
Threats and Limitations of an
ARM Trustzone-based Rootkit
Attacking the Android Binder

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Raphael Kiefmann, BSc
Matrikelnummer 01425609

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Thomas Grechenig
Mitwirkung: Clemens Hlauschek

Wien, 28. August 2024
Unterschrift Verfasser Unterschrift Betreuung

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Threats and Limitations of an
ARM Trustzone-based Rootkit
Attacking the Android Binder

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering und Internet Computing

by

Raphael Kiefmann, BSc
Registration Number 01425609

to the Faculty of Informatics

at the TU Wien

Advisor: Thomas Grechenig
Assistance: Clemens Hlauschek

Vienna, 28th August, 2024
Signature Author Signature Advisor

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Threats and Limitations of an
ARM Trustzone-based Rootkit
Attacking the Android Binder

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Raphael Kiefmann, BSc
Matrikelnummer 01425609

ausgeführt am
Institut für Information Systems Engineering
Forschungsbereich Business Informatics
Forschungsgruppe Industrielle Software
der Fakultät für Informatik der Technischen Universität Wien

Betreuung: Thomas Grechenig

Wien, 28. August 2024

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Raphael Kiefmann, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen,
die ohne substantielle Änderungen übernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT- Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

Wien, 28. August 2024
Raphael Kiefmann

vii

Acknowledgements

I want to thank everyone involved in the process of writing this thesis. This includes
family, especially my sister, friends, and colleagues who partook in my thesis journey
that finally comes to an end after all this time.

I also would like to express special gratitude to a good friend of mine. He eventually
sprinted away at the end of our academic run, encouraging me from the finish line with
his wise words of sarcasm to finish this very piece.

Finally, I want to thank my colleagues Clemens, Daniel, Florian, Andreas, Richard, and
Vanessa for their valuable input for this thesis.

ix

Kurzfassung

Die Arm TrustZone ist eine hardwaregestützte Sicherheitserweiterung in Arm-basierten
Prozessoren, die die Systemsicherheit verbessert, indem sie unter anderem das Speichern
von sensitiven Daten und die Ausführung von sicherheitskritischem Code in einer secure
world erlaubt. Im Vergleich zu einer normal world, können nur vorabbestimmte Akteure
auf die Daten und Rechenleistung der secure world zugreifen.

Im Jahr 2013, hat ein Forscher Ideen präsentiert, was ein böswilliger Angreifer erreichen
könnte, falls die Möglichkeit besteht, ein Rootkit in die Arm TrustZone einzuschleusen.
Code in einer secure world hat kompletten Zugriff auf die Ressourcen eines Systems und
ein Angreifer könnte dadurch die Integrität eines Systems beschädigen.

Nach unserem besten Wissen sind 8 Jahre zwischen der Idee eines Arm TrustZone
Rootkits und einer ersten Implementierung vergangen. Die Implementierung hat gezeigt,
dass ein Angreifer unter anderem die Möglichkeit hat, heimlich einem Prozess mehr
Rechte zu ermöglichen.

Diese Diplomarbeit setzt diese Arbeit fort. Im Zuge dieser Arbeit wird der Android Binder
attackiert, der zentrale Inter-Prozess Kommunikation Mechanismus von Android. Dieser
Mechanismus ist zentral für den Austausch von Daten zwischen Android Applikationen.
Der Binder überträgt die sensibelsten Nutzereingaben, wie Passwörter und Bankdaten.
Diese Daten mitzuschneiden, führt zu einer schweren Verletzung der Vertraulichkeit, und
kann zu Geldverlust, Identitätsdiebstahl oder Erpressung führen.

Diese Arbeit beschäftigt sich mit der Implementierung eines Arm TrustZone Rootkits
für das Hikey 960 Entwicklungsboard. Der Hikey 960 wird mit Android, einer Linux-
Distribution, betrieben. Zusätzlich beleuchtet diese Arbeit die notwendigen Schritte für
das Design des Rootkits, Mechanismen zur Erkennung von Linux Kernel Strukturen
sowie die Möglichkeiten und Einschränkungen von Arm TrustZone Rootkits.

Da die Position von Linux Kernel Strukturen von der Wahl des Compilers und den
applizierten Optimierungen abhängt, beschränkt sich die Implementierung auf eine kleine
Auswahl von Linux Kerneln. Eine generische Lösung hätten den Rahmen dieser Arbeit
gesprengt.

xi

Abstract

The Arm TrustZone is a hardware security extension in Arm-based processors that
improves system security by allowing, e.g. to move sensitive data and security-critical
computations to the secure world. Compared to the normal world, only a pre-defined set
of actors can access data and computing power in a secure world.

In 2013, a researcher presented ideas of what a malicious actor could accomplish by
deploying a rootkit in the Arm TrustZone. Code in the secure world has access to all of
a system’s resources, and an attacker could potentially cause complete havoc.

To the best of our knowledge, 8 years passed between the initial conception of the idea of
an Arm TrustZone-based rootkit and the first implementation of an Arm TrustZone-based
rootkit. The proof-of-concept has shown that an attacker would be able to covertly
elevate privileges, among other things.

This thesis continues this work, attacking a different component: the Android Binder,
Android’s main mechanism for inter-process communication. This mechanism is central
to the data exchange between Android applications. The Binder transceives even the
most sensitive data, such as passwords and banking data. Being able to intercept data
undermines the confidentiality of user data, allowing to steal money, steal identities, or
make users prone to blackmail.

This thesis presents a proof-of-concept Arm TrustZone rootkit for the Hikey 960 devel-
opment board. The Hikey 960 runs on Android, a Linux distribution. Alongside the
proof-of-concept, this thesis provides the theory behind the design of such a rootkit,
mechanisms to detect Linux kernel structures, such as functions, and a discussion of
threats and limitations of Arm TrustZone-based rootkits.

Due to the location of Linux kernel structures being dependent on the chosen compiler
and selected optimisations, the proof-of-concept targets only a small set of Linux kernels.
A generic solution exceeds the scope of this thesis.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Goals . 2
1.2 Methodological Approach . 3
1.3 Structure . 4

2 Related Work 5
2.1 Exploiting the Arm TrustZone . 5
2.2 Attacking Systems Using Rootkits . 6
2.3 Securing Systems Against Rootkits . 6
2.4 Securing Systems Using the Arm TrustZone 7
2.5 The Android Binder . 8

3 IT-Security Fundamentals 9
3.1 Information Security . 9
3.2 Extensions of the CIA Triad . 11
3.3 Software Security . 12

4 Fundamentals of Rootkits 17
4.1 Userspace Rootkits . 17
4.2 Kernel Rootkits . 19
4.3 Hardware-Assisted Rootkits . 20
4.4 Hardware Virtualisation Rootkits . 20
4.5 BIOS/UEFI Rootkits . 22

5 ARM Processor Architecture 25
5.1 Difference Between the RISC and CISC Architectures 25
5.2 Comparison of Different Arm Processor Types 32

xv

6 Arm TrustZone and Other Trusted Execution Environments 35
6.1 The Arm TrustZone . 36
6.2 The Arm TrustZone on Different Processor Types 37
6.3 Alternatives to the Arm TrustZone . 41

7 Fundamentals of the Linux Kernel 43
7.1 The Linux Kernel Architecture . 43
7.2 Linux Kernel Internals . 45
7.3 The Linux Kernel’s Memory Management 46
7.4 Extensions to the Linux Kernel for Android 48

8 The Android Binder 51

9 Arm TrustZone-based Rootkit 55
9.1 Basics of an Arm TrustZone-based Rootkit 55
9.2 Design of an Arm TrustZone-based Rootkit 57
9.3 Preparing the Interception of Data in the Android Binder 62
9.4 The Shellcode in the Normal World . 64
9.5 Limitations of the Presented Approach 66

10 Threats and Limitations of an Arm TrustZone-based Rootkit 69
10.1 Threats Posed by an Arm TrustZone-based Rootkit 69
10.2 Limitations of an Arm TrustZone-based Rootkit 71

11 Future Work 77
11.1 Extending the Trusted Application . 77
11.2 Dynamically Find the Kernel Symbols 78

12 Conclusion & Outlook 81

List of Figures 83

Acronyms 85

Bibliography 87
Print Resources . 87
Online Resources . 96

CHAPTER 1
Introduction

The Arm TrustZone is a security extension for Arm’s instruction set architecture that
aims to improve a system’s security. This allows to establish a secure environment, also
known as a Trusted Execution Environment (TEE), which only authorised actors can
access, in combination with a secure operating system.

TEEs manage resources, such as memory and CPUs, that operating systems in the
normal world system, such as Linux cannot, access. The policies and features that enforce
access restrictions commonly cannot be modified at runtime. For example, the OP-TEE,
a security solution building on top of the Arm TrustZone, requires developers to enable
the secure storage feature at compile time [193]. Thus, changing the features and policies
requires an update of the system firmware. Arm’s firmware reference implementation, e.g.
implements an update process that requires an update to be properly signed to boot [16].
To properly sign an update, an attacker would need to get hold of the cryptographic keys
used by the developers.

In the last couple of years, the number of Arm-based processors that contain the Arm
TrustZone has steadily increased, due to an increasing number of use cases, among other
things. For example, Android relies on hardware-backed security elements [200, 8] to
implement a key storage system, the Android Keystore [8]. In addition, Android offers the
Trusty TEE [200] to implement custom functionality to, e.g. secure mobile payments and
fingerprint processing. Another example of a manufacturer that uses the Arm TrustZone
to secure their systems is Samsung. Samsung Knox [165], similarly to Android, uses
Arm’s security extension to, e.g., create their secure key storage, secure boot mechanism
and implements a safe storage for banking data required for mobile payments. These
mechanisms are generally optimised for specific environments and tasks, and cannot be
extended to support custom use cases.

In addition to the previously mentioned use cases, various projects use the Arm TrustZone
to implement other security critical functionalities. Projects such as OP-TEE [137] allow

1

1. Introduction

developers to implement custom applications for TEEs, called Trusted Applications
(TAs), on their own. For example, in 2016 Brown [31] presented an implementation of
Widevine, a Digital Rights Management solution for video and audio files, that builds
atop the OP-TEE. Compared to the implementation found in Android, where Widevine
is part of the Android system [6], the OP-TEE-based approach is harder to bypass. Key
material does not leave the memory area that is inaccessible to the Android system.

In 2019, the OP-TEE had three critical security issues (CVE-2019-1010296 [124], CVE-
2019-1010297 [125], and CVE-2019-1010298 [126]). Using these vulnerabilities, attackers
would have been able to execute arbitrary code in the OP-TEE.

This poses a fundamental problem: What if an attacker happens to gain access to the
TEE and can execute arbitrary code using vulnerabilities?

1.1 Goals
Rootkits are a well-researched topic, and multiple works [43, 148, 121, 211, 74] have
addressed this subject. Rootkits can affect different components of an operating system,
like the kernel [42], or even the underlying hardware of a system, such as performance
counters [180] and a system’s hypervisor [155].

The Arm TrustZone is a rather new mechanism and Arm first integrated the security
extension in 2004 [3]. In addition, until the release of Xilinx’s development board [154] in
2011, development boards were not easily available to the public. Thus, there has been
less research into rootkits in TEEs, compared to other types of rootkits. To the best of
our knowledge, the only work that presented a working rootkit in the Arm TrustZone
has been the work of Marth et al. [118]. Marth et al. show how a process’ structures in
the memory could be manipulated to gain root access.

This thesis aims to answer the question of what impact a rootkit in the Arm TrustZone
that intercepts data from the Android Binder has. To answer this question, we create a
proof-of-concept rootkit for the OP-TEE that can intercept data from the Android Binder,
a central component of Android’s inter-process communication. This proof-of-concept
targets the Hikey 960 [5], a development board that runs Android and uses is a reference
platform for the OP-TEE development.

The purpose of the proof-of-concept rootkit is to answer the following research questions:

1. How can a rootkit identify Linux kernel structures from the ARM TrustZone?

2. Where does malicious code need to be placed at runtime so that it is properly
executed?

3. How can an ARM TrustZone-based rootkit manipulate the Android Binder to
intercept data?

2

1.2. Methodological Approach

These questions lead up to the question: What threats do ARM TrustZone-based rootkits
pose?

1.2 Methodological Approach
First, we conduct comprehensive academic literature research. In addition to academic
literature, further sources, such as code repositories and blog posts, are part of the
research. These sources contain a lot of relevant information that the respective authors
published outside academic venues.

The main part of the thesis is the design and development of a proof-of-concept rootkit
to answer the research questions. The proof-of-concept targets the OP-TEE [135],
an implementation of a trusted execution environment, which targets the Hikey 960
development board. The methodology of the development matches the four three steps of
the 5-step software development life cycle that Grechenig et al. [68] describe: requirement
analysis, design, and implementation.

In addition to a regular analysis that needs to be made for software engineering projects,
such as the selection of a proper build system and programming language, various
fundamental technologies have to be researched.

For this thesis, a good understanding of the Linux kernel, the Android Binder, the Arm
TrustZone, and the OP-TEE is required. The firmware of the Hikey 960, the core of the
OP-TEE to be more specific, embeds the proof-of-concept rootkit. Even a small bug in
the implementation could lead to an error that the system cannot recover from, resulting
in a restart of the development board. Thus, it is highly important to ensure that the
code runs and causes no side effects that could lead to a restart of the development board.

Another significant component of the analysis step is to understand the Arm assembly
language and topics such as Arm’s calling convention. The analysis provides the required
knowledge to develop shellcode snippets that are needed to, e.g. forward data from the
Linux kernel to the Arm TrustZone.

Finally, prebuilt Linux kernels for the Hikey 960 are reverse-engineered to devise a proper
entry point for the rootkit, which can be reliably found across multiple kernel versions.

Based on this analysis, requirements for the proof-of-concept are determined. These
requirements address topics, such as the range of functions, the selection of a search
algorithm, and the performance overhead caused by the additional code execution.

Followed by the outline of requirements, a design for the proof-of-concept is made. In
the design phase we construct that consists of a small set of functions to verify that
fundamental mechanisms, such as the communication between the Linux kernel and the
TEE are properly working. The implementation phase succeeds the design phase. The
initial implementation of the rootkit and its tests, triggers the later stages of the software
development life cycle. Through alternating phases of implementation and testing, the

3

1. Introduction

rootkit and the shellcode gradually improve until the rootkit can intercept data from the
Android Binder.

The resulting proof-of-concept rootkit eventually answers the research questions.

1.3 Structure
The related work is presented in chapter 2. Chapters 3 to 8, outline the fundamental
knowledge base for this work. To go more into detail, chapter 3 discusses some IT-security
fundamentals. Chapter 4 introduces the fundamentals of rootkits and presents various
implementations. In chapter 5 the Arm architecture’s technical details and some general
information regarding CPU architecture are provided. Chapter 6 presents the Arm
TrustZone alongside some trusted execution environments. Chapter 7 addresses the
fundamentals of the Linux kernel; followed by a chapter discussing the Android Binder
in detail.

In chapter 9 the proof-of-concept is presented, followed by a discussion of the threats
and limitations this type of rootkit has.

The chapter 11 outlines future work showing, e.g., what further mechanisms are useful to
an Arm TrustZone-based rootkit. Lastly, chapter 12 concludes this thesis and gives an
outlook.

4

CHAPTER 2
Related Work

Most topics in IT security are in a steady arms race between attackers and defenders;
one side improving their mechanisms to attack more easily and the other side improving
defensive and detection mechanisms to increase a system’s security. Due to this never-
ending back and forth, there is various academic work that is related, e.g., to the
implementation of rootkits and countermeasures to prevent and detect them.

To the best of our knowledge, only a single published academic work addresses rootkits in
the Arm TrustZone and also presents a proof-of-concept. Marth et al. [118] developed an
Arm TrustZone-based rootkit, which, among other things, can give processes additional
privileges by manipulating a process’ structure in the memory.

2.1 Exploiting the Arm TrustZone
Multiple papers address the exploitation of the ARM TrustZone itself.

For example, Machiry et. al. [114] present an attack that uses the Arm TrustZone to
access memory that should be inaccessible to an attacker. The attack exploits the fact
that trusted applications are commonly unaware of properties such as the ownership of a
certain memory region.

Chen et al. [36] present a trustlet, a trusted application, downgrade attack that leverages
exploits found in a smartphone’s firmware.

Shakevsky, Ronen & Wool [170] have shown several attacks on Samsung’s TrustZone
firmware, which is responsible for securing keys and mobile payment data, among other
things. They analysed the code by reverse engineering the firmware of numerous Samsung
devices.

Shen [171] found a vulnerability in HiSilicon’s TEE that allows to execute shellcode in
the Arm TrustZone.

5

2. Related Work

In his work, Rosenberg [159] presents an attack on the Qualcomm Secure Execution
Environment that various Android devices contained at the time of the work’s publication
in 2014.

2.2 Attacking Systems Using Rootkits
Rootkits are a well-researched topic. There is various academic work that presents
implementation (mis-)using all kinds of technology found in a computer system.

In 2008 David et. al [43] presented a non-persistent rootkit deployed on Arm-based
systems. The rootkit uses various hardware state modifications to operate and hide itself.

Spisak [180] takes advantage of hardware found in x86- and Arm-based systems to create
a rootkit that is more performant compared to a solely software-based solution.

Song et. al [178] explore a Linux rootkit that allows the execution of malicious code by
exploiting the memory address mapping table structure.

You & Noh [224] presented a Linux kernel rootkit for the Android platform.

To the best of our knowledge, Roth [160] was the first to publicly propose the idea of an
ARM TrustZone-based rootkit. Roth’s work outlines the approach that would be needed
to develop an Arm TrustZone-based rootkit.

2.3 Securing Systems Against Rootkits
At the same time the hiding mechanisms of rootkits improved, the mechanisms to detect
also improved.

2.3.1 Detecting Rootkits
The detection of rootkits is a vital step in identifying systems infected by rootkits so that
they can be studied.

For example, the work of Tian et al. [197] and Wang et al. [210] use virtualisation of a
system in combination with machine learning to detect rootkits.

The tool of Wang et al. [208] can detect rootkits in guest Virtual Machines (VMs)
leveraging hardware performance counters.

McDonald et al. [121] use a system’s embedded power sensors to detect suspicious power
spikes that identify rootkits.

Singh et al. [176] use a similar approach, but combine a system’s hardware performance
counters with machine learning to detect rootkits.

Zhou et al. [231] also use a hardware-assisted approach that the authors enhanced by
machine learning.

6

2.4. Securing Systems Using the Arm TrustZone

Pham, Marion & Heuser [148] created a mechanism to detect Linux kernel rootkits on
Arm- and MIPS-based Internet of Things (IoT) devices.

Han et. al [73] developed a mechanism to detect advanced persistent threats.

The kernel integrity check of Heo et.al [78] identifies issues by analysing the memory
traffic.

2.3.2 Ensuring System Integrity
Another way to combat rootkits is to prevent their deployment in the first place. System
integrity checks can help prevent the installation of malicious software.

The tool developed by Zhou et al. [230] uses functionality found in Intel processors to
harden a system during runtime against rootkits. Their tool allows updating running
kernels, allowing to patch security vulnerabilities.

The tool of Fend et. al [50] uses a behaviour pattern analysis to find system integrity
violations during runtime.

Surendrababu [188] researched measures providing system integrity protection and their
limitations.

Ha et al. [69] present a hardware mechanism for RISC-V processors to prevent modifica-
tions to the Linux kernel at runtime.

2.4 Securing Systems Using the Arm TrustZone
Ge, Vijayakumar & Jaeger [57] presented SPROBES, an instrumentation mechanism
for the Linux kernel. SPROBES consists of 2 components; probes in 12 places of a
Linux kernel and an Arm TrustZone-based component. Once a system passes over a
probe, leading to its execution, the control flow changes to the component in the Arm
TrustZone. The trustlet verifies the legitimacy of the function execution in the normal
world. Theoretically, this approach could be used as a rootkit too though, as the placed
probes could be used to intercept data.

Already in 2006, Hussin, Edwards, and Colton [83] sought ways to secure data on a
mobile device using Nokia’s then-mobile OS Symbian. An application in the secure world
validates the authenticity of an application before during the installation process.

Brite, Duarte, and Santos [30] explored how to secure cloud-based image processing using
the Arm TrustZone.

Huar et al. [81] researched how trusted execution environments (TEE) can be virtualised
to provide one for each virtual machine running on a system.

Similarly, Kwon et al. [97] focus on virtualising the Arm TrustZone, but instead of
providing a virtual TEE for VMs, their tool provides a virtual TEE for each trusted

7

2. Related Work

application. The virtualisation isolates the trusted applications from each other, providing
better protection against attacks.

Chan, Pasco, & Cheng [34] use a blockchain-based approach to ensure the system integrity
of autonomous vehicles.

Santos et al. [166] developed a language runtime that can be used in Arm’s TEE using a
stripped-down version of the Mono C# runtime.

Azab et al. [22] were able to secure Linux-based systems using the Arm TrustZone.

Song et al. [177] built a mechanism that ensures an application’s integrity by checking if
the about-to-be-executed application matches a reference hash.

2.5 The Android Binder
Due to its importance in the Android system, the Binder is the subject of various papers.

Lemos et al. [104] collected data transported via the Binder. A machine learning-based
algorithm uses the collected data to identify malware via the Binder.

Shen et al. [172] use virtualisation mechanisms found in Armv7-A processors to protect
data transmitted in the Binder from attackers.

The tool BinderCracker of Feng & Shin [48] uses the Binder to fuzz Android’s system
services by invoking Remote Procedure Calls (RPCs) found in the system services.

Similarly, Xiang et al. [218] also fuzzed systems services to attack Android devices.
Compared to BinderCracker, Xiang et al. reverse the control flow; the Android system
services invoke the RPCs implemented by Xiang et al.

The fuzzing mechanism developed by Liu et al. [108] searches interfaces and automatically
builds test cases based on the gathered data.

Artenstein and Revivo [21] created a rootkit that intercepts data from the Binder, using
a kernel rootkit.

8

CHAPTER 3
IT-Security Fundamentals

For a good understanding of this thesis, an understanding of some IT-security funda-
mentals is required. The following chapter gives an overview of several fundamental
IT-security concepts.

3.1 Information Security
Information security is an important part of IT-security and addresses the processing of
data. A common termin in information security is the “CIA Triad” [113], depicted in
Figure 3.1.

The CIA in CIA Triad is an abbreviation for the words“confidentiality”, “integrity”, and
“availability”. Together, these three properties are crucial for the proper protection of
information.

3.1.1 Confidentiality
Confidentiality is a property that allows only authorised entities, such as people or
processes, to get access to data. Ensuring the confidentiality of data can be achieved
in various ways, such as organisational measures (e.g. only give the people access that
need it) or technical measures (data encryption using cryptographic systems, checking
the access granted to a user, etc.)

Cryptographic systems rely on the confidentiality of certain components in the system,
namely the keys. In 1883, the Dutch linguist August Kerckhoff stated the following
fundamental requirement for cryptographic systems:

“The system must not require secrecy and can be stolen by the enemy without causing
trouble” [147].

This is known as Kerckhoff’s principle and roughly translates to:

9

3. IT-Security Fundamentals

Figure 3.1: A graphic showing the CIA Triad.

The security of a cryptographic system should not be based on secret implementation
details but the confidentiality of the key. In the case of cryptography, data (a cryptographic
key) protects other data that contains sensitive content to restrict the access to a group
of people, which knows the passphrase to decrypt the data.

3.1.2 Integrity

The integrity of data forbids the unauthorised alteration or removal of data. To ensure the
integrity of data, cryptographic systems can be used to ensure this property. Checksums
are cryptographic functions [56] that can be used to check if, e.g. something modified
a blob of data between two points in time. This checksum can also be signed, creating
so-called signatures, to ensure that a specific entity created this checksum. Signatures
are, for example, used by Android [207] to distinguish application developers.

3.1.3 Availability

Confidentiality and integrity are two properties of data itself. The property of availability,
on the other hand, concerns the accessibility and usability of data. Without the possibility
to access data when needed, it would be unnecessary to store it in the first place.

10

3.2. Extensions of the CIA Triad

The availability of information can be achieved in different ways. For example, a commonly
suggested way to back up data is the “3-2-1 backup strategy” [110]. This backup strategy
proposes to store data 3 times, on 2 different mediums (e.g. SSD, HDDs, or CDs), and
that one backup is in a different location (e.g. in a different data centre). The idea
behind this strategy is to prevent a complete loss of data due to a technical failure and
external factors, such as the destruction of one storage site.

3.2 Extensions of the CIA Triad
The CIA triad contains only the most fundamental properties for information security.
Over the years, various authors extended the CIA triad to address additional problems.
The suggested properties mostly build directly upon the CIA triad, providing a finer
granularity. The authors [157, 164] argue that since the inception of the CIA triad in
1977 [162] new issues appeared and definitions changed, requiring an adaption of the
original CIA triad.

