
Simulation-Based Disaggregation
of Train Delay Data Using Graph

Neural Networks

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

066 645 Data Science

by

Maximilian Viehauser, BSc
Registration Number 11945353

to the Faculty of Informatics

at the TU Wien

Advisor: Dr.techn. Nikolas Popper
Assistance: Dr.techn. Martin Bicher

Dipl.Ing. Matthias Rößler

Vienna, September 2, 2024
Maximilian Viehauser Nikolas Popper

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Maximilian Viehauser, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die ver-
wendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen, die
ohne substantielle Änderungen übernommen wurden, habe ich jeweils die von mir formu-
lierten Eingaben (Prompts) und die verwendete IT-Anwendung mit ihrem Produktnamen
und Versionsnummer/Datum angegeben.

Wien, 2. September 2024
Maximilian Viehauser

iii

Acknowledgements

I would like to thank my supervisors, Martin Bicher, Nikolas Popper, and Matthias
Rößler, for their guidance during the work on this thesis. A special thanks goes to Martin
Bicher, who gradually introduced me to the world of Modeling and Simulation through
two university courses that sparked a great interest in me, then allowed me to tutor the
courses myself, and finally guided me in writing a thesis in this field. Further gratitude
goes to Matthias Rößler, a specialist in the agent-based model of the Austrian Railway
system, who provided me with a thorough introduction to this sophisticated model. He
was always willing to answer my questions, helped me understand the mechanisms of the
model, and successfully guided my research.

v

Kurzfassung

Diese Arbeit untersucht, wie sich aggregierte Zugverspätungen (AGD) mithilfe simulati-
onsbasierter Ansätze und Graph Neural Networks (GNN) in primäre (PD) und sekundäre
(SD) Verspätungsanteile zerlegen lassen. Dabei wird untersucht, ob Gated Graph Convo-
lutional Networks (GatedGCN), eine spezielle Form von GNN, geeignet sind, um AGD
zuverlässig zu disaggregieren.

Für die Reduzierung von Zugverspätungen ist es von Bedeutung, zwischen PD und SD
zu unterscheiden, da sich diese Verspätungstypen durch unterschiedliche Interventio-
nen minimieren lassen. PD sind Verspätungen, die durch externe Faktoren wie Wetter
oder Infrastrukturprobleme verursacht werden, während SD durch Interaktionen inner-
halb des Bahnnetzes entstehen. Obwohl ein Großteil der Zugbetreiber Verspätungen
dokumentieren, wird jedoch nicht erfasst, ob es sich um PD oder SD handelt. Um verspä-
tungsrobuste Fahrpläne zu erstellen, ist es wichtig zu wissen, in welchem Umfang eine
Verspätung auf PD oder SD zurückzuführen ist. Dementsprechend würde ein Algorithmus,
der es ermöglicht, AGD zuverlässig zu disaggregieren, wesentlich zur Optimierung des
Verspätungsmanagements beitragen und die Grundlage für präzisere und effektivere
Fahrplananpassungen schaffen.

Die Kernfragen der Forschung drehen sich darum, ob ein datenbasierter Ansatz mit
GNN zur Aufschlüsselung von AGD geeignet ist. Da keine historischen Daten mit einer
verlässlichen Grund Truth verfügbar waren, wurden für die Untersuchung künstlich er-
zeugte Daten verwendet. Diese wurden mit einem agentenbasierten Simulationsmodell des
österreichischen Eisenbahnnetzes generiert. Ein Schwerpunkt der Arbeit lag auf der sorg-
fältigen Kalibrierung dieses Modells, die es ermöglicht hat, realistische Verspätungsdaten
nach der Eingabe eines Zugfahrplans und der primären Verspätungen zu erzeugen.

Die Resultate der Experimente zeigen, dass das GNN die AGD auf den synthetischen
Daten in PD und SD effizient und zuverlässig aufteilen kann. In weiteren Experimenten,
bei denen das trainierte Modell auf echte Daten angewandt wurde, zeigte das GNN eine
geringere Performance als ein naives Vergleichsmodell. Dies deutet darauf hin, dass das
GNN eine Überanpassung an die synthetischen Daten aufweist, wodurch es Schwierigkeiten
hat, auf die realen Verspätungsdaten zu generalisieren. Zudem wurde deutlich, dass die
generierten Daten zu stark von den tatsächlichen historischen Verspätungen abweichen,
um allein als Trainingsgrundlage zu dienen. Die Studie kommt zu dem Schluss, dass
GNNs grundsätzlich gut zur Aufschlüsselung von AGD geeignet sind, vorausgesetzt, es

vii

stehen präzise Daten zu PD und SD zur Verfügung. Bei der Verwendung synthetischer
Daten ist jedoch Vorsicht geboten, da diese die Gefahr einer Überanpassung bergen.

Abstract

Primary Delays (PD) refer to delays caused by external factors, such as weather conditions
or infrastructure problems, while Secondary Delays (SD) are caused by interactions within
the railway network. The majority of train operators record when delays occur but do
not differentiate between PD and SD. In order to create delay-robust timetables, it is
important to know the extent to which a delay is attributable to PD or SD.

Accordingly, an algorithm that makes it possible to disaggregate Aggregated Delays
(AGD) reliably would significantly contribute to the optimization of delay management
and create the basis for more precise and effective timetable adjustments. The central
research questions aim to determine whether a data-driven approach using Gated Graph
Convolutional Neural Networks (GatedGCN) is suitable for disaggregating AGD. This
was investigated using synthetic data generated by an agent-based simulation model of
the Austrian railway network due to the absence of real-world data with ground truth. A
significant part of the research involved calibrating this agent-based model. The model is
capable of generating synthetic delay data after receiving a train timetable and PD as
input values. The experimental results indicate that the GatedGCN can efficiently and
reliably disaggregate AGD into PD and SD when applied to synthetic data. However, in
subsequent experiments where the trained model was applied to real-world delay data,
the GatedGCN performed worse than a naive comparison model.

This suggests that the GatedGCN overfitted the synthetic data, making it difficult to
generalize to real delay data. In addition, the results show that the generated data
significantly deviates from the historical delay data, making it unsuitable as the sole data
source for GatedGCN training. The study suggests that GatedGCNs are well-suited for
the disaggregation of AGD as long as data with ground truth, i.e., precise information
on PD and SD, is available. However, synthetic data should be used with caution, as it
entails an increased risk of overfitting.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Background . 1
1.2 Problem statement . 2

1.2.1 Train Delay Definitions . 2
1.2.2 Problem Definition . 2

1.3 Research Questions . 3
1.4 Objectives . 4
1.5 Significance of the Study . 5
1.6 Overview of the Thesis Structure . 6

2 Literature Review 7
2.1 Literature Research Methodology . 7
2.2 Overview . 7
2.3 Disaggregating Train Delays into Primary and Secondary Delays . . . 8
2.4 Stochastic Distribution of Primary Delays in Railway Networks 9
2.5 Graph Neural Networks . 9

2.5.1 Graph Neural Networks in Railway Networks 9
2.5.2 Data Disaggregation in Nonintrusive Load Monitoring 11
2.5.3 Graph Neural Networks for Long-Range Tasks 11

2.6 Overcoming Challenges in Out-of-Distribution Learning 12

3 Graph Neural Networks 15
3.1 Introduction to Graph Neural Networks 15

3.1.1 Message-Passing . 16
3.2 Variants and Extensions of Graph Neural Networks 18

4 Synthetic Data Generation Using the Agent-Based Model 19
4.1 Data exploration of Historical Delay Data 19

xi

4.1.1 Dataset Description . 19
4.1.2 Analysis of Train Arrival Patterns 20
4.1.3 Analysis of Arrival Delay Durations 20
4.1.4 Analysis of Delay Change . 22
4.1.5 Initial Delay Change . 22

4.2 Methodology of Data Generation . 24
4.2.1 Approaches for the Primary Delay Sampling 24
4.2.2 Assumptions for Primary Delay Distributions 24
4.2.3 Distributions for Sampling Primary Delays 25
4.2.4 Upper Boundaries of Delay Frequencies Based on Historical Data 29
4.2.5 Negative Delays and Negative Delay Changes 29

4.3 Evaluation and Results of Synthetic Data Sampling 30
4.3.1 Distribution Comparison Method 30
4.3.2 Grid Search for Optimal Parameters 32

4.4 Plausibility Analysis . 32
4.4.1 Estimates based on Naive Model 36

4.5 Limitations . 37

5 Data Preprocessing and Model Implementation 39
5.1 Data Structure and Preprocessing . 39

5.1.1 Structure of CSV . 39
5.1.2 Target Variable . 40
5.1.3 Handling Missing Values . 40

5.2 Feature Selection . 40
5.2.1 Feature Selection Rationale . 40
5.2.2 Final Feature Selection . 41

5.3 Normalization and Feature Encoding 41
5.3.1 Encoding Cyclical Time Features 41
5.3.2 Normalization of Continuous Features 42
5.3.3 Encoding of Categorical Features 43

5.4 Graph Structure . 43
5.4.1 Creation of Nodes and Supernodes 43
5.4.2 Edge Creation . 44

5.5 Graph Neural Network Implementation 46
5.5.1 GraphGym Framework . 46
5.5.2 Key Facts about the GNN . 46

6 Results 49
6.1 Evaluation of GNN Model Performance on Synthetic Data 49

6.1.1 Hyperparameter Tuning . 50
6.1.2 Classification Task . 50
6.1.3 Regression Task . 52

6.2 Application to Real-World Data . 54
6.2.1 Analysis Using the Agent-Based Model 54

7 Discussion 59
7.1 Result Analysis . 59

7.1.1 Summary of GNN Results for Synthetic Data 59
7.1.2 Analysis of GNN Results for Real-World Data 60
7.1.3 Conclusion of Result Analysis 63

7.2 Answering the Research Questions . 64
7.2.1 Research Question 1 . 64
7.2.2 Research Question 2 . 64
7.2.3 Research Question 3 . 65

7.3 Contributions to the Railway Domain 65
7.4 Limitations . 66

7.4.1 Data Limitations . 66
7.4.2 Methodological Assumptions 67
7.4.3 Training of the GNN and Graph Design 67
7.4.4 Limitations of the Agent-Based Model 68

7.5 Future Research Directions . 68
7.5.1 Larger Dataset . 68
7.5.2 Improve Calibration of the Agent-Based Model 68
7.5.3 Improvements of the Agent-Based Model 69
7.5.4 Additional Areas for Improvement 69

8 Conclusion 71
8.1 Recap of Research Objectives and Questions 71
8.2 Summary of Key Findings . 71
8.3 Contributions to the Field . 71
8.4 Limitations of the Study . 72
8.5 Recommendations for Future Research 72
8.6 Final Thoughts . 73

A Supplementary Materials 75
A.1 Sensitivity Analysis . 75
A.2 Feature Evaluation . 79
A.3 Hyperparameter Tuning . 81

A.3.1 Default Parameters . 81
A.3.2 Hyperparameter Tuning Classification 82
A.3.3 Hyperparameter Tuning Regression 86
A.3.4 Classification Task - Final Model 86
A.3.5 Regression Task - Final Model 86

A.4 Overview of Tools Used . 87

List of Figures 89

List of Tables 91

List of Acronyms 93

Bibliography 95

CHAPTER 1
Introduction

1.1 Background
Train delays are not only inconvenient for passengers but also lead to a growth in costs
for operators. They are frustrating for the customers, due to an increase in travel time
and missed connections. Operators want to avoid delays since they lead to financial losses
through inefficient resource allocation, increased staff hours, and compensation claims.
Furthermore, a discontentment of the passengers may result in a decrease in ridership. In
the last years, train delays and their impact on passenger satisfaction have been widely
discussed in the media. As the German news outlet Tagesschau reports, in 2023, nearly
every third passenger arrived with a delay, showing a decline in punctuality compared to
previous years when the punctuality rate was around 80% [1]. Additionally, delays in
freight services can disrupt supply chains. This might lead to significant financial losses
and inefficiencies in logistics. In other words, there are many reasons why train operators
are interested in effectively reducing delays.

In order to effectively manage delays, it is crucial to distinguish between Primary Delays
(PD) and Secondary Delays (SD) [2]. PD are defined as delays, that are caused by
external factors to the train network. They can be triggered by, e.g., weather conditions,
signal malfunctions, emergencies with sick passengers, or rails blocked by trees. That
means PD would occur even if there were no other trains in the network. Delays that
are caused by internal factors are called SD. Sources of SD are events like tracks being
blocked by another train or delayed resources (e.g. delayed traction unit). So SD are
delays that are caused by other services.

Interestingly, the majority of train operators fail to distinguish between these two
categories of delays. They typically collect the sum of PD and SD as delays, which
will, from now on, be defined as Aggregated Delays (AGD). To reduce the overall
amount of delays, it is crucial to distinguish between PD and SD, because SD can be

1

1. Introduction

minimized through timetable optimization alone, while PD can primarily be reduced by
improvements in infrastructure.

Despite efforts to minimize delays, certain PD, such as a tree on the tracks or an emergency
involving a passenger, may be unavoidable. Other PD can be limited at the micro-level
such as better infrastructure or improved operating equipment. In contrast, SD can be
minimized through more robust planning. This makes it financially more attractive to
primarily focus on minimizing SD rather than PD.

The main aim of this work is to develop a model that can disaggregate AGD into PD and
SD, enabling more effective timetable planning and delay management strategies. For
this study, only unlabeled AGD data of Austrian Federal Railways (OEBB) is available,
which means it is not known to what part a delay is PD or SD.

A disaggregation model will be developed by using a previously developed agent-based
simulation model [3] of the Austrian railway network. The simulation model takes train
schedules and PD as input and computes the resulting SD.

Within this work, a data-driven approach is chosen to address the disaggregation problem
at hand. Using the agent-based simulation model, synthetic data will be created for
different PD inputs. In the next step, a Graph Neural Network (GNN) will be trained
on the generated data with the task of disaggregating the AGD into PD and SD. Finally,
the trained model will be evaluated using historical data, which is synonymous with
real-world data in this thesis.

1.2 Problem statement

1.2.1 Train Delay Definitions
Primary Delays are delays, that are caused by external influences on the railway system.
Examples are disruptions in infrastructure, such as fallen trees on the tracks, severe
weather conditions, or technical issues. These primary delays also cover setbacks, such
as extended stops due to high passenger numbers in passenger transport or delays in
loading processes for freight transport.

Secondary Delays result from causes within the railway network. These occur when a
train cannot depart because it lacks a required train driver or when its planned route is
blocked by another train. Therefore, SD result from interactions among trains in the
network. These delays would not have happened if the affected trains were running
independently.

1.2.2 Problem Definition
The objective of this study is to develop a model capable of breaking down the historical
AGD of OEBB into PD and SD. This presents a significant challenge, as no ground truth
PD and SD values are available. Therefore, it was decided to approach this problem

2

1.3. Research Questions

by training a GNN using synthetic data and then later applying it to real-world data.
The synthetic delay data will be created using an agent-based model developed by dwh
GmbH, which simulates the railway traffic patterns in Austria. The model will be used
to generate synthetic SD data for different sampled PD inputs. Subsequently, a GNN
will be trained to disaggregate the synthetic data into PD and SD. Finally, this trained
GNN will be assessed using the real-world AGD from OEBB by using a simulation-based
validation approach.

The problem to be addressed can be defined as follows: X⃗ represents the PD, and Y⃗
represents the SD in a vectorized form for all trains for a full day. Each row represents
the delay for a train at a checkpoint during its journey. The AGD Z⃗ can therefore be
computed by simply summing up X⃗ and Y⃗. Using the available agent-based model, Y⃗
can be computed as fagent(X⃗) = Y⃗. Consequently, the overall delay Z⃗ can be obtained
by:

X⃗ + Y⃗ = X⃗ + fagent(X⃗) = Z⃗ (1.1)

Real-world data is only available for Z⃗, which is called Z⃗real-world, but the variables of
interest are X⃗ and Y⃗. The goal is to build a model, that can compute fGNN(Z⃗real-world) =
˜⃗X. This model allows it to disaggregate the historical delay data into PD and SD. As a
result ˜⃗Z can be computed with:

˜⃗X + fagent(˜⃗X) = ˜⃗Z (1.2)

The performance of the model can be evaluated by calculating the residual, denoted as r⃗,
which represents the difference between the estimated values and the historical values:

r⃗ =
���� ˜⃗Z − Z⃗real-world

���� (1.3)

For the cases, where synthetic data of PD and SD is available, the model can be evaluated
with the following Error ϵ⃗:

ϵ⃗ =
���� ˜⃗X − X⃗

���� (1.4)

1.3 Research Questions
This thesis aims to answer the following three research questions:

1. Parameterization of the Simulation Model:

• From what distributions should PD be sampled, and what parameters should
be used, to calibrate the agent-based train simulation model to reflect real-
world delay distributions?

2. Performance on Synthetic Data:

3

1. Introduction

• How effective are GNN in disaggregating train delays into PD and SD com-
ponents for synthetic train delay data generated with the agent-based train
simulation model?

3. Performance on Real-World Data:

• How well does the GNN, trained on the synthetic data, generalize to real-world
data for the task of discerning train delays into PD and SD?

1.4 Objectives
This thesis is of an exploratory nature. The goal of this study is to develop a method for
disaggregating AGD into PD and SD. This problem will be tackled using a data-driven
approach, specifically a GNN. This work has several objectives:

1. Literature Review:

• Within the literature review, existing data disaggregation methods will be
investigated.

• It will be researched how GNN architectures are currently used in the railway
domain and what architecture fits the tasks of this study.

• Furthermore, the stochastic distribution of PD in railway networks will be
researched. This is done since PD serves as an input to the available agent-
based train network simulation model. In order to create realistic data, it is
crucial to sample from representative probability distributions.

2. Data Creation:

• It is aimed to create data, that has a similar structure to the real-world data.
To achieve that, the agent-based model will be calibrated.

• Furthermore, a method that allows the measuring of the similarity between syn-
thetic data and real-world data has to be developed. The created data should
capture a wide range of scenarios, to help the model generalize effectively.

3. Model Development:

• The first objective in the model development phase is to transform the railway
data into a suitable graph structure for GNN training.

• Another goal is to implement a GNN architecture, which solves the disaggre-
gation task effectively.

• Furthermore, a goal is to identify performance metrics that optimally reflect
the progress in training the GNN.

4. Evaluating the Model on Real-world Data:

4

1.5. Significance of the Study

• The available real-world data lacks ground truth (only AGD is available
without exact SD and PD details). Therefore, an additional objective is to
develop a method for effective validation of the GNN on this data. The aim is
to use the available agent-based model for the validation of the results without
ground truth. The PD predictions of the historical data can be fed into this
model. Subsequently, the resulting AGD can be compared with the actual
AGD.

