS, basic mean(container c.) # filters # joins
0.488273 0.235353 0.091582

POS, basic+POS max(join rows) min(join rows) q75(join rows)
0.494756 0.116054 0.058002

DDB, basic mean(container c.) # filters # joins
0.408201 0.211150 0.095617

DDB, basic+DDB med(est. cardinality) mean(container c.) max(container c.)
0.241326 0.112311 0.110673

SPA, basic # filters mean(container c.) # conditions
0.393823 0.270023 0.120211

SPA, basic+POS max(join rows) # filters total cost
0.287186 0.157783 0.089817

Table 8.36: Three most important features (Gini importance) of final model on the test
set for PostgreSQL with basic features (train-test split).

90



8.5. Final model

We can see that the feature "# filters", the number of filters in the query, is under the top
three most important features for five of our six settings. Additionally, it is interesting
to see, that for the three models with additional features, at least one of these additional
features is under the top three considering the importance. Since we saw that the models
are performing better with additional features, it is not such a big surprise, that they
influence the model a lot. For the PostgreSQL setting with POS features all three most
important features are based on the POS join row feature. For the DuckDB setting
with DDB features, the DDB feature cardinality is the most important feature. For the
SparkSQL setting with the additional POS features the join rows and total cost, which
are POS features, are the first and third most important feature.

91





CHAPTER 9
Conclusion

In this thesis we design a decision program, which can be used to decide between two
evaluation methods for SQL queries. The one method is the plain evaluation of a query
on a DBMS. The other version is a rewriting method introduced in Gottlob et al., 2023.
The problem is that neither of these methods is better for all queries, but there are
queries, where the original version is faster and queries, where the rewritten version can
decrease the evaluation runtime. So, we want to create a decision program based on a
Machine Learning model. The models we compare are k-nearest neighbors, decision trees,
random forests, support vector machines, multi-layer perceptrons, hypergraph neural
networks and a combination of the latter two.

We find out that the decision tree is the "best" model. Therefore, we use it as our decision
program. There are multiple factors, which lead to our choice. On the one hand, the
decision tree achieves high scores for the metrics (up to over 90% for accuracy, precision
and recall). On the other hand, there are only a few misclassifications and most of
them are in cases, where the original and rewritten runtimes are very similar anyway.
Additionally, the decision tree is a Machine Learning model, which is interpretable and
has an easy computation. Furthermore, we can identify features, which are benefical for
the model results and we provide the most influential features for each model setting.

For all three DBMSs, namely PostgreSQL, DuckDB and SparkSQL, we can outperform the
plain evaluation of the queries, using our decision program and the rewriting method for
cases, where it improves the runtime. We apply the final decision program, which means
the decision tree, on the unseen test set for our final analysis, to see that it generalizes
very well. Additionally, we use two statistical tests to compare the mean/median of the
runtimes for the original version and our proposed version. For all DBMSs and all our
settings the mean and median of the runtimes of our version are statistical significantly
smaller than the mean and median of the original runtimes. We also can identify which
features are important for making the decisions.

93



9. Conclusion

In future work the whole process could be extended to a broader class of queries, since
our approach only works for acyclic queries (0MA queries). For that, the decompositions
described in Chapter 5 could be used to split up cyclic queries into acyclic ones, which
then could be used in the same way as we did. For cyclic queries this means that the
edge cover should be constructed and if all tables in each node of the edge cover are
joined together, the resulting tables are an acyclic version of this query. Using the
decompositions we would get a join tree of this edge cover and would be able to apply
all other steps like for the acyclic queries. The Machine Learning part could also be
further extended. One way would be to add and/or construct additional features to the
ones we used. Another approach would be to introduce more complex neural networks
and use additional message passing layers for the hypergraph neural networks. One
interesting thing would be to reduce the features and only use the ones which we got
as the most important features in the end and find out how well models based on them
would perform.

94



APPENDIX A
Results of Machine Learning

Models

We provide the metrics for all ML models for all data from different DBMSs for all
hyerparameter combinations we used for train-test split and cross-validation.
As data we use: PostgreSQL data with basic features, PostgreSQL data with basic
features and POS features, DuckDB data with basic features, DuckDB data with basic
features and DDB features, SparkSQL data with basic features, SparkSQL data with
basic features and POS features.
For each of them we have the models: k-NN, decision tree, random forest, SVM, MLP,
HGNN, combination of MLP+HGNN with different hyperparameterṡ And we have the
2-class or 3-class (4 different cut-offs) classification, where we provide the accuracy and
the time difference regression, where we show the MSE.
For all of those variants we provide one table with the train-test split results. Afterwards
we provide the results of the cross validation, which was done for the models k-NN,
decision tree, random forest, SVM.

Then, the three best models based on the accuracy for all DBMS and features settings
are given for the 3-class classifications with cut-offs 0.1, 0.05 and 0.01.

Followed by the feature importances for all features, which are calculated with the Gini
importance for the final model, which is the decision tree, for all data versions.

In the end, the final decision tree models are visualized.

95



A. Results of Machine Learning Models

A.1 PostgreSQL: Basic features

Model Acc
5-NN 0.7966
Decision tree 0.8241
Random forest 0.8276
SVM linear 0.7000
SVM poly 0.6690
SVM rbf 0.7103
MLP: 17-5-2 0.7517
MLP: 17-10-2 0.7207
MLP: 17-20-2 0.7517
MLP: 17-25-2 0.7517
MLP: 17-40-2 0.7690
MLP: 17-60-2 0.7828
MLP: 17-10-5-2 0.7276
MLP: 17-20-10-2 0.7552
MLP: 17-40-20-2 0.7897
MLP: 17-40-10-2 0.5621
MLP: 17-60-40-2 0.7966
MLP: 17-60-20-2 0.7655
MLP: 17-80-50-2 0.7862
MLP, small-median: 7-60-40-2 0.7000
MLP, small-mean: 7-60-40-2 0.6759
MLP, small-min: 7-60-40-2 0.6966
MLP, small-max: 7-60-40-2 0.7897
MLP, small-q25: 7-60-40-2 0.7103
MLP, small-q75: 7-60-40-2 0.7069
MLP, custom: 7-60-40-2 0.7897
HGNN: 1-16-32-2 0.8138
HGNN: 1-32-16-2 0.8103
HGNN: 1-16-32-16-2 0.8000
HGNN: 1-32-64-2 0.8034
HGNN: 1-4-16-2 0.8103
combi: 17-60-40-2/1-16-32-2/4-2 0.8103
combi: 17-60-40-5/1-16-32-5/10-2 0.8138
combi: 17-60-40-5/1-16-32-5/10-20-2 0.8483
combi: 17-60-40-10/1-16-32-10/20-40-2 0.8621
combi: 17-60-40-10/1-16-32-10/20-60-20-2 0.8517

Table A.1: Accuracy of ML models for 2 classes for PostgreSQL with basic features
(train-test split).

96



A.1. PostgreSQL: Basic features

Model Acc(0.5) Acc(0.1) Acc(0.05) Acc(0.01)
5-NN 0.8345 0.7448 0.7138 0.7414
Decision tree 0.8621 0.7759 0.7345 0.7621
Random forest 0.8448 0.7793 0.731 0.7724
SVM linear 0.731 0.6759 0.6034 0.6552
SVM poly 0.7138 0.6172 0.6172 0.6655
SVM rbf 0.7103 0.6138 0.6517 0.669
MLP 17-5-3 0.6172 0.469 0.5448 0.669
MLP 17-10-3 0.7172 0.5448 0.6 0.6655
MLP 17-20-3 0.7276 0.6759 0.6621 0.7241
MLP 17-25-3 0.7793 0.6931 0.6759 0.6621
MLP 17-40-3 0.7828 0.6655 0.6586 0.7172
MLP 17-60-3 0.7793 0.6793 0.6966 0.7241
MLP 17-10-5-3 0.6897 0.4862 0.5483 0.6862
MLP 17-20-10-3 0.7759 0.7276 0.6655 0.7276
MLP 17-40-20-3 0.7862 0.7448 0.6517 0.7241
MLP 17-40-10-3 0.7828 0.731 0.5793 0.6724
MLP 17-60-40-3 0.7897 0.7483 0.6966 0.7172
MLP 17-60-20-3 0.7828 0.7379 0.7138 0.7
MLP 17-80-50-3 0.7862 0.7276 0.7138 0.7276
MLP small-median: 7-60-40-3 0.7655 0.6897 0.6586 0.669
MLP small-mean: 7-60-40-3 0.7897 0.7069 0.6483 0.6483
MLP small-min: 7-60-40-3 0.7724 0.7241 0.6276 0.6345
MLP small-max: 7-60-40-3 0.7897 0.7069 0.7069 0.7379
MLP small-q25: 7-60-40-3 0.769 0.7276 0.6448 0.6586
MLP small-q75: 7-60-40-3 0.7828 0.7034 0.6586 0.6517
MLP custom: 7-60-40-3 0.8034 0.7724 0.7276 0.7621
HGNN 1-16-32-3 0.8276 0.7724 0.7655 0.769
HGNN 1-32-16-3 0.831 0.7828 0.7517 0.7655
HGNN 1-16-32-16-3 0.8276 0.7931 0.7621 0.7517
HGNN 1-32-64-3 0.8276 0.7931 0.7655 0.7621
HGNN 1-4-16-3 0.8414 0.7966 0.7586 0.7552
combi 17-60-40-3/1-16-32-3/6-3 0.8414 0.8034 0.731 0.7759
combi 17-60-40-5/1-16-32-5/10-3 0.8655 0.8103 0.7621 0.7828
combi 17-60-40-5/1-16-32-5/10-20-3 0.9034 0.8069 0.7759 0.8069
combi 17-60-40-10/1-16-32-10/20-40-3 0.9069 0.8034 0.7621 0.8
combi 17-60-40-10/1-16-32-10/20-60-20-3 0.9 0.8034 0.7586 0.7966

Table A.2: Accuracy of ML models for 3 classes with the different cut-offs for PostgreSQL
with basic features (train-test split).