For example, Donn B. Parker created the “Parkerian Hexard” [142] that introduces 3
additional properties

1. Authenticity. Reid and Gilbert [157] define “authenticity” as an extension to
the CIA triad that “deals with identifying the source of a document or the actual
website that is being visited”.

2. Possession or Control. Ensure that data cannot be obtained by entities that are
not supposed to have access to the data.

3. Utility. Ensure that data keeps being useful. For example, using a hash function
instead of some sort of encryption function to encrypt data would violate the
requirement.

Samonas and Coss [164] suggested an additional 8 properties.

1. Authenticity. See the definition of “Authenticity” for the Parkerian hexard.

2. Non-repudiation or Accountability. This property ensures that it is, e.g.,
reliably possible to identify who/what modified a file.

3. Correctness in specification. Errors in the behaviour of a program should not
be due to mistakes made during the specification phase of a project.

4. Responsibility. Identify and establish structures of responsibility that, e.g., handle
data breaches.

5. Integrity of people. As the name of this property states, it is necessary to ensure
the integrity of the people involved in a project and remove potentially malicious
actors.

11

3. IT-Security Fundamentals

6. Trust. Mayer, Davis and Schoorman [120] define “trust” as “the willingness of a
party to be vulnerable to the actions of another party based on the expectation
that the other will perform a particular action important to the trustor, irrespective
of the ability to monitor or control the other party”.

7. Ethicality. Samonas and Coss [164] define ethicality in this context as “the
adherence to commonly accepted principles and value”.

8. Identity management. Ensure the availability of a proper identity management
infrastructure.

3.3 Software Security
The definition of software security is rather broad. McGraw describes software security as
“the idea of engineering software so that it continues to function correctly under malicious
attack” [122]. Only a few pieces of software are proven to be completely bug-free, i.e.
not containing any issues that a malicious attacker can use to exploit the respective
software. For example, Klein et al. [91] have formally proven the absence of bugs in the
seL4 micro-kernel.
Engineering software that is hardened against malicious attacks is a tedious task. There
are programming mistakes that can be addressed by, e.g. picking a different programming
language, using verification tools, or using only a certain set of functions. On the other
hand, there are also more complex issues that are difficult to find. For instance, in 2022
certain Linux kernel version were vulnerable to the Dirty Pipe [128] vulnerability, which
allowed an attacker to write to any arbitrary file. The cause of this issue has been a
commit to add some new functionality to the Linux kernel that inadvertently caused
some side effects, which were found accidentally.
The following sections present a few common issues and how they can be addressed.

3.3.1 (Improper) Memory Handling
A major cause of exploitable issues is related to the (improper) memory handling in system
programming languages, such as C and C++. One of the first computer worms [140], the
“Morris worm”, used a buffer overflow in a system service to deploy itself to a system.
The service did not validate the amount of read data, eventually overwriting the stack of
a program with malicious instructions that were subsequently executed.
There are various further memory vulnerabilities [35], such as heap overflows, integer
overflows, and NULL pointer dereferences. Over the years, developers improved compil-
ers [24] to locate these issues and either warn the developers or sanitise them on their
own. In addition, static analysis tools, such as SonarQube [105] can also locate such
issues and warn developers about them.
Besides improved tooling, there is also the possibility of using memory-safe programming
languages. Programming languages, such as Kotlin and Python, use an intermediate

12

3.3. Software Security

1 ...
2 location /stuff/ {
3 alias /var/www/htmx/;
4 }
5 ...

1 ...
2 location /stuff {
3 alias /var/www/htmx/;
4 }
5 ...

Listing 1: An invulnerable nginx configuration (left) and one vulnerable to path traversal
(right).

layer that does the memory handling and ensures that no improper memory handling
happens.

On the other hand, Rust and Go can skip this intermediate layer and run directly on
hardware like C and C++. The programming languages’ respective compilers ensure
that the source code does not contain issues regarding memory handling.

3.3.2 Improper Configuration
Another common issue is the improper configuration of an application. For example, web
servers commonly require a configuration that defines the directory that contains the data
that should be made available, the cryptographic algorithms for secure connections, etc.
An issue in the server’s configuration could allow an attacker to traverse the directories
on a system or intercept/manipulate data if, e.g., if the configuration uses an insecure
cryptographic algorithm to secure the network traffic.

In 2018 Tsai [201] presented how to break the parsing of file paths in various applications.
One of the targeted applications was the nginx web server. In the case of the nginx
web server, the absence of a single trailing slash makes the system vulnerable. The
configuration on the right side of Listing 1 shows a vulnerable configuration. Without
the slash after stuff, the file path parser appends everything as-is, allowing an attacker
to break out of the web server’s root directory.

A bad configuration of cryptographic algorithms is also a potential vulnerability. In 2017,
Stevens et. al [182] showed a hash-collison using the SHA-1, where a file was forged to
have the same hash as another, entirely different file. Before researcher broke SHA-1, the
hashing algorithm MD5 and the AES mode ECB have already been broken [221]. Using
these algorithms allows attackers to subvert the cryptography that is used to protect the
handled data.

Sanitising improper configuration is difficult to completely automate. Configurations
are commonly customised for a specific setup. Thus, it is challenging to create generic
patterns that can be checked in every configuration. Testing for the usage of insecure
cryptographic algorithms and missing slash characters can be easily done by, e.g. using
regular expressions. Anything more complex than checking specific strings is difficult to
accomplish using a generic approach. Thus, thorough peer code reviews and (pen-)testing
of a setup, are suitable approaches for locating domain-specific issues in a configuration.

13

3. IT-Security Fundamentals

Figure 3.2: A simplified example of a supply chain attack.

3.3.3 Erroneous Dependency Management

Nowadays, most applications are not self-contained but rather rely on dependencies
that provide functionality such as JSON parsing, image rendering, or cryptographic
algorithms. Dependency management can be done in various ways [184]. Programming
languages, such as Go, Rust, and Swift include dependency managers as part of their
toolchains. On the other hand, programming languages, such as C, C++, and Java rely
on external dependency managers. An issue could be that project maintainers do not
properly update dependency lists. Thus, dependencies of projects may contain bugs or
security vulnerabilities that attackers can exploit. While some package managers, such as
npm [232] or cargo-audit [80], check for reported (security) issues in the dependency
list, most package managers do not include any further checks.

In addition, there have been multiple attempts to actively attack the dependency manage-
ment mechanisms of different programming languages recently. For example, attackers
have uploaded malicious Python packages [204] and JavaScript packages [169, 167] to
the respective package repositories. These malicious packages can include code that
can create backdoors to grant an attacker access to a system or exfiltrate data, such as
passwords that may be used for further attacks.

A common attack to get these malicious packages included is typo squatting [204]. Typo
squatting is an attack, where an attacker names malicious packages similar to genuine
ones. Thus, when a developer makes a typo, the dependency manager downloads the
malicious package. Examples are replacing an “l” (L) with a “1” (one) or an uppercase “i”,
appending or removing a trailing “s” (to make the name singular or plural), or replacing
letters with one in the surrounding of the key on the keyboard (e.g. replacing a “r” with
a “t” or an “e”).

14

3.3. Software Security

Figure 3.2 depicts a simplified approach for a supply chain attack. In the first stage, an
attacker needs to prepare the malicious package. For example, the malicious code can
be obfuscated to make it harder to detect, using, e.g. encrypted code that is decrypted
at runtime. In addition, using different keys and encryption algorithms allows evading
signature-based malware detection. Eventually, an attacker searches for typo-squats
and uploads the malicious package to a public package registry under the typo-squatted
names.

The second stage already takes place on the target’s system. In the first step, the package
manager downloads the malicious package. Now, there are three ways the malicious code
can be executed.

For example, malicious code can be executed during the build of Rust applications. Rust
has a feature called “build scripts” [54] that is used to do additional preparation steps
so that a Rust project successfully builds. These tasks include, e.g. the compilation of
required libraries or generating Rust code based on SQL files. This build script could
also be used directly to execute malicious code.

Another way to execute the malware is during metadata aggregation. At least since
2014 [198], the maintainers of pip have been publicly made aware that during the
download of a Python package, arbitrary code can be executed. The code execution is
necessary in the packaging process to obtain metadata [198]. There have been solutions
proposed [198] that were not implemented yet.

Finally, the malicious code contained in the package could simply be built into an artefact.
Once a user executes the artefact, the application executes the malicious code.

To counter this kind of attack, there are technical and organisational measures. The
countermeasures include, e.g. the verification of a package’s signatures and reviewing
packages, storing them in a custom package registry, and using only the custom registry
to build and develop artefacts.

15

CHAPTER 4
Fundamentals of Rootkits

The initial idea of a rootkit dates back to a theory presented by Ken Thompson, a main
developer of UNIX, in a speech for his Turing Award in 1983 [196]. He theorised that
it would be feasible to deposit a master password inside the binary of UNIX’s login
application to create a simple backdoor in a UNIX system. In 1990, Lane Davis and
Steven Dake developed the first known rootkit for Sun OS [29].

As rootkits are commonly used as entry points for further attacks [132], attackers added
various functionalities to, e.g. gain access apart from inserting a master password. For
example, the rootkit KBeast [219] exploited the telnet application to allow remote
access to a system. Common mechanisms include functionality to hide the malicious
code from detection systems, add network capabilities to communicate with a control
server, and potentially load further malware.

Alongside the improvement of offensive and defensive capabilities, rootkits adapted to
work outside the user- and kernelspace of a system. For example, deploying rootkits in
places such as the UEFI allows for a better disguise, as the UEFI is a less supervised
part of a system. The better disguise comes with a major trade-off:

The further away in the privilege hierarchy a rootkit is positioned from the userspace,
the more functionality needs to be self-implemented.

The following sections present various types of rootkits and give a small example for each
type.

4.1 Userspace Rootkits
A userspace rootkit [74, 88] is considered the easiest type of rootkit to deploy. Unlike
other rootkits, there is no need for elevated user privileges to deploy this type of rootkit,
as much as a double click on the rootkit in the system’s file explorer is enough to start

17

4. Fundamentals of Rootkits

and run it. At the same time, this kind of rootkit has the least number of privileges
compared to the other types of rootkits. To obtain additional privileges, the rootkit
either needs to exploit some security issues or trick the user into granting more privileges
by, e.g. appearing as a legitimate application.

Due to the missing privileges, userspace rootkits cannot cloak themselves as well as other
types of rootkits. Thus, they need to employ other techniques [41, 74]. For example,
a common strategy is to replace known programs, hide executed processes by using
unsuspicious names, and hook applications.

Userspace rootkits, such as the one theorised by Thompson [196] can take various forms.
In a Linux system, there are commonly several executables that handle sensitive data.
For example, a well-known program is sudo [213] that requests a user’s password. The
program can elevate the privileges of other programs, executing them as another user
or the root user, which the application defaults to. An attacker could replace sudo,
or simply redirect the call to another executable that could, e.g. intercept and store
the entered password. One way to accomplish this is to create an alias in the shell’s
configuration file. Appending the following line to configuration file

alias sudo='<path to evil sudo>'

results in a redirection of all sudo invocations to its evil counterpart.

Another, more generic approach of a userspace rootkit is shown in Figure 4.1. The rootkit
works by replacing (parts of) an application’s required shared library with a malicious
one. Applications commonly link certain libraries, such as the libc, which carry out
basic tasks, such as opening or reading a file. Replacing some function, such as read,
write, or open could allow an attacker to easily intercept or modify data written or
read. The left side shows a normal setup. If an application requires a shared library, the
system will look for it and link the proper library during the application’s startup.

On the right side, an attacker added a malicious library to the system. Instead of
the system’s library, the system will link the malicious library during the application’s
startup.

Linux, Windows, and macOS all support letting users overwrite the search order of linked
libraries [37, 223, 152]. A path specified using LD_LIBRARY_PATH and LD_PRELOAD on
Linux, PATH on Windows, or DYLD_LIBRARY_PATH and DYLD_INSERT_LIBRARIES
on macOS has a higher priority when a system is searching for libraries compared
to, e.g. the default ones provided by the system. An attacker can easily persist the
changes in the respective operating system. For example, adding the line LD_LIBRARY_ ⌋
PATH="<directory path to malicious library>:$LD_LIBRARY_PATH" to
.zshrc will automatically add the path to the malicious library to the search index in a
zsh-session.

This mechanism also has some legitimate applications. For example, Liu, Olivier &
Ravindran [109] use this mechanism to replace the default memory allocator found in
the libc with a more efficient and secure one.

18

4.2. Kernel Rootkits

Figure 4.1: An example of a userspace rootkit.

4.2 Kernel Rootkits

Kernel rootkits are deployed in the kernelspace [42, 150] and have access to most resources
of a computer system. For example, they can hook system calls and filter their return
values for relevant information.

Kernel rootkits offer a big versatility as they have access to the kernel API and can be
adapted to fit almost any use case. Its functionality can easily be extended by either
deploying further kernel modules or recompiling the rootkit with an updated code base.
For example, Linux kernel rootkits can be deployed by either programming and loading
a Linux Kernel Module (LKM) or exploiting a security flaw, loading malicious code in
the kernelspace and executing it. While the former technique might not be applicable on
hardened Linux systems [229] that do not allow kernel modules to be loaded, the latter
technique is harder to execute, as a fitting exploit needs to be found.

A well-known example of a kernel rootkit is part of the Stuxnet malware [102], which
destroyed Iranian uranium enrichment infrastructure. The rootkit had several parts; one
was deployed in the kernelspace and another part was deployed in the userspace.

Figure 4.2 depicts a kernel rootkit. In this example, a userspace process tries to obtain
data from a virtual filesystem [161], such as /dev/, /sys/ and /proc. A unique
property of virtual filesystems is that they are generated on demand. When data of a
process is inquired by reading from /proc/<process pid>, the Linux kernel calls
multiple functions to obtain the data. In an untampered setup, shown on the left in
Figure 4.2, the Linux kernel calls the normal functions. An attacker could modify one of
these functions, as shown on the right side, to return tampered data. The tampered data
could, e.g. change the number of used resources or even hide processes completely.

19

4. Fundamentals of Rootkits

Figure 4.2: An example of a kernel rootkit.

4.3 Hardware-Assisted Rootkits
Hardware-assisted rootkits access the layer below the kernel [180, 43, 75]. Unlike kernel
rootkits, hardware-assisted rootkits access a system’s underlying hardware on its own,
instead of using interfaces provided by the kernel. The drawback of this type is the
increased maintenance needed to support different hardware and their unique traits, such
as different microcontrollers or software versions. On the other hand, they are less likely
to be detected, due to being in a component of the system that is hardly checked for
malware.

An oversimplified setup of Spisak’s approach [180] is illustrated in Figure 4.3. The
rootkit uses a system’s Performance Monitor Unit (PMU) to intercept important events.
Developers can register monitoring interrupts for the PMU that trigger at specific events
(shown on the left). Once the interrupt for a specific event is triggered, handler code,
which is defined beforehand, is executed, and e.g. data can be intercepted (shown on the
right) and transferred to the rootkit.

4.4 Hardware Virtualisation Rootkits
Hardware virtualisation rootkits [155, 163, 90, 132] also work a layer deeper than kernel
rootkits. They use the virtualisation techniques of processors, such as Intel-VT or AMD-
V, to host the operating system in a virtual machine. Following this procedure, it places
itself between the generated VM and the hardware [47].

As shown in Figure 4.4, a bare-metal hypervisor, such as KVM, is placed between a

20

4.4. Hardware Virtualisation Rootkits

Figure 4.3: An example of a kernel rootkit.

Figure 4.4: An example of a hardware virtualisation rootkit.

virtual machine and a system’s hardware (shown on the left). Because of this position in
the system, the hypervisor can access all of a virtual machine’s hardware resources. A
hardware virtualisation rootkit can make use of this property, and e.g. manipulate data
written to storage, read a virtual machine’s memory, or starve the virtual machine by
denying it resources, leading to a denial of service.

21

4. Fundamentals of Rootkits

Figure 4.5: An example of a UEFI rootkit.

4.5 BIOS/UEFI Rootkits
A BIOS/UEFI rootkit nests itself in the part of the system that is responsible for booting
the actual operating system [94]. The rootkit can infect the boot chain and alter the
boot process of the operating systems. Thus, everything associated with the boot process
of a system is under its rule, thus it can set, e.g., boot options. This type of rootkit has
two major drawbacks due to being UEFI/BIOS bound:

Firstly, it needs plenty of modifications for each respective target, as manufacturers tend
to customise the BIOS/UEFI for each series of devices differently.

Secondly, according to Linus Torvalds the BIOS should “just load the OS and get the
hell out of there” [199]. The boot system is often discarded after successfully booting the
operating system, rendering the rootkit potentially useless after the boot process.

In Figure 4.5 simplified versions of a normal boot process and a manipulated one are
shown. In both cases, plugging in the power cable or any other power source, pressing
the power button, etc. starts off the boot process [55].

A part of the UEFI boot process, if enabled, is Secure Boot [72] process, which makes
various checks before continuing the boot process or aborting it, if a check failed. During

22

4.5. BIOS/UEFI Rootkits

the secure boot process, e.g. the signature of certain files is verified using public key
cryptography [72]. A major certificate authority in this area is Microsoft. For example,
Ubuntu provides UEFI certificates that are in turn signed by Microsoft. For operating
systems without a UEFI certificate signed by a certificate authority, it is necessary to
disable secure boot when installing a Linux distribution.

After the verification succeeded, the boot process is continued and everything is put in
place to boot the operating system. In the given example, the rootkit manipulates the
boot process at this stage. For example, Linux supports various options that can be
configured at boot time [206]. These parameters allow, among other things, to

• enable the support of USB devices and USB mass storage,

• activate the serial port,

• or disable the enforcement of Linux kernel module signature checks.

Changing these parameters allows an attacker to use an additional attack surface by,
e.g., being able to deploy malware using USB keys or downloading data to external USB
drives.

23

CHAPTER 5
ARM Processor Architecture

The initial design of the Arm processor architecture dates to the 1980s [205]. In the 1980s,
the British government had a plan to create affordable computers to put in classrooms,
as computers were a rather expensive luxury item at the time. The company Acorn
Computers Ltd won the bid to produce the BBC Micro for the British government. A
few years after the release of the BBC Micro’s initial processor architecture Arm1 the
company released the Arm2 architecture.

In the early 1990s, Acorn Computers Ltd., Apple Computer, and VLSI Technology
founded the successor of Acorn Computers Ltd: Advanced RISC Machines Ltd (known as
arm nowadays). After a cooperation with Texas Instruments, arm changed its business
model, which is still in use today. From the initial business model of designing and
producing silicon chips, arm moved on to create the processor designs and licence them
to different companies, such as NXP, Nordic Semiconductors, and STMicroelectronics.

5.1 Difference Between the RISC and CISC Architectures
The Arm processor architecture is an Instruction Set Architecture (ISA) that belongs to
the Reduced Instruction Set Computer (RISC) processor design philosophy.

The design of RISC-based architectures dates to the 1980s [144], with the initial ideas
and concepts dating back up to two decades earlier.

In the 1980s, the Complex Instruction Set Computer (CISC) was the predominant
processor design philosophy at the time and continues to be to the present day in
computers and servers [27]. Over the years, it accumulated different design flaws, such
as the ever-growing complexity of the processors produced. The objective of the RISC
design philosophy was to address the flaws of the CISC design philosophy by, e.g., relying
on a minimal set of instructions and limiting the execution time of an instruction to one

25

5. ARM Processor Architecture

CPU cycle. These two design philosophies differ fundamentally across various points.
The most significant differences will be presented in the following paragraphs.

Instruction Size. RISC-based processors all share the property of a constant instruc-
tion size that is independent of the used instruction. For example, the standard Arm
assembly instruction, called A32 [12] for the 32-bit platform and A64 [185] for the 64-bit
platform, has a fixed instruction size of 4 bytes. An exception to this rule is the Arm
Thumb instruction set. The Thumb ISA has an instruction size of 16-bit and represents
a subset of Arm assembly.

On the other hand, CISC-based processors such as AMD’s x86-64 instruction set [4] have
instructions of variable length. The minimal instruction size of an AMD x86-64-based
processor is 1 byte, and the longest instruction contains up to 15 bytes. Instructions
exceeding these sizes trigger an invalid-opcode interrupt that renders the respective
instruction invalid.

Processor Microcode. The instructions of Arm-based processors may consist of
multiple macro-operations [14]. The macro-operations are split immediately after the
decoding stage in the execution pipeline into the smaller micro-operations. An unmod-
ifiable integrated circuit, handles the decoding process, and e.g., in the case of the
Arm-Cortex-A78 [14], disassembles a macro-operation into two micro-operations [116].

In contrast, CISC-based processors, such as the ones of AMD and Intel, usually rely
on microcode [116]. A coprocessor executes the microcode and transpiles complex
instructions into simpler instructions that are similar to micro-operations of the RISC
design philosophy. In contrast to the unmodifiable hardware units of Arm processors that
decode the macro-operations, the microcode used by companies, such as AMD or Intel,
in their CISC-based processors is modifiable. Microcode can be updated like pretty much
every other software, and manufacturers regularly issue updates for bugs, and exploits,
such as Meltdown [107], or some versions of Spectre [92].

CPU Cycle Length. The CPU cycle is the process of fetching the next instruction
and executing it [130].

CISC-based instructions have no specific limitation on the number of CPU cycles used in
an instruction’s execution.

The idea behind the simplistic instructions of the RISC design philosophy is to minimise
the CPU cycles required for the processing of an instruction. In reality, RISC-based
processors cannot meet the one CPU cycle per instruction requirement. Using pipelines
allows the execution of multiple instructions at once, resulting in the average required
CPU cycles of an instruction being close to 1.

Memory Handling. RISC and CISC use different strategies regarding memory man-
agement. Commonly, the instructions of CISC-based processors implicitly include the

26

5.1. Difference Between the RISC and CISC Architectures

1 ; A64 instruction to load a value from memory
2 ; ldr <register> <memory address (stored in a register)>
3 ldr x0, [x1]
4

5 ; A64 instruction to store a value in memory
6 ; str <register> <memory address (stored in a register)>
7 str x0, [x1]

Listing 2: Example of loading and storing values in Arm assembly.

operations that load and store values in the memory [93], which are part of a computation.
Eventually, CISC-based processors flush the registers when needed, to prepare for the
next set of instructions. The implicit memory accesses are not free and add additional
computation time.

Due to RISC’s strategy of making instructions as computationally small as possible, there
are no instructions that implicitly load and store data from the memory. For example,
Arm’s 64-bit instruction set [185] includes two base instructions to handle the transfer
value transfer from memory to register: ldr and vice versa str.

An example of the load and store instructions can be seen in listing Listing 2.

Present processors do not strictly follow their respective design philosophy, but rather
take some influence from the competing design philosophy as well [129]. For example, a
single instruction on Arm-based (RISC) processors may take longer than one CPU cycle,
but through different techniques, the average instructions appear to be completed in one
CPU cycle. On the other hand, the microcode used in CISC-based processors splits up
the instructions into smaller instructions, resembling the instructions used in the RISC
design philosophy.

5.1.1 Deciding Between RISC and CISC-based Processors
The initial goal of RISC-based designs was to address the constantly increasing complexity
of instructions found in CISC-based processor architectures and the resulting complexity
of the resulting processor. The upcoming processor design philosophy led to a competition
between the RISC and the CISC architecture in the 1980s [27], which continues until
today. This war was mostly fought about two factors:

• the complexity of a processor

• the size of the chip area

Nowadays, two different factors are more decisive when choosing a system’s processor [27]:

• the performance of a processor

27

5. ARM Processor Architecture

• the energy efficiency

Each of these factors will be addressed in the following paragraphs.