1.5 Significance of the Study
As previously mentioned in the background section, the disaggregation of delay data into
PD and SD is of great interest to operators of transportation companies. Within this
section, several reasons why this study is significant will be listed.

• Overall importance: A reliable disaggregation model would allow it to better
understand the causes and consequences of train delays. The main advantage would
be the possibility to plan timetables that are more robust against SD, resulting in
a decrease in overall AGD.

• Lack of available models: In the Literature Review (Chapter 2), it is shown that
to this date, no such disaggregation model exists, which highlights the importance
of working on this problem.

• Economic impact: Reducing the SD will lower the costs of OEBB, due to more
punctual passenger and freight services. These cost reductions are driven by fewer
financial losses from inefficient resource allocation, reduced staff hours, and a
decrease in compensation claims.

• Passenger experience: More reliable train schedules will also improve the
passenger experience and therefore increase customer satisfaction. This might
lead to more people using railway services.

• Applicability to other rail networks: The research outcomes are not only valid
for the Austrian train system but can also be applied to other railway networks if
the model is fine-tuned to the respective data.

• Interdisciplinary importance: Overall, the concept of data disaggregation is
important in multiple domains. Hence, the insights from this research can add to the
existing scientific knowledge regarding disaggregation tasks. Moreover, this work
exemplifies the effective integration of simulation techniques with Artificial Neural
Network (ANN), a methodological approach that, despite its growing relevance, is
seldom employed in current research.

5

1. Introduction

1.6 Overview of the Thesis Structure
The following, a short overview of the thesis structure will be given:

• Chapter 1: Introduction - The introduction provides the essential background
information needed to understand the research problem. Furthermore, the research
questions and objectives are outlined. It further explains the significance of the
study for railway operators and the scientific community.

• Chapter 2: Literature Review - In the literature review, the available research
regarding the distribution of PD is explored. It also elaborates on what data
disaggregation models are used in the railway domain and other areas. Apart from
that, the use of GNN in train networks is examined.

• Chapter 3: Graph Neural Networks - In this chapter, the theory of GNN is
described, focusing on Gated Graph Convolutional Networks (GatedGCN), as this
type of ANN is used as a key component in this study.

• Chapter 4: Synthetic Data Generation Using the Agent-Based Model -
Within this chapter, the historical data is analyzed thoroughly, and the synthetic
data generation process is described.

• Chapter 5: Data Preprocessing and Model Implementation - In this
chapter, the preprocessing of the data, the transformation to a graph structure,
and the model setup are described.

• Chapter 6: Results - This chapter presents results of the developed GNN model.
The GNN is evaluated on the synthetic data and the real-world data.

• Chapter 7: Discussion - In the discussion, the results obtained by the experiments
are reviewed and interpreted. In addition, the contributions to the railway domain
are discussed, and the limitations are elaborated.

• Chapter 8: Conclusion - In the last chapter, the key findings are discussed, and
a final conclusion is drawn.

• Appendix A: Supplementary Materials - Supplementary information for the
other chapters is included in the appendix.

6

CHAPTER 2
Literature Review

2.1 Literature Research Methodology
The literature research was conducted in a methodological manner. Several popular
literature portals were examined for relevant literature. These were Google Scholar, IEEE
Xplore, and ACM Digital Library. A wide variety of key terms were used, which were
also varied using different synonyms and Boolean combination operators. Among them
were: “disaggregation of train delays,” “propagation of train delays,” “data disaggregation
using artificial neural networks,” “primary and secondary train delays,” “distribution of
primary delays in railway networks,” “statistical analysis of primary delays,” “graph neural
networks and railway networks,” “data disaggregation using graph neural networks,” and
“simulation-based disaggregation.”

For SD, the synonyms “knock-on,” “consecutive,” “reactionary,” “flow-on,” and “prop-
agated delay” were also used during the literature search, as they were found in the
available literature. For PD, the synonyms “original delays,” “entrance delays,” “source
delays,” and “initial delay” were used. The term “disaggregation” was also substituted
with “decomposition.”

The main focus of the literature research was on the period from 2014 to 2024.

2.2 Overview
This literature review will give an overview of what was considered the most relevant
publications with regard to the previously formulated research questions. First, studies
that have had very similar target questions, such as finding delay causes in the railway
domain, will be introduced. Next, different studies about the distribution of the duration
of PD will be investigated. Then it will be elaborated on how GNN has been utilized
so far in train networks and how well it has performed in those studies. In the later

7

2. Literature Review

sections, the challenges of GNN for the given research questions are discussed, and data
disaggregation methods in other domains are briefly introduced. The goal of this section
is to give an overview of the state-of-the-art and provide rationales for the method that
has been chosen to tackle the research questions.

2.3 Disaggregating Train Delays into Primary and
Secondary Delays

To this point, there is very little research regarding the disaggregation of AGD into
PD and SD. In [2], the delay discerning task is indirectly tackled. The idea was to
build a machine-learning model that predicts the additional delay for each train at each
stop. The input features are divided into two categories: features that are causes of
PD (weather, day of the week, season, vehicle type) and features that can be viewed as
causes of SD (delays of other trains). As the machine learning model predicts the delay
at a given station, the extent to which each feature contributed to the prediction can be
analyzed. This is done using Explainable Artificial Intelligence (XAI), specifically using
a method called SHAP (SHapley Additive exPlanations) values. This approach allows an
effective decomposition of the prediction. The study can be considered the publication
that tackles questions most similar to the research questions in this work. Nevertheless,
it does not propose a final model where the inputs are the actual delays and the outputs
are the disaggregation. It must be considered that there are also other more complex
SD sources in railway systems, which are not considered in the study, such as delayed
personnel or delayed traction units.

In [4], the goal was not directly to discern AGD, but rather to find single sources of
delays via a backtracking algorithm called Critical Path Search. In other words, it can
output the PD for a given SD. However, its limitation is that it classifies delays as either
SD or PD in a binary manner. Also, the focus of this publication is on single sources of
PD. Therefore, in most scenarios, the algorithm will categorize delays as SD, with only a
few identified as PD causes. This method is also reviewed in [5], where it is compared
to another method of source estimation for propagation processes in complex networks.
Similarly, [6] introduces a visualization-based technique to identify delay propagation
routes.

In [7], the proportions of PD and SD for a part of the Swedish train network were
computed. These proportions were only estimated for the whole train network but not
for delays occurring for single trains at different stations.

Based on the listed literature, it can be concluded that the available literature for the
disaggregation of AGD is very limited, and there is a need for further research. The
study closest to the research questions is [2]. While this study provides good ideas and a
valuable approach, there are two aspects in which it differs from the research questions
tackled in this work. First, in the study, the researchers work on one dataset, in contrast
to training the model on synthetic data and then applying it to real-world data. Second,

8

2.4. Stochastic Distribution of Primary Delays in Railway Networks

no direct disaggregation model was proposed. Instead, a delay prediction model was
developed, which shows to what extent each delay is caused by PD and SD sources. On
the other hand, [4] suggests a backtracking algorithm to find single sources of PD. While
this is a valuable approach, the goal of this work is to follow a data-driven approach. To
this point, no data-driven disaggregation model for AGD has been published. Therefore,
it can be concluded that there is a research gap worth investigating.

2.4 Stochastic Distribution of Primary Delays in Railway
Networks

Selecting the appropriate distribution and parameterization of PD is essential for accurate
modeling. The distribution of delay durations associated with PD is particularly interest-
ing. To gain insights into this aspect, the literature review focuses on studies investigating
the statistical properties and distributions of PD in railway networks. Unfortunately,
very few publications on the distributions of PD are available.

[8] provides a detailed research paper on various distribution statistics of PD on a
high-speed railway train track between Wuhan and Guangzhou in China. The study
investigates temporal, spatial, and durational distributions of PD. A goodness-of-fit test
was carried out for several distributions to determine which distribution most accurately
approximates the time span of PD. It was concluded that the duration of PD follows a
log-normal distribution and also published the estimated parameters.

In [9], the different sources that cause PD were investigated. Overall, seven different
causes, e.g., weather or failure of tracks, and distributions that approximate the duration
distributions best were listed. The study concluded that log-normal distributions are
most suitable to model the duration of all seven delay sources.

In [10], it was found that the distribution of PD can best be described by a negative
exponential distribution. It has to be noted that first, the data in this study is very
limited, and second, it is from 1974. Still, it is mentioned due to limited research on this
specific field.

2.5 Graph Neural Networks
2.5.1 Graph Neural Networks in Railway Networks
This section provides an overview of how GNN have been applied to railway networks in
past literature.

In [11], a GNN is used to predict train delays in railway networks. A so-called heteroge-
neous GNN was used, which allows nodes with different attributes as input. This type of
GNN made it possible to design a graph with nodes such as trains and stations, allowing
complex graph structures. Among other things, the study shows that GNN are capable of
capturing the propagation mechanisms in train networks. This is highly relevant for this

9

2. Literature Review

thesis since it is one of only a few papers so far where GNN has been applied within the
railway domain. Furthermore, the proposed model outperforms existing delay prediction
methods.

In [12], a GNN, more specifically, a Spatial-Temporal Graph Convolutional Network,
was used to predict future delays of trains for a subset of the British rail network.
The researchers show that this model is superior to other models, namely Multilayer
Perceptron and linear regression. The proposed model effectively predicts the delays
by capturing the non-linear dependencies within the network. Here again, it is shown
that GNN is a suitable method to better understand and model the delay propagation of
trains.

To support dispatchers in their decision-making, [13] outlines a GNN that was developed,
aiming to give an overview of the network congestion and delay patterns. In the paper,
the researchers introduce a deep learning framework called Train Spatio-Temporal Graph
Convolutional Network. The model forecasts the total number of delayed trains over a
period at different stations. It was trained on data from the China Railway Passenger
Ticket System, specifically on a subset of railway data around the city of Zhengzhou. In
the study, the model outperforms all comparison models.

A novel Graph Attention Network model to predict and explain train delay propagation
in railway networks is proposed in [14]. The study strongly focuses on the interpretability
aspect of delay propagation within train networks. The model allows different weights to
be assigned to the edges, making the influences of different factors like headway times
or arrival delays visible. This provides a deep insight into the mechanisms of delay
propagation. The study used a subset of the Dutch railway network, specifically the
mainline from Amsterdam to Utrecht. The novel architecture outperformed existing
models such as Bayesian networks and Markov models. The study underscores the
effectiveness of GNN to improve the prediction of train delays and their interpretability.

A study [15] investigates the use of GNN for predicting delays within the Chinese high-
speed train network. The proposed model uses graph community neural networks and
time-series fuzzy decision trees. It not only led to high accuracy but also delivered
interpretable results. The model outperformed seven state-of-the-art models.

To get a general overview of how GNN can be used for traffic forecasting problems, [16]
is a useful reference. In this review, studies from all kinds of transportation domains,
e.g., subway systems or taxis, are compared and discussed. The paper can be seen as
a valuable starting point for researchers who want to apply GNN to tasks related to
transportation systems.

Overall, it can be seen that applying GNN in the railway domain is a rather new
development, with the first publications arising around 2020. Nevertheless, it seems like
a highly promising approach, as the mentioned studies report high accuracies and often
interpretable results. It can be concluded that GNN are able to capture the non-linear
delay propagation mechanisms within railway networks, especially because graphs are
a highly suitable data structure for train data. From this finding, the overall idea to

10

2.5. Graph Neural Networks

use GNN for tackling the research problem of disaggregating AGD into PD and SD was
developed.

2.5.2 Data Disaggregation in Nonintrusive Load Monitoring

Data disaggregation is relatively well-researched in the electricity domain, more specifically
in Nonintrusive Load Monitoring (NILM). This technique discerns households’ aggregated
electricity data into the consumption patterns of individual devices. It provides a
cost-effective and convenient alternative to the traditional method of gaining energy
consumption data from single devices, which involves equipping them with electricity
monitors to record the relevant data.

NILM is a well-established research field resulting in numerous studies that suggest and
compare different disaggregation methods. Although railway network data generally has
a pretty different structure, it still seems reasonable to briefly discuss data disaggregation
in the electricity domain.

The review [17] gives a broad overview of the advances in NILM. Relevant for the present
research is the fact that it shows that ANN performs very well in the area of data
disaggregation, with the downside of high computational cost during training and the
need for large datasets.

Interestingly, there was one study [18] published in 2024, which leverages GNN to
disaggregate electricity data. The paper suggests that the architecture is highly efficient
at its task, outperforming other models. Nevertheless, this gain cannot be directly
transferred to the elaborated research questions, as first, the relevant patterns in the
electricity data are most probably very different from delay propagation patterns in
railway data, and second, the network is trained and tested on one dataset, meaning it is
not trained on synthetic data and then applied to another dataset.

In short, studies from NILM show that ANN can be effectively applied for data disaggre-
gation tasks.

2.5.3 Graph Neural Networks for Long-Range Tasks

The graphs that will be the input to the GNN can be considered very large since they
represent the whole railway traffic of a day within Austria, which has around more
than 9700 km of railway tracks [19]. Based on the fact that delays are often propagated
through several trains, it can be assumed that to effectively model train delay transmission,
information needs to pass through multiple nodes, often spanning distances greater than
two nodes. For most GNN architectures, long-range message-passing requires many layers,
as each layer only leads to information propagation to a node’s neighbors (Chapter 3).
Apart from very high computational demands, a high number of layers also leads to
over-squashing. This phenomenon is thoroughly explained in [20]. Nevertheless, due to
the graph structure and graph size, long-range message-passing will be required for the

11

2. Literature Review

research problem. Therefore, GNN architectures that perform effectively on long-range
tasks are discussed.

To test the ability of GNN architectures to model long-range dependencies, the Long-
Range Graph Benchmark [21] was established. It can be seen that GatedGCN perform
universally well on a wide range of tasks, despite being one of the baseline models. The
proposed transformer-based approaches work on fully connected graphs, therefore having
a complexity of O(N2). For that reason, the computational costs would be extremely high
for graphs of the size faced in this research. GatedGCN are comparatively cheap to train,
while still providing high accuracy rates, in some cases even exceeding transformer-based
approaches. In [22], where the long-range benchmark was reassessed through more
thorough fine-tuning, GatedGCN performed even better. They also offer the benefit of
edge weighting compared to usual Graph Convolutional Networks (GCN), making them
more interpretable. This study will use GatedGCN as layers in the GNN due to their
interpretability and relatively low computational costs (compared to transformer-based
methods), while still proving to be effective at solving long-range tasks.

One approach to improve long-range message-passing without adding a high number of
layers is hierarchical message-passing. This approach, as described in [23], suggests adding
supergraphs at different hierarchy levels. A supergraph is a simplified representation of the
original graph, where similar nodes are grouped into clusters and each cluster is represented
by a single supernode. This supernode encapsulates the aggregated information of all the
nodes in its cluster. Several hierarchy levels can be added, depending on the requirements.
Message-passing happens within the original graph and the supergraphs, but also top-
down and bottom-up. A hierarchical message-passing approach was also taken in [24],
where a supergraph was created using a specific pooling algorithm. The idea of using
hierarchical structures influenced the graph design in this work. To enable long-range
message passing, it was decided to add a modified type of supernodes for single trains, as
described in Section 5.4.

In conclusion, there is plenty of research on how long-range message-passing can be
accomplished in GNN. To get an overview of current state-of-the-art architectures, it is
recommended to view updated results on the Long-Range Graph Benchmark.

2.6 Overcoming Challenges in Out-of-Distribution
Learning

ANN can be powerful in many areas. However, in most cases, large amounts of high-
quality labeled data are necessary to train high-performing networks, which is often a
bottleneck. Therefore, using some form of artificial data in deep learning is common
practice, as described in [25]. Simulations are one of many methods of creating synthetic
data. Here, [26] is an example, providing a guideline on different strategies to use
synthetic simulated data in the construction domain. [27] provides a case where data
generated by an agent-based model was successfully used for deep learning training.

12

2.6. Overcoming Challenges in Out-of-Distribution Learning

In [28], it is elaborated on how simulators might be a crucial step in the advancements
of deep learning, as large quantities of labeled data can be generated with simulations.
This data can then be used, for example, for pretraining neural networks. The study
discusses that ANN often have a low performance if they are trained on artificial data
and then tested on real-world data. This effect usually happens due to dissimilar feature
distributions within the different datasets. Therefore, developing methods to close the
gap between the varying feature representations is crucial.

In this study, even in cases of rigorous calibrations of the available agent-based model, it
can be expected that the output will still differ significantly from real-world data due to
simplifications based on different model assumptions, missing data points, suboptimal
parameter settings, etc. This potential difference between synthetic and real-world data
must be considered since it might pose the risk that the model overfits the synthetic
data and consequently predicts poorly on the real-world data. The methods to improve
Out-of-Distribution (OOD) generalization can be separated into three categories as done
in [29]:

• Data - varying and modifying the input graphs

• Learning strategy - implementing optimization objectives and constraints

• Model - adapting the GNN architecture for better OOD performance

A comprehensive overview of these methods can be found in [29].

In conclusion, the literature review showed that there are several critical gaps in the
realm of researching railway systems that are worth investigating. The aim of this thesis
is to fill these gaps by using a GNN to discern AGD into PD and SD. This will be
approached by training the model on synthetic data generated by an agent-based model
and subsequently validating it on real-world data.

13

CHAPTER 3
Graph Neural Networks

As GNN are a central part of the methodology of this study, the theory behind them will
be elaborated on in this chapter. First, the principles of GNN, like message-passing, are
described. Next, specific variants as GatedGCN will be explained. The chapter is primarily
based on the first publication of GNN [30] and an introductory work [31]. Furthermore,
[32] was used as a source for GatedGCN. As this study focuses on the application of
GNN, this chapter is intended only to provide an overview of the mathematical principles.
For more detailed information, consulting the primary sources is recommended.

3.1 Introduction to Graph Neural Networks
Graphs are widely used data structures to represent complex relationships and interactions
in a variety of scenarios. They can be represented as G = (V, E), where V denotes the
set of nodes and E represents the set of edges. Furthermore, |V | = N depicts the number
of nodes, and A ∈ RN×N the adjacency matrix that encodes the connections between
the nodes.

Article [33] outlines various domains where GNN are effectively applied to solve diverse
problems, such as in chemistry, social networks, web page ranking, and physical networks.
Additionally, it elaborates on various prediction tasks, including node and graph classifi-
cation, as well as link prediction, where the goal is to predict connections between two
nodes.

These networks aim to learn efficient node representations that encode both the features
of individual nodes and their relationships with their neighbors. Through an iterative
learning process about the node, its features, and how it belongs in the whole graph, the
GNN learns complex relational information within the graph.

