
Diplomarbeit

Development of a Soft Sensor for
Monitoring Product Gas Composition in a

Dual Fluidized Bed Gasifier
ausgeführt zum Zwecke der Erlangung des akademischen Grades eines

Diplom-Ingenieur (Dipl.-Ing.)

eingereicht and der Technischen Universität Wien
Fakultät für Maschinenwesen und Betriebswissenschaften

von

Jonas Vogler
Mat.Nr.: 12040673

unter Leitung von
Dipl.-Ing. Dr. techn. Alexander Schirrer

Institut für Mechanik und Mechatronik, E325

Ort, Datum Unterschrift





Ich nehme zur Kenntnis, dass ich zur Drucklegung dieser Arbeit nur mit Bewilligung der
Prüfungskommission berechtigt bin.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass die vorliegende Arbeit nach den anerkannten Grundsätzen
für wissenschaftliche Abhandlungen von mir selbstständig erstellt wurde. Alle verwende-
ten Hilfsmittel, insbesondere die zugrunde gelegte Literatur, sind in dieser Arbeit genannt
und aufgelistet. Die aus den Quellen wörtlich entnommenen Stellen, sind als solche kennt-
lich gemacht. Das Thema dieser Arbeit wurde von mir bisher weder im In- noch Ausland
einem Beurteiler zur Begutachtung in irgendeiner Form als Prüfungsarbeit vorgelegt.
Diese Arbeit stimmt mit der von den Begutachtern beurteilten Arbeit überein. Ich nehme
zur Kenntnis, dass die vorgelegte Arbeit mit geeigneten und dem derzeitigen Stand der
Technik entsprechenden Mitteln (Plagiat-Erkennungssoftware) elektronisch-technisch
überprüft wird. Dies stellt einerseits sicher, dass bei der Erstellung der vorgelegten Arbeit
die hohen Qualitätsvorgaben im Rahmen der geltenden Regeln zur Sicherung guter
wissenschaftlicher Praxis „Code of Conduct“ an der TU Wien eingehalten wurden. Zum
anderen werden durch einen Abgleich mit anderen studentischen Abschlussarbeiten
Verletzungen meines persönlichen Urheberrechts vermieden.

Ort, Datum Unterschrift





Meiner Familie.





Abstract

Biomass gasification is a matter of significant interest in light of the increasing demand for
renewable energy and the production of green chemicals. In this context, the dual fluidized
bed gasification process comes with key advantages compared to other approaches, such
as the absence of nitrogen in the product gas, which would lower its heating value.

Steam gasification processes are commonly evaluated based on several key perfor-
mance indicators such as cold gas efficiency or water conversion. To optimize operation
based on these indicators, however, a complete picture of the product gas composition is
required, including water content and tars. This presents a challenge, as standard compo-
sition analysis equipment is unable to monitor the water content; instead, specialized
instrumentation is required. Another approach is to conduct offline sampling, which
comes with the downside of providing data only on a point-by-point basis. Process simu-
lation software can also contribute to the understanding and development of the process;
however, its computationally demanding nature limits its applicability, rendering it less
suited for providing real-time data for plant control.

Soft sensors, on the other hand, can provide model or data-driven estimates of process
parameters that are otherwise difficult or costly to obtain. While, in general, soft sensors
have long been used successfully in a range of industries, no implementation has been
described to date concerning estimating full product gas composition including water
content and tar production rate in biomass gasification or indeed a dual fluidized bed
gasification plant.

This work presents the development of a soft sensor to augment available measure-
ments with a particular focus on the product gas water and tar contents. The soft sensor
is based on an extended Kalman filter (EKF) which estimates the molar flow rates of the
products of the gasification process. State prediction is provided by a Hammerstein model,
which emphasizes the non-linear static relationships while using simple first-order dy-
namics to describe the time development of the system state. An online analyzer and
a gas chromatography (GC) device for product gas analysis, as well as another analyzer
for analysis of the flue gas generated in the combustion reactor, are available for state
correction. The GC measurements are handled by extrapolation, as there is a significant
time delay between sampling and the availability of data. An additional EKF is used
for disturbance state estimation, with the objective of enhancing the model predictions,
leveraging the accuracy of the GC measurements.

Furthermore, a simple heuristic fault detection mechanism based on the EKF’s innova-
tion sequence is implemented in order to address a frequently occurring type of fault at
the plant.
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Finally, the performance of the soft sensor is evaluated based on a gasification test
conducted at TU Wien. During the test, the soft sensor demonstrated excellent estimates
of the product gas water content, which were verified by offline sampling and compared
to process simulation results. The fault detection and isolation also proved to work well,
as demonstrated by the fact that erroneous measurements were discarded by the soft
sensor, as required. During these fault periods, the soft sensor continued to provide reliable
estimates of the product gas composition, indicating that the model correction using dis-
turbance states is an appropriate approach to handling constraints resulting from limited
knowledge of underlying physical processes. Additionally, the soft sensor demonstrated
its ability to meet the required computational performance standards, particularly in
terms of the available computation time.

This work will therefore aid in further research and development of the dual fluidized
bed process. In particular, the optimization of the plant operation via plant control
software will benefit from additional information provided by the soft sensor. Beyond
the specific implementation, the general approach of combining limited knowledge of
the underlying physical process with data-driven techniques in the modeling phase and
established methods of sensor fusion and fault detection may be applied to other types of
processes as well, to augment available information for process development.



Kurzfassung

Biomassevergasung gewinnt vor dem Hintergrund steigender Nachfrage nach regenerati-
ver Energie und grünen Chemikalien zunehmend an Bedeutung. In diesem Zusammen-
hang bietet die Zweibett-Wirbelschichtvergasung deutliche Vorteile gegenüber anderen
Verfahren, wie beispielsweise die Abwesenheit von Stickstoff im Produktgas, welcher
eine Verdünnung darstellt und damit den Heizwert des Produktgases senkt.

Dampf-Vergasungsprozesse werden üblicherweise anhand von key performance indicators,
wie dem Kaltgaswirkungsgrad oder der Wasserkonversion beschrieben. Um den Betrieb
hinsichtlich dieser Indikatoren optimieren zu können bedarf es allerdings der genauen
Kenntnis des Wassergehalts im Produktgas. Dies stellt eine gewisse Herausforderung dar,
da gängige Analysemethoden für die Produktgaszusammensetzung den Wassergehalt
nicht erfassen können, sodass spezielle Messgeräte eingesetzt werden müssen. Andere
Methoden, den Wassergehalt zu bestimmen umfassen die manuelle Probenahme und
anschließende Analyse im Labor, wobei die Ergebnisse erst mit erheblichem Zeitverzug
und nur punktuell zur Verfügung stehen. Prozesssimulationssoftware kann zwar zum
Verständnis des Prozesses beitragen, erfordert allerdings erhebliche Rechenleistung und
ist daher weniger geeignet um Echtzeitdaten für die Anlagenregelung zu liefern.

Softsensoren sind demgegenüber in der Lage, auf Basis von Modellen oder rein da-
tengestützt, Schätzwerte für Prozessparameter zu liefern, die messtechnisch nur schwer
zugänglich sind. Dieser Ansatz ist in der Prozessindustrie bereits seit langem etabliert,
allerdings wurden bisher keine Beispiele für die konkrete Aufgabe, den Wassergehalt
des Produktgases in Biomassevergasungsprozessen zu bestimmen, beschrieben. Dies gilt
insbesondere für die Anwendung in einem Zweibett-Wirbelschichtverfahren.

Im Rahmen dieser Arbeit wird die Entwicklung eins Softsensors vorgestellt, der insbe-
sondere die Messungen der trockenen Produktgaszusammensetzung um Schätzungen
des Wassergehalts ergänzt. Die Identifikation des Vergasungsreaktors stützt sich auf Pro-
zessdaten einer Reihe von Testläufen der Zweibett-Wirbelschichtanlage der TU Wien. Das
Reaktorsystem wird dabei durch ein Hammersteinmodell abgebildet. Dieser Modellansatz
betont die nichtlinearen statischen Zusammenhänge, welche von der Systemdynamik ge-
trennt behandelt werden. Das Hammersteinmodell stellt die Prädiktion für ein Extended
Kalman-Filter bereit, welches die Daten dreier Messgeräte für den Korrekturschritt nutzt:
ein Analyzer und ein GC (Gaschromatographie)-Gerät für die Bestimmung der Produkt-
gaszusammensetzung und ein weiterer Analyzer, welcher die Abgaszusammensetzung
aus dem Verbrennungsreaktor misst. Hierbei werden die GC-Daten besonders behandelt,
da diese nur mit erheblicher Zeitverzögerung zwischen Probenahme und Bereitstellung
der Daten verfügbar sind. Der Softsensor nutzt die hohe Güte der GC-Daten in erster Linie
um Modellkorrekturen vorzunehmen, die in Form von Störgößen auf zukünftige Prä-
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diktionen wirken. Um regelmäßig auftretende Fehler erkennen und isolieren zu können,
verfügt der Softsensor über einen einfachen heuristischen Erkennungsmechanismus.

Abschließend wird das Verhalten des Softsensors auf Grundlage eines Testlaufs an
der Anlage analysiert und bewertet. Über die Dauer des Testlaufs lieferte der Softsensor
exzellente Schätzungen für den Wassergehalt im Produktgas, wie anhand von Ergeb-
nissen mehrerer Probenahmen gezeigt werden konnte. Fehlererkennung und -isolation
konnten ebenfalls erfolgreich demonstriert werden, und fehlerhafte Messungen wurden
entsprechend verworfen. In diesen Szenarien konnten aufgrund der Modellkorrektu-
ren weiterhin solide Schätzungen der Produktgaszusammensetzung geliefert werden.
Darüber hinaus konnten die Anforderungen hinsichtlich verfügbarer Rechenleistung
durchwegs eingehalten werden, insbesondere in Hinblick auf die Rechenzeit.

Die Ergebnisse der vorliegenden Arbeit können in Zukunft genutzt werden, um For-
schung und Entwicklung des Zweibett-Wirbelschichtverfahrens zur Biomassevergasung
weiter voranzutreiben. Insbesondere im laufenden Betrieb kann der Prozess mithilfe
des Softsensors auch hinsichtlich eingangs genannter Kenngrößen, wie dem Kaltgaswir-
kungsgrad, optimiert werden.
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Introduction1
While industrialization led to a steady and ongoing improve-
ment of the social and economic situation in many parts of
the world, it was enabled to a great extent by the exploita-
tion of fossil fuel reservoirs to meet rising energy demand
and to provide base chemicals for a wide range of industries.
Thus, the progress in quality of life has been accompanied
by a steady increase in emissions, and a rise in CO2 levels
in the atmosphere. These facts have long been identified to
cause average global temperatures to rise, leading to an in-
crease in the number of severe weather phenomena such as
floods, hurricanes, and droughts, which can already be ob-
served today [37]. For illustrative purposes, some indicators
of human progress are displayed in Figure 1.1.

In addition to their use as energy carriers, fossil fuels serve
as the basis for a wide range of chemical products. For this
purpose, fossil fuels are converted to syngas, a mixture of
H2 and CO, by steam reforming or partial oxidation, which
forms the starting point for the synthesis of a range of chem-
ical products including methanol, aldehydes, and ammonia.
In contrast, the Fischer-Tropsch process makes it possible
to produce liquid hydrocarbons from syngas, which can be
used as fuel in conventional engines. Since modern society’s
dependence on this particular resource cannot be easily re-
solved, great efforts are being made to substitute fossil fuels
by renewable sources.

One such approach is the gasification of municipal or agri-
cultural waste, or other biomass like wood. Steam gasifica-
tion involves the reaction of carbonaceous material with
steam at elevated temperatures of 700 °C to 1000 °C, de-
pending also on the type of reactor [29, 44]. This reaction
produces valuable product gas, which contains high amounts
of H2 and CO. This product gas may replace synthesis gas
produced by steam reforming of fossil fuels or used directly
for energy production. Since this reaction is overall en-
dothermic, heat needs to be supplied, which is generally
achieved by oxidizing a portion of the fuel using air or pure
oxygen. Traditionally, both the gasification and oxidization
take place in the same reactor. The use of air in lieu of oxy-
gen is accompanied by the disadvantage of nitrogen diluting
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[37] Seneviratne et al., “Weather
and Climate Extreme Events in a
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[29] Mishra et al., “Review on
biomass gasification: Gasifiers,
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2 INTRODUCTION

the product gas, which consequently results in a reduction
of the heating value.

To address this issue, a novel dual fluidized bed (DFB)
gasification plant is subject to research at TU Wien. In or-
der to optimize the process, it is crucial to obtain as much
information about the operating parameters as possible. In
particular, a number of key performance indicators are used
in the analysis of gasification process performance, such as
water conversion and cold gas efficiency, which is usually
evaluated on a dry, i.e., wf (water-free) product gas basis
[44, p. 349]. Both measures require detailed information
about the composition of inbound and outgoing flows. In
this context the water content of the product gas is a crucial
quantity, however, monitoring is not possible with standard
gas analysis equipment but requires special instrumenta-
tion [5, 17]. A different method, which is pursued at TU Wien,
involves offline water sampling. This method necessitates
the manual collection and analysis of samples, resulting in
a significant delay before results become available. Process
simulation software, like IPSEpro, can aid in addressing this
issue by validating measurements or employing parameter
studies, which are otherwise time-consuming and expen-
sive to conduct with a real plant. Yet, this approach entails
significant demand with respect to computational cost. Con-
sequently, neither offline sampling nor process simulation
allows for optimizing plant control during operation by con-
trol software.

An alternative to the aforementioned solutions is to rep-
resent the process in question by a mathematical model. As
elaborated in [9, p. 3], this may be accomplished using “mech-
anistic modeling (physical modeling), multivariate statistics,
and artificial intelligence modeling such as neural networks,
fuzzy logic and hybrid methods.” They also emphasize the
value of empirical or data-driven models in industrial appli-
cations, “due to the complexity of the plant dynamics, which
can prevent the first principles approach from being used.”
These models may be implemented in software to generate
estimates of process variables, thus circumventing the need
for specialized equipment while still providing online data
for plant control. Such an implementation is commonly
referred to as a soft sensor.

In addition to augmenting existing information on pro-
cesses, soft sensors can be used for detecting faults in hard-
ware sensors. In [13], the authors distinguish two different
approaches in this context. Model-free methods include
limit checking and spectrum analysis of sensor readings.
Model-based methods, on the other hand, typically lever-
age the concept of analytical redundancy, where “sensory
measurements are compared to analytically computed val-

[35] Gapminder (2023).

[30] Gapminder (2023).

[1] Global Carbon Budget
(2023) – with major process-

ing by Our World in Data.

[5] Cherednichenko et al., Online
water vapor detection in the product
gas from indirect gasification. (2013).

[17] Karellas et al., “Analy-
sis of the product gas from

biomass gasification by means
of laser spectroscopy.” (2007).

[9] Fortuna et al., Soft Sensors
forMonitoring and Control of
Industrial Processes. (2007).

[13] Gertler, Fault detec-
tion and diagnosis in engi-
neering systems. (1998).



