
Diagram merging and diffing in
the context of online IDEs

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering and Internet Computing

eingereicht von

Victor-Gabriel Dulcă, BSc.
Matrikelnummer 1226990

Irina Avram, BSc.
Matrikelnummer 1103974

an der Fakultät für Informatik

der Technischen Universität Wien
Betreuung: O.Univ.-Prof. Dipl.-Ing. Mag. Dr. Gertrude Kappel
Mitwirkung: Dr. Philip Langer

Wien, 25. Februar 2022
Victor-Gabriel Dulcă Irina Avram Gertrude Kappel

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

 Avram

Diagram merging and diffing in
the context of cloud based IDEs

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Victor-Gabriel Dulcă, BSc.
Registration Number 1226990

Irina Avram, BSc.
Registration Number 1103974

to the Faculty of Informatics

at the TU Wien
Advisor: O.Univ.-Prof. Dipl.-Ing. Mag. Dr. Gertrude Kappel
Assistance: Dr. Philip Langer

Vienna, 25th February,
2022

Victor-Gabriel Dulcă Irina Avram Gertrude Kappel

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

 Avram

Erklärung zur Verfassung der
Arbeit

Victor-Gabriel Dulcă, BSc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 25. Februar 2022
Victor-Gabriel Dulcă Gertrude Kappel

v

Erklärung zur Verfassung der
Arbeit

Irina Avram, BSc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 25. Februar 2022
Irina Avram Gertrude Kappel

vii

 Avram

Acknowledgements

Throughout the writing of this thesis we have received a great deal of support and
guidance from a number of people and as such would like to take this opportunity to
thank them for all the help they offered along the way.

Firstly we would like to thank O.Univ.-Prof. Dipl.-Ing. Mag. Dr. Gertrude Kappel
for the guidance and valuable insights she had to offer.

A special thanks is warranted to Dr. Philip Langer for his continued support,
technical expertise, and feedback offered at every step.

Additionally we would like to thank Ass. Prof. Dr. Stefan Sobernig for the guidance
offered during the evaluation phase of this thesis.

Finally we would like to thank our families and friends for their unwavering support
throughout the duration of our studies.

ix

Kurzfassung

Das letzte Jahrzehnt hat unzählige Fortschritte auf dem Gebiet der Technologie
gebracht. Wo die Softwareentwicklung früher ein komplexer und aufwändiger Prozess
war, durchgeführt in einfachen Texteditoren ohne jede Art von Syntaxhervorhebung oder
Validierung, sind jetzt IDEs und speziell entwickelte Code-Editoren in diesem Bereich
unübertroffen. Längst vorbei sind die Zeiten, in denen das Bauen und Ausführen selbst
der einfachsten Softwareteile vom Entwickler die Abarbeitung einer Reihe von Aufgaben
erforderte. Jetzt lässt sich ein Großteil dieser Aufgaben per Knopfdruck in der IDE
erledigen. Ob „Ausführen“ oder „Starten“, die allgemeine Funktionalität dieses Knopfes
ist klar: Wandle den Code von dem Text aus einem Editor in ein laufendes Programm,
das sein Ziel erreicht, um.

Abgesehen vom Usability-Aspekt gab es in den letzten Jahren auch in anderen
Bereichen Verbesserungen, was dazu geführt hat, dass frühere Nischenmethoden mehr
und mehr zum Mainstream wurden. Ein Beispiel dafür ist Model Driven Development,
kurz MDD. Darüber hinaus bedeutet das Aufkommen von Cloud-basierten IDEs, dass
Entwickler nicht länger an die Rechenkapazitäten der Maschinen, die ihnen physisch zur
Verfügung stehen, gebunden sind. Die Client-Server-Architektur solcher IDEs ermöglicht
Geräten mit bescheidenen Spezifikationen, die intensiveren Aufgaben an einen Server zu
delegieren und sich lediglich mit dem Senden der Anweisungen und dem Anzeigen der
Ergebnisse zu beschäftigen.

Es ist an der Schnittstelle zwischen den Bereichen Cloud-basierte IDEs und MDD,
wo diese Diplomarbeit ihren Beitrag leistet. MDD ermöglicht Entwicklern, komplexe
Anwendungen zu erstellen, währendem sie gleichzeitig ein hohes Maß an Abstraktion
beibehalten und schnell Änderungen vornehmen können, ohne sich mit codespezifischen
Problemen zu befassen. Da komplexe Anwendungen entsprechend komplexe Modelle
hinter sich haben, ist es oft so, dass mehr als ein Entwickler an einem Modell und/oder
Diagramm eines Systems arbeitet. Dies erhöht den Bedarf an kollaborativer Model-
lierungsunterstützung für diagrammbasierte Darstellungen, ähnlich der textbasierten
Unterstützung, angeboten von Tools wie Git [git21a] oder SVN [sub21], die verschiedene
Versionen einer Datei miteinander vergleichen und mergen.

Diese Dimplomarbeit analysiert den verfügbaren Support für Vergleichen und Mergen
von Diagrammen, sowohl in den am häufigsten verwendeten Cloud-basierten IDEs als auch
in vollwertigen IDEs und stellt eine eigene Implementierung für die Theia Cloud-basierte

xi

IDE [the21] bereit. Schon existierende und bewährte Komponenten und Frameworks
wurden wiederverwendet, wo immer es geeignet war. Somit werden dem Benutzer bereits
bekannte Diff-Visualisierungsmittel, wie beispielsweise Seite-an-Seite-Vergleiche, sowie
erprobte Mergemechanismen präsentiert. Die Durchführung des Vergleichs sowie der
Mergeprozess werden vom EMF-Compare-Framework übernommen, wobei der Fokus
dieser Arbeit auf der Visualisierung der Diffs und der möglichen Mittel zur Konfliktlösung
und Diagrammmerging liegt.

Die Ergebnisse wurden im Hinblick auf die Effizienz des Protokolls, der die Kommu-
nikation zwischen den Frontend- und Backend-Komponenten ermöglicht, sowie im Hinblick
auf die Verwendbarkeit der entwickelten Visualisierungs- und Merge-/Konfliktlösungsmittel
bewertet. Im Falle des Kommunikationsprotokolls wurden die Performance durch Bench-
marking gemessen. Für die Bewertung der Benutzerfreundlichkeit wurde die System
Usability Scale [B+96] verwendet. Die Ergebnisse zeigen, dass die entwickelten Vergleichs-
und Mergefunktionen für die Mehrheit der Befragten einfach zu bedienen und für die
täglichen Aufgaben ausreichend waren. Das System hat auf der Skala der Benutzerfreund-
lichkeit zwischen gut und ausgezeichnet abschnitten.

Abstract

The last decade has brought about countless advancements in the field of technology.
Where once software development was a toilsome process done in plain text editors,
lacking any sort of syntax highlighting, validation or other means of aiding the developer,
now IDEs and specially designed code editors reign supreme in this field. Long gone
are the days when building and running even the simplest pieces of software, required
the developer to undertake a series of tasks. Now most of these tasks can be achieved
through the push of a button in the IDE. Be it called “Run”, “Execute” or “Start”, the
overall functionality of that button is clear: turn the code from text in an editor to a
running program that achieves its goal.

Aside from the usability aspect, the last few years have seen improvements in other
areas, with formerly niche methodologies becoming more and more mainstream, such as
Model-driven development, or MDD for short. Furthermore the emergence of cloud-based
IDEs means that developers are no longer bound by the computational capabilities of
the machines that are physically available to them. The client-server architecture of such
IDEs allows devices with modest specifications to delegate the more intensive tasks to a
server and merely concern themselves with sending the instructions and displaying the
results.

It is at the intersection between the fields of cloud-based IDEs and MDD where
this thesis makes its contribution. MDD allows developers to build complex applications
while maintaining a high level of abstraction, and to quickly make changes without
concerning themselves with code-specific issues. Because complex applications often have
correspondingly complex models behind them, it is often the case that more than one
developer will be working on a model and/or diagram of a system. This raises the need
for collaborative modeling support for diagram-based representations, in a similar way to
the text-based support offered by tools such as Git [git21a] or SVN [sub21], which allow
different versions of a file to be compared and merged with each other.

This thesis analyzes the available support for diagram diffing and merging both
within the most commonly used cloud-based IDEs, as well full-fledged IDEs, and provides
an implementation of its own for the Theia cloud-based IDE [the21]. Already existing,
and well established components and frameworks have been reused wherever suitable,
thus presenting users with somewhat known diff visualization means, such as side by side
comparisons, as well as merging mechanisms. The computation of the comparison as well

xiii

as the merging process are being handled by the EMF Compare framework, with the
focus of this thesis lying on the visualization of the diffs and means of conflict resolution
and diagram merging.

The results have been evaluated in regard to the efficiency of the protocol facilitating
the communication between the frontend and the backend components of the implemen-
tation, as well as in regard to the usability of the developed visualization and merging /
conflict resolution means. This evaluation has been conducted by way of benchmarking
in case of the communication protocol while the System Usability Scale [B+96] has been
used to measure the usability of the implementation. The results themselves show that
the developed diffing and merging capabilities were easy to use and sufficient for daily
tasks for a majority of respondents, scoring between good and excellent on the System
usability scale.

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Aim of the Work . 2
1.3 Methodological Approach . 4
1.4 Structure of the Work and Authorship 5

2 State of the Art 7
2.1 Cloud IDEs . 7
2.2 Model/Diagram diffing and merging 12

3 Design and Implementation 25
3.1 Architecture description . 25
3.2 Implementation details . 27

4 Comparison example 63

5 Summary and Evaluation 69
5.1 Summary . 69
5.2 Evaluation . 71

6 Open Challenges and Future Work 77
6.1 Diff Granularity Setting . 77
6.2 Diff Grouping based on Level . 78
6.3 Additional properties view . 79
6.4 Source code management tool integration 80

List of Figures 81

Bibliography 83

xv

Appendix 91

CHAPTER 1
Introduction

1.1 Motivation and Problem Statement
Cloud based Integrated Development Environments (IDEs) facilitate programmers to

write, compile, run and test code in the cloud. By having data and applications all stored
in the cloud they simplify coding and collaboration, whilst also mitigating any possible
issues caused by differences in hardware or operating systems. Yet they are a rather new
concept that falls in line with the trend of ever thinning clients and the transfer of the
bulk computation tasks to a remote server. As such they still lack some features that
would be of considerable help to the developers using them. One such feature would be
the ability to support diagram versioning in an efficient manner [OWK03]. An efficient
manner would imply the ability to accurately process the differences between versions,
merge different versions of a diagram [MNSD17] [FGW+15] and also display this data in
a comprehensible way [MM15].

Diagrams are an integral part of many design processes and are constantly used
in various industries, be it information technology to model systems, manufacturing to
showcase assembly and build processes etc. [AGD18] [DS15].

Remote work has also become commonplace, meaning the need for thin clients has
increased together with the portability of the gadgets used, such as tablets, notebooks
and even smartphones. This is where cloud based IDEs come into play. More than one
person tasked with working on a specific project is also standard, which means each team
member will have his or her own version of a diagram at a given time, until they decide
to sync them up with the ones on the server.

This is where current capabilities are lacking [KHL+10]. The users need a way to
merge their work into the same diagram so that no work is lost, while also being able to
clearly see the differences between two versions. This will ensure they are kept up to
speed with the work done by other team members.

1

1. Introduction

Frameworks such as EMF compare [SBMP08] are able to compute the differences
between diagram versions, it is however not suited for a thin client [KKT11]. This means
it cannot be run directly in the browser.

Furthermore the diffing of diagrams is a difficult task in itself, even without the
context of cloud based IDEs. This is because a diagram is visual in nature and one has
to account for a multitude of possible changes, such as positions, naming etc. When
talking about cloud based IDEs the entire process becomes more complex and more
challenging. This is because the diff computation is executed remotely, thus resulting in
the need for suitable serialization and deserialization of the diagram. Also diagrams can,
depending on their intended use case, become quite complex and thus transmitting the
entire diagram back and forth may be inefficient. One possible solution to be analyzed in
this work is the sending of only the diff elements from the server to the client and letting
the client deal with the showcasing of the diffs.

Relating to the client-side showcasing of the diffs, the fact that a Graphical Language
Server Protocol (GLSP) [gls21b] and Sprotty [spr21b] will be employed represents an
advantage, as GLSP provides a flexible architecture for graphical modelling languages,
and the Sprotty framework adds diagramming visualization support to GLSP through
animation, navigation and editing capabilities. This means that a whole new array of
possibilities is made accessible when it comes to the styling and rendering of diagrams.
How these possibilities can be used in order to improve the existing mechanisms for diff
showcasing will be explored in this work, be it either through the animation support or
through other means.

For these reasons a way to compute the differences and to showcase them to the
user has to be developed for cloud based IDEs, more specifically to this thesis, for the
Theia IDE [the21].

1.2 Aim of the Work
The goal of this work is to develop the necessary mechanisms for the diffing and merg-

ing of diagrams in cloud based diagram editors. This functionality is to be subsequently
integrated in the Theia Cloud IDE in terms of a diff editor.

The differences between diagrams will be computed on a server by using EMF
compare [Tou06] and then the results will be sent to the client, which will in turn display
them to the user. In order to achieve this, a suitable protocol for sending the diff data
to the client will be developed. The data will be converted to a JSON format during
transmission and will be reconstructed by the client.

Because of the potential complexity and size of diagrams the aforementioned protocol
needs to be able to convey information about the diagram differences without sending
the entire diagram between the server and the client. The information received has to be
sufficient in order for the client to be able to accurately showcase the differences to the
users.

2

1.2. Aim of the Work

A transmission protocol will, however, not be sufficient as the differences in the
diagrams will have to be displayed once the client has received the data. In this regard
a suitable way to showcase the differences between the diagrams in a comprehensible
manner has to be developed, so that the users will be able to understand what is being
presented to them at a glance [GWKRM15]. The diagrams will be built on and work
with the Graphical Language Server Framework or GLSP for short [gls21b]. GLSP is
a framework that provides extensible components enabling the integration of editable
diagrams in web applications.

While a client-server architecture and a protocol are required in order to implement
the desired functionality, the focus of this work will lie on the merging and diffing of
diagrams. Diagrams are far more complex when compared to code files with regard to
merging or diffing. For example, properties and positions can be moved and relations
between the elements can change. These aspects will all have to be taken into account
when merging and diffing in order to be able to correctly identify the changes that took
place in the diagram and subsequently showcase them to the user. Ultimately, as the
result of this work, functionality for merging and diffing diagrams will be added to Theia
[the21].

Perhaps the most challenging part of this work and where the most improvements
can be made is the showcasing of differences between the diagram versions [MM15]
[Gir06]. While this can easily be achieved by referring to the textual representation of
the diagram that has been used for transmission from the server to the client, it is far
from trivial to illustrate these differences for the graphical representation of the diagram.
One has to decide which differences are pertinent and should be represented and which
ones should be blended out as to avoid clutter, e.g., position changes. Furthermore, a
collection of pertinent filtering / grouping mechanisms should be defined in order to help
the users examine various types of changes without losing sight of the bigger picture.

In order to achieve the goals previously set, the technologies used will be analyzed
in order to identify all they have to offer and subsequently use it in the work. This
includes the wide variety of showcasing possibilities made available by the powerhouse
combination of CSS and SVG. These technologies will aid in the construction of a suitable
visual representation for the diagram diffs. In summary there are two main research
questions handled in this work, with a series of necessary achievements on the way to
answering them. The research questions themselves could be phrased as:

• How to design and implement an efficient application-layer protocol for communi-
cating diff data in a client-server architecture.

• How to design and implement a useful notation to display and navigate diagram
diffs.

The aforementioned research questions could be broken down into smaller, more
concrete steps thus resulting in the following individual tasks:

3

1. Introduction

• Identification of relevant changes such as additions/deletions of classes, attributes,
etc. to the diagram, disregarding the less important ones such as layouting or other
purely aesthetic changes, thus keeping the representation from becoming overly
cluttered with superfluous information.

• Developing visual means for conflict resolution and user interaction with two
diagram versions.

• Automatic merging, should no manual conflict resolution be necessary.
• Detection of relevant, model-specific conflicts and developing of conflict resolution

means.

1.3 Methodological Approach
The methodology used in this thesis will be based on Hevner et al. [HMPR04]

and his work regarding design science, thus ensuring this thesis tackles a contemporary
problem, namely the merging and diffing of diagrams in cloud based IDEs, in a structured
manner while aiming to provide a verifiable solution to it, in form of an extension to the
Theia IDE.

1. Problem identification and motivation The problem with the state of the art
is its lack of support for collaborative modeling due to missing graphical diffing and
merging capabilities. Upon literature research and the evaluation of the three most
popular cloud-based IDEs, none of them offer such capabilities out of the box, nor
do they provide a way for developers to implement such functionality themselves.
The motivation behind the conception of this thesis becomes apparent once one
factors in the increasing capabilities and use of cloud-based IDEs, especially in the
industrial sector, where there is significant overlap between the areas of cloud IDEs
and model driven development.

2. Defining the objectives for a solution The aim of this work is to improve upon
the status quo by offering adequate diffing and merging support for diagrams. Con-
cretely we aim to reduce the error rate caused by inadequate merging mechanisms
(such as text-based representation of a diagram), increase user understanding of
the changes that took place, and provide a faster merging mechanism than what is
currently available. The aforementioned functionality is meant to be integrated in
the Theia cloud-based IDE.

3. Design and implementation The architecture of the system, including the server
side, the transfer protocol and the client side has been designed and polished in
order to ensure the viability of the subsequent implementation. During the design
phase UML diagrams were created in order to crystallize the key components of
the software. When it comes to the user interface of the tool, literature research
and reviews of existing tools were conducted in order to adhere to best practices as
well as any conventions / standards. Once the architecture of the system has been

4

1.4. Structure of the Work and Authorship

defined work started on the implementation. As the need arose, adjustments were
be made to compensate for potential design flaws that escaped the design phase.
The implementation was designed in a way that allows integration with existing
technologies that are relevant to the scope of the thesis, such as the EMF Compare
and GLSP.

4. Evaluation The evaluation of this work has been conducted in a qualitative manner
through a series of semi-structured interviews and benchmarks. The efficiency of
the developed application-layer protocol was analyzed by performing a series of
measurements regarding the timeliness of the roundtrips between the client and
the server. In order to ascertain to what extent we have succeeded in developing
useful visualization means we will be relying on the System Usability Scale [B+96],
or SUS for short. Based on the answers gathered from interviewees a total SUS
score has been computed and subsequently relied upon when it came to gauging the
usability of the interface and implicitly the developed means for diff visualization.

1.4 Structure of the Work and Authorship
This chapter describes how this thesis is structured and briefly summarizes each of

its chapters. In addition to said summary, information regarding the authorship of each
chapter, as well as the implementation and division thereof between the authors, will be
provided.

Chapter 1 describes the motivation behind the genesis of this thesis, such as the
lacking support for collaborative work on diagrams, especially in the context of cloud
based IDEs. Furthermore it describes what we aimed to achieve, namely provide graphical
diffing and merging capabilities for diagrams in the Theia IDE. Lastly the methodological
approach, based on Hevner et al.’s work regarding design science, is described. This
chapter has been written by Mr. Dulcă.

Chapter 2 describes what effectively constitutes the status quo regarding diagram
diffing and merging capabilities of existing cloud based IDEs, as presented in chapter
2.1 by Mr. Dulcă, as well as the currently available or proposed mechanisms for model /
diagram diffing (not limited to a cloud based context), as illustrated in chapter 2.2 by
Ms. Avram.

Chapter 3 tackles the concrete design and implementation of the Diff-Merge extension
and all of its components, as well as the developed protocol responsible for facilitating
the communication between said components. Chapter 3.1 has been done by Ms. Avram,
while the implementation in chapter 3.2 has been equally between her and Mr. Dulcă.

In chapter 4 Ms. Avram provides an example of a comparison between two
diagrams conducted using the Diff-Merge tool and takes the reader through all the steps
from triggering a comparison to concluding a merge in order to offer them a better
understanding of the inner workings of the developed tool.

5

1. Introduction

Chapter 5 summarizes the work done during the course of this thesis and illustrates
the methodologies used for the subsequent evaluation of the various components of the
Diff-Merge tool, such as benchmarking for measuring performance, the System Usability
Scale used to gauge the usability. This chapter has been authored by Mr. Dulcă.

Chapter 6 outlines the open challenges and potential for future work that have
been identified as a result of the conducted evaluation. Work on this chapter has been
divided equally between the two authors, with chapters 6.1 and 6.2 being the work of Mr.
Dulcă while chapters 6.3 and 6.4 are the work of Ms. Avram.

6

CHAPTER 2
State of the Art

This thesis touches on a number of subjects such as cloud IDEs, models, diagrams
and diffing and merging of said models and diagrams. As such this chapter will present
the state of the art for those topics, in an attempt to give the reader an overview of
the current status quo and thus help him or her view the contents of the work in an
appropriate context. Since there is little to no overlap between cloud IDEs and diagram
diffing and merging these two topics will be discussed separately, starting with the cloud
IDEs.

2.1 Cloud IDEs
The first topic to be discussed in this chapter are the online IDEs, with the top

10 most popular ones being mentioned and the top 3 being analyzed in greater detail.
This classification is based on the PYPL [ode21] index, which gets its data from Google
Trends [gtr21]. The top 3 make up roughly 70% of the market share on Google Trends
thus being warranted a closer look.

Rank IDE Market Share
1 Cloud9 39.4 %
2 Repl.it 16.82 %
3 JSFiddle 13.73 %
4 Koding 9.01 %
5 Codio 6.44 %
6 PythonAnywhere 4.66 %
7 Ideone 3.89 %
8 DartPad 2.58 %
9 Goorm 1.22 %
10 Codeanywhere 1.12 %

7

2. State of the Art

The most searched for cloud-based IDE is Cloud9 [clo21], with a market share
of 39.4% at the time of this writing. Cloud9 is a cloud IDE offered by Amazon that
ties in their Amazon Web Services stack. It can be started seamlessly from the EC2
console and one can be up and running within just a few seconds. Cloud9 allows coding,
running the code and debugging directly from the browser. The rich code editor and the
debugger are relying on an elastic computing instance that is automatically started in the
background whenever a new Cloud9 environment is created. The platform upon which
the IDE runs is Linux based, with the user being able to choose from either Amazon
Linux (optimized for their own EC stack, offering bleeding edge software repositories
etc.) or Ubuntu Server.