15

3. Graph Neural Networks

High-Level Structure of Graph Neural Networks

The key element of a GNN is the message-passing layer. This part of the network enables
information from one node to be passed to its neighbors. A GNN usually consists of
several such layers since the number of layers controls how far information can be passed
within the network. The features of a node are stored in a vectorized form, which is
called node representation. These feature embeddings change with each message-passing
layer.

The overall structure of a GNN can be abstracted as:

1. Input Layer: Each node i of the graph has an initial feature vector h(0)
i .

2. Hidden Layers: Each hidden layer k consists of:

• Message-Passing: Each node computes a message that will be sent to its
neighbors.

• Aggregation: Each node aggregates the messages received.
• Node Update: Each node updates its representation based on its previous

embedding and the aggregated messages.

3. Output Layer: The last layer simply outputs the representation of each node. It
can be used for a variety of tasks like node classification or link prediction.

How far a message can be passed within a GNN depends on the number of layers, also
referred to as iterations k. Each layer in the model leads to an additional message-passing
step. If a message is passed from one node to its neighbors, it is called a hop. In cases
where it is necessary to, e.g., pass messages to nodes with a path distance of four, it
would be necessary to add at least four layers to the GNN to create a 4-hop network.

3.1.1 Message-Passing
As mentioned, the message-passing mechanism is a key element of GNN. Within this
section, the three main steps of message-passing,

1. Message computation,

2. Message aggregation, and

3. Node update

will be explained in more detail.

16

3.1. Introduction to Graph Neural Networks

Message Computation

In the first step, the message computation, every node i computes messages which are
then sent to the neighbor nodes j. A message m(k+1)

ij is usually computed based on both
nodes’ current representations and the features of the outgoing edges. h(k)

i and h(k)
j

represent the features of nodes i and j for iteration k. The features of the edges that
connect the nodes are described as eij . Based on this, the function that computes the
messages, MESSAGE, is defined as

m(k+1)
ij = MESSAGE(h(k)

i , h(k)
j , eij), (3.1)

where m(k+1)
ij represents the message passed from node i to node j at iteration k + 1.

Message Aggregation

After the different messages are computed, the message aggregation step follows. During
this step, each node i aggregates the incoming messages from its neighbors N (i). To
compute the aggregated message m(k)

i for node i at iteration k, an aggregation function
AGGREGATE is defined. This function combines the messages into a single representa-
tion that captures the information of the nodes in the neighborhood. Mathematically,
the message aggregation can be described as

m(k)
i = AGGREGATE

�
m(k)

ji | j ∈ N (i)}


. (3.2)

There are different design choices for the message aggregation. A simple yet often-used
function is the sum aggregation, which can be denoted as

m(k)
i =

	
j∈N (i)

m(k)
ji . (3.3)

Node Update

After the messages are aggregated, the node update step follows, which can be described
as

h(k+1)
i = UPDATE(h(k)

i , m(k)
i). (3.4)

During this step, each node i updates its representation based on the aggregated message
and its embedding before that timestep. Usually, a neural network layer followed by a
non-linear activation function is used to perform this step.

The mechanisms of message-passing build the foundation of GNN. To improve performance
and functionality and offer solutions to different problems, a large number of variants
and extensions of the basic framework have been developed. One notable and widely
used extension is GCN.

17

3. Graph Neural Networks

Graph Convolutional Networks

GCN apply the concept of Convolutional Neural Networks (CNN), as introduced in [34],
to the area of GNN. In other words, GCN utilize convolutional operations on graphs.
The convolutions and, consequently, the node update can be efficiently performed using
the normalized adjacency matrix. In contrast to GNN, GCN reduces the feature vector
size with each iteration.

The update function of the GCN can be expressed as

h(k+1)
i = σ

�
Wh(k)

i + m(k)
i


, (3.5)

where W represents a learnable weight matrix and σ a non-linear activation function.

3.2 Variants and Extensions of Graph Neural Networks
While GCN provide a robust extension of traditional GNN, they come with several
notable limitations. One major limitation is the equal weighting of all neighboring
nodes, which might prevent the network from learning certain important relationships.
Additionally, GCN can suffer from over-smoothing. This describes the effect where node
representations become indistinguishable as the number of layers increases. GatedGCN
have been proposed to address these issues, as described in [32]. Through gating
mechanisms, which control the flow of information between nodes, this architecture
enhances the capabilities of GCN. These gating mechanisms allow information to be
selectively passed through the network based on the relevance of the connections. This
feature allows the capture of more complex relationships within graphs.

The influence of the neighbors of a node on its new representation is controlled by
the gating mechanism. This mechanism leverages the edge gates ηij to filter only the
important information of each connection. The edge gates can be computed with

ηij = σ (Ahi + Bhj) , (3.6)

where A and B are learnable weight matrices.

The GatedGCN update rule can be expressed as

h(k+1)
i = σ

U(k)h(k)
i +

	
j∈N (i)

ηij ⊙ V(k)h(k)
j

 , (3.7)

where U(k) and V(k) represent learnable weight matrices. The symbol ⊙ represents the
Hadamard product.

18

CHAPTER 4
Synthetic Data Generation Using

the Agent-Based Model

This chapter describes how the agent-based model was calibrated to produce synthetic
railway delay data. By leveraging historical data and domain knowledge, the aim was to
identify optimal parameters that enable the available agent-based model to generate a
realistic dataset capturing the complex dynamics of railway operations.

The main objectives of this chapter are:

• Explore and analyze historical delay data to gain insights into delay distributions
in the Austrian rail network.

• Review experiments conducted to determine optimal parameters for sampling delays,
ensuring a close match with real-world patterns.

• Evaluate the generated synthetic data and assess its plausibility compared to
real-world data.

• Discuss the limitations of the current approach and identify areas for future im-
provement.

4.1 Data exploration of Historical Delay Data
4.1.1 Dataset Description
First, the data provided by OEBB was analyzed. The dataset encompassed a single day’s
train traffic records, including both passenger and freight trains within the Austrian rail
network. The primary goal of this section is to deliver an understanding of how the

19

4. Synthetic Data Generation Using the Agent-Based Model

different delays are distributed. Hence, the analysis concentrates on features related to
delays. All other features are described in Section 5.2.

To ensure data confidentiality, several data scales were normalized. This preprocessing
allows pattern analysis while anonymizing the data.

4.1.2 Analysis of Train Arrival Patterns
Figure 4.1 shows the train arrivals at stations for passenger trains during one day. This
histogram displays the normalized number of trains present in the railway network at
various times, revealing two peaks throughout the day, indicating the rush hours.

Figure 4.1: Distribution of Arrival Records for Passenger Trains

Figure 4.2: Distribution of Arrival Records for Freight Trains

Figure 4.2 shows the same type of plot for freight trains. In this case, the train distribution
shows a distinct pattern compared to that of the passenger trains.

4.1.3 Analysis of Arrival Delay Durations
This section analyzes the distribution of delay durations. For simplicity, the analysis
focuses solely on arrival delays. Figure 4.3 and Figure 4.4 show the arrival delay duration

20

4.1. Data exploration of Historical Delay Data

distributions of passenger and freight trains. The plots aim to give an understanding of
how different delay duration distributions are depending on the type of train.

To anonymize the data, min-max normalization 4.1.1 was used for a predefined subset of
the data. The same minimum and maximum values were used for both the passenger
and freight train plots to make the plots comparable.

Definition 4.1.1 (Min-Max Normalization). Min-max normalization is a rescaling
technique applied to features to transform their values into a specific range, typically
[0, 1]. For any given feature x with observed minimum and maximum values denoted
as xmin and xmax, respectively, the normalized value x′ is calculated using the following
formula:

x′ = x − xmin

xmax − xmin
(4.1)

Here, x represents the original value of the feature, xmin is the minimum observed value,
and xmax is the maximum observed value. This normalization technique ensures that
the transformed feature x′ falls within the range [0, 1], thereby facilitating comparison
and analysis while preserving the relative relationships between the original data values.

Figure 4.3 indicates that the majority of passenger trains are punctual or have minimal
delays. The distribution of delay length for freight trains significantly differs, as seen
in Figure 4.4. A greater proportion of freight trains experience delays compared to
passenger trains. Also, the delays are significantly longer than the delays of passenger
trains. This is understandable, given that punctuality holds less importance for freight
trains than for passenger trains. Freight trains have different operational priorities and
logistical complexities associated with cargo transportation.

Figure 4.3: Normalized Passenger Train Arrival Delay Durations

21

4. Synthetic Data Generation Using the Agent-Based Model

Figure 4.4: Normalized Freight Train Arrival Delay Durations

4.1.4 Analysis of Delay Change
This section elaborates on when delays occur and their magnitudes. To achieve this, the
concept of delay change and sequence numbers are introduced. A sequence number is
defined as a marker that represents the order of checkpoints a train passes through during
its trip, where sequence = 1 indicates the start of the trip. Delay change is measured by
the variation in delay from one checkpoint to the next, starting with an initial zero delay.
If a train starts its journey with a 15-minute delay, the delay change for sequence = 1 is
noted as 15 minutes. This metric gives a better understanding of when delays happen
for single trains and their magnitudes.

Delay changes can have positive or negative values. A positive delay change indicates
that a train has an increase in delays, while a negative value shows that a train makes
up time.

Figures 4.5 and 4.6 show the delay changes for the same positive predefined range of
passenger and freight trains. The values have been normalized to anonymize the data.
Both figures employ a logarithmic scale on the y-axis to cover a broad range of frequencies.
The plots were included to show the different distributions of delay changes between
freight and passenger trains. A clear decrease in frequency as the delay change gets larger
can be seen in both plots. It can also be seen that the effect is stronger for passenger
trains. Passenger trains focus on staying on time resulting in an effort to adhere to
schedules.

4.1.5 Initial Delay Change
As mentioned, it is also important to know when delay changes happen for individual
trains. Therefore, the average delay changes across all trains at different sequence numbers
were analyzed to get further insights into patterns. It was observed that delays generally
offset each other, yet at the initial stop for freight and passenger trains, positive average

22

4.1. Data exploration of Historical Delay Data

Figure 4.5: Distribution of Delay Changes for Passenger Trains

Figure 4.6: Distribution of Delay Changes for Freight Trains

delays were observed. This makes sense since passenger trains should not depart early, so
they will either depart punctually or late at the first stop, meaning that there should be
no negative delay changes for passenger trains at the start of a trip. In practice, freight
trains sometimes start before schedule. That’s why the initial delay change of freight
trains can also be negative. Nevertheless, the average initial delay change was positive for
the analyzed data. This indicates that many freight train delays happen in the beginning.

The initial delays of freight trains were further analyzed since they were a manifold of
the initial delays of passenger trains. It was observed that a small fraction of freight
trains start before schedule. A majority of the freight trains start later than scheduled.
Based on expert knowledge, most of those delays are caused by:

• The lower prioritization compared to passenger traffic

• The delay of resources necessary for operating the train

23

4. Synthetic Data Generation Using the Agent-Based Model

Thus, it is assumed that a majority of these delays are SD. A sensitivity analysis A.1 was
conducted to test whether the agent-based model accurately reproduces these expected
SD. The analyses indicate that these SD are not adequately represented in the simulation
to the extent anticipated by experts, highlighting a limitation in the model.

4.2 Methodology of Data Generation
In this section, the methodology that was used for the creation of data is outlined.

4.2.1 Approaches for the Primary Delay Sampling
Two methods were tested for generating synthetic data. Only the second will be elaborated
in detail in this thesis, as it proved to be superior. The first approach was based on
the findings from the literature research in Section 2.4. It was assumed that the PD
duration distributions within the Austrian railway network are similar to the distributions
suggested in [8]. Therefore, the log-normal distribution parameters suggested in [8] were
used for sampling PD durations. A comparison metric to compare the AGD of synthetic
data to the real-world data was established. This finally led to the estimation of delay
occurrence frequencies and synthetic data. Due to a poor fit of the generated data to the
real-world data, this approach was discarded.

The approach that was used for the final data creation is based on the assumption that
the distribution of PD duration follows the same distribution as the delay changes in the
historical data. This method facilitates not only the easy determination of distribution
parameters but also provides starting points for the occurrence frequencies of delays. The
exact parameter estimation process is described in this chapter.

In the following section, the assumptions made are first elaborated on. It is then explained
from which distributions PD durations are sampled. Next, upper boundaries for PD
occurrence frequencies are derived from historical data. After a parameter-finding process
through grid search, a plausibility analysis is conducted. The result is a set of feasible
distributions, distribution parameters, and delay occurrence frequencies from which PD
durations are sampled to create a final dataset.

4.2.2 Assumptions for Primary Delay Distributions
The goal of this sampling strategy was to include the most important factors while
keeping the complexity as low as possible. To achieve this, several assumptions about
the occurrence of PD and the distribution of PD durations were made.

Assumption 1: The distribution of the PD follows the distribution of the delay changes
in the historical data.

Assumption 2: The frequencies of PD occurrences and the distributions of PD durations
are assumed to be independent of both location and time.

24

4.2. Methodology of Data Generation

Assumption 3: Frequencies of PD occurrences and the distributions of PD durations
are considered independent of Operational Control Point (OCP) type.

These assumptions allow for the estimation of the necessary parameters to sample PD
using the available data. Based on the first assumption, PD duration distributions can
be estimated by fitting distributions to the delay change from the historical data. The
idea is to fit several distributions and afterward determine the probability P (d > 0) or
p0 of delay occurrence. In mathematical terms, this can be described as estimating the
probability P (d = x), where d = x represents the occurrence of a delay change of exactly
x minutes:

P (d = x) = P (d > 0) × P (d = x | d > 0) = p0 × P (X = x) (4.2)

Here, P (d = x | d > 0) denotes the probability of a delay change being x minutes, given
that a delay has occurred. The probability distribution of the delay change durations
X is represented as P (X = x). It gives the likelihood that X has the value x if a delay
takes place.

The second assumption can be considered to be very restrictive. Nevertheless, it is
reasonable since no significant statements about the specific distributions can be made
at different times or locations due to the availability of only a single day of data. Here,
future improvements are possible if a larger dataset is available, as discussed in the
Limitations 4.5.

4.2.3 Distributions for Sampling Primary Delays
Building on the assumptions, the next step was to determine the appropriate distribu-
tions for sampling PD delay durations. Overall PD were sampled from four different
distributions, which represent various delay scenarios:

• PD for passenger trains at the start of the trip (sequence = 1)

• PD for passenger trains during the trip (sequence > 1)

• PD for freight trains at the start of the trip (sequence = 1)

• PD for freight trains during the trip (sequence > 1)

The decision to model the four scenarios was based on the data exploration (Section 4.1)
and the stated assumptions. First, the analysis showed that freight and passenger trains
have very different delay change duration distributions. Second, it revealed that the delay
change duration distributions at the departure of a train journey are markedly different
from those during the actual journey.

25

4. Synthetic Data Generation Using the Agent-Based Model

The delay change duration distributions are highly skewed. There is a high frequency of
occurrences in the low second range, tapering off to a few occurrences in the several-hour
range. This skewness made it particularly challenging to fit distributions that accurately
capture the entire range of data. To fit distributions, the Kolmogorov-Smirnov Test (K-S
Test) 4.2.1 was used.

Definition 4.2.1 (Kolmogorov-Smirnov Statistic (KS)). The K-S Test statistic quantifies
the maximum difference between the empirical cumulative distribution functions of two
samples:

D = sup
x

|Fn(x) − Fm(x)| (4.3)

where Fn and Fm are the empirical cumulative distribution functions of the two samples
[35, 36].

A lower K-S Test statistic indicates a closer match between the synthetic and observed
delay distributions, implying a more accurate representation of real-world delays.

Distributions were fit to the range of delay change durations of one second to an upper
boundary of three hours, using a single distribution. Given the high frequency of delays
in the low-second range and the long tail of the data, the K-S Test demonstrated that the
Pareto distribution was superior to other distributions (lognormal, Weibull, exponential,
gamma) for a majority of cases.

To illustrate this, the following section presents the exact distribution parameters esti-
mated for the four different delay scenarios: passenger trains at the start of the trip,
passenger trains during the trip, freight trains at the start of the trip, and freight trains
during the trip.

Passenger Train Start

The first scenario focuses on the delays at the start of a passenger train’s journey. The
following table and plot show the Pareto distribution parameters and the goodness-of-fit
statistics for this scenario.

Distribution Pareto
Parameters Shape: 1.3908, Location: -0.9476, Scale: 0.9642
D-statistic 0.035

n 3472

Table 4.1: Pareto Distribution Fit for Passenger Train Start Delay Changes

26

4.2. Methodology of Data Generation

Figure 4.7: Pareto Fit for Passenger Train Start

Passenger Train Journey

The second scenario examines the delays occurring during the journey of passenger trains.
The table and plot below present the parameters of the Pareto distribution and the
associated goodness-of-fit statistics.

Distribution Pareto
Parameters Shape: 2.6440, Location: -0.6330, Scale: 0.6497
D-statistic 0.053

n 81773

Table 4.2: Pareto Distribution Fit for Passenger Train Journey Delay Changes

Figure 4.8: Pareto fit for Passenger Train Journey

27

4. Synthetic Data Generation Using the Agent-Based Model

Freight Train Start

The third scenario addresses the delays at the start of a freight train’s journey. The
Pareto distribution parameters and the goodness-of-fit statistics for this scenario are
shown in the following table and plot.

Distribution Pareto
Parameters Shape: 6.4447, Location: -194.4331, Scale: 194.4497
D-statistic 0.040

n 597

Table 4.3: Pareto Distribution Fit for Freight Train Start Delay Changes

Figure 4.9: Pareto Fit for Freight Train Start

Freight Train Journey

The final scenario explores the delays occurring during the journey of freight trains. The
following table and plot display the Pareto distribution parameters and the goodness-of-fit
statistics.

Distribution Pareto
Parameters Shape: 1.0760, Location: -0.3725, Scale: 0.3892
D-statistic 0.045

n 16267

Table 4.4: Pareto Distribution fit for Freight Train Journey Delay Changes

28

4.2. Methodology of Data Generation

Figure 4.10: Pareto Fit for Freight Train Journey

With the distribution parameters for various scenarios established, the next step involved
deriving upper boundaries for delay occurrence frequencies based on historical data. This
analysis helped to set realistic rates for the agent-based model.

4.2.4 Upper Boundaries of Delay Frequencies Based on Historical Data

Based on the historical data, upper boundaries for the rates of occurrence of delays can
be derived. This was done by assuming that each delay change is a PD. However, the
exact values of these probabilities are not shown due to data confidentiality requirements.

These estimates were used as an upper boundary in the grid search described in Sec-
tion 4.3.2, which aimed to find feasible PD occurrence rates.