97



A. Results of Machine Learning Models

Model MSE
5-NN 0.585
Decision tree 0.5809
Random forest 0.556
SVM linear 1.7778
SVM poly 1.7955
SVM rbf 1.6447
MLP: 17-5-1 1.3807
MLP: 17-10-1 1.4159
MLP: 17-20-1 1.3757
MLP: 17-25-1 1.3631
MLP: 17-40-1 1.3528
MLP: 17-60-1 1.3012
MLP: 17-10-5-1 1.2953
MLP: 17-20-10-1 1.2512
MLP: 17-40-20-1 1.2136
MLP: 17-40-10-1 1.2511
MLP: 17-60-40-1 1.1265
MLP: 17-60-20-1 1.2061
MLP: 17-80-50-1 1.1359
MLP, small-median: 7-60-40-1 1.449
MLP, small-mean: 7-60-40-1 1.3585
MLP, small-min: 7-60-40-1 1.4032
MLP, small-max: 7-60-40-1 1.2271
MLP, small-q25: 7-60-40-1 1.4469
MLP, small-q75: 7-60-40-1 1.3491
MLP, custom: 7-60-40-1 1.1578
HGNN: 1-16-32-1 0.8234
HGNN: 1-32-16-1 0.862
HGNN: 1-16-32-16-1 0.8345
HGNN: 1-32-64-1 0.8142
HGNN: 1-4-16-1 0.8933
combi: 17-60-40-2/1-32-64-2/4-1 0.78
combi: 17-60-40-5/1-32-64-5/10-1 0.7666
combi: 17-60-40-5/1-32-64-5/10-20-1 0.6833
combi: 17-60-40-10/1-32-64-10/20-40-1 0.5856
combi: 17-60-40-10/1-32-64-10/20-60-20-1 0.6444

Table A.3: Mean Squared Error of ML models for time difference for PostgreSQL with
basic features (train-test split).

98



A.2. PostgreSQL: Basic features + POS features

A.2 PostgreSQL: Basic features + POS features

Model Acc
5-NN 0.8862
Decision tree 0.9276
Random forest 0.9448
SVM linear 0.8379
SVM poly 0.8517
SVM rbf 0.8621
MLP: 30-5-2 0.8345
MLP: 30-10-2 0.8552
MLP: 30-20-2 0.8621
MLP: 30-25-2 0.869
MLP: 30-40-2 0.8655
MLP: 30-60-2 0.8759
MLP: 30-10-5-2 0.8483
MLP: 30-20-10-2 0.8655
MLP: 30-40-20-2 0.8759
MLP: 30-40-10-2 0.8828
MLP: 30-60-40-2 0.9172
MLP: 30-60-20-2 0.8931
MLP: 30-80-50-2 0.8862
MLP, small-median: 10-60-40-2 0.8862
MLP, small-mean: 10-60-40-2 0.8586
MLP, small-min: 10-60-40-2 0.869
MLP, small-max: 10-60-40-2 0.8897
MLP, small-q25: 10-60-40-2 0.8897
MLP, small-q75: 10-60-40-2 0.8759
MLP, custom: 10-60-40-2 0.9069
HGNN: 1-16-32-2 0.8138
HGNN: 1-32-16-2 0.8103
HGNN: 1-16-32-16-2 0.8
HGNN: 1-32-64-2 0.8034
HGNN: 1-4-16-2 0.8103
combi: 30-60-40-2/1-16-32-2/4-2 0.7138
combi: 30-60-40-5/1-16-32-5/10-2 0.8034
combi: 30-60-40-5/1-16-32-5/10-20-2 0.5966
combi: 30-60-40-10/1-16-32-10/20-40-2 0.6379
combi: 30-60-40-10/1-16-32-10/20-60-20-2 0.8276

Table A.4: Accuracy of ML models for 2 classes for PostgreSQL with basic features+POS
features (train-test split).

99



A. Results of Machine Learning Models

Model Acc(0.5) Acc(0.1) Acc(0.05) Acc(0.01)
5-NN 0.5 0.8862 0.8448 0.8069 0.8414
Decision tree 0.5 0.9448 0.8897 0.8897 0.8724
Random forest 0.5 0.9552 0.9069 0.8931 0.8862
SVM linear 0.5 0.8552 0.8241 0.7828 0.8000
SVM poly 0.5 0.8621 0.8172 0.8000 0.8138
SVM rbf 0.5 0.8586 0.8000 0.8000 0.8241
MLP 0.5: 30-5-3 0.8207 0.7138 0.7345 0.7966
MLP 0.5: 30-10-3 0.5828 0.7172 0.7345 0.8172
MLP 0.5: 30-20-3 0.8621 0.8241 0.8103 0.8172
MLP 0.5: 30-25-3 0.8759 0.8241 0.7931 0.8241
MLP 0.5: 30-40-3 0.8828 0.8586 0.8000 0.8241
MLP 0.5: 30-60-3 0.8862 0.8448 0.8103 0.8207
MLP 0.5: 30-10-5-3 0.5828 0.8069 0.8034 0.8207
MLP 0.5: 30-20-10-3 0.8103 0.7345 0.7966 0.8172
MLP 0.5: 30-40-20-3 0.8690 0.8172 0.8034 0.8103
MLP 0.5: 30-40-10-3 0.5828 0.8000 0.8103 0.5241
MLP 0.5: 30-60-40-3 0.8897 0.8793 0.8276 0.8172
MLP 0.5: 30-60-20-3 0.8621 0.8379 0.8172 0.8241
MLP 0.5: 30-80-50-3 0.8724 0.8414 0.8276 0.8207
MLP 0.5, small-median: 10-60-40-3 0.8655 0.8379 0.7793 0.8069
MLP 0.5, small-mean: 10-60-40-3 0.8621 0.8414 0.7966 0.8138
MLP 0.5, small-min: 10-60-40-3 0.8621 0.8276 0.7897 0.7931
MLP 0.5, small-max: 10-60-40-3 0.8966 0.8379 0.7897 0.8379
MLP 0.5, small-q25: 10-60-40-3 0.8759 0.8241 0.7897 0.8069
MLP 0.5, small-q75: 10-60-40-3 0.8621 0.8621 0.8138 0.8138
MLP 0.5, custom: 10-60-40-3 0.9138 0.8690 0.8414 0.8517
HGNN 0.5: 1-16-32-3 0.8276 0.7724 0.7655 0.7690
HGNN 0.5: 1-32-16-3 0.8310 0.7828 0.7517 0.7655
HGNN 0.5: 1-16-32-16-3 0.8276 0.7931 0.7621 0.7517
HGNN 0.5: 1-32-64-3 0.8276 0.7931 0.7655 0.7621
HGNN 0.5: 1-4-16-3 0.8414 0.7966 0.7586 0.7552
combi 0.5: 30-60-40-3/1-4-16-3/6-3 0.7828 0.7172 0.7414 0.7310
combi 0.5: 30-60-40-5/1-4-16-5/10-3 0.7000 0.7517 0.6897 0.7379
combi 0.5: 30-60-40-5/1-4-16-5/10-20-3 0.6379 0.7724 0.5034 0.5552
combi 0.5: 30-60-40-10/1-4-16-10/20-40-3 0.7414 0.4621 0.5241 0.4655
combi 0.5: 30-60-40-10/1-4-16-10/20-60-20-3 0.5759 0.4621 0.5138 0.5310

Table A.5: Accuracy of ML models for 3 classes with the different cut-offs for PostgreSQL
with basic features+POS features (train-test split).

100



A.2. PostgreSQL: Basic features + POS features

Model MSE
5-NN 0.2581
Decision tree 0.0846
Random forest 0.0661
SVM linear 1.1992
SVM poly 1.0291
SVM rbf 0.9154
MLP: 30-5-1 0.9773
MLP: 30-10-1 1.0136
MLP: 30-20-1 0.7443
MLP: 30-25-1 0.7545
MLP: 30-40-1 0.7207
MLP: 30-60-1 0.7173
MLP: 30-10-5-1 0.9218
MLP: 30-20-10-1 0.6871
MLP: 30-40-20-1 0.5812
MLP: 30-40-10-1 0.7146
MLP: 30-60-40-1 0.4746
MLP: 30-60-20-1 0.4783
MLP: 30-80-50-1 0.4509
MLP, small-median: 10-80-50-1 0.7646
MLP, small-mean: 10-80-50-1 0.6805
MLP, small-min: 10-80-50-1 0.7587
MLP, small-max: 10-80-50-1 0.7327
MLP, small-q25: 10-80-50-1 0.6975
MLP, small-q75: 10-80-50-1 0.6023
MLP, custom: 10-80-50-1 0.5671
HGNN: 1-16-32-1 0.8234
HGNN: 1-32-16-1 0.862
HGNN: 1-16-32-16-1 0.8345
HGNN: 1-32-64-1 0.8142
HGNN: 1-4-16-1 0.8933

Table A.6: Mean Squared Error of ML models for time difference for PostgreSQL with
basic features+POS features (train-test split).

101



A. Results of Machine Learning Models

A.3 DuckDB data: Basic features

Model Acc
5-NN 0.8182
Decision tree 0.8322
Random forest 0.8357
SVM linear 0.6678
SVM poly 0.7168
SVM rbf 0.7203
MLP: 17-5-2 0.7308
MLP: 17-10-2 0.6329
MLP: 17-20-2 0.7657
MLP: 17-25-2 0.7552
MLP: 17-40-2 0.7448
MLP: 17-60-2 0.7552
MLP: 17-10-5-2 0.7063
MLP: 17-20-10-2 0.7098
MLP: 17-40-20-2 0.7762
MLP: 17-40-10-2 0.7413
MLP: 17-60-40-2 0.7378
MLP: 17-60-20-2 0.7378
MLP: 17-80-50-2 0.7832
MLP, small-median: 7-80-50-2 0.7133
MLP, small-mean: 7-80-50-2 0.7063
MLP, small-min: 7-80-50-2 0.7063
MLP, small-max: 7-80-50-2 0.7587
MLP, small-q25: 7-80-50-2 0.6853
MLP, small-q75: 7-80-50-2 0.7028
MLP, custom: 7-80-50-2 0.7727
HGNN: 1-16-32-2 0.8392
HGNN: 1-32-16-2 0.8182
HGNN: 1-16-32-16-2 0.8357
HGNN: 1-32-64-2 0.8427
HGNN: 1-4-16-2 0.8217
combi: 17-80-40-2/1-32-64-2/4-2 0.8427
combi: 17-80-50-5/1-32-64-5/10-2 0.8427
combi: 17-80-50-5/1-32-64-5/10-20-2 0.8636
combi: 17-80-50-10/1-32-64-10/20-40-2 0.8566
combi: 17-80-50-10/1-32-64-10/20-60-20-2 0.8531

Table A.7: Accuracy of ML models for 2 classes for DuckDB with basic features (train-test
split).