Figure 2.1: Cloud9 UI

Once running, the IDE offers a familiar sight, as can be seen in figure 2.1, with a
project explorer on the left side of the screen and a system terminal in the lower part,
with the actual code, or contents of the open file, being shown in the central part of the
screen above the terminal and to the right of the project explorer. When it comes to
the concrete capabilities of the IDE, it supports the expected features, such as syntax
highlighting, code completion, hints and linting for a wide variety of popular programming
languages such as C++, Java, Python, Typescript etc. Some languages such as Go,
Node.js, Python, C++ and PHP also benefit from debugging functionality in addition to
the aforementioned features.

On one hand Cloud9 checks a lot of the boxes that a developer might look for in
an IDE with the caveat that it is not truly and entirely free. In order to run it requires

8

2.1. Cloud IDEs

either an EC2 instance or a remote server with SSH access. On the other hand, since it is
running in a Linux environment, this allows the user to install a myriad of tools that they
might need, such as Maven [mav21] or Docker [doc21]. Depending on the developer’s
needs this combination of factors may impact how suitable a solution Cloud9 IDE really
is.

The second entry on the list is Replit [rep21]. This cloud-based IDE supports over
50 languages such as PHP, Go, Java, Python, C, C++, Haskell etc. and has a market
share of 16.82%.

Figure 2.2: Replit UI

The layout, depicted in figure 2.2, is somewhat simple and similar to how IDEs are
constructed in general. The user is greeted by three main windows, a project explorer
on the left, an editor window beside that, and a terminal below the editor. The project
explorer doubles as a version control, settings, and dependency management window.
This type of layout is commonplace in a series of IDEs, e.g. Visual Studio Code [vsc21].

Repl.it goes a step further when it comes to its ease of use by offering an intuitive
GUI for dependency and package management. The user can simply search for the
desired dependency, such as frameworks and libraries. The UI is the same regardless of
the programming language, that has been chosen, but the dependency management tool,
that is invoked, differs. For example Maven is employed for Java projects, Poetry [poe21]
is the dependency and packaging tool utilized for Python and npm [npm21] is used to
manage Node.js projects. While all these features might allow Replit to be appealing to

9

2. State of the Art

some users, there are some caveats that need to be addressed. The source code is public
for members of the free plan, similar to GitHub [git21b], where users can fork projects
and work on their own copy, without being able to make changes to the original. Paid
plans offer the option to make projects, or “repls” as they are called, private, while also
offering increased memory, computing power and hosting for running software.

The third contender on the list, with a market share of 13.73% at the time of this
writing, is JSFiddle [jsf21]. While JSFiddlle is not a cloud IDE in the true sense of
the word it does allow users to construct quick prototypes based on HTML, CSS and
Javascript, without any registration or costs.

Figure 2.3: JSFiddle UI

Figure 2.3 shows a simplistic layout, with 4 rectangular boxes, HTML, CSS,
JavaScript and Result, being shown on the screen. An option to open up a console is
also available underneath the Result window. Even though limited in scope compared to
other online IDEs, it does offer syntax highlighting, code completion and linting. In spite
of the aforementioned limitations JSFiddle has been included in this chapter because of
the high ranking in the PYPL index as well as the fact that it is prevalent in the online
resources regarding frontend development such as StackOverflow [sta21] where a vast
majority of questions and/or answers related to JavaScript or HTML rely on JSFiddle to
showcase the examples.

In spite of all the apparent differences between the three aforementioned cloud-based
IDEs they all share one common characteristic, or better said, lack thereof. None of
them offer support for custom plugins or extensions. This basically means that users are
limited to the functionality that comes out of the box with the IDE for the most part.

10

2.1. Cloud IDEs

The precursor to AWS Cloud9, c9.io, did indeed allow users to load third party plugins.
This feature was then also migrated to the Cloud9 IDE, in an experimental capacity,
only for it to be removed at some later point in time [aws21b] . That being said, Amazon
was in the process of evaluating ways to officially support third-party plugins in AWS
Cloud9 [aws21a] but at the time of this writing nothing had come of it.

This is where the Theia cloud-based IDE [the21] comes in. Theia is a vendor-neutral,
open-source IDE platform that runs in browsers and on desktops. This means it is not
necessarily meant to be an end-product in and of itself, instead being targeted at IDE
developers who want a VS-Code [vsc21] that runs in the cloud and/or simply want an
alternative to forking VS-Code. While it is not the same product, Theia does however
run VS-Code extension, which means that users can browse through the almost 27.000
extensions that are already available and mix and match them in order to ultimately
obtain an IDE that offers the required features for their tasks, all while running in a
browser.

Figure 2.4: Theia UI [the21]

Once running the user is greeted by a familiar look and feel, noticable in figure 2.4,
almost indistinguishable from VS Code. A project explorer takes up the left part of the
window, with tabs for version control, searching and debugging also available. The lower
part is taken up by a terminal while the center section is dedicated to the active editor.
While it does not support any language specific features, such as syntax highlighting or

11

2. State of the Art

autocompletion out of the box, these can be added with ease through either a VS-Code
extension or a Theia-specific one. On one hand this means that less functionality is
available to the user by default, while on the other hand the total scope of functionality
that can be added is much broader than with most cloud-based IDEs.

An extension provides certain functionality through a collection of widgets, com-
mands and handlers. Because in Theia everything is wired up through dependency
injection, an extension has to define one or more dependency injection modules. The
functionality provided by an extension can be manifold, ranging from an UI extension
all the way to contributing a language server in the backend. What all of this means
is that developers are free to contribute any functionality they wish and so they did.
Diagramming support already exists as an add-on part to the Theia IDE in the form
of the Sprotty [spr21b] extension. Sprotty is an open-source, web-based diagramming
framework.

It is precisely because of the ease with which it can be extended and the already-
available support for diagramming that Theia proves to be a promising candidate for
visual diffing and merging of diagrams.

2.2 Model/Diagram diffing and merging

With technology constantly advancing and becoming more complex, the area of
software engineering does not fall far behind, as the size and capabilities of the built
systems are constantly increasing. As stated by Brosch et al. in “An introduction to
model versioning” [BKL+12], one way of coping with said complexity has been to raise the
abstraction level of the languages used for the specification of said systems. Model-driven
engineering, or MDE for short, has been proposed as one mechanism capable of raising
the abstraction level. In the case of MDE the basis used for the automatic generation of
an executable system is represented by the models themselves. This fact allows developers
to remain closer to the problem domain, rather than focus on individual implementations
when building their models.

2.2.1 Classification of versioning systems

Because of the aforementioned complexity and scope of systems, the number
of developers required is accordingly large. This renders the support for team-based
development of models to be a “crucial prerequisite for the success of MDE”, according
to [BKL+12]. This fact draws a parallel to traditional software engineering, where
versioning capabilities are required. According to Altmanninger et al. [ABK+09], the use
of text-based versioning systems such as Subversion [sub21], Git [git21a], or CVS [cvs21],
for models has lead to unsatisfactory results, thus proving itself to be inadequate for
this particular use case. Because these systems use a text-based representation of the
model, information contained in the graph-based representation becomes lost. In order

12

2.2. Model/Diagram diffing and merging

to overcome this drawback, versioning systems based on the graph structure of a model
have been proposed.

Optimistic versioning systems became popular, as they allowed multiple developers
to simultaneously work on the same artifacts, without any of them being locked while
it was being worked on by another developer. This way of work means that all of the
changes performed by the various developers have to be merged again, in a version of the
artifact that contains all the changes. Provided that multiple developers check out the
artifacts they plan to work on at the same moment in time, once the first developer has
finished his or her work, they can simply check in their changes to the repository. Since
no other changes have been submitted in the meantime their changes get directly saved
to the repository, as a revised version. Once a second developer attempts to check in their
changes however, the merging process will be triggered, as a new version of the artifact
has been submitted to the repository between the time the second developer checked out
the artifact and the moment they attempted to submit their changes. Once the merging
process has been completed the repository version of the artifact will reflect both the
changes performed by the first developer, as well as the ones made by the second one. In
their work Brosch et al. [BKL+12] talk about the foundations of versioning and describe
the goal of versioning systems as being twofold. On one hand they maintain a historical
archive of artifacts as they undergo various changes, and on the other hand they help
manage the evolution of software artifacts.

In order to better categorize the various technologies for software versioning, Conradi
and Westfechtel [CW98] have proposed version models that specify which objects are to
be versioned, how versions are identified and organized and how to create new versions
and retrieve existing ones. It is within these model versions that Conradi and Westfechtel
make the distinction between the product space and the version space. The product
space ignores any versioning information and instead only describes the structure of the
product, in this case a piece of software. The version space on the other hand focuses
on the evolution of the artifact by introducing versions and relationships between them,
such as deltas. The structure of the product is not taken into account in this case.

Conradi and Westfechtel also differentiate between extensional and intentional
versioning, with the former being most commonly encountered presently. This type of
versioning consists of retrieving previously created versions of a software artifact, with
concerns regarding efficient storage, version identification and immutability. This is
achieved by explicitly checking in each version and attributing each one of them a unique
number. Intentional versioning on the other hand consists of the automatic generation
of consistent versions from the version space. Properties can be annotated to specific
artifact versions and they can be subsequently queried in order to generate a new artifact
based on the specific versions of the various properties.

When it comes to designing versioning systems and the impact said design has on
the merge result, Brosch et al. [BKL+12] categorize the current merging approaches in
two dimensions, a dimension for the product space and a second one concerning “how
deltas are identified, represented, and merged in order to create a consolidated version.”

13

2. State of the Art

The dimension for the product space describes the specific representation of the artifact
which is to be merged and it can be either graph- or text-based.

Depending on the specific merge approach, the merge is being conducted either on
the versions of the artifact, for a state-based merging approach, or it can rely on the
operations that have been applied to the artifact between a common ancestor and the two
successors, in the case of operation-based merging approaches. Regardless of the specific
merge approach conflicts might arise during the merge process of two different versions.
The two basic types of conflicts that occur, are update-update, when two elements
have been changed in both versions and delete-update, where a version consists of an
updated version of an element, whereas the other version has the same element deleted
[BKL+12].

In case of text-based merging the textual representation of an artifact is used, with
the atomic unit of the version text consisting of “a paragraph, a line, a word, or even
an arbitrary set of characters”. Because this approach relies exclusively on a textual
approach, it does not require any knowledge regarding the content of the versioned files,
such as language-specific knowledge. This fact makes the text-based merging approach
programming-language-agnostic and grants it a degree of simplicity and efficiency which
has ensured its widespread adoption in practice. These advantages constitute a doubly-
edged sword however, as they make the merging process prone to introducing compile- and
run-time errors. Graph-based approaches have emerged as a result of the aforementioned
shortcomings of the text-based merging approach. As the name suggests, this type of
approaches “operate on a graph-based representation of a software artifact for achieving
more precise conflict detection and merging”. This precise conflict detection and merging
can be achieved by one of two means, syntactic and semantic merge approaches [Men02].

The syntax of a programming language is being taken into account by the syntactic
merge approaches by translating the artifact into an abstract syntax tree prior to per-
forming the merge itself. This allows for the merge to be performed in a syntax-aware
manner, thus possibly avoiding syntactically erroneous results, as well as unimportant
textual conflicts, for example as a result of formatting the file. The latter advantage
of syntactic merging may however lead to the loss of intended formatting during the
translation from the graph-based representation back to the textual one.

The semantic merge approaches are more advanced, offering detection for things
such as infinite loops and undeclared variables. This is achieved by taking the static
and dynamic semantics of a programming language into account, a fact which comes
at a price, namely an increased computational complexity and an intrinsic language
dependency.

The second dimension according to which current merging approaches can be
categorized concerns the identification, representation and merging of deltas. In this
context the state-based and operation-based merging can be further analyzed. In state-
based merging the versions of an artifact are being compared to each other in order
to establish the aforementioned deltas, and all of the non-conflicting changes will be

14

2.2. Model/Diagram diffing and merging

merged. This type of approach can be applied to both a two-way merge as well as to a
three-way one. A two-way merge will be performed between two versions of the same
artifact, whereas a three-way merge will take place between two artifact versions and their
common ancestor. This allows for deletions to be identified only in case of a three-way
merge, as without information about a common ancestor it is impossible to ascertain if a
change represents an addition in one of the versions or a deletion in the other one.

Furthermore in order to perform a state-based comparison and merge, a match
function is required. The role of this function is to identify the correspondences between
the elements being compared across the two versions. As such this function and its degree
of accuracy are of paramount importance when it comes to the quality of the resulting
merge, thus requiring graph-based approaches to employ more advanced techniques for
it.

Assuming such a match function has been defined, the steps required for performing
a state-based merge would be as follows: firstly the elements of the common ancestor for
the versions to be merged are iterated. For each such element the matching function is
called upon to determine the corresponding elements in each of the two versions being
merged. Next the algorithm verifies if the matching elements have been modified in
either of the two versions. Should this be the case for only one of the versions, then the
modified element will simply be used in the final merged version. Should such a change
exist in both of the artifact versions, then an update-update conflict is present. If an
existing match is unchanged, then the element in question is left as is in the resulting
merged version. If one of the elements in the ancestor has a match in one version but not
in the other, it means that the element has been deleted in the version where no match is
present. As long as there are no changes for the deleted element in the other version, the
element can simply be removed in the merge result. On the other hand if the element
has been changed in the matching version, a delete-update conflict is present. Elements
in the common origin that have no match in either one of the versions are removed from
the merge result, as they have been removed in both versions. Once all of the elements
in the common ancestor have been processed, all of the unmatched elements from both
versions get added to the merge result, as they have been newly introduced in one of the
versions.

On the other hand, operation-based merging is being carried out by recording and
analyzing the sequence of operations that have been carried out on the original version
of an artifact. Since the editor used is also responsible for recording the operations,
composite operations, like refactorings, can also be recorded. The high degree to which
operation-based merging relies on the used editor also brings about some disadvantages,
such as having to record and store information that is no longer relevant, such as all of
the operations performed on an element that will ultimately be removed at a later time.
Because of this, operation-based approaches will often employ cleansing algorithms to
sanitize the list of recorded operations.

The steps required for an operation-based merge start with checking the operation
sequences of the two versions in regard to commutativity to detect conflicts. Similarly

15

2. State of the Art

to the match function for the state-based merging, some complex techniques also come
into play here, within the decision procedure for commutativity. A simple, yet inefficient
variant of this procedure would apply each pair of operations found in the cross product
of the atomic operations in both sequences, to the artifact. This would be performed
in both possible orders upon which the two results will be checked for equivalence.
Should the results be equivalent, then commutativity is present between the operations,
otherwise a conflict is present. Once the commutativity check has been carried out, all of
the non-conflicting changes from both operation sequences are applied to the common
ancestor, thus yielding a merged model.

When compared to their counterpart, operation-based approaches are more accurate
and provide more information. They are also faster than state-based approaches when it
comes to their run-time performance, and better suited for large models as the size of
the model itself has no bearing on the computational effort required. Instead the length
of the operation sequences being compared is the one factor that dictates the required
effort to perform the merge. Their computational effort depends on the length of the
operation sequences, and not on the size of the model itself.

Even though there is a difference between state-based and operation-based merging,
the two are intertwined. Some state-based merging approaches do in fact derive the
applied operations and subsequently employ operation-based conflict detection. The
same holds the other way around, namely some operation-based approaches derive the
states based on the operation sequence in order to detect inconsistencies after merging.
The concepts employed for conflict detection are therefore similar between state- and
operation-based approaches, as they both check for conflicts during the merge and illegal
states afterwards.

2.2.2 Model versioning - steps
Once this classification has been made, Brosh et al. [BKL+12] systematically

describe the five techniques required in order to achieve versioning support for models:

1. Model Driven Engineering

2. Model Transformation

3. Model Differencing

4. Conflict Handling

5. Merging

They firstly introduce Model-Driven Engineering, the goal of which is to allow
developers to focus on non-trivial tasks while the translation from models to code is being
done automatically. At this point the term metamodeling is introduced, and defined as
the modeling of modeling languages.

16

2.2. Model/Diagram diffing and merging

In an attempt to standardize the key concepts and ensure interoperability between
the various development environments, the Object Management Group, or OMG for
short, has published the specification for Model Driven Architecture, or MDA [S+00] for
short. The aforementioned interoperability between development environments is achieved
through the Meta-Object-Facility, or MOF [mof05] for short, as well as the later released
MOF 2.0 version [mof14]. This layer of the metamodeling stack represents the only
self-defined metamodel for building other metamodels, thus ensuring the interoperability
of any metamodels defined within. The great advantage of MDA is the fact that it allows
the specification to stay much closer to the problem domain, without being limited by a
certain implementation. This is achieved by decoupling the system specifications from
the underlying platform.

The Eclipse Modeling Framework, or EMF [SBMP08] for short, should be mentioned
at this point, as it supports various subprojects for different MDA tasks such as building
modeling editors, comparing models etc. This fact leads EMF to be increasingly more
widespread in the field of academia as well as in practice.

The second technique required on the road to versioning support for models is
Model Transformation [SK03]. A mechanism for synchronizing and transforming
models is required in order to not have the developers perform error-prone and repetitive
tasks, such as translating models into code. This mechanism is represented by the field
of model transformation, and it is central to the model-driven engineering paradigm.

In order to accommodate the high variety of modeling languages, model transfor-
mation languages leverage the type-system introduced by metamodeling, thus allowing
a syntax for transformations to be defined. The multitude of model application areas,
and the need of model transformations to cover a high number of tasks, have led to the
emergence of an equally high number of model transformation languages.

The types of transformation are introduced next, beginning with the Endogenous
model transformation. This type of transformation takes place when both the target
as well as the source model belong to the same metamodel. If a source model is being
edited, the source will be the same as the target artifact. This is called an in-place
transformation. Should a new target model be generated based on the source model,
then an out-place transformation takes place. The Eclipse Modeling Framework can
be named again at this point, as it allows for programmatic manipulation of models,
thus providing support for the model transformations required for model versioning.
Exogenous model transformations on the other hand, take place between models belonging
to different metamodels. Models of a modeling language are used as input in order to
create a new model of a different language. The third type of transformation is the
Model-to-text transformation. These transformations are employed in order to obtain a
textual representation of an input model, be it either as code or anything else.

Model Differencing is the next building block towards versioning models, and
it can be achieved as follows. Firstly a match is computed between the elements of the
two versions, then the differences themselves are obtained and finally they have to be

17

2. State of the Art

represented for tasks such as merging and conflict detection. Matching is responsible for
determining the identity of the model elements. The approaches employed to achieve this
have their roots in schema matching for databases and ontology matching in the domain
of knowledge representation. Database schema matching touches on various topics such
as data extraction, semantic query processing etc.

This in turn has led to the emergence of multiple structures and terminologies
which Rahm and Bernstein [RB01] classify in two categories: individual matchers and
combining matchers. Furthermore matchers can be classified based on the level they
operate on, such as element or structure level, on the cardinality of the matches, such
as one-to-one, one-to-many or many-to-many and on whether the matcher is executed
alone or makes use of the results provided by a number of matchers that have been
independently executed. These same classifications can also be applied when describing
model matching approaches.

Kolovos et al. [KDRPP09] propose a classification that is custom tailored to model
matching approaches. This classification is based on the matching criteria for model
elements, such as: identity-based matching, signature-based matching, similarity-based
matching and matching that is specific to a certain language. Identity-based matching
makes use of the model elements’ UUIDs while the signature-based matching relies on a
computed signature for each model element. This signature is based on a combination
of the element’s values, with these 2 types of matching offering a binary result to the
matching problem of two model elements, namely they either are a match or they are not.
Similarity-based matching on the other hand performs a computation based on the value
of the model element’s features and thus allows for insignificant attributes to be ignored
by attaching weights to them. The fourth type of matching, relies on language-specific,
user-defined match rules.

When it comes to concrete matching approaches there are a number of alternatives
out there. Alanen and Porres [Por05] have developed an algorithm that achieves this,
granted only for UML models, but this could have been extended with relative ease as
its match function makes use of static identifiers. UMLDiff [XS05] on the other hand, is
designed for a specific modeling language. Instead of using static identifiers it employs
similarity-based matching, based on an element’s name and structure.

Specifically tailored to UML is also the approach developed by Nejati et al. [NSC+07]
as well as ADAMS [DLFST09], with the latter leveraging a hybrid matcher that combines
identity-based matching and signature based matching.

Not limited to UML are DSMDiff [LGJ07] as well as EMF Compare [BP08], with
the former computing a signature based on the element type and name and subsequently
taking into account the relationships between all of the previously matched model elements.
EMF Compare operates in a similar fashion by employing four different metrics, namely
the name, content and type of an element, as well as its relations to the other elements
in the model. While it does also offer the possibility for identity-based matching, one has
to choose between either identity-based or similarity-based matching, as both of these

18

2.2. Model/Diagram diffing and merging

strategies cannot be combined in the case of EMF Compare.

SiDiff [SG08] is another example of a concrete matching approach, one that does
allow for fine tuning of the comparison process (by attaching weights to individual model
element attributes), unlike EMF Compare and DSMDiff which require no language-specific
configuration.

Once the matching of the elements has been performed it is time to compute and
represent the differences, should any exist. The differences themselves can be computed on
three different levels, namely the abstract syntax, the concrete syntax and the semantics
of the model. Differencing based on the abstract syntax is only able to identify differences
in the syntactic data. Concrete syntax differencing is capable of detecting additional
changes, such as layouting in the visualization of the model. Semantic differencing on
the other hand compares the meaning of models instead of their syntactic representation.
Out of the three aforementioned differencing levels, the one that is most relevant to
model versioning is the abstract syntax level.