4.2.5 Negative Delays and Negative Delay Changes

Negative delays also occur in the available data. A delay is negative if a train departs or
arrives before its actual scheduled time. In real-world scenarios, this happens especially
for freight trains, as these often depart hours before the scheduled time.

Negative delay changes happen if a train makes up time. The agent-based model cannot
sample negative PD. In the model, a train can never depart or arrive before the scheduled
time. The only way negative delay changes can be mimicked is the minimum duration.
The minimum duration describes the minimal time it takes to travel from one OCP to
the next or the minimum time a stop takes. The OEBB schedules their timetable so that
trains must include a regular time buffer of at least 7% of the travel time [37]. This buffer
was also implemented in the model for runs and stops. Consequently, late trains can
make up time. However, enabling early departures from stations within the agent-based
model is not possible.

29

4. Synthetic Data Generation Using the Agent-Based Model

4.3 Evaluation and Results of Synthetic Data Sampling
This section will elaborate on how the agent-based model was calibrated. The overall
procedure involved the following steps:

1. Sampled PD with Different Parameter Sets: The agent-based model was
calibrated by sampling PD using different sets of occurrence probabilities for the
four estimated PD duration distributions.

2. Compared Synthetic Data with Real-World Data: The resulting synthetic
data files were then compared with the real-world data using a defined comparison
metric.

3. Ranked Parameter Combinations: Finally, the used parameter combinations
were ranked based on the results from the comparison metric.

4.3.1 Distribution Comparison Method
To assess the suitability of the parameter setup, two distribution comparison metrics were
utilized: the Kullback–Leibler divergence (KL-divergence) 4.3.1 and the K-S Test 4.2.1.
It was aimed to achieve a more balanced evaluation ranking distribution based on these
two metrics instead of a single one.

The delay change distributions for the four cases described in Section 4.2.3 were compared
between the generated data and the historical data using these comparison metrics.

Definition 4.3.1 (Kullback-Leibler Divergence). KL-divergence quantifies the deviation
of one probability distribution from another reference distribution. For discrete probability
distributions P and Q, the KL-divergence from Q to P is defined as:

KL(P ∥ Q) =
	

i

P (i) log


P (i)
Q(i)


(4.4)

where P and Q are probability distributions [38].

The following steps were taken to find feasible PD occurrence probability parameters:

1. Defined Frequency Grid: Defined a grid of feasible frequencies based on the
estimated upper boundaries 4.2.4. With these probabilities, PD were sampled from
the four different Pareto distributions 4.2.3.

2. Ran Simulations: Ran simulations for each parameter combination with two
different seeds.

3. Compared Distributions: Compared the delay changes in the synthetic data to
the historical data for:

30

4.3. Evaluation and Results of Synthetic Data Sampling

• Passenger trains (sequence > 1)
• Passenger trains (sequence = 1)
• Freight trains (sequence > 1)
• Freight trains (sequence = 1)

4. Normalized the Scores: Normalized the KL-divergence and K-S Test results for
the different distributions using min-max normalization to ensure comparability.

5. Computed Weighted Mean: Computed the weighted mean for both KL-
divergence and K-S Test separately for each of the four cases. As the number of
passenger trains is higher than the number of freight trains, freight and passenger
trains were weighted differently. The ratio of passenger to freight trains was 5:1,
but the weights were set to a ratio of 2:1 to consider the distribution of freight
trains to a more noticeable degree. Additionally, sequence = 1 to sequence > 1 were
weighted with a 2:1 ratio, founded on the fact that there are way more occurrences
of trains with sequence > 1, but nevertheless, sequence = 1 is significant. This led
to the weights of:

• Passenger trains sequence = 1: 2
9

• Passenger trains sequence > 1: 4
9

• Freight trains sequence = 1: 1
9

• Freight trains sequence > 1: 2
9

6. Averaged Scores: Averaged the scores from the same parameter setup but with
different seeds.

7. Ranked Scores: Computed ranks for both KL-divergence and K-S Test statistics.

8. Determined Final Ranking: Ranked the parameter combinations based on the
computed ranks for KL-divergence and K-S Test, producing a list of frequency
parameters that most closely match the historical data.

Penalty Term

During exploratory calibration experiments, it was observed that although the delay
change distributions were reasonably approximated, significant deviations from the
historical data in the AGD occurred. To mitigate this issue, two penalty terms were
introduced. Here, the KL-divergence and K-S Test between synthetic and historical data
are computed for the AGD of passenger trains and freight trains. They were added to the
before-described weighted means, with an overall weight of 1/3. The penalty term itself
is again weighted with 2:1 for the passenger-to-freight ratio. This led to the following
final weights:

• Passenger trains, sequence = 1: 2
9 × 2

3 = 4
27

31

4. Synthetic Data Generation Using the Agent-Based Model

• Passenger trains, sequence > 1: 4
9 × 2

3 = 8
27

• Freight trains, sequence = 1: 1
9 × 2

3 = 2
27

• Freight trains, sequence > 1: 2
9 × 2

3 = 4
27

• Penalty term 1 – AGD of passenger trains: 2
3 × 1

3 = 6
27

• Penalty term 2 – AGD of freight trains: 1
3 × 1

3 = 3
27

4.3.2 Grid Search for Optimal Parameters
A grid search was performed to find suitable parameters for calibrating the agent-based
model, using the comparison method described and the estimated upper boundaries of
occurrence probabilities from Section 4.2.4. The specific grid search parameters and final
results are not disclosed due to data confidentiality.

The grid was run for two different seeds for each parameter combination. The results
were ranked based on the comparison method described.

4.4 Plausibility Analysis
A plausibility analysis was conducted to compare several delay metrics between the
synthetic and real-world data. This was done for a file of the best-ranked parameter
combination in the before empirically determined ranking. The following subsections
outline various plausibility checks. Before analyzing the data, the delay changes were
filtered to a feasible time range for comparative analysis. Afterward, for all positive
values it was normalized (min-max normalization 4.1.1) to ensure data confidentiality.

Delay Changes

The K-S Test test was used to evaluate the goodness-of-fit for the delay change duration
distributions of the synthetic data compared to the historical data. The test was conducted
for positive delay change durations. The results are summarized in Table 4.5 and shown
in Figure 4.11.

Distribution KS Statistic nreal-world nsynthetic

Passenger Trains sequence = 1 0.0724 3471 3172
Passenger Trains sequence > 1 0.0538 81773 48742
Freight Trains sequence = 1 0.0834 563 491
Freight Trains sequence > 1 0.0647 16252 14093

Table 4.5: K-S Test Results for Positive Delay Change Distributions Compared to
Historical Data

32

4.4. Plausibility Analysis

Figure 4.11: Distribution Comparison for Delay Changes of Passenger and Freight Trains

Negative Delay Changes

The K-S Test results for the negative delay changes, as shown in Table 4.6 and Figure 4.12,
reveal significant deviations between the synthetic data and the real-world data. The
higher K-S Test statistic values indicate that the distributions for these negative delay
changes do not align as well with the historical data compared to the other scenarios.

Scenario KS Statistic nreal-world nsynthetic

Passenger Trains 0.3739 117201 149504
Freight Trains 0.4563 25166 28074

Table 4.6: K-S Test Results for Negative Delay Change Duration Distributions (-10 to 0
Minutes) Compared to Historical Data

Delay Changes for Different Time Windows

Table 4.7 and Figures 4.13 present the K-S Test statistic results for passenger and
freight trains, with a sequence number greater than one, for three different time windows
(00:00-08:00, 08:00-16:00, and 16:00-24:00). The same minimum and maximum values for
normalization have been used as in Section 4.4.

33

4. Synthetic Data Generation Using the Agent-Based Model

Figure 4.12: Comparison of Negative Delay Changes between Real-World and Synthetic
Data

Scenario KS Statistic nreal-world nsynthetic

Passenger Trains (00:00-08:00) 0.0375 19356 11491
Freight Trains (00:00-08:00) 0.0927 5733 5525
Passenger Trains (08:00-16:00) 0.0695 33665 20506
Freight Trains (08:00-16:00) 0.0413 5249 4315
Passenger Trains (16:00-24:00) 0.0709 32223 19917
Freight Trains (16:00-24:00) 0.0706 5833 4744

Table 4.7: K-S Test Results for Delay Change Distributions Compared to Historical Data
across Different Time Windows

Overall Delays

The K-S Test results for a comparison of the AGD are shown in Table 4.8 and Figure 4.14.

Scenario KS Statistic nreal-world nsynthetic

Passenger Trains 0.1038 166503 197040
Freight Trains 0.1600 28263 39300

Table 4.8: K-S Test Results for Departure Delay Distributions Compared to Historical
Data

34

4.4. Plausibility Analysis

Figure 4.13: Distribution Comparisons for Delay Changes in Different Time Windows

Figure 4.14: Departure Delay Distributions Compared to Historical Data.

35

4. Synthetic Data Generation Using the Agent-Based Model

4.4.1 Estimates based on Naive Model

To enhance the plausibility analysis, a boundary for the PD to SD ratio was estimated.
This approximation was achieved by assuming that each delay change is a PD. The PD
were fed into the agent-based model, which led to the results in Table 4.9.

Metric Percentage
Percentage of nodes to classify
(delay_change ≥ 60 seconds)

3.15

Percentage of nodes to classify where
primary_delay_label is True (PD ≥
SD)

93.68

Percentage of instances where both
secondary_delay ≥ 60 and
primary_delay ≥ 60 relative to
relevant nodes

1.85

Table 4.9: Estimates Based on Naive Model

Some valuable information for the plausibility analysis can be derived from these results:

Finding 1: The percentage of nodes to classify can be considered as an upper boundary,
as this value would only be that high if each delay was a PD. Fewer cases of PD would
generally result in fewer SD, leading to fewer nodes with delays ≥ 60 seconds.

Finding 2: The “Percentage of nodes to classify where primary_delay_label is
True” is 93.68%, which is unexpectedly high. It can be expected that in a majority of
cases, a smaller number of PD would likely even result in a higher number. Therefore,
the estimated number can be considered as an approximate lower boundary.

Finding 3: For the “Percentage of instances where both secondary_delay ≥ 60 and
primary_delay ≥ 60 relative to relevant nodes,” it is expected that with fewer PD,
this number would, in most cases, also decrease.

Important to note is that these estimated boundaries are not absolute. There exist
scenarios where the relationships between PD and SD can be more complex. For instance,
a reduction in PD occurrences might, counterintuitively, lead to an increase in SD in
certain network configurations, which underscores the need for careful interpretation of
these findings.

Comparison with Estimates

Table 4.10 compares the boundary estimates with the same metrics of the synthetic file.
The synthetic file shows a higher percentage of nodes to classify, meaning it surpasses
the upper boundary slightly. On the other hand, the lower boundary of the ratio of
PD to SD is undershot by more than 10%. Although the lower boundary is merely an

36

4.5. Limitations

approximation, the values are still considerably different. Therefore, this discrepancy has
to be considered as a weakness in the generated data.

Metric Naive Model
Real-World Data (%) Synthetic File (%)

Percentage of nodes to clas-
sify (delay_change ≥ 60
seconds)

3.15 4.48

Percentage of nodes
to classify where
primary_delay_label
is True (PD ≥ SD)

93.68 79.53

Percentage of instances where
both secondary_delay ≥
60 and primary_delay ≥ 60
relative to relevant nodes

1.85 1.62

Table 4.10: Comparison of Naive Model Estimates and Synthetic File as a Plausibility
Check

Conclusion of the Plausibility Analysis

In conclusion, the plausibility analysis confirms that the generated synthetic data mirrors
the real-world delay patterns observed within the Austrian rail network. However,
it has to be pointed out that several weaknesses have been detected. Some of the
analyzed distributions differ quite considerably from the real-world data regarding the
K-S Test statistics. This especially holds true for the negative delay changes. Another
weakness is the difference between the naive model estimates and the generated data 4.4.1.
Nevertheless, the overall trends and key characteristics of delays are well-represented in
the synthetic data, indicating that the chosen parameters for data generation are feasible.

Generation of Final Dataset

A final dataset was created based on the calibration experiments described in Section 4.3.2.
It was decided that the top 10 parameter combinations would be used for the final dataset
creation. However, due to confidentiality concerns, the specific combinations are not
disclosed. Overall, 300 files were generated, with 30 files for each of the 10 combinations.
Each file was created with a unique seed.

4.5 Limitations
The process of data sampling and generation in this study encounters several significant
limitations that have to be pointed out:

37

4. Synthetic Data Generation Using the Agent-Based Model

1. Limited Timespan of Historical Data: The dataset used is constrained to
a single day, limiting its diversity and robustness. Train delay patterns can vary
significantly across different days, weeks, months, and seasons. Utilizing a larger and
more diverse dataset would enable more thorough analysis and sampling, leading
to more representative and accurate synthetic data.

2. Early Departures: The agent-based model cannot currently simulate that trains
sometimes depart from a station before their scheduled time. In real-world scenarios,
this regularly happens for freight trains at their first stop due to available capacities,
which is represented in the recorded data as negative initial delays. This limitation
reduces the realism of the model since these early departures are common. Future
models should incorporate mechanisms to simulate these types of negative delay
changes.

3. Simplifying Assumptions: Several simplifying assumptions were made during
the data generation process, as described in Section 4.2.2. While these assumptions
help simplify the sampling process, they do not fully capture the complexities of
real-world scenarios. These assumptions were also set due to the limited data
available. Future research should aim to refine these assumptions for more accurate
data generation if more real-world data becomes available.

4. Discrepancies to Estimates: The differences between the naive model estimates
and the generated data highlight some weaknesses in the synthetic data generation
process. These differences indicate challenges of synthetic data in representing
real-world scenarios.

38

CHAPTER 5
Data Preprocessing and Model

Implementation

This chapter describes how the output data of the agent-based model is preprocessed
before being transformed into a graph. Next, it elaborates based on what rules the
individual nodes and edges are being created. Afterward, it gives an overview of how
the GNN was implemented. For the detailed code of the data preprocessing, the graph
creation, and the model implementation, please refer to the GitHub repository.1

5.1 Data Structure and Preprocessing
5.1.1 Structure of CSV
The output data of the agent-based model is stored in CSV files, with each row representing
trains at different OCP for the times when the trains visit those checkpoints. Each row
stores the features outlined in Table A.1. One file represents a whole run of the simulation,
which equals approximately a full day of train traffic. To better understand the data
structure, it is essential to understand the variable OCP, which represents checkpoints
within the railway network where data is collected. These can include operational facilities
such as stations, signal boxes, junctions, or crossings. If the feature OCP has the value
Pass, it means that a train passed an OCP. Stop, on the other hand, means that the
train did stop at the OCP. A delay change in a row with OCP = Stop indicates that the
change in delay happened at the stop itself, meaning the difference between the arrival
and the departure at the station was longer than planned. Rows where OCP = Pass
indicate what happens on the sections between stations. If a delay change is shown in a
row with OCP = Pass, it means that it occurred on the section between the OCP of the
row and the OCP of the following sequence of this train.

1https://github.com/maximilianvie/GNN-Based-Train-Delay-Disaggregation

39

https://github.com/maximilianvie/GNN-Based-Train-Delay-Disaggregation

5. Data Preprocessing and Model Implementation

5.1.2 Target Variable
The target variable in this study is the PD, more precisely, delay changes caused by
external influences on the train network. Delay changes can be as short as only a few
seconds or as long as several hours. In this study, delay changes from 0 to 59 seconds
are considered noise as they are not particularly relevant for model training. Therefore,
predictions should only be made on rows with at least 60 seconds of delay change. In
the real-world data, this only applies to around 3% of the rows (see Section 4.4.1). This
design choice was made to avoid learning from insignificant delay changes. It enables
faster and more robust model training.

Two types of GNN are trained in this study: one which has a regression task and a
second model that only classifies delay changes, as described below:

• Regression Task - For the regression task, the goal of the GNN is to estimate for
each row to what extent a delay change is a PD. The difference between the delay
change and the PD then consequently makes the SD.

• Classification Task - For the classification task, each row gets a label PD or
SD. This is based on the rationale that for approximately 98% (estimated in
Section 4.4.1) of rows, either PD or SD exist, which is why in most cases, it is
sufficient to classify a delay change as only PD or SD.

5.1.3 Handling Missing Values
Overall, 300 CSV files were used as a final dataset (Section 4.4.1). Each synthetic file
had 384 missing values in the longitude and latitude columns. These were filled using a
forward-filling technique for the individual trains, which means that the coordinates of
the previously visited station were used as the value. For missing departure times, the
corresponding arrival time at the same station was used, and vice versa.

5.2 Feature Selection
The output data files of the agent-based model contain 29 features, as shown in Table A.1
in Appendix A.2. Within a feature selection step, this number has been reduced to
six essential input features for the final GNN. This section will briefly outline how the
attributes have been selected.

5.2.1 Feature Selection Rationale
Feature selection in deep learning is a non-trivial task due to the potential presence
of non-linear relationships between individual features and the target variable. The
approach to feature selection can be quantitative (e.g., correlation analysis) or qualitative
(e.g., domain knowledge).

40

5.3. Normalization and Feature Encoding

In this study, the features were first filtered based on expert opinion, representing a
qualitative approach. Afterwards, in the experimental stage, the features were further
reduced by a non-exhaustive exploratory feature selection. This was done by testing how
different input feature combinations affected the prediction accuracy in a dataset created
for exploratory experiments. This simplified approach was chosen for several reasons:

• This work aims to develop a Proof of Concept (PoC), which is why the focus is on
finding a functional, but not necessarily optimal, solution.

• The primary task of the GNN is to learn the different delay propagation mechanisms
within the graph. It is hypothesized that these mechanisms can be learned to a
large degree from the graph structure itself.

• Each additional feature increases the risk that the model overfits the synthetic data.
As the final model will be used to run inference on real-world data, a strong focus
has to be on generalizability.

The selection of features for exclusion and inclusion before preprocessing was guided by
several criteria, including:

• Relevance to the predictive task

• Redundancy

Table A.2 in the Appendix A.2 summarizes the features that were excluded, along with
the rationale for their exclusion.

5.2.2 Final Feature Selection
In this subsection, the final feature set of the model is presented. The original features
(Appendix A.1) were filtered based on a set of criteria. This filtered set is shown in
Appendix A.3. The final set of features (see Table 5.1) was then determined based on
exploratory experiments that evaluated the effects of different feature combinations on
the accuracy within the training dataset. Additionally, the attributes is_supernode
and train_unique_sequence were added.