The Complexity of Processors. To execute a program, it needs to be compiled
into basic instructions, also known as machine code, which can be used directly by the
underlying hardware, such as a system’s processor. For example, programming languages
such as C [84], C++ [32], or Golang [60] are able to run directly on the hardware
after the compilation of the source code. On the other hand, applications written in
programming languages, such as C# [76], Java [134, 183], or Kotlin [1], need to pass
through their respective virtual machines before being executed. These virtual machines
act as a middle layer between the underlying soft- and hardware, so developers can write
(mostly) platform-independent code. Typically, the VM s are programmed in C/C++.
For example, the JVM (Java, Kotlin) and the Python interpreter CPython are mostly
written in C and C++. Unlike the platform-independent code, the virtual machines
may need a specific implementation that translates the platform-independent code into
platform-dependent instructions. Assembly programming languages take it a step further
and can be considered the textual representation of a platform’s machine code. Due to
the close relationship between an architecture’s machine code and the respective assembly
language, each new architecture may introduce a new variant of Assembly language.
The major difference between RISC and CISC is the complexity of instructions found
in the instruction sets of each respective processor design philosophy. The idea behind
the RISC design philosophy is to provide small and simple instructions. They can be
executed in one CPU cycle, also called fetch-execute cycle [130]. In such a cycle, the
CPU fetches the instruction and executes it immediately afterwards.
CISC-based architectures, on the other hand, contain more complex instructions that
sometimes require more than one CPU cycle to finish. The complexity of instructions
in CISC-based architectures originates from the idea of providing instructions that are
like functions found in higher-level languages. Thus, the compiler needs to do less work,
shifting the work to the processor’s microcode and subsequently to its manufacturer.
Multiple instructions only exist on CISC-based architectures and are sometimes unique to
their respective architecture. Listing 3 shows a simple example of a complex instruction
and its respective reduced counterpart. The multiplication operation appears to be rather
simple but on the hardware level, it is quite complex. Additionally, it is more complex if
the multiplicand or multiplier is unknown beforehand, as the compiler might not be able
to apply some compile-time optimisations.
In the case of the x86 architecture, two instructions suffice to do a simple multiplication.
Firstly, CPU loads the multiplicand into the x86-register eax via the mov operation.
Then, the value in eax is multiplied with the value provided as a parameter to the mul
operation. During this step, the processor saves the resulting product in the register eax.
A multiplication operation made on Arm-based system requires more instructions and
additional parameters compared to a multiplication made on x86-based processors. First,

28

5.1. Difference Between the RISC and CISC Architectures

1 ; Multiply Instruction
2

3 ; x86-CISC (32-bit)
4 ; Syntax
5 ; mul <value>
6 mov eax, 0x5
7 mul 0x6
8

9 ; Arm-RISC (32-bit)
10 ; Syntax
11 ; mul <destination> <source of the multiplicand> <source of the

multiplier> which is an alias for→
12 ; madd <destination> <source of the multiplicand> <source of

the multiplier> WZR (special register that always returns
0)

→
→

13 mov r0, 0x5
14 mov r1, 0x6
15 mul r0, r0, r1
16 ; alternatively
17 ; madd r2, r0, r1, WZR

Listing 3: Example of multiplication in x86 (32-bit) and Arm (32-bit) assembly.

1 poly <argument> <degree> <table address>

Listing 4: Example of the instruction poly found in the VAX architecture.

the processor needs to load the values 0x5 and 0x6 into different registers. After
these two instructions, the multiplication instructions are invoked. This instruction
has 3 arguments: the register for the result of the multiplication, the register for the
multiplicand, and the register of the multiplier.

The given multiplication example shown in listing Listing 3 is rather small and only
differs in a single instruction. Commonly, the same function implemented in different
ISAs will differ in more than a single instruction.

A more complex example is the poly instruction found in the AVX architecture (see
Patt et al. [143]), showcased in listing Listing 4. This instruction allows the evaluation of
a polynomial given an argument, its degree, and a pointer to a coefficient table. The
poly instruction was used to calculate values such as sine or cosine. Unlike instructions
such as mul, the poly instruction is a function unique to the VAX architecture and has
no counterpart in any RISC-based architecture.

The problem arising from incorporating more, and more complex instructions is the

29

5. ARM Processor Architecture

increasing production complexity of the silicon chips. A CISC-based architecture that
incorporates instructions such as poly is quite complex. The complexity was, and still
is, an important cost factor, and it is difficult to justify a rather big price bump for the
normal user due to features that might be relevant to only a small group of users.

The Chip Area Size. Alongside the issue of the complexity of a chip’s integrated
circuit, there was another predominant concern regarding chip construction: the chip’s
size.

Currently, state-of-the-art processors, such as AMD’s Zen 4 architecture [186] uses
transistors as small as 4 nm, or Ampere’s Altra [151], an Arm-based 64-bit processor
used in servers, uses transistors as small as 7 nm. In the coming years, it is planned
to further decrease the transistor’s size. In comparison to the AMD Zen 4 series and
the Ampere Altra, the IBM ROMP [175], a RISC-based 32-bit chip that was released in
the 1980s, has a transistor size of 2 µm. The transistor size has almost decreased by a
factor of up to 500, which allowed for the integration of more and more transistors in
the same size area, resulting in more powerful processors. Due to the rather large size
of transistors in the 1980s, chip manufacturers had to focus more on a feature-trade-off
compared to chip manufacturers nowadays. Thus, RISC-based process architectures had
a slight advantage over their CISC-based counterparts in chip size, as their number of
integrated instructions was smaller. Therefore, fewer transistors had to be placed in the
chip die, easing the design process.

The Processor Performance. At present, the performance of a processor is, besides
energy efficiency, the deciding factor in choosing the processor of a computer system.
Compared to the 1980s, the common computing platform nowadays is mobile, like laptops
and smartphones, rather than powerful desktop workstations. Thus, the processors need
to be as performant as possible, while maintaining a rather low power consumption to
provide a long runtime on battery. It is not feasible to say that either the RISC or
CISC is the more performant design philosophy. In reality, CISC-based processors still
have a slight upper hand performance-wise [151] due to the investments committed by
several companies, such as AMD or Intel. In the previous two decades, AMD and Intel
have dominated the computer markets with their x86(-64)-based processors that are
based on the CISC design philosophy. Due to the demand, the processors of AMD and
Intel got more performant every couple of years. Different companies, such as Ampere
and Amazon [151], strive to produce Arm-based processors that match the most potent
processors of AMD and Intel. In 2021, Poenaru et. al [151] benchmarked various systems
using synthetic benchmarks. They showed that Fujitsu’s Arm-based server processor came
close to the performance of x86-based ones. Simakov et al. [174] repeated a performance
and efficiency analysis in 2023. Alike Poenaru et al. they concluded that Arm-based
servers are a viable alternative regarding performance and efficiency to x86-based servers.

The Processor Efficiency. Like the problem of pinpointing the more performant
design philosophy, it is also not feasible to identify the more efficient design philosophy

30

5.1. Difference Between the RISC and CISC Architectures

solely based on the respective design philosophy’s fundamentals. As AMD and Intel rose
to power in the computer system market with their CISC-based processors, RISC-based
processors conquered the market of embedded devices, which commonly require a low-
energy consumption and focus less on high performance. Microcontroller architectures,
such as AVR (produced by Atmel, which was later acquired by Microchip Technology),
PIC (produced by Microchip Technology), MIPS (produced by MIPS Technologies), and
Arm (produced by Arm), are all processor architectures that are based on the RISC design
philosophy. Microcontrollers are a specialised variety of processors that are different in
one specific property:

The package containing the microcontrollers always includes additional peripherals, such
as memory, to use during execution, and read-only memory, to store the application’s
code. Processors on the other hand only contain the processing unit and must interface
their peripherals, such as memory, via their I/O lanes.

The AVR and PIC series [133] mainly stuck to being used as low-power platforms. Both
chip series were, and still are, commonly produced as 8-bit or 16-bit Microcontroller Units
(MCUs). There are also 32-bit variants of both chipsets, but they were less common due
to the limited demand. The designs of MCUs such as Arm and MIPS, on the other hand,
also eventually found applications in processors but initially kept being used in systems
with lower performance requirements, such as network devices (routers, switches, hubs,
etc.), IoT devices, and phones.

5.1.2 Current State of RISC and CISC-based Processors
For the last couple of decades, mostly CISC-based processors from AMD and Intel [151]
dominated the market of personal computers and servers. An exception to this were, for
example, the PowerPC processors, a RISC-based processor architecture that was used in
Apple’s computers until they moved on to processors built by Intel. Eventually, Apple
moved to a RISC-based processor architecture again by using the Arm-design for their
silicon [228].

On the other hand, RISC-based architectures dominated the market for embedded
systems, which typically focuses more on the power efficiency of the processor. With
the rise of smartphones, this separation slightly dissolved. Initially, smartphones mostly
relied on Arm-based processors. Eventually, Intel also started to produce processors
that were used in smartphones and tablets [95], basically downgrading their desktop
processors to the point that they only use a low single-digit wattage number. At the same
time, Arm-based processors found use in computers, such as Chromebooks, or servers,
using processors of Ampere or Amazon. This required Arm processors to transform, so
they better fit their new field of application. New designs increased the performance
to match the ones of CISC-based processors in the field, at the cost of their low-power
consumption.

In each case, the new processor had to adapt to the dominating platform. At the current
time, it is not possible to draw a proper conclusion regarding the future of Arm-based

31

5. ARM Processor Architecture

Figure 5.1: Different processor types of Arm depicted in an infographic of Arm [20].

processors in the personal computer and server market. Apple successfully creating their
own Arm chips [228] is an indicator that more devices may follow. The processors have
a small market share in the personal computer market and are not yet widely used in
the server market, as Amazon’s and Ampere’s processors are rather new and still need
to prove themselves. Intel, considered one of the biggest manufacturers of CISC-based
processors, on the contrary, gave up their attempt on trying to get a hold in the market
of low-power processors. Their attempt only lasted a few years and due to the rather
small market share, Intel did not consider it economically viable to further invest.

5.2 Comparison of Different Arm Processor Types
Over the years, Arm designed three different chip variants [202] that can be identified
by the naming scheme. Currently, most of Arm’s recent processor designs bear the stub
“ARM Cortex” and are equipped with one of three suffixes:

• -A(pplication)

• -R(eal Time)

• -M(icrocontroller)

as can be seen in an infographic of Arm Figure 5.1.

Their usage and features are summarised in the following paragraphs.

32

5.2. Comparison of Different Arm Processor Types

ARM Cortex-A. The Arm Cortex-A series is intended for application use, such as
smartphones and computer systems [13]. The first release of in this category is the
Arm Cortex-A8 design. This processor design featured a single 32-bit CPU based on
the Armv7 architecture [28]. The Armv7 design also incorporates the Arm TrustZone
and optionally the Single Instruction, Multiple Data (SIMD) instructions that allow
executing a single instruction on multiple data values. Throughout the years, Arm
improved the Cortex-A series and included additional features, such as multiple cores,
simultaneous multithreading (currently only found in one processor design of this series:
the Cortex-A65AE), performance monitoring units, L3 cache, and 64-bit computing.
Processors stemming from this series are commonly more powerful than the ones of the
Arm Cortex-R and Cortex-M series. In general, this series of processors has a strong
focus on performance.

ARM Cortex-R. The Arm Cortex-R series finds application in devices that need to
meet real-time constraints in fields, such as avionics and automation [86]. There are
fewer variants and features compared to the Arm Cortex-A and Cortex-M series due to
the limited requirements. Performance-wise, the R-series is situated slightly above the
Cortex-M series. Additionally, features like the Arm TrustZone security extension are
not available on this platform.

ARM Cortex-M. The M-series is the microcontroller series of Arm [18]. Its primary
use is in small embedded systems, such as smart keylocks, keyboards, and IoT devices.

Contrary to the R-series, chips based on the M-series may include plenty of additional
features. Arm incorporates some of these features, such as complete Arm TrustZone
support starting with the Armv8-M architecture [19]. Beforehand, the Cortex-M series
only incorporated selected functions of the Arm TrustZone, such as the Cryptocell [115],
which offers hardware support for some cryptographic operations. Over the years, some
chip manufacturers added custom functionality to meet their specific use case. For
example, some MCUs produced by Nordic Semiconductors [115] include different wireless
technologies, such as Bluetooth, Bluetooth Low Energy, NFC (tag-emulation), and LTE,
due to their popularity in the IoT field.

In addition to the Arm Cortex series, Arm also designs the Neoverse and SecurCore
variants.

ARM Neoverse. Systems that require more performance than the Arm Cortex-A
series, which is commonly found in smartphones, use Arm Neoverse series [145]. This
includes heavy workloads and makes the design suitable for deployment in servers and
high-performance computing. Ampere’s Altra processor is using, alongside Amazon’s
Graviton processor, the Arm Neoverse as the base design. The same applies to Fujitsu’s
A64FX, a processor used in supercomputers. From a technical perspective, the Arm
Neoverse can be regarded as a more performant version of the Arm Cortex-A series.
This series includes all features of the Arm Cortex-A series, such as the Arm TrustZone

33

5. ARM Processor Architecture

security extension, support for SIMD , and simultaneous multithreading (ARM Neoverse
E1).

ARM SecurCore. The Arm SecurCore series is a small chip used in embedded
applications with high-security requirements, such as smartcards [233]. Due to their field
of appliance, they are low-powered and feature much less performance than even the Arm
Cortex-M series. The Arm SecurCore series includes features, such as memory protection
and other anti-tempering mechanisms.

34

CHAPTER 6
Arm TrustZone and Other

Trusted Execution Environments

The Arm TrustZone is a hardware security extension that can be used to implement a
TEE together with a secure operating system, such as the OP-TEE [137]. TEEs are used
to ensure that sensitive data is handled separately from non-sensitive data to ensure that
it cannot be accessed or manipulated by attackers. This is done by creating a secure
environment that can only be accessed by pre-selected actors.

Taking the protection ring model, depicted in Figure 6.1, as a reference, the Arm
TrustZone cannot be pictured in the standard ring layer model. Pinto & Santos [149]
use an extended model to correctly classify the Arm TrustZone. The standard ring

Figure 6.1: A common protection ring model.

35

6. Arm TrustZone and Other Trusted Execution Environments

Figure 6.2: A depiction of the extended ring model by Pinto and Santos [149].

layer model shown in Figure 6.1 misses 3 additional layers that are all bearing negative
numbers. The extended ring layer model by Pinto and Santos is depicted in Figure 6.2.

Below the kernel, which is found at level 0, there are hypervisors at level -1 that are
used in hardware-assisted virtualisation. At level -2 solutions, such as the Intel System
Management Mode or the Arm TrustZone reside. Intel’s system management handles
functionality, such as power management and system hardware control [190]. These basic
functions are not accessible by the operating system but by a system’s firmware. The last
ring level -3 encompasses external security coprocessors such as AMD PSP and Google
Titan M.

The following section present the Arm TrustZone, as well as alternatives to it.

6.1 The Arm TrustZone
The Arm TrustZone is an optional hardware-based security extension found in Arm’s
processors since 2004. The first specification to include the security extension is the
ARMv6K ISA [3]. In the first years of its existence, the Arm TrustZone was inaccessible
to the public and only in proprietary solutions. The chip manufacturer Xilinx [154] was
the first manufacturer to produce publicly available development boards that allowed to
access the Arm TrustZone.

Alongside Xilinx, manufacturers, such as NXP, HiSilicon, which is a subsidiary of Huawei,
and Broadcom have started to produce development boards that feature CPUs with the

36

6.2. The Arm TrustZone on Different Processor Types

Arm TrustZone accessible to developers [149]. The availability of accessible hardware
kickstarted the development of software for the Arm TrustZone, such as the OP-TEE [137],
Apache Teaclave TrustZone SDK [52] and the SierraTEE [173]. They allow developers to
create applications that operate in the respective TEE. The OP-TEE, and subsequently
the Apache Teaclave, follow the Global Platform API [189] specification. This document
specifies common APIs to, e.g. encrypt data, access storage, and access the secure world
from the normal one.

Besides these 3 projects, manufacturers developed their own solutions, fitting their specific
use cases. Two well-known projects are the Android Keystore [8] and Samsung Knox [165].
The Android Keystore’s main functionality is to securely store, provide secure access
to cryptographic material, and use the cryptographic material for operations such as
encryption and decryption. On the other hand, Samsung Knox is a full-fledged security
solution that builds upon the Arm TrustZone to secure a device.

Until 2011, only microprocessors contained the Arm TrustZone. The specification for the
ARMv8 ISA [19] was the first specification that provides support for the Arm TrustZone
on microcontrollers. An Arm whitepaper written by Philip Sparks [179] outlines the
importance of this step. According to Sparks, Arm is expecting 1 trillion IoT devices to
be in use around the world as of 2035. Most of the devices do not need a lot of computing
power. Thus, microcontrollers are the preferred solution for these use cases, as they
require less power and are cheaper to produce, among other things. As some of these
devices have high-security requirements, it is necessary to bring the Arm TrustZone to
microcontrollers.

Most IoT devices only handle insensitive data, such as outdoor temperature, or air
humidity. As outlined by Zaidenberg [225], fields such as healthcare or highly automated
industries also rely on IoT devices. Commonly, IoT devices in these fields process sensitive
data, requiring protection from malicious actors.

6.2 The Arm TrustZone on Different Processor Types
The Arm TrustZone is found in Arm’s microcontroller and microprocessor line-up.
Although bearing the same name, the implementation in microprocessors fundamentally
differs from the implementation found in microcontrollers. In the following sections, these
differences will be addressed.

6.2.1 Arm TrustZone in Arm Cortex-A-based Processors

Figure 6.3 shows a schematic of an Arm-A processor’s concerning the security extension.
In total, there are 4 layers present on an Arm-A-based system, which correspond to the
so-called Exception Levels (abbreviated as ELs). In Arm’s case, the higher the level,
the more privileges an exception level has. These levels are directly comparable to the
extended ring layer model [149] (see Figure 6.2).

37

6. Arm TrustZone and Other Trusted Execution Environments

Figure 6.3: Example of an Arm-A processor’s security model based on the reference
manual for Arm-A processors [17].

The level at the top is EL0, the most unprivileged of all ELs. In this layer, applications,
commonly known as user applications, such as browsers and text editors are executed.

EL0 is followed by EL1, which has quite a few more privileges compared to the former
EL. This layer would be, e.g., the Linux kernel.

The hypervisor corresponds to EL2 and is found in a system that supports hosting
multiple guest operating systems using virtualisation.

The secure monitor is the most privileged component in an Arm-A-based system, thus
being assigned EL3.

In the secure world, the setup looks slightly different. The first big difference is the
absence of a hypervisor. This results in the inability to host multiple secure operating
systems by virtualising them.

In addition, there is also only a single instance of the secure firmware in the secure EL0
layer. As a secure operating system, the OP-TEE resides in the secure EL1.

The secure monitor is responsible for handling the transition to the secure state. The
component represents the software component necessary for the Arm TrustZone imple-
mentation for microprocessors. Arm offers a reference implementation in the form of the
Arm Trusted Firmware [15]. The Arm Trusted Firmware is explicitly advertised by Arm
as a starting point to implement applications for the secure world [15]. Together with
the secure monitor, the hardware security extension forms the Arm TrustZone.

To enter the secure world, a process can invoke the SMC instruction, which is short for
Secure Monitor Call. Besides using the SMC instruction, a processor can also enter the
secure world via an exception, interrupts, and fast interrupts, if configured beforehand.

38

6.2. The Arm TrustZone on Different Processor Types

It is important to note that at any given time, a processor core is either in the secure
world or the non-secure world. This design allows multicore systems to process data in
the secure world while the remainder of the system can proceed working in the non-secure
world. The status of the processor can be determined by the Non-Secure flag that can be
read from the Secure Configuration Register.

Once in the secure world, the processor can access special registers that are only accessible
in the secure world [209]. Arm added these registers, called banked registers, in the
processor design to further strengthen the isolation between the secure and non-secure
world. These special registers provide a one-to-one mapping of certain registers found
in the non-secure world. Among these banked registers are the stack pointer and the
exception link register, which stores the return address of an exception.

Another important set of registers in the context of the Arm TrustZone are the Translation
Table Base Registers (TTBRs). They are responsible for storing the addresses of different
translation tables to enable virtual memory mapping, a mechanism that will be more
thoroughly discussed in Section 7.3. Each world, the secure and the non-secure one, has
its set of translation tables. In addition, the TTBRs are available once to access the
translation table in the global context (TTBR1) and once to access the translation tables
for a smaller scope (TTBR0), such as processes.

In Figure 6.4 Arm’s translation tables and its permission system are outlined. The
non-secure world’s translation table allows code running in the exception levels 0 and
1 to access the memory the peripherals, and the flash memory that is located in the
non-secure world. The secure world’s translation table works similarly, but in addition,
it also grants access to resources in the non-secure world. This mechanism allows, e.g., a
trusted application to access memory that is needed for some sort of computation and
write out the result so that an application in the non-secure world can access it.

6.2.2 Arm TrustZone in Arm Microcontrollers

As can be seen in Figure 6.5, the Arm TrustZone implementation on Arm’s microcon-
trollers lacks the Secure Monitor found in the microprocessor implementation.

The absence of the secure monitor is due to the power efficiency and performance
constraints that are imposed on the microcontrollers. Compared to the implementation
found in processors, the implementation for microcontrollers allows for a faster context
switch and lower power consumption due to the absence of the Secure Monitor. Due to
the new mechanism, additional instructions had to be introduced as the secure monitor,
which acts as a bridge between the normal and secure world, has been removed. Instead
of the SMC instruction, microcontrollers have three new instructions [18]:

1. SG (Secure Gateway). The SG instruction indicates an entry point for code
from the non-secure world into the secure world.

39

6. Arm TrustZone and Other Trusted Execution Environments

Figure 6.4: Example of an Arm-A processor’s memory management based on the reference
manual for Arm-A processors [13].

Figure 6.5: Example of the security model in an Arm microcontroller [149].

40

6.3. Alternatives to the Arm TrustZone

2. BXNS (Branch with exchange to Non-secure state). The BXNS instruction
allows calling functions found in the non-secure world and to either branch or return
to the non-secure side.

3. BLXNS (Branch with link and exchange to Non-secure state). Similarly
to the BXNS instruction, the BLXNS instruction also allows calling functions found
in the non-secure world. Additionally, the link register stores the address of the
next instruction so that, once the called functions returns, the execution continues
with the instruction after BLXNS.

6.3 Alternatives to the Arm TrustZone
The Arm TrustZone is one of the multiple hardware-based security solutions in use.
Besides security solutions, such as Aegis [187], which found no application in productive
environments to the best of our knowledge, several other solutions exist that are used in
productive environments. The most notable three security extensions will be presented
in the following paragraphs.

AMD Secure Encrypted Virtualization (SEV). AMD’s Secure Encrypted Virtu-
alization [4] is a security solution that uses memory encryption to prevent information
leakage of data residing in the memory. AMD SEV encrypts the memory used by a
virtual machine that is operating on a system with a unique key for every guest machine.
This is done to prevent the host from accessing the data that is processed by a guest.

A coprocessor integrated into the CPU, the AMD Platform Security Processor (PSP),
handles the cryptographic material. Alongside the ability to store the cryptographic
material, the PSP also contains a hardware-based cryptographic accelerator to accelerate
the encryption and decryption of data.

Google Titan M. Google Titan M [123] is a security coprocessor that provides security
functionality, such as secure boot, a feature that is similarly offered by the Arm TrustZone.
Further functionalities of the chip include attack detection, tamper detection, and memory
protection.

Initially, Google developed and used their custom security chip for servers running in
their data centres [220]. The first mobile device to use the Google Titan M is the Google
Pixel 3 (XL), which was released in 2018. To the best of our knowledge, the only mobile
platform to include Google Titan M coprocessors is Google’s own Pixel smartphone series.
Every Pixel smartphone, after the Pixel 3 includes the coprocessor.

Intel Software Guard Extensions (SGX). The Intel Software Guard Extensions [40]
is an approach that is similar to the one of AMD SEV. Intel SGX creates encrypted
memory areas that are decrypted on-the-fly. The sensitive data stored in these secure
memory areas is only accessible via special instructions. . A major drawback, compared

41

6. Arm TrustZone and Other Trusted Execution Environments

to AMD SEV, is that initially only small portions of a system’s memory, 128 MB per
secure enclave, are useable [59]. As a workaround, the Linux kernel driver for Intel SGX
offers paging support to increase the size of enclaves. This workaround is only available
on Linux, though, but Intel removes this limit with the 2.0 release of the SGX [79].

Except Intel SGX, every presented security solution is implemented using a coproces-
sor [149]. Thus, these mechanisms works in one of the lower levels of the protection ring
model, compared to Intel SGX, which works on the application level.

The lower the level, the more privileged access a component has to a system, which
represents a two-edged sword. Intel SGX is working at level 3 and has a security advantage
compared to the security coprocessors in a special regard:

A successful attack on Intel SGX may leak sensitive data but does not compromise the
rest of a system, unlike a successful attack on AMD PSP or Google Titan M would.

42

CHAPTER 7
Fundamentals of the Linux Kernel

Although the terms Linux and Linux Kernel are synonyms, they are commonly used to
describe different things.

Linus Torvalds has initially developed the Linux Kernel in 1991 [111], and the project has
been under development as an open-source project ever since. Most parts of the source
code are C code, and architecture-specific code is implemented in the respective assembly
programming language. Starting with version 6.1 the Linux kernel also introduced the
first infrastructure for Rust development [61]; initiated by the Rust for Linux project.
Additionally, helper scripts in scripting languages such as Python, Shell script, and Perl
exist to facilitate various tasks, such as preparing and building the project. Over the
years, the Linux kernel has amassed a size of about 27 million lines of code (counted with
cloc [2] using the Linux release v6.8.7 [9]).