INTRODUCTION 3

ues of the respective variable. […] the resulting differences,
called residuals, are indicative of the presence of a fault in
the system.”

Soft sensors have long been established in the process
industry [15, 34]. With regard to gasification, a number of
studies have been published. In [42] the authors describe
a Kalman filter-based approach to estimate temperature
profiles and slag formation in an entrained-flow gasifica-
tion system with acceptable results. Another publication
discusses a vision-based soft sensor for estimating major
species concentrations in entrained flow gasification reac-
tors using machine learning techniques [32]. Various meth-
ods have been presented addressing the issue of fluctuating
biomass composition and moisture content based on energy
balance evaluation [22] or by employing automated machine
learning [19].

However, an application for monitoring product gas com-
position in biomass steam gasification, and in particular
its water content has not yet been presented. The present
work describes the development, implementation and per-
formance evaluation of a soft sensor for providing accurate
estimates of the product gas composition, including water
content, as well as for the char and tar production rates.

To this end, the DFB gasification process is described in
Chapter 2, covering incoming and outgoing material flows
as well as the measurements processed by the soft sensor.
The model identification process is discussed in Chapter 3.
The extraction of suitable data from historic gasification
tests and necessary preprocessing are covered in this chap-
ter, followed by the identification of a number of static linear
models to describe the gasification process and their incor-
poration into a Hammerstein model. Chapter 5 describes the
design of the extended Kalman filter (EKF)-based observer
forming the core of the soft sensor. This chapter concludes
with a description of the software implementation of the
observer. The performance of the soft sensor is evaluated
based on a gasification test in Chapter 6, discussing its pre-
diction accuracy, stability, observability and controllability
of the observer, as well as computational performance. A
brief analysis of the dynamic behavior of the soft sensor
output is included as well. The chapter concludes with a
summary of suggestions for improvement of the soft sen-
sor. The work closes by highlighting the obstacles overcome
by the soft sensor and argues for the prospective benefits of
the implementation in Chapter 7.

[15] Kadlec et al., “Data-driven
Soft Sensors in the process
industry.” (2009).

[34] Rogina et al., “Soft sensor
for continuous product quality
estimation (in crude distillation
unit).” (2011).

[42] Valipour et al., “State esti-
mation and sensor location for
Entrained-Flow Gasification
Systems using Kalman Filter.”
(2021).

[32] Ögren et al., “Development
of a vision-based soft sensor for
estimating equivalence ratio
and major species concentra-
tion in entrained flow biomass
gasification reactors.” (2018).

[22] Kortela et al., “Fuel moisture
soft-sensor and its validation for
the industrial BioPower 5 CHP
plant.” (2013).

[19] Kim et al., “Predicting
biomass composition and oper-
ating conditions in fluidized bed
biomass gasifiers: An automated
machine learning approach com-
bined with cooperative game
theory.” (2023).





Plant Description2
The key distinction between the DFB plant under considera-
tion in this work and established allothermal gasification
systems is the separation of the steam gasification of the
fuel and the combustion by which heat is provided for the
overall endothermic gasification reaction. It is a major ad-
vantage of this approach that no air is introduced into the
gasification zone. This means that the product gas (PG) is
free of N2 that would reduce its heating value through dilu-
tion. The following chapter provides a concise overview of
the process to the extent necessary within the scope of this
work.

2.1 Process Description

The two main components of the DFB plant are the gasifi-
cation reactor (GR) and the combustion reactor which are
depicted in the diagram in Figure 2.1. Softwood pellets (sub-
sequently referred to as fuel) are fed by a screw conveyor onto
the bubbling fluidized bed at the bottom of the gasification
reactor. Fluidization of the bed material, which consists
of a mixture of 80 % olivine and 20 % limestone, is facili-
tated by superheated steam, that enters at the bottom of the
gasification reactor and also acts as the gasification agent.

Within the bubbling bed, an illustration of which can be
observed in Figure 2.2, several steps are involved in the con-
version of the fuel, a detailed description of which is given
in [21]. Initially, the fuel is heated up and dried, releasing its
water content of ξH2O ≈ 7.2%. With increasing temperature,
the fuel undergoes pyrolytic decomposition, also referred to as
devolatilization, leading to the formation of permanent gases,
such as CO, CO2, H2 and light hydrocarbons CxHy. Addition-
ally, the formation of condensable hydrocarbons, i.e., tars,
and solid char occur as part of this second step. The third
phase involves both homogeneous and heterogeneous reac-
tions of the intermediates with the gasification agent, in this
case steam. Additionally, biomass also contains inorganic
compounds that lead to the formation of ash.

Figure 2.2: Illustration of the
bubbling regime adapted from
[26].

[21] Koppatz, “Outlining active
bed materials for dual fluidised
bed biomass gasification: in-bed
catalysts and oxygen/carbonate
looping behaviour.” (2012).

[26] Lim et al., “Hydrodynamics
of gas-solid fluidization.” (1995).
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Figure 2.1: Simplified flow diagram of the DFB gasification plant com-
prising the gasification reactor and the combustion reactor, which
are connected via the lower loop seal (LLS) and upper loop seal (ULS)
(adapted from [43]).

In the advanced DFB gasification process, the reaction
products comprising the product gas rise through a coun-
tercurrent column and exit at the top where entrained bed
material, fly char and ash are separated in a gravity sepa-
ration chamber and fed back into the gasification reactor
through an internal steam fluidized loop seal (ILS). Subse-
quently, fine ash is removed from the product gas by means
of a cyclone (not depicted in Figure 2.1) and discharged from
the gasification reactor. A detailed diagram of the reactor
system showing the arrangement of both reactors can be
observed in [28].

After removal of particulates, the product gas, compris-
ing primarily H2, CO, CO2, CH4, C2H6, C2H4, N2, H2O and
trace amounts of O2, passes through a radiation cooler after
which a sampling line is installed. Since the product gas con-
tains condensable tars and water, as well as some remaining
particulate matter, it undergoes cleaning prior to composi-
tion analysis. The gas cleaning involves filtering particulates
and subsequent condensation of water and tar in a series
of impinger bottles containing rapeseed oil methyl ester. A
detailed description of the procedure is given in [18].

Unconverted char and bed material are continuously ex-
tracted from the fluidized bed and pass through a lower

[43] Vogler et al., “Soft Sen-
sor Design for Product Gas

Composition Monitoring
Including Fault Isolation

in a Dual Fluidized Bed
Biomass Gasifier.” (2023).

[28] Mauerhofer et al., “Dual
fluidized bed steam gasification:

Change of product gas quality
along the reactor height.” (2019).

[18] Kern et al., “Gasification of
wood in a dual fluidized bed gasi-
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steam fluidized loop seal (LLS) into the combustion reactor,
where air is added to facilitate the combustion. The heat gen-
erated by the combustion reaction is absorbed by the bed
material, which is entrained in a fast fluidization regime and
separated from the flue gas (FG) in a gravity separator at the
top of the combustion reactor to be fed back, via an upper
steam fluidized loop seal (ULS), into the countercurrent col-
umn of the gasification reactor to maintain the endothermic
gasification reaction.

Combustion air enters the combustion reactor at three
different points along the lower part of the combustion re-
actor, with primary air entering at the lowest point and ter-
tiary air at the highest point. Fuel oil can also be fed into
the combustion reactor to compensate “for the relatively
high specific heat losses in this small pilot plant and enables
control of the gasification temperature for the gasification
experiments [3].”

Downstream of the combustion reactor, the flue gas, com-
prising mainly N2, H2O, CO2 and O2, passes another cyclone
and a subsequent radiation cooler before being sampled.

Several measurements are available for monitoring and
controlling plant operation, some of which are shown in the
block diagram in Figure 2.1.

2.1.1 Gas composition
The product gas composition is sampled every 5 s from a
Rosemount NGA 2000 device. In addition, a gas chromatog-
raphy (GC) takes samples approximately every 12 min. As
can be seen in Table 2.1, the set of species available from
each of the different devices is different. Notably the H2O
concentration cannot be observed in real time but is instead
measured offline at varying intervals. Also, the GC does not
capture the H2 concentration in the product gas whereas the
analyzer does not provide a value for the N2 concentration.
Flue gas composition is likewise monitored by an analyzer
of the same type but not by a GC.

Tar In the context of this work, tar is understood to cover
“hydrocarbons with a molecular weight higher than ben-
zene” [27, p. 2]. According to quantitative analysis the most
prominent species in this fraction is naphtalene.

One of the tar sampling points is located downstream of
the product gas cooler as depicted in Figure 2.1. The second
sampling point (not shown in the diagram) allows to sam-
ple the reaction mixture just above the bubbling bed. The
sampling is performed by absorption of tar components
in a suitable solvent (toluene in this case, which excludes
BTX-compounds from analysis). Since the solvent is cooled,

fier: Influence of fuel feeding on
process performance.” (2013).

[3] Benedikt et al., “Fuel flexible
gasification with an advanced
100 kW dual fluidized bed steam
gasification pilot plant.” (2018).

Table 2.1: Available product gas
composition measurements.

Species Analyzer GC

H2 ✓ ✗
CO ✓ ✓
CO2 ✓ ✓
CH4 ✓ ✓
C2H6 ✓* ✓
C2H4 ✓* ✓
H2O ✗ ✗
O2 ✓ ✓
N2 ✗ ✓

* not available in all data sets.

[27] Maniatis et al., “Tar Proto-
cols. IEA Bioenergy Gasification
Task.” (2000).
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water condenses as well, allowing for the simultaneous de-
termination of the water content. Quantification of the tar
fraction is performed by both thermogravimetric analysis
and GC/mass spectrometry (MS). The procedure is detailed
in [20].

Product Gas Mass Flow The product gas mass flow is measured
using a quarter circle nozzle specified in [7]. The device
geometry shown in Figure 2.3, is specifically designed to
measure low Re number flow rates as the discharge coeffi-
cient is only dependent on nozzle geometry. However, the
expansibility factor depends on material parameters and,
consequently, on the product gas composition.

Char Since there is no practical way to measure the flow rate
of char from the gasification reactor to the combustion reac-
tor, it is a quantity to be determined as part of the modeling
process.

Fuel Oil The fuel oil is fed to the combustion reactor by a
peristaltic pump hence the flow rate is determined by the
rotational speed of the pump.

Circulation Rate The circulation rate refers to the flow rate
of bed material exchanged between the two reactors. One
aspect is that the circulation rate influences how much char
is transported to the combustion reactor and consequently
how much heat is generated and transferred back to the
gasification reactor. The circulation rate has been shown to
strongly correlate with the pressure drop in the top section
of the combustion reactor [12]. The nature of this correlation
is depicted in Figure 2.4. Since the pressure drop is easily
measurable, it is used in the modeling of the plant.

The circulation can be controlled by varying the air flow
rate to the combustion reactor. In particular—unlike the
simplified illustration in Figure 2.1 suggests—primary, sec-
ondary and tertiary air feed lines are installed and can be
controlled independently. By increasing the primary air
flow rate, thus feeding a larger fraction of the total air flow
to the very bottom of the combustion reactor, particle en-
trainment and thus circulation rate will also increase.

Fuel Feed Rate Fuel is conveyed from one of the fuel feed
hoppers onto the bubbling bed by means of a screw conveyor.
Based on the rotational speed of the screw conveyor, the fuel
feed rate can be calculated.

BTX refers to benzene,
toluene and xylene.

[20] Kolbitsch, “First fuel tests
at a novel 100 kWth dual

fluidized bed steam gasifi-
cation pilot plant.” (2016).

[7] VDI/VDE 2041:1991 –Durch-
flussmessungmit Drosselgeräten.

Figure 2.3: Quarter circle noz-
zle taken from [7]. The term
refers to the rounded edge
of the orifice opening which
prescribes a quarter circle in the
cross-section.

H

p

�s

Figure 2.4: Pressure p and solids
fraction �s as function of riser
height H . Adapted from Kunii
et al. [24, p. 87].

[12] Fuchs et al., “A general
method for the determi-

nation of the entrainment
in fluidized beds.” (2018).
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Temperature Measurements A number of temperature probes
are arranged in the bubbling bed as well as along the height
of the reactor columns. The two temperatures most indica-
tive of the gasification process are the ones in the bubbling
bed in the gasification reactor and at the top of the combus-
tion reactor column [38].

Steam Flow Rate Steam enters the gasification reactor mainly
below the bubbling bed, acting as gasification and fluidiza-
tion agent. An additional amount is fed into the loop seals.
While the amount of steam entering via the inner loop seal
(ILS) is directly measurable, it is not known how much of
the steam fed into the LLS and ULS enters the gasification
reactor as opposed to the combustion reactor.

[38] Stanger et al., “Dynamic
modeling of dual fluidized bed
steam gasification for control
design.” (2023).





Data Compilation and Process-
ing
3

The aim is to identify a mathematical model of the gasifica-
tion reactor that can predict the product gas composition
depending on the current state and the reactor input pa-
rameters. A critical requirement is the robustness of the
model, i.e., the model should handle extreme input values
in such a way that the model output is within physical con-
straints.

3.1 Data Selection for Identification
Since the DFB plant should deliver insight into a number of
different areas of research, numerous trial runs have been
conducted using a range of different bed materials and fu-
els. Consequently, to have a common basis identifying the
gasification reactor model, only those data sets where the
same bed material and fuel were used are selected.

From the data sets available after the aforementioned ex-
clusions, only those data points are selected where the plant
was in steady-state operation to be able to identify the sta-
tionary model parameters. Steady-state operation was de-
termined by visually evaluating a set of predetermined key
operating parameters, namely:

• Fuel, steam, and air flow rates
• Gasification and combustion temperatures
• Circulation rate as indicated by the pressure drop in

the top section of the combustion reactor (see
Section 2.1).

• Main components compositions

Sample points were specified as average values over 5 min
to 20 min intervals of steady-state operation. The sample
points obtained in this manner are used to identify the sta-
tionary model parameters as explained in Section 4.2.1.

To illustrate this procedure, one particular data set is dis-
played in Figure 3.1. The diagram shows data from a trial run
on March 17, 2021 and covers a period of approximately 9 h.
Both air and oil flow rates were increased within the first
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1.5 h while the fuel flow rate was held constant throughout.
The steam flow rate was varied slightly in several instances.
During this period the input streams of fuel, steam, air, and
oil were held more or less constant.

0

0.2

0.4

0.6

0.8

5
20
50

100

800

900

1000

1200 1330 1500 1630 1800 1930 2100
0

2

4

6

ξ̃

Product Gas Composition

ṁ
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Figure 3.1: Test run on March 17, 2021. Steady-state sample intervals are
highlighted by .

As evidenced by the highlighted areas in the diagrams, the
aforementioned criteria are not strictly met, especially con-
cerning the combustion reactor temperature, which rises
from 910 °C to 1000 °C during the first 4 h of operation. Since
the temperature changes happened gradually their chang-
ing effect on the chemical reactions’ parameters was con-
sidered minor, allowing for the inclusion of the highlighted
periods in the identification data.