5.3 Normalization and Feature Encoding
5.3.1 Encoding Cyclical Time Features
Time features should be transformed before being used as input features since a model
might otherwise perceive values such as 23:00 and 00:00 as being very far apart, although
they are very close. To mitigate this issue, the periodic nature of date time was leveraged.
The daytime values were transformed using sine and cosine functions to preserve their

41

5. Data Preprocessing and Model Implementation

Retained Feature Description Data Type
passenger A binary indicator of whether the

train is a passenger (true) or freight
train (false).

bool

ocp_type Indicates if a train stops (true) or
passes (false) an OCP.

bool

arrival_delay_in_seconds Indicates the train’s arrival delay
at a checkpoint.

int

departure_delay_in_seconds Indicates the train’s departure de-
lay at a checkpoint.

int

train_unique_sequence Represents the sequence number
that shows the train’s current posi-
tion in its journey.

int

is_supernode Indicates if a node is a supernode. bool

Table 5.1: Input Features for GNN

cyclical characteristics. Each time component, like second, minute, hour, or day, is mapped
onto a circle in this transformation approach. This approach maintains continuity since
the end of the cycle is adjacent to its start.

The transformation process has two steps for each cyclical component of datetime values:

Extraction of Time Components: From each datetime value, the time component of
interest is extracted. This component will be used for the next step.

Application of Sinusoidal Functions: Next, both sine and cosine functions are applied
to the extracted time components using these formulas:

• Sine Transformation: sin(2π
T × Component Value)

• Cosine Transformation: cos(2π
T × Component Value)

Here, T is the maximum value of the cyclical component (for example, 24 for the hours
of a full day). This step computes the corresponding coordinates and projects each time
point onto a unit circle.

5.3.2 Normalization of Continuous Features
The continuous numerical features in this study, such as the arrival delay in seconds, were
normalized using z-score normalization. This method adjusts the features and labels to
achieve a mean of 0 and a standard deviation of 1. As a consequence, it is ensured that all
features contribute equally to the model’s learning process since they are scaled the same

42

5.4. Graph Structure

way. The normalization of the features also helps gradient descent-based optimization
methods converge faster, making the training of ANN more efficient.

The standardization is applied to each feature and label independently. It is described
by the formula in Definition 5.3.1.

Definition 5.3.1 (Z-Score Normalization).

xstandardized = x − µ

σ
(5.1)

where x is the original value of the feature or label, µ is the mean, and σ is the standard
deviation.

The standardization parameters (mean and standard deviation) are computed only on
the training data and then applied to all dataset splits to prevent information leakage.

It is essential to mention that, as elaborated in Section 5.1.2, within the model training,
the loss will only be computed on nodes with a delay change of at least 60 seconds. In
the code implementation, these nodes are described as nodes_to_train_on. Only
around 3% of the nodes of a graph in this study fall into this category. To compute the
normalization parameters for the target feature, the PD, only the corresponding values
of the nodes_to_train_on were used. This ensures that the standardization only
focuses on relevant delays.

5.3.3 Encoding of Categorical Features
Categorical node features are not straightforward to feed into an ANN. While they could
be represented as integer values, this approach is not recommended because the network
might incorrectly interpret the integers to have a continuous relationship. For that reason,
these features were handled using embedding layers. Through this process, each category
is mapped to a vector embedding, which is updated during model training, allowing the
GNN to learn the relationships between different categories.

5.4 Graph Structure
The next goal is to transform the preprocessed CSV data into a graph structure that
enables delay information to be efficiently propagated through the network by the message-
passing mechanism of the GNN. This section explains how tabular data is mapped into a
graph, specifically how nodes and edges are created based on predefined rules.

5.4.1 Creation of Nodes and Supernodes
In the defined graph structure, each node represents a train visiting an OCP at a specific
time and can be uniquely identified by the combination of the train number and the train
sequence number. Each node stores values for the features defined in Section 5.2.2.

43

5. Data Preprocessing and Model Implementation

Inspired by the concept of hierarchical message-passing introduced in [23], this study
introduces a specific type of node referred to as a supernode. Each train is associated
with a single supernode, which connects to all its corresponding train nodes, enabling
long-range message passing. Additionally, supernodes can connect to one another as
shown in Figure 5.1.

They carry the same features as the other nodes, but their value is determined by the
corresponding single checkpoint nodes of the same train. Supernodes are created with
attributes that are either the maximum or mode from the characteristics of the train’s
nodes.

5.4.2 Edge Creation

The graph’s edges illustrate the sequence of train movements across the network and the
interactions among trains at common stations. In contrast to nodes, they do not carry
any features. During an exploratory stage, experiments have shown that bidirectional
edges led to higher performance than non-bidirectional graphs, which led to the decision
to add edges in both directions for each pair of nodes that should be connected. Three
types of edges were created:

• Sequential Edges: These edges connect consecutive checkpoints for each train.
An edge is created between these nodes if a train moves from one node to another.

• Temporal Proximity Edges: If two trains pass through the same station within
a specified time window (defined as 180 seconds), edges are created between their
respective nodes. This type of edge allows potential delays to propagate through
the network.

• Supernode Edges: Each supernode is connected to all of the train’s nodes.
Additionally, supernodes are connected to each other if, between the two trains, a
temporal proximity edge is created.

In Figure 5.1, the graph structure of a single train is shown. The node defined as Train_A
represents the supernode. A node was created for each unique OCP of a train’s journey.
In the node naming, Pass and Stop represent the OCP type, while the number represents
the sequence number of the train at the corresponding checkpoint.

44

5.4. Graph Structure

Stop
1 Pass

 2

Pass
3 Stop

4

Pass
5

Train
A

Stop
6

Figure 5.1: Graph Structure of a Single Train

Figure 5.2 shows a scenario where two different trains happen to visit the same sta-
tion within a 180-second time window. Therefore, node Stop_4_Train_A and node
Stop_1_Train_B, which both represent the described station, are connected by an edge.
Consequently, as a result of the edge rules, the two supernodes are also connected. In
this scenario, the utility of the supernodes is apparent. The minimum distance from
Stop_1_Train_A to Stop_7_Train_B is 3. Without the implementation of supernodes,
the distance between those two nodes would be 10. As a PD in the first node can have
an influence on the delay in the second node, it is important that messages can be passed
efficiently between the two nodes. Not using supernodes would, therefore, require the use
of many more message-passing layers to achieve the same travel distance.

Stop
1

Pass
 2

Pass
3

Stop
4

Pass
5

Train
A

Stop
6

Stop
1

Pass
 2

Stop
3

Pass
4 Pass

5

Train
B

Pass
6

Stop
7

Figure 5.2: Graph Structure of Two Trains Visiting the Same Station in a Certain
Timeframe

The transformation of the CSV files to the explained graph structure usually led to
one large graph with more than 200,000 nodes and multiple smaller graphs with less

45

5. Data Preprocessing and Model Implementation

than 1000 nodes. All graphs with less than 1000 nodes were considered negligible and
discarded for model training.

5.5 Graph Neural Network Implementation
5.5.1 GraphGym Framework
In this thesis, the GNN was implemented using the GraphGym [39] framework, which
is built on top of PyTorch Geometric [40]. GraphGym is a platform that was designed
to enable scalable and reproducible experimentation with different GNN architectures.
Its modular design allows efficient testing of how different model configurations (e.g.,
layer numbers or activation functions) influence the target metrics. Additionally, Graph-
Gym’s standardized evaluation pipeline ensures consistent and reproducible results across
different experiments.

The specific implementation details and configuration used for this GNN can be found in
the accompanying repository.

5.5.2 Key Facts about the GNN
This section provides an overview of the key aspects and methodologies employed in the
GNN used in this study. For detailed code implementation, please refer to the GitHub
repository.2

The default configuration of the GNN is available in the Appendix A.3.1. Below, essential
information about the training is outlined:

• Data Splitting: Overall, 80% of the graphs were used for training, 10% for
validation, and 10% for testing. This split was done by random selection and was
the same for each experiment. The learning rate was dependent on the validation
results.

• Dataset Statistics:

– Number of graphs in the final dataset: 300
– Average number of nodes per graph: 279,730
– Average number of edges per graph: 1,418,394

• Loss Functions:

– Regression Task: L1 loss
– Classification Task: Cross-entropy loss

• Activation Function: ReLU (Rectified Linear Unit)
2https://github.com/maximilianvie/GNN-Based-Train-Delay-Disaggregation

46

https://github.com/maximilianvie/GNN-Based-Train-Delay-Disaggregation

5.5. Graph Neural Network Implementation

• Batch Size: A batch size of one was used due to the large size of the graphs.
Large graphs contain a significant amount of diverse data. When training on them,
independent loss values are computed at each node due to the mechanisms of
GNN. Therefore, a batch size of one in this context can capture the patterns and
variability similar to a larger batch size in other domains.

• Optimizer: Adam (Adaptive Moment Estimation) was used as an optimizer. The
learning rate was adjusted based on the performance on the validation dataset and
was reduced when the target metric no longer showed improvement.

47

CHAPTER 6
Results

This chapter aims to outline the results obtained from the final experiments. The results
are compared to a naive model to establish a baseline. The chapter is divided into
sections detailing the evaluation of the GNN model performance on a classification task,
a regression task, and the application to real-world data.

6.1 Evaluation of GNN Model Performance on Synthetic
Data

In this section, the model training and evaluation process for the synthetic data is
described. Next, the exact results of the experiments are outlined. The models are
compared to a naive model in which every delay is assumed to be a PD. Two models are
trained, a classification and a regression model:

Classification Model

In the classification model, all nodes within the graph that have a delay change of at
least 60 seconds are classified as either PD or SD. The decision to train a classification
model is based on the estimation that only around 1.85% of nodes exhibit both PD
and SD of at least 60 seconds, as outlined in Section 4.4.1. If both types of delays are
at least 60 seconds, the label is PD if PD >= SD. All delay changes lower than 60
seconds are considered insignificant and are treated as PD. This drastically reduces the
number of nodes to predict and allows the model to learn primarily from nodes with high
significance.

Regression Model

The regression model aims to predict for each delay change of at least 60 seconds the
exact amount of PD. So if a delay change of 1000 seconds consists of 800 seconds PD
and 200 seconds SD, it should predict 800. This model, therefore, follows the actual goal

49

6. Results

of the thesis of creating a disaggregation model. Nevertheless, it must be pointed out
that in most cases, PD and SD most likely appear isolated. In the regression model, all
delay changes lower than 60 seconds are considered insignificant and treated as PD to
enable the model to train on high-delay nodes.

6.1.1 Hyperparameter Tuning
Hyperparameter tuning was conducted to find a good set of parameters for the GNN. As
the design space in GNN is very large and this work aims to provide a PoC, the search
space was limited to two parameters considered essential for the network’s performance.
On a reduced dataset of 100 files, several exploratory hyperparameter tunings have been
carried out to estimate a feasible range of parameters. A final tuning was carried out for
the full dataset. This study only lists the results of this final tuning.

Similarly, several feature sets have been investigated in an exploratory phase. In the
thesis, only the results for the final feature set (see Table 5.1) are listed. Here, a reduced
set of features was chosen because, during the exploratory phase, overfitting occurred
with several attributes. This set of features might have the benefit of capturing only
the most essential information of the graph, and therefore, it might generalize better to
real-world data.

6.1.2 Classification Task
The following hyperparameter tuning grid (see Table 6.1) was defined for the classification
task, of which the values are based on exploratory experiments. The remaining parameters
were kept at default values as mentioned in the Appendix A.3.1.

Hyperparameter Search Space Rationale
Number of Layers [3, 4, 5, 6] The number of layers is highly important since

it determines how far messages can be passed.
Inner Dimension [60, 80, 100] The inner dimension defines each layer’s feature

space size and consequently directly influences
the number of parameters.

Table 6.1: Hyperparameter Tuning Grid Search

50

6.1. Evaluation of GNN Model Performance on Synthetic Data

The exact results of the hyperparameter tuning can be seen in Appendix A.3.2. To
demonstrate the stability of the GNN training, several learning curves are available in
the Appendix A.3.2. For all further experiments, the learning curves showed similar
patterns and stability and were therefore omitted.

The best-performing parameters for the classification task based on the accuracy of the
grid search are:

• Number of Layers: 6

• Inner Dimension: 100

Based on these parameters, a final model was trained. The results of the model on the
test set are compared to the naive model in Table 6.2.

Metric Best Performing Model Naive Model
Epochs 49 -
Number of Parameters 316601 -
Accuracy 0.9602 0.7820
Precision 0.9732 0.7820
Recall 0.9768 1.0000
F1 Score 0.9750 0.8773
AUC 0.9890 0.5000

Table 6.2: Test Set Results for Best Performing Classification Model and Naive Model

Figure 6.1: Receiver Operating Characteristic (ROC) Curve for Trained Model

51

6. Results

Figure 6.2: Histogram of Predicted Values

Table 6.2 shows that the classification model significantly outperforms the naive model
across all key metrics. With an accuracy of 0.9602 and a F1 Score of 0.9750, the GNN can
be considered as highly reliable. This is also underscored by the Area Under the Curve
(AUC) value of 0.9890, which shows that the model is very effective in distinguishing
between PD and SD. Figure 6.2 displays a histogram for the prediction probabilities
of the classification model, which indicates that in a majority of cases, the model is
confident in its predictions and assigns probabilities close to 0.0 and 1.0.

6.1.3 Regression Task

A hyperparameter tuning grid was determined for the regression task based on exploratory
experiments. The grid is depicted in Table 6.3.

Hyperparameter Search Space
Number of Layers [5, 7, 9]
Inner Dimension [40, 55, 70]

Table 6.3: Hyperparameter Tuning Grid Search - Regression Task

Exact metrics of the hyperparameter tuning are available in the Appendix A.3.3. The
best-performing parameters for the regression task based on the grid search are:

• Number of Layers: 5

• Inner Dimension: 40

52

6.1. Evaluation of GNN Model Performance on Synthetic Data

Table 6.4 shows the results of the regression model on the test set. The target variable
was z-normalized to optimize the model training.

Metric Best Performing Model Naive Model
Epochs 49 -
Number of Parameters 43881 -
Mean Absolute Error (MAE) 0.0450 0.3414
Mean Squared Error (MSE) 0.1478 3.5323
R-Squared (R2) 0.8558 -2.5323
Spearman’s Rank Correlation 0.8748 0.5068
Root Mean Squared Error (RMSE) 0.3845 1.8799

Table 6.4: Test Set Results for Best Performing Regression Model and Naive Model

For the z-normalized target variable, the model GNN achieved a Mean Absolute Error
(MAE) of 0.0450 and a Mean Squared Error (MSE) of 0.1478. These values indicate that,
on average, the predictions of the model deviate by 0.0450 standard deviations from the
actual values. To put the results in relation, it can be compared to the baseline model,
which shows higher errors with a MAE of 0.3414 and a MSE of 3.5323.

The R-squared (R2) value of 0.8558 shows that the GNN explains 85.58% of the variance
in the outcome variable. Another metric to look at is Spearman’s rank correlation, which
has a value of 0.8748, reflecting a robust monotonic relationship between predicted and
actual values. Concurrent with the results of the classification model, it is shown that
the model is capable of learning the difference between PD and SD, predicting the target
variable with high accuracy and outperforming the naive model.

Figure 6.3: Scatter Plot of Actual Values vs Predicted Values (Normalized and Square
Root Transformed)

53

6. Results

The predictions for the full test set are plotted against the actual values in a scatter plot
(Figure 6.3) to verify the plausibility of the results. The plot shows a clear linear trend
along the diagonal, which is what is to be expected in a good regression model. Due to
the concentration of many data points in the 0 to 0.1 range after min-max normalization,
a square root transformation was applied to better spread these values and enhance the
visibility of the trend. Despite some outliers and deviations, the plot complies with the
results in Table 6.4.

6.2 Application to Real-World Data
In this section, the two trained models are applied to real-world data and compared to
the naive model.

6.2.1 Analysis Using the Agent-Based Model

The final aim is to apply the trained models to the historical data and run inference. Here,
the problem arises that no ground truth is available for the real-world data. Therefore,
evaluating whether the models make valid predictions is not straightforward. For this
reason, the agent-based simulation model is leveraged to validate the trained models.

If it is assumed that the GNN and the agent-based simulation model work without error,
it would be possible to disaggregate real-world AGD using the GNN, feed the resulting
PD back into the agent-based simulation model, and obtain the same AGD as a result.

The mechanisms of this loop are leveraged and used for the validation of the GNN, as
displayed in Figure 6.4. It is congruent with the Problem Definition in Section 1.2.2 and
the computed error in Equation 1.3.

Due to the multi-step nature of this validation method, several sources of error, particularly
the inaccuracies inherent to the agent-based model, must be considered, as they distort
the final validation metrics. These limitations are pointed out in Section 6.2.1.

Classification Model

In the classification model, all delay changes up to 59 seconds are considered as PD. For
all delay changes of 60 seconds or higher, the GNN classifies if a delay is a PD or SD.

A delay change is taken as PD input to the agent-based model if it is classified as PD
by the GNN. Two different softmax thresholds (0.1 and 0.5) are used to evaluate the
classification model. The softmax values are the output of the classification model and
represent the probability that a node belongs to a specific class, with 1 representing PD
and 0 representing SD.

By adjusting the softmax thresholds, it can be analyzed how different threshold values
impact the classification performance.

54

6.2. Application to Real-World Data

Historical Data
Without Ground

Truth

Error Metrics

GNN Primary Delays Agent-Based
Model

Total DelaysHistorical Data
Total Delays

Figure 6.4: Simulation-Based Validation of the GNN on Real-World Data

Results

A new performance metric, the Weighted Absolute Percentage Error (WAPE) (Defini-
tion 6.2.1), is used to ensure data confidentiality. This metric is extended by splitting it
into overestimation and underestimation components (Definition 6.2.2) to better under-
stand whether WAPE arises from false positives or false negatives in the classification
model or from excessively high or low PD predictions in the regression model.

Definition 6.2.1 (Weighted Absolute Percentage Error (WAPE)). The WAPE measures
the overall prediction accuracy by calculating the sum of absolute errors as a percentage
of the sum of actual values:

WAPE =

n

i=1 |yi − ŷi|
n
i=1 |yi|

where yi is the actual value, ŷi is the predicted value, and n is the total number of
observations.

55

6. Results

Definition 6.2.2 (WAPE Overestimation and Underestimation). The WAPE Overesti-
mation measures how much the model overpredicts relative to the actual values. The
WAPE Underestimation, in contrast, quantifies the relative magnitude of underestimation
errors compared to the actual values.

If the index sets

I+ = {i ∈ {1, . . . , n} : yi < ŷi}, and I− = {i ∈ {1, . . . , n} : yi > ŷi}

are defined, then

WAPE Overestimation =

i∈I+ |yi − ŷi|
n
i=1 |yi|

and
WAPE Underestimation =

i∈I− |yi − ŷi|
n

i=1 |yi| .