Besides the Linux foundation, other entities are actively developing the Linux kernel.
For example, companies such as Google (Android [63]), Qualcomm (Aurora [156]), or
Linaro have set up their respective repositories to make their changes publicly available.
The respective companies use these repositories to test and integrate code into the Linux
kernel for new devices. For example, when Qualcomm releases a new processor, they
usually need to add changes to the Linux kernel. Qualcomm’s developers push the
finished code to Qualcomm’s Aurora code repositories. Google then clones Qualcomm’s
repositories and uses it as its base for new Android Open Source Project releases.

7.1 The Linux Kernel Architecture
One reason the Linux kernel grew to 27 millions lines of code is due to being a monolithic
kernel [191]. There are three kinds of kernel architectures:

1. monolithic kernels

43

7. Fundamentals of the Linux Kernel

Hardware

Device Drivers, Dispatcher, ...

Scheduler, Virtual Memory

IPC, File System

Virtual File System

Hardware

Basic IPC, Virtual Memory, Schedulingkernelspace

userspaceApplications

Application
IPC

UNIX
Server

Device
Driver

File
Server

Figure 7.1: An overview of the two kernel types. A monolithic kernel on the left, and a
micro-kernel on the right.

2. micro-kernels

3. hybrid kernels (a combination of the former two types)

The first two types are depicted in Figure 7.1. A monolithic kernel, like the Linux kernel,
contains, e.g. drivers for the underlying hardware, code for process scheduling and virtual
memory. Every time such a kernel supports, e.g. a new feature, a new filesystem, or a
new processor, the size of the kernel’s source code increases.

The advantage of a monolithic kernel is its performance compared to a micro-kernel. Due
to outsourcing functionalities to the userland, a lot more context switches between the
user- and kernelspace take place in a micro-kernel. A drawback of a monolithic kernel is
that if a single component in the kernel crashes, it will most likely result in a system
crash. On the other hand, if a microkernel’s device driver crashes, it most likely does not
take down the complete system.

On the other hand, a micro-kernel only provides the most fundamental functionalities in
the kernel mode (see Figure 7.1). The idea behind this approach is to keep the kernel’s
source code as tidy and bug-free as possible [191]. The work of Ostrand & Weyuker [141]
and Zhang [226] have shown that bigger projects tend to contain more bugs. Furthermore,
smaller code bases are easier to formally verify. For example, the micro-kernel seL4 was
formally proven to be secure by Klein et al. [91]. This was possible because the seL4
kernel contains in total about 8300 lines of C and assembly code. The Linux kernel
contains around 2500 times as much code, making its formal verification, due to its vast
size and complexity, almost impossible.

The Linux kernel contains code to schedule processes, interface and manage devices and
filesystems, manage memory, networking, etc. To provide additional extensibility to the

44

7.2. Linux Kernel Internals

Figure 7.2: Overview of the call hierarchy during the execution of a system call.

Linux kernel, Linux offers support for extensions in the form of modules. By design,
the Linux kernel allows third parties to develop parts of the kernel on their own to add,
extend, or replace functionality provided by the stock kernel. This property simplifies
the process of adding customised drivers for devices or implementing new technologies
and algorithms.

7.2 Linux Kernel Internals
The Linux kernel is responsible for tasks such as process scheduling, memory manage-
ment, and inter-process communications. Applications in the userland can access this
functionality using system calls.

In general, a system call works as depicted in Figure 7.2. For example, a program needs
to read from a file. An application in the userspace calls the function read, triggering
a context switch to the kernel, as the system call sys_read needs to be called. The
kernel does some processing and eventually forwards the call to the hard drive to retrieve
the requested data.

In some cases, the Linux kernel can handle system calls completely internally. This
happens when a user, e.g., tries to access the proc directory. This directory is not a
real existing directory, but rather generated by the Linux kernel on request [206]. It is
used to share information handled in the kernelspace with the userspace. In this virtual
directory, data found in kernel structures, such as task_struct, is made available via
files that are generated on request.

For example, to retrieve a list of processes, programs such as ps [153] need to query the
proc directory.

In addition, the /dev directory may also contain entries that are not backed by an
existing hardware device. For example, devices such as /dev/null, /dev/urandom

45

7. Fundamentals of the Linux Kernel

and /dev/binder, an important device to Android, which will be discussed more
thoroughly in Chapter 8, only exist in memory.

7.3 The Linux Kernel’s Memory Management
Memory management is one of the most significant tasks of a kernel. One reason being,
that memory tends to be a limited resource on every system. Thus, it needs to be
properly distributed to ensure the proper functioning of a system. The following sections
give a brief introduction of two important concepts of Linux’s memory management:

1. virtual memory

2. and user and kernelspace memory separation

7.3.1 Virtual Memory
Over the years, operating systems supported running multiple processes and at the same
time processes also got bigger. Thus, a system required more memory to run the processes
concurrently. For example, in 1991, the year of first Linux’s first release, computer OSes
had 4 MB of memory [146]. In comparison, nowadays, the smallest Linux kernels for
embedded systems, such as routers, have a size of about 2-4 MB [136]. As for regular
computers, according to Steam’s hardware survey in March 2024 [181], 99,4% of users
have more than 4 GB of memory.

To allow processes to access all the memory they need, even if it does not physically exist,
the Linux kernel introduced support for virtual memory [44, 82]. The virtual memory
mechanism generates a virtual memory space for each process, where it can address more
memory than a system potentially has. Before the use of virtual memory, there was a
one-to-one mapping between the memory address a process uses and the physical address
of a system’s memory.

The introduction of virtual memory mapping results in the necessity of translation tables,
as the virtual memory address cannot be mapped one-to-one to physical memory addresses
anymore. There is somewhat of an exception, though, as can be seen in Figure 7.3.
The memory area where the Linux kernel resides plus some additional memory has an
almost one-to-one mapping to the physical memory. To get the physical address of one
of these addresses, it is enough to subtract a constant value that slightly varies across
architectures and build configurations. All memory addresses outside this region need to
be resolved by using the translation tables. Embedded systems are another execption, as
they sometimes also have a direct address mapping due to the lack of hardware support.
For various reasons, the CPUs in these systems lack a memory management unit that is
fundamental for virtual memory management.

The high-level structure of the translation tables is similar across all processor archi-
tectures. The actual implementation relies on the available hardware in the respective

46

7.3. The Linux Kernel’s Memory Management

Figure 7.3: Example of memory mapping in a 32-bit system [99].

processor architecture. For example, on Arm-based systems, the TTBRs store the ad-
dresses for the translation tables, which are not available on other architectures. Through
the number of translation tables, the memory page size can be changed. For example,
the 3-level translation shown in Figure 7.4 is used to address memory pages with the size
of 4 kilobytes. Armv8-based processors support up to 64 kilobyte pages by adding a 4th
translation table.

As shown in Figure 7.4, the first bits of a virtual memory address are necessary for the
address translation. Each of these bit groups represents an index for a table, where
the value of an index is the pointer to another table. Eventually, after a few steps, a
translation table contains the physical address.

7.3.2 User- and Kernelspace Memory
Linux splits the accessible memory into userspace and kernelspace [71]. Not considering
interfaces, such as /dev/kmem [158], which offered privileged users direct access to the
kernel memory, memory in the kernelspace cannot be directly accessed by users.

To let the Linux kernel access userspace memory, multiple functions and macros exist,
which are defined in the uaccess.h [203] header file. The four most important functions
and macros are:

1. copy_from_user (function),

2. copy_to_user (function),

47

7. Fundamentals of the Linux Kernel

Figure 7.4: Example of a 3 level memory address translation [11].

3. get_user (macro),

4. and put_user (macro)

Unlike the macros, which should be used to copy only primitive values from/to userspace,
the functions can be used to copy an arbitrary amount of data. Accessing userspace
memory from the kernel without properly transferring the data into the kernelspace
would cause a fault, potentially crashing the system.

7.4 Extensions to the Linux Kernel for Android

The Linux Kernel used in Android differs from the mainline Linux kernel in various
points. In comparison to home computers, servers, or embedded systems, Android has
different requirements regarding performance and security, requiring extensions to the
Linux kernel.

Over the years, Android developers added new functionality to the Linux kernel or
improved existing functionality to better support the needs of Android devices.

ashmem, short for Anonymous Shared Memory [119], is a custom allocator for memory
that can be shared between different processes. Between 2011 [112] and 2022, ashmem
was part of the Linux kernel. In 2022, memfd [77] succeeded the ashmem memory
allocator implementation.

48

7.4. Extensions to the Linux Kernel for Android

Figure 7.5: The modular concept currently used by Android [7].

Further additions include wakelocks, a mechanism to prevent a device from going
completely to sleep, which got its last update in 2022 [96] or the Android Binder that
will be discussed separately in Chapter 8.

Currently, Android is modularised as shown in Figure 7.5. Vendors provide components,
such as vendor apps in the userspace, and make adaptions to the Linux kernel to ensure
that their hardware works as intended.

One of Google’s goals is to make the additional modifications to the kernel redundant [192].
As of Linux kernel version 5.9 [192], most of the changes required by Android are part of
the mainline Linux kernel. Thus, devices supported by the Android Open Source Project
can run on a (minimally adapted) mainline Linux kernel.

Ideally, this results in a single kernel image for all devices at one point. Besides less
work for all involved parties, a single kernel image would result in a faster roll-out of an
updated kernel to, e.g. address security issues or add new functionality.

49

CHAPTER 8
The Android Binder

An important part of every operating system is the Interprocess Communication (IPC).
The Linux kernel offers multiple variants of IPC. Linux Standard Base Core Specifica-
tion [53] and the POSIX specification [85], which the former specification widely mirrors,
specify these mechanisms. Namely, these IPC mechanisms include signals, pipes, message
queues, semaphores, and shared memory.

These mechanisms do not suffice for application on Android smartphones [49]. Errors in
these low-level inter-process mechanisms provided by Linux, unintended or not, can lead
to the subversion of a system by an attacker. Error causes can include the carelessness of
developers, unintended side effects, or attacks caused by malicious actors, inadvertently
leading to security problems. For example, the vulnerability CVE-2022-0847 [128], which
is nicknamed Dirty Pipe because of the exploited IPC mechanism, enabled an attacker
to take over a Linux system. Due to the vulnerability, unprivileged users can read and
write files that should normally be inaccessible to them.

To harden the system, Android uses the Binder [65], an inter-process mechanism ini-
tially developed as Open Binder [70]. To further harden the IPC, Google rewrites the
libbinder [64] in Rust. As part of the Rust for Linux project, the work on a Rust
rewrite of the Binder driver [106] has started. The idea behind a rewrite in Rust is that
the programming langauge is less prone to memory vulnerabilities [87], improving the
security of the Binder components.

The Binder, also known as the Android Binder, features a client-server architecture that
allows a process to request or provide service for another process. In the Binder’s client-
server architecture, the client and the server are processes in the userland. The component
in the kernel handles most of the work involved in the data exchange between two processes.
The kernel module contains a lot of the involved program logic. In comparison, the
libbinder is mostly responsible for transforming data and communicating with the
Binder driver.

51

8. The Android Binder

Figure 8.1: An example of the data and control flow of the Android Binder.

Figure 8.1 exemplifies the Android Binder flow. The graphic shows an imaginary
SecureHashingService. In the example, the SecureHashingService is called
by the HashingActivity that is part of another app. To issue a request to the
SecureHashingService, the HashingActivity needs to send data to the Binder
component in the kernel. Before the transmission, the client process marshals the data
into so-called Parcels (1) that the server will unmarshal later on (4). In both cases, the
libbinder is responsible for the conversion of the data and also sends the marshalled
data via the ioctl syscall to the Binder driver (2).

The kernel module performs several checks [26] during the transmission of a Binder packet
to ensure that, e.g.

• a process has the privileges to send/request data from another process,

• the correct metadata is present,

• and the server answers with the correct type of data

After the checks succeeded, the kernel module forwards the data to the server process (3).
There it gets unmarshalled and processed so that the SecureHashingService can
use it. Once the service finishes its computations, the libbinder marshals the data (5)
and sends it back to the kernel (6).

The kernel driver processes the response of the service and prepares to sent it back to
the client process (7). In the client, the response needs to be unmarshalled one last time
so that the HashingActivity can use it.

52

Android’s Binder protocol supports a total of 19 different types of commands. An excerpt
of the available commands is shown in Listing 5.

As can be seen in the listing 5, Binder commands can contain data packets attached
to them. The first two types of binder commands, BC_TRANSACTION and BC_REPLY,
are part of the control flow that transfers data between two processes. The binder_ ⌋
transaction_data that is sent from a client to a server process. A server process pro-
cesses the data stored in the structure and puts into another binder_transaction_ ⌋
data struct as part of a BC_REPLY command. The client process receives the reply and
can access, e.g. the computation results.

Besides complex structures, single primitive types are also part of data embedded in
commands. For example, binder_uintptr_t, which is a 32-bit unsigned integer. A
process sends the BC_DEAD_BINDER_DONE command to acknowledge that an observed
process died.

Lastly, there are also commands, such as BC_REGISTER_LOOPER, which registers a
looper thread, which do not need to carry extra information.

53

8. The Android Binder

1 enum binder_driver_command_protocol {
2 BC_TRANSACTION = _IOW('c', 0, struct

binder_transaction_data),→
3 BC_REPLY = _IOW('c', 1, struct binder_transaction_data),
4 /*
5 * binder_transaction_data: the sent command.
6 */
7

8 ...
9

10 BC_REGISTER_LOOPER = _IO('c', 11),
11 /*
12 * No parameters.
13 * Register a spawned looper thread with the device.
14 */
15

16 ...
17

18 BC_DEAD_BINDER_DONE = _IOW('c', 16, binder_uintptr_t),
19 /*
20 * void *: cookie
21 */
22

23 ...
24 };

Listing 5: Excerpt of the Binder commands [26].

54

CHAPTER 9
Arm TrustZone-based Rootkit

An Arm TrustZone-based rootkit is another type of rootkit. Similarily to user- and
kernelspace rootkits, it can rely on the interfaces provided by an underlying (secure)
operating system. The proof-of-concept uses the OP-TEE and its interfaces to implement
and run the rootkit.

The following sections discuss the basics and design of an Arm TrustZone-based rootkit.

9.1 Basics of an Arm TrustZone-based Rootkit
As discussed in Chapter 7, the Arm TrustZone commonly runs a custom operating system
that is as lightweight as possible. We think this is mainly due to preventing too much
performance overhead and keeping the number of programming mistakes low, which are
the result of a bigger code base. Zhang [226] as well as Ostrand and Weyuker [141] have
shown that there is a relation between the lines of code and programming mistakes.

Thus, a secure operating system such as the OP-TEE highly differs from a Rich Execution
Environment (REE), such as Linux, regarding the availability of device drivers, memory
management, etc. Subsequently, the OP-TEE is not context-aware of the properties
of a REE. It does not understand the relation between the memory mappings done by
the REE and the context of the bytes written to the memory. Techniques commonly
deployed by kernel and user rootkits, such as hooking functions in the REE, are not as
easy to implement, as there is no context of kernel functions.

For example, a kernel rootkit commonly acts as pictured in Figure 9.1 to intercept data.
On an unmodified system, a simplified execution would proceed as follows:

A function calls the exposed read system call which reads data from file descriptors,
copies the data into a buffer provided by the caller, and returns the number of bytes
copied to the buffer.

55

9. Arm TrustZone-based Rootkit

Figure 9.1: Overview of the call hierarchy when an intercepted system call.

This normal execution might get modified by a kernel rootkit by the control flow shown
in Figure 9.1. The user calls sys_read, but the rootkit replaced the original function
with a malicious one, rk_read, without the function’s caller knowing it. rk_read can
intercept data before it is copied from/to the user by proxying the call to sys_read.
This approach allows an attacker to manipulate the data returned to the caller or intercept
the data and copy it elsewhere for further processing.

The above-mentioned method would not work the same way if executed from the OP-TEE,
due to missing information that is only available to the REE. Commonly, a kernel rootkit
redirects a system call by iterating over the memory and searching for the system call
table, which contains the address pointing to the read system call. Before the Linux
kernel version 2.6.18 [168], the system calls sys_exit and sys_close were exported.
Rootkits can use the addresses of these system calls to find the memory area that contains
the system call table when iterating over a system’s memory.

When working from the OP-TEE, it is not possible to obtain such data without an
extensive parsing of the memory and puzzling together the obtained information. Marth
et al. [118] have shown that it is possible to identify task_struct structs in the memory
that are used by the Linux kernel to handle process scheduling. The search algorithm
devised by Marth et al. works well for task_struct structs due to some unique
properties of this struct, among other things. For example, the task_struct struct
contains multiple pointers to itself on several offsets. This allows to search for certain
patterns, which are 8 bytes long (the size of an address in 64-bit systems) and are prefixed

56

9.2. Design of an Arm TrustZone-based Rootkit

with 0xffff, which all kernel memory commonly has [117].

On the other hand, the system call table does not provide as many restrictions, making
system call hooking a much more difficult task.

As shown by this example, it is necessary to work around the constraints that are imposed
when working outside a REE. An algorithm needs to be devised to find artefacts in the
raw memory to make the changes to the control flow of the kernel, which will be discussed
in the following section.

9.2 Design of an Arm TrustZone-based Rootkit
The design of an Arm TrustZone-based rootkit differs from the design of types of
rootkits such as userspace and kernelspace rootkits. Besides the restriction that a trusted
application does not have a context of what all the 0s and 1s in the memory are referring
to, there are further limitations that make it necessary to adapt mechanisms commonly
found in rootkits. In the TrustZone, only a minimum of devices can be accessed as easily
as in the normal world, due to the lack of drivers.

9.2.1 Intercept Binder Data
The constant iteration over a system’s memory to identify binder data not only causes a
big performance overhead but also likely results in a large amount of false positives. To
minimise the performance overhead and rate of false positives, the preferable approach is
to intercept data once it is processed.

A function that handles Binder data is binder_ioctl_write_read [25]. In addition
to processing the struct that is used to transfer data via the Binder, this function contains
code that is only relevant for optional debugging purposes. The space used by the
instructions to output the debug data can be replaced to contain instructions to interact
with the rootkit.

As can be seen in listing Listing 7, the function binder_ioctl_write_read calls the
debug function binder_debug. This function is a wrapper for one of the Linux kernel’s
printk functions and does a preliminary check if debug data should be printed. Thus,
it can be assumed that replacing this debugging functionality will not affect the proper
execution of the Binder.

When calling the function binder_write_read struct, shown in listing Listing 6, is
passed as part of an argument to this function.

Inside the binder_write_read struct, the variable write_buffer is defined, which
is a pointer to the data destined for another process. The first few bytes of the buffer
indicate the type of data transmitted to the Android Binder. For the rootkit, only
data containing the enum BC_TRANSACTION is relevant, allowing to filter out any data
irrelevant to the rootkit component in the secure world.

57

9. Arm TrustZone-based Rootkit

1

2 /** On 64-bit platforms where user code may run in 32-bits the
driver must→

3 * translate the buffer (and local binder) addresses
appropriately.→

4 */
5

6 struct binder_write_read {
7 binder_size_t write_size; /* bytes to write */
8 binder_size_t write_consumed; /* bytes consumed by driver

*/→
9 binder_uintptr_t write_buffer;

10 binder_size_t read_size; /* bytes to read */
11 binder_size_t read_consumed; /* bytes consumed by driver

*/→
12 binder_uintptr_t read_buffer;
13 };

Listing 6: binder_write_read struct as seen in kernel version 4.14 [26].

During the compilation, the debugging function will be inlined, as can be seen in Listing 8
and Listing 9. The generated assembly contains a check if data should be printed (line
2), the preparation for the function call (line 6-15 and line 6-16), and the instruction to
eventually call printk (line 18 and line 19). Depending on the compiler and the used
optimisations, the instructions responsible for outputting the debug data consist of 11
to 12 instructions, which are 44 to 48 bytes of memory. This space suffices to pass the
pointer of a binder_write_read struct to another location.

After identifying the needed data and where to redirect the control flow, it is necessary
to determine the location in the memory where the patch for the function redirection is
placed. To identify the location, we devised a search algorithm that allows to identify the
location of the 11 to 12 instructions that will be replaced. Besides the compiler version
and the used optimisations, the kernel version also affects the resulting machine code,
as offsets and values may differ between different kernel versions. This makes it very
difficult to find a search pattern that can be uniquely identified in all available Linux
kernels. Instead of an exact byte matching, the algorithm checks for the operations codes
of certain instructions that highly likely match the sought instructions.

Listing 8 and Listing 9 show an extract of the disassembled binder_ioctl_write_ ⌋
read function. The assembly code shown in Listing 8 was extracted from a stock kernel,
compiled by Victor Chong [38] as part of an official pre-built image for the Hikey 960.
In Listing 9 the disassembly of a custom kernel, containing additions made to provide
the Linux kernel interfaces for the OP-TEE, is shown. Both code extracts eventually
call printk, but the set-up before the call differs in the number of statements and the

58

9.2. Design of an Arm TrustZone-based Rootkit

1 static int binder_ioctl_write_read(struct file *filp,
2 unsigned int cmd, unsigned long arg,
3 struct binder_thread *thread)
4 {
5 int ret = 0;
6 struct binder_proc *proc = filp->private_data;
7 unsigned int size = _IOC_SIZE(cmd);
8 void __user *ubuf = (void __user *)arg;
9 struct binder_write_read bwr;

10

11 if (size != sizeof(struct binder_write_read)) {
12 ret = -EINVAL;
13 goto out;
14 }
15 if (copy_from_user(&bwr, ubuf, sizeof(bwr))) {
16 ret = -EFAULT;
17 goto out;
18 }
19 binder_debug(BINDER_DEBUG_READ_WRITE,
20 "%d:%d write %lld at %016llx, read %lld at

%016llx\n",→
21 proc->pid, thread->pid,
22 (u64)bwr.write_size, (u64)bwr.write_buffer,
23 (u64)bwr.read_size, (u64)bwr.read_buffer);
24

25 if (bwr.write_size > 0) {
26 ret = binder_thread_write(proc, thread,
27 bwr.write_buffer,
28 bwr.write_size,
29 &bwr.write_consumed);
30 trace_binder_write_done(ret);
31 if (ret < 0) {
32 bwr.read_consumed = 0;
33 if (copy_to_user(ubuf, &bwr, sizeof(bwr)))
34 ret = -EFAULT;
35 goto out;
36 }
37 }
38 ...
39 ...
40 ...

Listing 7: The binder_ioctl_write_read function as seen in kernel version 4.14 [25].

59

9. Arm TrustZone-based Rootkit

1 # check if the debugging function should be called
2 cbnz x0,LAB_00a56c3c
3

4 # load all the required arguments for function call into the
5 # respective registers
6 adrp x8,0x162e000
7 ldrb w8,[x8,#0x1f8]=>DAT_0162e1f8 = 07h
8 tbz w8,#0x6,LAB_00a53800
9 ldr x8,[sp, #local_100]

10 ldr w2,[x20, #0x30]
11 ldr x3,[sp, #local_f0]
12 ldp x4,x5,[sp,#local_e0]
13 ldr w1,[x8, #0x40]
14 ldr x6,[sp, #local_c8]
15 adrp x0,0x1181000
16 add x0=>DAT_011813e4,x0,#0x3e4 = 01h
17

18 # call printk
19 bl printk

Listing 8: Prelude of the debug function call in an unmodified Linux kernel.

1 # check if the debugging function should be called
2 cbnz x0,LAB_00a3d79c
3

4 # load all the required arguments for function call into the
5 # respective registers
6 adrp x8,0x15c9000
7 ldrb w8,[x8,#0xde0]=>DAT_015c9de0 = 07h
8 tbz w8,#0x6,LAB_00a3a060
9 ldr w1,[x20, #0x40]

10 ldr w2,[x27, #0x30]
11 ldp x4,x5,[sp, #local_e0]
12 ldr x3,[sp,#local_f0]
13 ldr x6,[sp, #local_c8]
14 adrp x0,0x114a000
15 add x0=>DAT_0114a842,x0,#0x842 = 01h
16

17 # call printk
18 bl printk

Listing 9: Prelude of the debug function call in a modified Linux kernel.

60

9.2. Design of an Arm TrustZone-based Rootkit

1 # prepare the instructions to call vmalloc_exec
2 mov w0, #4096
3

4 # prepare the address of the vmalloc_exec function
5 movk x3 0x<byte 1 and 2 of vmalloc_exec address>
6 movz x3 0x<byte 3 and 4 of vmalloc_exec address>
7 movz x3 0x<byte 5 and 6 of vmalloc_exec address>
8 movz x3 0x<byte 7 and 8 of vmalloc_exec address>
9

10 # execute the function call
11 blr x3
12

13 # add the pattern to search for
14 stp x0, x0, [x0]
15 stp x0, x0, [x0, #16]
16 stp x0, x0, [x0, #32]
17 stp x0, x0, [x0, #64]
18 stp x0, x0, [x0, #256]
19

20 # nop sled to prevent execution of invalid instructions
21 nop

Listing 10: Instructions needed to allocate an executable memory page and write a
pattern to it.

types of statements used. Besides a difference in the number of instructions used to
prepare the execution of printk, the order and operation codes slightly differ. Despite
the differences, similarities exist that make it possible to derive a search pattern for the
used instruction.