102



A.3. DuckDB data: Basic features

Model Acc(0.5) Acc(0.1) Acc(0.05) Acc(0.01)
5-NN 0.7727 0.6469 0.6923 0.8112
Decision tree 0.8077 0.7063 0.7343 0.8322
Random forest 0.8147 0.6958 0.7273 0.8322
SVM linear 0.7203 0.5245 0.5874 0.6748
SVM poly 0.7273 0.5140 0.6399 0.7098
SVM rbf 0.7413 0.5105 0.6329 0.7063
MLP 17-5-3 0.6469 0.3916 0.4580 0.6783
MLP 17-10-3 0.6958 0.5000 0.5035 0.6434
MLP 17-20-3 0.7413 0.5490 0.6329 0.7168
MLP 17-25-3 0.7378 0.5629 0.6049 0.7028
MLP 17-40-3 0.7483 0.5490 0.6434 0.7308
MLP 17-60-3 0.7413 0.6049 0.6294 0.7308
MLP 17-10-5-3 0.6364 0.4895 0.5105 0.6818
MLP 17-20-10-3 0.7727 0.5664 0.6469 0.7413
MLP 17-40-20-3 0.7168 0.5664 0.6329 0.7448
MLP 17-40-10-3 0.7657 0.5035 0.6818 0.7413
MLP 17-60-40-3 0.7657 0.6329 0.6713 0.7483
MLP 17-60-20-3 0.7902 0.6329 0.6434 0.7483
MLP 17-80-50-3 0.7797 0.6329 0.6923 0.7587
MLP small-median 0.7692 0.5524 0.6329 0.7203
MLP small-mean 0.7483 0.5455 0.6294 0.7063
MLP small-min 0.7692 0.5490 0.5839 0.7028
MLP small-max 0.7937 0.6364 0.6538 0.7657
MLP small-q25 0.7657 0.5664 0.6434 0.6923
MLP small-q75 0.7587 0.5594 0.6154 0.7378
MLP custom 0.7832 0.6259 0.6993 0.7483
HGNN 1-16-32-3 0.8566 0.7483 0.7308 0.8287
HGNN 1-32-16-3 0.8357 0.7343 0.7308 0.8287
HGNN 1-16-32-16-3 0.8427 0.7168 0.7203 0.8322
HGNN 1-32-64-3 0.8287 0.7238 0.7133 0.8322
HGNN 1-4-16-3 0.8462 0.7413 0.7343 0.8287
combi 17-80-50-3/1-16-32-3/6-3 0.8392 0.7168 0.7413 0.8252
combi 17-80-50-5/1-16-32-5/10-3 0.8287 0.7308 0.7378 0.8217
combi 17-80-50-5/1-16-32-5/10-20-3 0.8776 0.7378 0.7727 0.8392
combi 17-80-50-10/1-16-32-10/20-40-3 0.8846 0.7168 0.7448 0.8601
combi 17-80-50-10/1-16-32-10/20-60-20-3 0.8811 0.7168 0.7448 0.8357

Table A.8: Accuracy of ML models for 3 classes with the different cut-offs for DuckDB
with basic features (train-test split).

103



A. Results of Machine Learning Models

Model MSE
5-NN 0.5873
Decision tree 0.4905
Random forest 0.49
SVM linear 1.6966
SVM poly 1.7413
SVM rbf 1.6184
MLP: 17-5-1 1.5051
MLP: 17-10-1 1.5547
MLP: 17-20-1 1.4512
MLP: 17-25-1 1.4722
MLP: 17-40-1 1.4442
MLP: 17-60-1 1.4115
MLP: 17-10-5-1 1.4004
MLP: 17-20-10-1 1.3451
MLP: 17-40-20-1 1.2638
MLP: 17-40-10-1 1.3881
MLP: 17-60-40-1 1.0096
MLP: 17-60-20-1 1.1247
MLP: 17-80-50-1 1.0275
MLP, small-median: 7-60-40-1 1.431
MLP, small-mean: 7-60-40-1 1.4032
MLP, small-min: 7-60-40-1 1.5349
MLP, small-max: 7-60-40-1 1.253
MLP, small-q25: 7-60-40-1 1.4586
MLP, small-q75: 7-60-40-1 1.3997
MLP, custom: 7-60-40-1 1.134
HGNN: 1-16-32-1 0.611
HGNN: 1-32-16-1 0.6607
HGNN: 1-16-32-16-1 0.5992
HGNN: 1-32-64-1 0.5969
HGNN: 1-4-16-1 0.614
combi: 17-60-40-2/1-32-64-2/4-1 0.5352
combi: 17-60-40-5/1-32-64-5/10-1 0.542
combi: 17-60-40-5/1-32-64-5/10-20-1 0.3861
combi: 17-60-40-10/1-32-64-10/20-40-1 0.3796
combi: 17-60-40-10/1-32-64-10/20-60-20-1 0.3778

Table A.9: Mean Squared Error of ML models for time difference for DuckDB with basic
features (train-test split).

104



A.4. DuckDB data: Basic features + DuckDB features

A.4 DuckDB data: Basic features + DuckDB features

Model Acc
5-NN 0.8601
Decision tree 0.8706
Random forest 0.8776
SVM linear 0.7308
SVM poly 0.6958
SVM rbf 0.7028
MLP: 23-5-2 0.7308
MLP: 23-10-2 0.5385
MLP: 23-20-2 0.7657
MLP: 23-25-2 0.7832
MLP: 23-40-2 0.7937
MLP: 23-60-2 0.7867
MLP: 23-10-5-2 0.5385
MLP: 23-20-10-2 0.7133
MLP: 23-40-20-2 0.7517
MLP: 23-40-10-2 0.7937
MLP: 23-60-40-2 0.7552
MLP: 23-60-20-2 0.8077
MLP: 23-80-50-2 0.8042
MLP, small-median: 8-60-20-2 0.7203
MLP, small-mean: 8-60-20-2 0.7378
MLP, small-min: 8-60-20-2 0.7413
MLP, small-max: 8-60-20-2 0.7692
MLP, small-q25: 8-60-20-2 0.7133
MLP, small-q75: 8-60-20-2 0.6678
MLP, custom: 8-60-20-2 0.8566
HGNN: 1-16-32-2 0.8601
HGNN: 1-32-16-2 0.8357
HGNN: 1-16-32-16-2 0.8741
HGNN: 1-32-64-2 0.8462
HGNN: 1-4-16-2 0.8671
combi: 23-60-20-2/1-16-32-16-2/4-2 0.8392
combi: 23-60-20-5/1-16-32-16-5/10-2 0.5629
combi: 23-60-20-5/1-16-32-16-5/10-20-2 0.8601
combi: 23-60-20-10/1-16-32-16-10/20-40-2 0.8636
combi: 23-60-20-10/1-16-32-16-10/20-60-20-2 0.5385

Table A.10: Accuracy of ML models for 2 classes for DuckDB with basic features+DDB
features (train-test split).

105



A. Results of Machine Learning Models

Model Acc(0.5) Acc(0.1) Acc(0.05) Acc(0.01)
5-NN 0.8776 0.7587 0.7832 0.8462
Decision tree 0.9021 0.7727 0.8147 0.8706
Random forest 0.8986 0.7727 0.8077 0.8636
SVM linear 0.7692 0.6364 0.6853 0.7203
SVM poly 0.8182 0.6119 0.6503 0.6993
SVM rbf 0.7867 0.5734 0.6224 0.6993
MLP 23-5-3 0.5455 0.3916 0.4790 0.5315
MLP 23-10-3 0.7762 0.4545 0.5420 0.6783
MLP 23-20-3 0.7797 0.6643 0.5175 0.6958
MLP 23-25-3 0.7832 0.6748 0.6853 0.7622
MLP 23-40-3 0.7762 0.6678 0.6678 0.7483
MLP 23-60-3 0.8217 0.6364 0.7063 0.7552
MLP 23-10-5-3 0.5455 0.3916 0.6259 0.7203
MLP 23-20-10-3 0.8007 0.5559 0.5804 0.7098
MLP 23-40-20-3 0.8112 0.6503 0.6643 0.7483
MLP 23-40-10-3 0.6643 0.4790 0.4790 0.5315
MLP 23-60-40-3 0.8497 0.6958 0.7552 0.7587
MLP 23-60-20-3 0.8252 0.3916 0.7657 0.7692
MLP 23-80-50-3 0.8462 0.6748 0.7133 0.7587
MLP 23-60-40-3 small-median 0.8007 0.5839 0.6399 0.6783
MLP 23-60-40-3 small-mean 0.8287 0.6224 0.6434 0.6748
MLP 23-60-40-3 small-min 0.8077 0.6224 0.6573 0.7063
MLP 23-60-40-3 small-max 0.8217 0.6783 0.7063 0.7797
MLP 23-60-40-3 small-q25 0.8182 0.6014 0.6538 0.6783
MLP 23-60-40-3 small-q75 0.8147 0.6119 0.6538 0.6538
MLP 23-60-40-3 custom 0.8636 0.7587 0.7937 0.8252
HGNN 1-16-32-3 0.8252 0.6958 0.7552 0.8531
HGNN 1-32-16-3 0.8322 0.7028 0.7378 0.8636
HGNN 1-16-32-16-3 0.8287 0.7063 0.7727 0.8392
HGNN 1-32-64-3 0.8392 0.7168 0.7692 0.8566
HGNN 1-4-16-3 0.8357 0.6888 0.7343 0.8531
combi 23-60-40-3/1-32-64-3/6-3 0.8322 0.7063 0.7483 0.8497
combi 23-60-40-5/1-32-64-5/10-3 0.8357 0.7063 0.7552 0.8531
combi 23-60-40-5/1-32-64-5/10-20-3 0.8392 0.4056 0.5175 0.5385
combi 23-60-40-10/1-32-64-10/20-40-3 0.5909 0.7063 0.7343 0.5594
combi 23-60-40-10/1-32-64-10/20-60-20-3 0.5664 0.3916 0.4790 0.5315

Table A.11: Accuracy of ML models for 3 classes with the different cut-offs for DuckDB
with basic features+DDB features (train-test split).

106



A.4. DuckDB data: Basic features + DuckDB features

Model MSE
5-NN 0.3076
Decision tree 0.2086
Random forest 0.2055
SVM linear 1.2302
SVM poly 1.0955
SVM rbf 1.3344
MLP: 23-5-1 1.81
MLP: 23-10-1 1.1918
MLP: 23-20-1 0.9993
MLP: 23-25-1 1.0652
MLP: 23-40-1 0.8425
MLP: 23-60-1 0.7481
MLP: 23-10-5-1 1.4743
MLP: 23-20-10-1 0.7798
MLP: 23-40-20-1 0.6151
MLP: 23-40-10-1 0.6515
MLP: 23-60-40-1 0.5078
MLP: 23-60-20-1 0.5614
MLP: 23-80-50-1 0.4525
MLP, small-median: 8-80-50-1 0.9157
MLP, small-mean: 8-80-50-1 0.9215
MLP, small-min: 8-80-50-1 0.7122
MLP, small-max: 8-80-50-1 0.9088
MLP, small-q25: 8-80-50-1 0.7906
MLP, small-q75: 8-80-50-1 0.9373
MLP, custom: 8-80-50-1 0.5016
HGNN: 1-16-32-1 0.4651
HGNN: 1-32-16-1 0.4756
HGNN: 1-16-32-16-1 0.4681
HGNN: 1-32-64-1 0.4625
HGNN: 1-4-16-1 0.4869
combi: 23-80-50-2/1-32-64-2/4-1 0.513
combi: 23-80-50-5/1-32-64-5/10-1 0.4793
combi: 23-80-50-5/1-32-64-5/10-20-1 0.5043
combi: 23-80-50-10/1-32-64-10/20-40-1 0.4777
combi: 23-80-50-10/1-32-64-10/20-60-20-1 3.1948

Table A.12: Mean Squared Error of ML models for time difference for DuckDB with
basic features+DDB features (train-test split).