Most of the existing approaches in terms of model differencing are only able to
identify atomic operations such as additions, deletions, moves and updates. In addition
to these atomic operations, composite operations might also be applied to models. An
example of a composite operation would be a refactoring.

In order for the identified differences to be of any use to developers they have
to be represented in some way. Different approaches to this exist, with Cicchetti et
al. [CDRP07] proposing a list of properties which should be fulfilled by an operation
representation. The more important properties describe if a representation is model-based,
meaning if it adheres to a metamodel used for computing differences, if it is applicable
to compared models and if it is metamodel independent.

When it comes to concrete implementations, DSMDiff[LGJ07] distinguishes between
elements to be added, changed or deleted, while SiDiff [SG08] distinguishes between
structural, attribute, move, and reference differences. Representations of custom, language
specific operations also exist, for example move activity and delete fragment, defined
by Gerth et al. [GKLE10] for state machines. EMF Compare [BP08], unlike the
aforementioned approaches, uses a model-based representation of differences.

Once the model differences have been computed conflicts might be detected. There
are a number of definitions for the term "conflict" but in the field of software versioning
it is used to describe operations that are contradicting each other.

Depending on the specific operations that have been applied to the two model
versions, different conflict types might arise. Mens [Men02] distinguishes between textual,
syntactic, semantic and structural conflicts. Structural conflicts arise as a result of a
refactoring, leaving the merging algorithm unable to decide how the merge result should
be refactored.

According to Brosch et al. [BKL+12] no categorization of merge conflicts has been
widely accepted in the field of model versioning. However Taentzer et al. [TELW14] do

19

2. State of the Art

define a series of conflicts, while taking into account the additional features of EMF-based
models. These conflict types are as follows: delete-use, delete-move, delete-update,
update-update, move-move, and insert-insert.

The last step required, in order to achieve versioning support for models, according
to Brosch et al. [BKL+12] is merging. The process of merging non-conflicting changes
is a fairly uncomplicated one. In the case of a two-way merge, where deletions cannot be
detected, the merged version is constructed as a "joint union of both input artifacts".

This process is slightly different and more reliable in case of a three-way merge
where the two versions to be merged share a common ancestor. In this case, the merged
version of the two artifacts is obtained by "applying the union of all changes detected
between the common ancestor and both revised versions to the common ancestor version".
Should a conflict arise however, then no unique merged version can be constructed. This
means that conflicts need to be resolved before a merge can be concluded. The most
straightforward way of solving conflicts would be manually. This means that the user is
responsible for analyzing the two versions and decide which changes he or she wishes
to be integrated in the final merged version. This approach, which is also favored by
tools like Subversion [sub21] or Git [git21a], works well for line-oriented artifacts where
dependent changes are located in a sequence, close together. The same does not hold
true for models, whose graph based structure means that such related changes might be
scattered across the model.

A visual, graphical side-by-side comparison of the two versions would still not be
enough, as the effort required to identify matching elements increases proportionally with
the canvas size, which in turn depends on the size of the model itself. To this end, Gerth
et al. [GKLE13] have proposed a guided conflict resolution. Regardless of the specific
means through which it is achieved, manual conflict resolution will always be error-prone
due to the human factor. As a response to this fact Munson and Dewan present a
framework that automates this process based on configurable merge policies[MD94]. Such
merge policies might for example stipulate that the changes of a specific user might take
precedence over to ones of another, or that certain operations outrank others.

It is in this context that Brosch et al. bring up conflict tolerance as opposed to
merely conflict resolution. They argue that inconsistencies shouldn’t be regarded as
merely an undesirable byproduct of collaborative development. According to Nuseibeh et
al. [NER01], inconsistencies should be at least temporarily tolerated as they help identify
areas of the system that might warrant further analysis. These may be areas where the
developers have a diverging understanding of the problem, or simply areas that are too
large to be changed at once. Balzer [Bal91] for example relaxes consistency constraints
and instead annotates the inconsistent areas with so called pollution markers.

None of the aforementioned conflict handling approaches, be it manual resolution,
automatic resolution or conflict tolerance, are a clearly superior alternative to the other
ones. Instead they each offer their own advantages and drawbacks. While manual merging
requires more effort, it also provides the user with a higher level of control over the final

20

2.2. Model/Diagram diffing and merging

merge result. Automatic conflict resolution on the other hand, reduces the required effort
on the user’s part but it also limits the user’s control over the process. Lastly conflict
tolerance offers insight into potential problem areas of the system but not without a cost,
as it requires dedicated editors and an artifact grammar that supports pollution markers.

Upon introducing the aforementioned concepts, Brosch et al. [BKL+12] define a
set of criteria for evaluating state of the art model versioning systems. Among these
criteria are the detection of conflicts between both atomic and composite operations,
the detection of inconsistencies as well as the adaptability of the resolution strategies.
This thesis will however focus on only a subset of these features, namely the graphical
visualization of conflicts, the flexibility regarding the modeling language as well as the
flexibility regarding the modeling editor.

Out of the fourteen approaches that they have analyzed, 6 of them offer modeling
language and editor flexibility, while only 4 of them offer graphical visualization during
the conflict resolution. The first approach that is relevant to the topic of this thesis would
be CoObRa, a versioning framework created by Schneider et al. [SZN04] for the CASE
UML tool Fujaba [fuj21], with CASE standing for computer-aided software engineering
and Fujaba being an acronym for “From UML to Java and back again”. It supports
graphical conflict resolution but, perhaps as the name suggests, it does not offer any
flexibility regarding the modeling language or the editor. Furthermore this project is not
being actively developed anymore at the time of this writing.

The next contender on the list would be the approach by Mehra et al [MGH05]. They
provide a plugin for the Pounamu CASE tool. This plugin offers graphical visualization
of differences and offers flexibility regarding both the editor and the modeling language,
as the diagrams are serialized in XMI before being converted into a graph representation
for the actual comparison.

Another option offering visualization and editor flexibility is the IBM Rational
Software Architect or RSA [ibm21] for short. It is a UML modeling environment based
on the Eclipse Modeling Framework. The downside to RSA is the fact that it is limited
to two languages, namely C++ and Java EE.

The semantically enhanced model version control system SMoVer [RAB+07] is
a candidate that supports no means of visualization but does in turn offer flexibility
when it comes to the modeling editor and language used. In spite of this language
independence, language specific semantic views can be implemented in order to adapt
the system to a specific modeling language. The identification of differences is based on
UUIDs, thus rendering the system independent from the modeling editor. This genericity
of the differencing does however mean that it can not be adapted to a certain modeling
language.

A solely theoretical work, with no implementation, by Westfechtel [Wes10] offers
flexibility in the choice of language and editor similar to how SMoVer does, while similarly
offering no visualization means. This approach does however focus on conflict-detection
and assumes that the differences are obtained by EMF Compare.

21

2. State of the Art

This brings us to the open-source model comparison framework EMF Compare
[Tou06]. While it does not offer any visualization means for the conflict resolution in and of
itself it does provide algorithms for both two- and three-way merging. Furthermore EMF
Compare also provides merging mechanisms coupled with conflict detection capabilities.
All of these features are independent from any editor or language used, but allow for
programmatic extension so that the end result would be custom tailored to a specific
language.

An approach that builds on the previously described concepts and frameworks
is AMOR [amo], an adaptable model versioning framework developed jointly by the
Vienna University of Technology [tuw21], the Johannes Kepler University Linz [jku21],
and SparxSystems [spa21]. The goal of AMOR, as stated by Brosch et al. is “to combine
the advantages of both generic and language-specific model versioning by providing a
generic, yet adaptable model versioning framework”. This means that generic versioning
support is being provided without any dependency to the used language or editor. In
order to achieve this, AMOR leverages the Eclipse Modeling Framework. The design
of their solution revolves around a series of requirements, such as, but not limited to, a
user-friendly visualization of conflicts, an integrated view that showcases all the merge-
relevant information in a single diagram, and a model-based representation that ensures
the merge information is being represented as model elements.

In tune with the aforementioned aim for a user-friendly visualization AMOR
generates a dedicated model versioning profile, containing difference and conflict models,
that glues available information into the model. This versioning profile provides different
stereotypes for the different change types. They distinguish between “Add”, “Delete”,
“Update”, “Move” and “CompositeChange”. Furthermore each of these stereotypes is
then assigned into one of two categories, namely “MyChange” and “TheirChange”, in
order to provide the user with a clear understanding of who performed the change in
question. Conflict-specific stereotypes, such as “UpdateUpdate” or “DeleteUse” are also
defined in the versioning profile, one for each conflict pattern of the conflict metamodel.

The conflict resolution itself is based on the tentative merge and allows for easy
implementation of actions such as “take my change”, “take their change” or “revert this
change”, thanks to the included stereotypes. AMOR takes conflict resolution one step
further and implements a recommender system for conflict resolution, as certain types of
conflicts are likely to reoccur.

As presented in this chapter, online IDEs offer virtually no support for model
or diagram diffing and even traditional, non-cloud-based, tools offer only a limited
combination of editor and language independence coupled with visual mechanisms for
conflict resolution. One of the aforementioned candidates has however proven itself to be
promising as it checks most of the boxes required by this work. This candidate is EMF
Compare. It offers diffing and merging capabilities, coupled with conflict detection and
the possibility to leverage all of these features in a programmatic fashion. This means
that all of the information obtained from EMF Compare during a comparison can be
serialized and shipped off to another component for further analysis and/or processing.

22

2.2. Model/Diagram diffing and merging

Once this is done, a programmatic call can be made to trigger a merge, resolve a conflict
or perform a new comparison.

23

CHAPTER 3
Design and Implementation

This chapter will provide a brief introduction to the existing components that are
being reused together with an overview of the system architecture. Subsequently the
implementation will be discussed, while also going into more detail regarding components
such as Theia, Sprotty or EMF Compare and the specific functionality that is being
reused. The newly implemented components, namely the Diff-merge Theia extension
representing the frontend, as well as the Diff-merge backend, will be presented alongside
the reasoning that led to the final implementation of said components.

3.1 Architecture description
In order to achieve the goal of adding graphical diffing and merging functionality

to the Theia IDE, a number of existing technologies will be used, some of them will be
extended, and certain parts will be designed and developed from scratch. This chapter
aims to offer an overview of the tool’s architecture, as shown in figure 3.1, as well as
briefly explain the role each of the components play in the graphical diffing and merging
process.

Perhaps the best place to start would be the Theia IDE itself. Theia is an IDE
platform that is easily extensible due to the modular way in which it has been designed.
This means that even though diagramming support is not available straight out of the
box as it were, it can easily be added through an extension. For the scope of this thesis,
the diagramming support has been added to Theia in the form of the GLSP client
integration and the Sprotty [spr21c] open-source diagramming framework. While Sprotty
is responsible for rendering the diagram shapes, the GLSP client offers the necessary
support for the Workflow Modeling Language [gls21a].

This language was developed by EclipseSource [ecl21] and is an executable and
interpretable language that is meant to describe workflows within a system, such as the

25

3. Design and Implementation

process of brewing coffee executed by a coffee machine. To support this language, a
GLSP backend is needed to provide all of the language specific logic, without adding
to the complexity of the IDE itself. The resulting diagrams have sufficient complexity
to render them suitable for showcasing the graphical diffing and merging capabilities
developed within this work.

Figure 3.1: Architecture Diagram

This means that one can generate an instance of the Theia IDE that contains
diagram editing capabilities by re-using existing work. Now the only thing missing is
the Diff-Merge functionality. This is added by once again making use of the ability to
create custom Theia extensions. This Diff-Merge Extension is responsible for displaying
the differences between two/three versions of a diagram and allows the user to perform
merges and resolve conflicts. In short, the extension adds new UI elements and user
interaction means to the Theia IDE.

While the Diff-Merge Extension is handling the client-side of the equation, the heavy
lifting is being performed by the backend Diff-Merge Component. This component is
responsible for performing the diffing, merging, and conflict resolution based on the input
from the client. Once these operations are performed, the results are sent to the client
to be displayed to the user. The communication between the client and backend takes
place through REST requests, handled by a Jetty [jet] server which is included in the

26

3.2. Implementation details

Diff-Merge Component. These requests are then forwarded to the Diff-Merge Service,
which has been developed during the course of this work. This service is responsible for
interpreting the commands received from the client and calling the appropriate functions
in EMF Compare. EMF Compare is being programmatically called upon to perform
diffing, conflict detection and merging. All of the aforementioned operations can be
performed on the Workflow Modeling Language, which again renders it an appropriate
candidate to showcase how graphical diffing and merging capabilities could look like in a
cloud-based environment.

The results obtained from EMF Compare are then processed by the Diff-Merge
Service so that they may subsequently be sent back to the Diff-Merge IDE Extension to
be displayed.

3.2 Implementation details
This chapter presents the implementation of the diffing and merging functionality,

spanning from the UI in the frontend to the programmatic calls to EMF Compare in the
backend. We begin by offering an introduction to all of the technologies used within this
thesis, with the more relevant aspects being described in more detail. Moving forward
we will describe the implementation of the graphical diffing and merging functionality
as a pair consisting of a Theia extension and a Java backend, as well as the protocol
developed in order to facilitate the communication between the two.

3.2.1 Theia Diff-Merge extension

Theia IDE

In order to offer a better understanding of what has been implemented and why,
a closer look at Theia’s inner workings is in order. Theia is an open-source framework
that facilitates the creation of both web-based IDEs, as well as classical native desktop
versions thereof. In order to achieve this using the same source, Theia uses two processes,
a frontend and a backend. These processes communicate with each other through JSON-
RPC [jso21] messages exchanged through Websockets, or through RESTful APIs [res21]
via HTTP. In case of the desktop application, both the backend and the frontend run
locally, while in case of a web-based application the backend would run on a remote
host. Both processes have a dependency injection container that allows for extension
contributions.

There are two means through which functionality can be added to Theia, namely
extensions and plugins. Theia extensions are npm [npm21] packages that expose any
number of dependency injection modules that contribute to the creation of the dependency
injection container. These extensions are being consumed by adding a dependency to the
npm package in the package.json file of the application and allow developers to extend
and customize existing Theia extensions such as the Monaco Editor [mon21].

27

3. Design and Implementation

Plugins on the other hand are more limited in their scope, meaning that developers
have to stick to predefined APIs without any possibility of tweaking something that is
outside of the scope of the available API. As an upside to this limitation, plugin code is
being run in a separate process, thus not blocking the Theia core processes. Furthermore
they can be loaded at runtime without requiring a recompilation of the entire IDE.
However because of this limitation, a Theia plugin has proven itself to not be sufficient
in order to add the graphical diffing and merging functionality to the IDE, an extension
being required in order to achieve this.

Before the Diff-Merge extension itself can be developed, a version of the Theia
IDE that offers diagramming support has to be created. This can be obtained through
the Eclipse GLSP Examples repository [gls21a], which provides a working integration
of GLSP and Theia with support for the Workflow Modeling Language. Concretely
this provides the glue code required for the integration of diagram editors built on the
graphical language server platform with the Theia IDE. In order to support the Workflow
Modeling Language GLSP builds upon the web-based diagramming framework Sprotty.

Sprotty

The graphical language server is responsible for handling and storing all of the information
regarding the diagram and the operations that can be performed upon it, while the client
is only tasked with handling the information necessary to render the diagram. This
visualization is performed through Sprotty, which relies on a reactive architecture that
easily facilitates the arbitrary distribution of concerns between a client and a server
[spr21a]. Furthermore this falls perfectly in line with the scenario of the Language Server
Protocol, with Sprotty extending the language server, which constitutes the base around
which GLSP is built, namely the separation between language logic and IDE integration.

Because GLSP builds upon the same principles, as well as the same communication
protocol as Sprotty, it is only fitting that the latter be briefly introduced. This will
offer a better understanding of how the graphical diffing and merging functionality has
been implemented as well as offer some insight into why certain parts work the way they
do. The diagram is stored in the so-called SModel, a graph model that organizes the
elements in a tree, constructed based on the properties “parent” and “children”. All
elements inherit from the SModelElement which has an unique string ID. Furthermore the
root of the tree will always be represented by an instance of SModelRoot which contains
an index of the model that allows for a fast element lookup based on their ID.

In order to allow for a client-server architecture to be built the aforementioned graph
model has to be serializable. This JSON serialization of an SModelElement is called its
schema and it uses the IDs of elements for cross-referencing. For example the schema of
an SEdge would use the IDs of SNodes to reference its source and target, as show in the
code fragment below.

28

3.2. Implementation details

//Serializable schema for SEdge.
export interface SEdgeSchema extends SModelElementSchema {

sourceId: string
targetId: string
routerKind?: string;
routingPoints?: Point[]
selected?: boolean
hoverFeedback?: boolean
opacity?: number

}

Operations on the graph model are described by Actions. They are serialized JSON
objects that get exchanged between the client and server. Actions are sent through the
ActionDispatcher and they can either originate in the ModelSource or in the Viewer.
Upon receiving an action the ActionDispatcher converts it to a command by using
the appropriate ActionHandler. These Commands describe the actual behavior of the
operation and typically implement the following methods: execute(), undo() and redo().
Each of these methods take the current model as well as the command execution context
as input parameters and either return the new model as a result or return a promise
thereof. The interactions between the aforementioned components are depicted in figure
3.2 below.

Figure 3.2: Sprotty Architectural Overview [spr21d]

29

3. Design and Implementation

GLSP

Now that the basic features of Sprotty have been briefly described, we can start
introducing GLSP-specific features and thus further elaborate on the foundation upon
which the Diff-Merge extension has been developed. In order for the client to display
any sort of diagram, it has to be fetched from the server. This is achieved by the client
sending a RequestModelAction to the server. The response to that request will either be
a SetModelAction or an UpdateModelAction should the model have been subjected to
any updates. The model received by the client will adhere to the GLSP metamodel, or
more concretely in our case, to the Workflow Modeling Language metamodel, that is an
extension of the GLSP metamodel.

Figure 3.3: Simplified GLSP metamodel and Workflow Modeling Language metamodel

As illustrated by figure 3.3, and similarly to Sprotty, every model element will be
a subtype of the GModelElement, with each of them in turn having between 0 and an

30

3.2. Implementation details

undefined number of children. The model root is a GGraph in our case, which is a subtype
of GModelRoot, and it contains the model itself, consisting of TaskNodes, ActivityNodes,
Icons and WeightedEdges. Besides the language-specific extensions, model elements also
contain data relevant to their visualization such as dimensions (GDimension), bounds
(GBounds), edge placements (GEdgePlacement) etc.

Figure 3.4: Graphical representation of a Workflow Modeling Language Diagram

Figure 3.4 on the other hand, depicts an example of a Diagram constructed by using
the Workflow Modeling Language, or WFML for short. As also illustrated by the figure,
in order to allow for the modeling of processes the WFML implements several concepts,
which we will briefly describe in the following paragraphs. Perhaps one of the most
important elements of the WFML is the task. As the name suggests, it is used to model
a specific task that is to be executed at a certain point within the workflow. Tasks are
represented as rectangles with rounded corners, with a label containing the name of the
said task, as well as an icon describing its type. As such tasks will be either manual,
which will be adorned with an “M” icon, or automated, which will be marked by the
“A” icon. The distinction between the two types is further made clear by the background
color of the task, namely blue denoting a manual task while gray is used to aid in the
distinction of automated tasks.

In order to depict the transitions between the various diagram elements, edges
are used. Similarly to the tasks, they too have a type, namely one can have standard
edges, or weighted edges. While both types are depicted as lines ending in arrowheads,
the visual distinction between the two is once again made based on the color, with the
standard edges being black and the weighted ones being drawn in a blue color.

Additionally the WFML also supports so called activity nodes which aid in the
coordination of the workflow from and to the other elements. There are four different
types of activity nodes present in the WFML at the time of this writing. Each of them
will be briefly described in order to paint a picture of what workflows could be depicted

31

3. Design and Implementation

by using the tools at hand. Fork nodes are used to depict parts of the workflow that
take place in parallel. They accept one incoming edge and multiple outgoing ones. Such
nodes are depicted by a vertical bar that has one incoming edge and multiple outgoing
ones. Once the parallel workflow segments have been completed they are joined back
together by using a join node. Join nodes are used in conjunction with fork nodes and
are represented similarly, if somewhat mirrored, namely they accept multiple incoming
edges and have a single outgoing one. Decision nodes are used to choose a certain
path of a possible workflow based on the certain guards. They are depicted by using a
diamond symbol that accepts one incoming edge and multiple outgoing edges. As it was
the case with fork and join nodes, decision nodes also have their, so to speak, counterpart,
namely the merge nodes. Once the alternative workflow has been completed it needs
to be rejoined again, so we will be once again faced with a diamond symbol. This time
however, there will be multiple incoming edges, representing the possible alternatives
the decision node has chosen from, and only one outgoing edge, depicting the common,
singular workflow that follows.

WFML Example

Now that we have introduced and described the building blocks of the WFML we
can start describing the example depicted in figure 3.4 in a more natural language and
focus on the bigger picture, the depicted process, and on the interactions between the
elements instead of regarding them individually. The initial step of the coffee making
process illustrated in figure 3.4 is easily recognizable by its lack of incoming edges. The
manual task of pushing a button, represented by the “Push” task, kicks off the entire
process. Once the process has been initiated we encounter a fork node that branches off
in two parallel workflows. The upper branch concerns itself with the level of water in the
tank, while the lower one is concerned with the temperature. Starting on the top branch
we reach the automated “ChkWt” task which is responsible for checking the water level.
In order to achieve this it is connected to a decision node, which has one incoming edge
and two outgoing ones, one for each possible result of the water level evaluation. The
incoming edge is a standard one, while the outgoing ones are weighted edges, which are
easily recognizable as such through the blue color in which they are rendered. Should
the water level be too low, we will reach the manual task “RflWt”, which represents the
process of filling the water tank back up with water. Should the water level prove to be
high enough during the verification performed by the guard on the decision node, we will
reach the automated task called “WtOK”.