9.2.2 Architecture of the Arm TrustZone Rootkit
The Arm TrustZone rootkit consists of 2 components:

• the rootkit running in the secure world

• shellcode placed in the memory range of the Linux kernel

The components both reside in EL1 in their respective worlds, as can be seen in Figure 9.2.
Shellcode resides in the normal world’s EL1, as part of Guest OS 1. On the other hand,
the secure world rootkit is part of Trusted OS in the secure world.

Both components will be explained thoroughly in the following sections.

61

9. Arm TrustZone-based Rootkit

Figure 9.2: The Arm-A processor’s security model [17] with subverted components (shown
in red).

9.3 Preparing the Interception of Data in the Android
Binder

To access applications running in the OP-TEE, it is necessary to have a client running in
the normal world. The first few versions of the OP-TEE mainly relied on a userland client
that interacted with the OP-TEE via a kernel driver. Starting with Linux 4.12-rc1 [215],
the Linux kernel module for the OP-TEE contains the APIs to allow also Linux kernel
modules to interface the OP-TEE. As the Linux kernel used by the Hikey 960 did not
include this API for an unknown reason, the API was ported from a stock Linux kernel
of the same version (4.14).

The first step of the Arm TrustZone rootkit is its invocation, depicted as (1) in Figure 9.3.
In this case, a Linux kernel module invokes the rootkit.

Once the LKM makes the initial call, the trusted application takes over and prepares
the necessary steps to forward Binder data to itself. In total 5 steps have to be taken to
intercept data in the Android Binder:

1. find the memory region that contains the binder_ioctl_write_read function

2. allocate a memory page to fit all the instructions necessary to forward data to the
TA

3. identify the address of the memory page just allocated

4. prepare the shellcode and copy its instructions to the allocated memory page

5. place the instructions that redirect the control flow to the allocated memory page

62

9.3. Preparing the Interception of Data in the Android Binder

Figure 9.3: The initial call from the LKM to the TA.

The call to the rootkit’s binder_ioctl_write_read function, where the patch will
be applied to. The used algorithm can identify the sought memory region based on a
pattern of certain instructions.

Once the rootkit identifies the memory, the instructions below the instruction cbnz
shown in Listing 9 and Listing 8 are replaced by the instructions shown in Listing 10 (3).
The execution of this code snippet causes a call to the function vmalloc_exec, which
is used by the kernel to obtain an executable memory region, to allocate a single page of
memory. The address of the function vmalloc_exec is hardcoded, a limitation that
will be addressed in more detail in Section 9.5.

After the execution of vmalloc_exec, the register r0 contains the address of the
memory page. The execution of the remaining shellcode creates a searchable pattern by
writing the value in register r0 at the indices 0, 1, 2, 3, 4, 5, 8, 9, 32, and 33.

The rootkit repeatedly checks the memory for the appearance of the search pattern in
a memory page until it is found (4). The checks need to be repeated, as there is no
guarantee that the instructions, which allocate the memory page, are executed right

63

9. Arm TrustZone-based Rootkit

1 # save the binder_write_read struct's address in x0
2 add x0 , sp, <offset>
3

4 # prepare the address of the MITM function
5 movk x3 0x<byte 1 and 2 of the memory page address>
6 movz x3 0x<byte 3 and 4 of the memory page address>
7 movz x3 0x<byte 5 and 6 of the memory page address>
8 movz x3 0x<byte 7 and 8 of the memory page address>
9

10 # execute the function call
11 blr x3
12

13 # nop sled to prevent execution of invalid instructions
14 nop
15 nop
16 nop
17 nop
18 nop
19 nop

Listing 11: The instructions needed to forward the control flow to the allocated memory
page.

after they have been written to the memory. Once the search process identifies the
allocated memory page, the instructions calling vmalloc_exec are replaced by nop
(No Operation) instructions. If the existing instructions were not to be replaced, further
memory allocations could lead to a crash of the system, due to running out of memory.

The trusted application puts shellcode in the memory page that facilitates copying data
from the Android Binder to the TA (5). The shellcode is discussed in detail in the
following section (see Section 9.4).

Eventually, the rootkit replaces the nop instructions with instructions to execute the
shellcode (6) shown in Listing 11.

Eventually, the control flow returns to the LKM, which initially invoked the rootkit, and
subsequently exits. At the same time, the rootkit in the Arm TrustZone lies dormant
until the shellcode invokes it.

9.4 The Shellcode in the Normal World
The rootkit contains shellcode that is a helper to facilitate moving data from the Binder
to the rootkit. In the following sections, special properties and the functionality of the
shellcode are explained.

64

9.4. The Shellcode in the Normal World

1 ...
2 # store the bytes 0 and 1 of the function address in register 2
3 mov x2, #0x1414
4 ...
5 # store the bytes 2 and 3 of the function address in register 2
6 movk x2, #0x1414, lsl #16
7 ...
8 # store the bytes 4 and 5 of the function address in register 2
9 movk x2, #0x1414, lsl #32

10 # store the bytes 6 and 7 of the function address in register 2
11 movk x2, #0x1414, lsl #48
12 # call the function address stored in register 2
13 blr x2
14 ...

Listing 12: An excerpt of the generated shellcode instructions.

9.4.1 Properties of the Shellcode
The shellcode is directly embedded in the Arm TrustZone rootkit and deployed by the
rootkit to memory in the REE. The shellcode consists of three functions:

1. a 4 instruction function that is required for the OP-TEE setup

2. a function (further on referred to as setup_ta_call) that is responsible for
setting up the environment needed to make a call to the TA and free allocated
resources after operations have finished

3. a function (further on referred to as make_mem_copy) that handles the duplication
of the Android Binder data. Parts of the data are in the userspace and require
special handling to make them accessible. Without using the function __arch_ ⌋
copy_from_user, trying to access the memory region would result in a kernel
panic.

In our case, the shellcode is based on the code of a Linux kernel module that works
and is compiled differently to a normal LKM. The binary lacks stack protection to
remove unneeded code and after the compilation the binary is also stripped. In addition,
instead of calling functions by their name, functions calls invoke placeholder addresses
like 0x1414141414141414. This forces the compiler to generate the snippet shown in
Listing 12.

Using placeholders allows the shellcode to adapt to different systems. During step (5)
in the initialisation phase, the rootkit (see Figure 9.3) replaces the placeholders with a

65

9. Arm TrustZone-based Rootkit

function’s real memory address. As in the case of vmalloc_exec function, the addresses
of the functions are hardcoded. This limitation will be addressed in detail in Section 9.5.

9.4.2 Functionality of the Shellcode
As shown in Figure 9.4, the invocation of the shellcode is triggered by a call to the function
binder_ioctl_write_read (1). The instructions that have been placed during the
initialisation of the rootkit redirect the control flow to the function setup_ta_call
(2), which is part of the shellcode.

The function make_mem_copy (3) repeatedly copies memory from the userspace to the
kernelspace. Most data in the struct binder_write_read resides in the userspace.
Thus, it is necessary to copy it to the kernelspace, as an access would cause an error
otherwise. The first 4 copied bytes contain the type of Binder transaction. If those 4
bytes do not match the 0x40406300, the function returns NULL, indicating that the
function setup_ta_call could not identify relevant data.

Copying the data is necessary, as the sending, as well as the receiving end of the inter-
process communication, are located in the userspace. As can be seen in step (3) of
Figure 9.4, the data that is transferred via the Android Binder is deep copied to make
the data accessible to the code placed in the kernelspace. Theoretically, it is feasible to
forward the userspace memory pointers as-is to the trusted application and let it directly
handle the memory. This causes a major overhead in complexity, though, as the virtual
memory addresses need to be parsed and resolved to physical memory addresses.

The selectd approach is to copy the data from the userspace to the kernelspace and
subsequently forwarding the data from the kernelspace to the trusted application. This
approach allows reusing functions that are available in the Linux kernel.

Eventually, the shellcode invokes several functions of the OP-TEE driver to prepare the
call to the TA (4). After the completion of the preparation steps, the shellcode invokes
the rootkit with the data copied from the Binder as parameter (5).

9.5 Limitations of the Presented Approach
The current approach has a major shortcoming: Most Linux kernel symbol addresses
are specific to a specific compiler and platform. The address of kernel functions, such as
kmalloc, kfree, and the OP-TEE driver’s API, are hardcoded in this proof-of-concept.
Thus, the current implementation of the rootkit does not work on differing platforms
and kernel versions. The execution of the rootkit causes an incompatible system to crash.
The circumvention of this issue requires the ability to dynamically identify the address of
kernel symbols. There have been for example the work of Zhang, Meng, & Wang [227],
as well as a different variant shown in an online post by Igal [100].

The method of Zhang, Meng, & Wang [227] would theoretically work on the Linux kernel
version that is used by the Hikey 960 (Linux 4.14). As the authors have neither provided

66

9.5. Limitations of the Presented Approach

Figure 9.4: A sequence diagram showing how the shellcode invokes the rootkit.

their source code nor provided thorough documentation, it is not usable without extensive
research. Attempts to get further information have been unsuccessful; there has been no
response to sent emails.

On the other hand, Igal has documented his work on his blog [100] and has published
the source code on GitHub [101], allowing to reproduce the result. The method used by
Igal is not applicable anymore without major modifications or respectively a complete
rewrite. Over the years, several things have changed in the Linux kernel’s codebase. For
example, smartphones commonly use a 64-bit Linux kernel, compared to the 32-bit kernel
Igal used in the blog entry. Furthermore, several kernel structures have been replaced,
rewritten, or have been removed entirely from the Linux kernel.

67

CHAPTER 10
Threats and Limitations of an
Arm TrustZone-based Rootkit

In the following chapter, threats and limitations of an Arm TrustZone-based rootkits
will be discussed. Furthermore, detection and prevention mechanisms for the rootkit will
be shortly addressed, as it directly impacts the threat caused by this kind of rootkits.

10.1 Threats Posed by an Arm TrustZone-based Rootkit
The threats of a rootkit in the Arm TrustZone are similar to the ones in the user and
kernelspace. In addition to the general threats posed by rootkits, which are discussed in
chapter Chapter 4, additional threats exist due to the placement of the rootkit in the
attacked system. Once an attacker can reside in the secure world, it is very unlikely that
another component can verify and validate the instructions executed in the system. To
the best of our knowledge, there is currently no coprocessor operating on level -3 in the
protection ring model, which checks a system’s memory for malware.

Due to this property, Arm TrustZone rootkits are harder to detect and harder to remove
than other types of rootkits. In addition, Arm TrustZone rootkits can access all of a
system’s resources, granting it total control of a system.

Each of these threats will be discussed in the following sections.

10.1.1 Detection of Arm TrustZone Rootkits
The first threat mainly stems from the fact that the Arm TrustZone is so deeply integrated
into a system. A layer in the protection ring model can directly access all resources
by the layer above it, without relying on the interfaces provided by the layer above it.
Commonly, the Arm TrustZone is the component with the lowest protection ring model

69

10. Threats and Limitations of an Arm TrustZone-based Rootkit

level. Only Google Pixel phones, such as the Google Pixel 3 [220], contain coprocessors
that are positioned a level below the Arm TrustZone. This leads to a fundamental issue
that the author Juvenal [212] has identified already in the first to second century:

“Quis custodiet ipsos custodes?” ,

which translates to

“Who will watch the watchmen?”

There is no intended mechanism to control what the trusted applications in the TEE are
doing. Hardware-based intrusion detection mechanisms, such as the ones proposed by
Singh et al. [176] and Zhou et al. [231] might be suited for this task. There are several
issues, though:

1. Where are the detection mechanisms placed?

2. How are the machine learning algorithms trained?

3. What should be done once a rootkit is found?

The intrusion detection would need to be integrated into the firmware of a system, as
the data could be easier forged if the intrusion detection systems would, e.g. run as part
of the kernel, 2 levels above the Arm TrustZone.

The second issue is harder to address, as there is a rather small to non-existent sample
size of Arm TrustZone rootkits. Considering the work of Marth et. al [118] and this
thesis, the sample size is 2. Training an algorithm on such a small size likely leads to
many false positives, potentially causing more harm than good.

The last issue is also rather difficult to resolve. While it might be feasible to shut down
certain systems that execute malicious software, other systems might be too important
to stop. For example, shutting down one of many sensors that measures humidity likely
causes fewer issues than powering off a system that is integral for controlling power lines.

As detecting Arm TrustZone-based rootkits is currently hard, it is necessary to take any
precautions necessary to prevent a rootkit from finding its way into the system in the
first place.

70

10.2. Limitations of an Arm TrustZone-based Rootkit

10.1.2 Removing Malicious Software from the System
Compared to normal software, firmware is much harder to update. For example, updating
fundamental firmware on smartphones is a rather tedious and complicated task. Without
the option to update a device’s firmware, a system is prone to attacks, exposing a huge
user base to a security risk.

A good example of the problems faulty firmware causes is a jailbreak that affects Apple’s
iPhones. The jailbreak checkra1n [98] uses the checkm8 [216] vulnerability to give users
more privileges on iPhones. The checkm8 exploit uses various vulnerability in the Device
Firmware Upgrade mode, an integral USB driver that is part of the secure boot chain.
Apple is unable to patch the exploit in the firmware, exposing many iPhone users to a
security risk.

10.1.3 Unrestricted Access to System Resources
The unrestricted access an Arm TrustZone-based rootkit has to a system’s resources is a
big threat. As discussed in Section 10.1.1, to the best of our knowledge, there are no
components in a system that audit the behaviour of processes in the secure world. Thus,
a rootkit in the OP-TEE has uncontrolled access to various components of a system.

Commonly, manufacturers use Arm processors in embedded devices, such as set-top boxes
and small, handheld gaming systems (e.g. the Nintendo Switch). In addition to standard
components such as memory and storage, embedded devices usually also have additional
hardware incorporated, such as card readers. In some cases, the additional hardware
allows processes to access to sensitive data, creating an additional attack surface. For
example, recently, software like softPOS [195] allowed to use Android smartphones as
banking terminals. Accessing the NFC interface would allow intercepting all kinds of
banking information and in addition, e.g. manipulate a transaction to increase the paid
amount.

The unrestricted access still comes with a big limitation: all the data needs to be parsed
by the rootkit on its own to make sense of it. This limitation will be further discussed in
the following section.

10.2 Limitations of an Arm TrustZone-based Rootkit
An Arm TrustZone-based rootkit has two major issues: the missing context of gathered
data and finding a way to enter a system. Both issues will be discussed in the following
sections.

10.2.1 Obtaining and Interpreting Data
The limited set of functionality a trusted operating system commonly provides, makes it
difficult to easily aggregate data from sources apart from the memory. Scrapping the
memory for data is simple, as a trusted application has direct access to it. Due to the

71

10. Threats and Limitations of an Arm TrustZone-based Rootkit

lack of drivers, trusted applications commonly cannot, e.g., obtain data from a hard drive
or wireless interfaces, such as Wi-Fi or Bluetooth. To do so, the OP-TEE would need
to incorporate a driver to interact with the hard drive and a driver that can interact
with the hard drive’s filesystem. Trusted execution environments hardly use other means
of exchanging data with a rich execution environment other than pre-defined interfaces.
Thus, it was never necessary to add functionality to directly communicate with other
components of a system. To access devices, such as hard drives or network devices, it
would be necessary to write custom drivers for every piece of interfaced hardware.

Once the data acquistion finishes, another issue awaits. The intercepted data has no
meaning to the rootkit by default, as everything is just a bunch of ones and zeros due to
the missing context a rich execution environment provides. To be able to distinguish a
binary blob from a chunk of memory, which might contain valuable information, it is
necessary to give the data a context. Depending on the sought content, more or less
sophisticated approaches need to be taken to identify data. For example, private keys in
the PEM format are straightforward to look for. They start with the header -----BEGIN
PRIVATE KEY----- and end with the footer -----END PRIVATE KEY-----. On
the other hand, encrypted data might just be a binary blob, requiring a lot more effort
to reliably identify as there are no headers to identify the binary.

10.2.2 Persistent Storage and Exfiltration of Data
Sometimes the goal of an attacker is not only the manipulation of data, but also a way
to either extract or persistently store data for further processing. The OP-TEE offers an
API to securely store data by either creating a secure, encrypted partition that is only
accessible to the secure world or by relying on the normal world.

The latter variant, called REE FS Secure Storage, is shown in Figure 10.1. The secure
world encrypts the to-be-stored data and forwards it to the OP-TEE driver in the normal
world. Once the data is received in the normal world, the OP-TEE driver stores it in the
local file system.

A major issue in this regard is that only NXP’s boards support either mechanism [138] in
the OP-TEE version 3.13.0, which is used for the proof-of-concept. Subsequently, there is
no default way to securely store data in many environments, requiring self-implemented
workarounds to securely persist data.

10.2.3 Deploying an Arm TrustZone-based Rootkit
A big limitation of an Arm TrustZone-based Rootkit is the ways it can be deployed.
Compared to other malware, there are only a few possibilities to enter a system.

The following paragraphs present 3 attack vectors to deploy malicious code. Each of
these attack vectors is a viable way for the rootkit to enter the TEE, but the probability
of any of these existing for a particular target system is rather small. This severely limits
the threat caused by an Arm TrustZone-based Rootkit.

72

10.2. Limitations of an Arm TrustZone-based Rootkit

Figure 10.1: A depiction of the secure storage implementation relying on the REE [20].

Exploiting Code in the Secure World A common entry point for attacks is
programming mistakes made by the developers, which can lead to the injection and
execution of malicious code. Attackers commonly use memory-based attacks, such as
buffer overflows, to execute malicious code which allows the manipulation of the current
process’ control flow. For example, the OP-TEE’s CVEs found in 2019 [124, 125, 126]
could be used to execute malicious code.

Over the years, developers added multiple mechanisms to compilers, such as clang [103]
and GCC [66], to make it more difficult to exploit memory-based vulnerabilities in an
executable. The compilers apply static analyses to find errors in a program or, e.g.,
ensure that a program follows a specific execution path using Control Flow Integrity
checks. Although the OP-TEE supports many of the mechanisms, some are not widely
available yet. For example, address space layout randomisation, which makes it harder to
perform certain types of memory-based attacks, is only supported as of OP-TEE version
3.8 [214]. Another security mechanism used by the OP-TEE [23] is Privileged Execute
Never [10]. This mechanism prevents user code from executing code in privileged memory
regions.

Additionally, not all kinds of vulnerabilities can be fixed by the mechanisms applied
during the compilation of C, C++, and assembly code. A drawback of these programming
languages are memory issues [46] that, e.g., are the cause of OpenSSL’s heartbleed [45]
or a heap-based overflow in sudo [127], which allowed attackers to gain privileged access
to a system.

73

10. Threats and Limitations of an Arm TrustZone-based Rootkit

In 2020, Wan et. al [52] presented the Teaclave TrustZone SDK. It builds upon the
OP-TEE project and can be used on every platform that is supported by the OP-TEE.
The important fact about the Teaclave TrustZone SDK is that this secure operating
system is written in the Rust programming language. The compiler detects common
memory problems, such as data races, dangling pointers, or null pointers at compile
time, resulting in a failed compilation, requiring developers to resolve these issues for a
successful build. Buffer overflows can also be detected, but only in debug build, as the
checks lead to a performance penalty.

Leveraging compiler checks that apply additional sanity checks on the code, best-practice
coding standards, and the use of memory-safe programming languages, such as Rust,
help to mitigate issues. Eradicating these issues is not feasible, though, as there can
be other error sources that cannot be addressed by a project, such as issues with the
underlying hardware.

Manipulating Code Repositories. A second attack vector is to attack the code
base for the trusted firmware. This approach has the added benefit that a rootkit can be
directly added to a code base and is directly included in the firmware.

In the last couple of years, there have been multiple cases of attackers taking over code
repositories, leading to the insertion of malicious code. Notable cases include the insertion
of malicious code into the Gentoo Linux repository in 2018 [58]. An attacker included
commands whose execution would have deleted a user’s hard drive. Due to several
safeguards, this code could never be executed, though.

In 2021, attackers added malicious code in ua-parser-js [51], a widely used JavaScript
library. A more recent example is from the beginning of 2023, when attackers compro-
mised Github [62] and stole two code-signing certificates. These certificates would have
allowed attackers to redistribute malware that would be able to impersonate a legitimate
application.

In 2024, a backdoor in the utility xz was found [33] that is used by security-critical
applications, such as SSH. A maintainer added an obfuscated backdoor that would have
allowed an attacker to gain access to a system without providing the proper credentials.

These examples show that it is not completely unlikely that code repositories can be
used as starting points to take over systems.

Problems like these are difficult to prevent, as a single compromised account could
be enough. Commonly, attacks such as phishing [89] are used to steal credentials
that allow access to project repositories in this case. Mechanisms, such as multifactor
authentication [131], which forces people to use of at least a second token, in addition to
good password rules [67] can help to prevent a successful account take-over. As with the
vulnerabilities in the software, the eradication of all issues is not feasible. Misconfigured
servers, usage of deprecated software, etc. may all lead to attackers gaining access to an
organisation’s repository.

74

10.2. Limitations of an Arm TrustZone-based Rootkit

In this situation, another problem is how a project handles its dependencies. The trusted
firmware consists of multiple projects that all provide different kinds of functions. If a
single project gets compromised and malicious code is inserted, the complete build setup
for the trusted firmware and the built artifact itself must be considered compromised.

Adding Malicious Code as Trusted Application. The OP-TEE provides the
ability to add additional trusted applications that run in the secure world. Besides
Pseudo Trusted Applications, commonly abbreviated as PTA, which is built directly into
the trusted firmware, there are also User Mode Trusted Applications. The OP-TEE maps
User Mode Trusted Applications directly into the memory of the secure world. These
trusted applications are ELF files [194] that are signed and optionally encrypted. The
correct signature verifies that the executable file is supposed to be loaded into the secure
world. Flaws in the signature verification or leaked private keys can lead to attackers
adding malicious software in this way. Depending on the attacked system, it could suffice
to delete the executables. For example, Android mostly uses a read-only filesystem and
remounting it is commonly not possible due to technical limitations [217]. Thus, it would
not be possible to remove the malicious software without, e.g. applying a software update
or formatting the system.

75

CHAPTER 11
Future Work

The current implementation of the rootkit poses the following research questions for
further work:

1. What other functionality can be realised with an Arm TrustZone-based rootkit?

2. How can a rootkit in the OP-TEE dynamically adapt to a system?

One could argue that better hiding mechanisms should also be in the scope of future
work. At the time of writing this thesis, there is, to the best of our knowledge, no
mechanism that could properly identify Arm TrustZone rootkits. The approaches of
Singh et al. [176] and Zhou et al. [231] might be successful in finding these types of
rootkits. This would require adapting the respective machine-learning algorithms, and
would further be complicated by the small sample size for the system’s training.

11.1 Extending the Trusted Application
The rootkit introduced in this thesis does not extensively process the data in the secure
world. The data that is sent to the TA is currently only printed and not further processed.

For an attacker, the data obtained by intercepting the binder might be valuable. As such,
it needs to be further processed to make it usable.

11.1.1 Persisting the Intercepted Data
An issue for the current implementation is to persistently store the data. The current
implementation can only store data in volatile memory. Thus, a reboot of the system
would lead to a loss of the collected data. The OP-TEE [137] offers an API to securely
store data. The secure storage API has currently two implementations:

77

11. Future Work

1. one backed by the file system in the normal world

2. one backed by a separate location in the EMMC, only accessible to the secure world

In both cases, the support in the OP-TEE must be configured at compile time. The
HiKey 960 development board currently supports neither implementation [139]. In
general, in the OP-TEE version 3.13.0, which was used for this thesis, only boards of
NXP Semiconductors had a configuration [138] to enable either implementation.

Thus, the best option would most likely be to find a separate solution that does not rely
on the secure storage API, as it is most likely unavailable on the attacked system.

11.1.2 Transmitting the Intercepted Data
In addition to storing intercepted data on a compromised device, the data theoretically
could also be extracted by using the network and Bluetooth capabilities of a device.
The big issue is that the OP-TEE does not have drivers to access either communication
technology. To transmit the intercepted data, it would be necessary to implement the
drivers for wireless devices. The OP-TEE allows accessing the needed hardware interfaces,
but the development of the drivers would be very time-consuming.