107



A. Results of Machine Learning Models

A.5 SparkSQL data: Basic features

Model Acc
5-NN 0.8294
Decision tree 0.8362
Random forest 0.8328
SVM linear 0.6792
SVM poly 0.6962
SVM rbf 0.7133
MLP: 17-5-2 0.7201
MLP: 17-10-2 0.6928
MLP: 17-20-2 0.7167
MLP: 17-25-2 0.7031
MLP: 17-40-2 0.6962
MLP: 17-60-2 0.7133
MLP: 17-10-5-2 0.7065
MLP: 17-20-10-2 0.7747
MLP: 17-40-20-2 0.7543
MLP: 17-40-10-2 0.7065
MLP: 17-60-40-2 0.7679
MLP: 17-60-20-2 0.7304
MLP: 17-80-50-2 0.7747
MLP, small-median: 7-80-50-2 0.7679
MLP, small-mean: 7-80-50-2 0.744
MLP, small-min: 7-80-50-2 0.7372
MLP, small-max: 7-80-50-2 0.744
MLP, small-q25: 7-80-50-2 0.7509
MLP, small-q75: 7-80-50-2 0.7372
MLP, custom: 7-80-50-2 0.7679
HGNN: 1-16-32-2 0.8055
HGNN: 1-32-16-2 0.7986
HGNN: 1-16-32-16-2 0.7986
HGNN: 1-32-64-2 0.8055
HGNN: 1-4-16-2 0.7986
combi: 17-80-50-2/1-16-32-2/4-2 0.8089
combi: 17-80-50-5/1-16-32-5/10-2 0.802
combi: 17-80-50-5/1-16-32-5/10-20-2 0.8294
combi: 17-80-50-10/1-16-32-10/20-40-2 0.8225
combi: 17-80-50-10/1-16-32-10/20-60-20-2 0.8396

Table A.13: Accuracy of ML models for 2 classes for SparkSQL with basic features
(train-test split).

108



A.5. SparkSQL data: Basic features

Model Acc(0.5) Acc(0.1) Acc(0.05) Acc(0.01)
5-NN 0.8635 0.727 0.744 0.8259
Decision tree 0.8908 0.7645 0.7816 0.8294
Random forest 0.8908 0.7645 0.785 0.8225
SVM linear 0.7884 0.5768 0.6109 0.6758
SVM poly 0.7952 0.6007 0.6519 0.6928
SVM rbf 0.7986 0.6314 0.628 0.7031
MLP: 17-5-3 0.7816 0.4096 0.4403 0.6928
MLP: 17-10-3 0.785 0.5904 0.6177 0.6894
MLP: 17-20-3 0.8123 0.5563 0.6485 0.7201
MLP: 17-25-3 0.8225 0.587 0.5939 0.6962
MLP: 17-40-3 0.8259 0.6177 0.6621 0.7133
MLP: 17-60-3 0.843 0.6007 0.6212 0.7065
MLP: 17-10-5-3 0.8191 0.5836 0.628 0.6997
MLP: 17-20-10-3 0.8123 0.6177 0.6621 0.6962
MLP: 17-40-20-3 0.8396 0.6382 0.6724 0.7167
MLP: 17-40-10-3 0.843 0.6007 0.628 0.7133
MLP: 17-60-40-3 0.8498 0.6416 0.6758 0.7099
MLP: 17-60-20-3 0.8362 0.6485 0.6689 0.7065
MLP: 17-80-50-3 0.8294 0.628 0.6962 0.7474
MLP, small-median: 7-80-50-3 0.8294 0.5802 0.6689 0.7406
MLP, small-mean: 7-80-50-3 0.8259 0.6075 0.6724 0.7474
MLP, small-min: 7-80-50-3 0.8259 0.6177 0.6689 0.7372
MLP, small-max: 7-80-50-3 0.8567 0.6689 0.7065 0.7782
MLP, small-q25: 7-80-50-3 0.8328 0.6041 0.6758 0.7304
MLP, small-q75: 7-80-50-3 0.8328 0.5973 0.6689 0.7338
MLP, custom: 7-80-50-3 0.8601 0.6724 0.6724 0.785
HGNN: 1-16-32-3 0.8771 0.6997 0.7235 0.785
HGNN: 1-32-16-3 0.8703 0.7031 0.727 0.785
HGNN: 1-16-32-16-3 0.8703 0.7065 0.7201 0.7918
HGNN: 1-32-64-3 0.884 0.6928 0.7133 0.7884
HGNN: 1-4-16-3 0.8703 0.7167 0.7406 0.7782
combi: 17-80-50-3/1-4-16-3/6-3 0.8874 0.727 0.744 0.8055
combi: 17-80-50-5/1-4-16-5/10-3 0.9113 0.727 0.7645 0.8089
combi: 17-80-50-5/1-4-16-5/10-20-3 0.9113 0.7577 0.7645 0.8259
combi: 17-80-50-10/1-4-16-10/20-40-3 0.9044 0.7577 0.7816 0.8328
combi: 17-80-50-10/1-4-16-10/20-60-20-3 0.8908 0.7406 0.7372 0.8157

Table A.14: Accuracy of ML models for 3 classes with the different cut-offs for SparkSQL
with basic features (train-test split).

109



A. Results of Machine Learning Models

Model MSE
5-NN 0.6731
Decision tree 0.579
Random forest 0.5846
SVM linear 2.3233
SVM poly 1.7783
SVM rbf 1.6123
MLP: 17-5-1 1.386
MLP: 17-10-1 1.5114
MLP: 17-20-1 1.4429
MLP: 17-25-1 1.3431
MLP: 17-40-1 1.3479
MLP: 17-60-1 1.3885
MLP: 17-10-5-1 1.3602
MLP: 17-20-10-1 1.2734
MLP: 17-40-20-1 1.2859
MLP: 17-40-10-1 1.2556
MLP: 17-60-40-1 1.1626
MLP: 17-60-20-1 1.1831
MLP: 17-80-50-1 1.1241
MLP, small-median: 7-80-50-1 1.3131
MLP, small-mean: 7-80-50-1 1.2747
MLP, small-min: 7-80-50-1 1.3441
MLP, small-max: 7-80-50-1 1.2027
MLP, small-q25: 7-80-50-1 1.34
MLP, small-q75: 7-80-50-1 1.2379
MLP, custom: 7-80-50-1 1.1544
HGNN: 1-16-32-1 0.6714
HGNN: 1-32-16-1 0.7054
HGNN: 1-16-32-16-1 0.662
HGNN: 1-32-64-1 0.6577
HGNN: 1-4-16-1 0.7163
combi: 17-80-50-2/1-32-64-2/4-1 0.5557
combi: 17-80-50-5/1-32-64-5/10-1 0.5657
combi: 17-80-50-5/1-32-64-5/10-20-1 0.4688
combi: 17-80-50-10/1-32-64-10/20-40-1 0.4346
combi: 17-80-50-10/1-32-64-10/20-60-20-1 0.4794

Table A.15: Mean Squared Error of ML models for time difference for SparkSQL with
basic features (train-test split).

110



A.6. SparkSQL data: Basic features + POS features

A.6 SparkSQL data: Basic features + POS features

Model Acc
5-NN 0.8635
Decision tree 0.8874
Random forest 0.8908
SVM linear 0.7884
SVM poly 0.7816
SVM rbf 0.7952
MLP: 30-5-2 0.7952
MLP: 30-10-2 0.802
MLP: 30-20-2 0.8294
MLP: 30-25-2 0.7986
MLP: 30-40-2 0.8259
MLP: 30-60-2 0.8635
MLP: 30-10-5-2 0.8294
MLP: 30-20-10-2 0.8396
MLP: 30-40-20-2 0.8498
MLP: 30-40-10-2 0.8635
MLP: 30-60-40-2 0.8328
MLP: 30-60-20-2 0.8396
MLP: 30-80-50-2 0.8225
MLP, small-median: 10-40-10-2 0.8157
MLP, small-mean: 10-40-10-2 0.8055
MLP, small-min: 10-40-10-2 0.8123
MLP, small-max: 10-40-10-2 0.8328
MLP, small-q25: 10-40-10-2 0.7952
MLP, small-q75: 10-40-10-2 0.8089
MLP, custom: 10-40-10-2 0.8532
HGNN: 1-16-32-2 0.8055
HGNN: 1-32-16-2 0.7986
HGNN: 1-16-32-16-2 0.7986
HGNN: 1-32-64-2 0.8055
HGNN: 1-4-16-2 0.7986
combi: 30-40-10-2/1-16-32-2/4-2 0.7986
combi: 30-40-10-5/1-16-32-5/10-2 0.8055
combi: 30-40-10-5/1-16-32-5/10-20-2 0.7986
combi: 30-40-10-10/1-16-32-10/20-40-2 0.8157
combi: 30-40-10-10/1-16-32-10/20-60-20-2 0.686

Table A.16: Accuracy of ML models for 2 classes for SparkSQL with basic features+POS
features (train-test split).

111



A. Results of Machine Learning Models

Model Acc(0.5) Acc(0.1) Acc(0.05) Acc(0.01)
5-NN 0.942 0.7782 0.7816 0.843
Decision tree 0.9693 0.7986 0.8191 0.8635
Random forest 0.9727 0.8191 0.8362 0.8703
SVM linear 0.8703 0.6724 0.7338 0.7816
SVM poly 0.8874 0.686 0.7133 0.7747
SVM rbf 0.884 0.686 0.7167 0.785
MLP: 30-5-3 0.6177 0.6689 0.7065 0.7986
MLP: 30-10-3 0.8771 0.6928 0.7304 0.8225
MLP: 30-20-3 0.8976 0.6689 0.7372 0.7952
MLP: 30-25-3 0.9317 0.7235 0.7372 0.802
MLP: 30-40-3 0.9249 0.7031 0.7406 0.8396
MLP: 30-60-3 0.9317 0.727 0.7713 0.8362
MLP: 30-10-5-3 0.8737 0.6451 0.7065 0.7747
MLP: 30-20-10-3 0.9113 0.7167 0.7474 0.8225
MLP: 30-40-20-3 0.9352 0.7133 0.7952 0.8259
MLP: 30-40-10-3 0.9215 0.4096 0.7509 0.8362
MLP: 30-60-40-3 0.9283 0.6758 0.7577 0.8089
MLP: 30-60-20-3 0.9113 0.7304 0.7474 0.8396
MLP: 30-80-50-3 0.9454 0.7338 0.7577 0.8225
MLP, small-median: 10-80-50-3 0.9454 0.7474 0.7543 0.8362
MLP, small-mean: 10-80-50-3 0.8976 0.6485 0.7372 0.8259
MLP, small-min: 10-80-50-3 0.9249 0.7509 0.7679 0.8567
MLP, small-max: 10-80-50-3 0.9215 0.4096 0.7372 0.8191
MLP, small-q25: 10-80-50-3 0.9249 0.744 0.7304 0.8157
MLP, small-q75: 10-80-50-3 0.9249 0.4096 0.785 0.7918
MLP, custom: 10-80-50-3 0.9283 0.7304 0.8089 0.8123
HGNN: 1-16-32-3 0.8771 0.6997 0.7235 0.785
HGNN: 1-32-16-3 0.8703 0.7031 0.727 0.785
HGNN: 1-16-32-16-3 0.8703 0.7065 0.7201 0.7918
HGNN: 1-32-64-3 0.884 0.6928 0.7133 0.7884
HGNN: 1-4-16-3 0.8703 0.7167 0.7406 0.7782
combi: 30-80-50-3/1-4-16-3/6-3 0.727 0.57 0.5939 0.6724
combi: 30-80-50-5/1-4-16-5/10-3 0.7201 0.5836 0.5529 0.7133
combi: 30-80-50-5/1-4-16-5/10-20-3 0.5461 0.6109 0.529 0.5563
combi: 30-80-50-10/1-4-16-10/20-40-3 0.7372 0.6758 0.5563 0.4744
combi: 30-80-50-10/1-4-16-10/20-60-20-3 0.6792 0.4778 0.471 0.6177

Table A.17: Accuracy of ML models for 3 classes with the different cut-offs for SparkSQL
with basic features (train-test split).