Equivalent diagrams for the
remaining data sets con-

sidered in this work can be
observed in Appendix D.
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3.2 Preprocessing
Mainly due to limitations in the data collection, as discussed
in Section 2.1, some preprocessing is required to ensure
physical consistency. In the context of this work, this per-
tains to the mass balance in particular. The following section
details the assumptions made as well as the strategies em-
ployed to reconstruct missing data.

3.2.1 Mass Balances
The first and most crucial step preceding the model iden-
tification is the evaluation of the gasification reactor mass
balance. Here, the primary challenge originates from the
lack of full knowledge about all input and output streams in
addition to incomplete measurements of product gas and
flue gas compositions as has been described in Section 2.1.
In particular, the water content of both gas streams is un-
known except for point-by-point data on the product gas
water and tar contents from offline measurements. While
the char flow rate transferred between the reactors cannot
be measured, it can be recovered from the carbon balance
around the combustion reactor. The overall mass balance
for the two reactors can be formulated as follows:

ΔṁGR = ṁfuel + ṁGR,LS
st − ṁPG − ṁchar − ṁtar , (3.1a)

ΔṁCR = ṁchar + ṁoil + ṁair + ṁCR,LS
st − ṁFG , (3.1b)

where ṁ denotes mass flow rates. The amounts of steam
entering the gasification reactor and combustion reactor,
respectively depend on the split ratio χLS = χLLS = χULS,
which is assumed to be equal for the LLS and the ULS.

While the differences between incoming and outgoing
mass for both reactors,ΔṁGR andΔṁCR should eq equal to
0 due to conservation of mass, the same principle applies
to the flows of the individual elements C, H, O, and N. The
element balances can be written using index notation:

Δṅi = βi jΔṅ j . (3.2)

It is important to note that in this work the bed material is
assumed to be inert. This stands in contradiction to findings
in literature [11, 33] where it has been demonstrated that
exposure of olivine to oxidizing gases such as O2, H2O or
CO2 will lead to the formation of various iron oxides on the
surface of the mineral particles. Consequently, exposure to
reducing gases like CO and H2 will reduce the iron oxides up
to free iron, whereas an oxidizing atmosphere will produce
iron oxides on the particle surface. Therefore, there should
be net transport of oxygen from the combustion reactor

In eqn. (3.1)

ṁGR,LS
st = ṁst +χLS

�
ṁLLS+ULS

st

�
ṁCR,LS

st = (1−χLS)
�
ṁLLS+ULS

st

�
holds, where the index LS refers
to both the LLS and ULS.

βi j designates one element of
the element-species matrix where
its value equals the number of
atoms of the element i in the
species j. Here, i takes the values
C, H, O and N while j takes the
values H2, CO, CO2, etc.

[11] Fredriksson et al., “Olivine as
tar removal catalyst in biomass
gasification: Catalyst dynamics
under model conditions.” (2013).

[33] Pecho et al., “Elucidation
of the function of olivine in
biomass gasification.” (2004).
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to the gasification reactor. An important argument for the
application of olivine as bed material in DFB plants is its
capability of reducing tar in the product gas and increasing
the yield of desired CO and H2. This has been attributed
mainly to the formation of Ca deposits on the bed material
due to contact with biomass ash [4, 23]. However, for the
TU Wien DFB plant, the catalytic effect of the bed material
on the formation of CH4 has been found to be insignificant
in previous works [4].

Char Production Rate

It is crucial to have information about the production rate of
char in relation to the operating parameters when modeling
the product gas composition. As discussed earlier, it is not
possible to determine the char production rate solely from
the gasification reactor mass balance without affecting the
combustion reactor mass balance. To close the mass balance,
several assumptions are made:

1. Feed, steam, oil, and air flow measurements are
assumed to be accurate.

2. Product gas and flue gas flow measurements are
assumed to not be accurate.

3. Water content in both product gas and flue gas are
assumed to not be accurate.

4. The split ratio is initially assumed to be χ0
LS = 0.5.

However, this assumption is later revised on the basis
of comparison with offline data (see Section 4.2.1).

Neither water nor N2 concentrations are consistently avail-
able. However, the product gas concentration influences the
calculation of the mass flow through the orifice from the
measured pressure drop as defined in [7]. Therefore, the
product gas and flue gas flow rates in the historical data are
assumed to be inaccurate.

Consequently, the water concentrations in both product
gas and flue gas were treated as free variables to be deter-
mined in such a way that conservation of mass is satisfied.

Finally, the N2 mass flow resulting from the flushing of
the temperature and pressure probes is unknown and thus
was treated as a variable quantity. For this purpose, the N2
concentration was approximated by

ξ̃N2
≈ 1−%

i

ξ̃i, where

i ∈ � = {H2,CO,CO2,CH4,C2H6,C2H4,H2O,O2} ,
(3.3)

using the available measurements.

[4] Benedikt et al., “Assessment
of correlations between tar

and product gas composition
in dual fluidized bed steam

gasification for online tar
prediction, biomass.” (2019).

[23] Kuba et al., “Influence of
coated olivine on the conversion

of intermediate products from
decomposition of biomass tars

during gasification.” (2016).
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The aforementioned assumptions can be summarized
in the following optimization problem, where the error in
the molar flow rates of each element (C, H, O, and N) Δṅi

is weighted by the corresponding molar flow entering the
reactor ṅin

i .

min f (xk) =

������
ΔṅGR � ṅGR

in

ΔṅCR � ṅCR
in


k

������
2

2

,

where xk =


ṅPG ṅFG ṅchar ṅN2

ξ̃PG
H2O ξ̃

FG
H2O

��
k,

subject to g (xk) =


(0≤ ṅPG ≤ 4.5)kmol/h
(0≤ ṅFG ≤ 4.5)kmol/h
(0≤ ṅchar ≤ 1)kmol/h
(0≤ ṅN2

≤ 0.2)kmol/h
0≤ ξ̃PG

H2O ≤ 1
0≤ ξ̃FG

H2O ≤ 1

 .
(3.4)

The solution to problem eqn. (3.4) is obtained through the
use of MATLAB’s fminconwith its default algorithm interior-
point. The constraints g (x )were put in place to ensure sen-
sible solutions. The lower bounds for the molar flow rates
are physically meaningful since the signs indicate the flow
direction (see eqn. (3.1)). The upper bounds, on the other
hand, were chosen arbitrarily but generously to limit the
solution set in order to aid the solver. In case of the prod-
uct gas and flue gas water contents, both lower and upper
bounds represent physical bounds. The algorithm uses a
variety of different concepts in nonlinear programming to
efficiently solve the problem [40].

Figure 3.2 shows the molar element balance for both re-
actors before and after solving (3.4). The data shown is com-
pounded from all steady-state periods which are selected
according to the procedure described in Section 3.1.

Prior to the correction, the char flow rate is unknown,
resulting in a positive C balance for the gasification reac-
tor. This indicates that more carbon is entering the reactor
than exiting. The opposite is true for the C balance for the
combustion reactor.

In the pre-correction evaluation of the material balance
of the gasification reactor, the water content ξ̃PG

H2O was as-
sumed to remain constant in between offline measurements.
In absence of offline measurements, a value of ξ̃PG

H2O = 0.4
was assumed. These simplifications likely caused the errors
in the H and O balances to be significant for the gasification
reactor.

In the case of the pre-correction combustion reactor bal-
ance, a value of ξ̃FG

H2O = 0.1 is assumed, while it is also consid-

The vector of molar flow rates is
constructed as follows:

ṅ =
	
ṅC ṅH ṅO ṅO
��

.

� denotes Hadamard divison, i.e.,
element-wise devision which is
implemented in MATLAB as ./.

[40] The MathWorks, Constrained
Nonlinear Optimization Algorithms.
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Figure 3.2: Molar element balance before (top) and after (bottom) correc-
tion for gasification reactor and combustion reactor, respectively. The
data is assembled from all steady-state points and is not contiguous.
Note that in case of the pre-correction gasification reactor balance N2
is not displayed for the sake of reasonable axis scaling.

ered a variable quantity to be determined through solving
the material balance.

Both post-correction balances show significantly lower
residual errors, however, it is evident that under the assump-
tions made, the errors could not be eliminated completely.



Hammerstein Model Identifica-
tion
4

During operation, the plant will generally operate in a steady
state once a set point is reached. Consequently, dynamic
changes in the product gas composition are expected to only
occur during set point changes, such as adjustments in fuel
feed rate. It is thus reasonable to emphasize the static rela-
tionship between model inputs and outputs over the system
dynamics and treat both components separately.

One such approach is the Hammerstein model in which
the input-output relationship is decomposed into a static
nonlinear block and a dynamic linear block, which are con-
nected in series. The general structure can be observed in
Figure 4.1. This approach has been successfully applied to
the identification of chemical systems [8].

In the following section, Section 4.1, the model input and
the system state are defined. In Section 4.2, the identifica-
tion of several linear regression models will be described.
Each of these models describes a particular static relation
between the system inputs and the corresponding outputs
e.g., the chemical reactions involved in the conversion of
the biomass fuel to the desired product gas and the char pro-
duction rate. Subsequently, the way these linear models are
combined into a single static nonlinear model will be de-
tailed. An alternative model will also be described, which is
used by the soft sensor in the event of an interruption in the
fuel feed rate. Several disturbances, which are introduced
to enhance the prediction accuracy of the model will be de-
scribed in Section 4.2.4, as well as the way they act on the
static part of the Hammerstein model. Finally, the modeling
of the system dynamics as part of the Hammerstein model
will be described.

4.1 Model Inputs and System States
The major input variables for the reactor system were chosen
as follows

u =
	
ṁfuel ṁst TGR TCR ṁair . . .

. . . ṁoil Δp67 ṁLS
st ΔpGR—CR
��

.
(4.1)

u x̂

Figure 4.1: Block diagram of a
Hammerstein model.

[8] Eskinat et al., “Use of Ham-
merstein models in identifi-
cation of nonlinear systems.”
(1991).
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Here ṁfuel and ṁst denote the fuel and steam mass flow rates
fed directly into the gasification reactor as shown in Fig-
ure 2.1. The gasification temperature TGR is measured just
below the top of the bubbling bed. This has proven to be a
reliable indicator for the performance of the gasification
process [20]. This makes sense since the chemical conver-
sion of the fuel mainly takes place in this zone due to good
mixing, promoting both mass and heat transfer.

The combustion temperature TCR, on the other hand, is
sampled at the top of the combustion reactor column.

As discussed in Section 2.1, the circulation rate is substi-
tuted by the pressure drop Δp67 in the upper part of the
combustion reactor.

On top of that, the air and oil flow rates, ṁair and ṁoil, also
enter the model.

The total amount of steam to the LLS and ULS, ṁLS
st , and

the pressure difference between the two reactors,ΔpGR—CR,
will be used to predict the amount of steam entering the
gasification reactor through the loop seals.

While the main goal is to estimate the product gas com-
position, the material balance should close at all times to
ensure a physically reliable prediction. Therefore, the out-
going gas flow rates were chosen over the concentrations to
comprise the system state. To be able to observe the amount
of char transferred from the gasification reactor to the com-
bustion reactor, it is necessary to include the flow rates of
the main flue gas components as well. The system state x is
therefore defined to comprise the molar flows of the product
gas components, H2, CO, CO2, CH4, C2H6, C2H4, O2, N2, and
H2O; the molar flow rate of char ṅchar transported to the com-
bustion reactor; the molar flow rate of tar ṅtar in the product
gas; and the molar flow rates of the main flue gas compo-
nents, O2, CO2, N2 and H2O. The mass flow of steam entering
the gasification reactor through the LLS and the ULS, ṁGR,LS

st
is included in the system state for evaluation purposes and
is not influenced by the other states. This results in a total
of 16 individual states.

4.2 Static Reactor Model

Utilizing the results from Section 3.2.1, several linear rela-
tionships between the plant inputs and the system state,
i.e., the products’ molar flow rates, were identified. In this
context, knowledge about the chemical reactions involved
in the gasification of the fuel is leveraged; while some of
the models are formulated following a purely data-driven
approach. The aim is to combine the linear models into a

x =



ṅPG
H2

ṅPG
CO

ṅPG
CO2

ṅPG
CH4

ṅPG
C2H6

ṅPG
C2H4

ṅPG
O2

ṅPG
N2

ṅPG
H2O

ṅchar

ṅtar

ṅFG
O2

ṅFG
CO2

ṅFG
N2

ṅFG
H2O

ṁGR,LS
st
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single nonlinear static model to form the first block of the
Hammerstein model structure.

4.2.1 Linear Model Identification

From the data compiled as described in Section 3.2, two
distinct subsets are formed. The total number of 86 steady-
state points is initially randomly ordered and subsequently
divided into an identification data set and a validation data
set, allocating one in every four samples to the validation
data set.

General Approach

The identification data is then used to identify parameters
for the characteristic relationships described subsequently.
Considering only linear mixed terms, a regression model
with two independent variables r(x1, x2)may take the form

r(x1, x2) = a00 + a10 x1 + a12 x1 x2 + a20 x2 ,

where ai are the model parameters to be determined by em-
ploying stepwise linear regression.

This method ensures that terms are added to the model
only if their parameters are different from zero with a pre-
determined level of significance. In particular, based on an
initial model, an F-test is performed on each parameter not
currently included in the model and the parameter with the
lowest p-value is added to the model. This step is repeated
until there is no parameter left that satisfies p < 0.05. Subse-
quently, an F-test is performed on each parameter included
in the model, with the parameter with the largest p > 0.1
being eliminated. If there is no parameter satisfying the
elimination criterion, the process terminates. Otherwise,
the previous step is executed again. In both the forward selec-
tion and the backward elimination, the null hypotheses reads

H0 : ai = 0 ,

Ha : ai �= 0 .

The procedure is available in MATLAB via stepwiselm() [41].

Chemical Reaction Progress

In order to describe the reaction system, a total of five equa-
tions, which have been identified in the literature [10] to
govern the biomass gasification process, are selected. These
are the water gas (WG) reaction, the water gas shift (WGS) re-
action, the methanation (MET) reaction, the steam methane

[41] The MathWorks, stepwiselm.

[10] Franco et al., “The study
of reactions influencing the
biomass steam gasification
process.” (2003).
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reforming (SMR) reaction and the Boudouard equilibrium
(BOU) reaction.

C(s) + H2O CO + H2 water-gas
(4.2a)

CO + H2O CO2 + H2 water-gas shift
(4.2b)

C(s) + 2 H2 CH4 methanation
(4.2c)

CH4 + H2O CO + 3 H2 steam-reforming
(4.2d)

CO2 + C(s) 2 CO Boudouard
(4.2e)

In equilibrium, each of the reactions will have progressed
only to a certain extent, with some amount of reactants re-
maining in the system. Assuming isobaric conditions, the
reaction progress is determined by the system temperature
T alone. The equilibrium constant K (T ) for each reaction fol-
lows from thermodynamics and may be written as follows:

KWG (T ) =
ξ̃CO ξ̃H2

ξ̃H2O
, KWGS (T ) =

ξ̃CO2
ξ̃H2

ξ̃CO ξ̃H2O
, KMET (T ) =

ξ̃CH4

ξ̃2
H2

,

KSMR (T ) =
ξ̃CO ξ̃

3
H2

ξ̃CH4
ξ̃H2O

, KBOU (T ) =
ξ̃2

CO

ξ̃CO2

.