Regardless which route is taken, we will end up at the merge node that merges the
two alternative workflows back up again, easily identifiable by the two incoming edges
and the singular outgoing edge of the diamond. From there we move on to the join node
where the two parallel workflows meet back up again and continue as one. The join node
is the mirror image of the fork node, with two incoming edges and one outgoing one.

Going back to the fork node and taking a look at the lower branch of the parallel
workflow we reach the manual task “ChkTp” which, similarly to “ChkWT”, is responsible

32

3.2. Implementation details

for checking the temperature of the coffee machine’s heating element. This check leads us
to a decision node, where once again we are faced with two alternative workflows. If the
temperature is adequate, the manual task “KeepTp” will be reached, which, as the name
would suggest, is responsible for maintaining the current temperature for the heating
element. Should the temperature check conducted by the decision node reveal that the
heating element’s temperature is too low, the manual “PreHeat” task will be executed.
During the execution of this task the heating element is turned on and its temperature
rises, so that the coffee will actually come out of the machine hot instead of lukewarm.

Once we are done with either one of the two temperature related tasks we reach a
merge node which, like the one in the upper branch of the diagram, leads to a join node
where the parallel workflows come together again. From there, the only outgoing edge is
followed and the manual “Brew” task is reached. This is the step during which coffee is
actually brewed and poured into the recipient.

This example was constructed in order to showcase the capabilities of the WFML
and does not necessarily accurately reflect the coffee brewing process that might be
carried out by a real coffee maker. The WFML is complex enough to allow for meaningful
examples to be crafted so that the intended meaning behind it is accurately conveyed
to the user without having to overwhelm them with complex mechanisms and a steep
learning curve for the language.

GLSP diagram editor

Now that we have discussed the WFML let us take a look at the context in which
users are meant to interact with it, namely the diagram editor in which it is rendered.
Through the integration of the GLSP new functionality is added to the Theia IDE, in the
form of the GLSP diagram editor. This editor adds a series of diagram editing features to
the IDE, with the most notable ones being briefly described in the following paragraphs.
Upon double clicking a diagram in the project explorer, the diagram editor opens up.
The diagram itself is rendered within a canvas that can be panned around and have
its zoom level adjusted. Besides the elements of the diagram, the user is also presented
with a tool palette that allows for the addition of diagram elements by selecting them
from the list and clicking the canvas. In the case of nodes or tasks, the element will
spawn at the clicked location. When it comes to the edges, these can only be added to
an element that supports it, such as a task or a node, and not directly to the canvas or
another edge. In order to aid the user in connecting edges in a valid way, the mouse
pointer changes to either a cross for a valid edge endpoint or to a hand with a crossed
out circle for invalid edge endpoints. In addition to adding elements to the canvas, the
tool palette also permits the users to select an eraser tool that will delete any diagram
element clicked, to enable diagram markers that provide additional information about
elements and mark invalid ones, such as a merge node that has more than one outgoing
edge, and finally the user can go back to the mouse pointer tool.

Within the canvas itself, diagram elements can be moved by clicking and dragging

33

3. Design and Implementation

them around with the possibility to edit them through a double click. Upon hovering
over an element a tooltip opens, containing information about that element, such as the
type of a task or its duration. By right clicking, either on an element or in the canvas, a
context menu is opened up, that allows the user to perform certain actions depending on
where they have performed the right click. The functions offered by this menu are as
follows:

• New: Allows the user to add a new task, manual or automated.
• Paste: Allows the user to paste content from the clipboard.
• Go to: Allows for navigation between markers and nodes as well as to the docu-

mentation.
• Copy/Cut/Delete: If one or more diagram elements is selected, the user can

choose to copy, cut or delete them. These three options are greyed out should the
context menu be opened without any elements selected.

Perhaps the first new addition to the IDE that gets noticed is the presence of a
new entry on the menu bar, called “Diagram”. This menu allows the user to interact
with the diagram editor and perform layouting changes. Concretely one can execute the
following actions through the “Diagram” menu:

• Center: Aligns the diagram in the center of the canvas.
• Export: Saves a copy of the diagram, in the SVG format, in the same folder as

the original one.
• Fit to screen: Adjusts the zoom level of the diagram view so that all the diagram

elements fit within the visible region of the canvas.
• Layout: Aligns all of the diagram elements in a grid-like manner.
• Align: This entry has its own sub-menu, allowing the users to align diagram

elements both in an absolute as well as a relative manner to the other diagram
elements (e.g. align left or left of first/last selected element).

• Resize: Allows users to resize elements in a similar way to the alignment option,
meaning they can choose between a minimum, maximum, and average width/height,
or they can refer to the height or width of the first/last selected element.

With the exception of the Align and Resize, all other entries in the“Diagram”
menu can be accessed via keyboard shortcuts.

Representation and Navigation

As previously stated, this functionality provides a base that is sufficient in order for
the graphical diffing and merging capabilities to be developed upon. When evaluating the

34

3.2. Implementation details

state of the art in regard to merging and diffing we looked at how diffs are represented in
the tools available, both when it comes to diagrams as well as text-based representations.
Out of the myriad of tools integrating some form of diffing mechanisms, almost all
of them offer the possibility of a side by side comparison, regardless of the type
of comparison being carried out. This common denominator of sorts is of course also
present in tools that have the ability to carry out model/diagram diffing, such as the
Eclipse Papyrus [pap21] modeling environment. This type of visualization allows users
to identify individual changes at a glance, while also being able to maintain an overview
of the diagram, and thus perceive the changes in their context instead of individually
and isolated. While this holds true for relatively simple diagrams, the situation changes
slightly once the complexity of said diagrams increases. Especially when opening up
multiple editors or viewers side by side, the screen real-estate can quickly be taken up
and diagrams might expand beyond the area of the canvas that is visible on the screen.

On one hand this problem might be somewhat mitigated by adjusting the zoom level
so that everything fits, but on the other hand this might quickly render the representation
incomprehensible, especially in the case of complex diagrams. For example, elements
in a diagram might be connected, either through edges between states, in case of the
workflow modeling language, or some other means. So upon seeing a change, it might not
be immediately clear to the user what consequences a certain modification to an element
might entail within the diagram as a whole. In order to mitigate this issue additional
means for showcasing the differences between the versions are required. Here is where a
diff-tree comes in. A diff-tree is highly similar to the file or directory tree, that project
or package explorer uses to list the folder structure, having the same representation
but displaying differences instead of files. The purpose of adding this diff-tree to the
representation is twofold, firstly it aggregates differences, that might otherwise be situated
on opposing sides of the diagram, in a concise manner, thus offering the users a quick
overview of what changes have transpired and secondly it helps users identify exactly
where a specific change has occurred within a diagram by centering the side by side
representation on the clicked change. Both the diff-tree and the side-by-side comparison
are depicted in figure 3.5.

Figure 3.5: Side-by-side Representation and diff-tree

35

3. Design and Implementation

This way users will be able to view the diagrams in their entirety, as well as an exhaustive
list of changes, represented by the diff tree. Should they wish to inspect a specific
change in more detail, all they would have to do is click on the change in the tree and
the diagrams will get centered on the specific change, allowing them to also assess the
semantic changes that might have occurred by observing all of the other diagram elements
surrounding the specific change.

Theia Extension Structure

Once a suitable representation of the differences has been settled upon it was time
to delve deeper into the specifics of Theia in order to ascertain how the aforementioned
features can be implemented, what the possible limitations are, what can be reused,
what can be adapted, and what has to be developed from scratch. As mentioned in the
beginning of this chapter, a Theia extension is used in order to add the diffing and merging
functionality to the IDE. One could author a Theia extension entirely from scratch, but
luckily that is not necessary as there is a way to have the boilerplate code automatically
generated by using the Eclipse Theia - Extension Generator [ext21]. This extension
generator is a Yeoman [yeo21] based tool that guides the user through the generation of
the scaffolding code, and allows them to choose from a few sample extensions that can
be automatically generated and subsequently expanded upon:

• hello-world: A simple extension that contains a command and menu item which
displays a message.

• widget: The basis for a widget, including a toggle command, an alert message and
a button that displays a message.

• labelprovider: A simple extension that provides a custom label including an icon
for a specific file type (“.my” is used as an example file type).

• tree-editor: A simple tree-editor extension, including an example file, allowing
users to interact with the JSON hierarchy of it and create and delete nodes

• empty: A minimal, empty extension containing a frontend module and a generic
contribution.

• backend: An extension demonstrating how to communicate with backend services.

For this thesis the hello-world example extension template has been used as a
starting point (renamed to “diff-merge-extension”), as it generates the bulk of the
required boilerplate code without adding unnecessary features, such as superfluous menus
or contributions, that would have to be removed later. Upon execution the extension
generator generated the appropriate folder structure as well as some configuration files
have been generated. Out of these files a few are of special interest, starting with the
package.json file depicted in figure 3.7 below.

This file specifies the package’s metadata as well as dependencies to the Theia core
package as well as any additional dev dependencies that might be required.

36

3.2. Implementation details

Figure 3.6: package.json file for a newly generated extension

The more important elements of this file are perhaps the keywords on line 4, which
allow the Theia app to accurately identify extensions as such and install them from
the npm package registry. A little further along, starting on line 11, we have the
dependencies block, which features all the requirements of the extension. Because this
extension is freshly generated, its only requirement is the theia core app. In order to
reach the aforementioned basis for development, the following packages have been added
as dependencies:

• @eclipse-glsp-examples/workflow-sprotty: This package contains the config-

37

3. Design and Implementation

uration for the sprotty-glsp diagrams of the workflow example language.
• @eclipse-glsp-examples/workflow-theia: This package contains the glue code

to integrate the GLSP Workflow example language into a Theia application.
• @theia/navigator: This package contains the file explorer widget, which can be

used to easily view, open and manage files corresponding to a given workspace
• theia-tree-editor: This package contains a framework for building a tree master

detail editor for editing model based data in Eclipse Theia.

Figure 3.7: package.json file for the Diff-Merge Theia extension

38

3.2. Implementation details

Another relevant block of the package.json file is the theiaExtensions block, starting
on line 24 in the originally generated file, which lists the JavaScript modules that export
DI modules defining contribution bindings of the extension. For the generated example
only a frontend capability was provided. In order to support the communication between
the Theia IDE and the DiffMerge backend, a new entry has been added to the block.
This defines a contribution to the node backend which will be responsible for making
the REST requests to the DiffMerge backend, where the diffing and merging process will
take place. Aside from the additions to the generated file, versions of some dependencies
have also been fixed in order to avoid problems during the development process that
might arise as a consequence of a new dependency version being released. The resulting
package.json is depicted above, in figure 3.7.

The Theia instance resulting from the dependencies depicted in figure 3.7 contains
all the building blocks required to develop the diffing and merging functionality. In order
to gain a better understanding of what exactly needs to be implemented, scenarios which
depict the workflow of the diffing and merging process were created, in a somewhat
similar fashion to user stories. Subsequently these scenarios were broken down in key
tasks that could be implemented and tested independently from one another. This offered
both an overview of what the components of the extension should be, as well as how they
should be interacting with each other. By dividing the diffing and merging processes
into smaller sub-tasks it became clear how the information flow of the system needed to
be structured, as well as which parts would have to communicate with the DiffMerge
backend.

The identified key workflows were the diffing process and the merging process.
The diffing process, where the user compares two versions of a diagram and views the
differences between them has been divided up in the following sub-tasks:

• Selection of the files/versions to be compared

• Fetching the comparison from the DiffMerge backend

• Visualization of the differences

• Visualization of conflicts

• Interaction with the diagram (panning, zooming, etc.)

The merging process, as seen from the Theia side consists of the following sub-tasks:

• Merge/discard entire change sets

• Merge/discard individual changes

• Solve conflicts

39

3. Design and Implementation

Functionality and Implementation

Perhaps the most appropriate way of approaching the implementation would be in
a step by step manner, by going through the steps of the diffing and merging processes.
So before a comparison between two diagram versions can be performed, the versions
themselves have to be selected. In order to limit the complexity of the development
environment and potential issues caused by adding a myriad of technologies to the mix
we have decided to focus on the core goals of this thesis, namely the diffing and merging
of diagrams. As such we have opted to forgo an integration between the DiffMerge
extension and Git while the core functionality was still under development. Instead
local files have been used to simulate the different versions of diagrams. This allowed us
to test and debug the functionality faster, by merely performing changes in local files,
simulating various edits to the diagrams, while also limiting the amount of variables that
might cause problems with the diffing/merging process, such as an integration with Git,
where the diffing/merging process would be triggered automatically upon pushing the
changes to the origin. Furthermore the ability to trigger these processes arbitrarily allows
for closer analysis and testing of corner cases, whereas a “production-ready” integration
of the entire toolchain might inadvertently obfuscate potential issues that might arise.
This approach has been adopted for both the two-way comparison / merge between two
arbitrary versions of a diagram as well as the three-way comparison / merge between
two versions of a diagram and their common ancestor.

In order to allow users to choose which files they want to compare entries have been
added to the context menu of the file explorer. These entries and the actions they allow
users to perform are as follows:

• EMF Select for comparison/merge: Marks a file as selected for a subsequent
comparison or merge operation.

• EMF Compare with selected: Triggers a comparison between the previously
selected file and the currently selected one.

• EMF Select Base for comparison/merge: Selects a file that will represent the
common ancestor to be used in a subsequent three-way comparison/merge.

• EMF Merge with selected: Merges the non-conflicting changes of the currently
selected file to the previously selected file(s).

These entries to the context menus have been added through a new Theia MenuCon-
tribution, as depicted by figure 3.8. The DiffMergeExtensionMenuContribution registers
multiple menus, each with their own MenuPath and MenuAction. The MenuPath de-
scribes the location where the new entry should be added, in our case in the context
menu of the navigator, next to the pre-existing text based comparison option, as indi-
cated by NavigatorContextMenu.COMPARE. The second argument represents the action
associated with the menu entry, which consists of a mandatory command ID, as well as
some optional attributes such as label, icon, order, alt, etc.

40

3.2. Implementation details

Figure 3.8: Context menu additions for diffing/merging functionality

Once the entries have been added to the menu, the handlers for the commands had
to be added to the CommandRegistry. The code snippet below illustrates the command
handler for the selection of the base file for the comparison. It has been defined in-line
and it sets the baseComparisonFile variable to the URI of the currently selected file,
which is also the file for which the context menu has been called. Additionally it uses
the automatically injected message service to display a message to the user, letting
them know that the base file for the comparison has been selected. The handler for
selecting the first file is highly similar to the aforementioned one, with the handler for the
comparison execution being more complex and encompassing a number of the previously
listed sub-tasks of the diffing process.

// Code fragment for registering the command for base selection
registry.registerCommand(ComparisonSelectBaseExtensionCommand, {

execute: async () => {
this.baseComparisonFile =

UriSelection.getUri(this.selectionService.selection);
this.messageService.info("Selected base file");

}
});

41

3. Design and Implementation

Now that the desired files have been selected it is time to ask the DiffMerge backend
to compare them and deliver the result back to the DiffMerge Theia extension where it
will be displayed to the user. The component responsible for handling the communication
with the DiffMerge backend is the ComparisonService. This component is incidentally
also the contribution to the Theia node backend that has been added on line 31 in the
package.json file depicted in figure 3.7. The ComparisonService is an interface that will
be automatically injected at run-time, whose implementation is responsible for making
calls to the REST API endpoints exposed by the DiffMerge backend, an excerpt of which
can be found below.

// Code fragment for requesting a three way comparison from the
DiffMerge backend

async getThreeWayComparisonResult(basePath: string, file1Path:
string, file2Path: string): Promise<ComparisonDto> {
const resp =

fetch(’http://localhost:8080/diff/compareThreeWay/diagram?base=’
+ basePath + ’&file1=’ + file1Path + ’&file2=’ + file2Path)
.then((res: { json: () => void; }) => res.json())
.catch((error: any) => {

console.error(’There has been a problem with your fetch
operation:’, error);

});
return resp;

}

As showcased by the code fragment above, the implementation of the Comparison-
Service is merely calling upon the node-fetch module [nod21] to perform a get request
with parameters, and return the result. This implementation is then used as a singleton
to bind the ComparisonService interface. The binding, depicted in the code fragment
below, takes place in the InversifyJS container module [inv21] that has been declared
as the backend entry (diff-merge-server-module) in the theiaExtensions block of the
package.json file.

//DI Container module containing the ComparisonService bindings
export default new ContainerModule(bind => {

bind(ComparisonServiceImpl).toSelf().inSingletonScope();
bind(ComparisonService).toService(ComparisonServiceImpl);
bind(ConnectionHandler).toDynamicValue(context => new

JsonRpcConnectionHandler(ComparisonServicePath, () =>
context.container.get(ComparisonService))).inSingletonScope();

});

At this point, the user has chosen the files they wish to compare, the comparison
request has been sent to the DiffMerge backend, and assuming all the validation checks

42

3.2. Implementation details

passed, the result of that comparison has been delivered back to the DiffMerge Theia
extension as a ComparisonDto that now needs to be appropriately visualized. This
ComparisonDto mirrors the structure of the Comparison object returned by EMF Compare
to some extent, in that it contains an array of matches which in turn contain sub-matches
which eventually contain the diffs themselves, as well as the corresponding diagram
element in the left, right and base file.

Figure 3.9: ComparisonDto Structure

In order to wrap up the diffing process, we have to circle back to the handler for the
ComparisonExtensionCommand, which is responsible for triggering a number of sub-tasks
involved in the diffing process. Firstly it checks to ensure at least enough files for a
two-way comparison have been selected, before calling upon the ComparisonService to
pass the request on to the DiffMerge backend and return the resulting ComparisonDto.

As shown in figure 3.9, the structure of the ComparisonDto is relatively simple,

43

3. Design and Implementation

containing only an array of matches and a threeWay flag that will be relevant for displaying
the diffs as it allows for the appropriate UI elements to be set up and initialized. The
MatchDto type is used to represent the matches between elements of the different versions
being compared. As such it contains entries for the possible locations where a match
was found, namely any of the two diagram versions, denoted here by the left and right
attributes, as well as the common ancestor, origin. These entries of type DiagElementDto
make it possible to accurately identify the version(s) affected by a change and/or a
potential conflict. In the context of this thesis the DiagElementDtos are regarded as
atomic units, which will not be further split into sub-elements. How the granularity can
be adjusted will be discussed in detail in the section describing the DiffMerge backend.
Furthermore a MatchDto may have an arbitrary number of sub-matches which are used
to represent nested elements within the diagram, as well as a list of actual differences.
The DiffDto class represents a difference, such as an addition, change or deletion of an
element in a diagram. Information like the source of the change and its kind are all
stored within the DiffDto and will be relied on when it comes to displaying the changes.

In order to actually display any of the information contained in the ComparisonDto
an appropriate environment has to be created. There are three types of components
involved in making up this environment:

• DiffMergeDiagWidget: A diagram widget, capable of displaying a diagram and
rendering differences within it.

• DiffTreeWidget: A tree widget, used to render the diff tree.
• DiffSplitPanel: A container of sorts, used to house the widgets that contain all

the relevant information, such as the diff tree and the diagrams themselves.

In order to display the diagrams the DiagramWidget used to display WFML diagrams
has been extended and reused. The DiffMergeDiagWidget is an extension of the
aforementioned DiagramWidget which allows the tool palette to be disabled, as it serves
no purpose in the diffing and merging process. Furthermore, depending on the screen
resolution, the tool palette even has the potential of cluttering the UI and covering
diagram elements, thus making the process more cumbersome for the users. In addition
to that, the extended widgets also take care of various widget initialization steps, including
centering the diagram in the middle of the widget once it has been loaded.

As a base for the diff tree, the TreeWidget from the Theia core package has been used.
Out of the box this widget allows for handling of selected elements, searching, and styling
of the tree elements through the Decorator support that is included. Building upon this,
the DiffTreeWidget has come into being. Unlike the extension to the diagram widgets,
which mainly dealt with minor customizations, the DiffTreeWidget adds quite a bit more
to its existing counterpart. In order to allow for an interaction with the tree widget to
trigger any action in any of the diagram widgets, the DiffTreeWidget needs a reference to
the two or three diagram widgets. As a result, these references have been added. These
references allow for behaviors such as centering the diagram widgets on a specific change

44

3.2. Implementation details

that has been clicked in the tree. Additionally, since the final diff tree would group the
changes by their type, we need to be able to distinguish between additions, deletions
and changes and thus three arrays of DiffTreeNodes have been added, together with the
actual comparison object received from the backend, resulting in the structure depicted
by the code fragment below.

//Basic structure of the DiffViewWidget
@injectable()
export class DiffTreeWidget extends TreeWidget {

public comparison: ComparisonDto;
private baseWidget: DiffMergeDiagWidget;
private firstWidget: DiffMergeDiagWidget;
private secondWidget: DiffMergeDiagWidget;
private _additions: DiffTreeNode[];
private _changes: DiffTreeNode[];
private _deletions: DiffTreeNode[];

setDiagWidgets(comparison: ComparisonDto, baseWidget:
DiffMergeDiagWidget, firstWidget: DiffMergeDiagWidget,
secondWidget?: DiffMergeDiagWidget) {
this.comparison = comparison;
this.baseWidget = baseWidget;
this.firstWidget = firstWidget;
if (secondWidget) { this.secondWidget = secondWidget;}

}
...

}

The aforementioned decorator allows the change of the look and style of the tree
items within a widget. The type of decorator to be applied is determined based on
the three DiffTreeNode arrays, each type of change receiving its own color coding via a
decorator, with additions being marked in green, changes in yellow and deletions in red.
This is achieved through a newly implemented DiffTreeDecorator. This class implements
the TreeDecorator interface present in the Theia core. In order to invoke the custom
decorator on the diff tree, it has to be bound in the dependency injection container of
the Theia Diff-Merge extension, as shown in in the code fragment below.