112



A.6. SparkSQL data: Basic features + POS features

Model MSE
5-NN 0.2863
Decision tree 0.0222
Random forest 0.0252
SVM linear 2.1913
SVM poly 1.1065
SVM rbf 1.0176
MLP: 30-5-1 1.1316
MLP: 30-10-1 0.8828
MLP: 30-20-1 0.7482
MLP: 30-25-1 0.6789
MLP: 30-40-1 0.7076
MLP: 30-60-1 0.66
MLP: 30-10-5-1 0.9012
MLP: 30-20-10-1 0.5882
MLP: 30-40-20-1 0.5668
MLP: 30-40-10-1 0.564
MLP: 30-60-40-1 0.4182
MLP: 30-60-20-1 0.392
MLP: 30-80-50-1 0.3607
MLP, small-median: 10-80-50-1 0.6215
MLP, small-mean: 10-80-50-1 0.6637
MLP, small-min: 10-80-50-1 0.5706
MLP, small-max: 10-80-50-1 0.6081
MLP, small-q25: 10-80-50-1 0.6113
MLP, small-q75: 10-80-50-1 0.6648
MLP, custom: 10-80-50-1 0.6684
HGNN: 1-16-32-1 0.6714
HGNN: 1-32-16-1 0.7054
HGNN: 1-16-32-16-1 0.662
HGNN: 1-32-64-1 0.6577
HGNN: 1-4-16-1 0.7163

Table A.18: Mean Squared Error of ML models for time difference for SparkSQL with
basic features+POS features (train-test split).

113



A. Results of Machine Learning Models

A.7 Cross-validation

2-class 3-class time diff
Model Acc Acc(0.5) Acc(0.1) Acc(0.05) Acc(0.01) MSE
5-NN 0.8175 0.8317 0.7316 0.7159 0.7765 0.7392
Decision tree 0.8282 0.8428 0.7462 0.7247 0.7857 0.6721
Random forest 0.8255 0.8405 0.7508 0.722 0.7868 0.6534
SVM linear 0.6706 0.714 0.6281 0.5801 0.6449 2.0203
SVM poly 0.6745 0.714 0.5939 0.6116 0.6714 1.9646
SVM rbf 0.6952 0.709 0.6005 0.638 0.6725 1.8261

Table A.19: Accuracy/MSE of ML models for PostgreSQL with basic features (cross
validation).

2-class 3-class time diff
Model Acc Acc(0.5) Acc(0.1) Acc(0.05) Acc(0.01) MSE
5-NN 0.9072 0.913 0.8255 0.8067 0.8723 0.2713
Decision tree 0.9356 0.9463 0.857 0.8528 0.9003 0.1259
Random forest 0.9417 0.9502 0.8654 0.86 0.903 0.1078
SVM linear 0.8401 0.8512 0.7772 0.75 0.8083 1.264
SVM poly 0.8535 0.8677 0.778 0.7546 0.8209 0.9943
SVM rbf 0.8528 0.8512 0.7584 0.7515 0.8129 0.8976

Table A.20: Accuracy/MSE of ML models for PostgreSQL with basic features+POS
features (cross validation).

2-class 3-class time diff
Model Acc Acc(0.5) Acc(0.1) Acc(0.05) Acc(0.01) MSE
5-NN 0.8112 0.7941 0.7032 0.737 0.796 0.6404
Decision tree 0.8275 0.8042 0.7405 0.7607 0.8139 0.5914
Random forest 0.8271 0.8073 0.7366 0.7618 0.812 0.5732
SVM linear 0.6457 0.6861 0.5614 0.5765 0.634 1.8595
SVM poly 0.6725 0.6915 0.5354 0.6018 0.6585 1.8291
SVM rbf 0.6624 0.7032 0.5287 0.5839 0.6461 1.7923

Table A.21: Accuracy/MSE of ML models for DuckDB with basic features (cross valida-
tion).

114



A.7. Cross-validation

2-class 3-class time diff
Model Acc Acc(0.5) Acc(0.1) Acc(0.05) Acc(0.01) MSE
5-NN 0.8506 0.8584 0.7752 0.8001 0.8331 0.3451
Decision tree 0.8658 0.8744 0.7962 0.8195 0.8514 0.2414
Random forest 0.8662 0.8779 0.7981 0.8168 0.8487 0.2402
SVM linear 0.7009 0.7643 0.6616 0.6515 0.6951 1.3597
SVM poly 0.6923 0.783 0.6402 0.634 0.6807 1.2058
SVM rbf 0.7017 0.7573 0.6145 0.6134 0.6927 1.3968

Table A.22: Accuracy/MSE of ML models for DuckDB with basic features+DDB features
(cross validation).

2-class 3-class time diff
Model Acc Acc(0.5) Acc(0.1) Acc(0.05) Acc(0.01) MSE
5-NN 0.8008 0.8447 0.7246 0.7303 0.7886 0.73
Decision tree 0.8144 0.8644 0.7295 0.742 0.8011 0.6128
Random forest 0.8129 0.8674 0.7367 0.7432 0.797 0.6137
SVM linear 0.6841 0.7659 0.553 0.5924 0.6784 2.3711
SVM poly 0.7148 0.7727 0.5917 0.6231 0.7057 1.8152
SVM rbf 0.7106 0.7701 0.6 0.6152 0.7019 1.6664

Table A.23: Accuracy/MSE of ML models for SparkSQL with basic features (cross
validation).

2-class 3-class time diff
Model Acc Acc(0.5) Acc(0.1) Acc(0.05) Acc(0.01) MSE
5-NN 0.8538 0.9352 0.7943 0.7883 0.8432 0.2143
Decision tree 0.8981 0.9761 0.836 0.8333 0.8765 0.0646
Random forest 0.9027 0.9742 0.8432 0.8379 0.8792 0.0408
SVM linear 0.7932 0.8527 0.7045 0.7152 0.7848 2.0286
SVM poly 0.8004 0.8682 0.6973 0.7098 0.789 1.1621
SVM rbf 0.7992 0.8735 0.703 0.708 0.792 1.1079

Table A.24: Accuracy/MSE of ML models for SparkSQL with basic features+POS
features (cross validation).

115



A. Results of Machine Learning Models

A.8 Best models for 3 classes with cut-offs 0.1, 0.05, 0.01

Data Best Second best Third best
POS: basic Combi (81.03%) HGNN (79.66%) Rand. Forest (77.93%)

POS: basic+POS Rand. Forest (90.69%) Dec. Tree (88.97%) MLP (87.93%)
DDB: basic HGNN (74.13%) Combi (73.78%) Dec. Tree (70.63%)

DDB: basic+DDB Dec. Tree (77.27%) Rand. Forest (77.27%) k-NN (75.87%)
SPA: basic Dec. Tree (76.45%) Rand. Forest (76.45%) Combi (75.77%)

SPA: basic+POS Rand. Forest (81.91%) Dec. Tree (79.86%) k-NN (77.82%)

Table A.25: Best models for 3 classes with cut-off 0.1.

Data Best Second best Third best
POS: basic Combi (77.59%) HGNN (76.55%) Dec. Tree (73.45%)

POS: basic+POS Rand. Forest (89.31%) Dec. Tree (88.97%) MLP (84.14%)
DDB: basic Combi (77.27%) Dec. Tree (73.43%) HGNN (73.43%)

DDB: basic+DDB Dec. Tree (81.47%) Rand. Forest (80.77%) MLP (79.37%)
SPA: basic Rand. Forest (78.50%) Dec. Tree (78.16%) Combi (78.16%)

SPA: basic+POS Rand. Forest (83.62%) Dec. Tree (81.91%) MLP (80.89%)

Table A.26: Best models for 3 classes with cut-off 0.05.

Data Best Second best Third best
POS: basic Combi (80.69%) Rand. Forest (77.24%) HGNN (76.90%)

POS: basic+POS Rand. Forest (88.62%) Dec. Tree (87.24%) MLP (85.17%)
DDB: basic Combi (86.01%) Dec. Tree (83.22%) Rand. Forest (83.22%)

DDB: basic+DDB Dec. Tree (87.06%) Rand. Forest (86.36%) HGNN (86.36%)
SPA: basic Combi (83.28%) Dec. Tree (82.94%) k-NN (82.59%)

SPA: basic+POS Rand. Forest (87.03%) Dec. Tree (86.35%) MLP (85.67%)

Table A.27: Best models for 3 classes with cut-off 0.01.