(4.3)

While the equilibrium constants assume fixed values for
any given temperature, they do not take the kinetics of the
underlying reactions into account. It has been observed
that the reaction system does in fact not reach chemical
equilibrium. This is at least true for the SMR reaction—
while an amount of ξ̃CH4

≈ 10 % is commonly observed in
the product gas, equilibrium calculations predict virtually
no CH4 for T > 750 ◦C [36].

However, the expressions on the right-hand side, i.e., the
law ofmass action, may be computed for any non-equilibrium
state as well—naturally yielding deviating values. In gen-
eral, the main factors influencing the reaction kinetics are
reactor temperature, residence time, and mixing behavior,
i.e. mass transfer, and catalytic activity. These can be as-
sumed to directly depend on plant layout and operating pa-
rameters for the given DFB plant. Since the former is not
subject to frequent changes, it appears reasonable to model
these expressions in dependence of the plant input parame-
ters.

Even though the SMR reaction
has been found to be severely

kinetically inhibited under
prevalent operating condi-

tions [23] it appears reasonable
to model the CH4 concentra-

tion in relation to the other
main product gas components.

Note that solid carbon does
not enter the equation for
KBOU. Assuming the char
phase as solid carbon, its

mole fraction ξ̃C(s)
= 1.

[36] Schuster et al., “Biomass
steam gasification – an

extensive parametric
modeling study.” (2001).
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Motivated by this reasoning, for each of the reactions
eqn. (4.2) the law of mass action, i.e., the expression$

j

ξ̃
νi j

j ,

where νi j denotes the stoichiometric coefficient of species
j in reaction i, is evaluated. Corresponding linear models
ri (u) are then identified to predict the reaction progress in
terms of the system inputs.

C2 Components

As previously discussed, C2H6 and C2H4 are also present
in the product gas. The concentrations of these species
are modeled using a different approach for two reasons.
Firstly, fewer data are available for these components. Con-
sequently, identifying a model with fewer parameters in-
creases the confidence in these parameters benefitting the
reliability of its predictions. Secondly, the C2 components
undergo reactions analogous to the SMR reaction.

CxHy + x H2O x CO+
�

y/2+ x
�

H2 . (4.4)

Thus, it seems reasonable to model the C2-components in
relation to the CH4-concentration in the product gas:

ri

�
ξ̃CH4

�
= a0+a1ξ̃CH4

, where i = {C2H6, C2H4} . (4.5)

Char Production Rate

As mentioned before, a key unknown is the char flow rate
ṁchar. Given the reasonable assumption that the absolute
value of the char flow rate is proportional to the fuel flow
rate, a linear model rchar (u) for the ratio

ṁchar

ṁfuel
(4.6)

is fitted to the identification data.

Product Gas Analyzer N2 Correction

The N2 concentration in the product gas is only available
through the GC analysis. However, it can be inferred from
the analyzer data through eqn. (3.3). The resulting concen-
tration ξ̃wf

N2
does, however, exceed the values reported by the

GC, since trace gases are not considered in the calculation.
Therefore, another linear model is identified to correct the
calculated value:

rN2

�
ξ̃

wf,analyzer
N2

�
= a0 + a1ξ̃

wf,analyzer
N2

. (4.7)

This model is intended to serve as a fallback, in the event
of the GC measurement being unavailable.

By convention, the stoichio-
metric coefficient is positive
for products and negative for
reactants.
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Loop Seal Split Ratio

Finally, the steam flow rate from the upper and lower loop
seals (see Figure 2.1) into the gasification reactor and the
combustion reactor, respectively, is unknown, as only the
total steam flow rate to each of the loop seals is accessible
by measurement. While an even split might be assumed,
this assumption did not yield satisfactory results with re-
gard to the material balances for each reactor. However, the
split ratio cannot be directly recovered from the material
balances of the two reactors because the measured total loop
seal steam flow rate, ṁLS

st , may be insufficient to resolve both
material balances.

Therefore, an attempt is made to correct the split ratioχLS
starting from an initially assumed value of

χLS = ṁGR,LS
st /ṁLS

st
= 0.5 ,

The product gas water content ξ̃PG
H2O is determined by solv-

ing eqn. (3.4). Considering all steady-state points for which
offline water content measurements have been conducted,
the relative error �H2O in the product gas water content was
computed as follows:

�H2O =
ξ̃PG

H2O

ξ̃PG,offline
H2O

− 1 . (4.8)

The expression

�H2O

�−H2O
,

where �−H2O is the minimum observed error as per eqn. (4.8)
out of all sample points, is evaluated. Its value is subse-
quently fitted by a linear model

rH2O(ΔpGR—CR) ∈ [0,1] . (4.9)

The steam flow rate entering the gasification reactor via
the upper and lower loop seals is then predicted as follows:

ṁGR,LS
st =
�
χ0

LS + rH2O
�
1−χ0

LS

��� �� �
χLS(ΔpGR—CR)

ṁLS
st . (4.10)

This approach yields better results concerning the closure of
the material balance of the gasification reactor, in compari-
son to the assumption of a constant split ratio for all data
sets. Still, it can only be regarded as a best-guess estimate as
discussed in the following section.
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4.2.2 Combined Static Reactor Model

Utilizing the linear regression models identified earlier, a
combined static nonlinear model is created in form of an
implicit function F(u, x̄ ) = 0 with the current input vector
u and the static model prediction x̄ of the system state. The
individual entries of F are computed as follows:

F1(u, x̄ ) =
ṅchar

ṁfuel/Mwaf
char

rchar(u)
− 1= 0 , (4.11a)

F2(u, x̄ ) =
ṅtar

ṅwf
PG/Mwaf

tar
rtar(ξ̃wf

CH4
)
− 1= 0 , (4.11b)

F3(u, x̄ ) =
ξ̃H2
ξ̃CO/ξ̃H2O

rWG(u)
− 1= 0 , (4.11c)

F4(u, x̄ ) =
ξ̃H2
ξ̃CO2/ξ̃COξ̃H2O

rWGS(u)
− 1= 0 , (4.11d)

F5(u, x̄ ) =
ξ̃CH4/ξ̃2

H2

rMET(u)
− 1= 0 , (4.11e)

F6(u, x̄ ) =
ξ̃3

H2
ξ̃CO/ξ̃CH4

ξ̃H2O

rSMR(u)
− 1= 0 , (4.11f)

F7(u, x̄ ) =
ξ̃2

CO/ξ̃CO2

rBOU(u)
− 1= 0 , (4.11g)

F8(u, x̄ ) = ξ̃O2/CO2
− 1= 0 ,

where CO2
= 10−4 ,

(4.11h)

F9(u, x̄ ) =
ξ̃C2H6

rC2H6
(ξ̃wf

CH4
)(1− ξ̃H2O)

− 1= 0 , (4.11i)

F10(u, x̄ ) =
ξ̃C2H4

rC2H4
(ξ̃wf

CH4
)(1− ξ̃H2O)

− 1= 0 , (4.11j)

F11...14(u, x̄ ) =ΔṅGR � ṅGR
in = 0 , (4.11k)

F15...18(u, x̄ ) =ΔṅCR � ṅCR
in = 0 , (4.11l)

F19(u, x̄ ) =
ṁGR,LS

st�
χ0

LS + rH2O
�
1−χ0

LS

��
ṁLS

st
− 1= 0 .

(4.11m)

All entries in eqn. (4.11) are expressed as fractions. This
form was chosen for scaling purposes. Note that the mole
fractions ξ̃i are computed according to

ξ̃i =
ṅi&
j ṅ j

(4.12)

from the system state vector, prior to evaluating F(u, x ).

ṅ denotes the element molar
flow rates as opposed to the
species molar flow rates:

ṅ =
	
ṅC ṅH ṅO ṅN

��
.
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Eqn. (4.11a) sets the state prediction of the char flow rate
ṅchar in relation to the value predicted by the linear regres-
sion model rchar (u). Since the model predicts the char-to-
fuel mass ratio, the factor ṁfuel/Mwaf

char
, with the molar mass

of water-and-ash-free char Mwaf
char, is needed as well. The

expression evaluates to zero if the system state prediction
equals the linear model prediction.

Similarly, eqn. (4.11b) sets the system state prediction in
relation to the linear model prediction rtar (u). Again, a con-
version factor ṅwf

PG/Mwaf
tar

is needed, where ṅwf
PG is the total dry

product gas mole flow and Mwaf
tar is the molar mass of water-

and-ash-free tar.
Eqns. (4.11c) to (4.11g) are all defined with the law of mass

action for reactions eqn. (4.2) in the numerator and the corre-
sponding linear model in the denominator. Each expression
equals zero when the law of mass action takes the value
predicted by the corresponding linear model.

The model for the O2 concentration, eqn. (4.11h), is the
simplest, as it assumes a constant value.

Since the linear models for the C2 components reflect dry
compositions, the conversion factor (1− ξ̃H2O) is required
in eqns. (4.11i) and (4.11j).

Eqns. (4.11k) and (4.11l) represent the relative molar ele-
ment balance for the gasification reactor and combustion
reactor, respectively. This ensures the conservation of mass
in the prediction step—at least in a least-squares sense.

Finally, F19 sets the steam mass flow rate entering the gasi-
fication reactor via the upper and lower loop seals, ṁGR,LS

st ,
to the value predicted by the model eqn. (4.10).

Eqn. (4.11) is a system of 19 nonlinear equations for nx = 16
system states. In particular, eqn. (4.11) is reformulated as a
constrained optimization problem

min
x̄
�F(u, x̄ )�22 ,

subject to x̄ i ≥ 0, i = 1,2, . . . , nx .
(4.13)

Clearly, the solution is subject to constraints since a negative
sign implies an incoming as opposed to an outgoing flow.
Problem eqn. (4.13) is solved iteratively at each time step us-
ing the least-squares solver implementation lsqnonlin(),
which is a least-squares solver available in MATLAB.

4.2.3 Alternative Static Reactor Model
During gasification tests, the fuel feed may be interrupted,
i.e., ṁfuel = 0kg/h. In this case, the static model eqn. (4.11) is
no longer valid since it is largely based on regression models
identified for a limited range of set points, rather than on
first principles only. Consequently, an alternative model, F̃,

The identification of the tar
model was not conducted as
part of this work. Instead, it
was adopted from an IPSEpro

model of the DFB plant, which is
based on [4]. The IPSEpro model is

described in some detail in [21].
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is used in this case. The alternative model simply sets the
molar flow rates of all species except N2 and H2O exiting
the gasification reactor to ṅi = 0kmol/h. The gasification
reactor and combustion reactor material balances remain
unaltered, as well as the equation corresponding to ṁGR,LS

st .
Mathematically, the model is formulated as follows:

F̃i(u, x̄ ) =
ṅi

10−10 kmol/h
− 1= 0 .

∀i ∈ � = {H2, CO, CO2, CH4, C2H6, . . .

C2H4, O2, char, tar} , |� |= 9 ,
(4.14a)

F̃10...13(u, x̄ ) =ΔṅGR � ṅGR
in = 0 , (4.14b)

F̃14...17(u, x̄ ) =ΔṅCR � ṅCR
in = 0 , (4.14c)

F̃18(u, x̄ ) =
ṁGR,LS

st�
χ0

LS + rH2O
�
1−χ0

LS

��
ṁLS

st
− 1= 0 .

(4.14d)
This means the number of equations in the model is reduced
by one, but it still exceeds the number of variables.

4.2.4 Disturbance States
To improve the prediction accuracy of the Hammerstein
model, described in earlier, based on previous measure-
ments nd = 8 disturbance states di were defined:

d =
	
dCO dCO2

dCH4
dC2H6

dC2H4
dO2

dchar dN2

��
. (4.15)

The first six disturbance states correct the molar flow rates
of the associated product gas species according to

ṅi → ṅi

di
, where

i ∈ � = {CO,CO2,CH4,C2H6,C2H4,O2} ,
(4.16)

which is done before evaluating eqn. (4.11).
Similarly, the char flow rate predicted by the regression

model eqn. (4.6) is corrected through a disturbance state as
well:

rchar→ rchar

dchar
. (4.17)

In contrast, dN2
represents the unknown molar flow rate

of N2 introduced into the system due to flushing tempera-
ture and pressure probes (see Section 2.1).

As a consequence, the optimization problem eqn. (4.13)
becomes

min
x̄

��F(u, x̄ , d̂)
��2

2 ,

subject to x̄ i ≥ 0, i = 1,2, . . . , nx .
(4.18)
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where d̂ denotes the estimate of the disturbances. It is ob-
tained through the use of a dedicated EKF, which will be
described in Section 5.3.

4.3 System Dynamics
Based on historical data, the molar flow rates of the product
gas components appear to express exponential decay fol-
lowing a fuel feed rate interruption. Consequently, a simple
first-order dynamic ansatz is made:

ẋ i = − 1
τi

�
x i − fi

�
u, d̂
��

, i = 1,2, . . . , nx , (4.19)

whereτi is the time constant associated with each state. The
particular value is considered a tuning parameter to be de-
termined. The function fi

�
u, d̂
�

denotes the static model
prediction of the ith system state, which is mathematically
given by

f
�
u, d̂
�
= argmin

x̄

��F(u, x̄ , d̂)
��2

2 (4.20a)

subject to x̄ i ≥ 0, i = 1,2, . . . , nx . (4.20b)

The obvious advantage of this ansatz is its simplicity, how-
ever, the drawback is that time constants are only associated
with each state. This makes it impossible to fit different time
constants for different inputs, such as the fuel feed rate or
the steam flow rate.

In contrast to the system states, the disturbances are as-
sumed to remain constant over time.

ḋi = 0 , i = 1, 2, . . . , nd , (4.21)

This concludes the layout of the Hammerstein model as
depicted in Figure 4.1.

In the observer design, a
discretized version of this
ansatz is employed, which

will be detailed in Section 5.2.

Refer to Appendix C
for an overview of the

soft sensor parameters.



Observer Design5
The Hammerstein model developed in Chapter 4 provides
the system state prediction for an EKF-type observer form-
ing the core of the soft sensor. The following chapter com-
mences by describing the general structure of the soft sensor,
followed by a dedicated section for each of its components.
These include a Kalman filter for estimating the system state,
EKFx, and another Kalman filter for estimating the distur-
bance state, EKFd, described in Section 5.2 and Section 5.3,
respectively. The delayed GC measurements necessitate spe-
cial treatment to fuse them using the optimal gain, which
will be detailed in Section 5.4. Additionally, the mechanism
used to detect faults in any of the measurements will be de-
scribed in Section 5.5. For further information, a description
of the code structure of the soft sensor is included in Appen-
dix A, as well as a brief description of the online monitoring
interface developed within the scope of this work.