//Binding of the diff decorator
function bindDiffTreeDecorator(parent: interfaces.Container): void {

parent.bind(DiffTreeDecorator).toSelf().inSingletonScope();
parent.bind(DiffLabelProvider).toSelf().inSingletonScope();
parent.bind(DiffDecoratorService).toSelf().inSingletonScope();
parent.rebind(TreeDecoratorService).toService(DiffDecoratorService);

}

45

3. Design and Implementation

Once the diff tree has been populated, the DiffTreeDecorator is called and delivers an
object of type MaybePromise<Map<string, WidgetDecoration.Data». This object is filled
by iterating through the three node arrays in the DiffViewWidget, namely the additions,
changes and deletions. Each entry from those arrays will get a corresponding mapping
that contains the Id of the DiffTreeNode coupled with the desired widget decoration
data, which allows for various customizations such as fonts, background colors, captions,
tooltips etc. In this specific case the fonts have been customized in order to grant them
the desired color with the code for the addition decorations being illustrated below.

//Excerpt showcasing the generation of decorations for additions
decorations(tree: Tree): MaybePromise<Map<string,

WidgetDecoration.Data>> {
...

const additions: DiffTreeNode = (tree.root as
DiffTreeNode).children[0] as DiffTreeNode;

for (const child of additions.children) {
result.set(child.id, { fontData: { color: "darkgreen" } });

}

return result;
}

This DiffTreeNode type extends the already existing SelectableTreeNode, Compos-
iteTreeNode, and ExpandableTreeNode types to include information pertinent to the
displaying of differences and the interaction with the DiffMergeDiagWidgets, with the
most important additions being listed below.

//Structure of a DiffTreeNode
export interface DiffTreeNode extends SelectableTreeNode,

CompositeTreeNode, ExpandableTreeNode {
id: string;
changeType?: string | undefined;
elementType?: string | undefined;
source?: string | undefined;
target?: string | undefined;
icon?: string | undefined;
modelElementId: string;
diffSource?: string | undefined;
...

}

These additions made in the DiffTreeNode type fulfil a number of roles, such as
allowing for edges to be displayed and correctly identified by their source and target,
as well as centering on certain diagram elements based on their model element Id. The

46

3.2. Implementation details

centering of the DiffMergeDiagWidgets on an element occurs by means of a CenterAction,
a Sprotty feature centering the viewport of a diagram widget either around a specific
element, a series of elements or simply the center of the canvas. The identification of the
model elements occurs based on their element Ids. The Id of a model element, coupled
with the diffSource attribute of a DiffTreeNode allows for accurate viewport centering
both in case of changes to the diagram elements, where the same model element is present
in both / all three diagrams, as well as in case of additions or deletions, where one or
more versions the diagram might not contain a model element with a certain Id. Should
the user click on a change in the diff tree, a CenterAction will be dispatched to all the
DiffMergeDiagWidgets telling them to center around the model element with the specified
Id.

Should the user however click on a deletion or addition in the diff tree, then the
diffSource attribute is checked to identify the origin of the addition or deletion, and
thus ascertain which widget(s) contain the model element in question. In this case,
a CenterAction will be dispatched to the widget where the change originated. When
dispatching a CenterAction we differentiate between two types of elements, namely
nodes and edges. This distinction is made based on the elementType attribute of the
DiffTreeNode. In case of a node, the modelElementId is used for the centering, while
centering on edges in the diagram requires a bit more information in order to ensure that
the centered viewport is actually of any use to the user.

Merely centering the viewport based on the Id of an edge, can often leave the
endpoints of said edge outside the visible part of the canvas, especially if the source
and target of the edge are positioned far apart from each other. In order to mitigate
this problem the CenterAction is being performed on the ends of the edge, indicated
by the source and target attributes of the DiffTreeNode. This ensures that the two
diagram nodes connected by the edge are visible and users are able to understand the
semantic implications of the change made to the edge. The elementType attribute is
also responsible for indicating what icon a certain DiffTreeNode will get. To this end we
distinguish between 5 types of nodes, starting with the root of the tree which will have no
icon, but instead will have three buttons appended to it, namely a Save and a Cancel
button, pertaining to the entire merge process, similar to other products out there, as
well as a button intuitively labeled Merge non-conflicting changes. The second type
of node is the GLSPGraph which has been anointed with a project-diagram icon, followed
by task nodes which are preceded by a solid circle icon, as well as edges which have an
arrow depicted next to them. The fifth type of node, representing a conflict, is marked
by a warning symbol (an exclamation mark enclosed within a triangle) of a bright orange
color. This serves to further distinguish it from the other changes and communicate
to the users that this node requires special attention. In addition to the icon, it also
contains two child-nodes representing the two conflicting changes. Figure 3.10 depicts
the diff-tree menu items along with some of the different types of nodes.

47

3. Design and Implementation

Figure 3.10: diff-tree representation

Once that widget is centered around the correct element, its viewport is queried via
a GetViewportAction, which is also a Sprotty feature. Once the correct viewport for the
element is obtained, it is passed on to the other DiffMergeDiagWidget(s) by dispatching
a SetViewportAction containing the previously queried viewport. This process allows
us to center DiffMergeDiagWidgets around what is essentially a blank space within the
diagram, and thus offer a better overview of the diffs in a compare-and-contrast manner.

Aside from diffing-related functionality, the diff tree is also responsible for handling
some merging tasks, such as allowing the users to apply/ignore certain changes, as
well as save or discard the current result. Starting from the top, both figuratively and
literally, the Save and Cancel buttons in the diff tree are the first and perhaps most
broad functionalities added in this regard. The two buttons refer to the merging process
and they allow a user to either persist the current state of the diagram, or discard the
entire merge process altogether, thus reverting any potential changes that might have
been merged so far. Both buttons merely perform a request to the DiffMerge backend,
which is ultimately responsible for handling the logic behind the chosen action.

In order to ensure that the merge process is entirely reversible up until the point
when the Save button is clicked, a temporary file is created once the first change is
applied. This file is a copy of the original file and it will remain untouched for the entire
duration of the merge process. As any change is applied in real time to the original file,
this copy is required in order to easily allow the users to revert back to the original state
of affairs, should they wish to do so. Once the Save button has been clicked, a new file
containing the merge result is created (marked by the ending "_MERGED"), and the
temporary file replaces the original file, thus ensuring the initial file remains untouched.

The Cancel button on the other hand restores the original state of the files by
replacing the edited ones with the temporary file copies that have been created when
the comparison was first triggered. But simply replacing the files does not suffice in
order to restore the original comparison result. As previously stated, because any merged
changes get directly applied and persisted to the original files, a new comparison of the

48

3.2. Implementation details

now reverted files needs to be triggered, in order to allow users to begin the merging
process anew. The replacement of the files is being performed by the backend, with
the temporary files being purged as soon as the originals have been replaced by them.
Immediately after, a new comparison is triggered and the result is delivered back to
the DiffMerge Theia extension. Once a new comparison result has been received by the
frontend, DiffMergeDiagWidgets as well as the DiffTreeWidget are refreshed to display
the new information and a message is displayed by the message service, letting the user
know that the changes have been reverted.

The functionality of the Merge non-conflicting changes button is true to its
name. When clicked it tells the ComparisonService to ask the backend to merge an array
of diffs. This array consists of all the diffs in the tree, except the conflicts. Once those
diffs have been merged a new comparison is delivered to the frontend and once again
the DiffMergeDiagWidgets as well as the DiffTreeWidget are refreshed to display the
new information. In this case the diff tree will only contain entries representing merge
conflicts while the diagram widgets will show the result of the partial merge as well as the
conflicting changes from which the user has to pick. Once again the message service will
display a message informing the user that the non-conflicting changes have been applied.

In addition to the three diagram-spanning buttons, users are able to apply or discard
individual changes via the context menu opened by right clicking them in the diff tree.
In order to achieve this, a new menu contribution has been implemented, similar to
the one used to select the files and trigger the comparison in the first place. This
MergeDiffMenuContribution presents users with two options upon invoking the context
menu of a diff from the diff tree: Apply and Discard. Once a diff has been chosen to
be merged, a check is performed to see if a two-way or a three-way comparison has
been made. In a two-way comparison, one file has been selected as the base for said
comparison, and another one is regarded as containing all the changes. In this case a
call is made to the ComparisonService, similar to the one responsible for generating the
comparison in the first place. A fetch request goes out to the DiffMerge backend asking
it to perform a merge of the selected diff. The diff is uniquely identified based on its
source, which file it originates from, as well as the id of the respective model element.
Once the backend has merged the desired diff and returned a new comparison to the
frontend, the diagram widgets, as well as the diff-tree widget get refreshed to reflect the
new state of things.

Should the user have chosen to execute a three-way comparison, the merging process
for individual diffs becomes slightly more complicated with some additional checks being
required. When choosing to apply a diff, in a three-way comparison/merging scenario,
one has to once again identify the file that diff originates from. As opposed to the
previous scenario where diffs would always originate from the other file, besides the base
one, in a three-way merge a diff has two possible origins, namely each one of the two
files that are being compared to the base one. So in order to identify the origin of the
diff we have to look at the diffSource attribute of the selected DiffTreeNode representing
the diff. Once the source has been ascertained, the merging process is identical to the

49

3. Design and Implementation

one for the two-way comparison/merge, namely the ComparisonService is invoked and
the merging of the diff is delegated to the DiffMerge backend. Upon receiving the result,
the comparison and diff tree are once again refreshed to reflect the updated state of the
diagram.

It is perhaps worth mentioning at this point that subsequent comparisons will be
invoked using the original base file even though users are being presented with the
changed one. This is done in order to avoid the introduction of fictitious changes. For
example let’s say an addition on the left side has been merged to the base file. Should a
new comparison take place using this changed base file, it would yield a new deletion on
the right side. This is because the original addition on the left side is now also present in
the base file, thus effectively turning it into a deletion on the right side, as that is the only
side where the added element is missing. By doing this we allow users to incrementally
generate the desired merge result in a way that is visual, as applied diffs immediately get
added and displayed to the base diagram version, while also avoiding artifacts caused by
subsequent comparison computations using an ever-evolving base file.

The process for discarding a certain diff is more or less a one to one replica of the
merging, with the only difference being the revert boolean flag that gets set to true when
invoking the getSingleMergeResult() method of the ComparisonService.

In order to create the UI layout containing the two to three DiffMergeDiagWidgets
as well as the DiffTreeWidget, the existing SplitPanel implementation from Theia core
has been extended. This new element represents a convenience wrapper which allows the
widgets within it to be arranged into resizable sections and its main structure is visible
in the code snippet below.

//Structure of a DiffSplitPanel
export class DiffSplitPanel extends SplitPanel implements

StatefulWidget, Navigatable {

public widgetId = ’diffSplitPanel’;
public uri: URI;
public leftWidget: DiffMergeDiagWidget;
public baseWidget: DiffMergeDiagWidget;
public rightWidget: DiffMergeDiagWidget;

public setSplitPanel(splitPanel: DiffSplitPanel) {
this.addWidget(splitPanel);

}
}

For the specific task of creating the UI for the comparison and merging process,
the custom DiffSplitPanel includes three DiffMergeDiagWidgets, used to display the
three diagrams side by side in a three-way comparison. The method responsible for the
initialization of the aforementioned DiffSplitPanel is showcased by the code fragment

50

3.2. Implementation details

below.

//Excerpt from the DiffPanel initialization for a three-way
comparison

public initThreewayDiffPanel(leftWidget: DiffMergeDiagWidget,
baseWidget: DiffMergeDiagWidget, rightWidget:
DiffMergeDiagWidget, uri: URI) {

this.leftWidget = leftWidget;
this.baseWidget = baseWidget;
this.rightWidget = rightWidget;
this.addWidget(leftWidget);
this.addWidget(baseWidget);
this.addWidget(rightWidget);
leftWidget.actionHandlerRegistry.register(SetViewportAction.KIND,

new ViewPortChangeHandler(baseWidget, rightWidget));
baseWidget.actionHandlerRegistry.register(SetViewportAction.KIND,

new ViewPortChangeHandler(rightWidget, leftWidget));
rightWidget.actionHandlerRegistry.register(SetViewportAction.KIND,

new ViewPortChangeHandler(leftWidget, baseWidget));

}

In addition to the three widgets used to display the diagrams, custom handlers
have been implemented and registered in order to handle ViewPort changes triggered by
the user. Such changes occur when the user pans around in a diagram or adjusts the
zoom level of the diagram. These ViewPort changes cause a SetViewPortAction to be
dispatched from the originating widget’s action dispatcher.

//ViewPortChangeHandler and ForwardedAction
export class ViewPortChangeHandler implements IActionHandler {
...
handle(action: SetViewportAction): ICommand | Action | void {

if (!(action instanceof ForwardedAction)) {
this.otherWidget.actionDispatcher.dispatch(new

ForwardedAction(action));
if(this.threewayWidget) {

this.threewayWidget.actionDispatcher.dispatch(new
ForwardedAction(action));

}
}

}
}
export class ForwardedAction extends SetViewportAction {

readonly kind: string = "viewport";

constructor(public readonly setViewportAction: SetViewportAction)
{

51

3. Design and Implementation

super(setViewportAction.elementId,
setViewportAction.newViewport, setViewportAction.animate);

}
}

In order to keep the diagram widget’s ViewPort in sync when the user interacted
with one of them, a new action, the ForwardedAction has been introduced, together with
a new handler, the ViewPortChangeHandler. This handler gets registered to the diagram
widgets during the initialization of the DiffSplitPanel. Through this new handler, all
actions that get dispatched as a result of ViewPort changes get intercepted. This is where
the newly introduced ForwardedAction comes in. Each time a SetViewPortAction gets
handled, a new ForwardedAction, containing the ViewPort changed by the user, gets
dispatched to the other diagram widget(s). A new handler is not necessary as the new
action merely extends the one that already exists. In order to avoid an endless loop of
forwarded actions, caused by a change triggering another change in return, a check is
performed. A new ForwardedAction is being dispatched only if the handled action is not
already a forwarded one, as evidenced by the code above.

Circling back to the original SplitPanel that has been extended to suit our needs, one
has to mention one minor limitation. An orientation is required, be it either horizontal
or vertical. So since a SplitPanel can only perform one type of split at a time, two nested
ones have been used in order to achieve the desired combination of horizontal and vertical
splits. A horizontal DiffSplitPanel contains the three DiffMergeDiagWidgets used for the
side by side diagram comparison. This panel is in turn nested inside of a vertically split
one, which contains the diff tree in the top section and the horizontal split panel in the
bottom section.

3.2.2 Backend Diff-Merge Component
As previously mentioned, the DiffMerge Java backend is responsible for most of the

computations regarding the comparison, as well as the merging process for diagrams. The
functionality of this component is made available through a Jetty[jet] servlet container
that exposes a RESTful API through the Jersey [jer21] library. These REST endpoints
allow the frontend to request a series of operations:

• Diagram comparison: Returns the result of either a two way or three way
comparison between diagrams

• Diagram merging: Merges two diagrams and persists the resulting merged version

• Single change merging: Merges a single change from one diagram version to
another

• Save changes: Persists the current version of the diagrams, usually invoked after
one or more individual changes have been merged

52

3.2. Implementation details

• Revert changes: Discards the current versions of diagrams that may have some
changes already merged to them, and reverts to the original state before the
beginning of the comparison

The comparison and merging functionality itself is being offered by the EMF Compare
framework which has been added as a dependency to the DiffMerge backend component,
but before Workflow Modeling Language Diagrams can be fed into and processed by
EMF Compare some configuration is required. Before we dive into the specific details
of the WFML use case, an overview of the comparison process from EMF Compare’s
perspective is in order.

Figure 3.11: EMF Compare comparison process [emf21]

Figure 3.12: EMF Compare differencing process [emf21]

As evidenced by figures 3.11 and 3.12 above, the comparison process conducted by
EMF Compare can be split into six main steps, represented by the rounded rectangles.
It is worth noting that while only a two-way comparison is depicted, the process is
similar, consisting of the same steps for a three-way comparison. During the model
resolving stage the framework parses the models, in our case the files selected by the

53

3. Design and Implementation

user, and identifies all the required parts so that a comparison of the whole logical model
can be conducted. Once the models have been resolved, a matching is performed on
them. This means that the model elements are being iterated over and mapped together,
either in pairs of two or groups of three, depending on the type of comparison conducted.
This determines correspondences of elements across the two or three files, for example
determining that an element A from one file corresponds to element A in the second, and
/ or potentially third file. Now that elements have been matched, the diffing process can
begin. During this phase the mappings will be analyzed and it will be determined whether
the two or three elements of a match are equal or if any differences are present. Once the
differences have been determined they have to be analyzed in order to ascertain three
things. The first one would be equivalences, where two distinct differences might in
reality generate the same change and will be linked together as such. The next step is to
determine potential requirements that might be necessary for the merging of differences.
This would be the case for nested elements for example, where an inner element would
not be able to be merged without its parent. Once the potential requirements have been
computed it is time to check for conflicts. In this phase EMF Compare browses through
the found differences and checks for potential conflicts, with the caveat that conflicts will
only actually be detected in the case of a three-way comparison, as a common ancestor
is required in order to establish a base version for a certain element.

Now that the comparison process has been briefly introduced, we can move on to the
specific configuration steps required in order to compare Workflow Modeling Language
diagrams. As illustrated by Figure 3.3 in chapter 3.2.1 describing the Theia extension,
the WFML is based upon and extends the GLSP Metamodel. As such we have to ensure
that EMF Compare is able to perform the first step of the comparison process, namely
resolve WFML models/diagrams in the first place.

//EMF Compare configuration
IEObjectMatcher matcher = DefaultMatchEngine

.createDefaultEObjectMatcher(UseIdentifiers.WHEN_AVAILABLE);
IComparisonFactory comparisonFactory = new

DefaultComparisonFactory(new DefaultEqualityHelperFactory());
IMatchEngine.Factory matchEngineFactory = new

MatchEngineFactoryImpl(matcher, comparisonFactory);
matchEngineFactory.setRanking(20);
IMatchEngine.Factory.Registry matchEngineRegistry = new

MatchEngineFactoryRegistryImpl();
matchEngineRegistry.add(matchEngineFactory);
EMFCompare comparator = EMFCompare.builder()

.setMatchEngineFactoryRegistry(matchEngneRegistry).build();

This is achieved through the series of steps showcased in the code snippet above
and described in the paragraphs below. Firstly, because WFML elements extend GModel
elements, they have unique identifiers. We need to tell this fact to the matcher, so that

54

3.2. Implementation details

Ids will be relied upon when deciding which elements correspond to each other across the
various diagram versions. Next up we need a comparison factory for the comparison itself.
This requires no special configuration for our use case, with the DefaultComparisonFactory
sufficing for our goals. With the matcher and comparison factory at hand we can now
use the two to create a MatchEngineFactory, which is ultimately responsible for defining
a general contract of a matching engine. This will then serve as the entry point of
the comparison process, and has to be added to the match engine factory registry. In
our specific case this registry will only contain one entry, namely the aforementioned
match engine factory. Once we have created a MatchEngineFactoryRegistry containing
our desired factory, we can use this to build an EMFCompare object configured with
the previously given engines, which is effectively a comparator that will handle the
comparison of WFML diagrams.

An EMFCompare Comparison is obtained as a result of the comparison between
the two/three versions of a diagram.

Figure 3.13: EMF Compare Metamodel [emf21]

The EMF Compare metamodel depicted in figure 3.13 describes the single model
used by EMF Compare to represent all of the information pertaining to the comparison.
The root of this model is a Comparison object, which is created at the beginning of the
matching process and will be subject to a series of refinements during the remaining
steps of the comparison process. A comparison will contain a boolean flag to distinguish

55

3. Design and Implementation

between a two way and a three way comparison, as well as a series of Diffs which represent
all the changes detected, a series of matches for the elements, with a series of sub-matches
of their own (e.g. for nested elements) and the Diffs found in the match, as well as a
series of conflicts, which would only be detected in case of a three-way merge.

Diffs themselves contain information about their type, such as ADD, DELETE,
CHANGE, and MOVE, as well as their source, namely the left or the right version. This
information is not only required in order to determine where a change originated from,
so that it can later be displayed accordingly in the frontend, but also to correctly identify
and depict conflicts.

Conflicts are only detected in case of three-way comparisons, as a common ancestor
of the two versions is required in order to ascertain if a diff leads to a conflict or not.
EMF Compare distinguishes between two kinds of conflicts, namely PSEUDO and REAL.
The first kind, PSEUDO conflicts describe situations when both sides of the comparison
have technically changed when compared to their common ancestor, but matter of factly
the two sides are now equal. This means that the end result is the same on both the left
and right side, thus requiring no action in order to solve them. REAL conflicts on the
other hand, describe situations where the value on all three sides is different, meaning
there have been changes made, to both the left and right version and they are now not
equal. These conflicts require resolution before a merge can be performed.

Once the Comparison object is initialized all of the required information is present
and the comparison process is finished. Before this information can be sent to the frontend
it has to be processed and ultimately converted to a ComparisonDto Java object. The
structure of this DTO [CK03] corresponds to the one present in the frontend containing
an array of matches as well as a boolean flag specifying if the comparison in question is a
three-way or a two-way one.

The goal of the aforementioned processing of the comparison information is twofold.
On one hand we aim to remove superfluous information so that the amount of data
sent between the backend and frontend components is restricted to the bare minimum
required in order to display the differences. For example references between matches
and diffs are required, whereas equivalences are not. On the other hand, during the
processing the granularity of the diffs can be tweaked in order to achieve the desired
result. In the concrete case of the WFML we are interested in changes pertaining to two
types of elements, edges and tasks. While TaskNodes themselves are nested elements,
containing labels and icons, the choice has been made to only represent the diffs on a
TaskNode level. This means for example that the addition of a new node would bring
with itself the addition of a new icon and label as well, but this would only clutter the
UI without providing an advantage to the users or allowing them to gain new insight
into the changes that occurred.

The aforementioned processing consists of a few steps that will be described in
the following paragraphs. Firstly we need to know which elements in our diagram
have been identified and matched by EMF Compare to begin with. The code fragment

56

3.2. Implementation details

below represents the steps taken in order to process a comparison and convert it to a
ComparisonDto.