116



A.9. Feature importances for final model

A.9 Feature importances for final model

POS DDB SPA
basic basic+POS basic basic+DDB basic basic+POS

#relations 0.020445 0.018528 0.061221 0.107746 0.063368 0.000000
#conditions 0.072459 0.007986 0.092219 0.019112 0.120211 0.004042
#filters 0.235353 0.032789 0.211150 0.037105 0.393823 0.157783
#joins 0.091582 0.000819 0.095617 0.030801 0.044418 0.000000
depth 0.004309 0.009621 0.002036 0.001207 0.004182 0.006276
min(cont. counts) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
max(cont. counts) 0.049571 0.000482 0.060844 0.110673 0.061582 0.024547
mean(cont. counts) 0.488273 0.015743 0.408201 0.112311 0.270023 0.053083
q25(cont. counts) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
median(cont. counts) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
q75(cont. counts) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
min(branching f.) 0.006215 0.000970 0.005068 0.005552 0.003849 0.003574
max(branching f.) 0.002921 0.005038 0.009110 0.001885 0.003813 0.002858
mean(branching f.) 0.002310 0.003172 0.005972 0.000954 0.001634 0.001613
q25(branching f.) 0.001633 0.000917 0.009327 0.004647 0.004131 0.010581
median(branching f.) 0.001594 0.000829 0.001588 0.003648 0.010049 0.005366
q75(branching f.) 0.023335 0.002369 0.037646 0.031777 0.018918 0.008580
total cost - 0.014370 - - - 0.089817
min(table rows) - 0.017513 - - - 0.002870
max(table rows) - 0.046585 - - - 0.038798
mean(table rows) - 0.005178 - - - 0.034680
q25(table rows) - 0.021162 - - - 0.035148
median(table rows) - 0.021480 - - - 0.006461
q75(table rows) - 0.041745 - - - 0.053000
min(join rows) - 0.116054 - - - 0.028861
max(join rows) - 0.494756 - - - 0.287186
mean(join rows) - 0.015821 - - - 0.040820
q25(join rows) - 0.017985 - - - 0.043857
median(join rows) - 0.030086 - - - 0.026628
q75(join rows) - 0.058002 - - - 0.033572
min(cardinality) - - - 0.107000 - -
max(cardinality) - - - 0.022796 - -
mean(cardinality) - - - 0.084589 - -
q25(cardinality) - - - 0.022822 - -
median(cardinality) - - - 0.241326 - -
q75(cardinality) - - - 0.054049 - -

Table A.28: Feature importances for the final model (=decision tree).

117



A. Results of Machine Learning Models

A.10 Visualizations of final model (decision tree)

Figure A.1: Visualization of the final model (=decision tree) for PostgreSQL with basic
features (train-test split).

Figure A.2: Visualization of the final model (=decision tree) for DuckDB with basic
features (train-test split).

118



A.10. Visualizations of final model (decision tree)

Figure A.3: Visualization of the final model (=decision tree) for DuckDB with basic
features+DDB features (train-test split).

Figure A.4: Visualization of the final model (=decision tree) for SparkSQL with basic
features (train-test split).

119



A. Results of Machine Learning Models

Figure A.5: Visualization of the final model (=decision tree) for SparkSQL with basic
features+POS features (train-test split).

120



Overview of Generative AI Tools
Used

As mentioned in the statement of originality I only used AI tools as support and not for
the majority of the work. I used ChatGPT as support for the programming parts, for
single commands and the structure of some classes (in Scala, Java, Python and Latex).
Additionally, I sometimes used it to translate some words or phrases from German to
English, but I wrote the whole text on my own.

121





List of Figures

4.1 Example hypergraph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Example of corresponding hypergraph and join trees. . . . . . . . . . . . . 15
4.3 Illustration of the connectedness condition. . . . . . . . . . . . . . . . . . 16
4.4 Example hypergraph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.5 Example join tree with instances. . . . . . . . . . . . . . . . . . . . . . . . 21
4.6 Example join tree with instances after the first top-down traversal. . . . . 22
4.7 Example join tree with instances after the bottom-up traversal. . . . . . . 23

5.1 Example tree decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Example hypertree decomposition. . . . . . . . . . . . . . . . . . . . . . . 27

6.1 Illustration of the k-NN classifier with two classes, Euclidean distance and
different values of k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2 Illustration of a simple k-NN regressor using the average and different values
of k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.3 Illustration of a decision tree classifier. . . . . . . . . . . . . . . . . . . . . 34
6.4 Illustration of a perceptron and a support vector machine. . . . . . . . . . 35
6.5 Illustration of support vector machines with kernel or constraints. . . . . 37
6.6 Illustration of fully-connected multi-layer perceptrons. . . . . . . . . . . . 38
6.7 Illustration of neural network layers. . . . . . . . . . . . . . . . . . . . . . 39
6.8 Experiment design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.1 Methodology workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.2 Steps of data augmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.3 Scala implementation for rewriting the queries. . . . . . . . . . . . . . . . 49
7.4 Workflow of the query evaluation. . . . . . . . . . . . . . . . . . . . . . . . 51
7.5 Inputs and output of the used ML models. . . . . . . . . . . . . . . . . . . 52
7.6 Calculated join trees of the example queries. . . . . . . . . . . . . . . . . . 54

8.1 Distributions of the features. . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.2 Distributions of the log-transformed features. . . . . . . . . . . . . . . . . 63
8.3 Comparison of distributions of orders of magnitude for PostgreSQL. . . . 64
8.4 Distribution of the regression response = time difference = rewritten runtime

- original runtime for PostgreSQL. . . . . . . . . . . . . . . . . . . . . . . 65

123



8.5 Distribution of misclassifications for the inspection models for PostgreSQL
with basic features (train-test split). . . . . . . . . . . . . . . . . . . . . . 69

8.6 Distribution of misclassifications for the inspection models for PostgreSQL
with basic features+POS features (train-test split). . . . . . . . . . . . . . 71

8.7 Comparison of distributions of orders of magnitude for DuckDB. . . . . . 72
8.8 Distribution of the regression response = time difference = rewritten runtime

- original runtime for DuckDB. . . . . . . . . . . . . . . . . . . . . . . . . 73
8.9 Distribution of misclassifications for the inspection models for DuckDB with

basic features (train-test split). . . . . . . . . . . . . . . . . . . . . . . . . 75
8.10 Distribution of misclassifications for the inspection models for DuckDB with

basic features+DDB features (train-test split). . . . . . . . . . . . . . . . 77
8.11 Comparison of distributions of orders of magnitude for SparkSQL. . . . . 78
8.12 Distribution of the regression response = time difference = rewritten runtime

- original runtime for SparkSQL. . . . . . . . . . . . . . . . . . . . . . . . 78
8.13 Distribution of misclassifications for the inspection models for SparkSQL with

basic features (train-test split). . . . . . . . . . . . . . . . . . . . . . . . . 81
8.14 Distribution of misclassifications for the inspection models for SparkSQL with

basic features+POS features (train-test split). . . . . . . . . . . . . . . . . 83
8.15 Comparison of distributions of orders of magnitude for PostgreSQL with basic

features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.16 Comparison of distributions of orders of magnitude for PostgreSQL with basic

features+POS features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.17 Comparison of distributions of orders of magnitude for DuckDB with basic

features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.18 Comparison of distributions of orders of magnitude for DuckDB with basic

features+DDB features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.19 Comparison of distributions of orders of magnitude for SparkSQL with basic

features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.20 Comparison of distributions of orders of magnitude for SparkSQL with basic

features+POS features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.21 Visualization of the final model (=decision tree) for PostgreSQL with basic

features+POS features (train-test split). . . . . . . . . . . . . . . . . . . . 90

A.1 Visualization of the final model (=decision tree) for PostgreSQL with basic
features (train-test split). . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.2 Visualization of the final model (=decision tree) for DuckDB with basic
features (train-test split). . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.3 Visualization of the final model (=decision tree) for DuckDB with basic
features+DDB features (train-test split). . . . . . . . . . . . . . . . . . . . 119

A.4 Visualization of the final model (=decision tree) for SparkSQL with basic
features (train-test split). . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.5 Visualization of the final model (=decision tree) for SparkSQL with basic
features+POS features (train-test split). . . . . . . . . . . . . . . . . . . . 120

124



List of Tables

4.1 Join result of Yannakakis’ algorithm. . . . . . . . . . . . . . . . . . . . . . 24
4.2 Evaluation result of the example query. . . . . . . . . . . . . . . . . . . . 24

6.1 Confusion matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.1 Benchmark datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2 Number of queries with augmentation. . . . . . . . . . . . . . . . . . . . . 49
7.3 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.4 Hyperparameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8.1 Distribution of the classes for the classifications for PostgreSQL. . . . . . 64
8.2 Metrics of ML models for PostgreSQL with basic features (train-test split). 66
8.3 Performance of regression with split as classification in comparison to the

classification for PostgreSQL with basic features (train-test split). . . . . 67
8.4 Confusion matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.5 Accuracy, Precision and Recall for inspection models for PostgreSQL with

basic features (train-test split). . . . . . . . . . . . . . . . . . . . . . . . . 68
8.6 Order of magnitude (in seconds) of the time difference of misclassifications for

the inspection models for PostgreSQL with basic features (train-test split). 68
8.7 Metrics of ML models for PostgreSQL with basic features+POS features

(train-test split). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.8 Performance of regression with split as classification in comparison to the

classification for PostgreSQL with basic features+POS features (train-test
split). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8.9 Accuracy, Precision and Recall for inspection models for PostgreSQL with
basic features+POS features (train-test split). . . . . . . . . . . . . . . . . 71

8.10 Order of magnitude (in seconds) of the time difference of misclassifications
for the inspection models for PostgreSQL with basic features+POS features
(train-test split). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.11 Distribution of the classes for the classifications for DuckDB. . . . . . . . 72
8.12 Metrics of ML models for DuckDB with basic features (train-test split). . 73
8.13 Performance of regression with split as classification in comparison to the

classification for DuckDB with basic features (train-test split). . . . . . . 74

125



8.14 Accuracy, Precision and Recall for inspection models for DuckDB with basic
features (train-test split). . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.15 Order of magnitude (in seconds) of the time difference of misclassifications
for the inspection models for DuckDB with basic features (train-test split). 74

8.16 Metrics of ML models for DuckDB with basic features+DDB features (train-
test split). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.17 Performance of regression with split as classification in comparison to the
classification for DuckDB with basic features+DDB features (train-test split). 76

8.18 Accuracy, Precision and Recall for inspection models for DuckDB with basic
features+DDB features (train-test split). . . . . . . . . . . . . . . . . . . . 76

8.19 Order of magnitude of the time difference of misclassifications for the inspection
models for DuckDB with basic features+DDB features (train-test split). . 77

8.20 Distribution of the classes for the classifications for SparkSQL. . . . . . . 79
8.21 Metrics of ML models for SparkSQL with basic features (train-test split). 79
8.22 Accuracy, Precision and Recall for inspection models for SparkSQL with basic

features (train-test split). . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.23 Performance of regression with split as classification in comparison to the

classification for SparkSQL with basic features (train-test split). . . . . . 80
8.24 Order of magnitude of the time difference of misclassifications for the inspection

models for SparkSQL with basic features (train-test split). . . . . . . . . . 80
8.25 Metrics of ML models for SparkSQL with basic features+POS features (train-

test split). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.26 Performance of regression with split as classification in comparison to the

classification for SparkSQL with basic features+POS features (train-test split). 82
8.27 Accuracy, Precision and Recall for inspection models for SparkSQL with basic

features+POS features (train-test split). . . . . . . . . . . . . . . . . . . . 82
8.28 Order of magnitude of the time difference of misclassifications for the inspection

models for SparkSQL with basic features+POS features (train-test split). 83
8.29 Runtime distribution in order of magnitudes for both methods and all three