11.1.3 Modifying the Intercepted Data
A lot of data generated in an Android system passes the Binder. Modifying the input of
the keyboard can be used to, e.g., redirect money to another account, change passwords
to predefined values, or redirect users to malicious websites. Adding the support for
data modification to the rootkit would require additional modifications in the assembly
code. Currently, the shellcode copies data from the userspace to the kernelspace in the
normal world, before it is eventually transferred to the secure world. To apply changes,
it would be necessary to implement the data transfer in the reverse direction. Modifying
data requires to update the length descriptors, offsets, and potential checksums that are
related to data.

11.2 Dynamically Find the Kernel Symbols
A big drawback of the current implementation is that the rootkit is engineered to work
on a certain combination of hardware and software. The deployment of the rootkit on
a different platform or a device with an entirely different software version would fail.
The addresses of kernel symbols differ due to a different target platform, compiler, and
applied optimisations.

The rootkit uses several kernel functions to copy data from and to the kernelspace,
allocate buffers, access the rootkit, etc. Without access to these functions, the rootkit
cannot work as intended.

78

11.2. Dynamically Find the Kernel Symbols

As Zhang, Meng & Wang [227] as well as Igal [100] have shown, it is possible to find the
kernel symbols in the memory. The mechanisms in the respective works would need to
be updated to work with current Linux kernels; if that is even possible. For example, the
mechanism developed by Igal to determine the address of kernel symbols highly depends
on a 32-bit Linux kernel and kernel structures, which were modified since the initial
release of the work.

79

CHAPTER 12
Conclusion & Outlook

The Arm TrustZone is a security extension that allows to split a system into a normal
world and a secure world. Resources allocated to the secure world can only be accessed
by trusted applications in the secure world, preventing attackers from extracting sensitive
data or manipulating security-sensitive computations. The Arm TrustZone is used by
projects such as Android and Samsung’s Knox to secure the respective system and
cryptographic material among other things.

Usually, the Arm TrustZone is considered a trusted component. Marth et. al [118] and
Roth [160] suggested the idea of a malicious actor attacking a system from the TEE. The
former work showcases a proof-of-concept implementation of an Arm TrustZone-based
rootkit, which can covertly grant elevated privileges to processes, among other things.

The rootkit presented in this thesis showcases an attack on a system using the Arm
TrustZone to intercept data passing through the Binder. The rootkit in the Arm
TrustZone searches and hooks functions in the normal world to redirect the data flow to
itself, where it can be safely stored for an attacker.

What makes it so problematic is that Android extensively uses the Binder to transfer data
from one process to another. For example, virtual keyboards on Android phones pass
the user input via the Binder to the process that shows the input field. Thus, sensitive
information, such as message contents, passwords, and bank data are all interceptable at
a single point.

The proof-of-concept implemented as part of this thesis finds the binder_ioctl_ ⌋
write_read function, using a simple search algorithm. This function processes the
binder_write_read struct, which is central to the Binder. By replacing the instruc-
tions in the identified function, a proxy function can be inserted. The proxy function
forwards the control flow to shellcode that copies the binder_write_read struct
and sends this copy to the rootkit residing in the Arm TrustZone. The rootkit is a
pseudo-trusted application as part of the OP-TEE operating system. Once a rootkit

81

12. Conclusion & Outlook

is able to intercept the transferred data, all kinds of modifications could be made to
damage the system’s user.

As the rootkit resides in the Arm TrustZone, it has access to all of a system’s resources.
In addition, it is very difficult to remove as it is a persistent part of a system’s firmware.
Apple’s inability to patch the checkm8 -vulnerability [216], has shown that potential
backdoors in the firmware might not be removable at all under certain circumstances.

To find its way into the Arm TrustZone, a rootkit could either exploit a vulnerability in
the code or be integrated as a part of a device’s firmware, requiring an organisational
vulnerability. Both vulnerabilities can be effectively addressed, but there is never a
guarantee that they can be completely prevented.

Well written code can prevent vulnerabilities that may be used to load malicious code
into the secure world. As C is still a prevalent language for low-level components, there
needs to be extra caution taken. Besides static analysis, tests, etc., a switch to Rust
could also be a good choice. The Apache Teaclave project [52] aims to provide the same
functionality as the OP-TEE but uses memory-safe language Rust instead of C. Using
Rust can prevent issues, such as OP-TEE’s CVEs found in 2019 [124, 125, 126] that
attackers could have used to deploy the rootkit in the secure world.

Organisational security is not easy to address. As various big security incidents caused by,
e.g. the Lapsus$ group [39] that broke into Nvidia, Microsoft, and Samsung, among other
companies, to extort them with the data obtained during the hacks, have exemplified,
it is possible to gain access almost everywhere. In addition, researchers from Trend
Micro [222] have shown that a criminal group succeeded in deploying malware during the
production of devices. If malware gets deployed during the production of a device, it is
almost impossible to remove it. This circumstance highlights the importance of proper
organisational rules and a secure development process.

82

List of Figures

3.1 A graphic showing the CIA Triad. 10
3.2 A simplified example of a supply chain attack. 14

4.1 An example of a userspace rootkit. 19
4.2 An example of a kernel rootkit. 20
4.3 An example of a kernel rootkit. 21
4.4 An example of a hardware virtualisation rootkit. 21
4.5 An example of a UEFI rootkit. 22

5.1 Different processor types of Arm depicted in an infographic of Arm [20]. . 32

6.1 A common protection ring model. 35
6.2 A depiction of the extended ring model by Pinto and Santos [149]. 36
6.3 Example of an Arm-A processor’s security model based on the reference

manual for Arm-A processors [17]. 38
6.4 Example of an Arm-A processor’s memory management based on the reference

manual for Arm-A processors [13]. 40
6.5 Example of the security model in an Arm microcontroller [149]. 40

7.1 An overview of the two kernel types. A monolithic kernel on the left, and a
micro-kernel on the right. 44

7.2 Overview of the call hierarchy during the execution of a system call. . . . 45
7.3 Example of memory mapping in a 32-bit system [99]. 47
7.4 Example of a 3 level memory address translation [11]. 48
7.5 The modular concept currently used by Android [7]. 49

8.1 An example of the data and control flow of the Android Binder. 52

9.1 Overview of the call hierarchy when an intercepted system call. 56
9.2 The Arm-A processor’s security model [17] with subverted components (shown

in red). 62
9.3 The initial call from the LKM to the TA. 63
9.4 A sequence diagram showing how the shellcode invokes the rootkit. 67

10.1 A depiction of the secure storage implementation relying on the REE [20]. 73

83

Acronyms

CISC Complex Instruction Set Computer. 25, 26, 27, 28, 30, 31, 32

IoT Internet of Things. 7, 31, 33, 37

IPC Interprocess Communication. 51

ISA Instruction Set Architecture. 25, 26, 29, 36, 37

LKM Linux Kernel Module. 19, 62, 63, 64, 65, 83

MCU Microcontroller Unit. 31, 33

PMU Performance Monitor Unit. 20

PSP Platform Security Processor. 41

REE Rich Execution Environment. 55, 56, 57, 65, 73, 83

RISC Reduced Instruction Set Computer. 25, 26, 27, 28, 29, 30, 31

RPC Remote Procedure Call. 8

SEV Secure Encrypted Virtualization. 41

SGX Software Guard Extensions. 42

SIMD Single Instruction, Multiple Data. 33, 34

TA Trusted Application. 2, 64, 65, 66, 77

TEE Trusted Execution Environment. 1, 2, 3, 7, 8, 35, 37, 70, 72, 81

TTBR Translation Table Base Register. 39, 47

TTBR0 Translation Table Base Register 0. 39

TTBR1 Translation Table Base Register 1. 39

VM Virtual Machine. 6, 7, 20, 28

85

Bibliography

Print Resources
[22] Ahmed M. Azab et al. “Hypervision across worlds: Real-time kernel protection

from the arm trustzone secure world”. In: Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. ACM New York, NY,
USA, 2014.

[24] Bruno Bierbaumer et al. “Smashing the Stack Protector for Fun and Profit”. In:
ICT Systems Security and Privacy Protection: 33rd IFIP TC 11 International
Conference, SEC 2018, Held at the 24th IFIP World Computer Congress, WCC
2018, Poznan, Poland, September 18-20, 2018, Proceedings 33. Springer, 2018.

[27] E. Blem, J. Menon, and K. Sankaralingam. “Power Struggles: Revisiting the
RISC vs. CISC Debate on Contemporary ARM and X86 Architectures”. In: 2013
IEEE 19th International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2013.

[28] David Brash. “Extensions to the ARMv7-A architecture”. In: 2010 IEEE Hot
Chips 22 Symposium (HCS). IEEE, 2010.

[29] Rory Bray, Daniel Cid, and Andrew Hay. OSSEC host-based intrusion detection
guide. Syngress, 2008. isbn: 159749240X.

[30] Tiago Brito, Nuno O. Duarte, and Nuno Santos. “Arm trustzone for secure image
processing on the cloud”. In: 2016 IEEE 35th Symposium on Reliable Distributed
Systems Workshops (SRDSW). IEEE, 2016.

[32] J. Burton Browning and Bruce Sutherland. C++ 20 Recipes: A Problem-Solution
Approach. Springer, 2020. isbn: 148425712X.

[34] Kenneth H. Chan, Matthew Pasco, and Betty HC Cheng. “Towards a blockchain
framework for autonomous vehicle system integrity”. In: SAE International Journal
of Transportation Cybersecurity and Privacy (2021).

[35] Yue Chen, Mustakimur Khandaker, and Zhi Wang. “Pinpointing vulnerabili-
ties”. In: Proceedings of the 2017 ACM on Asia conference on computer and
communications security. ACM New York, NY, USA, 2017.

87

[37] Binlin Cheng et al. “Towards paving the way for large-scale windows malware
analysis: Generic binary unpacking with orders-of-magnitude performance boost”.
In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Commu-
nications Security. ACM New York, NY, USA, 2018.

[39] Michael Conklin, Brian Elzweig, and Lawrence J. Trautman. “Legal Recourse for
Victims of Blockchain and Cyber Breach Attacks”. In: UC Davis Bus. LJ (2023).

[41] Emanuele Cozzi et al. “Understanding linux malware”. In: 2018 IEEE symposium
on security and privacy (SP). IEEE, 2018.

[43] Francis M. David et al. “Cloaker: Hardware supported rootkit concealment”. In:
2008 IEEE Symposium on Security and Privacy (sp 2008). IEEE, 2008.

[44] Peter J. Denning. “Virtual memory”. In: ACM Computing Surveys (CSUR) (1970).
[45] Zakir Durumeric et al. “The matter of heartbleed”. In: Proceedings of the 2014

conference on internet measurement conference. ACM New York, NY, USA, 2014.
[46] Mehmet Emre et al. “Translating C to safer Rust”. In: Proceedings of the ACM

on Programming Languages (2021).
[47] Robert C. Fannon. “An analysis of hardware-assisted virtual machine based

rootkits”. PhD thesis. Monterey, California: Naval Postgraduate School, 2014.
[49] Huan Feng and Kang G. Shin. “Understanding and defending the binder attack

surface in android”. In: Proceedings of the 32nd Annual Conference on Computer
Security Applications. ACM New York, NY, USA, 2016.

[50] Xinyue Feng et al. “BehaviorKI: Behavior Pattern Based Runtime Integrity
Checking for Operating System Kernel”. In: 2018 IEEE International Conference
on Software Quality, Reliability and Security (QRS). IEEE, 2018.

[55] Jessie Frazelle. “Securing the boot process”. In: Communications of the ACM
(2020).

[56] Praveen Gauravaram et al. “On hash functions using checksums”. In: International
Journal of Information Security (2010).

[57] Xinyang Ge, Hayawardh Vijayakumar, and Trent Jaeger. “Sprobes: Enforcing
kernel code integrity on the trustzone architecture”. In: In Proceedings of the
Third Workshop on Mobile Security Technologies (MoST) 2014. IEEE, 2014.

[59] Anders T. Gjerdrum et al. “Performance of Trusted Computing in Cloud Infras-
tructures with Intel SGX.” In: CLOSER. ACM New York, NY, USA, 2017.

[61] Amélie Gonzalez, Djob Mvondo, and Yérom-David Bromberg. “Takeaways of
Implementing a Native Rust UDP Tunneling Network Driver in the Linux Kernel”.
In: Proceedings of the 12th Workshop on Programming Languages and Operating
Systems. ACM New York, NY, USA, 2023.

[66] Brian Gough and Richard M. Stallman. “An Introduction to GCC for the GNU
Compilers gcc and g++”. In: (1994).

88

[67] Paul Grassi, Michael Garcia, James Fenton, et al. “NIST Digital Identity Guide-
lines”. In: https://csrc. nist. gov/publications/detail/sp/800-63/3/final (2020).

[68] Thomas Grechenig et al. Softwaretechnik: mit Fallbeispielen aus realen Entwick-
lungsprojekten. Pearson Deutschland GmbH, 2010. isbn: 3868940073.

[69] Seon Ha et al. “Kernel code integrity protection at the physical address level on
RISC-V”. In: IEEE Access (2023).

[71] Andreas Haeberlen and Kevin Elphinstone. “User-level management of kernel mem-
ory”. In: Advances in Computer Systems Architecture: 8th Asia-Pacific Conference,
ACSAC 2003, Aizu-Wakamatsu, Japan, September 23-26, 2003. Proceedings 8.
Springer, 2003.

[72] Jakob Hagl, Oliver Mann, and Martin Pirker. “Securing the Linux Boot Process:
From Start to Finish.” In: ICISSP 2021. SciTePress, 2021.

[73] Xueyuan Han et al. “UNICORN: Runtime Provenance-Based Detector for Ad-
vanced Persistent Threats”. In: 27th Annual Network and Distributed System
Security Symposium, NDSS 2020. Internet Society, 2020.

[76] Anders Hejlsberg et al. C# Programming language. Addison-Wesley Professional,
2010. isbn: 0321334434.

[78] Ingoo Heo et al. “Efficient Kernel Integrity Monitor Design for Commodity Mobile
Application Processors”. In: Journal of Semiconductor Technology and Science
(2015).

[79] Muhammad El-Hindi et al. “Benchmarking the Second Generation of Intel SGX
Hardware”. In: Data Management on New Hardware. Association for Computing
Machinery, 2022. isbn: 3319561103.

[80] Sandra Höltervennhoff et al. “{“I} wouldn’t want my unsafe code to run my
{pacemaker”}: An Interview Study on the Use, Comprehension, and Perceived
Risks of Unsafe Rust”. In: 32nd USENIX Security Symposium (USENIX Security
23). USENIX Association, 2023.

[81] Zhichao Hua et al. “vTZ: Virtualizing ARM TrustZone”. In: 26th USENIX Security
Symposium (USENIX Security 17). USENIX Association, 2017.

[82] Jian Huang, Moinuddin K. Qureshi, and Karsten Schwan. “An evolutionary study
of linux memory management for fun and profit”. In: 2016 USENIX Annual
Technical Conference (USENIX ATC 16). USENIX Association, 2016.

[83] Wan Huzaini Wan Hussin, Reuben Edwards, and Paul Coulton. “E-pass using
drm in symbian v8 os and trustzone: Securing vital data on mobile devices”. In:
2006 International Conference on Mobile Business. IEEE, 2006.

[86] Xabier Iturbe, Balaji Venu, and Emre Ozer. “Soft error vulnerability assessment of
the real-time safety-related ARM Cortex-R5 CPU”. In: 2016 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT). IEEE, 2016.

89

[87] Ralf Jung et al. “RustBelt: Securing the foundations of the Rust programming
language”. In: Proceedings of the ACM on Programming Languages (2017).

[89] Mahmoud Khonji, Youssef Iraqi, and Andrew Jones. “Phishing detection: a litera-
ture survey”. In: IEEE Communications Surveys & Tutorials (2013).

[90] Samuel T. King and Peter M. Chen. “SubVirt: Implementing malware with virtual
machines”. In: 2006 IEEE Symposium on Security and Privacy (S&P’06). IEEE,
2006.

[91] Gerwin Klein et al. “seL4: Formal verification of an OS kernel”. In: Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles. USENIX
Association, 2009.

[92] Paul Kocher et al. “Spectre Attacks: Exploiting Speculative Execution”. In: 40th
IEEE Symposium on Security and Privacy (S&P’19). IEEE, 2019.

[93] Jagadish B. Kotra and John Kalamatianos. “Improving the utilization of micro-
operation caches in x86 processors”. In: 2020 53rd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO). IEEE, 2020.

[95] Iggy Krajci et al. “The Intel Mobile Processor”. In: Android on x86: An Introduction
to Optimizing for Intel® Architecture (2013).

[97] Donghyun Kwon et al. “PrOS: Light-weight Privatized Secure OSes in ARM
TrustZone”. In: IEEE Transactions on Mobile Computing (2019).

[98] Muhammad Rakha Laayu et al. “Comparison of Acquisition Results on iPhone 7
Plus (iOS 14.8. 1) between Jailbreaking vs Non-Jailbreaking Device”. In: 2022
10th International Conference on Information and Communication Technology
(ICoICT). IEEE, 2022.

[102] Ralph Langner. “Stuxnet: Dissecting a cyberwarfare weapon”. In: IEEE Security
& Privacy (2011).

[104] Rodrigo G. Lemos et al. “Inspecting Binder transactions to detect anomalies
in Android”. In: 2023 IEEE International Systems Conference (SysCon). IEEE,
2023.

[105] Valentina Lenarduzzi et al. “Are sonarqube rules inducing bugs?” In: 2020 IEEE
27th international conference on software analysis, evolution and reengineering
(SANER). IEEE, 2020.

[107] Moritz Lipp et al. “Meltdown: Reading Kernel Memory from User Space”. In: 27th
USENIX Security Symposium (USENIX Security 18). USENIX Association, 2018.

[108] Baozheng Liu et al. “{FANS}: Fuzzing android native system services via au-
tomated interface analysis”. In: 29th USENIX Security Symposium (USENIX
Security 20). USENIX Association, 2020.

[109] Beichen Liu, Pierre Olivier, and Binoy Ravindran. “Slimguard: A secure and
memory-efficient heap allocator”. In: Proceedings of the 20th International Mid-
dleware Conference. ACM New York, NY, USA, 2019.

90

[110] Mykhaylo Lobur, Serhiy Shcherbovskykh, and Tetyana Stefanovych. “Availability
Audit of IoT System Data Reserved by 3-2-1 Backup Strategy based on Fault
Tree and State Transition Diagram Analysis”. In: 2020 IEEE 15th International
Conference on Computer Sciences and Information Technologies (CSIT). IEEE,
2020.

[111] Rafael Lotufo et al. “Evolution of the Linux kernel variability model”. In: Software
Product Lines: Going Beyond: 14th International Conference, SPLC 2010, Jeju
Island, South Korea, September 13-17, 2010. Proceedings 14. Springer, 2010.

[113] Björn Lundgren and Niklas Möller. “Defining information security”. In: Science
and engineering ethics (2019).

[114] Aravind Machiry et al. “BOOMERANG: Exploiting the Semantic Gap in Trusted
Execution Environments.” In: 24th Annual Network and Distributed System Secu-
rity Symposium, NDSS 2017. NDSS, 2017.

[115] Jochen Mades et al. “TLS-level security for low power industrial IoT network
infrastructures”. In: 2020 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2020.

[116] Takero Magara and Nobuyuki Yamasaki. “Design of Decoded Instruction Cache”.
In: 2023 Eleventh International Symposium on Computing and Networking Work-
shops (CANDARW). IEEE, 2023.

[118] Daniel Marth et al. “Abusing Trust: Mobile Kernel Subversion via TrustZone
Rootkits”. In: 2022 IEEE Security and Privacy Workshops (SPW). IEEE, 2022.

[120] Roger C. Mayer, James H. Davis, and F. David Schoorman. “An Integrative Model
of Organizational Trust”. In: The Academy of Management Review (1995).

[121] J. Todd McDonald et al. “Phase space power analysis for PC-based rootkit
detection”. In: Proceedings of the 2022 ACM Southeast Conference. ACM New
York, NY, USA, 2022.

[122] Gary McGraw. “Software security”. In: IEEE Security & Privacy (2004).
[123] Damiano Melotti, Maxime Rossi-Bellom, and Andrea Continella. “Reversing and

Fuzzing the Google Titan M Chip”. In: Reversing and Offensive-oriented Trends
Symposium. ACM New York, NY, USA, 2021.

[129] Logan Moody et al. “Speculative Code Compaction: Eliminating Dead Code via
Speculative Microcode Transformations”. In: 2022 55th IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2022.

[130] Noel Malcolm Morris. Microelectronic and Microprocessor-based Systems. Macmil-
lan International Higher Education, 1985. isbn: 0333361903.

[131] Katelin A. Moul. “Avoid phishing traps”. In: Proceedings of the 2019 ACM
SIGUCCS Annual Conference. ACM New York, NY, USA, 2019.

[132] Michael Myers and Stephen Youndt. “An introduction to hardware-assisted virtual
machine (HVM) rootkits”. In: Mega Security (2007).

91

[133] Anand Nayyar. “An encyclopedia coverage of compiler’s, programmer’s & simula-
tor’s for 8051, pic, avr, arm, arduino embedded technologies”. In: International
Journal of Reconfigurable and Embedded Systems (2016).

[134] Gerard O’Regan. “Java Programming Language”. In: The Innovation in Computing
Companion. Springer, 2018. isbn: 9783030026196.

[140] Hilarie Orman. “The Morris worm: A fifteen-year perspective”. In: IEEE Security
& Privacy (2003).

[141] Thomas J. Ostrand and Elaine J. Weyuker. “The distribution of faults in a large
industrial software system”. In: ACM SIGSOFT Software Engineering Notes
(2002).

[142] Donn B. Parker. Fighting computer crime: a new framework for protecting infor-
mation. John Wiley & Sons, Inc., 1998. isbn: 0471163783.

[143] Yale N. Patt et al. “Run-time generation of HPS microinstructions from a VAX
instruction stream”. In: ACM SIGMICRO Newsletter (1986).

[144] David A. Patterson. “Reduced Instruction Set Computers”. In: Communications
of the ACM (1985).

[145] Andrea Pellegrini et al. “The arm neoverse n1 platform: Building blocks for the
next-gen cloud-to-edge infrastructure soc”. In: IEEE Micro (2020).

[147] Fabien AP Petitcolas. “Kerckhoffs’ principle”. In: Encyclopedia of Cryptography,
Security and Privacy. Springer, 2023. isbn: 3030715213.

[148] Duy-Phuc Pham, Damien Marion, and Annelie Heuser. “ULTRA: Ultimate Rootkit
Detection over the Air”. In: Proceedings of the 25th International Symposium on
Research in Attacks, Intrusions and Defenses. ACM New York, NY, USA, 2022.

[149] Sandro Pinto and Nuno Santos. “Demystifying Arm TrustZone: A Comprehensive
Survey”. In: ACM Computing Surveys (CSUR) (2019).

[151] Andrei Poenaru et al. “An evaluation of the Fujitsu A64FX for HPC applications”.
In: Presentation in AHUG ISC 21 Workshop. ACM New York, NY, USA, 2021.

[152] Georgios Portokalidis and Angelos D. Keromytis. “Fast and practical instruction-
set randomization for commodity systems”. In: Proceedings of the 26th Annual
Computer Security Applications Conference. ACM New York, NY, USA, 2010.

[157] Randall C. Reid and Arthur H. Gilbert. “Using the Parkerian Hexad to introduce
security in an information literacy class”. In: 2010 Information Security Curriculum
Development Conference. ACM New York, NY, USA, 2010.

[158] Junghwan Rhee et al. “Kernel malware analysis with un-tampered and temporal
views of dynamic kernel memory”. In: Recent Advances in Intrusion Detection:
13th International Symposium, RAID 2010, Ottawa, Ontario, Canada, September
15-17, 2010. Proceedings 13. Springer, 2010.

[161] Alessandro Rubini. “Kernel Korner: The" Virtual File System" in Linux”. In: Linux
Journal (1997).

92

[162] Zella G. Ruthberg and Robert G. McKenzie. “Audit and evaluation of computer
security”. In: (1977). url: https://www.nist.gov/publications/audit-
and- evaluation- computer- security?pub_id=900276 (visited on
9/5/2024).

[166] Nuno Santos et al. “Using ARM TrustZone to build a trusted language runtime
for mobile applications”. In: ACM SIGARCH Computer Architecture News. ACM
New York, NY, USA, 2014.

[167] Simone Scalco et al. “On the feasibility of detecting injections in malicious npm
packages”. In: Proceedings of the 17th International Conference on Availability,
Reliability and Security. ACM New York, NY, USA, 2022.

[169] Adriana Sejfia and Max Schäfer. “Practical automated detection of malicious
npm packages”. In: Proceedings of the 44th International Conference on Software
Engineering. ACM New York, NY, USA, 2022.