//Comparison processing
@Override
public ComparisonDto getComparison(String left, String right, String

origin) throws InvalidParametersException, IOException {

Comparison comparison = compare(left, right, origin);
ComparisonDto comparisonDto = new ComparisonDto();
List<Match> matchList = comparison.getMatches();
List<MatchDto> matchDtoList = new ArrayList<MatchDto>();
comparisonDto.setThreeWay(comparison.isThreeWay());
for(Match match:matchList) {

MatchDto matchDto = mapMatch(match, comparison.isThreeWay());
if(matchDto != null) {

if(matchDto.getSubMatches()!=null) {
matchDtoList.add(matchDto);

}
}

}
comparisonDto.setMatches(matchDtoList);
return comparisonDto;

}

The matches are fetched from the comparison object and then an attempt to map
each one to a MatchDTO is made. This is achieved by iterating through the match list
and invoking a mapping function on each match. The mapping function sets the left,
right, and, in case of a three way comparison, the origin attributes in the DTO. Next we
need to add the corresponding differences to our match DTO. These diffs are fetched
from the EMF Compare match object and are being parsed before being added to the
diff list of the match DTO. During this parsing phase we can check the diff kind and
decide if/which types should be excluded from the visualization. As depicted in fig 3.13,
EMF Compare distinguishes between 4 kinds of diff, ADD, DELETE, CHANGE, and
MOVE. As the position of an element has no semantic meaning within the WFML, we
have decided to ignore these kinds of diffs, as they would only clutter the visualization
without adding any meaning to it.

At this point we have mapped the match together with its corresponding diffs.
Nested diagram elements, such as task nodes containing labels and icons, do not need
special handling in case of additions and deletions, as we are only interested in differences
on a task node level, meaning it suffices to convey to the user that a task node has been
added or deleted, without explicitly telling them that the corresponding labels and icons
have also been either added or deleted to/from the diagram. When it comes to diffs of
type CHANGE we also need to take a look at the submatches for any given match, as the

57

3. Design and Implementation

change might have occurred within one of the nested elements, such as a label. Therefore
we iterate through the submatches for any given match, check to see if they contain any
diffs, and if they do we take those diffs and append them to the DTO for the match
itself. Again, this is done in order to preserve the desired granularity when displaying
the diffs, as telling the user that a task node contains changes within its label would
bring no added value but instead only add more entries to the diff tree in the frontend,
thus making the UI seem cluttered without conveying any new relevant information. The
aforementioned statement rings true only for the particular case of the WFML, where
changes can basically only occur within the label of a task node and therefore do not need
any further localization within the node itself. Other types of diagrams might contain a
series of relevant attributes nested within an element such as a task node, in which case
the granularity of diff representation can be adapted to suit the individual needs of the
use case. The basic process to achieve this is to map the diffs, as they are, to a DTO up
to the desired level, and then simply append all the diffs within the nested elements to
the DTO representing the finest granularity level desired.

Once the matches and their diffs have been successfully mapped to the corresponding
DTOs, the list of matches is appended to the comparison DTO and is sent to the frontend
to be displayed. This process is done each time a comparison is triggered, be it a
comparison for the sake of comparing two diagram versions, or a comparison triggered as
part of the merging process.

Aside from providing the frontend with a comparison when asked to, the Diff-Merge
backend also handles merging and conflict resolution. When asked by the frontend to
merge two files, representing different versions of a diagram, the Diff-Merge backend
passes the task on to EMF Compare. A comparison is conducted between the two /
three files and then the found differences are applied to one of the files under comparison.
In our implementation the EMF Compare method copyLeftToRight() is called which
copies the diffs to the right file. The possibility exists to also copy diffs the other way
around, from right to left, but for this use case, namely merging two versions that exhibit
no conflicts, the distinction is irrelevant, as the end result would be identical and the
direction in which the diffs are copied would have no bearing whatsoever on the outcome
of the merging process.

Should the two versions contain conflicting changes however, then the user will have
to take action in order to complete the merge. The Diff-Merge backend will handle
merging all of the non conflicting changes. The comparison object will then only contain
the conflicting changes, out of which the user can decide which one they would like to
apply / discard in order to complete the merge.

The third and final task for which the backend is responsible consists of merging
individual changes. In order to allow the users to build up the final result step by step
by adding or discarding changes to the last common diagram version, a number of steps
are required. In order to ensure the consistency of the files in case of an aborted merge
process and to avoid having to keep track of the already merged diffs, a copy of the base
file is created at the beginning of the merging process. Then depending on the origin

58

3.2. Implementation details

of the diff to be merged, a two-way comparison will take place, either between the left
version of the diagram and its base, or the right one and its base. What this achieves is
an incremental generation of the final merge result. The difference between this, and
copying the diffs to either the left or right version, by calling either copyLeftToRight()
or copyRightToLeft(), consists in the fact that copying individual changes to the base
file already starts from a blank slate. Initially the base version is untouched by any
changes conducted in either diagram version, left or right. In order to achieve the same
result one would have to decide which version serves as a base, either left or right, and
subsequently discard all the changes that have been made to that version, only to allow
for the possibility of adding them later, one by one.

A new comparison of the diagrams is automatically computed before applying a new
change or conducting an automatic merge for a few reasons. Firstly, the architecture
of the components makes it so that the Diff-Merge backend and the frontend only
communicate for short periods at a time, when a REST call is made. This means that
the EMF Compare comparison object stops existing shortly after it has been converted
to a DTO and sent off to the frontend, thus requiring a new comparison computation
each time a diff is to be applied. Furthermore it is entirely possible that the diagram files
under comparison / merge have been modified outside of the Diff-Merge backend. A new
comparison ensures that the diffs are computed based on the current version of the files.

3.2.3 Communication protocol
The communication protocol between the Theia Diff-Merge extension and the diff-

merge backend has already been touched upon a number of times while describing other
parts of this thesis. This chapter serves to aggregate all of the information that has been
sprinkled throughout the chapters describing the frontend and backend components and
expand upon it. The application-layer protocol designed for the communication between
the frontend and the backend defines how the two components pass messages to each
other, particularly by defining how the request and response messages should look and
what they should contain. While an efficient protocol has been one of the goals of this
thesis from the get-go, the design of it was an iterative process as opposed to designing it
once and subsequently implementing it. This is because of the feature by feature way in
which the implementation took place. As new features were added to the extension the
requirements of the protocol evolved right alongside them.

Since the client, in this case the Theia Diff-Merge extension, is only responsible for
rendering the diagrams and the diffs without making any computation in this regard, the
communication protocol is ultimately tasked with conveying all the information necessary
to compute the comparison and merge results on the backend side, as well as all the
information required in order to display the diffs to the user in the frontend extension.

Perhaps one of the most important characteristics when it comes to the efficiency
of a communication protocol is its speed. And as is the case with all communications
over a network, the speed available over the network is limited, either by the ISP or the

59

3. Design and Implementation

hardware running locally such as routers and switches. With these variables being out
of the control of a developer, one other way to increase the speed, with which messages
between two applications reach their destination, is to keep the total amount of data
that needs to be sent to a minimum.

We will begin by exploring the requests made from the frontend to the backend such
as the ones made when a new comparison is required, when changes are to be merged or
when a merge process is concluded and files need to be persisted. In our case the minimal
information that has to be sent over to the backend when performing a request varies
slightly depending on the operation. When triggering a comparison or an automatic
merge only the paths of the diagram files are required. This concretely means that we
will only need to send 2 or 3 string parameters with each request, depending whether we
are conducting a two- or three-way comparison/merge.

Persisting files when concluding a merge as well as reverting all applied changes
similarly require only the file paths for the diagrams to be passed along, as this allows the
backend to conduct all of the necessary computations. This fact constitutes an additional
advantage as it eliminates the need to store any sort of change lists on the frontend
side that could potentially have a negative impact on performance. Applying individual
changes on the other hand involves 2 additional parameters aside from the file paths.
These parameters are the ID of the diagram element and a boolean flag which lets the
backend know whether a specific change is to be applied or discarded. Merging multiple
changes, such as when the user decides to apply all non-conflicting changes, also requires
another parameter next to the diagram file paths. In this case, the additional parameter
is a list of diagram element IDs upon which changes are to be applied.

The operations themselves, such as triggering a comparison or merging a diff, all
have their own API endpoints, thus not requiring any information regarding the operation
type to be included in the request and passed along to the backend.

When looking at the other direction of communication things become a little more
complicated. This is mainly due to the fact that the backend does all of the computations
while the frontend is tasked with displaying the results. In contrast to the requests coming
to the backend, their responses are more expansive. Each request requiring a computation
to be done by the backend will receive a ComparisonDTO as a response. Some aspects
regarding the ComparisonDTO have been briefly touched upon in chapters 3.2.1 and
3.2.2 and we will now go into more detail concerning its structure and attributes. The
structure is based on the Comparison object returned by EMF compare whose metamodel
is depicted in figure 3.13. A ComparisonDTO is essentially a top level wrapper containing
a list of matches consisting of MatchDTOs, and a boolean flag describing whether or
not the returned result refers to a three-way comparison, as also evidenced by figure 3.9
showcasing the structure of a ComparisonDTO and its nested elements. A MatchDTO
on the other hand is slightly more complex. As somewhat apparent from its name, this
type of DTO is used in order to represent an element that has been matched across
diagram versions by EMF Compare. In order to handle nested elements within diagrams,
it contains a list of submatches of the same type as itself. It also contains three more

60

3.2. Implementation details

attributes, left, right and origin. These attributes are used to describe an element across
the three diagram versions that might be compared. Any of these three could be null, as
elements can be either added to a diagram, thus being present only in the version where
they have been added, or they can be deleted from the diagram thus only remaining
present in the origin and/or other version of the diagram. In order to facilitate the
displaying and handling of conflicts a new type has been introduced, the DiagElemDTO.
This is nothing more than a wrapper class containing the ID and type of a diagram
element. This information is relevant when multiple changes have been made to the
same element across different diagram versions, as it allows the frontend to display each
version of the change. The final and perhaps most important attribute contained by the
MatchDTO is a list of diffs, in the form of a DiffDTO array. It is perhaps worth noting at
this point that a match will be added to the matches list of the ComparisonDTO only if it
or one of its submatches contains a diff. Otherwise it will be ignored as only information
regarding diffs is relevant. The DiffDTO object contains information relevant to the diff
itself. Its attributes describe the kind of diff (e.g. addition), the source of the diff (left or
right), and the ID of the diagram element where the diff was found. In addition to the
aforementioned attributes a DiffDTO also contains two more attributes, one for the type
of change (e.g. Referencechange/Attributchange) and another one describing the changed
attribute in case of an Attributechange.

61

CHAPTER 4
Comparison example

At this point the inner workings of the graphical diff merge tool have been explained
in detail but some aspects might still seem somewhat abstract or hard to fully comprehend.
In this regard we will briefly reiterate through all the steps that take place from the
beginning of a comparison up until the conflicts have been solved and the merging process
has been concluded, based on a concrete example. In order to aid in illustrating said
process a number of figures will be employed, both of the implementation itself as well as
simple WFML diagrams.

Figure 4.1: Example of files

Let us assume we find ourselves in the scenario depicted in figure 4.1. We have a
diagram depicting the workflow of a coffee machine, with its four tasks: Start, Pre-heat,
Brew and Clean. Next we have two variations of the base version, annotated with User A
and User B. These depict two diverging states of the base diagram that emerged as a

63

4. Comparison example

result of two users checking out the base version from a version control system such as
Git and subsequently conducting a number of changes to it.

On one hand we have User A, who added a new task at the beginning of the coffee
making process, Check Water Level, together with an edge connecting it to the Start
task, as well as renamed a task, from Pre-heat to simply Heat. On the other hand User B
renamed two tasks, namely Start became Power and Pre-heat turned to Prepare. Aside
from those two changes User B also removed the Clean task and the edge leading to it.

Now let us assume that the users’ work is done and they are ready to commit and
push their changes back to the version control system. The first of the two users to
attempt this would be successful in their endeavor without encountering any issues, as
the version of the diagram they are trying to push is a direct successor of the version
already present in the version control system. The second user however would be faced
with a merge conflict when attempting to push their changes, as the upstream file in the
version control system has been changed in the meanwhile and a particular change is
conflicting. This would be the task originally entitled Pre-heat which has been modified
by both User A and User B.

Figure 4.2: Diagram Comparison

It is at this point that a comparison would be triggered and the user would be greeted
by the comparison interface depicted in figure 4.2. While this process could be perceived
as almost instantaneous by the user, quite a few things happen in the background in
order to make this possible. Firstly a call is made to the Diff-Merge backend asking it to
perform a comparison between the three files. In order to conduct said comparison the
backend needs the paths to the diagram files, in our case suggestively named User-A.wf,
Base.wf and User-B.wf.

64

Figure 4.3: Mapping to ComparisonDTO

Armed with this information EMF Compare performs the necessary computations
and returns a Comparison object. As mentioned before, and evidenced by figure 4.3,
the structure of the generated comparison will strongly depend on the structure of
the diagram elements. In this case the added task Check Water Level contains four
distinct differences, more specifically additions, due to its nested structure. A WFML
task contains an icon, a label, a position and a dimension. However displaying these
4 differences would grant the user no additional understanding over the changes that
occurred and instead may only clutter the UI and render the comparison/merging process
more cumbersome and unintuitive. In order to mitigate this issue we decided to only
distinguish between differences on a task node / edge level. As a result of this, the
ComparisonDTO only contains one diff for this particular task node, namely the addition
of the Check Water Level task. The same mapping mechanism is applied for all change
types, resulting in a ComparisonDTO that contains no superfluous information and can
be sent to the frontend where it can be processed further and displayed. This contrast
can be clearly seen in figure 4.3 where the EMF Comparison contains four separate
differences associated with the addition of a single task node, whereas after the mapping,
the ComparisonDTO only contains one diff associated with the newly added task node.

At this point the frontend has obtained the information required in order to display
the comparison. For this to happen the diff-tree is initialized and populated with all the
diffs, the DiffMergeDiagWidgets are initialized with the appropriate files, User-A.wf, User-
B.wf and Base.wf, and the Splitpanels have the diff-tree as well as the diagram widgets
added to them, before being opened and displayed to the user. Now all that remains
is to decorate the diff-tree and mark the corresponding diagram elements accordingly.
Once this is done the user is presented with the view depicted in figure 4.2. The diff-tree
lists the addition of a new task node Check Water Level and its corresponding edge by
User A, the deletion of the Clean task together with the edge leading to it by User B, as
well as the renaming of the Start task performed by User B. The conflict caused by the
concurrent changes made to the task node originally known as Pre-heat is marked in the
diff-tree by the presence of a bright orange warning sign preceding its original name. The
two changes conducted by users A and B are represented by the children of this node,
Heat and Prepare.

Using this view the user can now navigate between the diffs by clicking on them in
the diff-tree, to which the three DiffMergeDiagWidgets will respond by centering either
on the diff in question or on the blank space where the diff should be. For example if

65

4. Comparison example

one were to click on the newly added task node Check Water Level the left widget would
center on the node itself while the middle and right widgets would center on the space
before the first node in the chain of tasks. Additionally panning the camera or adjusting
the zoom level within one of the widgets will propagate the same action to the other two
resulting in all three widgets being in sync with each other.

Furthermore users can now apply individual changes by right clicking them in the
diff-tree and selecting Apply. Discarding diffs works in a similar manner. Applied diffs
will become visible in the middle widget, which initially shows the base version of the
diagram, while simultaneously representing the version that would be persisted should
the user click the Save button. This fact is also indicated by the green Result banner in
the top right corner of the middle DiffMergeDiagWidget. Each application or discarding
of a diff from the tree results in a call to the Diff-Merge backend where EMF Compare
is relied upon to perform the actual manipulation of the files. When applying a diff, a
new comparison is triggered between the file containing the desired change and the one
containing the base diagram version. The information regarding the origin of the change
and implicitly the file containing it is stored in each individual node of the diff-tree
representing a diff. This information is passed on to the backend which uses it to trigger
the appropriate merging process.

In contrast to the mapping performed when constructing the ComparisonDto to
be sent to the frontend, we are now interested in all of the changes contained by the
nested elements of a task node. In order to correctly alter and ultimately obtain a valid
WFML diagram all of the elements contained by a task node have to be added. This
means that when applying a diff we start from the task node itself and subsequently also
apply the diffs contained in its submatches. For the concrete case of the Check Water
Level task we would also apply the diffs concerning the associated Icon, Label, Position,
and Dimension.

Diffs can also be applied in bulk by making use of the Merge non-conflicting changes
button. This makes a request to the backend asking it to merge an array of changes
consisting of all the non-conflicting diffs.

Figure 4.4: Diff tree after applying all of the non conflicting changes

66

Figure 4.5: Merge result after applying all non conflicting-changes

In our concrete example applying all non-conflicting changes would yield the results
depicted by figures 4.4 and 4.5. The diff-tree will now only contain the conflicting changes,
namely the ones pertaining to the task node originally known as Pre-heat, with its two
alternative renames to Heat and Prepare respectively. The middle diagram widget would
contain the diagram shown in figure 4.5, where the Check Water Level task and its edge
has been added (User A), the Start task has been renamed to Power (User B) and
the Clean task, together with the edge leading up to it have been deleted (User B). As
expected the conflicting changes have not been applied, thus leaving the Pre-heat task
node untouched by this bulk merge.

Figure 4.6: Completed merge result

Now all that is left is for the user to complete the merge process by resolving
the conflict through the application of one of the two changes, either Heat or Prepare.
Assuming the user decides to apply the Heat designation to the task and then click the
Save button the current comparison view will close and the final merge result depicted in
figure 4.6 would be opened in a new diagram widget.

If at any point during the merging process the user decides to abort, they can do so
by clicking the Cancel button atop of the diff tree, which tells the backend to revert all
the applied changes and loads the comparison anew. This is where the backup of the
base made at the beginning of the merging process file comes into play, by overwriting
the already modified file.

Once the Save button is clicked the current merge result is written to a new file and
the base file gets reverted to its original state so that in the end all of the original three
files remain untouched.

67

CHAPTER 5
Summary and Evaluation

This chapter will offer a summary of our work on this thesis and present the
methodology used in evaluating the Diff-Merge tool, as well as the results obtained in
said evaluation.

5.1 Summary
This thesis aimed to design and implement an effective and efficient notation to

display diffs in a diagram. In addition to this we also set out to design and implement
an efficient application-level protocol for the communication of diff data in a client-server
architecture.

Because we set out to achieve the aforementioned tasks in the context of cloud-based
IDEs we took a look at the top three cloud-based IDEs (according to the PYPL index)
and ascertained their capabilities regarding diagram diffing and merging. This analysis,
described in more detail in chapter 2, concluded that the top three cloud-based IDEs
namely Cloud9, Replit and JSFiddle, not only lacked any capabilities of diagram diffing
whatsoever, but neither did they allow for third party plugins or extensions to be added
to them, thus essentially closing off any possibility users might have had of developing
custom tailored features to suit their needs. In contrast to the aforementioned IDEs the
Theia IDE supports both third party plugins and extensions, the distinction between the
two being discussed in chapter 3.2.1.

Since diagram diffing capabilities were virtually non-existent in the context of cloud-
based IDEs we took a look at conventional IDEs in order to help us decide on suitable
diff representation means as well as conflict resolution processes. In this regard we have
opted for a side-by-side comparison of the diagrams coupled with a simple color coding
used to distinguish between diff types, similar to the ones commonly encountered when
diffing text files. Green has been used to mark additions to the diagram, while yellow

69

5. Summary and Evaluation

signifies a change, and red marks the deletion of a diagram element. Additionally a so
called diff-tree has been implemented to aid with navigation between the individual diffs,
as diagrams can often have an extensive layout causing them to not always be visible
in their entirety, depending on the zoom level of the canvas they are rendered in. This
diff-tree has a similar layout to common file explorers, listing the color coded diffs while
also centering the diagrams on a specific diff upon it being clicked within the tree. This
ensures that the desired diff is visible across all versions of the diagram.

When it comes to diagram merging and conflict resolution during the merge process
we have decided to opt for the tried-and-tested options that have become commonplace
across widely-used IDEs. Users can decide to either apply or discard individual changes
and / or allow the IDE to automatically apply all non-conflicting changes. We have
deemed these capabilities to be sufficient for the merging and resolution of conflicts
within diagrams, as they allow users full control over the diffs that ultimately get to be
included in the final merge result.

While the Diff-Merge extension is responsible for the visualization and user interac-
tion, the diff computation and merging process is handled by the Diff-Merge backend. It
is relying on the EMF Compare framework to compare the diagrams and subsequently
perform any merging operations that might be requested of it. The results obtained
from EMF Compare are then processed and serialized for transmission to the Diff-Merge
Theia extension. Additionally the backend also exposes an API that is then consumed
by the frontend allowing the triggering of merges of one or more differences, thus acting
essentially similar to a middleware between the Diff-Merge Theia extension and the EMF
Compare framework.

The communication between the frontend and backend takes place via REST requests
with the request/response messages being defined by the developed application layer
protocol. Requests made by the frontend only contain the information that is required in
order for the backend to be able to perform the required operation. This means that any
given request will at most contain the file paths for the diagrams, a boolean flag, and
an array of diagram element IDs. Because the different operations have dedicated API
endpoints, the aforementioned request parameters are sufficient in order to perform all
the necessary tasks within the scope of this thesis.

Responses from the backend have retained a similar structure to the Comparison
object returned by EMF compare while having the bulk of their attributes removed
as they are no longer relevant outside of EMF compare, with the attributes that are
relevant for diff visualization being included in the response. Concretely these responses
have taken the form of ComparisonDto objects. A ComparisonDto contains an array of
matches and a flag signaling if the result refers to a three-way comparison. A match
describes a diagram element that has been identified across the diagram versions being
compared and will only be added to the ComparisonDto should it or one of its submatches
(as is the case with nested elements) contains a diff at a certain point down the line.
The individual diffs themselves are contained as a list within the matches. The exact

70

5.2. Evaluation

structure of the ComparisonDto and its nested elements is depicted in figure 3.9 and
described in detail in chapter 3.2.3.