5.1 General Structure

The central element of the soft sensor is formed by an EKF
to estimate the system state x . It will be referred to by EKFx
and will be described in detail in Section 5.2. It uses the
measurements zana from the two analyzers and zGC from the
GC to correct the system state predictions generated by the
Hammerstein model. It assumes the following non-linear,
time-invariant, discrete model for the system.

xk+1 = Φx xk + Γ x f (uk) + wx,k (5.1a)
zana

k = hana
x (xk) + vana

k , (5.1b)
zGC

k = hGC
x (xs) + vGC

s (5.1c)

where Φx and Γ x denote the state transition matrix and the
control input matrix. wx ∼ � (0,Qx) and v ∼ � (0,R) de-
note the process noise and the measurement noise; both
are assumed to be normally distributed with zero mean and
covariance matrices Qx and R, respectively. The output func-
tion is referred to by hx (x ) and is non-linear; its individual
entries will be described in Section 5.2. zGC

k in eqn. (5.2c) is

The subscript x alludes to the
system state x .

The individual entries of the
measurement vectors zana

k and
zGC

k are given by

zana =



zPG,ana
H2

zPG,ana
CO

zPG,ana
CO2

zPG,ana
CH4

zPG,ana
O2

zPG,ana
N2

zFG,ana
O2

zFG,ana
CO2

zFG,ana
N2


, zGC =



zGC
CO

zGC
CO2

zGC
CH4

zGC
C2H6

zGC
C2H4

zGC
O2

zGC
N2


.
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Model

hana
x (x̂ )

hana
d

�
d̂
�
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x,k

+

+

−
yana

x,k

K ana
d,k

+

+

− yana
d,k

x̂ k−1

uk−1

d̂k−1

x̂ k|k−1

d̂k|k−1

zana
k
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Measurements

Handling

zGC
k

+

+

x̂ k

d̂k

δx̂ k

�
zGC

k

�

δd̂k

�
zGC

k

�

Figure 5.1: Block diagram of the soft sensor comprising the EKFx for esti-
mating the system state, indicated by , and the EKFd for estimating
the disturbances, indicated by . The delayed GC measurements are
handled in a special way, as indicated.

the GC measurement taken at time s = k − Ts
GC/Ts, where

Ts
GC = 12 min is the sampling time of the GC. The optimal

gain to fuse the delayed measurement at time k will be de-
scribed in Section 5.4.

Figure 5.1 also displays the second EKFd. It facilitates the
correction of the static reactor model employing the distur-
bance state d, thereby improving future predictions based
on past measurements. The temporal development of the
disturbances is assumed to be driven solely by white noise.
Consequently, the disturbance model reads as follows:

dk+1 = Φd dk + wd,k, where Φd = I (5.2a)
zana

k = hd (dk) + vana
k , (5.2b)

zGC
k = hGC

d (ds) + vGC
s (5.2c)

where, again, the process noise wd ∼� (0,Qd) and the mea-
surement noise vd ∼� (0,R) are assumed to be zero-mean
Gaussian distributed with covariance matrices Qd and R,
respectively. Again, in eqn. (5.2c), zGC

k is the delayed mea-
surement.

A common event during the operation of the DFB gasifi-
cation plant is the gas analysis equipment reporting erro-
neous values. This is solved by a fault detection mechanism
described in Section 5.5 based on the EKFx’s innovation se-
quence.
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5.2 Extended Kalman Filter for System State
Estimation

In this section, the equations of the EKFx will be described.
Theapriori estimate generated using the Hammerstein model
is given by

x̂ k|k−1 = Φx x̂ k−1 + Γ x f (uk−1) , (5.3a)
Px,k|k−1 = Φx Px,k−1Φ

�
x +Qx , (5.3b)

where x̂ k|k−1 is the a priori estimate of the current time step,
x̂ k−1 is the a posteriori estimate of the previous time step and
f (uk−1) is the Hammerstein model prediction of the static
system state, as described in Section 4.3. Px denotes the
estimation error covariance matrix. The process noise co-
variance matrix Qx is unknown and is considered a tuning
parameter.

The matricesΦx and Γ x are determined by applying a semi-
implicit Euler scheme to the dynamic ansatz eqn. (4.19):

x̂ i,k|k−1 =
2τi − Ts

2τi + Ts
x̂ i,k−1 +

2Ts

2τi + Ts
fi (uk−1) , (5.4)

where Ts = 5s is the sampling time the soft sensor oper-
ates at. Consequently, Φx and Γ x evaluate as the following
diagonal matrices:

Φ = diag

�
2τ1 − Ts

2τ1 + Ts
, . . . ,

2τnx
− Ts

2τnx
+ Ts

 
and

Γ = diag

�
2Ts

2τ1 + Ts
, . . . ,

2Ts

2τnx
+ Ts

 
,

(5.5)

The a posteriori estimate x̂ k is obtained as follows:

x̂ k = x̂ k|k−1 + K ana
x,k yana

x,k +δx̂ k , (5.6a)

Px,k =
�
I− K ana

x,k Hana
x,k

�
Px,k|k−1 +δPx,k , (5.6b)

where the system state is corrected by the product of the
Kalman gain K ana

x,k and the innovation yana
x,k . The correction

termsδx̂ k andδPx,k are non-zero only at the time a GC mea-
surement becomes available, which will be discussed in Sec-
tion 5.4. The measurement sensitivity matrix Hana

x,k is defined
as the partial derivative of the output equation hana

x with re-
spect to the system state x evaluated at the a priori estimate:

Hana
x,k =

∂ hana
x

∂ x

����
x̂ k|k−1

. (5.7)

At this point τi = τ = 6Ts = 30 s
is assumed. This assumption
will be tested in Section 6.5.
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With this definition, the Kalman gain is derived:

K ana
x,k = Px,k|k−1 Hana�

x,k

�
Hana

x,k Px,k|k−1 Hana�
x,k +Rana
�−1

, (5.8)

where� indicates the transpose of the matrix. The covari-
ance matrix Rana of the measurement noise of the analyzers
is unknown and considered a tuning parameter.

The innovation yana
x,k is defined as

yana
x,k = zana

k − hana
x

�
x̂ k|k−1

�
, (5.9)

where each of the vectors comprises the entries correspond-
ing to the species measured by the product gas and flue gas
analyzers.

Since the system state comprises the molar flow rates but
the analyzers measure water-free mole fractions, the output
function hana

x takes the following form:

hana,PG
x,i (x ) = ξ̃PG,wf

i =
ṅPG

i&
j ṅPG

j

, where

i, j ∈ � PG = {H2, CO, CO2, CH4, C2H6, C2H4, N2, O2} ,
(5.10a)

hana,FG
x,i (x ) = ξ̃FG,wf

i =
ṅFG

i&
j ṅFG

j

, where

i, j ∈ � FG = {CO2, N2, O2} ,
(5.10b)

where i refers to any of the species in� , whereas j runs over
all species, as indicated.

5.3 Extended Kalman Filter for Disturbance State
Estimation

As described in Section 5.1, these disturbance states are esti-
mated by the EKFd. Based on the underlying model eqn. (5.2),
the a priori estimate of the disturbance state, considering
the disturbance state transition matrixΦd = I, is obtained
through

d̂k|k−1 = d̂k−1 , (5.11a)
Pd,k|k−1 = Pd,k−1 +Qd , (5.11b)

where the covariance matrix Qd is unknown and considered
a tuning parameter.

The a posteriori estimate follows from

d̂k = d̂k|k−1 + K ana
d,k yana

d,k +δd̂k , (5.12a)

Pd,k =
�
I− K ana

d,k Hana
d,k

�
Pd,k|k−1 +δPd,k . (5.12b)

As in the case of the product
gas analyzer, the N2 concen-
tration in the flue gas is also

inferred from the available
species concentrations from

ξ̃FG,wf
N2
≈ 1− ξ̃FG,wf

CO2
− ξ̃FG,wf

O2 .
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where, again, the correction terms δd̂k and δPd,k are non-
zero only at the time a GC measurement becomes avail-
able. The measurement sensitivity matrix is computed anal-
ogously to eqn. (5.13):

Hana
d,k =

∂ hana
d

∂ d

����
d̂k|k−1

, (5.13)

where the output function’s partial derivative with respect
to the disturbance states is evaluated at the a priori estimate
d̂k|k−1. The Kalman gain K ana

d,k to update the disturbances
based on the analyzer measurements reads

K ana
d,k = Pd,k|k−1 Hana�

d,k

�
Hana

d,k Pd,k|k−1 Hana�
d,k +Rana
�−1

, (5.14)

where the unknown measurement noise Rana is considered
a tuning parameter.

The innovation yana
d,k is defined as

yana
d,k = zana

k − hana
d

�
d̂k|k−1

�
. (5.15)

Due to the way the disturbances act on the system states
according to eqn. (4.16), the corresponding individual output
functions hana,PG

d,i take the same form as eqn. (5.10a):

hana,PG
d,i (x ) = ξ̃PG,wf

i =
ṅPG

i&
j ṅPG

j

, where

i, j ∈ � PG = {CO, CO2, CH4, C2H6, C2H4, N2, O2} ,
(5.16a)

hana,FG
d,i (x ) = ξ̃FG,wf

i =
ṅFG

i&
j ṅFG

j

, where

i, j ∈ � FG = {CO2, O2} .
(5.16b)

Given the air and oil flow rates into the combustion reactor,
the char flow rate determines the amounts of CO2 and O2 in
the flue gas, so the corresponding water-free concentrations
from the flue gas analyzer are used to correct the disturbance
dchar, resulting in eqn. (5.16b).

5.4 Delayed Measurements
As noted earlier, the GC analysis takes approximately 12 min
for one sample to complete. Consequently, a GC measure-
ment, zGC

s , taken at time s and becoming available at time k
will be delayed by N = k − s time steps. The time at which
this occurs will be referred to as a major instance whereas all
other instances will be referred to as a minor instances. The



32 OBSERVER DESIGN

situation is illustrated in Figure 5.2. This means that the
GC measurement cannot be fused straightforwardly using
eqn. (5.6) since the Kalman gain matrices at both instances
are generally different: K GC

k �= K GC
s .

Various solutions exist to deal with this problem, the most
trivial of which involves recalculating the previous N steps
of the filter the moment the delayed measurement becomes
available. This approach, however, is deemed unfeasible
since the computational burden is concentrated on a sin-
gle instant, potentially resulting in the computation time
exceeding the sampling time Ts.

In this work, the delayed measurement is extrapolated from
instant s to instant k, a method derived in [25]. The core
idea is to store the filter state at time s and to modify the
update step eqn. (5.6) at time k to account for the time delay
to fuse the delayed measurement. Using this method, the
correction terms take the following form:

δx̂ k = K GC
x,k

�
zGC

k − hGC
x

�
x̂ s|s−1

��
, (5.17a)

δPx,k = −K GC
x,k HGC

x,s Px,s|s−1M�x . (5.17b)

The extrapolated measurement, z̃GC
k , is defined such that

z̃GC
k − hGC

x (x̂ k) = zGC
k − hGC

x (x̂ s) (5.18)

holds. Based on this definition, the optimal gain is given by
the Kalman gain

K GC
x,k = MxPx,sH

GC�
s

�
HGC

x,s Px,sH
�
x,s+RGC

s

�−1
. (5.19)

Since the Kalman gain K GC
x,k needs to reflect the time delay

the delay matrix Mx is introduced, which is calculated by

Mx =
N−1$
i=0

�
I− K GC

x,k−iH
GC
x,k−i

�
Φx,k−i−1, (5.20)

and which satisfies the following relationship

Px,sM
�
x = �
�
(x̂ − x )s(x̂ − x )�k

�
, (5.21)

where (x̂ − x ) is the estimation error.
Substituting the index d for x, the correction terms δd̂k

and δPd,k are obtained.
Using this method, only eqn. (5.20) needs to be evaluated

at each time step, in addition to storing the filter state at
time s in the form of x̂ s|s−1 and Px,s|s−1 to be able to fuse the
delayed measurement zGC

k at time k.

System
state

Filter
state

zGC
k

xs xk

x̂ s x̂ k

zana
s zana

k

Figure 5.2: System with delayed
measurement zGC

k , adapted from
[25].

The authors note that, strictly
speaking, optimality is only

ensured for a linear system.

[25] Larsen et al., “Incor-
poration of time delayed

measurements in a discrete-
time Kalman filter.” (1998).
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5.5 Fault Detection

During the operation of the DFB gasification plant, faulty
measurements occur, which have to be detected and iso-
lated to ensure that they are not used in the state estima-
tion. This involves discarding the measurements from the
affected device and not using them in the a posteriori esti-
mate eqns. (5.6) and (5.12).

One particular type of fault concerning the gas analy-
sis equipment is related to the gas cleaning procedure pre-
ceding the analysis, which is detailed in Section 2.1. Since
the impinger bottles are loaded with tars over time, it is
necessary to replace them with ones containing fresh sol-
vent. During the replacement, the sampling line will be
interrupted and the composition data reported by the down-
stream measurement equipment does not reflect the actual
gas composition. This scenario affects both online analyzers
as well as the GC.

Furthermore, the GC is regularly used to analyze other
product streams in the plant. Consequently, the same issue
arises, namely that the reported data does not reflect the
product gas composition during those periods.

In particular, a scalar measure is used to detect faults. This
measure is strictly motivated by statistical reasoning, al-
beit the threshold parameters are determined heuristically
rather than based on statistics, as will be explained in the
following section.

5.5.1 General Kalman Filter-based Approach

For detecting faults, different approaches exist, including
data-driven and model-based methods [6]. Common ap-
proaches for model-based fault detection in control systems
are based on the analysis of a Kalman filter’s innovation
sequence y [13, 14, 45]. In the context of this work, this type
of method is attractive since an EKF is already being used.

One such approach described in [45, p. 157] is outlined in
the following, based on the linear system

xk+1 = Φxk + Γuk + wk , (5.22a)
zk = Hx̂ k + vk . (5.22b)

The process and measurement noises, denoted by wk ∼� (0,Q) and vk ∼� (0,R), respectively, are both assumed
to have zero mean and covariances Q and R, respectively.
Additionally, both noise sequences are assumed to be uncor-
related:

�
�
wkv�l
�
= 0 . (5.23)

[6] Chiang et al., Fault Detection
andDiagnosis in Industrial Systems.
(2001).

[14] Hajiyev et al., Fault Diagno-
sis and Reconfiguration in Flight
Control Systems. (2003).

[45] Wang et al., Model-Based
Fault Diagnosis. (2023).