Table 6.5 shows a comparison of the different models applied to the real-world data.

Model Metric Value

Classification Model (Threshold 0.1)

R2 0.70
WAPE 43.95%

WAPE Overestimation 22.92%
WAPE Underestimation 21.02%

Classification Model (Threshold 0.5)

R2 0.57
WAPE 50.35%

WAPE Overestimation 18.80%
WAPE Underestimation 31.55%

Regression Model

R2 0.44
WAPE 58.66%

WAPE Overestimation 17.64%
WAPE Underestimation 41.01%

Naive Model

R2 0.86
WAPE 33.17%

WAPE Overestimation 30.19%
WAPE Underestimation 2.99%

Table 6.5: Comparison of Models on Real-World Data

As seen in Table 6.5, the naive model outperforms all other models on most metrics.
However, it is inferior to the other models in terms of WAPE Overestimation.

The classification models outperform the regression model in all metrics except WAPE
Overestimation. Among them, the model with a softmax threshold of 0.1 performs better
regarding the R2 and overall WAPE.

56

6.2. Application to Real-World Data

Limitations of the Simulation-Based Validation

Several limitations arise when using this validation approach due to its multiple steps.
The first limitation is that errors within the agent-based model also influence the final
result, distorting the evaluation metrics.

The second limitation is the occurrence of model-based error distortions. In the simulation-
based validation method, errors in the predictions of the GNN are not weighted equally
in the final evaluation metric. Misclassifications influence the delays of other trains
differently, depending on factors such as time and location. For example, a delay
misclassified as a SD by the classification model would not be sampled in the simulation-
based validation due to its classification. Consequently, all knock-on delays that would
occur if it were correctly classified will not exist. As the error metrics are computed for
the AGD, the absence of these resulting knock-on delays would further increase the error.
This results in high-impact misclassifications having a much greater influence on the
error metrics than low-impact misclassifications. A high-impact misclassification could
be a sudden 30-minute delay during rush hour on a high-frequency route. In contrast,
a low-impact misclassification could be a 30-minute delay at night. While these two
misclassifications would be weighted equally in a classical ground truth validation, the
weight might differ significantly in the simulation-based validation.

57

CHAPTER 7
Discussion

The results chapter showed that the GNN perform well on the synthetic data but struggle
with generalizing to the real-world data. This discussion aims to find the underlying
reasons for that discrepancy. The goal is to explore why the models have a drop in
performance when being applied to the historical data and what improvements can be
implemented to enhance their ability to generalize on real-world scenarios.

First, the results obtained from the synthetic data will be summarized and evaluated.
Following this, an in-depth analysis of the model’s results on real-world data will be
conducted. The limitations of the research will also be addressed, which include data
constraints, methodological assumptions, and model-specific challenges.

Additionally, the implications of the findings for the railway sector will be examined with
a focus on how GNN can be utilized to address challenges within train networks. Finally,
several directions for future research will be proposed.

7.1 Result Analysis
7.1.1 Summary of GNN Results for Synthetic Data
Chapter 6 provided results on the experiments on the synthetic data and the real-world
data using the simulation-based validation approach.

The results on the synthetic data (Section 6.1) can be considered very promising, as
they show that the overall proposed architecture within this work is capable of learning
delay propagation mechanisms within train networks. They also point out that these
networks can disaggregate AGD into PD and SD efficiently. This is a valuable finding as
no literature was found where GNN were used to tackle this problem. It was shown that
the task can successfully be formulated and described as a regression and a classification
problem.

59

7. Discussion

The classification score of 96% accuracy can be considered very accurate. The high
precision and recall values show that the model is reliable and that the model captures a
majority of positive cases and classifies them correctly.

The results of the regression model also show promising outcomes. The z-normalized MAE
of 0.0450 indicates that, on average, the model’s predictions are only 0.0450 standard
deviations from the actual values. This can be interpreted as accurate, especially when
relating it to the inferior naive model. The effectiveness of the model is also apparent by
the R2 value, which shows that 85.58% of the variance in the target variable is explained
by the model.

The models outperform the naive model in regression and classification scenarios.

Based on the results of the synthetic data, it can be concluded that the proposed
architecture is capable of learning delay propagation patterns within train networks. This
implies that GNN is a suitable method for a range of delay-related tasks.

7.1.2 Analysis of GNN Results for Real-World Data
Within this section, the results of the GNN experiments on real-world data are analyzed.

The experiments (Section 6.2) show, that the naive model outperforms all GNN when
applied to real-world data. The naive model performs surprisingly well on the real-world
data. This indicates a very high amount of PD in the ground truth, which would be in
line with the PD approximation in Section 4.4.1.

Analysis of Classification Model Results

To get a better understanding of the classification model, the softmax predictions are
analyzed.

In Figure 7.1, it can be observed that the model is, for most values, confident regarding
its predictions, meaning having softmax values close to 0 or 1.

More insight can be gained by varying the classification threshold for the softmax values,
which influences the PD to SD ratio. Table 7.1 shows for three different threshold values
the resulting PD to SD ratios. The overall ratio is around 80:20, which is precisely the
ratio in the synthetic training data. This strongly indicates that the GNN overfit to
the synthetic data, particularly when considering the ratio estimation (Section 4.4.1)
suggesting a potential PD share of around 94% in the ground truth - a figure that, while
informative, should be interpreted cautiously.

The table also shows that the share of PD is higher for freight trains compared to
passenger trains. It can be expected that, in reality, it is the opposite since freight trains
have a lower operational priority compared to passenger trains and, therefore, might
experience more frequently SD.

Next, it is analyzed how the predicted PD and SD are distributed across sequence
numbers. Before plotting the data, the results were filtered by threshold values. All

60

7.1. Result Analysis

Figure 7.1: Distribution of Predicted Values (All Trains, Log Scale)

Softmax
Threshold

All Trains Freight Trains Passenger Trains
Primary
Delay

Secondary
Delay

Primary
Delay

Secondary
Delay

Primary
Delay

Secondary
Delay

0.1 0.84 0.16 0.97 0.03 0.75 0.25
0.5 0.80 0.20 0.95 0.05 0.71 0.29
0.9 0.71 0.29 0.81 0.19 0.65 0.35

Table 7.1: Primary and Secondary Delay Ratios at Different Thresholds

values lower than 0.05 count as SD, and all values higher than 0.95 as PD. The filtered
datasets were then plotted as histograms with the sequence numbers on the x-axis. This
type of plot explains which sequence number the model usually classifies a delay change
as either PD or SD. Figure 7.2 displays the described histogram for all threshold values
lower than 0.05, so the defined SD. Although the y-axis is log-scaled, it can be seen that
SD primarily occurs at the first sequence.

Figure 7.3 shows the same type of histogram for threshold values higher than 0.95, so
PD. Here, the pattern is different. The values are more equally distributed but also show
a peak at the beginning. The start peak might also be caused by overall more frequent
delay changes at the start and, therefore, more nodes to classify. The observed downward
trend with rising sequence numbers can be explained by the fact that some train trips
are short and, therefore, only have a small number of sequence numbers.

61

7. Discussion

Figure 7.2: Distribution of ypred Values < 0.05 Across Sequence Numbers

Figure 7.3: Distribution of ypred Values > 0.95 Across Sequence Numbers

Analysis of Regression Model Results

In this section, the results of the regression model are analyzed. Figure 7.4 shows the
predicted PD against the sequence numbers. Here, it can be seen that the model generally
predicts higher values for the first sequence.

Figure 7.5 shows the predicted values against delay changes. The plot visualizes a
horizontal pattern at y = 0 and a diagonal pattern. These patterns show that the model
predicts either a value with approximately the delay change value or zero. This is in line
with what is expected, as in a majority of cases, the data includes either PD or SD. Only

62

7.1. Result Analysis

very few cases are a mix of both. As discussed in Section 4.4.1, it was estimated that in
less than 1.85% of cases, both PD and SD occur simultaneously.

Figure 7.4: Regression Model - Predicted Values vs. Sequence Numbers

Figure 7.5: Regression Model - Predicted Values vs. Delay Changes

7.1.3 Conclusion of Result Analysis

The analysis of the GNN results for both synthetic and real-world data reveals a significant
finding: the primary reason for the poor performance of the GNN on the real-world data
is most probably overfitting of the models to the synthetic data. While the proposed
architecture demonstrated high accuracy and predictive capability on the synthetic
dataset, with a classification accuracy of 96% and a R2 value of 0.8558 for regression,
these results did not translate effectively to real-world data. The naive model performed
better than the GNN on the real-world dataset, indicating that the GNN may have learned
patterns from the synthetic data that do not generalize well to real-world scenarios.

63

7. Discussion

In addition, the distribution of the ratios of PD and SD in the results of the real-world
data reflect the 80:20 ratio of the synthetic data and not the estimated real ratio of about
94% PD. This discrepancy strongly suggests that the GNN have adapted too much to the
synthetic data and have learned their specific patterns rather than generalizable patterns.

Furthermore, the results show that the proportion of PD for freight trains is higher than
for passenger trains, which seems unlikely since passenger trains have higher operational
priorities. This finding indicates that the model learns patterns and ratios specific to the
synthetic data and, as a result, supports the hypothesis of overfitting.

It is important to note that inaccuracies inherent in the agent-based model inevitably
distort the performance metrics of the GNN when applied to real-world data. Given that
the agent-based model is not a perfect representation of reality (see Section 7.4.4), the
results of the simulation-based validation approach must be interpreted with caution.

7.2 Answering the Research Questions
Drawing from the findings in the previous chapters, the research questions can be
answered.

7.2.1 Research Question 1
From what distributions should PD be sampled, and what parameters should be used to
calibrate the agent-based train simulation model to reflect real-world delay distributions?

Based on several assumptions and a defined methodology, synthetic data was generated.
The exact methodology and results are listed in Chapter 4. A notable finding was that
the delay changes in the real-world data follow a Pareto distribution.

Several metrics have been defined to evaluate the similarity between the generated and
the real-world data. Based on these metrics and plausibility analyses, the synthetic
data shows a similar structure to that of the historical data. However, as discussed in
Section 7.1, the GNN overfits the synthetic data and, as a consequence, fails to generalize
well to the real-world data. This indicates that the generated data is too dissimilar to the
real-world data to be used as a single source for model training. Therefore, the question
can be answered as follows: A range of parameters and distributions are suggested as
described in Chapter 4. Using the proposed setup for the calibration brings the data
close to the real-world scenario. Nevertheless, it’s still insufficient as a single source
for the training of GNN and, therefore, should be used with caution, awareness of the
limitations, and optimally should be further refined.

7.2.2 Research Question 2
How effective are GNN in disaggregating train delays into PD and SD components for
synthetic train delay data generated with the agent-based train simulation model?

64

7.3. Contributions to the Railway Domain

The results in Section 6.1 and the Discussion 7.1.1 show that the GNN is highly effective
in disaggregating train delays into PD and SD components for synthetic train delay data.

7.2.3 Research Question 3

How well does the GNN, trained on the synthetic data, generalize to real-world data for
the task of discerning train delays into PD and SD?

The trained GNN have difficulties generalizing to the real-world data and are inferior to
the naive model. The exact performance is visible in Section 6.2. In the Discussion 7.1,
it is elaborated that the primary reason for the poor performance is most probably
overfitting to the synthetic data.

7.3 Contributions to the Railway Domain
To this point, GNN is a rather underutilized method within the railway domain, as
shown in the literature review (Section 2.5.1). This is surprising since train networks
can efficiently be represented as graphs, which allows the formulation of a range of
train-related problems as GNN tasks.

This research extends the current corpus of research of GNN in the railway domain. It is
unique in several aspects:

Novel Approach for Disaggregating Train Delays

Within this research, another example is shown of how GNN can be leveraged to solve
train delay-related tasks. No other publications have been found so far where GNN were
used for the disaggregation of AGD into PD and SD.

Working on Large Scale Railway Networks

What is also unique about this research is the application of GNN on large network graphs,
with an average of approximately 280,000 nodes and 1,400,000 edges. In a majority of
publications where GNN were applied to train networks (Section 2.5.1), the models were
trained on comparably small graphs. This research demonstrates the feasibility of using
GNN on large-scale railway networks.

Graph Design and Model Architecture

In the methodology, a graph design was proposed, which was shown to be efficient in
translating sequential railway data into a graph structure.

Here, the introduction of supernodes was pivotal since this type of node greatly reduces
the number of hops needed to travel from one node to another node.

65

7. Discussion

To this point, no publications have been found that use GatedGCN within the railway
domain. This work shows that this specific architecture is functional in capturing the
long-range dependencies in the existing graphs.

Summing up, it was shown that the proposed graph design combined with supernodes and
GatedGCN is an effective mix of methods to solve train delay propagation problems. This
combination enabled the circumvention of difficulties arising from the long-range depen-
dencies in the networks. Hence, those architectural design choices can be recommended
for delay management problems.

Conclusion on the Use of Graph Neural Networks in Railway-Related Tasks

From the results on the synthetic data (Section 6.1) it can be derived that GNN are
highly suitable for a range of tasks in the railway domain since they seem to be capable
of efficiently capturing relevant propagation patterns within the networks. So they could
equivalently be used for tasks like, e.g., delay prediction. Since, in this case, a large
number of labeled data is available, it can be expected that well-performing models can
be trained. Nevertheless, it has to be recognized that the model failed to generalize from
the synthetic data to real-world scenarios. Therefore, at this point, it is recommended to
apply GNN in the railway domain to tasks where labeled data is available. For cases
where no labeled data is available, there should be a strong focus on strategies to improve
OOD performance of the GNN.

7.4 Limitations
This section points out the limitations of the applied method and results. It gives an idea
of where improvements can be made in future studies and, therefore, builds the bridge to
future research.

7.4.1 Data Limitations
Lack of Data

First, it has to be mentioned that this whole study is based on a single day of train delay
data. Train delays will show different patterns throughout different days, weeks, months,
or whole seasons. Therefore, to build a robust model, a much greater amount of data is
of great importance. This would enable thorough data analysis and more sophisticated
data sampling, consequently leading to a more representative data set. Also, the lack
of data brings the limitation that the model is tested on the real-world data based on
which the synthetic data was sampled. Therefore, the model is biased as it indirectly
gets information about the test data. The model should optimally be tested on another
independent dataset.

It can be concluded that a larger dataset is inevitable to train a reliable and applicable
model for the use in real-world scenarios.

66

7.4. Limitations

Lack of Ground Truth

Another limitation of this study is the lack of actual ground truth. Due to the lack of
ground truth, the model has to be trained on synthetic data, which adds multiple sources
of error to the training process. Furthermore, the lack of ground truth does not allow
straightforward validation, which is why a simulation-based validation was used. Labeled
data would allow to train a more precise model and validate it more robustly.

7.4.2 Methodological Assumptions
As described in Section 4.2.2 the data generation is based on several assumptions:

Assumption 1: The distribution of the PD follows the distribution of the delay changes
in the historical data.

Assumption 2: The frequencies of PD occurrences and the distributions of PD durations
are assumed to be independent of both location and time.

Assumption 3: Frequencies of PD occurrences and the distributions of PD durations
are considered independent of OCP type.

These assumptions were established to reduce complexity while still capturing the most
important aspects of the data. It is not known if Assumption 1 holds. Consequently, it
would be important to investigate this issue more deeply.

Assumptions 2 and 3 were introduced for simplification of the sampling, it can be expected
that in real-world scenarios frequencies of PD occurrences and the distributions of PD
duration are spatially, temporally, and OCP-type dependent. Due to the data limitations,
it was also reasonable to make these assumptions, as more data would be needed to find
robust patterns within the data.

It can be expected that more fine-grained data sampling would lead to more realistic
data and consequently would enable the training of a more accurate model.

7.4.3 Training of the GNN and Graph Design
As this work is a PoC and the goal was not to train a maximally optimized but a functional
model, neither feature selection nor hyperparameter tuning are exhaustive. Both are
based on exploratory experiments on small grids combined with different rationales for
choosing specific hyperparameters and features. Here, there is room for improvement.

Furthermore, it has to be mentioned that there will be possible improvements in how
the graph was designed. There is a wide range of possibilities for designing a graph of
railway data. In this work, the approach described in Section 5.4 was used to convert
the sequential railway data into a graph. Some design choices were somewhat arbitrary,
such as the choice to connect two trains if they visited a station within 180 seconds. A

67

7. Discussion

few higher values were tested against this value in an exploratory phase, and the results
did not differ significantly. Nevertheless, it has to be pointed out that there might also
be room for performance improvements through changes in the graph design choices.

7.4.4 Limitations of the Agent-Based Model
It has to be mentioned that all limitations that are inherent to the agent-based model
influence the data generation and consequently also the GNN. A significant limitation of
the agent-based model is the inability to sample early departures. To accurately simulate
real-world railway scenarios, it is important to give trains the ability to depart earlier
than expected, as this happens especially for many freight trains. Another limitation is
that the agent-based model processes events instantaneously, meaning that as soon as a
section between two stations becomes free, it is immediately occupied by the next waiting
train. This approach does not account for the time needed for signal changes, acceleration,
or other operational delays, which are crucial in real-world scenarios. Another limitation
of the agent-based model was discovered in the sensitivity analysis (Section A.1). It was
shown that the agent-based model does not reproduce the expected SD at the start of
train journeys. Here, the reasons can be either model or data-related.

7.5 Future Research Directions
Based on the findings and the limitations of this work, several areas of improvement can
be suggested for future research.

7.5.1 Larger Dataset
A larger dataset of multiple days of train records is necessary to build a robust and
reliable model, as it would give a more representative understanding of how train delay
distributions are spread throughout a year. Distributions can differ significantly due to
factors like train schedules, seasons, or weather on a given day. A larger dataset is also
needed to test the model on data that is independent of the trained model.

It would be optimal to gather labeled data. A few labeled data samples would enable a
more robust validation of the model, as this part of the data could be used as a test set.
A large labeled dataset would make the agent-based model potentially redundant or at
least enable it to generate more representative data.

7.5.2 Improve Calibration of the Agent-Based Model
Despite the thorough calibration (Chapter 4) of the agent-based model, the GNN failed to
generalize to the real-world data as described in the discussion of the results (Section 7.1).
This shows that the synthetic data is too dissimilar to the real-world data to be used as a
single source of training data. Therefore, the calibration of the model has to be improved.
It is suggested that the assumptions in Section 4.2.2 are reviewed and tested. Next, it is

68

7.5. Future Research Directions

advised to do a more fine-grained model calibration. Here, there should also be a focus
on aiming to have the same ratio of PD to SD in the created data as approximated in
Section 4.4.1. It would be optimal to include domain experts from the OEBB and the
creators of the agent-based model in the calibration process to get closer to real-world
scenarios.