5.2 Evaluation

The goal of this thesis was to explore and develop the field of diagram diffing and
merging in the context of online IDEs. Concretely this task involved developing a protocol
to be used for the communication between the frontend and backend as well as developing
useful visualization means for diagram diffs. Because of their nature, these two aspects
of the implementation have been evaluated individually using different methodologies.

Because the implementation reuses a number of existing components, such as EMF
Compare, or the Theia DiagramWidgets it is important to create a clear delimitation
between the protocol and the rest of the components when conducting the benchmarking,
at least when it comes to the response time. Whereas the network communication can
be easily measured based on the created sample diagrams, the speed of the protocol
and its implicit impact on UI perception need to be regarded separately from the other
parts of the application. In order to achieve this clear delimitation timestamps have been
recorded at key positions in the comparison / merging process, such as when an EMF
Comparison object begins to be processed, when the backend sends the response, when
the frontend receives the ComparisonDTO and when the diffs have finished rendering.
By measuring at these points in the comparison process we can accurately ascertain the
time required to serialize the result, send it over the network and ultimately display it to
the users.

Concretely each class of diagram has been tested for a number of 50 times with the
following three diagram classes being defined:

5.2.1 Small Diagrams and Change Sets

These diagrams contain a total of 50 diagram elements and have associated change
sets comprised of 10 changes (additions, changes, and deletions). The network times for
this class of diagram showed a mean time of 6.14 ms for the network transmission of the
data and a mean total time of 995.12 ms until the comparison is fully rendered and the
user can begin interacting with it. On the two opposite ends of the spectrum we have the
fastest time for network transmission of 5 ms while the slowest one took 9 ms. The fastest
run took 935 ms until the rendering finished whereas the longest running test required
1033 ms for the same task. Both the transmission as well as the total times proved to be
relatively constant with standard deviations of 0.83 ms and 22.41 ms respectively.

Figure 5.1 below shows the total times recorded for the individual test runs based
on small diagrams.

71

5. Summary and Evaluation

Figure 5.1: Benchmarking Small Diagrams and Change Sets

5.2.2 Medium Diagrams and Change Sets
These diagrams contain a total of 250 diagram elements while their change sets

contain a number of 50 changes consisting of a multitude of additions, changes, and
deletions. The network times for medium diagrams measured a mean time of 26.98 ms
for the network transmission of the comparison and a mean total time of 2316.74 ms
until the rendering finished. The fastest time for network transmission measured 22 ms
while the slowest one took 32 ms. The fastest run took 2070 ms until the rendering
finished whereas the slowest one required 2515 ms. The recorded values were once again
consistent throughout the measurements with a transmission standard deviation of 2.29
ms and a total time standard deviation of 144.85 ms.

Depicted in figure 5.2 below are the total times recorded on medium diagrams.

Figure 5.2: Benchmarking Medium Diagrams and Change Sets

72

5.2. Evaluation

5.2.3 Large Diagrams and Change Sets
These diagrams contain a total of 500 diagram elements coupled with a change set

composed of a total number of 100 additions, deletions, and changes. Data transmission
took on average 45.66 ms while the total time, including comparison rendering measured
an average of 2935.14 ms. The fastest network transmission of the comparison measured
36 ms while the slowest one took 66 ms. When it comes to the total time, including
rendering, we measured a shortest time of 2627 ms and a slowest one of 3316 ms. The
standard deviation for the large class of diagrams is 8.12 ms for transmission and 194.85
ms for the total times.

The total times for the individual test runs performed on large diagrams are
showcased in figure 5.2 below.

Figure 5.3: Benchmarking Large Diagrams and Change Sets

5.2.4 Visualization Usability
When it comes to the usability and usefulness of the diff visualization, the System

usability scale, or SUS for short [B+96] has been used. This evaluation method relies on
a 10 item questionnaire in order to measure the usability of a system. Respondents are
then asked to choose one of the 5 available options for each item, ranging from Strongly
agree to Strongly disagree. Since its development by John Brooke in 1986, the SUS has
effectively become an industry standard when it comes to evaluating the usability of a
system, being referenced almost 1 million times (993.000) in literature, according to
Google Scholar [goo22]. Part of its popularity can be attributed to the fact that it allows
for the quick and easy collection of a user’s subjective usability rating regarding a specific
system. We have opted to conduct this part of the evaluation in a qualitative manner,
relying upon the experience of the partners involved in the HybriDLUX project [hyb].
The developers from the industry partner AVL [avl] have extensive experience developing
products using domain specific languages, or DSLs for short. The logic of these products

73

5. Summary and Evaluation

is often represented as diagrams, similar in structure and design to a state machine, as
this representation is much more concise than the textual representation of the DSL
files. Because of the evolving nature of their products multiple developers often work on
the same files. This fact means that the developers from AVL are in a unique position
allowing them to offer qualified feedback regarding the usability of the Diff-Merge Theia
extension.

A series consisting of 4 videos showcasing the developed diffing and merging func-
tionality within the Theia IDE has been recorded to serve as a base for the SUS scale
evaluation. A brief introduction of the developed extension, together with the previously
mentioned 4 videos has been added to a Google Forms [goo] questionnaire alongside the
10 SUS statements. The 10 statements included in the questionnaire are as follows, each
of them allowing for an answer between 1 and 5, where 1 represents Strongly disagree
and 5 represents Strongly agree :

1. I think that I would like to use the system frequently.
2. I found the system unnecessarily complex.
3. I thought the system was easy to use.
4. I think that I would need the support of a technical person to be able to use the

system.
5. I found the various functions in the system were well integrated.
6. I thought there was too much inconsistency in the system.
7. I would imagine that most people would learn to use the system very quickly.
8. I found the system very cumbersome (awkward) to use.
9. I would feel very confident using the system.

10. I would need to learn a lot of things before I could get going with the system.

It is worth mentioning at this point that the SUS scale used for this evaluation
includes a slight modification in item number 8. The term awkward has been included in
addition to the term cumbersome which is usually used in such scales. This addition has
been made in order to increase comprehension, as the original term proved somewhat
problematic for a significant proportion of non-native English speakers, according to an
article [Fin06] by Kraig Finstad from the Intel Corporation [int].

Two additional free text questions have been added to the Google Forms in order to
further leverage the experience and knowledge of the AVL developers. The first question
aims to gauge if the available functionality is sufficient and satisfactory for a normal
workflow when diffing and merging diagrams and has been worded as follows: How
would you proceed when conducting a merge given the available functionality (Auto-merge,
applying individual changes)? Would the available options be sufficient for your desired
workflow?

74

5.2. Evaluation

The second free text question is Compared to the unified MDML Diff Visualization,
what would be the advantages/disadvantages of a side-by-side representation, and it
aims to evaluate the suitability of the side-by-side representation when comparing two
diagram versions. This question basically asks the respondents to compare the Diff-Merge
extension with a solution they already have, namely one that presents diffs in an unified
view, similar to the result of a merge where the origin of changes is marked. This form of
the questionnaire has been forwarded to 8 respondents from within AVL and the results
will be presented in the following paragraphs.

When asked if the provided functionality would be sufficient for their workflow,
the majority answered that they are satisfied with the offered options. One respondent
however has suggested that choosing either one of the changes, left or right, might not
be sufficient in some cases. This suggestion will be further explored in chapter 6.3.

Regarding the advantages of a side-by-side visualization compared to a unified one,
the majority of respondents consider that a side-by-side comparison generates a less
complex diagram that is “easier to handle” whereas a unified representation would be
more suitable for a high number of diffs within a complex diagram.

Circling back to the SUS we first need to conduct a small series of calculations
before being able to interpret the results. The scoring of the SUS will be done on an
individual basis for each respondent and then a mean score will be computed. The scoring
will be conducted according to the "SUS - A quick and dirty usability scale" paper by
John Brooke [B+96] with the first step being to map each item’s contribution to a value
between 0 and 4. For the odd numbered items this is achieved by subtracting one from
the respondent’s score, while for the even numbered items the contribution is 5 minus
the respondent’s score for that item. These scores are then summed up and multiplied
by 2.5 in order to obtain the overall value of system usability on a scale from 0 to 100.

Scoring our SUS questionnaires has yielded the following results: 87.5, 92.5, 87.5,
67.5, 92.5, 77.5, 85, and 65, with a mean score of 81.87 across all participants. Now that
we have these numbers it is time to convert them to more meaningful statements about
the usability of the evaluated system, in our case the Diff-Merge extension. According to
a retrospective by John Brooke [Bro13] a score of 68 signifies an average rating. Further
milestones are also defined, namely 75 being a “good" score, 85 signifying an “excellent”
score, whereas a score of 100 would be the “best imaginable”.

Based on the achieved results, both from the benchmarking as well as the System
Usability Scale scores, we can conclude that we were successful in attaining our goal of
developing a useful and usable diff visualization for diagrams in the context of cloud-based
IDEs, coupled with an efficient application-layer communication protocol. Potential areas
of improvement have also been identified and explored in chapter 6 of this thesis.

75

CHAPTER 6
Open Challenges and Future

Work

This chapter discusses the limitations of the current implementation and offers
insight into possible improvements that could be made upon the current state. The bulk
of these improvements will refer to the visualization of the diffs thus implicitly focusing
on the Theia Diff-Merge extension.

6.1 Diff Granularity Setting
The current implementation relies on a hard-coded granularity setting. As described

in chapter 3.2 the level on which diffs are represented in the frontend is programmatically
set and changing it requires alteration of the backend code. While this change is trivial
in nature, it is nonetheless somewhat cumbersome as it requires some knowledge of the
EMF Compare framework as well as the Java programming language. Furthermore it
cannot be done on the fly, as any change to the Diff-Merge backend would require a
restart of the java application in order for changes to take effect. This has no negative
impact on the current implementation however, as the WFML is limited in scope and
capabilities and thus the need for variable granularity does not arise. Future work could
improve upon this limitation by adding the possibility to adjust the granularity of the
diffs displayed in the diff tree in order to accommodate various types of nested elements
or attribute changes, without requiring any code changes.

Adding an extra parameter describing the desired setting to the requests sent to
the Diff-Merge backend would allow for this setting to be changed on the fly, directly
from the frontend and would not require any additional computation to be performed by
the Theia extension (e.g. filtering out undesired levels) as the backend would deliver the
comparison, directly containing the desired granularity level for the diffs.

77

6. Open Challenges and Future Work

A potential user interface design allowing for on the fly granularity adjustment is
showcased below in figure 6.1.

Figure 6.1: Granularity adjustment mock-up

6.2 Diff Grouping based on Level

Closely related to the ability to alter the granularity of the identified diffs would
be their grouping within the diff tree itself. At the moment, as a result of the chosen
granularity coupled with the nature of the WFML, diffs are represented in a flat manner
within the diff tree. Only conflicts get bundled together under a common entry in order
to illustrate the conflicting diffs to the user. Should the option exist to identify diffs on
multiple levels within a diagram element, it would also be necessary to group said diffs
as such in order to convey which diff is nested within which parent element.

A possible way of doing this would be similar to how the tree of a file explorer
handles folders and how the conflicts are currently represented, as children containing the
specific diff appended to the parent node. This would allow for entries with a potentially
indefinite number of nested elements to be represented within the diff tree. In order to
offer an overview of the diffs contained by a node’s children a counter of sorts could be
added to the right of the entry itself, describing the total number of additions, deletions
and changes contained within the children of the specific entry.

The implementation of the aforementioned functionality could look as depicted below
in figure 6.1. In this particular example, the task nodes Added A and Added B would
each contain three elements, namely a dimension, a text label and an icon, and thus
have a (+3) appended to them, to let the user know they contain 3 new additions. The
deleted task node Push1 would in turn contain 3 deletions while the task node Changed
A contains 2 changes, namely one regarding the text label and another one regarding its
dimension as it now has to accommodate the changed label.

78

6.3. Additional properties view

Figure 6.1: Diff grouping based on level

6.3 Additional properties view
At the moment users have the ability to construct the final merge result as they see

fit, even though that ability comes with some caveats. They can currently choose which
changes to apply but the ability to conduct new changes directly in the merging interface
only benefits from limited support. Because the same diagram editors that allow for
diagram creation are reused, with some customizations, they do retain the ability to
edit the diagrams being displayed within them (in a limited capacity as the tool palette
has been disabled). This ability is not explicitly advertised anywhere in the Diff-Merge
extension, as it could lead to unexpected artifacts. Because new comparisons are triggered
at various points during the merging process, changes made from the merging interface
might get inadvertently rolled back or they might lead to the introduction of unexpected
new diffs as the edits made here would be detected as changes to the files. The need
to conduct new changes at merge time stems from semantic reasons, as a new, third
change, might reconcile two already existing changes, from a semantic point of view.
This possibility has also been brought up by one of the interviewees during the SUS
evaluation.

A way to mitigate this problem would be the addition of a property view for diagram
elements with a twofold goal. On one hand this view would allow users to conduct changes
which could then benefit from special treatment during any subsequent comparisons
conducted as part of the merging process, so that any artifacting or loss of changes
is avoided. On the other hand a property view would also allow users to edit certain
attributes of diagram elements that might not necessarily be displayed within the diagram
itself. This aspect would be heavily dependent on the modeling language and the specific
diagram representation but it remains a possibility nonetheless.

The concrete implementation of this feature could be similar to the one associated

79

6. Open Challenges and Future Work

with the Theia Ecore [eco21b] modeling editor, depicted in figure 6.1 below.

Figure 6.1: Theia Ecore Properties View [eco21a]

6.4 Source code management tool integration
In order to trigger a comparison users are required to manually select the two / three

files to be compared, the two user versions and in the case of a three-way comparison /
merge also the file representing the last common ancestor of the two versions, designated
as the base version of the diagram. While this is sufficient for the scope of this thesis,
the Diff-Merge Theia extension would stand to benefit greatly from an integration with
an actual source code management system such as Git [git21a] or SVN [sub21].

Such an integration would eliminate the need for users to concern themselves with
anything else, other than their own version of a diagram. Should a conflict arise when
attempting to push their changes to the upstream, they would then be presented with the
comparison and merge interface where they could solve it. All the required information
such as the conflicting diagram version as well as the base version would be automatically
fetched from the remote server where the user’s file is to be pushed, thus absolving
the user from having to select any other diagram version. This would greatly resemble
the workflow to which many developers are accustomed to by having used source code
management tools such as Git for text-based representations of code files.

The expected advantage of such an approach is a reduction in the complexity of the
user’s workflow and increased familiarity between the Diff-Merge extension and other
versioning tools, such as the ones used for text-based representation.

80

List of Figures

2.1 Cloud9 UI . 8
2.2 Replit UI . 9
2.3 JSFiddle UI . 10
2.4 Theia UI [the21] . 11

3.1 Architecture Diagram . 26
3.2 Sprotty Architectural Overview [spr21d] 29
3.3 Simplified GLSP metamodel and Workflow Modeling Language metamodel 30
3.4 Graphical representation of a Workflow Modeling Language Diagram 31
3.5 Side-by-side Representation and diff-tree 35
3.6 package.json file for a newly generated extension 37
3.7 package.json file for the Diff-Merge Theia extension 38
3.8 Context menu additions for diffing/merging functionality 41
3.9 ComparisonDto Structure . 43
3.10 diff-tree representation . 48
3.11 EMF Compare comparison process [emf21] 53
3.12 EMF Compare differencing process [emf21] 53
3.13 EMF Compare Metamodel [emf21] . 55

4.1 Example of files . 63
4.2 Diagram Comparison . 64
4.3 Mapping to ComparisonDTO . 65
4.4 Diff tree after applying all of the non conflicting changes 66
4.5 Merge result after applying all non conflicting-changes 67
4.6 Completed merge result . 67

5.1 Benchmarking Small Diagrams and Change Sets 72
5.2 Benchmarking Medium Diagrams and Change Sets 72
5.3 Benchmarking Large Diagrams and Change Sets 73

6.1 Granularity adjustment mock-up . 78
6.1 Diff grouping based on level . 79
6.1 Theia Ecore Properties View [eco21a] . 80

81

Bibliography

[ABK+09] Kerstin Altmanninger, Petra Brosch, Gerti Kappel, Philip Langer, Martina
Seidl, Konrad Wieland, and Manuel Wimmer. Why model versioning
research is needed!? an experience report. In Proc. Models and Evolution
Workshop, Denver, CO, USA, pages 79–90. Citeseer, 2009.

[AGD18] Deniz Akdur, Vahid Garousi, and Onur Demirörs. A survey on modelling
and model-driven engineering practices in the embedded software industry.
Journal of Systems Architecture, 91:62–82, 2018.

[amo] AMOR. http://www.modelversioning.org/. [Online; accessed
30-05-2021].

[avl] AVL. https://avl.com. [Online; accessed 26-01-2022].

[aws21a] AWS Discussions Forun. https://forums.aws.amazon.com/
message.jspa?messageID=834797, 2021. [Online; accessed 30-05-
2021].

[aws21b] AWS Toolkit. https://docs.aws.amazon.com/cloud9/latest/
user-guide/toolkit-welcome.html, 2021. [Online; accessed 30-05-
2021].

[B+96] John Brooke et al. Sus-a quick and dirty usability scale. Usability evaluation
in industry, 189(194):4–7, 1996.

[Bal91] Robert Balzer. Tolerating inconsistency. In Proceedings of the 13th inter-
national conference on Software engineering, pages 158–165, 1991.

[BKL+12] Petra Brosch, Gerti Kappel, Philip Langer, Martina Seidl, Konrad Wieland,
and Manuel Wimmer. An introduction to model versioning. In Interna-
tional School on Formal Methods for the Design of Computer, Communi-
cation and Software Systems, pages 336–398. Springer, 2012.

[BP08] Cédric Brun and Alfonso Pierantonio. Model differences in the eclipse mod-
eling framework. UPGRADE, The European Journal for the Informatics
Professional, 9(2):29–34, 2008.

83

[Bro13] John Brooke. Sus: a retrospective. Journal of usability studies, 8(2):29–40,
2013.

[CDRP07] Antonio Cicchetti, Davide Di Ruscio, and Alfonso Pierantonio. A meta-
model independent approach to difference representation. J. Object Tech-
nol., 6(9):165–185, 2007.

[CK03] William Crawford and Jonathan Kaplan. J2EE Design Patterns: Patterns
in the Real World. " O’Reilly Media, Inc.", 2003.

[clo21] AWS Cloud9. https://aws.amazon.com/de/cloud9, 2021. [Online;
accessed 30-05-2021].

[cvs21] Concurrent Versions System. http://www.nongnu.org/cvs, 2021.
[Online; accessed 30-05-2021].

[CW98] Reidar Conradi and Bernhard Westfechtel. Version models for software
configuration management. ACM Computing Surveys (CSUR), 30(2):232–
282, 1998.

[DLFST09] Andrea De Lucia, Fausto Fasano, Giuseppe Scanniello, and Genoveffa
Tortora. Concurrent fine-grained versioning of uml models. In 2009 13th
European Conference on Software Maintenance and Reengineering, pages
89–98. IEEE, 2009.

[doc21] Docker. https://www.docker.com, 2021. [Online; accessed 30-05-
2021].

[DS15] Alberto Rodrigues Da Silva. Model-driven engineering: A survey sup-
ported by the unified conceptual model. Computer Languages, Systems &
Structures, 43:139–155, 2015.

[ecl21] EclipseSource. https://eclipsesource.com/, 2021. [Online; ac-
cessed 30-05-2021].

[eco21a] A property view for Eclipse Theia. https://eclipsesource.com/
blogs/2021/03/10/a-property-view-for-eclipse-theia,
2021. [Online; accessed 07-12-2021].

[eco21b] Ecore. https://wiki.eclipse.org/Ecore, 2021. [Online; accessed
07-12-2021].

[emf21] EMF Compare Devloper Guide. https://www.eclipse.
org/emf/compare/documentation/latest/developer/
developer-guide.html, 2021. [Online; accessed 27-11-2021].

[ext21] Eclipse Theia - Extension Generator. https://www.npmjs.com/
package/generator-theia-extension, 2021. [Online; accessed 05-
08-2021].

84

[FGW+15] Kleinner Farias, Alessandro Garcia, Jon Whittle, Garcia Chavez, Christina
von Flach, and Carlos Lucena. Evaluating the effort of composing design
models: a controlled experiment. Software & Systems Modeling, 14(4):1349–
1365, 2015.

[Fin06] Kraig Finstad. The system usability scale and non-native english speakers.
Journal of usability studies, 1(4):185–188, 2006.

[fuj21] Fujaba Tool Suite. https://web.cs.upb.de/archive/fujaba,
2021. [Online; accessed 30-05-2021].

[Gir06] Martin Girschick. Difference detection and visualization in UML class
diagrams. Technical university of Darmstadt technical report TUD-CS-
2006-5, pages 1–15, 2006.

[git21a] git. https://git-scm.com, 2021. [Online; accessed 30-05-2021].

[git21b] GitHub. https://github.com, 2021. [Online; accessed 30-05-2021].

[GKLE10] Christian Gerth, Jochen M Küster, Markus Luckey, and Gregor Engels.
Precise detection of conflicting change operations using process model terms.
In International Conference on Model Driven Engineering Languages and
Systems, pages 93–107. Springer, 2010.

[GKLE13] Christian Gerth, Jochen M Küster, Markus Luckey, and Gregor Engels.
Detection and resolution of conflicting change operations in version man-
agement of process models. Software & Systems Modeling, 12(3):517–535,
2013.

[gls21a] Eclipse GLSP Examples. https://github.com/eclipse-glsp/
glsp-examples, 2021. [Online; accessed 05-08-2021].

[gls21b] Graphical Language Server Framework. https://github.com/
eclipse-glsp/glsp, 2021. [Online; accessed 26-03-2021].

[goo] Google Forms. https://www.google.com/forms/about. [Online;
accessed 26-01-2022].

[goo22] Jersey. https://scholar.google.com/, 2022. [Online; accessed
25-02-2022].