[170] Alon Shakevsky, Eyal Ronen, and Avishai Wool. “Trust Dies in Darkness: Shedding
Light on Samsung’s {TrustZone} Keymaster Design”. In: 31st USENIX Security
Symposium (USENIX Security 22). USENIX Association, 2022.

[172] Dong Shen et al. “H-binder: A hardened binder framework on android systems”. In:
Security and Privacy in Communication Networks: 12th International Conference,
SecureComm 2016, Guangzhou, China, October 10-12, 2016, Proceedings 12.
Springer, 2017.

[174] Nikolay A. Simakov et al. “Are we ready for broader adoption of ARM in the
HPC community: Performance and Energy Efficiency Analysis of Benchmarks
and Applications Executed on High-End ARM Systems”. In: Proceedings of the
HPC Asia 2023 Workshops. ACM New York, NY, USA, 2023.

[175] Richard O. Simpson and Phillip D. Hester. “The IBM RT PC ROMP processor
and memory management unit architecture”. In: IBM Systems Journal (1987).

[176] Baljit Singh et al. “On the detection of kernel-level rootkits using hardware
performance counters”. In: Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security. ACM, 2017.

[177] Liantao Song et al. “TZ-IMA: Supporting Integrity Measurement for Applica-
tions with ARM TrustZone”. In: International Conference on Information and
Communications Security. Springer, 2022.

[178] Wonjun Song et al. “{PIkit}: A New {Kernel-Independent}{Processor-Interconnect}
Rootkit”. In: 25th USENIX Security Symposium (USENIX Security 16). USENIX
Association, 2016.

[180] Matt Spisak. “Hardware-Assisted Rootkits: Abusing Performance Counters on
the ARM and x86 Architectures”. In: 10th USENIX Workshop on Offensive
Technologies (WOOT 16). USENIX Association, 2016.

93

https://www.nist.gov/publications/audit-and-evaluation-computer-security?pub_id=900276
https://www.nist.gov/publications/audit-and-evaluation-computer-security?pub_id=900276

[182] Marc Stevens et al. “The first collision for full SHA-1”. In: Advances in Cryptology–
CRYPTO 2017: 37th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 20–24, 2017, Proceedings, Part I 37. Springer, 2017.

[183] Alen Stojanov et al. “SIMD intrinsics on managed language runtimes”. In: Proceed-
ings of the 2018 International Symposium on Code Generation and Optimization.
ACM New York, NY, USA, 2018.

[184] Jacob Stringer et al. “Technical lag of dependencies in major package managers”.
In: 2020 27th Asia-Pacific Software Engineering Conference (APSEC). IEEE,
2020.

[185] Fredrik Strupe and Rakesh Kumar. “Uncovering hidden instructions in Armv8-
A implementations”. In: Hardware and Architectural Support for Security and
Privacy. ACM New York, NY, USA, 2020. isbn: 9781450388986.

[186] Mahesh Subramon, David Kramer, and Indrani Paul. “AMD Ryzen™ 7040 Series:
Technology Overview”. In: 2023 IEEE Hot Chips 35 Symposium (HCS). IEEE
Computer Society, 2023.

[187] G. Edward Suh, Charles W. O’Donnell, and Srinivas Devadas. “AEGIS: A single-
chip secure processor”. In: Information Security Technical Report (2005).

[188] Hema Karnam Surendrababu. “System Integrity–A Cautionary Tale”. In: 2022
IEEE Physical Assurance and Inspection of Electronics (PAINE). IEEE, 2022.

[189] Kuniyasu Suzaki et al. “Library implementation and performance analysis of
GlobalPlatform TEE Internal API for Intel SGX and RISC-V Keystone”. In: 2020
IEEE 19th International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom). IEEE, 2020.

[191] Andrew S. Tanenbaum. Modern operating systems. Pearson India, 2016. isbn:
9789332575776.

[195] Romain Thomas. “DroidGuard: A deep dive into SafetyNet”. In: Symposium sur la
sécurité des technologies de l’information et des communications (SSTIC). SSTIC,
2022.

[196] Ken Thompson. “Reflections on trusting trust”. In: Communications of the ACM
(1984).

[197] Donghai Tian et al. “A Kernel Rootkit Detection Approach Based on Virtualization
and Machine Learning”. In: IEEE Access (2019).

[204] Duc-Ly Vu et al. “Typosquatting and combosquatting attacks on the python
ecosystem”. In: 2020 ieee european symposium on security and privacy workshops
(euros&pw). IEEE, 2020.

[206] Bei Wang, Bo Wang, and Qingqing Xiong. “The comparison of communication
methods between user and Kernel space in embedded Linux”. In: International
Conference on Computational Problem-Solving. IEEE, 2010.

94

[207] Haoyu Wang et al. “Characterizing android app signing issues”. In: 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 2019.

[208] Jiang Wang, Angelos Stavrou, and Anup Ghosh. “Hypercheck: A hardware-assisted
integrity monitor”. In: International Workshop on Recent Advances in Intrusion
Detection. Springer, 2010.

[209] KC Wang. “ARMv8 Architecture and Programming”. In: Embedded and Real-Time
Operating Systems. Springer, 2023. isbn: 9783031287008.

[211] Xueyang Wang and Ramesh Karri. “Numchecker: Detecting kernel control-flow
modifying rootkits by using hardware performance counters”. In: 2013 50th
ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE, 2013.

[212] Lindsay Watson, Patricia Watson, et al. Juvenal: Satire 6. Cambridge University
Press, 2014. isbn: 0521854911.

[213] Ahmad Samer Wazan et al. “RootAsRole: Towards a Secure Alternative to sudo/su
Commands for Home Users and SME Administrators”. In: IFIP International
Conference on ICT Systems Security and Privacy Protection. Springer, 2021.

[216] Jiajian Wu et al. “A research of digital forensic method based on the Checkm8
heap vulnerability”. In: 2021 IEEE 2nd International Conference on Information
Technology, Big Data and Artificial Intelligence (ICIBA). IEEE, 2021.

[218] Xiaobo Xiang et al. “Ghost in the binder: Binder transaction redirection attacks in
Android system services”. In: Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security. ACM New York, NY, USA, 2021.

[219] Xiongwei Xie and Weichao Wang. “Rootkit detection on virtual machines through
deep information extraction at hypervisor-level”. In: 2013 IEEE Conference on
Communications and Network Security (CNS). IEEE, 2013.

[221] Weitian Xing, Yuanhui Cheng, and Werner Dietl. “Ensuring correct cryptographic
algorithm and provider usage at compile time”. In: Proceedings of the 23rd ACM
International Workshop on Formal Techniques for Java-like Programs. ACM New
York, NY, USA, 2021.

[223] Kenichi Yasukata et al. “zpoline: a system call hook mechanism based on binary
rewriting”. In: 2023 USENIX Annual Technical Conference (USENIX ATC 23).
USENIX Association, 2023.

[224] Dong-Hoon You and Bong-Nam Noh. “Android platform based linux kernel
rootkit”. In: 2011 6th International Conference on Malicious and Unwanted
Software. IEEE, 2011.

[225] Nezer Jacob Zaidenberg. “Hardware rooted security in industry 4.0 systems”. In:
Cyber Defence in Industry 4.0 Systems and Related Logistics and IT Infrastructures
(2018).

[226] Hongyu Zhang. “On the distribution of software faults”. In: Transactions on
Software Engineering (2008).

95

[227] Shuhui Zhang, Xiangxu Meng, and Lianhai Wang. “An adaptive approach for
Linux memory analysis based on kernel code reconstruction”. In: EURASIP
Journal on Information Security (2016).

[228] Zixuan Zhang. “Analysis of the Advantages of the M1 CPU and Its Impact on
the Future Development of Apple”. In: 2021 2nd International Conference on Big
Data & Artificial Intelligence & Software Engineering (ICBASE). IEEE, 2021.

[229] Kuo Zhao et al. “Design and implementation of secure auditing system in linux
kernel”. In: 2007 International Workshop on Anti-Counterfeiting, Security and
Identification (ASID). IEEE, 2007.

[230] Lei Zhou et al. “Hardware-assisted Live Kernel Function Updating on Intel
Platforms”. In: IEEE Transactions on Dependable and Secure Computing (2023).

[231] Liwei Zhou and Yiorgos Makris. “Hardware-assisted rootkit detection via on-line
statistical fingerprinting of process execution”. In: 2018 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, 2018.

[232] Markus Zimmermann et al. “Small world with high risks: A study of security
threats in the npm ecosystem”. In: 28th USENIX Security Symposium (USENIX
Security 19). USENIX Association, 2019.

[233] Nikola Zlatanov. “ARM Architecture and RISC Applications”. In: IEEE Computer
Society (2016).

Online Resources
[1] Marat Akhin and Mikhail Belyaev. Kotlin language specification. 2021. url: htt

ps://kotlinlang.org/spec/introduction.html (visited on 9/5/2024).
[2] AlDanial. cloc. 2021. url: https://github.com/AlDanial/cloc (visited

on 5/5/2024).
[3] Tiago Alves and Don Felton. Trustzone: Integrated hardware and software security.

2004. url: https://web.archive.org/web/20070415022456/http:
//www.arm.com/pdfs/TZ%20Whitepaper.pdf (visited on 9/5/2024).

[4] AMD. AMD64 Architecture Programmer’s Manual, Volume 3: General-Purpose
and System Instructions. 2020. url: https://www.amd.com/content/dam/
amd/en/documents/processor-tech-docs/programmer-references
/24594.pdf (visited on 5/5/2024).

[5] Android. 96boards. 2023. url: https://www.96boards.org/product/
hikey960/ (visited on 5/5/2024).

[6] Android. DRM. 2023. url: https://source.android.com/docs/core/
media/drm (visited on 5/5/2024).

[7] Android. Modular system components. 2023. url: https://source.android.
com/docs/core/ota/modular-system (visited on 5/5/2024).

96

https://kotlinlang.org/spec/introduction.html
https://kotlinlang.org/spec/introduction.html
https://github.com/AlDanial/cloc
https://web.archive.org/web/20070415022456/http://www.arm.com/pdfs/TZ%20Whitepaper.pdf
https://web.archive.org/web/20070415022456/http://www.arm.com/pdfs/TZ%20Whitepaper.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24594.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24594.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24594.pdf
https://www.96boards.org/product/hikey960/
https://www.96boards.org/product/hikey960/
https://source.android.com/docs/core/media/drm
https://source.android.com/docs/core/media/drm
https://source.android.com/docs/core/ota/modular-system
https://source.android.com/docs/core/ota/modular-system

[8] Android keystore system. 2020. url: https://developer.android.com/
training/articles/keystore (visited on 5/5/2024).

[9] The Linux Kernel Archives. Linux Kernel. 2021. url: https://www.kernel.
org/ (visited on 5/5/2024).

[10] Arm. Access permissions. 2023. url: https://developer.arm.com/docum
entation/den0024/a/BABCEADG (visited on 5/5/2024).

[11] Arm. ARM architecture reference manual for A-profile architecture. 2022. url:
https://developer.arm.com/documentation/ddi0487/latest/
(visited on 9/5/2024).

[12] Arm. Arm Compiler armasm User Guide. 2014. url: https://developer.
arm.com/documentation/100069/latest/ (visited on 9/5/2024).

[13] Arm. ARM Cortex-A Series Programmer’s Guide for ARMv8-A. 2015. url:
https://developer.arm.com/documentation/den0024/latest/
Memory-Ordering (visited on 9/5/2024).

[14] Arm. Arm Cortex-A78 Core Software Optimization Guide. 2024. url: https:
//documentation-service.arm.com/static/6238b1b98804d00769e
9deec?token= (visited on 5/5/2024).

[15] Arm. Arm Trusted Firmware. 2021. url: https://github.com/ARM-softw
are/arm-trusted-firmware (visited on 5/5/2024).

[16] Arm. Firmware Update. 2024. url: https://trustedfirmware-a.readth
edocs.io/en/latest/components/firmware-update.html#firmwar
e-update-fwu (visited on 5/5/2024).

[17] Arm. Security in ARMv8-A systems. 2022. url: https://developer.arm.
com/documentation/100935/latest/ (visited on 9/5/2024).

[18] Arm. The Cortex-M33 Instruction Set. 2016. url: https://developer.arm.
com/documentation/100235/0004/the-cortex-m33-instruction-
set?lang=en (visited on 5/5/2024).

[19] Arm. TrustZone technology for ARMv8-M Architecture. 2020. url: https://
developer.arm.com/documentation/100690/0200/ARM-TrustZone-
technology?lang=en (visited on 5/5/2024).

[20] Arm Types. 2021. url: https://community.arm.com/resized-image/__
size/1040x0/__key/communityserver-blogs-components-weblogf
iles/00-00-00-21-42/6521.7360.A_2B00_R_2B00_and_2B00_M.png
(visited on 5/5/2024).

[21] Nitay Artenstein and Idan Revivo. Man in the binder: He who controls ipc,
controls the droid. 2014. url: https://www.blackhat.com/docs/eu-
14/materials/eu-14-Artenstein-Man-In-The-Binder-He-Who-
Controls-IPC-Controls-The-Droid-wp.pdf (visited on 9/5/2024).

97

https://developer.android.com/training/articles/keystore
https://developer.android.com/training/articles/keystore
https://www.kernel.org/
https://www.kernel.org/
https://developer.arm.com/documentation/den0024/a/BABCEADG
https://developer.arm.com/documentation/den0024/a/BABCEADG
https://developer.arm.com/documentation/ddi0487/latest/
https://developer.arm.com/documentation/100069/latest/
https://developer.arm.com/documentation/100069/latest/
https://developer.arm.com/documentation/den0024/latest/Memory-Ordering
https://developer.arm.com/documentation/den0024/latest/Memory-Ordering
https://documentation-service.arm.com/static/6238b1b98804d00769e9deec?token=
https://documentation-service.arm.com/static/6238b1b98804d00769e9deec?token=
https://documentation-service.arm.com/static/6238b1b98804d00769e9deec?token=
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/ARM-software/arm-trusted-firmware
https://trustedfirmware-a.readthedocs.io/en/latest/components/firmware-update.html#firmware-update-fwu
https://trustedfirmware-a.readthedocs.io/en/latest/components/firmware-update.html#firmware-update-fwu
https://trustedfirmware-a.readthedocs.io/en/latest/components/firmware-update.html#firmware-update-fwu
https://developer.arm.com/documentation/100935/latest/
https://developer.arm.com/documentation/100935/latest/
https://developer.arm.com/documentation/100235/0004/the-cortex-m33-instruction-set?lang=en
https://developer.arm.com/documentation/100235/0004/the-cortex-m33-instruction-set?lang=en
https://developer.arm.com/documentation/100235/0004/the-cortex-m33-instruction-set?lang=en
https://developer.arm.com/documentation/100690/0200/ARM-TrustZone-technology?lang=en
https://developer.arm.com/documentation/100690/0200/ARM-TrustZone-technology?lang=en
https://developer.arm.com/documentation/100690/0200/ARM-TrustZone-technology?lang=en
https://community.arm.com/resized-image/__size/1040x0/__key/communityserver-blogs-components-weblogfiles/00-00-00-21-42/6521.7360.A_2B00_R_2B00_and_2B00_M.png
https://community.arm.com/resized-image/__size/1040x0/__key/communityserver-blogs-components-weblogfiles/00-00-00-21-42/6521.7360.A_2B00_R_2B00_and_2B00_M.png
https://community.arm.com/resized-image/__size/1040x0/__key/communityserver-blogs-components-weblogfiles/00-00-00-21-42/6521.7360.A_2B00_R_2B00_and_2B00_M.png
https://www.blackhat.com/docs/eu-14/materials/eu-14-Artenstein-Man-In-The-Binder-He-Who-Controls-IPC-Controls-The-Droid-wp.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Artenstein-Man-In-The-Binder-He-Who-Controls-IPC-Controls-The-Droid-wp.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Artenstein-Man-In-The-Binder-He-Who-Controls-IPC-Controls-The-Droid-wp.pdf

[23] Joakim Bech. What security features does optee support? 2019. url: https:
//github.com/OP-TEE/optee_os/issues/2865 (visited on 5/5/2024).

[25] binder.c. 2017. url: https://elixir.bootlin.com/linux/v4.14/
source/drivers/android/binder.c (visited on 5/5/2024).

[26] binder.h. 2017. url: https://elixir.bootlin.com/linux/v4.14/
source/include/uapi/linux/android/binder.h (visited on 5/5/2024).

[31] David Brown. Android Widevine on OP-TEE. 2016. url: http://static.
linaro.org/connect/las16/Presentations/Thursday/LAS16-406%
20-%20Android%20Widevine%20on%20OP-TEE.pdf (visited on 5/5/2024).

[33] BSI. Kritische Backdoor in XZ für Linux. 2024. url: https://www.bsi.
bund.de/SharedDocs/Cybersicherheitswarnungen/DE/2024/2024-
223608-1032.pdf?__blob=publicationFile&v=3 (visited on 5/5/2024).

[36] Yue Chen et al. Downgrade Attack on TrustZone. 2017. url: https://arxiv.
org/pdf/1707.05082 (visited on 5/5/2024).

[38] Victor Chong. Pre-Compiled AOSP with OP-TEE. 2021. url: https://people.
linaro.org/~victor.chong/prebuilt/pie/3130/hikey960/ (visited
on 18/11/2023).

[40] Victor Costan and Srinivas Devadas. Intel SGX explained. 2016. url: https:
//eprint.iacr.org/2016/086 (visited on 9/5/2024).

[42] Dino Dai Zovi. Kernel rootkits. 2001. url: https://citeseerx.ist.psu.
edu/document?repid=rep1&type=pdf&doi=f5d4c37e9d22536e9869d
3adf2a05306b96d3116 (visited on 9/5/2024).

[48] Huan Feng and Kang G. Shin. BinderCracker: Assessing the robustness of android
system services. 2016. url: https://arxiv.org/pdf/1604.06964 (visited
on 5/5/2024).

[51] Ryan Flowers. Supply Chain Attack: NPM Library Used By Facebook And Others
Was Compromised. 2021. url: https://hackaday.com/2021/10/22/sup
ply-chain-attack-npm-library-used-by-facebook-and-others-
was-compromised/ (visited on 5/5/2024).

[52] Apache Foundation. Apache Teaclave TrustZone SDK. 2023. url: https://
github.com/apache/incubator-teaclave-trustzone-sdk (visited on
5/5/2024).

[53] Linux Foundation. Linux Standard Base Core Specification for X86-64. 2015. url:
https://refspecs.linuxfoundation.org/LSB_5.0.0/LSB-Core-
generic/LSB-Core-generic.pdf (visited on 5/5/2024).

[54] Rust Foundation. Build Scripts. 2023. url: https://doc.rust-lang.org/
cargo/reference/build-scripts.html (visited on 5/5/2024).

[58] Gentoo. Infrastructure/Incident Reports/2018-06-28 Github. 2018. url: https:
//wiki.gentoo.org/wiki/Project:Infrastructure/Incident_
Reports/2018-06-28_Github (visited on 5/5/2024).

98

https://github.com/OP-TEE/optee_os/issues/2865
https://github.com/OP-TEE/optee_os/issues/2865
https://elixir.bootlin.com/linux/v4.14/source/drivers/android/binder.c
https://elixir.bootlin.com/linux/v4.14/source/drivers/android/binder.c
https://elixir.bootlin.com/linux/v4.14/source/include/uapi/linux/android/binder.h
https://elixir.bootlin.com/linux/v4.14/source/include/uapi/linux/android/binder.h
http://static.linaro.org/connect/las16/Presentations/Thursday/LAS16-406%20-%20Android%20Widevine%20on%20OP-TEE.pdf
http://static.linaro.org/connect/las16/Presentations/Thursday/LAS16-406%20-%20Android%20Widevine%20on%20OP-TEE.pdf
http://static.linaro.org/connect/las16/Presentations/Thursday/LAS16-406%20-%20Android%20Widevine%20on%20OP-TEE.pdf
https://www.bsi.bund.de/SharedDocs/Cybersicherheitswarnungen/DE/2024/2024-223608-1032.pdf?__blob=publicationFile&v=3
https://www.bsi.bund.de/SharedDocs/Cybersicherheitswarnungen/DE/2024/2024-223608-1032.pdf?__blob=publicationFile&v=3
https://www.bsi.bund.de/SharedDocs/Cybersicherheitswarnungen/DE/2024/2024-223608-1032.pdf?__blob=publicationFile&v=3
https://arxiv.org/pdf/1707.05082
https://arxiv.org/pdf/1707.05082
https://people.linaro.org/~victor.chong/prebuilt/pie/3130/hikey960/
https://people.linaro.org/~victor.chong/prebuilt/pie/3130/hikey960/
https://eprint.iacr.org/2016/086
https://eprint.iacr.org/2016/086
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f5d4c37e9d22536e9869d3adf2a05306b96d3116
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f5d4c37e9d22536e9869d3adf2a05306b96d3116
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f5d4c37e9d22536e9869d3adf2a05306b96d3116
https://arxiv.org/pdf/1604.06964
https://hackaday.com/2021/10/22/supply-chain-attack-npm-library-used-by-facebook-and-others-was-compromised/
https://hackaday.com/2021/10/22/supply-chain-attack-npm-library-used-by-facebook-and-others-was-compromised/
https://hackaday.com/2021/10/22/supply-chain-attack-npm-library-used-by-facebook-and-others-was-compromised/
https://github.com/apache/incubator-teaclave-trustzone-sdk
https://github.com/apache/incubator-teaclave-trustzone-sdk
https://refspecs.linuxfoundation.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic.pdf
https://refspecs.linuxfoundation.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic.pdf
https://doc.rust-lang.org/cargo/reference/build-scripts.html
https://doc.rust-lang.org/cargo/reference/build-scripts.html
https://wiki.gentoo.org/wiki/Project:Infrastructure/Incident_Reports/2018-06-28_Github
https://wiki.gentoo.org/wiki/Project:Infrastructure/Incident_Reports/2018-06-28_Github
https://wiki.gentoo.org/wiki/Project:Infrastructure/Incident_Reports/2018-06-28_Github

[60] Go Programming Language. 2024. url: https://go.dev (visited on 5/5/2024).
[62] Dan Goodin. BEWARE ... CERTIFICATE REVOCATIONS AHEAD. 2023. url:

https://arstechnica.com/information- technology/2023/01/
github-says-hackers-cloned-code-signing-certificates-in-
breached-repository/ (visited on 5/5/2024).

[63] Google. Common Android Kernel Tree. 2021. url: https://android.google
source.com/kernel/common/ (visited on 5/5/2024).

[64] Google. libbinder. 2023. url: https://android.googlesource.com/plat
form/frameworks/native/+/refs/heads/main/libs/binder/rust/
(visited on 5/5/2024).

[65] Google. Using Binder IPC. 2024. url: https://source.android.com/
docs/core/architecture/hidl/binder-ipc (visited on 5/5/2024).

[70] Dianne Hackborn. Re: [PATCH 1/6] staging: android: binder: Remove some funny
&& usage. 2009. url: https://lkml.org/lkml/2009/6/25/3 (visited on
5/5/2024).

[74] hasherezade. Simple userland rootkit - a case study. 2011. url: https://blog.
malwarebytes.com/threat-analysis/2016/12/simple-userland-
rootkit-a-case-study/ (visited on 5/5/2024).

[75] John Heasman. Implementing and detecting an ACPI BIOS rootkit. 2006. url:
https://www.blackhat.com/presentations/bh-europe-06/bh-eu-
06-Heasman.pdf (visited on 9/5/2024).

[77] Christoph Hellwig. staging: remove ashmem. 2022. url: https://github.
com/torvalds/linux/commit/721412ed3d819e767cac2b06646bf03a
a158aaec (visited on 5/5/2024).

[84] ISO. ISO/IEC 9899:2018. 2018. url: https://www.iso.org/standard/
74528.html (visited on 5/5/2024).

[85] ISO/IEC/IEEE. IEEE/ISO/IEC International Standard - Information technology
Portable Operating System Interface (POSIX(TM)) Base Specifications, Issue 7.
2009. url: https://ieeexplore.ieee.org/document/5393893 (visited
on 9/5/2024).

[88] Kdm. NTIllusion: A portable Win32 userland rootkit. 2004. url: http://
phrack.org/issues/62/12.html (visited on 5/5/2024).

[94] Xeno Kovah and Corey Kallenberg. How Many Million BIOSes Would you Like
to Infect? 2015. url: https://web.archive.org/web/20230326202719/
http://www.legbacore.com/Research_files/HowManyMillionBIOS
esWouldYouLikeToInfect_Whitepaper_v1.pdf (visited on 9/5/2024).