7.5.3 Improvements of the Agent-Based Model
The GNN trained will only be as good as the data it is trained with. As described in the
limitations before, constraints within the agent-based model will also be inherited by the
GNN.

Therefore, improvements within the agent-based model would also boost the performance
of the GNN on the real-world data.

A substantial improvement would be the possibility of enabling early departures. This
would allow a more accurate calibration of the model. In the plausibility analysis
(Section 4.4), it can be seen that the most considerable discrepancies between the
synthetic and the real-world data are in the area of negative delay changes, which might
be related to this limitation.

The sensitivity analysis in Section A.1 also unfolded limitations in the model, which
should be resolved.

7.5.4 Additional Areas for Improvement
In Table 7.2, additional areas and ideas for improvement of the performance are suggested.

69

7. Discussion

Research Area Description and Expected Gains
Improving Generalization Capabili-
ties

It is recommended to focus on improving
the OOD performance through enhancing
the generalization capabilities of the GNN.
The literature suggests several methods for
this, as discussed in the literature review
(see Chapter 2). A data-based approach
could be a diversification of the synthetic
data, e.g., sampling data with a PD share
above and below the estimated share of
PD in the estimation, to learn more gen-
eral delay propagation patterns.

Unsupervised Learning Another approach to improve performance
would be to gather extensive real-world
data and pre-train a GNN using the unla-
beled data. This could be achieved by a
self-supervised pre-training method such
as masked feature prediction (e.g. letting
the model predict masked delays at ran-
dom nodes). The pre-trained model could
then be fine-tuned with (synthetic) labeled
data. This option would allow the GNN
to learn delay propagation patterns first
from real-world data and subsequently be
fine-tuned with synthetic data to learn the
actual disaggregation task.

Explainable Artificial Intelligence Understanding how decisions are made
within a neural network is pivotal for im-
proving architectures, training, and per-
formance in the long run. Therefore, XAI
is an area that also should get great at-
tention. In comparison to other GNN
architectures GatedGCN allow to get a
deeper insight into how decisions are made
through their gating mechanism. Lever-
aging this mechanism can uncover which
edges or nodes influence predictions most.
Through XAI, it can also be estimated
how important the various features are.
To improve on the model and get a better
understanding of how decisions are made,
it is highly recommended to also focus
on XAI. [14] offers a valuable reference,
demonstrating an approach to explaining
delay propagation processes using XAI.

Table 7.2: Future Research Directions

70

CHAPTER 8
Conclusion

8.1 Recap of Research Objectives and Questions
The aim of this thesis was to address the challenge of developing a model that is able
to disaggregate AGD into PD and SD. The primary objectives were parameterizing an
agent-based simulation model of the Austrian Railway Network, training and evaluating
a GNN using synthetically generated data, and finally applying the deep learning model
to real-world data to assess its ability to generalize.

8.2 Summary of Key Findings
In the research, despite the lack of ground truth and labeled data, estimates for PD
share within the real-world data were approximated. Several distributions were identified
and parameterized to sample PD that mimic real-world delay patterns. Using these
distributions, the agent-based model was calibrated to create synthetic data that aims to
represent real-world railway delay data. The GNN was trained on this generated, where
it demonstrated high performance, clearly outperforming the baseline model. The GNN
failed to hold these metrics when applied to real-world data, indicating overfitting to the
synthetic data and, therefore, the inability to generalize well to OOD.

8.3 Contributions to the Field

1. Novel Approach to Solve the Disaggregation of Train Delays: There is little
research so far on the problem of discerning AGD into its PD and SD components.
The proposed method to use a GNN for this task offers a novel approach.

2. Innovative Graph Design and Model Architecture: In the research a graph
design is proposed, that offers an effective way to represent sequential railway data

71

8. Conclusion

as a graph. Supernodes are utilized combined with GatedGCN to capture long-
range dependencies within the railway network. It is shown that the combination
of these design choices enables efficient learning of delay propagation within train
networks.

3. Application to Large-Scale Railway Networks: The study successfully scales
the application of GNN to large-scale railway networks. The size of the graphs
averages around 280,000 nodes and 1,400,000 edges. It is shown, that GNN can
efficiently handle the size of these graphs and make reliable predictions. This is
crucial as real-world scenarios are often characterized by large-scale networks.

8.4 Limitations of the Study

1. Data Constraints: The research was conducted using only a single day of train
delay data. Delays fluctuate based on a variety of factors like seasons, weather,
or current timetable, which makes it indispensable to acquire more data for more
robust models that generalize well. The data limitation did restrict the possibility
of creating realistic data. It also did not allow the testing of the model on an
independent real-world dataset.

2. Simplifying Assumptions: The study made several assumptions that do not
fully encapsulate real-world complexities. One example is the independence of
PD occurrence frequencies from location and time. To improve the model, these
assumptions should be revisited and refined in subsequent research.

3. Model Constraints: All limitations of the agent-based model are also represented
in the data and subsequently in the GNN. The agent-based model also builds on
simplifying assumptions which lead to patterns different to real-world scenarios.
Therefore, further model enhancements are necessary to improve the quality and
realism of synthetic data.

8.5 Recommendations for Future Research
Based on the findings, several future research directions are proposed to address the
limitations:

1. Incorporating Larger Datasets: It would be important to get access to larger
datasets, as this would enable a better understanding of delay patterns within the
train network. Apart from that, a larger dataset would allow more robust testing.

2. Refining the Agent-Based Model: Enhancing the functionality of the agent-
based model to more closely resemble real-world scenarios would enable the creation
of more realistic data. This, in turn, is expected to improve the performance of the

72

8.6. Final Thoughts

GNN on real-world data. Furthermore, the calibration method of the agent-based
model should be improved, as at this point, the synthetic data proved to be too
dissimilar to the real-world data to be used as a single data source for the GNN.

3. Improve Out-of-Distribution Performance of GNN: A goal should be to
thoroughly work on enhancing the GNN generalization capabilities, as this was
the primary weakness of the model in this study. While the model worked well
on the synthetic data, it had difficulties generalizing to the real-world data. Im-
proved generalization can be achieved through methods like data augmentation or
architectural modifications of the GNN.

8.6 Final Thoughts
Through the creation of a model that can separate AGD of synthetic data into PD and
SD, this study marks a substantial development in train delay management. It shows the
complexities of applying cutting-edge machine learning techniques in real-world settings,
as the models demonstrated strong performance on the generated data but were unable to
generalize well to real-world settings. Nevertheless, this work offers valuable information
for researchers in the railway domain and establishes ideas for future research, especially
in the area of train delay disaggregation. The integration of deep learning models, such
as GNN, will be crucial for providing reliable services as they give the opportunity to
better understand and predict delay patterns in railway networks.

73

APPENDIX A
Supplementary Materials

A.1 Sensitivity Analysis
As observed in the data exploration (Section 4.1), freight and passenger trains exhibit
different distributions and occurrence frequencies of delay changes at the start of the trip
compared to the rest of the journey.

Based on expert opinion, it is hypothesized that a majority of those delays are SD since
they typically occur due to delayed resources. Consequently, it is of great interest to
test if the agent-based model produces those initial (train_unique_sequence = 1)
delays, which would indicate the model is a good representation of the real world. To
investigate this, an experiment was designed where all parameters except one were set to
zero. More precisely, it was tested how raising either the probability of PD occurrence
for train_unique_sequence! = 1 for freight trains or passenger trains affected the
initial delays of the two categories. Experiments were conducted for each parameter
using two different seeds, and the results were averaged. The PD were sampled from the
Pareto distributions estimated in Section 4.2.3.

In each graph, a horizontal dashed line is shown, which shows the probability in the real-
world data that delay_change >= 5 minutes occurred at train_unique_sequence =
1. The vertical dotted line shows the upper boundary approximated as described in
Section 4.2.4. The graph line shows the percentage of trains with a delay_change >= 5
minutes at train_unique_sequence = 1 for the simulation for different input delay
occurrence probabilities.

The graph’s boundary and historical values were altered to ensure data anonymity.
However, the patterns and relations in the diagrams remained the same. Assuming that
delays at train_unique_sequence = 1 are only SD, then the sum of the y-values
at the intercepts of the blue line and the vertical upper boundary in the two passenger
train plots (Figure A.1 and Figure A.2) should ideally match or exceed the historical

75

A. Supplementary Materials

value indicated by the horizontal dashed line. The same expectation applies to the
two freight train plots (Figure A.3 and Figure A.4). The results suggest that while the
model’s output for passenger trains comes closer to this expected sum, it still slightly
undershoots the historical value. The model does not reach the expected SD for freight
trains. Figure A.4 shows that passenger train delays have close to no effect on the initial
delays of freight trains in the simulation.
Initial Passenger Delays

Figure A.1: Sensitivity Analysis of Passenger Train Delays for Increasing Freight Train
Parameter

76

A.1. Sensitivity Analysis

Figure A.2: Sensitivity Analysis of Passenger Train Delays for Increasing Passenger Train
Parameter

Initial Freight Delays

Figure A.3: Sensitivity Analysis of Freight Train Delays for Increasing Freight Train
Parameter

77

A. Supplementary Materials

Figure A.4: Sensitivity Analysis of Freight Train Delays for Increasing Passenger Train
Parameter

78

A.2. Feature Evaluation

A.2 Feature Evaluation

Feature Feature Type Description
operator_class categorical Represents the type of traction unit class.
reference_number categorical Represents an Identifier.
uic_number categorical International unique identifier for wagons.
order_number categorical Represents an Identifier.
train_number categorical Unique identifier for each train.
category categorical Type of train service.
passenger bool Indicates if carrying passengers.
freight bool Indicates if carrying freight.
trainpart_weight int Weight of the train part in kg.
trainpart_length int Length of the train part in meters.
trainpart_speed int Train part speed in km/h.
number_of_traction_units int Number of traction units.
db640_code categorical Identification code for the operating points.
latitude continuous Geographic latitude of operating point.
longitude continuous Geographic longitude of operating point.
trainpart_id categorical Unique identifier for a train part.
sequence_number int Position in a sequence for the same train-

part_id. If the train_number stays the same,
but the trainpart_id changes at a station,
the sequence_number will start counting at 1
again.

ocp_type categorical Indicates if a train stopped or passed an OCP.
scheduled_arrival cyclic Scheduled arrival time.
scheduled_departure cyclic Scheduled departure time.
arrival cyclic Actual arrival time.
departure cyclic Actual departure time.
arrival_delay_in_seconds continuous Arrival delay in seconds.
departure_delay_in_seconds continuous Departure delay in seconds.
remarks string Additional notes.
export_date continuous Data export date.
primary_delay continuous Primary delay.
task_id categorical Specific task identifier from agent-based

model.
sectionID categorical Specific section identifier from agent-based

model.

Table A.1: Summary of Raw Features with Descriptions

79

A. Supplementary Materials

Excluded Feature Rationale for Exclusion
reference_number Identifier with no predictive relevance.
uic_number Identifier with no predictive relevance.
order_number Identifier with no predictive relevance.
freight Redundant, given binary encoding with ‘Passenger‘
Sequence_Number Will be replaced by sequence for each train instead of trainpart.
Remarks
export_date Metadata not relevant to the predictive model.
task_id Task-specific identifier within the agent-based model not contributing to

prediction.
sectionID Section identifier within the agent-based model do not contribute to

prediction.
scheduled_arrival Redundant, can be derived from arrival and arrival delay.
scheduled_departure Redundant can be derived from departure and departure delay.
db640_code Redundant as the location is already encoded through longitude and

latitude.
trainpart_id Identifier with no predictive relevance.

Table A.2: Summary of Excluded Features and Rationale

Retained Feature Rationale for Inclusion
operator_class Represents the type of traction unit class, which might

affect delays.
passenger A binary indicator of whether the train is a passenger

(true) or freight train (false). Highly relevant for predic-
tions.

category The category of the train (e.g., regional train, express,
long distance) potentially having relevance for predictions
due to different prioritization.

latitude Geographic information is crucial for understanding spa-
tial patterns in train operations.

longitude Complements latitude.
ocp_type Has the value stop if a train stops at an operational point;

otherwise, it has the value pass. Crucial for predictions.
arrival Actual arrival time of a train.
departure Actual departure time of the train.
arrival_delay_in_seconds High predictive power.
departure_delay_in_seconds High predictive power.
trainpart_weight Might have some predictive power regarding to correla-

tion analysis.

Table A.3: Filtered Features for GNN and their Rationale

80

A.3. Hyperparameter Tuning

A.3 Hyperparameter Tuning
A.3.1 Default Parameters
metric_best: mae #accuracy
metric_agg: argmin #argmax
dataset:
task: node
task_type: regression # classification
node_encoder: False
edge_encoder: True
edge_encoder_name: DummyEdge

train:
batch_size: 1

model:
emb_dim_category: 3
emb_dim_operator_class: 3
num_operator_classes: 62
num_categories: 32
loss_fun: l1 #cross_entropy

gnn:
head: inductive_node
layers_pre_mp: 1
layers_mp: 6
layers_post_mp: 2
dim_inner: 40
layer_type: gatedgcnconv
act: relu
residual: True
dropout: 0.1
agg: sum
normalize_adj: False

optim:
optimizer: adam
weight_decay: 1e-6
base_lr: 0.01
scheduler: reduce_on_plateau
reduce_factor: 0.5
schedule_patience: 2
min_lr: 1e-5
max_epoch: 20

81

A. Supplementary Materials

A.3.2 Hyperparameter Tuning Classification
A selection of plots (Figure A.5, Figure A.6 and Figure A.7) of the hyperparameter
tuning is shown to give an overview of the influence of hyperparameters on the target
variables. The plots of the validation dataset are omitted since they are highly similar to
the test set. Also, a Table A.4 of the best ten hyperparameter results is shown.

layers dim_inner params accuracy precision recall f1 auc
6 100 316601.0 0.9599 0.9736 0.9761 0.9748 0.9888
5 100 265701.0 0.9582 0.9731 0.9744 0.9737 0.9880
6 80 203681.0 0.9579 0.9708 0.9764 0.9736 0.9878
5 80 170961.0 0.9566 0.9706 0.9749 0.9728 0.9870
6 60 115561.0 0.9555 0.9689 0.9754 0.9721 0.9865
4 100 214801.0 0.9541 0.9687 0.9737 0.9712 0.9858
5 60 97021.0 0.9536 0.9667 0.9752 0.9709 0.9853
3 80 105521.0 0.9448 0.9594 0.9717 0.9655 0.9795
3 100 163901.0 0.9456 0.9624 0.9694 0.9659 0.9805
3 60 59941.0 0.9415 0.9560 0.9710 0.9635 0.9769

Table A.4: Best Hyperparameter Tuning Results for Classification

82

A.3. Hyperparameter Tuning

(a) Training Accuracy

(b) Test Accuracy

Figure A.5: Hyperparameter Tuning Results for the Classification Task (Part 1/3)

83

A. Supplementary Materials

(a) Training F1 Score

(b) Test F1 Score

Figure A.6: Hyperparameter Tuning Results for the Classification Task (Part 2/3)

84

A.3. Hyperparameter Tuning

(a) Training Loss

(b) Test Loss

Figure A.7: Hyperparameter Tuning Results for the Classification Task (Part 3/3)

85

A. Supplementary Materials

A.3.3 Hyperparameter Tuning Regression

layers dim_inner mae mse r2 spearmanr params
5 40 0.04316 0.15086 0.85278 0.87187 43881.0
5 55 0.04453 0.14804 0.85554 0.8736 81786.0
5 70 0.04467 0.14416 0.85932 0.88619 131391.0
9 55 0.04466 0.15992 0.84395 0.8681 144266.0
9 70 0.04488 0.14794 0.85564 0.88238 231911.0
7 55 0.04556 0.15273 0.85096 0.87234 113026.0
7 70 0.04752 0.14156 0.86186 0.87915 181651.0
7 40 0.04891 0.15379 0.84993 0.86925 60601.0
9 40 0.05013 0.19556 0.80917 0.87499 77321.0

Table A.5: Best Hyperparameter Tuning Results for Regression

A.3.4 Classification Task - Final Model

Metric Train Set Validation Set Test Set
Epochs 49 49 49
Accuracy 0.95767 0.96005 0.96016
Precision 0.97112 0.97269 0.9732
Recall 0.97529 0.97728 0.97678
F1 Score 0.9732 0.97498 0.97499
AUC 0.98848 0.98916 0.989
Number of Parameters 316601 316601 316601

Table A.6: Results for Final Classification Model

A.3.5 Regression Task - Final Model

Metric Test Set Validation Set Train Set
Epochs 49 49 49
Number of Parameters 43881 43881 43881
Mean Absolute Error (MAE) 0.045 0.04629 0.04719
Mean Squared Error (MSE) 0.1478 0.15162 0.16853
R-Squared (R2) 0.85577 0.84509 0.83147
Spearman’s Rank Correlation 0.87477 0.8745 0.848
Root Mean Squared Error (RMSE) 0.38445 0.38939 0.41052

Table A.7: Results for Final Regression Model

86

A.4. Overview of Tools Used

A.4 Overview of Tools Used
I declare that I used the generative AI tool ChatGPT (Version GPT-4o) in this thesis,
but only to improve the writing style and grammar. All the research, analysis, and
content were done by me. The AI was only used to refine the language of text I had
already written without changing the content or relying on information from the AI.