[gtr21] Google Trends. https://trends.google.com/trends, 2021. [On-
line; accessed 30-05-2021].

[GWKRM15] Manuel Gall, Günter Wallner, Simone Kriglstein, and Stefanie Rinderle-Ma.
A study of different visualizations for visualizing differences in process
models. In International Conference on Conceptual Modeling, pages 99–108.
Springer, 2015.

85

[HMPR04] Alan Hevner, Salvatore T March, Jinsoo Park, and Sudha Ram. Design
science research in information systems. MIS quarterly, 28(1):75–105, 2004.

[hyb] HybriDLUX. https://hybridlux.wu.ac.at. [Online; accessed 26-
01-2022].

[ibm21] IBM Rational Software Architect. https://www.ibm.com/products/
rational-software-architect-designer, 2021. [Online; ac-
cessed 30-05-2021].

[int] Intel. https://www.intel.com/. [Online; accessed 26-01-2022].

[inv21] InversifyJS. https://github.com/inversify/InversifyJS/
blob/master/wiki/container_modules.md, 2021. [Online; ac-
cessed 05-08-2021].

[jer21] Jersey. https://eclipse-ee4j.github.io/jersey/, 2021. [On-
line; accessed 30-05-2021].

[jet] Jetty. https://www.eclipse.org/jetty/. [Online; accessed 26-03-
2021].

[jku21] Johannes Kepler Universität Linz. http://www.jku.at, 2021. [Online;
accessed 30-05-2021].

[jsf21] JSFiddle. https://jsfiddle.net/m, 2021. [Online; accessed 30-05-
2021].

[jso21] JSON-RPC. https://www.jsonrpc.org/specification, 2021.
[Online; accessed 30-05-2021].

[KDRPP09] Dimitrios S Kolovos, Davide Di Ruscio, Alfonso Pierantonio, and Richard F
Paige. Different models for model matching: An analysis of approaches to
support model differencing. In 2009 ICSE Workshop on Comparison and
Versioning of Software Models, pages 1–6. IEEE, 2009.

[KHL+10] Maximilian Koegel, Markus Herrmannsdoerfer, Yang Li, Jonas Helming,
and Joern David. Comparing state- and operation-based change tracking
on models. In 2010 14th IEEE International Enterprise Distributed Object
Computing Conference, pages 163–172. IEEE, 2010.

[KKT11] Timo Kehrer, Udo Kelter, and Gabriele Taentzer. A rule-based approach to
the semantic lifting of model differences in the context of model versioning.
In Proceedings of the 2011 26th IEEE/ACM International Conference on
Automated Software Engineering, pages 163–172. IEEE Computer Society,
2011.

86

[LGJ07] Yuehua Lin, Jeff Gray, and Frédéric Jouault. Dsmdiff: a differentiation
tool for domain-specific models. European Journal of Information Systems,
16(4):349–361, 2007.

[mav21] Apache Maven. https://maven.apache.org, 2021. [Online; accessed
30-05-2021].

[MD94] Jonathan P Munson and Prasun Dewan. A flexible object merging frame-
work. In Proceedings of the 1994 ACM conference on Computer supported
cooperative work, pages 231–242, 1994.

[Men02] Tom Mens. A state-of-the-art survey on software merging. IEEE transac-
tions on software engineering, 28(5):449–462, 2002.

[MGH05] Akhil Mehra, John Grundy, and John Hosking. A generic approach to
supporting diagram differencing and merging for collaborative design. In
Proceedings of the 20th IEEE/ACM international Conference on Automated
software engineering, pages 204–213, 2005.

[MM15] Sonja Maier and Mark Minas. Recording, processing, and visualizing
changes in diagrams. In 2015 IEEE Symposium on Visual Languages and
Human-Centric Computing, VL/HCC 2015, Atlanta, GA, USA, October
18-22, 2015, pages 131–135. IEEE, 2015.

[MNSD17] Shane McKee, Nicholas Nelson, Anita Sarma, and Danny Dig. Software
practitioner perspectives on merge conflicts and resolutions. In 2017
IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 467–478. IEEE, 2017.

[mof05] Meta Object Facility (MOF) Specification. https://www.omg.org/
spec/MOF/ISO/19502/PDF, 2005. [Online; accessed 30-05-2021].

[mof14] Information technology - Object Management Group Meta Object Facility
(MOF) Core. https://www.omg.org/spec/MOF/ISO/19502/PDF,
2014. [Online; accessed 30-05-2021].

[mon21] Monaco Editor. https://microsoft.github.io/monaco-editor,
2021. [Online; accessed 05-08-2021].

[NER01] Bashar Nuseibeh, Steve Easterbrook, and Alessandra Russo. Making
inconsistency respectable in software development. Journal of systems and
software, 58(2):171–180, 2001.

[nod21] Node Fetch. https://github.com/node-fetch/node-fetch,
2021. [Online; accessed 05-08-2021].

[npm21] npm. https://www.npmjs.com, 2021. [Online; accessed 30-05-2021].

87

[NSC+07] Shiva Nejati, Mehrdad Sabetzadeh, Marsha Chechik, Steve Easterbrook,
and Pamela Zave. Matching and merging of statecharts specifications. In
29th International Conference on Software Engineering (ICSE’07), pages
54–64. IEEE, 2007.

[ode21] TOP ODE Index. http://pypl.github.io/ODE.html, 2021. [On-
line; accessed 30-05-2021].

[OWK03] Dirk Ohst, Michael Welle, and Udo Kelter. Differences between versions of
UML diagrams. In Proceedings of the 9th European Software Engineering
Conference Held Jointly with 11th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, pages 227–236. ACM,
2003.

[pap21] Eclipse Papyrus. https://www.eclipse.org/papyrus, 2021. [On-
line; accessed 05-08-2021].

[poe21] Poetry. https://python-poetry.org, 2021. [Online; accessed 30-05-
2021].

[Por05] Ivan Porres. Rule-based update transformations and their application to
model refactorings. Software & Systems Modeling, 4(4):368–385, 2005.

[RAB+07] Thomas Reiter, Kerstin Altmanninger, Alexander Bergmayr, Wieland
Schwinger, and Gabriele Kotsis. Models in conflict-detection of semantic
conflicts in model-based development. MDEIS@ ICEIS, 7:29–40, 2007.

[RB01] Erhard Rahm and Philip A Bernstein. A survey of approaches to automatic
schema matching. the VLDB Journal, 10(4):334–350, 2001.

[rep21] Replit. https://replit.com, 2021. [Online; accessed 30-05-2021].

[res21] RESTful API. https://www.redhat.com/en/topics/api/
what-is-a-rest-api, 2021. [Online; accessed 30-05-2021].

[S+00] Richard Soley et al. Model driven architecture. OMG white paper,
308(308):5, 2000.

[SBMP08] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro.
EMF: eclipse modeling framework. Pearson Education, 2008.

[SG08] Maik Schmidt and Tilman Gloetzner. Constructing difference tools for
models using the sidiff framework. In Companion of the 30th international
conference on Software engineering, pages 947–948, 2008.

[SK03] Shane Sendall and Wojtek Kozaczynski. Model transformation: The
heart and soul of model-driven software development. IEEE software,
20(5):42–45, 2003.

88

[spa21] Sparx Systems. https://www.sparxsystems.eu/, 2021. [Online;
accessed 30-05-2021].

[spr21a] Eclipse Sprotty. https://www.eclipse.org/community/
eclipse_newsletter/2018/october/sprotty.php, 2021. [On-
line; accessed 05-08-2021].

[spr21b] sprotty. https://github.com/eclipse/sprotty, 2021. [Online;
accessed 26-03-2021].

[spr21c] Sprotty. https://github.com/eclipse/sprotty/wiki, 2021.
[Online; accessed 05-08-2021].

[spr21d] Sprotty Architectural Overview. https://github.com/eclipse/
sprotty/wiki/Architectural-Overview, 2021. [Online; accessed
27-11-2021].

[sta21] StackOverflow. https://stackoverflow.com, 2021. [Online; accessed
30-05-2021].

[sub21] Apache Subversion. https://subversion.apache.org, 2021. [On-
line; accessed 30-05-2021].

[SZN04] Christian Schneider, Albert Zündorf, and Jörg Niere. Coobra-a small
step for development tools to collaborative environments. In Workshop on
Directions in Software Engineering Environments. Citeseer, 2004.

[TELW14] Gabriele Taentzer, Claudia Ermel, Philip Langer, and Manuel Wimmer. A
fundamental approach to model versioning based on graph modifications:
from theory to implementation. Software & Systems Modeling, 13(1):239–
272, 2014.

[the21] Theia - Cloud and Desktop IDE. https://www.theia-ide.org/doc/
index.html, 2021. [Online; accessed 26-03-2021].

[Tou06] Antoine Toulmé. Presentation of emf compare utility, position paper at
eclipse summit. Esslingen, Germany, October, pages 11–12, 2006.

[tuw21] Technische Universität Wien. https://www.tuwien.at, 2021. [Online;
accessed 30-05-2021].

[vsc21] Visual Studio Code. https://code.visualstudio.com, 2021. [On-
line; accessed 30-05-2021].

[Wes10] Bernhard Westfechtel. A formal approach to three-way merging of emf mod-
els. In Proceedings of the 1st International Workshop on Model Comparison
in Practice, pages 31–41, 2010.

89

[XS05] Zhenchang Xing and Eleni Stroulia. Umldiff: an algorithm for object-
oriented design differencing. In Proceedings of the 20th IEEE/ACM in-
ternational Conference on Automated software engineering, pages 54–65,
2005.

[yeo21] Yeoman. https://yeoman.io, 2021. [Online; accessed 05-08-2021].

90

Appendix

91

Table 1: Benchmarking results for diagrams with 50 elements and 10 changes

Nr.
Computed
comparison -
Backend

Received
comparison -
Frontend

Rendered
comparison

Trans-
mission
(in
ms)

Rendering
(in ms)

TOTAL
(in ms)

1 1645290229375 1645290229382 1645290230401 7 1019 1026
2 1645290235296 1645290235303 1645290236299 7 996 1003
3 1645291320221 1645291320228 1645291321230 7 1002 1009
4 1645291329286 1645291329293 1645291330267 7 974 981
5 1645291333759 1645291333765 1645291334776 6 1011 1017
6 1645291337431 1645291337438 1645291338446 7 1008 1015
7 1645291345386 1645291345392 1645291346393 6 1001 1007
8 1645291349586 1645291349593 1645291350602 7 1009 1016
9 1645291353829 1645291353836 1645291354817 7 981 988
10 1645291358085 1645291358092 1645291359080 7 988 995
11 1645291366519 1645291366526 1645291367547 7 1021 1028
12 1645291383003 1645291383010 1645291384008 7 998 1005
13 1645291386987 1645291386993 1645291387990 6 997 1003
14 1645291395145 1645291395151 1645291396155 6 1004 1010
15 1645291408830 1645291408835 1645291409847 5 1012 1017
16 1645291645118 1645291645124 1645291646099 6 975 981
17 1645291648891 1645291648897 1645291649896 6 999 1005
18 1645291653035 1645291653040 1645291654063 5 1023 1028
19 1645291661402 1645291661408 1645291662415 6 1007 1013
20 1645291674415 1645291674421 1645291675427 6 1006 1012
21 1645291700603 1645291700609 1645291701616 6 1007 1013
22 1645291705325 1645291705331 1645291706340 6 1009 1015
23 1645291723702 1645291723708 1645291724700 6 992 998
24 1645291727693 1645291727699 1645291728711 6 1012 1018
25 1645291736346 1645291736352 1645291737372 6 1020 1026
26 1645373033807 1645373033813 1645373034803 6 990 996

92

Nr.
Computed
comparison -
Backend

Received
comparison -
Frontend

Rendered
comparison

Trans-
mission
(in ms)

Rendering
(in ms)

TOTAL
(in ms)

27 1645373037477 1645373037482 1645373038510 5 1028 1033
28 1645373044342 1645373044348 1645373045331 6 983 989
29 1645373047597 1645373047603 1645373048590 6 987 993
30 1645373051065 1645373051074 1645373052070 9 996 1005
31 1645373054443 1645373054449 1645373055415 6 966 972
32 1645373057626 1645373057633 1645373058608 7 975 982
33 1645373061154 1645373061160 1645373062121 6 961 967
34 1645373064611 1645373064617 1645373065585 6 968 974
35 1645373067913 1645373067919 1645373068848 6 929 935
36 1645373071545 1645373071550 1645373072510 5 960 965
37 1645373075083 1645373075091 1645373076040 8 949 957
38 1645373078829 1645373078834 1645373079800 5 966 971
39 1645373082386 1645373082393 1645373083395 7 1002 1009
40 1645373085808 1645373085813 1645373086790 5 977 982
41 1645373092867 1645373092872 1645373093835 5 963 968
42 1645373096395 1645373096401 1645373097349 6 948 954
43 1645373100267 1645373100272 1645373101226 5 954 959
44 1645373104040 1645373104046 1645373105006 6 960 966
45 1645373110831 1645373110837 1645373111833 6 996 1002
46 1645373114564 1645373114569 1645373115564 5 995 1000
47 1645373117993 1645373117999 1645373118981 6 982 988
48 1645373122103 1645373122109 1645373123102 6 993 999
49 1645373125534 1645373125540 1645373126515 6 975 981
50 1645373128764 1645373128769 1645373129744 5 975 980
AVERAGE 6,14 988,98 995,12
MINIMUM 5 929 935
MAXIMUM 9 1028 1033
STANDARD DEVIATION 0,83 22,41

93

Table 2: Benchmarking results for diagrams with 250 elements and 50 changes

Nr.
Computed
comparison -
Backend

Received
comparison -
Frontend

Rendered
comparison

Trans-
mission
(in ms)

Rendering
(in ms)

TOTAL
(in ms)

1 1645293017371 1645293017397 1645293019831 26 2434 2460
2 1645293024665 1645293024697 1645293026998 32 2301 2333
3 1645293030587 1645293030618 1645293033029 31 2411 2442
4 1645293045201 1645293045230 1645293047700 29 2470 2499
5 1645293052184 1645293052216 1645293054443 32 2227 2259
6 1645293058604 1645293058628 1645293060817 24 2189 2213
7 1645293086917 1645293086942 1645293089432 25 2490 2515
8 1645293094090 1645293094115 1645293096360 25 2245 2270
9 1645293108194 1645293108221 1645293110472 27 2251 2278
10 1645293116759 1645293116786 1645293119073 27 2287 2314
11 1645293123302 1645293123330 1645293125531 28 2201 2229
12 1645293131113 1645293131142 1645293133335 29 2193 2222
13 1645293138335 1645293138362 1645293140638 27 2276 2303
14 1645293144752 1645293144778 1645293147113 26 2335 2361
15 1645293151996 1645293152025 1645293154389 29 2364 2393
16 1645293159278 1645293159306 1645293161578 28 2272 2300
17 1645293165697 1645293165728 1645293168021 31 2293 2324
18 1645293171885 1645293171912 1645293174262 27 2350 2377
19 1645293382037 1645293382062 1645293384522 25 2460 2485
20 1645293387904 1645293387932 1645293390271 28 2339 2367
21 1645293406423 1645293406453 1645293408814 30 2361 2391
22 1645293431569 1645293431595 1645293433909 26 2314 2340
23 1645293468770 1645293468795 1645293471233 25 2438 2463
24 1645293474725 1645293474751 1645293477171 26 2420 2446
25 1645293513898 1645293513925 1645293516329 27 2404 2431
26 1645293520273 1645293520298 1645293522738 25 2440 2465

94

Nr.
Computed
comparison -
Backend

Received
comparison -
Frontend

Rendered
comparison

Trans-
mission
(in ms)

Rendering
(in ms)

TOTAL
(in ms)

27 1645293526643 1645293526668 1645293529040 25 2372 2397
28 1645293532289 1645293532314 1645293534764 25 2450 2475
29 1645293538453 1645293538480 1645293540951 27 2471 2498
30 1645293545093 1645293545122 1645293547562 29 2440 2469
31 1645293550890 1645293550918 1645293553329 28 2411 2439
32 1645293556684 1645293556713 1645293559124 29 2411 2440
33 1645293563132 1645293563160 1645293565624 28 2464 2492
34 1645293569200 1645293569227 1645293571684 27 2457 2484
35 1645294242688 1645294242717 1645294244783 29 2066 2095
36 1645294248953 1645294248984 1645294251200 31 2216 2247
37 1645294254766 1645294254794 1645294256836 28 2042 2070
38 1645294260870 1645294260895 1645294263087 25 2192 2217
39 1645294266421 1645294266448 1645294268513 27 2065 2092
40 1645294272655 1645294272680 1645294274731 25 2051 2076
41 1645294278353 1645294278382 1645294280512 29 2130 2159
42 1645294283569 1645294283592 1645294285642 23 2050 2073
43 1645294289569 1645294289594 1645294292014 25 2420 2445
44 1645294295748 1645294295774 1645294298202 26 2428 2454
45 1645294301821 1645294301846 1645294303976 25 2130 2155
46 1645294307469 1645294307494 1645294309605 25 2111 2136
47 1645294313705 1645294313732 1645294315795 27 2063 2090
48 1645294319443 1645294319468 1645294321531 25 2063 2088
49 1645294325128 1645294325150 1645294327220 22 2070 2092
50 1645294330730 1645294330754 1645294332904 24 2150 2174
AVERAGE 26,98 2289,76 2316,74
MINIMUM 22 2042 2070
MAXIMUM 32 2490 2515
STANDARD DEVIATION 2,29 144,85

95

Table 3: Benchmarking results for diagrams with 500 elements and 100 changes

Nr.
Computed
comparison -
Backend

Received
comparison -
Frontend

Rendered
comparison

Trans-
mission
(in ms)

Rendering
(in ms)

TOTAL
(in ms)

1 1645371333144 1645371333194 1645371336135 50 2941 2991
2 1645371339912 1645371339955 1645371342736 43 2781 2824
3 1645371347303 1645371347361 1645371350178 58 2817 2875
4 1645371354908 1645371354946 1645371358177 38 3231 3269
5 1645371362563 1645371362599 1645371365264 36 2665 2701
6 1645371369395 1645371369442 1645371372177 47 2735 2782
7 1645371376922 1645371376961 1645371379624 39 2663 2702
8 1645371384294 1645371384331 1645371387610 37 3279 3316
9 1645371392019 1645371392062 1645371394746 43 2684 2727
10 1645371399685 1645371399721 1645371402345 36 2624 2660
11 1645371406516 1645371406554 1645371409277 38 2723 2761
12 1645371413820 1645371413860 1645371416525 40 2665 2705
13 1645371420800 1645371420837 1645371423515 37 2678 2715
14 1645371427118 1645371427155 1645371429745 37 2590 2627
15 1645371433738 1645371433786 1645371436563 48 2777 2825
16 1645371440578 1645371440616 1645371443293 38 2677 2715
17 1645371471869 1645371471909 1645371474589 40 2680 2720
18 1645371478198 1645371478240 1645371481012 42 2772 2814
19 1645371484788 1645371484829 1645371487538 41 2709 2750
20 1645371493161 1645371493205 1645371496202 44 2997 3041
21 1645371500296 1645371500339 1645371503360 43 3021 3064
22 1645371516419 1645371516474 1645371519514 55 3040 3095
23 1645371523894 1645371523946 1645371527000 52 3054 3106
24 1645371532028 1645371532074 1645371535127 46 3053 3099
25 1645371823056 1645371823094 1645371826222 38 3128 3166
26 1645371830249 1645371830287 1645371833269 38 2982 3020

96

Nr.
Computed
comparison -
Backend

Received
comparison -
Frontend

Rendered
comparison

Trans-
mission
(in ms)

Rendering
(in ms)

TOTAL
(in ms)

27 1645371837124 1645371837161 1645371840272 37 3111 3148
28 1645371844444 1645371844494 1645371847494 50 3000 3050
29 1645371851501 1645371851557 1645371854682 56 3125 3181
30 1645371858734 1645371858794 1645371861905 60 3111 3171
31 1645371881346 1645371881399 1645371884539 53 3140 3193
32 1645371902906 1645371902949 1645371906103 43 3154 3197
33 1645372343474 1645372343532 1645372346659 58 3127 3185
34 1645372350606 1645372350672 1645372353627 66 2955 3021
35 1645372357687 1645372357751 1645372360628 64 2877 2941
36 1645372365848 1645372365894 1645372368810 46 2916 2962
37 1645372372999 1645372373044 1645372375824 45 2780 2825
38 1645372379676 1645372379724 1645372382336 48 2612 2660
39 1645372386209 1645372386256 1645372388954 47 2698 2745
40 1645372392810 1645372392853 1645372395519 43 2666 2709
41 1645372400468 1645372400519 1645372403310 51 2791 2842
42 1645372406927 1645372406971 1645372409794 44 2823 2867
43 1645372423568 1645372423610 1645372426685 42 3075 3117
44 1645372430764 1645372430820 1645372433899 56 3079 3135
45 1645372437955 1645372438001 1645372441004 46 3003 3049
46 1645372460830 1645372460879 1645372463842 49 2963 3012
47 1645372487105 1645372487168 1645372490319 63 3151 3214
48 1645372517333 1645372517369 1645372520112 36 2743 2779
49 1645372524003 1645372524041 1645372526826 38 2785 2823
50 1645372530468 1645372530506 1645372533329 38 2823 2861
AVERAGE 45,66 2889,48 2935,14
MINIMUM 36 2590 2627
MAXIMUM 66 3279 3316
STANDARD DEVIATION 8,12 194,85

97

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and Problem Statement
	Aim of the Work
	Methodological Approach
	Structure of the Work and Authorship

	State of the Art
	Cloud IDEs
	Model/Diagram diffing and merging

	Design and Implementation
	Architecture description
	Implementation details

	Comparison example
	Summary and Evaluation
	Summary
	Evaluation

	Open Challenges and Future Work
	Diff Granularity Setting
	Diff Grouping based on Level
	Additional properties view
	Source code management tool integration

	List of Figures
	Bibliography
	Appendix