[96] Greg Kroah-Hartman. PM: wakeup: simplify the output logic of pm_show_wakelocks().
2022. url: https://github.com/torvalds/linux/commit/c9d967b2c
e40d71e968eb839f36c936b8a9cf1ea (visited on 5/5/2024).

99

https://go.dev
https://arstechnica.com/information-technology/2023/01/github-says-hackers-cloned-code-signing-certificates-in-breached-repository/
https://arstechnica.com/information-technology/2023/01/github-says-hackers-cloned-code-signing-certificates-in-breached-repository/
https://arstechnica.com/information-technology/2023/01/github-says-hackers-cloned-code-signing-certificates-in-breached-repository/
https://android.googlesource.com/kernel/common/
https://android.googlesource.com/kernel/common/
https://android.googlesource.com/platform/frameworks/native/+/refs/heads/main/libs/binder/rust/
https://android.googlesource.com/platform/frameworks/native/+/refs/heads/main/libs/binder/rust/
https://source.android.com/docs/core/architecture/hidl/binder-ipc
https://source.android.com/docs/core/architecture/hidl/binder-ipc
https://lkml.org/lkml/2009/6/25/3
https://blog.malwarebytes.com/threat-analysis/2016/12/simple-userland-rootkit-a-case-study/
https://blog.malwarebytes.com/threat-analysis/2016/12/simple-userland-rootkit-a-case-study/
https://blog.malwarebytes.com/threat-analysis/2016/12/simple-userland-rootkit-a-case-study/
https://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Heasman.pdf
https://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Heasman.pdf
https://github.com/torvalds/linux/commit/721412ed3d819e767cac2b06646bf03aa158aaec
https://github.com/torvalds/linux/commit/721412ed3d819e767cac2b06646bf03aa158aaec
https://github.com/torvalds/linux/commit/721412ed3d819e767cac2b06646bf03aa158aaec
https://www.iso.org/standard/74528.html
https://www.iso.org/standard/74528.html
https://ieeexplore.ieee.org/document/5393893
http://phrack.org/issues/62/12.html
http://phrack.org/issues/62/12.html
https://web.archive.org/web/20230326202719/http://www.legbacore.com/Research_files/HowManyMillionBIOSesWouldYouLikeToInfect_Whitepaper_v1.pdf
https://web.archive.org/web/20230326202719/http://www.legbacore.com/Research_files/HowManyMillionBIOSesWouldYouLikeToInfect_Whitepaper_v1.pdf
https://web.archive.org/web/20230326202719/http://www.legbacore.com/Research_files/HowManyMillionBIOSesWouldYouLikeToInfect_Whitepaper_v1.pdf
https://github.com/torvalds/linux/commit/c9d967b2ce40d71e968eb839f36c936b8a9cf1ea
https://github.com/torvalds/linux/commit/c9d967b2ce40d71e968eb839f36c936b8a9cf1ea

[99] Linux Kernel Labs. Linux Kernel Teaching. 2022. url: https://linux-kerne
l-labs.github.io/ (visited on 5/5/2024).

[100] laginimaineb. Effectively bypassing kptr_restrict on Android. 2015. url: https:
//bits-please.blogspot.com/2015/08/effectively-bypassing-
kptrrestrict-on.html (visited on 5/5/2024).

[101] laginimaineb. static_kallsyms. 2017. url: https://github.com/laginimai
neb/static_kallsyms (visited on 5/5/2024).

[103] Chris Lattner. LLVM and Clang: Next generation compiler technology. 2008. url:
https://www.llvm.org/pubs/2008-05-17-BSDCan-LLVMIntro.pdf
(visited on 9/5/2024).

[106] Rust for Linux. Android Binder Driver. 2024. url: https://rust- for-
linux.com/android-binder-driver (visited on 5/5/2024).

[112] Robert Love. ashmem: Anonymous shared memory subsystem. 2015. url: https:
//github.com/torvalds/linux/commit/11980c2ac4ccfad21a5f8ee
9e12059f1e687bb40 (visited on 5/5/2024).

[117] Catalin Marinas. Memory Layout on AArch64 Linux. 2024. url: https://www.
kernel.org/doc/html/v5.3/arm64/memory.html (visited on 5/5/2024).

[119] Wolfgang Mauerer et al. Real-Time Android: Deterministic Ease of Use. 2012. url:
https://lfdr.de/Publications/2014/EWC-Mauerer.pdf (visited on
9/5/2024).

[124] MITRE. CVE-2019-1010296. 2019. url: https://nvd.nist.gov/vuln/
detail/CVE-2019-1010296 (visited on 5/5/2024).

[125] MITRE. CVE-2019-1010297. 2019. url: https://nvd.nist.gov/vuln/
detail/CVE-2019-1010297 (visited on 5/5/2024).

[126] MITRE. CVE-2019-1010298. 2019. url: https://nvd.nist.gov/vuln/
detail/CVE-2019-1010298 (visited on 5/5/2024).

[127] MITRE. CVE-2021-3156. 2021. url: https://nvd.nist.gov/vuln/detai
l/CVE-2021-3156 (visited on 5/5/2024).

[128] MITRE. CVE-2022-0847. 2022. url: https://nvd.nist.gov/vuln/detai
l/CVE-2022-0847 (visited on 5/5/2024).

[135] OP-TEE. 2019. url: https://github.com/OP-TEE/optee_os (visited on
5/5/2024).

[136] Michael Opdenacker. Embedded Linux size reduction techniques. 2017. url: http:
//events17.linuxfoundation.org/sites/events/files/slides/
opdenacker-embedded-linux-size-reduction-techniques_0.pdf
(visited on 9/5/2024).

[137] Open Portable Trusted Execution Environment. 2021. url: https://www.op-
tee.org/ (visited on 5/5/2024).

100

https://linux-kernel-labs.github.io/
https://linux-kernel-labs.github.io/
https://bits-please.blogspot.com/2015/08/effectively-bypassing-kptrrestrict-on.html
https://bits-please.blogspot.com/2015/08/effectively-bypassing-kptrrestrict-on.html
https://bits-please.blogspot.com/2015/08/effectively-bypassing-kptrrestrict-on.html
https://github.com/laginimaineb/static_kallsyms
https://github.com/laginimaineb/static_kallsyms
https://www.llvm.org/pubs/2008-05-17-BSDCan-LLVMIntro.pdf
https://rust-for-linux.com/android-binder-driver
https://rust-for-linux.com/android-binder-driver
https://github.com/torvalds/linux/commit/11980c2ac4ccfad21a5f8ee9e12059f1e687bb40
https://github.com/torvalds/linux/commit/11980c2ac4ccfad21a5f8ee9e12059f1e687bb40
https://github.com/torvalds/linux/commit/11980c2ac4ccfad21a5f8ee9e12059f1e687bb40
https://www.kernel.org/doc/html/v5.3/arm64/memory.html
https://www.kernel.org/doc/html/v5.3/arm64/memory.html
https://lfdr.de/Publications/2014/EWC-Mauerer.pdf
https://nvd.nist.gov/vuln/detail/CVE-2019-1010296
https://nvd.nist.gov/vuln/detail/CVE-2019-1010296
https://nvd.nist.gov/vuln/detail/CVE-2019-1010297
https://nvd.nist.gov/vuln/detail/CVE-2019-1010297
https://nvd.nist.gov/vuln/detail/CVE-2019-1010298
https://nvd.nist.gov/vuln/detail/CVE-2019-1010298
https://nvd.nist.gov/vuln/detail/CVE-2021-3156
https://nvd.nist.gov/vuln/detail/CVE-2021-3156
https://nvd.nist.gov/vuln/detail/CVE-2022-0847
https://nvd.nist.gov/vuln/detail/CVE-2022-0847
https://github.com/OP-TEE/optee_os
http://events17.linuxfoundation.org/sites/events/files/slides/opdenacker-embedded-linux-size-reduction-techniques_0.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/opdenacker-embedded-linux-size-reduction-techniques_0.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/opdenacker-embedded-linux-size-reduction-techniques_0.pdf
https://www.op-tee.org/
https://www.op-tee.org/

[138] optee_os. 2021. url: https://github.com/OP-TEE/optee_os/blob/30c
13f9e2ff178c9a299e409de75d50529cf5064/core/arch/arm/plat-
imx/conf.mk#L370 (visited on 5/5/2024).

[139] optee_os. 2024. url: https://github.com/OP-TEE/optee_os/blob/16f
bd46d245d634778b9df729e3909d6bfd9a79b/core/arch/arm/plat-
hikey/conf.mk (visited on 5/5/2024).

[146] Jason Perlow. 1991’s PC technology was unbelievable. 2021. url: https://www.
zdnet.com/article/1991s- pc- technology- was- unbelievable/
(visited on 5/5/2024).

[150] plaguez. Weakening the Linux Kernel. 1998. url: http://phrack.org/
issues/52/18.html (visited on 5/5/2024).

[153] procps-ng. procps. 2021. url: https://gitlab.com/procps-ng/procps
(visited on 5/5/2024).

[154] Programming ARM TrustZone Architecture on the Xilinx Zynq-7000 All Pro-
grammable SoC. 2014. url: https://www.xilinx.com/support/docu
mentation/user_guides/ug1019-zynq-trustzone.pdf (visited on
5/5/2024).

[155] T. Ptacek, Nate Lawson, and P. Ferrie. Dont tell joanna, the virtualized rootkit
is dead. 2007. url: https://www.blackhat.com/docs/us-15/mate
rials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-
Trustzone-On-Android-wp.pdf (visited on 9/5/2024).

[156] Qualcomm. Code Aurora git repositories. 2021. url: https://source.codea
urora.org/quic/kernel (visited on 5/5/2024).

[159] Dan Rosenberg. Qsee trustzone kernel integer over flow vulnerability. 2014. url:
https://www.blackhat.com/docs/us-14/materials/us-14-Ro
senberg-Reflections-On-Trusting-TrustZone-WP.pdf (visited on
5/5/2024).

[160] Thomas Roth. Next generation mobile rootkits. 2013. url: https://hacki
nparis.com/data/slides/2013/Slidesthomasroth.pdf (visited on
5/5/2024).

[163] Joanna Rutkowska. Introducing Blue Pill. 2006. url: https://blog.invisib
lethings.org/2006/06/22/introducing-blue-pill.html (visited on
5/5/2024).

[164] Spyridon Samonas and David Coss. The CIA strikes back: Redefining confiden-
tiality, integrity and availability in security. 2014. url: https://www.proso.
com/dl/Samonas.pdf (visited on 9/5/2024).

[165] SAMSUNG Knox. 2021. url: https://www.samsungknox.com/en (visited
on 5/5/2024).

101

https://github.com/OP-TEE/optee_os/blob/30c13f9e2ff178c9a299e409de75d50529cf5064/core/arch/arm/plat-imx/conf.mk#L370
https://github.com/OP-TEE/optee_os/blob/30c13f9e2ff178c9a299e409de75d50529cf5064/core/arch/arm/plat-imx/conf.mk#L370
https://github.com/OP-TEE/optee_os/blob/30c13f9e2ff178c9a299e409de75d50529cf5064/core/arch/arm/plat-imx/conf.mk#L370
https://github.com/OP-TEE/optee_os/blob/16fbd46d245d634778b9df729e3909d6bfd9a79b/core/arch/arm/plat-hikey/conf.mk
https://github.com/OP-TEE/optee_os/blob/16fbd46d245d634778b9df729e3909d6bfd9a79b/core/arch/arm/plat-hikey/conf.mk
https://github.com/OP-TEE/optee_os/blob/16fbd46d245d634778b9df729e3909d6bfd9a79b/core/arch/arm/plat-hikey/conf.mk
https://www.zdnet.com/article/1991s-pc-technology-was-unbelievable/
https://www.zdnet.com/article/1991s-pc-technology-was-unbelievable/
http://phrack.org/issues/52/18.html
http://phrack.org/issues/52/18.html
https://gitlab.com/procps-ng/procps
https://www.xilinx.com/support/documentation/user_guides/ug1019-zynq-trustzone.pdf
https://www.xilinx.com/support/documentation/user_guides/ug1019-zynq-trustzone.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
https://source.codeaurora.org/quic/kernel
https://source.codeaurora.org/quic/kernel
https://www.blackhat.com/docs/us-14/materials/us-14-Rosenberg-Reflections-On-Trusting-TrustZone-WP.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Rosenberg-Reflections-On-Trusting-TrustZone-WP.pdf
https://hackinparis.com/data/slides/2013/Slidesthomasroth.pdf
https://hackinparis.com/data/slides/2013/Slidesthomasroth.pdf
https://blog.invisiblethings.org/2006/06/22/introducing-blue-pill.html
https://blog.invisiblethings.org/2006/06/22/introducing-blue-pill.html
https://www.proso.com/dl/Samonas.pdf
https://www.proso.com/dl/Samonas.pdf
https://www.samsungknox.com/en

[168] Martin Schwidefsky. [S390] remove export of sys_call_table. 2006. url: https:
//github.com/torvalds/linux/commit/8f27766a883149926e7c1f
69d9f1d8f68efcd65f (visited on 5/5/2024).

[171] Di Shen. Exploiting TrustZone on android. 2015. url: https://www.blac
khat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-
Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf (visited
on 9/5/2024).

[173] SierraTEE Trusted Execution Environment. 2021. url: https://web.archive.
org/web/20230204123939/https://sierraware.com/open-source-
ARM-TrustZone.html (visited on 5/5/2024).

[179] Philip Sparks. The route to a trillion devices. 2017. url: https://communi
ty.arm.com/cfs-file/__key/telligent-evolution-components-
attachments/01- 1996- 00- 00- 00- 01- 30- 09/Arm- _2D00_- The-
route-to-a-trillion-devices-_2D00_-June-2017.pdf (visited on
9/5/2024).

[181] Steam Hardware & Software Survey: March 2024. 2024. url: https://web.
archive.org/web/20240415003003/https://store.steampowered.
com/hwsurvey/ (visited on 5/5/2024).

[190] System Debug User and Reference Guide. 2020. url: https://web.archive.
org/web/20200811195610/https://software.intel.com/content/
www/us/en/develop/documentation/system-debug-user-guide/
top.html (visited on 5/5/2024).

[192] Satya Tangirala and Sumit Semwal. State of Android on Mainline Kernels. 2021.
url: https://linuxplumbersconf.org/event/7/contributions/
785/attachments/532/946/State_of_Android_on_Mainline_Kerne
ls__LPC.pdf (visited on 5/5/2024).

[193] OP-TEE. Secure storage. 2021. url: https://optee.readthedocs.io/en/
latest/architecture/secure_storage.html (visited on 5/5/2024).

[194] OP-TEE. Trusted Applications. 2021. url: https://optee.readthedocs.
io/en/latest/architecture/trusted_applications.html (visited
on 5/5/2024).

[198] tlynn. Avoid generating metadata in pip download –no-deps ... 2014. url: https:
//github.com/pypa/pip/issues/1884 (visited on 5/5/2024).

[199] Linus Torvalds. EFI. 2006. url: https://yarchive.net/comp/linux/efi.
html (visited on 5/5/2024).

[200] Trusty Tee. 2020. url: https://source.android.com/docs/security/
features/trusty (visited on 5/5/2024).

102

https://github.com/torvalds/linux/commit/8f27766a883149926e7c1f69d9f1d8f68efcd65f
https://github.com/torvalds/linux/commit/8f27766a883149926e7c1f69d9f1d8f68efcd65f
https://github.com/torvalds/linux/commit/8f27766a883149926e7c1f69d9f1d8f68efcd65f
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
https://web.archive.org/web/20230204123939/https://sierraware.com/open-source-ARM-TrustZone.html
https://web.archive.org/web/20230204123939/https://sierraware.com/open-source-ARM-TrustZone.html
https://web.archive.org/web/20230204123939/https://sierraware.com/open-source-ARM-TrustZone.html
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-1996-00-00-00-01-30-09/Arm-_2D00_-The-route-to-a-trillion-devices-_2D00_-June-2017.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-1996-00-00-00-01-30-09/Arm-_2D00_-The-route-to-a-trillion-devices-_2D00_-June-2017.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-1996-00-00-00-01-30-09/Arm-_2D00_-The-route-to-a-trillion-devices-_2D00_-June-2017.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-1996-00-00-00-01-30-09/Arm-_2D00_-The-route-to-a-trillion-devices-_2D00_-June-2017.pdf
https://web.archive.org/web/20240415003003/https://store.steampowered.com/hwsurvey/
https://web.archive.org/web/20240415003003/https://store.steampowered.com/hwsurvey/
https://web.archive.org/web/20240415003003/https://store.steampowered.com/hwsurvey/
https://web.archive.org/web/20200811195610/https://software.intel.com/content/www/us/en/develop/documentation/system-debug-user-guide/top.html
https://web.archive.org/web/20200811195610/https://software.intel.com/content/www/us/en/develop/documentation/system-debug-user-guide/top.html
https://web.archive.org/web/20200811195610/https://software.intel.com/content/www/us/en/develop/documentation/system-debug-user-guide/top.html
https://web.archive.org/web/20200811195610/https://software.intel.com/content/www/us/en/develop/documentation/system-debug-user-guide/top.html
https://linuxplumbersconf.org/event/7/contributions/785/attachments/532/946/State_of_Android_on_Mainline_Kernels__LPC.pdf
https://linuxplumbersconf.org/event/7/contributions/785/attachments/532/946/State_of_Android_on_Mainline_Kernels__LPC.pdf
https://linuxplumbersconf.org/event/7/contributions/785/attachments/532/946/State_of_Android_on_Mainline_Kernels__LPC.pdf
https://optee.readthedocs.io/en/latest/architecture/secure_storage.html
https://optee.readthedocs.io/en/latest/architecture/secure_storage.html
https://optee.readthedocs.io/en/latest/architecture/trusted_applications.html
https://optee.readthedocs.io/en/latest/architecture/trusted_applications.html
https://github.com/pypa/pip/issues/1884
https://github.com/pypa/pip/issues/1884
https://yarchive.net/comp/linux/efi.html
https://yarchive.net/comp/linux/efi.html
https://source.android.com/docs/security/features/trusty
https://source.android.com/docs/security/features/trusty

[201] Orange Tsai. Breaking Parser Logic: Take Your Path Normalization off and Pop
0days Out! Black Hat USA, 2018. 2018. url: https://i.blackhat.com/us-
18/Wed-August-8/us-18-Orange-Tsai-Breaking-Parser-Logic-
Take-Your-Path-Normalization-Off-And-Pop-0days-Out-2.pdf
(visited on 5/5/2024).

[202] Hannes Tschofenig et al. Arm’s Platform Security Architecture (PSA) Attestation
Token. 2020. url: https://www.ietf.org/archive/id/draft-tschofe
nig-rats-psa-token-22.html (visited on 9/5/2024).

[203] uaccess.h. 2017. url: https://elixir.bootlin.com/linux/latest/
source/include/linux/uaccess.h (visited on 5/5/2024).

[205] Ben Walshe. A Brief History of Arm: Part 1. 1999. url: https://community.
arm.com/developer/ip-products/processors/b/processors-ip-
blog/posts/a-brief-history-of-arm-part-1 (visited on 5/5/2024).

[210] Xiao Wang et al. TKRD: Trusted kernel rootkit detection for cybersecurity of
VMs based on machine learning and memory forensic analysis. 2019. url: https:
//www.aimspress.com/article/10.3934/mbe.2019132 (visited on
9/5/2024).

[214] Jens Wiklander. ASLR in OP-TEE. 2021. url: https://static.linaro.org
/connect/lvc21/presentations/lvc21-118.pdf (visited on 5/5/2024).

[215] Jens Wiklander. tee: generic TEE subsystem. 2017. url: https://github.
com/torvalds/linux/commit/967c9cca2cc50569efc65945325c173c
ecba83bd (visited on 5/5/2024).

[217] John Wu. Remount Android ext4. 2019. url: https://twitter.com/topjoh
nwu/status/1170404631865778177 (visited on 5/5/2024).

[220] Xiaowen Xin. Titan M makes Pixel 3 our most secure phone yet. 2018. url:
https://blog.google/products/pixel/titan-m-makes-pixel-3-
our-most-secure-phone-yet/ (visited on 5/5/2024).

[222] Fyodor Yarochkin et al. Behind the Scenes: How Criminal Enterprises Pre-infect
Millions of Mobile Devices. 2021. url: https://www.blackhat.com/asia-
23/briefings/schedule/index.html#behind-the-scenes-how-cr
iminal-enterprises-pre-infect-millions-of-mobile-devices-
31235 (visited on 5/5/2024).

103

https://i.blackhat.com/us-18/Wed-August-8/us-18-Orange-Tsai-Breaking-Parser-Logic-Take-Your-Path-Normalization-Off-And-Pop-0days-Out-2.pdf
https://i.blackhat.com/us-18/Wed-August-8/us-18-Orange-Tsai-Breaking-Parser-Logic-Take-Your-Path-Normalization-Off-And-Pop-0days-Out-2.pdf
https://i.blackhat.com/us-18/Wed-August-8/us-18-Orange-Tsai-Breaking-Parser-Logic-Take-Your-Path-Normalization-Off-And-Pop-0days-Out-2.pdf
https://www.ietf.org/archive/id/draft-tschofenig-rats-psa-token-22.html
https://www.ietf.org/archive/id/draft-tschofenig-rats-psa-token-22.html
https://elixir.bootlin.com/linux/latest/source/include/linux/uaccess.h
https://elixir.bootlin.com/linux/latest/source/include/linux/uaccess.h
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/a-brief-history-of-arm-part-1
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/a-brief-history-of-arm-part-1
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/a-brief-history-of-arm-part-1
https://www.aimspress.com/article/10.3934/mbe.2019132
https://www.aimspress.com/article/10.3934/mbe.2019132
https://static.linaro.org/connect/lvc21/presentations/lvc21-118.pdf
https://static.linaro.org/connect/lvc21/presentations/lvc21-118.pdf
https://github.com/torvalds/linux/commit/967c9cca2cc50569efc65945325c173cecba83bd
https://github.com/torvalds/linux/commit/967c9cca2cc50569efc65945325c173cecba83bd
https://github.com/torvalds/linux/commit/967c9cca2cc50569efc65945325c173cecba83bd
https://twitter.com/topjohnwu/status/1170404631865778177
https://twitter.com/topjohnwu/status/1170404631865778177
https://blog.google/products/pixel/titan-m-makes-pixel-3-our-most-secure-phone-yet/
https://blog.google/products/pixel/titan-m-makes-pixel-3-our-most-secure-phone-yet/
https://www.blackhat.com/asia-23/briefings/schedule/index.html#behind-the-scenes-how-criminal-enterprises-pre-infect-millions-of-mobile-devices-31235
https://www.blackhat.com/asia-23/briefings/schedule/index.html#behind-the-scenes-how-criminal-enterprises-pre-infect-millions-of-mobile-devices-31235
https://www.blackhat.com/asia-23/briefings/schedule/index.html#behind-the-scenes-how-criminal-enterprises-pre-infect-millions-of-mobile-devices-31235
https://www.blackhat.com/asia-23/briefings/schedule/index.html#behind-the-scenes-how-criminal-enterprises-pre-infect-millions-of-mobile-devices-31235

	Kurzfassung
	Abstract
	Contents
	Introduction
	Goals
	Methodological Approach
	Structure

	Related Work
	Exploiting the Arm TrustZone
	Attacking Systems Using Rootkits
	Securing Systems Against Rootkits
	Securing Systems Using the Arm TrustZone
	The Android Binder

	IT-Security Fundamentals
	Information Security
	Extensions of the CIA Triad
	Software Security

	Fundamentals of Rootkits
	Userspace Rootkits
	Kernel Rootkits
	Hardware-Assisted Rootkits
	Hardware Virtualisation Rootkits
	BIOS/UEFI Rootkits

	ARM Processor Architecture
	Difference Between the RISC and CISC Architectures
	Comparison of Different Arm Processor Types

	Arm TrustZone and Other Trusted Execution Environments
	The Arm TrustZone
	The Arm TrustZone on Different Processor Types
	Alternatives to the Arm TrustZone

	Fundamentals of the Linux Kernel
	The Linux Kernel Architecture
	Linux Kernel Internals
	The Linux Kernel's Memory Management
	Extensions to the Linux Kernel for Android

	The Android Binder
	Arm TrustZone-based Rootkit
	Basics of an Arm TrustZone-based Rootkit
	Design of an Arm TrustZone-based Rootkit
	Preparing the Interception of Data in the Android Binder
	The Shellcode in the Normal World
	Limitations of the Presented Approach

	Threats and Limitations of an Arm TrustZone-based Rootkit
	Threats Posed by an Arm TrustZone-based Rootkit
	Limitations of an Arm TrustZone-based Rootkit

	Future Work
	Extending the Trusted Application
	Dynamically Find the Kernel Symbols

	Conclusion & Outlook
	List of Figures
	Acronyms
	Bibliography
	Print Resources
	Online Resources