87

List of Figures

4.1 Distribution of Arrival Records for Passenger Trains 20
4.2 Distribution of Arrival Records for Freight Trains 20
4.3 Normalized Passenger Train Arrival Delay Durations 21
4.4 Normalized Freight Train Arrival Delay Durations 22
4.5 Distribution of Delay Changes for Passenger Trains 23
4.6 Distribution of Delay Changes for Freight Trains 23
4.7 Pareto Fit for Passenger Train Start . 27
4.8 Pareto fit for Passenger Train Journey . 27
4.9 Pareto Fit for Freight Train Start . 28
4.10 Pareto Fit for Freight Train Journey . 29
4.11 Distribution Comparison for Delay Changes of Passenger and Freight Trains 33
4.12 Comparison of Negative Delay Changes between Real-World and Synthetic

Data . 34
4.13 Distribution Comparisons for Delay Changes in Different Time Windows . 35
4.14 Departure Delay Distributions Compared to Historical Data. 35

5.1 Graph Structure of a Single Train . 45
5.2 Graph Structure of Two Trains Visiting the Same Station in a Certain Time-

frame . 45

6.1 Receiver Operating Characteristic (ROC) Curve for Trained Model 51
6.2 Histogram of Predicted Values . 52
6.3 Scatter Plot of Actual Values vs Predicted Values (Normalized and Square

Root Transformed) . 53
6.4 Simulation-Based Validation of the GNN on Real-World Data 55

7.1 Distribution of Predicted Values (All Trains, Log Scale) 61
7.2 Distribution of ypred Values < 0.05 Across Sequence Numbers 62
7.3 Distribution of ypred Values > 0.95 Across Sequence Numbers 62
7.4 Regression Model - Predicted Values vs. Sequence Numbers 63
7.5 Regression Model - Predicted Values vs. Delay Changes 63

A.1 Sensitivity Analysis of Passenger Train Delays for Increasing Freight Train
Parameter . 76

89

A.2 Sensitivity Analysis of Passenger Train Delays for Increasing Passenger Train
Parameter . 77

A.3 Sensitivity Analysis of Freight Train Delays for Increasing Freight Train
Parameter . 77

A.4 Sensitivity Analysis of Freight Train Delays for Increasing Passenger Train
Parameter . 78

A.5 Hyperparameter Tuning Results for the Classification Task (Part 1/3) . . 83
A.6 Hyperparameter Tuning Results for the Classification Task (Part 2/3) . . 84
A.7 Hyperparameter Tuning Results for the Classification Task (Part 3/3) . . 85

90

List of Tables

4.1 Pareto Distribution Fit for Passenger Train Start Delay Changes 26
4.2 Pareto Distribution Fit for Passenger Train Journey Delay Changes . . . 27
4.3 Pareto Distribution Fit for Freight Train Start Delay Changes 28
4.4 Pareto Distribution fit for Freight Train Journey Delay Changes 28
4.5 K-S Test Results for Positive Delay Change Distributions Compared to His-

torical Data . 32
4.6 K-S Test Results for Negative Delay Change Duration Distributions (-10 to 0

Minutes) Compared to Historical Data . 33
4.7 K-S Test Results for Delay Change Distributions Compared to Historical Data

across Different Time Windows . 34
4.8 K-S Test Results for Departure Delay Distributions Compared to Historical

Data . 34
4.9 Estimates Based on Naive Model . 36
4.10 Comparison of Naive Model Estimates and Synthetic File as a Plausibility

Check . 37

5.1 Input Features for GNN . 42

6.1 Hyperparameter Tuning Grid Search . 50
6.2 Test Set Results for Best Performing Classification Model and Naive Model 51
6.3 Hyperparameter Tuning Grid Search - Regression Task 52
6.4 Test Set Results for Best Performing Regression Model and Naive Model . 53
6.5 Comparison of Models on Real-World Data 56

7.1 Primary and Secondary Delay Ratios at Different Thresholds 61
7.2 Future Research Directions . 70

A.1 Summary of Raw Features with Descriptions 79
A.2 Summary of Excluded Features and Rationale 80
A.3 Filtered Features for GNN and their Rationale 80
A.4 Best Hyperparameter Tuning Results for Classification 82
A.5 Best Hyperparameter Tuning Results for Regression 86
A.6 Results for Final Classification Model . 86
A.7 Results for Final Regression Model . 86

91

List of Acronyms

AGD Aggregated Delays. 1–5, 8, 9, 11, 13, 24, 31, 32, 34, 54, 57, 59, 65, 71, 73

ANN Artificial Neural Network. 5, 6, 11–13, 43

CNN Convolutional Neural Networks. 18

GatedGCN Gated Graph Convolutional Networks. 6, 12, 15, 18, 66, 70, 72

GCN Graph Convolutional Networks. 12, 17, 18

GNN Graph Neural Network. 2–13, 15–18, 39–41, 43, 46, 47, 49–55, 57, 59, 60, 63–66,
68–73, 89

K-S Test Kolmogorov-Smirnov Test. 26, 30–34, 37, 91

KL-divergence Kullback–Leibler divergence. 30, 31

MAE Mean Absolute Error. 53, 60

MSE Mean Squared Error. 53

NILM Nonintrusive Load Monitoring. 11

OCP Operational Control Point. 25, 29, 39, 42–44, 67, 79

OEBB Austrian Federal Railways. 2, 3, 5, 19, 29, 69

OOD Out-of-Distribution. 13, 66, 70, 71

PD Primary Delays. 1–9, 11, 13, 24, 25, 29, 30, 36, 37, 40, 43, 45, 49, 50, 52–55, 59–65,
67, 69–73, 75

PoC Proof of Concept. 41, 50, 67

R2 R-squared. 53, 56, 60, 63

93

SD Secondary Delays. 1–5, 7–9, 11, 13, 24, 36, 37, 40, 49, 50, 52–54, 57, 59–65, 68, 69,
71, 73, 75, 76

WAPE Weighted Absolute Percentage Error. 55, 56

XAI Explainable Artificial Intelligence. 8, 70

94

Bibliography

[1] (2023) Fast jeder dritte reisende kam 2023 verspätet an. Tagesschau. Accessed: 2024-
08-11. [Online]. Available: https://www.tagesschau.de/wirtschaft/unternehmen/
deutsche-bahn-verspaetung-100.html

[2] D. Rößler, J. Reisch, F. Hauck, and N. Kliewer, “Discerning primary and secondary
delays in railway networks using explainable ai,” Transportation Research Procedia,
vol. 52, pp. 171–178, 2021, 23rd EURO Working Group on Transportation
Meeting, EWGT 2020, 16-18 September 2020, Paphos, Cyprus. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2352146521000405

[3] M. Rößler, M. Wastian, A. Jellen, S. Frisch, D. Weinberger, P. Hungerländer,
M. Bicher, and N. Popper, “Simulation and optimization of traction unit circulations,”
in 2020 Winter Simulation Conference (WSC), 2020, pp. 90–101.

[4] A. Yamamura, M. Koresawa, S. Adachi, and N. Tomii, “Identification of causes of
delays in urban railways,” Computers in Railways, vol. 13, pp. 403–414, 2013.

[5] J. Manitz, J. Harbering, M. Schmidt, T. Kneib, and A. Schöbel, “Source estimation
for propagation processes on complex networks with an application to delays in
public transportation systems,” Journal of the Royal Statistical Society Series C:
Applied Statistics, vol. 66, no. 3, pp. 521–536, 2017.

[6] Y. Ochiai, Y. Shibata, and N. Tomii, “An algorithm to identify delay propaga-
tion routes based on visualization of asso-ciation rules,” in Proceedings of the 2nd
International Railway Symposium Aachen, 2019, p. 245.

[7] C.-W. Palmqvist, I. Johansson, and H. Sipilä, “A method to separate primary
and secondary train delays in past and future timetables using macroscopic
simulation,” Transportation Research Interdisciplinary Perspectives, vol. 17, p.
100747, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S259019822200207X

[8] C. Wen, Z. Li, J. Lessan, L. Fu, P. Huang, and C. Jiang, “Statistical investigation
on train primary delay based on real records: evidence from wuhan–guangzhou hsr,”
International Journal of Rail Transportation, vol. 5, pp. 1–20, 03 2017.

95

https://www.tagesschau.de/wirtschaft/unternehmen/deutsche-bahn-verspaetung-100.html
https://www.tagesschau.de/wirtschaft/unternehmen/deutsche-bahn-verspaetung-100.html
https://www.sciencedirect.com/science/article/pii/S2352146521000405
https://www.sciencedirect.com/science/article/pii/S259019822200207X
https://www.sciencedirect.com/science/article/pii/S259019822200207X

[9] C. Wen, Z. Li, P. Huang, J. Lessan, L. Fu, and C. Jiang, “Cause-specific
investigation of primary delays of wuhan–guangzhou hsr,” Transportation
Letters, vol. 12, no. 7, pp. 451–464, 2020. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1942786722001989

[10] W. Schwanhäußer, “Die bemessung der pufferzeiten im fahrplangefüge der eisenbahn,”
PhD thesis, RWTH Aachen University, Aachen, Germany, 1974.

[11] Z. Li, P. Huang, C. Wen, and F. Rodrigues, “Railway network delay evolution: A
heterogeneous graph neural network approach,” 2023.

[12] J. S. Heglund, P. Taleongpong, S. Hu, and H. T. Tran, “Railway delay prediction with
spatial-temporal graph convolutional networks,” in 2020 IEEE 23rd International
Conference on Intelligent Transportation Systems (ITSC), 2020, pp. 1–6.

[13] D. Zhang, Y. Peng, Y. Zhang, D. Wu, H. Wang, and H. Zhang, “Train time
delay prediction for high-speed train dispatching based on spatio-temporal graph
convolutional network,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 3, pp. 2434–2444, 2022.

[14] P. Huang, J. Guo, S. Liu, and F. Corman, “Explainable train delay propagation: A
graph attention network approach,” Transportation Research Part E: Logistics and
Transportation Review, vol. 184, no. C, 2024.

[15] D. Zhang, Y. Xu, Y. Peng, C. Du, N. Wang, M. Tang, L. Lu, and J. Liu, “An
interpretable station delay prediction model based on graph community neural
network and time-series fuzzy decision tree,” IEEE Transactions on Fuzzy Systems,
vol. PP, pp. 1–13, 01 2022.

[16] W. Jiang and J. Luo, “Graph neural network for traffic forecasting: A survey,” CoRR,
vol. abs/2101.11174, 2021. [Online]. Available: https://arxiv.org/abs/2101.11174

[17] P. A. Schirmer and I. Mporas, “Non-intrusive load monitoring: A review,” IEEE
Transactions on Smart Grid, vol. 14, no. 1, pp. 769–784, 2023.

[18] R. Shang, S. Chen, Z. Chen, and C.-T. Lu, “Graphnilm: A graph neural network
for energy disaggregation,” in Advances in Knowledge Discovery and Data Mining,
D.-N. Yang, X. Xie, V. S. Tseng, J. Pei, J.-W. Huang, and J. C.-W. Lin, Eds.
Singapore: Springer Nature Singapore, 2024, pp. 431–443.

[19] ÖBB, “Zahlen daten fakten 2019/20,” 2020, accessed: 2024-08-14. [Online]. Avail-
able: https://konzern.oebb.at/dam/jcr:b17c14a2-d8a3-4d3c-8a40-912cbeefa6ab/
OEBB_Zahlen_2020-2_de_web.pdf

[20] U. Alon and E. Yahav, “On the bottleneck of graph neural networks and its practical
implications,” 2021.

96

https://www.sciencedirect.com/science/article/pii/S1942786722001989
https://www.sciencedirect.com/science/article/pii/S1942786722001989
https://arxiv.org/abs/2101.11174
https://konzern.oebb.at/dam/jcr:b17c14a2-d8a3-4d3c-8a40-912cbeefa6ab/OEBB_Zahlen_2020-2_de_web.pdf
https://konzern.oebb.at/dam/jcr:b17c14a2-d8a3-4d3c-8a40-912cbeefa6ab/OEBB_Zahlen_2020-2_de_web.pdf

[21] V. P. Dwivedi, L. Rampášek, M. Galkin, A. Parviz, G. Wolf, A. T. Luu, and
D. Beaini, “Long range graph benchmark,” 2023.

[22] J. Tönshoff, M. Ritzert, E. Rosenbluth, and M. Grohe, “Where did the gap go?
reassessing the long-range graph benchmark,” 2023.

[23] Z. Zhong, C.-T. Li, and J. Pang, “Hierarchical message-passing graph neural net-
works,” Data Mining and Knowledge Discovery, vol. 37, no. 1, pp. 381–408, 2023.

[24] R. Liu, P. Calafiura, S. Farrell, X. Ju, D. T. Murnane, and T. M. Pham, “Hierarchical
graph neural networks for particle track reconstruction,” 2023.

[25] S. I. Nikolenko, Synthetic data for deep learning. Springer, 2021, vol. 174.

[26] L. Xu, H. Liu, B. Xiao, X. Luo, DharmarajVeeramani, and Z. Zhu, “A systematic
review and evaluation of synthetic simulated data generation strategies for deep
learning applications in construction,” Advanced Engineering Informatics, vol. 62, p.
102699, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S1474034624003471

[27] G. Lombardo, M. Pellegrino, A. Poggi et al., “Unsupervised continual learning from
synthetic data generated with agent-based modeling and simulation: a preliminary
experimentation.” in WOA, 2022, pp. 116–126.

[28] C. M. de Melo, A. Torralba, L. Guibas, J. DiCarlo, R. Chellappa, and J. Hodgins,
“Next-generation deep learning based on simulators and synthetic data,” Trends in
cognitive sciences, vol. 26, no. 2, pp. 174–187, 2022.

[29] H. Li, X. Wang, Z. Zhang, and W. Zhu, “Out-of-distribution generalization
on graphs: A survey,” ArXiv, vol. abs/2202.07987, 2022. [Online]. Available:
https://api.semanticscholar.org/CorpusID:246867220

[30] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph
neural network model,” IEEE Transactions on Neural Networks, vol. 20, no. 1, pp.
61–80, 2009.

[31] B. Sanchez-Lengeling, E. Reif, A. Pearce, and A. B. Wiltschko, “A gentle introduction
to graph neural networks,” Distill, 2021, https://distill.pub/2021/gnn-intro.

[32] X. Bresson and T. Laurent, “Residual gated graph convnets,” 2018. [Online].
Available: https://arxiv.org/abs/1711.07553

[33] A. Gupta, P. Matta, and B. Pant, “Graph neural network: Current
state of art, challenges and applications,” Materials Today: Proceedings,
vol. 46, pp. 10 927–10 932, 2021, international Conference on Technological
Advancements in Materials Science and Manufacturing. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2214785321010543

97

https://www.sciencedirect.com/science/article/pii/S1474034624003471
https://www.sciencedirect.com/science/article/pii/S1474034624003471
https://api.semanticscholar.org/CorpusID:246867220
https://arxiv.org/abs/1711.07553
https://www.sciencedirect.com/science/article/pii/S2214785321010543

[34] K. O’Shea and R. Nash, “An introduction to convolutional neural networks,” 2015.
[Online]. Available: https://arxiv.org/abs/1511.08458

[35] A. Kolmogorov, “Sulla determinazione empirica di una legge di distribuzione,”
Giornale dell’Istituto Italiano degli Attuari, vol. 4, pp. 83–91, 1933.

[36] N. V. Smirnov, “Table for estimating the goodness of fit of empirical distributions,”
The Annals of Mathematical Statistics, vol. 19, no. 2, pp. 279–281, 1948.

[37] OEBB-Infrastruktur AG, “Schienennetz-nutzungsbedingungen 2024,”
2024, page 34, Accessed: 2024-07-29. [Online]. Avail-
able: https://infrastruktur.oebb.at/de/geschaeftspartner/schienennetz/snnb/
snnb-2024/schienennetz-nutzungsbedingungen-2024.pdf

[38] S. Kullback and R. A. Leibler, “On information and sufficiency,” The Annals of
Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951.

[39] J. You, R. Ying, and J. Leskovec, “Design space for graph neural networks,” 2021.
[Online]. Available: https://arxiv.org/abs/2011.08843

[40] M. Fey and J. E. Lenssen, “Fast graph representation learning with pytorch
geometric,” 2019. [Online]. Available: https://arxiv.org/abs/1903.02428

98

https://arxiv.org/abs/1511.08458
https://infrastruktur.oebb.at/de/geschaeftspartner/schienennetz/snnb/snnb-2024/schienennetz-nutzungsbedingungen-2024.pdf
https://infrastruktur.oebb.at/de/geschaeftspartner/schienennetz/snnb/snnb-2024/schienennetz-nutzungsbedingungen-2024.pdf
https://arxiv.org/abs/2011.08843
https://arxiv.org/abs/1903.02428

	Kurzfassung
	Abstract
	Contents
	Introduction
	Background
	Problem statement
	Train Delay Definitions
	Problem Definition

	Research Questions
	Objectives
	Significance of the Study
	Overview of the Thesis Structure

	Literature Review
	Literature Research Methodology
	Overview
	Disaggregating Train Delays into Primary and Secondary Delays
	Stochastic Distribution of Primary Delays in Railway Networks
	Graph Neural Networks
	Graph Neural Networks in Railway Networks
	Data Disaggregation in Nonintrusive Load Monitoring
	Graph Neural Networks for Long-Range Tasks

	Overcoming Challenges in Out-of-Distribution Learning

	Graph Neural Networks
	Introduction to Graph Neural Networks
	Message-Passing

	Variants and Extensions of Graph Neural Networks

	Synthetic Data Generation Using the Agent-Based Model
	Data exploration of Historical Delay Data
	Dataset Description
	Analysis of Train Arrival Patterns
	Analysis of Arrival Delay Durations
	Analysis of Delay Change
	Initial Delay Change

	Methodology of Data Generation
	Approaches for the Primary Delay Sampling
	Assumptions for Primary Delay Distributions
	Distributions for Sampling Primary Delays
	Upper Boundaries of Delay Frequencies Based on Historical Data
	Negative Delays and Negative Delay Changes

	Evaluation and Results of Synthetic Data Sampling
	Distribution Comparison Method
	Grid Search for Optimal Parameters

	Plausibility Analysis
	Estimates based on Naive Model

	Limitations

	Data Preprocessing and Model Implementation
	Data Structure and Preprocessing
	Structure of CSV
	Target Variable
	Handling Missing Values

	Feature Selection
	Feature Selection Rationale
	Final Feature Selection

	Normalization and Feature Encoding
	Encoding Cyclical Time Features
	Normalization of Continuous Features
	Encoding of Categorical Features

	Graph Structure
	Creation of Nodes and Supernodes
	Edge Creation

	Graph Neural Network Implementation
	GraphGym Framework
	Key Facts about the GNN

	Results
	Evaluation of GNN Model Performance on Synthetic Data
	Hyperparameter Tuning
	Classification Task
	Regression Task

	Application to Real-World Data
	Analysis Using the Agent-Based Model

	Discussion
	Result Analysis
	Summary of GNN Results for Synthetic Data
	Analysis of GNN Results for Real-World Data
	Conclusion of Result Analysis

	Answering the Research Questions
	Research Question 1
	Research Question 2
	Research Question 3

	Contributions to the Railway Domain
	Limitations
	Data Limitations
	Methodological Assumptions
	Training of the GNN and Graph Design
	Limitations of the Agent-Based Model

	Future Research Directions
	Larger Dataset
	Improve Calibration of the Agent-Based Model
	Improvements of the Agent-Based Model
	Additional Areas for Improvement

	Conclusion
	Recap of Research Objectives and Questions
	Summary of Key Findings
	Contributions to the Field
	Limitations of the Study
	Recommendations for Future Research
	Final Thoughts

	Supplementary Materials
	Sensitivity Analysis
	Feature Evaluation
	Hyperparameter Tuning
	Default Parameters
	Hyperparameter Tuning Classification
	Hyperparameter Tuning Regression
	Classification Task - Final Model
	Regression Task - Final Model

	Overview of Tools Used

	List of Figures
	List of Tables
	List of Acronyms
	Bibliography