DBMSs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.30 Best models for 2 classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.31 Best models for 3 classes with cut-off 0.5. . . . . . . . . . . . . . . . . . . 85
8.32 Best models for time difference. . . . . . . . . . . . . . . . . . . . . . . . . 85
8.33 Accuracy, Precision and Recall for the final model on the test set (train-test

split). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.34 Order of magnitude of the time difference of misclassifications for the final

model on the test set (train-test split). . . . . . . . . . . . . . . . . . . . . 88
8.35 Statistical tests for the final model on the test set (train-test split). . . . . 89
8.36 Three most important features (Gini importance) of final model on the test

set for PostgreSQL with basic features (train-test split). . . . . . . . . . . 90

A.1 Accuracy of ML models for 2 classes for PostgreSQL with basic features
(train-test split). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

126



A.2 Accuracy of ML models for 3 classes with the different cut-offs for PostgreSQL
with basic features (train-test split). . . . . . . . . . . . . . . . . . . . . . 97

A.3 Mean Squared Error of ML models for time difference for PostgreSQL with
basic features (train-test split). . . . . . . . . . . . . . . . . . . . . . . . . 98

A.4 Accuracy of ML models for 2 classes for PostgreSQL with basic features+POS
features (train-test split). . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.5 Accuracy of ML models for 3 classes with the different cut-offs for PostgreSQL
with basic features+POS features (train-test split). . . . . . . . . . . . . . 100

A.6 Mean Squared Error of ML models for time difference for PostgreSQL with
basic features+POS features (train-test split). . . . . . . . . . . . . . . . . 101

A.7 Accuracy of ML models for 2 classes for DuckDB with basic features (train-test
split). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A.8 Accuracy of ML models for 3 classes with the different cut-offs for DuckDB
with basic features (train-test split). . . . . . . . . . . . . . . . . . . . . . 103

A.9 Mean Squared Error of ML models for time difference for DuckDB with basic
features (train-test split). . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A.10 Accuracy of ML models for 2 classes for DuckDB with basic features+DDB
features (train-test split). . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.11 Accuracy of ML models for 3 classes with the different cut-offs for DuckDB
with basic features+DDB features (train-test split). . . . . . . . . . . . . 106

A.12 Mean Squared Error of ML models for time difference for DuckDB with basic
features+DDB features (train-test split). . . . . . . . . . . . . . . . . . . . 107

A.13 Accuracy of ML models for 2 classes for SparkSQL with basic features (train-
test split). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.14 Accuracy of ML models for 3 classes with the different cut-offs for SparkSQL
with basic features (train-test split). . . . . . . . . . . . . . . . . . . . . . 109

A.15 Mean Squared Error of ML models for time difference for SparkSQL with
basic features (train-test split). . . . . . . . . . . . . . . . . . . . . . . . . 110

A.16 Accuracy of ML models for 2 classes for SparkSQL with basic features+POS
features (train-test split). . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.17 Accuracy of ML models for 3 classes with the different cut-offs for SparkSQL
with basic features (train-test split). . . . . . . . . . . . . . . . . . . . . . 112

A.18 Mean Squared Error of ML models for time difference for SparkSQL with
basic features+POS features (train-test split). . . . . . . . . . . . . . . . . 113

A.19 Accuracy/MSE of ML models for PostgreSQL with basic features (cross
validation). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.20 Accuracy/MSE of ML models for PostgreSQL with basic features+POS
features (cross validation). . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.21 Accuracy/MSE of ML models for DuckDB with basic features (cross valida-
tion). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.22 Accuracy/MSE of ML models for DuckDB with basic features+DDB features
(cross validation). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

127



A.23 Accuracy/MSE of ML models for SparkSQL with basic features (cross valida-
tion). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.24 Accuracy/MSE of ML models for SparkSQL with basic features+POS features
(cross validation). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.25 Best models for 3 classes with cut-off 0.1. . . . . . . . . . . . . . . . . . . 116
A.26 Best models for 3 classes with cut-off 0.05. . . . . . . . . . . . . . . . . . . 116
A.27 Best models for 3 classes with cut-off 0.01. . . . . . . . . . . . . . . . . . . 116
A.28 Feature importances for the final model (=decision tree). . . . . . . . . . 117

128



List of Algorithms

4.1 GYO-reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Yannakakis’ algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

129





Bibliography

Aberger, C. R., Lamb, A., Tu, S., Nötzli, A., Olukotun, K., & Ré, C. (2017). Emptyheaded:
A relational engine for graph processing. ACM Trans. Database Syst., 42 (4).

Abseher, M., Musliu, N., & Woltran, S. (2017). Improving the efficiency of dynamic
programming on tree decompositions via machine learning. Journal of Artificial
Intelligence Research, 58, 829–858.

Alloghani, M., Al-Jumeily, D., Mustafina, J., Hussain, A., & Aljaaf, A. J. (2020). A
systematic review on supervised and unsupervised machine learning algorithms
for data science. In M. W. Berry, A. Mohamed, & B. W. Yap (Eds.), Supervised
and unsupervised learning for data science (pp. 3–21). Springer International
Publishing.

Almaghrebi, A., Aljuheshi, F., Rafaie, M., James, K., & Alahmad, M. (2020). Data-driven
charging demand prediction at public charging stations using supervised machine
learning regression methods. Energies, 13, 4231.

Backer, B., Furnon, V., Shaw, P., Kilby, P., & Prosser, P. (2000). Solving vehicle routing
problems using constraint programming and metaheuristics. J. Heuristics, 6,
501–523.

Bagan, G., Durand, A., & Grandjean, E. (2007). On acyclic conjunctive queries and
constant delay enumeration. In J. Duparc & T. A. Henzinger (Eds.), Computer
science logic (pp. 208–222). Springer Berlin Heidelberg.

Bonifati, A., Martens, W., & Timm, T. (2017). An analytical study of large SPARQL
query logs. Proc. VLDB Endow., 11 (2), 149–161.

Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal
margin classifiers. Proceedings of the Fifth Annual Workshop on Computational
Learning Theory, 144–152.

Brault-Baron, J. (2016). Hypergraph acyclicity revisited. ACM Comput. Surv., 49 (3).
Carmeli, N., & Kröll, M. (2020). Enumeration complexity of conjunctive queries with

functional dependencies. Theory of Computing Systems, 64 (5), 828–860.
Carmeli, N., & Kröll, M. (2021). On the enumeration complexity of unions of conjunctive

queries. ACM Trans. Database Syst., 46 (2).
Carmeli, N., Tziavelis, N., Gatterbauer, W., Kimelfeld, B., & Riedewald, M. (2021).

Tractable orders for direct access to ranked answers of conjunctive queries. Pro-
ceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, 325–341.

131



Carmeli, N., Zeevi, S., Berkholz, C., Conte, A., Kimelfeld, B., & Schweikardt, N. (2022).
Answering (unions of) conjunctive queries using random access and random-order
enumeration. ACM Trans. Database Syst., 47 (3).

Caruana, R., & Niculescu-Mizil, A. (2006). An empirical comparison of supervised learning
algorithms. Proceedings of the 23rd international conference on Machine learning
- ICML ’06, 2006, 161–168.

Chandra, A. K., & Merlin, P. M. (1977). Optimal implementation of conjunctive queries
in relational data bases. Proceedings of the Ninth Annual ACM Symposium on
Theory of Computing, 77–90.

Choudhary, R., & Gianey, H. K. (2017). Comprehensive review on supervised machine
learning algorithms. 2017 International Conference on Machine Learning and
Data Science (MLDS), 37–43.

Crisci, C., Ghattas, B., & Perera, G. (2012). A review of supervised machine learning
algorithms and their applications to ecological data. Ecological Modelling, 240,
113–122.

Cunningham, P., & Delany, S. (2007). K-nearest neighbour classifiers. Mult Classif Syst,
54.

De Raedt, L., Guns, T., & Nijssen, S. (2010). Constraint programming for data mining and
machine learning. Proceedings of the National Conference on Artificial Intelligence,
3.

Dechter, R. (2003). Constraint processing. Morgan Kaufmann.
Ding, J., Minhas, U. F., Yu, J., Wang, C., Do, J., Li, Y., Zhang, H., Chandramouli, B.,

Gehrke, J., Kossmann, D., Lomet, D., & Kraska, T. (2020). Alex: An updatable
adaptive learned index. Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, 969–984.

Dutt, A., Wang, C., Nazi, A., Kandula, S., Narasayya, V., & Chaudhuri, S. (2019).
Selectivity estimation for range predicates using lightweight models. Proc. VLDB
Endow., 12 (9), 1044–1057.

Fagin, R. (1983). Degrees of acyclicity for hypergraphs and relational database schemes.
J. ACM, 30 (3), 514–550.

Feng, Y., You, H., Zhang, Z., Ji, R., & Gao, Y. (2019). Hypergraph neural networks.
Proceedings of the AAAI Conference on Artificial Intelligence, 33 (01), 3558–3565.

Fischl, W., Gottlob, G., Longo, D. M., & Pichler, R. (2021). HyperBench: A benchmark
and tool for hypergraphs and empirical findings. ACM J. Exp. Algorithmics, 26.

Geck, G., Keppeler, J., Schwentick, T., & Spinrath, C. (2022). Rewriting with Acyclic
Queries: Mind Your Head. In D. Olteanu & N. Vortmeier (Eds.), 25th international
conference on database theory (icdt 2022) (8:1–8:20, Vol. 220). Schloss Dagstuhl –
Leibniz-Zentrum für Informatik.

Geibinger, T., Mischek, F., & Musliu, N. (2019). Investigating constraint programming
for real world industrial test laboratory scheduling. Integration of Constraint
Programming, Artificial Intelligence, and Operations Research, 304–319.

132



Ghionna, L., Granata, L., Greco, G., & Scarcello, F. (2007). Hypertree decompositions for
query optimization. Proceedings - International Conference on Data Engineering,
36–45.

Gottlob, G., Greco, G., Leone, N., & Scarcello, F. (2016). Hypertree decompositions:
Questions and answers. Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, 57–74.

Gottlob, G., Greco, G., & Scarcello, F. (2011). Treewidth and hypertree width. Tractability,
3–38.

Gottlob, G., Lanzinger, M., Longo, D. M., Okulmus, C., Pichler, R., & Selzer, A. (2023).
Structure-guided query evaluation: Towards bridging the gap from theory to
practice. arXiv:2303.02723.

Gottlob, G., Leone, N., & Scarcello, F. (1998). The complexity of acyclic conjunctive
queries. Proceedings of the 39th Annual Symposium on Foundations of Computer
Science, 706.

Gottlob, G., Leone, N., & Scarcello, F. (1999). Hypertree decompositions and tractable
queries. Proceedings of the Eighteenth ACM SIGMOD-SIGACT-SIGART Sympo-
sium on Principles of Database Systems, 21–32.