Eqn. (5.22) is not connected to
eqn. (5.1) but is solely introduced
to illustrate the derivation of the
fault measure in this section.
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The assumption of zero mean white noise is also made
for the initial condition for the estimation error x̃ 0:

x̃ 0 ∼� (0, P0) . (5.24)

Again, the initial condition is assumed to be uncorrelated
with the noise sequences:

�
�
x̃ 0w�k
�
= 0 , �
�
x̃ 0v�k
�
= 0 . (5.25)

Based on these assumptions, it can be shown [45] that the
innovation sequence yk follows the distribution

yk ∼� (0,Σk) , where Σk = HPk|k−1H�+R , (5.26)

where Σk is the covariance of the innovation sequence yk.
In a fault scenario, yk no longer satisfies eqn. (5.26). This can
be exploited for detecting a fault by introducing the scalar
measure

λk = y�kΣ
−1
k yk, (5.27)

which, under the earlier assumptions, satisfies aχ2
ny

-distrib-
ution with ny degrees of freedom, i.e., the dimension of the
innovation vector. A hypothesis test to determine whether
eqn. (5.26) holds may therefore be formulated as follows:

H0 : λk ∼ χ2
ny

, (5.28)

H1 : λk � χ2
ny

. (5.29)

An arbitrary confidence level 1−αmay be defined to obtain
a threshold parameter θ , such that

� (λk ≤ θ ) = 1−α . (5.30)

The decision rule for the hypothesis test eqn. (5.28) may then
be formulated by comparing the test statisticλ to the thresh-
old θ :

λk ≤ θ Fault-free, (5.31a)
λk > θ Faulty. (5.31b)

The test statistic may be computed for each of the available
measurement sources separately and compared to a given
threshold.

5.5.2 Heuristic Determination of the Fault Thresholds
The assumptions regarding the Gaussianness of the process
noise and measurement noise sequences made in Section 5.1
are violated in the case of the soft sensor. As a consequence,

ny denotes the dimension of
the innovation sequence.
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the test statistic λ does not follow a χ2-distribution, as is
evident by looking at the histograms in Figure 5.3. There-
fore, the threshold parametersθ are defined heuristically by
analyzing the values of the fault measure λ during known
faults in the historical data such that these events are de-
tected. The aim is to set the thresholds as low as possible, to
make the detection more sensitive, but also to set them as
high as necessary to not detect a fault when in fact the devi-
ation between prediction and observation originates from
model limitations as opposed to faults in the measurements.

It is worth noting that, in contrast to the analyzer data
for product gas and FG, the probability density function
of the GC measurements exhibits a significant tail. This
can be attributed to the fact that the GC device was used at
times to analyze different gas streams and consequently did
not reflect the actual product gas composition, leading to
large values of the test statistic. In contrast, the periods in
which the analyzers were reporting false data, i.e., when the
gas cleaning impinger bottles were being exchanged, were
rather short compared to the periods of normal operation.

5.5.3 Additional Measures in the Case of a Fault
When a fault occurs in one of the measurement channels,
the value of the associated test statistic is expected to in-
crease gradually instead of abruptly. For this reason, due
to the compromise between high sensitivity and low false
alarm rate in defining the thresholds, several faulty mea-
surements may already have been fused, once the threshold
is exceeded.

In order to avoid these potentially false measurements
to influence the filter state in subsequent iterations, two
measures are taken. The covariance matrices Px and Pd are
recomputed for the last 12 time steps using only the predic-
tion steps eqns. (5.3b) and (5.11b). In addition, the distur-
bance state is reset to the state at time k− 12. At this point,
the value 12 is chosen arbitrarily and is to be evaluated in
Chapter 6.
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Figure 5.3: Histograms of the
test statistics eqn. (5.27) for the
three measurement sources. The
histograms show the normalized
number n of occurrences, such
that the total area evaluates to 0.
The thresholds for each of the
sensors are also indicated and
can be observed in Appendix C.
The values for the test statistic
were generated by running the
soft sensor on historic data sets.
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The soft sensor performance was validated as part of a gasi-
fication test conducted with the DFB gasification plant at
TU Wien.

First, the individual models introduced in Section 4.2.1
entering the combined static model will be evaluated in Sec-
tion 6.1 by comparing their predictions against that part of
the historical data reserved for validation.

Subsequently, the soft sensor’s performance during a gasi-
fication test will be discussed. The data shown in Section 6.2
and Appendix A.2 is therefore new and has not been used
in the prior identification process. The analysis will include
the estimation of the product gas composition in Section 6.2
with special focus on the water content, and the fault detec-
tion.

The comparison between predicted and measured flue
gas composition and the estimated char flow rate during the
test will be discussed more briefly in Section 6.3.

More emphasis will be laid on the time development of
the disturbance states in Section 6.4, followed by an eval-
uation of the dynamic behavior of the system states in re-
sponse to an interruption of the fuel feed in Section 6.5.

In addition, the stability and the observability will be eval-
uated in Section 6.6.

The chapter concludes with several suggestions for im-
provement of the soft sensor based on the evaluation of the
gasification test.

6.1 Linear Model Evaluation

The individual models discussed above are evaluated using
the validation data set. For this purpose parity plots, which
compare the model predictions to the actual data, are shown
in Figure 6.1.

It can be observed that for reactions eqns. (4.2a) to (4.2c)
the models produce good predictions for the validation data,
with the prediction errors predominantly within ±20 %.

In contrast, the predictions of reaction eqn. (4.2d) exhibit
larger errors. It has been suggested in the literature [4] that
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Figure 6.1: The parity plots show the performance of the regression mod-
els on the validation data. Aside from indicators for a prediction error
of ±20 % the data points are colorized according to their prediction
error.

changes in CH4 concentration may be attributed to dilution
effects, rather than conversion through the SMR reaction,
which may explain the larger prediction errors.

While the model predictions for reaction eqn. (4.2e) are
largely within the ±20 %-range, the data is clustered around
a narrow range of values. This indicates a weak correlation
with the model parameters.

As mentioned above, only a limited number of data points
were available for the identification of the C2 models. There-
fore, the parity plots for both models provide only limited
meaningfulness, despite the fact that the predictions ex-
press acceptable deviations from the data. The same is true
for the N2 model.

The model for predicting the loop seal split ratio exhibits
substantial prediction errors, underlining that it may be
regarded as a best-guess estimate only.

The largest errors among the models can be observed in
the prediction of the char flow rate. This likely results from
the char flow rate having been inferred from the mass bal-
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ance (see Section 3.2.1) and has not been measured directly.
Therefore, inaccuracies in flow rate and composition mea-
surements naturally accumulate in the calculated value of
the char flow rate.

6.2 Product Gas Composition

Overall, the soft sensor estimates of the product gas compo-
sition are in close agreement with the measurements, as can
be seen in Figure 6.2. This is particularly true for the main
components CO, CO2, and CH4, as well as for the C2 compo-
nents. This is a consequence of the corresponding values
defined in the covariance matrices Q and R, and the model
correction. The O2 concentration reported by the analyzer
assumes values of ξ̃O2

≈ 2 · 10−3 from the start until t ≈ 3h,
being in good agreement with the measurements from the
GC. After the first fault, it drops in a stepwise manner to
ξ̃O2
≈ 10−4, while the GC measurement declines in a more

continuous fashion. Some periods are missing from the ana-
lyzer graph due to negative reported values in combination
with the logarithmic axis. The soft sensor’s estimate for the
O2 concentration is almost constant during the whole test,
albeit slightly above the value set in eqn. (4.11h), likely due
to the mass balance eqn. (4.11k). Since the amount of oxy-
gen in the product gas is considered of minor interest, this
deviation between measurements and estimate is deemed
acceptable.

In contrast, the soft sensor estimates for H2 and O2 deviate
from the measurements. In the case of the H2 estimate, this
can be attributed to the absence of a disturbance state cor-
recting the H2 molar flow rate. Instead, it is only indirectly
influenced by eqns. (4.11c) to (4.11f) through dCO, dCO2

, and
dCH4

. This may be mitigated by adjusting the value of the
associated covariance. While there is a disturbance state as-
sociated with the O2 concentration, it shows only a minimal
effect due to the choice of the associated covariance. This is
deemed acceptable since the O2 concentration is considered
to be of subordinate importance.

Figure 6.2 illustrates the effect of the delayed measure-
ments. While the GC measurements are drawn at the time
of sampling, the associated correction—in this case of the
C2H4 mole fraction—is delayed by 12 min. The magnified
portion of the diagram also illustrates the necessity to delay
storing the filter state, which is detailed in Appendix A.1. .
The instant the next sample is taken coincides with the in-
stant before the correction takes effect. Thus, the resulting
innovation used in the next correction would not take into
account the correction induced by the previous measure-

Correcting the model in this
manner resulted in the water
content estimate consistently
and significantly exceeding the
offline data. This is likely due to
remaining errors in the H con-
taining species’ molar flow rate
estimates. The deviation in the
H2 concentration estimates is ac-
cepted due to the prioritization
of the accuracy of the product
gas water content.
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ment. However, a delay of one sample time instead of six
should suffice, judging by the diagram.

6.2.1 Water Content

The estimated water content is in excellent agreement with
the offline sampling data. Table 6.1 shows the largest relative
error, which is 6.8 %. In addition to the offline sampling, the
results obtained by IPSEpro are listed, which display a compa-
rable maximum relative error of 7.4 %.

The soft sensor estimates and the IPSEpro results are also
compared in Figure 6.3. This is a significant result, as it al-
lows for continuous monitoring of the water content, thereby
enabling the process to be optimized based on key perfor-
mance indicators such as water conversion and cold gas ef-
ficiency. Otherwise, these values would only be available
punctually whenever offline samples are collected.

Table 6.1: Comparison of product gas water content determined by
offline sampling and the soft sensor’s estimate. The sample indices
refer to Figure 6.2. Adapted from [43].

Absolute values Relative error

№ Offline Soft sen-
sor

IPSEpro Soft sen-
sor

IPSEpro

1 0.372 0.363 0.389 0.023 0.047
2 0.393 0.396 0.419 0.007 0.067
3 0.424 0.447 0.441 0.056 0.041
4 0.428 0.435 0.443 0.017 0.036
5 0.428 0.456 0.442 0.067 0.034
6 0.444 0.474 0.477 0.068 0.074

Additionally, Figure 6.4 shows the loop seal split ratio esti-
mated based on eqn. (4.10). The predicted split ratio remains
relatively constant throughout the whole gasification test
at a value of χLS ≈ 0.77. This behavior may not be inter-
preted directly but can only be considered valid based on
the agreement of the water content estimate with the offline
analysis.

6.2.2 Tar Mass Flow

The tar production rate can be seen to remain below 2 kg/h
throughout the gasification test. At this point, no offline
analysis of the amount of tar in the product gas is avail-
able for comparison. Consequently, no assessment can be
made of the accuracy of the soft sensor estimate for the tar
production rate.
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6.2.3 Fault Detection

During the test, several faults were successfully detected as
indicated in Figure 6.2.

At t ≈ 3h, the analyzer measurements show a sharp drop,
indicating that the sampling line was interrupted. The test
statistic λPG,analyzer shows a sharp increase, exceeding the
threshold and consequently leading to the fault being de-
tected. The same is true for the value of λPG,GC. The simu-
lated product gas composition during the fault remained at
a steady level as expected. This demonstrates the effective-
ness of the model correction via the disturbance states. A
similar scenario occurred at t ≈ 6.5 h and t ≈ 7.5 h.

Between 5.3 hand6.5 h, the values of λPG,GC can be seen to
exceed the threshold. This is a consequence of the GC hav-
ing been used to monitor a different gas stream during this
period. This is confirmed by observing the high amounts of
CH4 and CO2 reported by the GC. As a consequence, the GC
data were discarded during this period.

Around t ≈ 7h, several adjustments in the fuel flow rate
occurred. This led to large fluctuations in the product gas
composition, affecting both the measurements and the esti-
mated values. The value of λPG,analyzer can be seen to fluctuate
around the threshold value leading to repeated entering and
exiting of the soft sensor’s simulation mode. As a conse-
quence of the interruption of the fuel feed rate, the static
model change described in Section 5.5 was triggered. One
potential solution to circumvent the frequent on-and-off
switching of the soft sensor’s fault mode within a brief pe-
riod of time is to delay the switch back to normal opera-
tion when the value of the test statistic decreases below its
threshold by a few time steps.

6.3 Flue Gas Composition and Char Flow Rate

Figure 6.5 shows the test run results for the flue gas compo-
sition. Step changes in the fuel feed rate (see Figure 6.2) can
be observed to produce associated changes in the estimated
char flow rate, which seems reasonable. With an increase
in the char flow rate, the oil flow rate was lowered, while
the air flow rate remained fairly constant. The combined
effect of these observations appears to be a fairly constant
flue gas composition. The soft sensor predictions of the flue
gas composition are in close agreement with the analyzer
measurements. It is worth pointing out that the molar flow
rates of CO2 and CO are not corrected using the flue gas ana-
lyzer measurements. Instead, these measurements are only
used to correct the predicted char flow rate. This indicates
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that the char flow rate estimate is accurate since it directly
impacts the combustion reactor carbon balance. However,
no offline sampling is available to validate the estimates at
this point.

6.3.1 Fault Detection

A total of five faults were recognized during the test run,
as indicated by the fault measure λ in Figure 6.5, which co-
incides with sudden changes in the flue gas composition.
During these occurrences, the char flow rate and the flue gas
composition were simulated while the product gas compo-
sition continued to be corrected through the measurements
from the product gas analyzer.

6.4 Model Corrections
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Figure 6.6: Time development of the disturbance states during the
gasification test. Periods, during which measurements were being
discarded, are highlighted by and .

During the test, the disturbance states developed as ex-
pected over time, as can be observed in Figure 6.6. Notable
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step changes occur due to updates using the GC measure-
ments.

As anticipated, the most significant corrections were ob-
served for the gaseous components, particularly for the C2
components. This is a consequence of the simplicity of the
model, which links these species only to the CH4 concentra-
tion. For this reason, their variances in the Q matrix were
chosen relatively large, leading to larger corrections for a
given discrepancy between measurement and prediction. It
can also be seen that both disturbances were adjusted solely
based on the GC measurements but not on the analyzer’s,
since it does not provide these data. The same argument
holds true for the O2 concentration, even more so, as the
model simply predicts a constant value.

In contrast, the disturbances for CO, CO2, and CH4 are con-
tinuously adjusted based on the analyzer data. The graph
does, however, also show steps at instances when GC data
was fused. The disturbance state correcting the char produc-
tion rate does not show any step changes, since the flue gas
is only sampled by an online analyzer.

The disturbance for estimating the amount of N2 enter-
ing the gasification reactor is presented as a mass flow. It
is updated by both, the analyzer and the GC, however, the
tuning parameters have been set such that the analyzer only
leads to minor adjustments, while the GC measurement has
a much greater influence. This was done because the ana-
lyzer does not measure N2 but is only inferred using eqn. (3.3)
in combination with the correction model discussed in Sec-
tion 4.2.1.

6.5 Dynamic Behavior

In Figure 6.7, the response of the gasification reactor sys-
tem to a step change in the fuel feed rate ṁfuel can be ob-
served. As expected, the N2 concentration in the product
gas quickly reaches a value of ξ̃wf

N2
= 1. Similarly, the other

component concentrations approach zero. The water con-
centration rises to ξ̃H2O = 1− ξ̃N2

.
The same is true for the mass flow rates of char and tar.

The observed dynamic behavior is a direct consequence of
the ansatz eqn. (4.19).

It is apparent that the water-free product gas concentra-
tions ξ̃wf

i do not obey a typical first-order dynamic response
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as might be expected considering eqn. (4.19). This is due to
the definition of the mole fraction

ξ̃wf
i =

ṅi&
j �=H2O ṅ j

, where

i, j ∈ � = {H2, CO, CO2, CH4, C2H6, C2H4, N2, O2} .
(6.1)

Taking the derivative of eqn. (6.1) with respect to time t
and solving the corresponding differential equation to ob-
tain the time development of the water-free mole fraction
leads to

ξ̃wf
i (t) =

ξ̃wf
i,0

1− f wf
PG

ṅwf
PG,0

�
1− et/τ
� , (6.2)

where ξ̃wf
i,0 = ξ̃

wf
i,0(t0) denotes the water-free composition,

and ṅwf
PG,0 = ṅwf

PG(t0) is the water-free product gas molar flow
rate both at the time of the input step.

f wf
PG =
%

j �=H2O

ṅin
j = d̂N2

= const. (6.3)

denotes the estimated N2 molar flow rate entering the gasifi-
cation reactor since all other product gas species’ molar flow
rates are set to zero according to eqn. (4.14).

This outcome permits the time constant τ to be recovered
from the step response, by observing the following relation-
ship.

τ≈ t �� − t �
2

. (6.4)

According to the derivation in Appendix B, the inflection
point of the step response curve coincides with the point at
which the concentration reaches half of its initial value, i.e.,�

t ��, ξ̃wf
i (t

��)
�
=
�

t1/2
, ξ̃wf

i (t1/2
)
�

.

This is not the case here, as evidenced by Figure 6.7, where
the characteristic values are indicated for the H2 step re-
sponse. As a consequence, the values of the time constants
derived by using different reference points on the response
curve differ significantly as Table 6.2 shows. For instance,
the time constant associated with H2 assumes two values
differing by a factor of 5.

Notably, the step response appears to express a dead time
as well, which is not considered in the model. This may be
explained by the fact that the model assumes instant drying,
devolatilization, and conversion of the fuel when entering

A detailed derivation of
this result, including un-

derlying assumptions,
is given in Appendix B.
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the gasification reactor. This is, of course, an oversimplifica-
tion. It is reasonable to assume that when the fuel feed rate
is interrupted, i.e., ṁfuel(t0) = 0kg/s, there is still uncon-
verted fuel inside the bubbling bed, continuing to sustain
the chemical reactions eqn. (4.2). This behavior may be ac-
commodated in the model by introducing another system
state that reflects the rate of change of the amount of fuel
within the reactor and using this value instead of the mea-
sured fuel feed rate as input for the Hammerstein model (see
Section 4.2).

Another potentially contributing factor to the apparent
dead time observed in the step response to a change in fuel
feed rate is the fact that the product gas composition is sam-
pled downstream of the gasification reactor rather than
from the bubbling bed directly (see Figure 2.1). However,
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Table 6.2: Time constants obtained from step input response in Figure 6.7.
Different values are given for τ�� = (t �� − t �)/2 and τ1/2

= (t1/2
− t �)/2 are

given, where the index 1/2 refers to the time at which ξ̃wf
i (t1/2

) = ξ̃wf
i,0/2

holds.

ξ̃wfi,0 ξ̃wfi (t
��) τ�� in s ξ̃wfi (t1/2

) τ1/2
in min

H2 0.386 0.316 32 0.193 2.3
CO 0.179 0.152 25 0.090 2.1
CO2 0.218 0.182 25 0.109 3.3
CH4 0.096 0.085 16 0.048 2.2

this effect is probably insignificant compared to the afore-
mentioned argument.

While, in principle, the time constants for the system
states can be easily adjusted to better resemble the observed
dynamic behavior, the benefit of doing so is questionable,
given that system dynamics are considered to be of subor-
dinate importance compared with the steady-state predic-
tions (see Chapter 4).

6.6 Observer Characteristics

In this section several characteristics of the observer will be
presented, based on the gasification test data.

The stability and observability are evaluated based on the
temporal development of the associated measures, which
are detailed in sections 6.6.1 and 6.6.2, respectively. In order
to analyze the stability and the observability of the soft sen-
sor, the system state and the disturbances are aggregated
in an augmented state to account for coupling effects. Conse-
quently, the state transition model becomes

Φxd =

Φx
∂ f
�
u,d̂
�

∂ d̂

���
uk−1,d̂k−1

0 Φd

 , (6.5)

where the expression ∂ f
�
u,d̂
�

∂ d̂

���
uk−1,d̂k−1

accounts for the cou-
pling, and the index xd denotes the augmented state. Fur-
thermore, the estimation error covariance and the measure-
ment sensitivity matrices become

Hxd =
�
Hx
Hd

�
and (6.6a)

Pxd =
�
Px 0
0 Pd

�
, (6.6b)
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respectively. The Kalman gain for the augmented system is
then obtained through [16]

K ana
xd,k = Pxd,k|k−1 Hana�

xd,k

�
Hana

xd,k Pxd,k|k−1 Hana�
xd,k +Rana
�−1

. (6.7)

In contrast, the controllability of the soft sensor’s states
will not be discussed since control is outside the scope of
this work.

In addition, the computational performance of the soft
sensor during the test will be discussed in Section 6.6.3.

6.6.1 Stability
While a well-established theory exists regarding the stabil-
ity of the (linear) Kalman filter, the non-linearity of the EKF
equations precludes the formulation of general statements
regarding stability in all circumstances. However, it is possi-
ble to evaluate a stability criterion at any given point in time,
thus enabling the assessment of local stability of the EKF
[2, p. 752]. Employing the definitions eqns. (6.5) and (6.6a),
the observer has a stable solution if all eigenvalues of the
stability matrix

Sxd = (Φxd −Φxd KxdHxd) (6.8)

are located in the open inner unit circle of the complex plane
[39], i.e.,���γxd,i

���< 1∀i ∈ 1, ..., nx + nd . (6.9)
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Figure 6.8: Absolute value of the largest eigenvalue γ+xd of the stability
matrix of the augmented system. Fault regimes are indicated by
and .

Figure 6.8 shows the largest eigenvalue
��γ+xd

�� of the sta-
bility matrix Sxd. It is evident from the diagram that the
largest eigenvalue

��γ+xd

��= 1 most of the time. In several in-
stances, the case γ+xd < 1 can be observed. These instances
correspond to events when GC measurements were fused.

[16] Kalman, “A New Approach to
Linear Filtering and Prediction
Problems.” (1960).

[2] Baillieul et al., Encyclopedia of
Systems and Control. (2021).

[39] Su et al., “On existence,
optimality and asymptotic
stability of the Kalman filter
with partially observed inputs.”
(2015).
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This observation matches the expectation, since the dis-
turbances dC2H6

and dC2H4
are updated only through the GC.

In all minor instances, they remain constant according to
eqn. (4.21). Consequently, any potential errors remain con-
stant as well, i.e., neither grow nor decay over time.

The fact that
��γ+xd

�� assumes values close to 1 even in major
instances can be explained by the values chosen for the co-
variances, in particular Qd, in relation to the measurement
noise matrices, Rana and RGC, respectively, which only allow
for small changes in the event of an update.

At t ≈ 7h,
��γ+xd

��> 1, i.e., stability is lost temporarily. This
loss of stability coincides with the soft sensor entering and
exiting simulation mode for the product gas composition
in between two successive fuel feed rate interruptions (see
Figure 6.2). The soft sensor successfully recovered from this
single event and continued to provide accurate estimates
after the fuel feed rate had stabilized. Nevertheless, this
behavior is undesirable and calls for further analysis in sub-
sequent works.

6.6.2 Observability
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Figure 6.9: Rank of the observability matrix of the augmented system.
Fault regimes are indicated by and .

Observability is determined by the rank of the observabil-
ity matrix

Oxd =


H�xd (HxdΦxd)

� �HxdΦ
2
xd

�� · · · �HxdΦ
n−1
xd

����.

(6.10)

If the rank of the observability matrix equals the number
of system states, the system is fully observable [31, p. 83].
Since the output equation eqn. (5.10) is non-linear, and, as a
consequence, Hxd �= const., observability is evaluated locally
for each time step.

The resulting time development of the rank of the ob-
servability matrix is presented in Figure 6.9. During normal

[31] Ogata, Modern Control En-
gineering (5th Edition). (2009).
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Figure 6.10: Computational performance of the soft sensor during the
gasification test. (a) TimeΔtcalc taken to solve eqn. (4.13). (b) Number of
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operation, excluding major instances, rank (Oxd) = 17 <
nx + nd = 24 shows that the augmented system is only par-
tially observable.

During the course of the test run, the rank of the observ-
ability matrix decreased on several occasions. These events
coincide with the soft sensor running in simulation mode
due to a fault being detected in the product gas and the flue
gas analyzer measurements, respectively. In the event of a
fault in the product gas measurement being detected, the
rank of the observability matrix drops by 11, whereas a fault
in the flue gas measurement leads to a drop of 5 in rank.
In the case of simultaneous faults in the product gas and
flue gas measurements, the rank of the observability matrix
drops to 0.

In addition to the aforementioned scenarios, the instances
in which the GC measurement became available can be ob-
served. The period during which the GC was sampling a
different gas stream is also apparent since no change in the
rank of the observability matrix occurs from t ≈ 5.5 h to 7h.

6.6.3 Computational Performance

In addition to the quality of the soft sensor’s state estimates,
its performance in terms of computational requirements is
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also of interest. Figure 6.10 shows two metrics of interest in
this context. Firstly, the calculation time required to solve
eqn. (4.13) is atΔtcalc ≈ 50 ms most of the time, while reach-
ing values of up to 150 ms in some instances, which is well
below the allowed maximum of Ts = 5s. This adds to the
soft sensor’s suitability for control purposes in comparison
to the IPSEpro simulation, from which results are available
every 1 min.

As expected, the calculation time is directly proportional
to the number of iterations required by the least-squares
solver to obtain a solution. In the majority of cases, the
solver takes niter ≈ 7 iterations to conclude. The maximum
number of iterations is observed when fuel feed interrup-
tions occur, where the value reaches niter = 30. In fact, 30
is the maximum number of iterations allowed in order to
restrict the calculation time, should the solver fail to find a
feasible solution.

6.7 Potential Improvements
The review of the soft sensor’s performance during the gasi-
fication test revealed a number of areas for improvement.

Firstly, the time constants for the system states should be
adjusted according to the analysis in Section 6.5 to achieve
better replication of the actual system dynamics.

Secondly, an additional system state may be introduced
resembling the amount of fuel within the gasification reac-
tor. Using this system state instead of the fuel feed rate in
the reactor model eqn. (4.11) may also lead to more accurate
predictions with respect to the system dynamics.

To avoid repeated switching between normal operation
and simulation mode, a delay may be implemented such that
the soft sensor would only exit simulation mode a specified
number of samples after the indication by the fault measure
is observed.

Additionally, the covariance values corresponding to the
hydrogen flow rate ṅH2

should be adjusted to achieve better
agreement with the analyzer data.

In addition to the aforementioned points, further investi-
gation is necessary with respect to the tar production rate.

The suggested delay between the availability of a GC mea-
surement and the sampling of the next one should be low-
ered from 6Ts→ Ts.

Of course, some additional
processing is performed for

each time step. However, the
time requirements are in-

significant in comparison.
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The present work describes the development of an EKF-
based soft sensor using a Hammerstein model for system
state prediction. Another EKF was introduced to estimate
disturbances used to improve the underlying static model of
the gasification reactor. Based on a gasification test, the soft
sensor was shown to yield reliable results for the product gas
composition. In particular, the estimates of the water con-
tent in the product gas were shown to be in excellent agree-
ment with the offline analysis. Comparison with process
simulation results demonstrated that the soft sensor is on
par in terms of accuracy while being far less demanding
in terms of computational load. While the soft sensor also
produces estimates for the char and tar flow rates, no offline
data was available at the time of writing to validate these
estimates.

Concerning the tuning parameters of the soft sensor, the
covariance matrices and the time constants, the gasification
test results revealed the need for minor revisions.

The soft sensor will contribute to the research on the DFB
gasification plant at the TU Wien, in particular targeting
plant operation and control. Accurate real-time estimates
of the product gas water content permit the plant control
software to optimize plant operation with respect to key
performance indicators such as cold gas efficiency, which is
evaluated on a dry product gas basis.

While the soft sensor is tailored to a specific plant, includ-
ing a specific type of fuel, the overall concept may be applied
to similar processes as well.
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Soft Sensor Implementation and Monitoring Inter-
face

A
The following appendix provides additional reference to the implementation of the soft
sensor’s features in program code. For this purpose the soft sensor algorithm is illus-
trated using simplified, commented pseudocode. Additionally, a description of the online
monitoring interface developed within the scope of this work is given.

A.1 Description of the Observer Algorithm

To concisely summarize the implementation of the of the soft sensor’s features introduced
in Chapter 5, they are described briefly in the following section by means of pseudo code.

First, eqn. (4.20) is solved iteratively in line 2 to obtain the static model prediction of
the system state based on the input vector. This is followed by the evaluation of eqn. (5.3).
Using the a priori estimate, the measurement sensitivity matrix Hk, the output vector
hk and the innovation yk can be computed, as well as the test statistic λ for both the PG
analyzer and the FG analyzer.

Algorithm 1 State Prediction
1: function sensor(uk,zk)
2: f
�
u, d̂
�← argminx

��F(uk−1, x̄ k−1, d̂k−1)
��2

2 � Solve eqn. (4.20)
3: x̂ k|k−1← Φx̂ k−1 + Γ f

�
u, d̂
�

� Solve eqn. (5.3)
4: Hk← H
�
x̂ k|k−1

�
, hk← h
�
x̂ k|k−1

�
, yk← zk − hk � Evaluate eqns. (5.9) and (5.13)

to (5.15)

Having determined the values λ for both analyzers, the actual fault detection is per-
formed in line 5 in algorithm 1. If a fault is detected, the covariance matrix P is recomputed
from time step k−12, . . . , k−1 using only the a priori estimates, i.e., it is purely simulated,
while the disturbance states are reset to their values at k−12. This is done in case the fault
detection is not sensitive enough and detects the fault late. This approach ensures that
any potentially faulty values will not affect future estimates. Additionally, the entries in
the observer matrix H associated with the faulty sensor are reset to 0 in line 18.
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Algorithm 1 (Continued) Analyzer Fault Handling

5: Evaluate: λPG analyzer
k , λFG analyzer

k � eqn. (5.27)
6: for i in
�

PG analyzer, FG analyzer
�
do

7: if λi,k > θ then � Fault detected?
8: Pk−1← Pk−12 �Recalculate P
9: for j← 1,11 do

10: Pk−1← ΦPk−1Φ
�+Q

11: end for
12: d̂k−1← d̂k−12 �Reset disturbances
13: end if
14: end for

15: Pk|k−1← ΦPk−1Φ
�+Q � Predict P

16: for i in
�

PG analyzer, FG analyzer
�
do

17: if λi,k > θi or ṁfuel = 0 then
18: H i

k← 0 � Ignore measurements
19: end if

20: end for

It is necessary to handle the delayed measurements by the GC and the fault detection for
the GC together since the test statisticλs can only be computed once the GC measurement
data becomes available. If a major instance occurs, i.e., a GC measurement is available, it
is checked, whether a previous major instance has already occurred. If this is not the case,
the measurement is discarded, since at this point the filter state from the time of sampling
is unknown. In the alternative scenario, the innovation ys and, subsequently, the test
statistic λGC

s are evaluated using the previously stored output hs. In the event of a fault,
the measurement is discarded. Otherwise, the Kalman gain for the delayed measurement
is computed, followed by the correction values for the a posteriori estimates of x̂ , d̂ and P .

For all minor instances, only the delay matrix M∗ needs to be updated according to
eqn. (5.20) and the fault measure and the corrections are set to 0.

If the last major instance was recorded six time steps prior to the current one, the delay
matrix is reinitialized (line 43), and the filter state, comprising the covariance matrix P,
the observer matrix H , and the value of the output function h, is stored (line 44).
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Algorithm 1 (Continued) Delayed Measurements Handling
21: if major_instance= true then
22: if previous_major_instance= true then
23: ys← z∗k − hs � Calculate innovation …
24: λGC

s ← y�s Σs ys � and fault measure
25: if λGC

s > θGC then � Fault detected?
26: δx̂ k← 0, δd̂k← 0, δPk← 0 �No correction
27: else
28: K ∗k = M∗PsH

�
s

�
HsPsH

�
s +Rs

�−1
� Calculate corrections (eqns. (5.17a)

and (5.19))
29: δx̂ k← K ∗x,k yx,s

30: δd̂k← K ∗d,k yd,s

31: δPk←−K ∗kHsPs|s−1M∗�

32: end if
33: else � Filter state from time of sampling not available
34: δx̂ k← 0, δd̂k← 0, δPk← 0 �No correction
35: previous_major_instance←true
36: end if
37: else
38: λGC

s ← 0
39: M∗← M∗ (I− KkHk)Φ � Calculate delay matrix eqn. (5.20)
40: δx̂ k← 0, δd̂k← 0, δPk← 0
41: end if
42: if time_since_last_major_instance= 6Ts then � Sampling instant?
43: M∗← I �Reinitialize delay matrix
44: Ps← Pk|k−1, Hs← Hk

�
x̂ k|k−1

�
, hs← h
�
x̂ k|k−1

�
� Store filter state

45: end if

Finally, the a posteriori estimate is computed and the filter state returned as can be seen
in algorithm 1.

Algorithm 1 (Continued) A Posteriori Estimate

46: Kk← Pk|k−1H�k
�
HkPk|k−1H�k +R

�
47: x̂ k← x̂ k|k−1 + Kx,k yk +δx̂ k

48: d̂k← d̂k|k−1 + Kd,k yk +δd̂k

49: Pk← (I− Kk Hk)Pk|k−1 +δPk

50: return x̂ k, d̂k, Pk

51: end function
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A.2 Soft Sensor Monitoring Interface
A graphical interface was developed to be able to monitor the soft sensor output during
operation. Figure A.1 shows the monitor at the end of the test run. Two plots show the
major and minor product gas species concentrations output by the soft sensor and the GC,
respectively. The product gas analyzer data is not displayed for clarity. Additionally, the
water content, char, and tar mass flows are being displayed. Furthermore, fault regimes
are indicated by a blue background for the product gas and red for the flue gas. Instances
of the GC measurement being fused are indicated by minor tick marks on the horizontal
axis of all plots. In addition to the plot legends, an info box includes the aforementioned
description of the graphical elements, as well as information on the calculation time,
which was, on average, 0.05 s.

Since the duration of the plant operation is not known a priori, the horizontal axis
limits are compared to the current time, at each update of the diagram, and adjusted as
necessary.

In addition to the graphical output, the soft sensor writes composition, mass flows, and
information about the fault regime into a text file in each iteration.
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Figure A.1: Soft sensor online monitor.





Analytical Step ResponseB
In order to recover the time constant τ from the step response, an expression for

τ

t �� − t � (B.1)

is required. Knowing this relationship, the time constantτmay be recovered by analyzing
the step response curve. For reference, the step response for an interruption in the fuel
feed rate is depicted in Figure B.1.

0 t � t ��
0

ξ̃wfi,0

ξ̃wfi (t
��)

ξ̃wf
i (t)

Time

Co
nc
en
tra

tio
n

Figure B.1: Analytical response of the dry product gas mole fractions to a step change in the fuel feed rate
ṁfuel(t = 0) = 0 kg/h.

The rates of change of the molar flows ṅi and of the total dry product gas molar flow
according to the dynamic model eqn. (4.19) are given by

˙̇ni = − 1
τi
(ṅi − fi) , (B.2a)

n̈wf
PG = −1

τ

%
j

�
ṅ j − f j

�
= −1
τ

�
ṅwf

PG − f wf
PG

�
, (B.2b)

where i, j ∈ � = {H2, CO, CO2, CH4, C2H6, C2H4, N2, O2} .
ṅwf

PG in eqn. (B.2b) denotes the total water-free product gas molar flow rate, and τi = τ is
implied.

When the fuel feed rate is interrupted at time t0 = 0s (ṁfuel(t0) = 0kg/h), the soft sensor
enters simulation mode and a model switch occurs. As discussed in Section 4.2.3, the molar
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flow rates of all product gas components, except N2 and H2O, are set to 0 kg/h. Therefore
the static model predictions equal fi = 0kg/h∀i ∈ � = {H2, CO, CO2, CH4, C2H6, C2H4, O2},
while fN2

= dN2
= const., and fH2O = ṁst + ṁLS

st /MH2O. Therefore

f wf
PG =
%

j

f j = fN2
= const.

holds, where f wf
PG is the predicted water-free product gas molar flow rate.

The rate of change for any of the dry product gas species reads

˙̃ξwf
i =

d
dt

�
ṅi

ṅwf
PG

 
= . . .= −1

τ

f wf
PG

ṅwf
PG
ξ̃wf

i . (B.3)

Integrating eqn. (B.3) from 0 to t leads to

ln
ξ̃wf

i (t)

ξ̃wf
i (0)

= ln
ξ̃wf

i (t)

ξ̃wf
i,0

= − f wf
PG

τ

� t

0

1

ṅwf
PG(ζ)

dζ, (B.4)

where ζ serves as integration variable. In order to solve the integral on the right hand
side, the function ṅwf

PG(t) needs to be found from eqn. (B.2b), which can be rewritten as
follows:

n̈wf
PG +

1
τ

ṅwf
PG − 1

τ
f wf

PG = 0. (B.5)

The homogeneous solution to eqn. (B.5) is

ṅwf
PG(t) = C1e−t/τ. (B.6)

The particular solution may be found by variation of constants, letting C1→ C1(t). Insert-
ing this ansatz into eqn. (B.5) leads to

Ċ1(t)e
−t/τ − C1

τ
e−t/τ +

C1

τ
e−t/τ − f wf

PG

τ
= 0.

Therefore,

Ċ1(t) =
f wf

PG

τ
et/τ

must hold. Integration gives

C1(t) = f wf
PG et/τ + C2.

Consequently, the temporal evolution of ṅwf
PG is given by

ṅwf
PG(t) =
�

f wf
PG et/τ + C2

�
e−t/τ

With the initial condition ṅwf
PG(0) = ṅwf

PG,0 it follows that

C2 = ṅwf
PG,0 − f wf

PG .
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This leads to the final expression for the temporal development of the molar flow rate of
the water-free product gas after the step input:

ṅwf
PG(t) = ṅwf

PG,0e−t/τ + f wf
PG

�
1− e−t/τ
�

. (B.7)

Using this result, the integral in eqn. (B.4) can be evaluated:� t

0

1

ṅwf
PG(ζ)

dζ =

� t

0

1

ṅwf
PG,0e−ζ/τ + f wf

PG

�
1− e−ζ/τ
�dζ = . . .

=
τ

f wf
PG

ln

�
1− f wf

PG

ṅwf
PG,0

�
1− et/τ
�!

.

(B.8)

Eqn. (B.4) then becomes

ln
ξ̃wf

i (t)

ξ̃wf
i,0

= − ln

�
1− f wf

PG

ṅwf
PG,0

�
1− et/τ
�!

,

which may be rewritten, to yield the wanted expression

ξ̃wf
i (t) =

ξ̃wf
i,0

1− f wf
PG

ṅwf
PG,0

�
1− et/τ
� . (B.9)

To obtain the characteristic times t � and t ��, both the first and second derivatives of
eqn. (B.9) are required. They are given by

˙̃ξwf
i (t) = −

f wf
PG ṅwf

PG,0ξ̃
wf
i,0et/τ

τ
�
ṅwf

PG,0 − f wf
PG

�
1− et/τ
��2 , (B.10a)

¨̃ξwf
i (t) =

f wf
PG ṅwf

PG,0ξ̃
wf
i,0et/τ
�

f wf
PG

�
1+ et/τ
�− ṅwf

PG,0

�
τ2
�
ṅwf

PG,0 − f wf
PG

�
1− et/τ
��3 . (B.10b)

The position t �� of the steepest slope of ξ̃wf
i (t) coincides with the root of the second

derivative eqn. (B.10b), i.e., ¨̃ξwf
i (t

�� = 0). It is found to be

t �� = τ ln

�
ṅwf

PG,0

f wf
PG
− 1

!
(B.11)

Inserting this value into eqn. (B.9) yields the associated dry product gas composition:

ξ̃wf
i (t

��) =
ξ̃wf

i,0

1− f wf
PG

ṅwf
PG,0

�
1− et ��/τ
� = ξ̃wf

i,0

2
. (B.12)

The intersection of the tangent at the point
�
t ��, ξ̃wf

i (t
��)
�

with the horizontal line at ξ̃wf
i,0

is located at

t � = t �� − 1
˙̃ξwf

i (t ��)

�
ξ̃wf

i (t
��)− ξ̃wf

i,0

�
(B.13)
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Inserting the result from eqn. (B.11) yields

t � = t �� +
τ
�
ṅwf

PG,0 − f wf
PG

�
1− et ��/τ
��2

f wf
PG ṅwf

PG,0ξ̃
wf
i,0et ��/τ

�
ξ̃wf

i (t
��)− ξ̃wf

i,0

�
,

which may be rewritten, to yield the sought-for expression

τ

t �� − t � =
1

ξ̃wf
i (t ��)− ξ̃wf

i,0

− ξ̃wf
i,0

�
1− f wf

PG
ṅwf

PG,0

�
4

 . (B.14)

Apparently, this result depends only on the ratio f wf
PG/ṅwf

PG,0
. Since f wf

PG � ṅwf
PG,0, this

expression can be simplified further

τ

t �� − t � ≈ −
ξ̃wf

i,0

4
�
ξ̃wf

i (t ��)− ξ̃wf
i,0

� = 1
2

(B.15)

Considering eqn. (B.11), the time constant τ can therefore be recovered from the step
response, using

τ≈ t �� − t �
2

. (B.16)



ParametersC
Table C.1 lists elemental compositions of various compounds needed by the soft sensor.

Table C.1: Elemental composition of various compounds used throughout the calculations in this work.

ξwaf ξwf ξwet ρ

Compound C H O N S Ash H2O kg/m3

Softwood 0.507 0.059 0.043 0.002 0 0.002 0.072
Char 0.85 0.04 0.12 0 0 0 0
Tar 0.94 0.06 0 0 0 0 0
Oil 0.87 0.13 0 0 0 0 0 820

In the following, the initialization values for the soft sensor, the time constants and
thresholds, as well as the values for the covariance matrices of the EKFx and EKFd are
given.

The initial value of the system state, xinit, equals to the average value of the system state
in the identification data:

xinit =
	
0.426 0.190 0.238 0.0953 0.001 22 0.0133 1.00 · 10−4 . . .

0.0557 0.534 0.113 0.0784 0.123 0.334 2.32 . . .

0.329 952 5.00
��

.

Conversely, the initial values of the disturbances are chosen such that they have no
effect on the initial prediction:

dinit =
	
1 1 1 1 1 1 0 1

��
.

The covariance matrices Px,init and Pd,init are initialized arbitrarily by

Px,init = I, Pd,init = I,

whereas the state transition matrices and the control input matrices, respectively, are
constant and follow from the time discretization as described in sections 5.2 and 5.3:

Φx = 0.8462 · I, Φd = I, Γ x = 0.1538 · I, Γ d = 0.



70 PARAMETERS

The process noise and measurement noise covariances have been assumed to be diago-
nal matrices:

Qx = 0.1 · diag
�
x�init

�
,

Qd =
	
10−4 10−4 10−4 102 101 10−1 10−3 10−3

��
,

Rana
PG =
	
101 1 1 1 103 103

�
, Rana

FG = diag
�	

1 1 1
��

,

RPG,GC = diag
�	

10−2 10−2 10−2 10−2 10−2 10−2 10−2
��

.

The particular values have been determined iteratively by comparing the soft sensor’s
output to the historical data.

The sampling times are given, whereas the time constant was arbitrarily defined as a
multiple of the sampling time (see sections 4.3, 5.1 and 6.5):

Ts = 5s, Ts
GC = 12min, τi = 30 s.

Finally, the threshold parameters used for the fault detection mechanism were deter-
mined as described in Section 5.5:

θ =
	
θ ana

PG θ ana
FG θGC

PG

��
=
	
10−2 10−2 5 · 10−2

��
.



Historical DataD
This chapter documents the historical data, which was utilized in the identification process
(see Section 3.1) in the form of time series diagrams. In each diagram, periods of steady
state operation are indicated.

It is worth pointing out that the test run on May 16, 2023, was aborted because er-
rors in the calibration of both the fuel feed rate and oil feed rate measurements were
detected. While an attempt was made to rectify this in hindsight, the char production rate
recovered by means of closing the material balance is at or near 0 kg/h at some points,
which does not appear plausible. This issue may also have been present during the test on
November 23, 2022.
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Figure D.3: Test run on March 17, 2021. Steady state sample intervals are highlighted by .
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Figure D.4: Test run on June 9, 2021. Steady state sample intervals are highlighted by .
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Figure D.5: Test run on November 16, 2021. Steady state sample intervals are highlighted by .
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Figure D.6: Test run on November 17, 2021. Steady state sample intervals are highlighted by .
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Figure D.7: Test run on November 22, 2022. Steady state sample intervals are highlighted by .
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Figure D.8: Test run on November 23, 2022. Steady state sample intervals are highlighted by .
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ṁ
in
kg
/h

Char and Tar

H2
CO
CO2
CH4
H2O
H2O (msm)

Softwood
Steam
Air
Oil

GR
CR

Δp67

Char
Tar

Figure D.9: Test run on May 16, 2023. Steady state sample intervals are highlighted by .



HISTORICAL DATA 81

0
0.2

0.4
0.6

0.8
1

1

10
20

100

700

800

900

1000

0

2

4

6

8

0000 0029 0058 0126 0155 0224 0253 0322 0350
0

1

2

3

4

ξ̃

Product Gas Composition

ṁ
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Figure D.10: Test run on May 17, 2023. Steady state sample intervals are highlighted by .
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