Graham, M. (1979). On the universal relation (tech. rep.). Technical report, University
of Toronto.

Grohe, M., Schwentick, T., & Segoufin, L. (2001). When is the evaluation of conjunctive
queries tractable? Conference Proceedings of the Annual ACM Symposium on
Theory of Computing, 657–666.

Han, Y., Wu, Z., Wu, P., Zhu, R., Yang, J., Tan, L. W., Zeng, K., Cong, G., Qin, Y.,
Pfadler, A., Qian, Z., Zhou, J., Li, J., & Cui, B. (2021). Cardinality estimation
in DBMS: A comprehensive benchmark evaluation. Proc. VLDB Endow., 15 (4),
752–765.

Hasan, S., Thirumuruganathan, S., Augustine, J., Koudas, N., & Das, G. (2020). Deep
learning models for selectivity estimation of multi-attribute queries. Proceedings
of the 2020 ACM SIGMOD International Conference on Management of Data,
1035–1050.

Hilprecht, B., Schmidt, A., Kulessa, M., Molina, A., Kersting, K., & Binnig, C. (2020).
Deepdb: Learn from data, not from queries! Proc. VLDB Endow., 13 (7), 992–
1005.

Himmelstein, D. S., Lizee, A., Hessler, C., Brueggeman, L., Chen, S. L., Hadley, D.,
Green, A., Khankhanian, P., & Baranzini, S. E. (2017). Systematic integration of
biomedical knowledge prioritizes drugs for repurposing. eLife, 6, e26726.

Ho, T. K. (1995). Random decision forests. Proceedings of 3rd International Conference
on Document Analysis and Recognition, 1, 278–282 vol.1.

Hu, X., & Wang, Q. (2023). Computing the difference of conjunctive queries efficiently.
Proceedings of the ACM on Management of Data, 1, 1–26.

Idris, M., Ugarte, M., & Vansummeren, S. (2017). The dynamic yannakakis algorithm:
Compact and efficient query processing under updates. Proceedings of the 2017
ACM International Conference on Management of Data, 1259–1274.

133



Idris, M., Ugarte, M., Vansummeren, S., Voigt, H., & Lehner, W. (2020). General
dynamic yannakakis: Conjunctive queries with theta joins under updates. The
VLDB Journal, 29 (2), 619–653.

Kipf, A., Kipf, T., Radke, B., Leis, V., Boncz, P., & Kemper, A. (2018). Learned
cardinalities: Estimating correlated joins with deep learning. arXiv:1809.00677.

Kossmann, J., Halfpap, S., Jankrift, M., & Schlosser, R. (2020). Magic mirror in my
hand, which is the best in the land? an experimental evaluation of index selection
algorithms. Proc. VLDB Endow., 13 (12), 2382–2395.

Kunjir, M., & Babu, S. (2020). Black or white? how to develop an autotuner for memory-
based analytics. Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data, 1667–1683.

Lanzinger, M., Pichler, R., & Selzer, A. (2024). Avoiding materialisation for guarded
aggregate queries. arXiv:2406.17076.

Leis, V., Gubichev, A., Mirchev, A., Boncz, P., Kemper, A., & Neumann, T. (2015). How
good are query optimizers, really? Proc. VLDB Endow., 9 (3), 204–215.

Leskovec, J., & Krevl, A. (2014). SNAP Datasets: Stanford large network dataset collec-
tion.

Lutz, C., & Przybylko, M. (2022). Efficiently enumerating answers to ontology-mediated
queries. Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, 277–289.

Marcus, R., Negi, P., Mao, H., Zhang, C., Alizadeh, M., Kraska, T., Papaemmanouil,
O., & Tatbul, N. (2019). Neo: A learned query optimizer. Proc. VLDB Endow.,
12 (11), 1705–1718.

Marcus, R., & Papaemmanouil, O. (2018). Deep reinforcement learning for join order
enumeration. Proceedings of the First International Workshop on Exploiting
Artificial Intelligence Techniques for Data Management, 1 (3), 1–4.

Mhedhbi, A., Lissandrini, M., Kuiper, L., Waudby, J., & Szárnyas, G. (2021). Lsqb: A
large-scale subgraph query benchmark. GRADES-NDA ’21: Proceedings of the
4th ACM SIGMOD Joint International Workshop on Graph Data Management
Experiences and Systems and Network Data Analytics, 8, 1–11.

Mitchell, T. (1997). Machine learning. McGraw-Hill Education.
Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2012). Foundations of machine learning.

MIT Press.
Muller, A., & Guido, S. (2018). Introduction to machine learning with python: A guide

for data scientists. O’Reilly Media, Incorporated.
Naeem, S., Ali, A., Anam, S., & Ahmed, M. (2023). An unsupervised machine learning

algorithms: Comprehensive review. IJCDS Journal, 13, 911–921.
Nasteski, V. (2017). An overview of the supervised machine learning methods. HORI-

ZONS.B, 4, 51–62.
Nathan, V., Ding, J., Alizadeh, M., & Kraska, T. (2020). Learning multi-dimensional

indexes. Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, 985–1000.

134



Ngo, H. Q., Porat, E., Ré, C., & Rudra, A. (2012). Worst-case optimal join algorithms.
Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, 37–48.

Perelman, A., & Ré, C. (2015). Duncecap: Compiling worst-case optimal query plans.
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, 2075–2076.

Popescu, M.-C., Balas, V., Perescu-Popescu, L., & Mastorakis, N. (2009). Multilayer
perceptron and neural networks. WSEAS Transactions on Circuits and Systems,
8.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1 (1), 81–106.
Raschka, S. (2020). Model evaluation, model selection, and algorithm selection in machine

learning. arXiv:1811.12808.
Robertson, N., & Seymour, P. (1983). Graph minors. i. excluding a forest. Journal of

Combinatorial Theory, Series B, 35 (1), 39–61.
Rodriguez, M., Comin, C., Casanova, D., Bruno, O., Amancio, D., Rodrigues, F., &

da F. Costa, L. (2016). Clustering algorithms: A comparative approach. PLOS
ONE, 14.

Rumelhart, D. E., & McClelland, J. L. (1987). Learning internal representations by error
propagation. MIT Press.

Selzer, A. (2021). Lightweight integration of query decomposition techniques into sql-based
database systems.

Smola, A., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and
Computing, 14, 199–222.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT
Press.

Trummer, I., Wang, J., Wei, Z., Maram, D., Moseley, S., Jo, S., Antonakakis, J., & Rayab-
hari, A. (2021). Skinnerdb: Regret-bounded query evaluation via reinforcement
learning. ACM Trans. Database Syst., 46 (3).

Tsang, E. (1993). Foundations of constraint satisfaction. Academic Press.
Tu, S., & Ré, C. (2015). Duncecap: Query plans using generalized hypertree decom-

positions. Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, 2077–2078.

Van Aken, D., Pavlo, A., Gordon, G. J., & Zhang, B. (2017). Automatic database
management system tuning through large-scale machine learning. Proceedings of
the 2017 ACM International Conference on Management of Data, 1009–1024.

Verhaeghe, H., Nijssen, S., Pesant, G., Quimper, C.-G., & Schaus, P. (2020). Learning
optimal decision trees using constraint programming. Constraints, 25, 1–25.

Volkova, S. (2024). An overview on data augmentation for machine learning. In A.
Gibadullin (Ed.), Digital and information technologies in economics and manage-
ment (pp. 143–154). Springer Nature Switzerland.

Wang, Q., Hu, X., Dai, B., & Yi, K. (2023). Change propagation without joins. Proceedings
of the VLDB Endowment, 16 (5), 1046–1058.

135



Wang, Q., & Yi, K. (2022). Conjunctive queries with comparisons. Proceedings of the
2022 International Conference on Management of Data, 108–121.

Wang, W., Zhang, M., Chen, G., Jagadish, H. V., Ooi, B. C., & Tan, K.-L. (2016).
Database meets deep learning: Challenges and opportunities. SIGMOD Rec.,
45 (2), 17–22.

Wang, Y., & Yi, K. (2021). Secure yannakakis: Join-aggregate queries over private data.
Proceedings of the 2021 International Conference on Management of Data, 1969–
1981.

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin,
1 (6), 80–83.

Wu, P., & Cong, G. (2021). A unified deep model of learning from both data and queries
for cardinality estimation. Proceedings of the 2021 International Conference on
Management of Data, 2009–2022.

Yannakakis, M. (1981). Algorithms for acyclic database schemes. Proceedings of the
Seventh International Conference on Very Large Data Bases - Volume 7, 82–94.

Yu, C., & Ozsoyoglu, M. (1979). An algorithm for tree-query membership of a distributed
query. COMPSAC 79. Proceedings. Computer Software and The IEEE Computer
Society’s Third International Applications Conference, 1979., 306–312.

Yu, X., Li, G., Chai, C., & Tang, N. (2020). Reinforcement learning with tree-lstm for join
order selection. 2020 IEEE 36th International Conference on Data Engineering
(ICDE), 1297–1308.

Zhang, J., Liu, Y., Zhou, K., Li, G., Xiao, Z., Cheng, B., Xing, J., Wang, Y., Cheng, T.,
Liu, L., Ran, M., & Li, Z. (2019). An end-to-end automatic cloud database tuning
system using deep reinforcement learning. Proceedings of the 2019 International
Conference on Management of Data, 415–432.

Zhou, X., Chai, C., Li, G., & Sun, J. (2022). Database meets artificial intelligence: A
survey. IEEE Transactions on Knowledge and Data Engineering, 34 (3), 1096–
1116.

136


	Kurzfassung
	Abstract
	Contents
	Introduction
	Related Work
	Conjunctive queries
	Conjunctive queries (CQs)
	Complexity of evaluating CQs

	Hypergraphs and acyclicity
	Hypergraphs
	Acyclicity and join trees
	GYO-reduction
	Yannakakis' algorithm

	Decompositions and beyond CQs
	Tree decompositions
	Hypertree decompositions (HDs)
	Generalized hypertree decompositions (GHDs)
	Computational properties
	Beyond CQs: 0MA queries

	Machine Learning
	Supervised Learning Models
	Data augmentation
	Experiment design: Model selection

	Methodology
	Benchmark Data Sets
	Rewriting method and implementation
	DBMSs
	Decision program with ML models

	Results
	PostgreSQL
	DuckDB
	SparkSQL
	Comparison
	Final model

	Conclusion
	Results of Machine Learning Models
	PostgreSQL: Basic features
	PostgreSQL: Basic features + POS features
	DuckDB data: Basic features
	DuckDB data: Basic features + DuckDB features
	SparkSQL data: Basic features
	SparkSQL data: Basic features + POS features
	Cross-validation
	Best models for 3 classes with cut-offs 0.1, 0.05, 0.01
	Feature importances for final model
	Visualizations of final model (decision tree)

	Overview of Generative AI Tools Used
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography



