
Exact Methods for the Time
Frame Rostering Problem
In the Context of Tram Driver Rostering

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Logic and Computation

eingereicht von

Lukas Frühwirth, BA
Matrikelnummer 51836522

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Associate Prof. Dipl.-Ing. Dr.techn. Nysret Musliu

Wien, 12. August 2024
Lukas Frühwirth Nysret Musliu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Exact Methods for the Time
Frame Rostering Problem
In the Context of Tram Driver Rostering

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Logic and Computation

by

Lukas Frühwirth, BA
Registration Number 51836522

to the Faculty of Informatics

at the TU Wien

Advisor: Associate Prof. Dipl.-Ing. Dr.techn. Nysret Musliu

Vienna, August 12, 2024
Lukas Frühwirth Nysret Musliu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Lukas Frühwirth, BA

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen,
die ohne substantielle Änderungen übernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT- Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

Wien, 12. August 2024
Lukas Frühwirth

v

Danksagung

Ich möchte meiner Familie für ihre Unterstützung in den letzten Jahren meinen tiefsten
Dank aussprechen. Besonderer Dank gilt meiner Partnerin, Teresa, für ihre kontinuierliche
Ermutigung, für das Korrekturlesen meiner Arbeit und für das Hinterfragen meiner Ideen,
was wesentlich zur Qualität dieser Diplomarbeit beigetragen hat. Ich bin auch meiner
Mama sehr dankbar, dass sie es mir ermöglichte, mich auf das Schreiben zu konzentrieren,
während sie sich um Ilvy kümmerte.

Außerdem möchte ich Uschi und Bernhard herzlich danken, die mir einen Raum zur
Verfügung stellten, um an meiner Diplomarbeit zu arbeiten, sowie für ihre Unterstützung
in der Betreuung von Ilvy. Zusätzlich danke ich dem öffentlichen Verkehrsunternehmen
für die Bereitstellung der Daten und für die Einführung in das Thema.

Ich möchte mich auch bei Lorenz bedanken, mit dem ich über manche Methoden dieser
Arbeit diskutieren konnte. Ein besonderer Dank gilt auch meinem Betreuer, der mich
über das letzte Jahr hinweg unterstützte und mich ermutigte, diese Arbeit als Artikel bei
der PATAT Konferenz 2024 einzureichen.

Ohne all diese Unterstützung wäre es mir nicht möglich gewesen, meine Diplomarbeit zu
vollenden.

vii

Acknowledgements

I would like to express my deepest gratitude to my family for their support over the past
years. Special thanks go to my partner, Teresa, for her continuous encouragement, for
proofreading my work, and for challenging my ideas, which greatly contributed to the
quality of this thesis. I am also profoundly grateful to my mother for enabling me to
focus on my writing by taking care of Ilvy.

Furthermore, I extend my heartfelt thanks to Uschi and Bernhard for providing me
with a room to work on my thesis, as well as for their support in taking care of Ilvy.
Additionally, I am thankful to the public transportation company that provided the data
and introduced me to the topic at hand.

I would also like to thank Lorenz, with whom I could discuss various methods used in this
work. A special thanks also goes to my supervisor, who supported me throughout the
past year and encouraged me to submit this work as an article to the PATAT Conference
2024.

Without all this support, I would not have been able to complete my thesis.

ix

Kurzfassung

In dieser Diplomarbeit wird eine formale Definition eines in der Praxis vorkommenden
kombinatorischen Optimierungsproblems im Bereich der Personaleinsatzplanung, speziell
im Bereich der Dienstplanung für Straßenbahnfahrer:innen, vorgestellt. Aktuelle Ansätze
in der Straßenbahn-Turnuserstellung bieten den Fahrer:innen oft nur unzureichende
mittelfristige Planungssicherheit. Es ist daher ein Ziel im öffentlichen Verkehrswesen,
robustere Dienstpläne zu erstellen, die den Mitarbeiter:innen eine solche mittelfristige
Planungssicherheit bieten. Um dieses Problem anzugehen, führe ich das Konzept des
Rahmenzeiten-Turnusses formal ein. Anstatt den Turnuspositionen direkt Schichten zuzu-
weisen, werden den Positionen zunächst Rahmenzeiten zugewiesen. Diese Rahmenzeiten
sind Zeitintervalle weit genug, um mehrere Schichten abdecken zu können. Die Schicht-
zuweisung erfolgt erst wenige Tage vor dem eigentlichen Arbeitstag. Somit verbessern
Rahmenzeiten-Turnusse die mittelfristige Planungssicherheit, da Straßenbahnfahrer:innen
garantiert wird, nur Schichten innerhalb ihrer zugewiesenen Rahmenzeit zu erhalten.

Das Ziel des Rahmenzeiten-Turnusproblems besteht darin, Rahmenzeiten optimal einem
Turnus zuzuweisen, sodass verschiedene Bedingungen erfüllt werden. In dieser Arbeit gebe
ich eine allgemeine Problembeschreibung sowie eine formale Definition des Rahmenzeiten-
Turnusproblems. Basierend auf dieser Definition wird ein löser-unabhängiges Modell des
Problems vorgestellt. Darüber hinaus vergleiche ich zwei Löser, Gurobi und OR-Tools CP-
SAT, anhand realer Instanzen und zeige, dass optimale oder nahezu optimale Lösungen
in angemessener Zeit gefunden werden können. Zusätzlich überprüfe ich diese Lösungen
mittels Monte-Carlo-Simulationen. Dabei werden die Abwesenheiten der Straßenbahn-
fahrer:innen simuliert und es wird überprüft, ob die anschließende Schichtzuweisung
weiterhin möglich ist. Die Ergebnisse dieser Simulationen zeigen, dass das Modell den
Anforderungen der allgemeinen Problembeschreibung entspricht.

xi

Abstract

In this diploma thesis, I introduce a formal definition of a real-world combinatorial
optimization problem in the field of workforce scheduling, specifically in the area of tram
driver rostering. Current tram driver rostering methods struggle with providing the
tram drivers with medium-term planning security. Thus, creating more robust rosters
that offer such medium-term planning security for employees is a desired goal in the
public transportation sector. To tackle this problem, I formally introduce a new approach
called time frame rostering. In this approach, instead of directly assigning shifts to
roster positions, time frames are first allocated to roster positions. These time frames
are intervals wide enough to accommodate a variety of shifts. The shift assignment
takes place only a few days before the actual workday. Thus, time frame rosters provide
medium-term planning security, as tram drivers are only assigned shifts within their
designated time frames.

The goal of the time frame rostering problem is then to optimally assign time frames to a
roster such that several constraints are met. In this thesis, I provide a high-level problem
description as well as a formal definition of the time frame rostering problem. Based
on this definition, a solver-agnostic model of the problem is presented. Furthermore,
I compare two state-of-the-art solvers, Gurobi and OR-Tools CP-SAT, on real-world
instances and demonstrate that optimal or almost optimal solutions can be found in a
reasonable amount of time. Additionally, these solutions are verified by Monte Carlo
simulations. In this approach, I simulate the tram drivers’ absences and check whether
subsequent shift assignment is still possible. The results of these simulations show that
the model works as intended and corresponds to the high-level problem description.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Aim of the Thesis . 2
1.2 Contributions . 2
1.3 Structure of the Thesis . 3

2 Theoretical Background 5
2.1 Constraint Programming . 5
2.2 Integer Programming . 7

3 Problem Description and Related Work 9
3.1 Problem Description . 9
3.2 Related Work . 12

4 Formal Definition and Solver-Independent Model Formulation 15
4.1 Provided Data . 15
4.2 Definition of a Time Frame Roster . 16
4.3 Algorithm for Calculating the Minimum Number of Drivers Needed . . 17
4.4 Creating a Day Off Schedule . 18
4.5 Hard Constraints . 22
4.6 Soft Constraints . 27
4.7 Decision Variables . 29
4.8 Objective Function . 29
4.9 Solver-independent Model . 29

5 Experimental Evaluation 31
5.1 Experimental Setup . 31
5.2 Instance Properties, Time Frames and Parameter Settings 32
5.3 Experimental Results . 34

xv

5.4 Monte Carlo Simulation to Simulate Tram Drivers’ Absences 43
5.5 Discussion . 46

6 Conclusion 47

Overview of Generative AI Tools Used 49

List of Tables 51

List of Algorithms 53

Bibliography 55

CHAPTER 1
Introduction

Similar to other professions that operate in shifts, such as those in the medical field or
industrial manufacturing, the shifts of tram drivers are assigned to a rotating schedule
called a roster. Traditionally, this roster was created by assigning shifts to specific roster
positions either by hand or by using workforce scheduling algorithms [HHB20]. However,
this approach proved inconvenient for tram drivers as well as rostering managers. A
roster is typically scheduled weeks or months in advance, hence it undergoes several
changes until the final shift assignment due to changes in shift plans, fluctuations in staff
headcount, and various other factors. Consequently, the literature covers methods for
constructing more robust rosters [GVX22], [WSVB21], such as calculating the optimal
amount of reserve shifts [XS12], [IM15], as well as re-rostering methods [Wic19]. These
methods, however, might still be inconvenient for tram drivers, as they potentially
require a substantial number of reserve shifts or the repeated reallocation of shifts, which
deteriorates the medium-term planning security for tram drivers.
As a consequence thereof, the idea emerged to introduce a time frame roster. In this
approach, instead of directly assigning shifts to specific roster positions, first, time
frames are assigned to roster positions. These time frames are intervals wide enough to
accommodate a variety of shifts. The final shift assignment takes place only a few days
before the actual workday. At this stage, shifts replace the drivers’ time frames where
the shifts’ intervals fit within the time frames’ intervals. Thus, the time frame roster
provides medium-term planning security for tram drivers, as drivers will only be assigned
shifts within their designated time frames.
However, to the best of my knowledge, the existing literature does not provide a formal
definition or a formulated model of the time frame rostering problem that is considered
in this thesis. Furthermore, an efficient method for optimally assigning time frames
to roster positions while considering specific criteria is currently unavailable. A main
criterion is, for example, that even if drivers are absent, it must still be possible to assign
shifts to drivers without violating their time frames.

1

1. Introduction

The time frame rostering problem is a real-life combinatorial optimization problem with
specific requirements tailored to the operation of tram networks. The design of the time
frames requires a negotiation process and agreement between the employer and employees.
Therefore, for the purpose of this thesis, the time frames and their specifications (start
time, end time, type), which were provided by a public transportation company, are
regarded as predetermined.

1.1 Aim of the Thesis
The aim of this thesis is to investigate whether the time frame rostering problem can be
solved optimally or near optimally in a time-efficient and practically feasible manner. In
the context of tram driver rostering, this implies obtaining a close-to-optimal solution
within a few hours, preferably in less than two hours. To achieve this, my objectives are
as follows:

• To formally define the time frame rostering problem.

• To formulate a solver-agnostic model of the time frame rostering problem.

• To compare and empirically evaluate two different exact solving methods, integer
programming (IP) and constraint programming (CP), using real-world instances.

1.2 Contributions
The main contributions of this thesis are:

• I introduce a real-world combinatorial optimization problem in the context of tram
driver rostering.

• I provide a formal problem definition and formulate a solver-independent model of
the time frame rostering problem.

• I publish real-world instances based on data provided by a public transportation
company.

• I empirically evaluate different exact solving methods using real-world instances
and show that these are (almost) optimally solvable within 120 minutes.

• I demonstrate the feasibility of my solutions by simulating staff absences and
subsequent shift assignment.

2

1.3. Structure of the Thesis

1.3 Structure of the Thesis
This thesis is structured as follows: In the next chapter, I provide some theoretical
background to constraint and integer programming. In Chapter 3, I present a high-level
problem description as well as an overview of the related work. This is followed by a formal
definition of the time frame rostering problem, and a solver-agnostic model formulation
in Chapter 4. Subsequently, in Chapter 5, I evaluate the model by solving real-world
instances using the MIP solver Gurobi [Gur23] and the CP solver OR-Tools CP-SAT
[PD23]. Additionally, several variable and domain-value selection strategies as well as
applying redundant constraints and symmetry breaking are evaluated. The solutions are
then verified by using Monte Carlo Simulations and by modeling the subsequent shift
assignment. Finally, I draw my conclusions in Chapter 6.

3

CHAPTER 2
Theoretical Background

In this thesis, I will address the time frame rostering problem by modeling it as a
constraint optimization problem (COP) in a solver-independent manner. I will then
compare the performance of two solvers, each utilizing different exact methods, in
solving the time frame rostering problem. The first solver, OR-Tools CP-SAT, combines
constraint programming and SAT-solving techniques, while the second solver, Gurobi,
employs integer programming algorithms. Accordingly, this chapter will provide the
theoretical background to these two approaches.

2.1 Constraint Programming

Constraint programming (CP) is a paradigm for solving constraint satisfaction problems
(CSP) which are typically complex combinatorial search problems. A variety of techniques
stemming from research in artificial intelligence, theoretical computer science, databases,
and operations research have been successfully used to solve such combinatorial problems
in fields like scheduling, planning, routing, molecular biology, graph algorithms, computer
vision, linguistics, (electrical) engineering, and many more [RVBW06], [Apt03]. Since
CSPs are the cornerstone of constraint programming, I first need to define what a CSP
is, using the definition from Freuder and Mackworth [RVBW06, p. 16]: A CSP is a triple
P = ⟨X, D, C⟩ consisting of:

X = ⟨x1, ..., xn⟩ n-tuple of variables
D = ⟨D1, ..., Dn⟩ s.t. xi ∈ Di n-tuple of domains
C = ⟨C1, ..., Cm⟩ where Cj = ⟨RSj , Sj⟩ m-tuple of constraints

5

2. Theoretical Background

The relation RSj is a subset of the k-ary Cartesian product of the domains defined in the
scope Sj :

RSj ⊆ D1 × ... × Dk where Di ∈ Sj , |Sj | = k

An n-tuple A = ⟨a1, ..., an⟩ s.t. ai ∈ Di satisfies a constraint Cj = ⟨RSj , Sj⟩ iff ASj ∈ RSj ,
where ASj is a restricted k-tuple of A to variables of which their domains are in Sj . A
constraint Cj is referred to as unary, binary, or k-ary if Sj consists of one, two or k
domains respectively. A solution to the CSP P is then an n-tuple A that satisfies every
constraint Cj ∈ C. CSPs are classified as satisfiable or consistent if a solution exists;
otherwise, they are deemed unsatisfiable or inconsistent.

To find a solution to a CSP with finite domain size, one could enumerate all possible
n-tuples and check each one to see if all constraints are satisfied. However, because CSPs
are typically combinatorial search problems, this simple brute-force approach quickly
becomes infeasible. Consequently, a variety of algorithms have been developed to expedite
the search process. These algorithms can be categorized into two groups: inference and
search techniques.

One of the primary inference methods developed in the 1970s is the use of network
consistency algorithms for constraint propagation [Mac77]. These algorithms derive new
constraints by identifying implicit constraints and making them explicit, thus narrowing
the search space. An essential search technique that guarantees finding a solution is
backtracking [GB65]. In backtracking, a solution is constructed by assigning values to
variables incrementally. If an assignment violates a constraint, the algorithm backtracks
by undoing the last assignment and trying a new value. To further enhance performance,
inference and search methods are usually combined. In addition to these techniques,
solvers like OR-Tools CP-SAT solver employ SAT-solving methods like Conflict-Driven-
Clause-Learning [RVBW06], [MMZ+01].

CSPs and their constraints are defined in a general way, which enables the modeling
of many real-world problems that require heterogeneous constraints. For instance,
constraints can be arithmetic expressions (like <, =, ...), logical expressions (such as all
variables must be different) or extensional, explicitly enumerating satisfying relations.
Combinatorial optimization problems can also be addressed by transforming a CSP into a
constraint optimization problem (COP). This is achieved by adding an objective function
that is either minimized or maximized. COPs introduce additional solving methods, such
as branch and bound algorithms [MJSS16].

The generality of CSPs and COPs presents a dual challenge: while it may be more
difficult to apply specialized algorithms, this same generality allows for the modeling
of problems that cannot be easily addressed by other methods, such as mixed integer
programming (MIP), in a straightforward manner.

6

2.2. Integer Programming

A typical example for a CSP is the n-queens problem [GB65]. The goal is to place n
queens on an n × n chess board such that they cannot attack each other. Here is a
formulation of the n-queens problem as a CSP:

Q = ⟨q1, ..., qn⟩ n-tuple of queens
D = ⟨D1, ..., Dn⟩ s.t. Di = {1, ..., n} only one queen per column possible

There are several ways to formulate this problem. In the formulation above, I concentrate
solely on the queens’ positions in the rows, while fixing their columns. Specifically,
q1 will be in column 1, q2 in column 2, and so forth. I do not fix the rows, thus,
the first constraint ensures that all variables are assigned different values (i.e., rows):
C1 := alldifferent(Q). However, since queens can also attack diagonally, we need
another constraint: C2 := |qi − qj | ̸= |i − j|.
The all-different constraint, which states that all variables must be pairwise different, is
an excellent example of a global constraint. A global constraint is a high-level constraint
with a non-fixed number of associated variables and offers two main advantages: it allows
for the modeling of complex properties and ensures that these properties can be efficiently
solved using specialized constraint propagation algorithms [RVBW06].

2.2 Integer Programming
Integer programming (IP) belongs to the field of mathematical programming and deals
with discrete optimization problems. Integer programming problems can also be seen
as a subset of COPs mentioned in the previous section. Consequently, the areas of
application are similar to those of constraint programming, such as planning, scheduling,
and rostering. Often, when referring to an integer programming problem, actually an
integer linear programming (ILP) problem is meant. I will define an ILP as a minimization
problem. My definition is based on one provided by Nemhauser and Wolsey [NW99, p.
4]:

min cx

s.t. Ax ≥ b

x ∈ Z+
0

where the unknown variable x = (x1, ..., xn) is a non-negative integral n-dimensional
vector, c is a given n-dimensional vector, A is a given m × n matrix, and b is a given m-
dimensional vector. The feasible region S is then defined by the set S = {Ax ≥ b, x ∈ Z+

0 }
and x ∈ S is a feasible solution. The function f(x) = cx is referred to as the objective
function. A solution xopt ∈ S is optimal iff cxopt ≤ cx ∀x ∈ S holds.

The fundamental techniques to solve ILPs date back to the 1940s to 1960s. Dantzig, who
introduced the simplex algorithm – the first efficient and still most important algorithm
to solve linear programs – in 1947 [Dan51], also was one of the first to develop techniques
for ILPs in 1957 [Dan57]. One year later, Gomory [Gom58] introduced the Gomory

7

2. Theoretical Background

cuts, a special cutting-plane method for integer programming. The simplex algorithm
is used to solve a relaxation (where x no longer has to be a pure integer vector) of
the ILP. Based on the simplex tableau, a cutting plane (i.e., constraint) is added that
cuts off fractional solutions while not affecting the feasible region S which contains the
integer solutions. Another important method to solve ILPs is the branch-and-bound
technique presented by Land and Doig in 1960 [LD60]. Again, the LP relaxation of
the ILP is solved. If this solution contains non-integer variables, one of those is chosen
and branched upon, meaning the search tree is split into two subtrees: in one, the
variable is rounded down to the next integer, and in the other, rounded up. For both
subtrees, the LP relaxation is solved, and the obtained objective value is used as a lower
bound. If the best-known solution containing only integers is below this lower bound,
the subtree is pruned. Padberg and Rinaldi combined these techniques and presented
the first branch-and-cut algorithm [PR91].

The methods presented above are still the foundation for state-of-the-art ILP solvers like
Gurobi. State-of-the-art solvers additionally use advanced and improved implementations
of these techniques, together with preprocessing, heuristics, concurrent solving, and
parallel computing. A modeling disadvantage of ILPs is that the constraints have to
be linear. Solvers like Gurobi 11 address this issue by allowing a variety of nonlinear
constraints, thus enabling the modeling of nonlinear problems. This is achieved by
translating nonlinear constraints (such as MIN, MAX, AND, OR constraints) into
linear ones (usually by introducing auxiliary variables) and by approximating function
constraints (like y = ax) through piecewise-linear approximation [Gur23].

The most common method for solving large ILPs in scheduling and routing is the column
generation method, introduced by Gilmore and Gomory in 1961 [GG61]. Large ILPs
often have too many variables to consider, hence the basic idea is to decompose the
problem into smaller, more manageable subproblems. The master problem is a reduced
form of the ILP, initially considering only a subset of variables (columns). This master
problem is solved, and new variables are iteratively added until the objective value can
no longer be improved. The task of deciding which variable to add next is called the
subproblem [Lüb10].

8

CHAPTER 3
Problem Description and Related

Work

3.1 Problem Description
This section provides a high-level problem description using a small sample roster. First,
I outline a conventional rostering process that resembles a real-world implementation
in a public transportation company. Second, I detail how the time frame rostering
methodology diverges from this traditional approach, highlighting the differences and
innovations this thesis introduces.

Conventional Approach

Typically, tram driver rostering begins with a set of shifts containing all shifts for a week.
Based on the size of this set, the demand for drivers and their days off is calculated. A
roster containing only the days off is created, as shown in Table 3.1. This roster is called
the day off schedule. Each driver has either two specific consecutive days off or follows
a rotational day off schedule. This results in eight different day off types, where types
0 to 6 have two specific consecutive days off, while type 7 follows a rotational day off
schedule. The construction of the day off schedule determines the sizes of these day off
types, i.e., the number of rows in the roster. Tram drivers are then assigned to different
roster weeks within their day off type and rotate through the roster weeks of their own
type in ascending order. Upon reaching the last week of their day off type they continue
with the first week of their type.

After the creation of the day off schedule, the shifts are allocated. In the exemplary shift
roster shown in Table 3.2, each shift s represents a unique shift from the set that contains
all shifts for a week. Each shift includes specific details about the work location (tram
line), work hours (start time, breaks, end time), and whether it is a split shift (with a

9

3. Problem Description and Related Work

day off type Mo Tu We Th Fr Sa Su
o0 off off
o0
o1 off off
o1
o2 off off
o2
o3 off off
o3
o4 off off
o4
o5 off off
o5
o6 off off
o6
o7 off off
o7 off off
o7

Table 3.1: Exemplary Day Off Schedule

day off type Mo Tu We Th Fr Sa Su
o0 off s s s s s off
o0 ... s s s s s ...
o1 off off s s s s s

o1 re re re re re

o2 s off off s s s s

o2 s s s s s

o3 rl rl off off s s s

o3 s s rl rl rl

o4 s s s off off s s

o4 s s s s s

o5 s s s s off off s

o5 s s s s s

o6 s s s s s off off
o6 re re re re re
o7 off off s s s s s

o7 s off off rl rl rl rl

o7 rl rl s s s

Table 3.2: Exemplary Shift Roster

10

3.1. Problem Description

day off type Mo Tu We Th Fr Sa Su
o0 off 8 7 6 5 5 off
o0 ... 13 15 4 2 1 ...
o1 off off 8 7 6 5 11
o1 12 14 3 2 1
o2 2 off off 8 8 7 6
o2 5 11 15 4 3
o3 1 1 off off 10 8 7
o3 5 15 4 3 2
o4 3 2 1 off off 9 8
o4 7 6 11 13 11
o5 14 2 2 1 off off 8
o5 7 5 11 15 4
o6 12 14 3 2 1 off off
o6 8 6 6 5 15
o7 off off 13 12 3 2 2
o7 1 off off 4 3 3 2
o7 2 1 9 10 7

Table 3.3: Exemplary Time Frame Roster

several-hours-long break) or not. Since the size of the day off schedule is determined by
accounting for absences, among other things, there are considerably more roster positions
than shifts. These empty roster positions are filled with reserve shifts, denoted as either
re or rl in Table 3.2. Reserve shifts provide drivers with rough time windows, typically
distinguishing only between an early time window re (only shifts starting before noon are
allowed) and a late time window rl (only shifts starting after noon are allowed). Drivers
with reserve shifts receive notice of their actual shift or if they are on stand-by only a
few days before their scheduled workday.

New Approach – Time Frame Rostering

The issue arising from the traditional approach is that drivers with reserve shifts do not
know in advance when they will have to work. Moreover, absences of tram drivers and
changes in the shift plans might require a reallocation of shifts. The proposed method
to prevent reserve shifts and reallocation is to introduce a time frame roster. In a time
frame roster, rather than directly assigning shifts, time frames are initially allocated to
roster positions.

In the time frame roster outlined in Table 3.3, each time frame is indicated by a number.
Time frames are essentially intervals with predefined start and end times. The shift
assignment is postponed until a few days before the actual workday, by which time many
absences are already known to the roster managers. Shifts are then assigned to time
frames so that they fit within the intervals of the frames and are of the correct type. Some

11

3. Problem Description and Related Work

time frames allow for, or even require, split shifts, while others cannot accommodate
split shifts.

The objective of the time frame rostering problem is to optimally assign time frames
to roster positions so that the shift assignment at a later stage remains possible. This
requirement can be broken down into three major constraints:

Firstly, tram drivers may be absent with a certain probability, resulting in two scenarios.
On the one hand, at the time of shift assignment, there might be more time frames
than shifts. In this case, it must be possible to assign all shifts to time frames; hence,
it cannot be the case that shifts remain unassigned because they do not fit within the
time frames. On the other hand, if there are fewer time frames than shifts, then all time
frames must be assigned a shift, and it cannot be the case that there are time frames
left in which none of the remaining shifts fits. The remaining shifts are then covered by
drivers working overtime.

Secondly, to adhere to rest period regulations, two consecutive time frames cannot appear
in the list of forbidden sequences.

Thirdly, there are restrictions on split shifts during a workweek. A formal definition of
the problem and its constraints is provided in the next Chapter 4.

3.2 Related Work
Tram driver rostering is a subset of driver rostering within public transportation and it is
very similar to bus driver and subway driver rostering. Driver rostering itself is a subset
of crew planning in public transport, where each crew consists of just a single member, in
our case, the tram driver. Thus, the time frame rostering problem is a specific challenge
encountered within crew planning and, more broadly, within workforce scheduling. It
is closely related to both the driver rostering and crew rostering problem. To the best
of my knowledge, the time frame rostering problem defined in this thesis has not been
addressed in the existing literature.

Crew planning for public transportation typically comprises two primary stages. The first
stage is crew scheduling, also known as shift design, shift scheduling or duty scheduling,
where shifts are designed based on a predetermined timetable. In this thesis, I use the
term "shift" instead of "duty". A shift has a start time, end time, and type, with each tram
driver working one shift per workday. The second stage, referred to as crew rostering,
involves assigning these shifts to typically rotating or cyclical rosters [HHB20]. These
rosters are often created anonymously, meaning shifts are assigned to anonymous roster
positions rather than to specific drivers [BSSW17]. The time frame rosters considered in
this thesis are also created anonymously.

It is important to note, that the two stages, (crew) scheduling and (crew) rostering, are
also integral components of many workforce scheduling approaches in general [Lau96].
Hence, there exists extensive literature on how crew scheduling [HHB20], crew rostering

12

3.2. Related Work

[HHB20], and workforce scheduling problems in general [BCBL04, EJKS04, VBD+13],
can be addressed using mathematical programming, constraint programming, answer-
set programming, heuristics, metaheuristics, and combinations thereof. Due to their
complexity, the two stages are often treated as separate optimization problems. Neverthe-
less, Ernst et al. [EJK+01] introduced an integrated optimization model for train crew
management, and Lin et al. [LT19], [LJC20], as wells as Borndörfer et al. [BSSW17],
showed that integrated approaches in crew planning with a single objective function can
yield better solutions and increase driver satisfaction. On a more general level, solving
the general employee scheduling problem, as demonstrated by Kletzander and Musliu
[KM20], is also done by integrating several stages.

These integrated approaches are relevant for the time frame rostering problem, as it
consists of constraints and uses modeling techniques from both stages. Time frame
rostering can be seen as an intermediate step between scheduling and rostering. In crew
or shift scheduling, mathematical programming is the most popular approach [VBD+13],
typically using a set covering formulation introduced by Dantzig in 1954 [Dan54]. The
model of the time frame rostering problem proposed in this thesis is also based on such a
formulation.

To obtain solutions for real-world instances of the crew scheduling and crew rostering
problem within a reasonable amount of time, the most common approach is the column
generation method (see Section 2.2). Lin et al. [LJC20] demonstrated that their branch-
and-price-and-cut algorithm, which is essentially a combination of column generation and
branch-and-bound techniques, effectively solves real-world instances of the integrated
bus driver scheduling and rostering problem. Yunes et al. [YMDS05] developed a hybrid
column generation technique that utilizes both mathematical and constraint programming
to solve urban transit crew planning problems. Since I introduce a formal definition to a
problem for which no existing approaches and techniques have been tested, I will provide
a solver-agnostic model that allows us to compare integer and constraint programming
methods.

As mentioned in the introduction, a crew schedule, and particularly a crew roster,
undergoes several re-rosterings due to a variety of factors. These factors include changes
in timetables, construction sites, fluctuations in headcount, staff absences, and more. A
conventional roster, in which shifts are directly assigned to roster positions, is highly
susceptible to such changes, and they often require reassigning a subset of the shifts or
even creating an entirely new roster. Thus, the literature offers methods to deal with the
inherent uncertainty by constructing more robust rosters [GVX22], [WSVB21]. In this
thesis, I define the robustness of a roster as the degree to which the roster is insensitive
to disturbances [IEE90, p. 64], [VJLS94], [GVX22]. Methods to managing disturbances
in the rostering process can be divided into two categories: anticipatory and reactive
approaches. Anticipatory approaches aim to create more robust roster by introducing,
for example, reserve shifts [XS12]. In contrast, reactive approaches focus on advanced
re-rostering methods that create new rosters by making, for example, as few changes
as possible to existing rosters [Wic19]. Xie et al. [XS12] present a stochastic model for

13

3. Problem Description and Related Work

the rota (i.e., rotating workforce) scheduling problem in public bus transport, which
is a subset of the crew rostering problem. Traditionally, the number of reserve shifts
per weekday was determined either as a fixed number or as a percentage of the daily
shifts. However, this simple approach did not account for fluctuating absence rates on
different weekdays, leading to suboptimal costs for the company and reduced driver
satisfaction. Xie et al. addresses this issue by considering weekday-specific absence rates
and by introducing optional reserve shifts in addition to the regular reserve shifts. As a
result, the model can determine the optimal number of reserve shifts based on the specific
absence rates. Ingels and Maenhout [IM15] propose a different but still anticipatory
method. First, they construct a roster that contains work shifts, reserve shifts, and days
off. In this roster the reserve shifts are scheduled using a predefined strategy. They then
simulate uncertainties on a daily basis and, based on these simulations, convert work
shifts to reserve shifts or vice versa, reassign shifts, or cancel shifts as needed. Finally,
they evaluate the newly crafted roster by comparing it to the initial roster constructed in
the first step. Ingels and Maenhout also acknowledge the trade-off between anticipatory
and reactive approaches. Rosters with a large number of reserve shifts are highly robust,
but may result in many unnecessary shifts, and drivers might not know their actual
working times until shortly before their shifts. Conversely, rosters with fewer reserve
shifts make sure that most drivers know their working times well in advance, but there
might not be enough personnel to cover all shifts, and even minor disturbances can lead
to last-minute changes of the drivers’ schedules, which have a detrimental impact on
the drivers’ personal lives [WSVB21]. This trade-off is also addressed by Wickert et al.
[WSVB21], who introduce two metrics to estimate the robustness of a roster against
unexpected staff absences and the expected re-rostering costs. Using these metrics, they
demonstrate the level of robustness that leads to the best overall solution and discuss
how this level is highly dependent on the specific rostering problem.

I propose a methodology for constructing more robust rosters, which has recently started
to be used in practice but has not yet been formally defined or discussed in the scientific
literature. The method also differs substantially from thoses mentioned in the previous
paragraph. Time frame rostering acts as an intermediate stage between shift scheduling
and rostering and thus, is an anticipatory method. This approach introduces time
frames, which are initially assigned to rotating rosters based on the crew schedule (shifts).
Subsequently, shifts are allocated within these time frames. To the best of my knowledge,
this method has not been proposed before. The time frame roster is more robust to
changes than a typical shift roster because the shift assignment occurs at a later stage,
where many factors leading to re-rostering are already known and can be accounted for
in the assignment process.

14

CHAPTER 4
Formal Definition and

Solver-Independent Model
Formulation

To formally define the time frame rostering problem, I will first specify the given data.
Secondly, I will explain what constitutes a time frame roster, and the role it plays in
tram driver rostering. Thirdly, I will outline how the day off schedule is created. Finally,
I will define the hard constraints, soft constraints, decision variables, and the objective
function.

4.1 Provided Data
The provided data comprises four groups: shift-related, time frame-related, day off-related
and constraint-related. This section specifies each of them.

1. Shift data:

• There is a set of n shifts denoted by S = {s1, ..., sn}. Each shift has a start
and end time denoted as an interval [asi , bsi], i ∈ {1, ..., n}.

• The weekday of a shift is represented by wsi , i ∈ {0, ..., 6}.
• Si represents the set of shifts for weekday i:

s ∈ Si ⇔ ws = i, i ∈ {0, ..., 6}.
• Each shift has an assigned shift type tsi , with the value of 1 if the shift is a

split shift and 0 otherwise.

15

4. Formal Definition and Solver-Independent Model Formulation

2. Time frame data:

• There is a set of m time frames indicated by F = {1, ..., m}, each with a start
and end time forming an interval [ci, di], i ∈ {1, ..., m}.

• Each time frame has an assigned type ti, with 0 allowing only shifts of type 0,
1 allowing only shifts of type 1, and 2 allowing shifts of any type.

3. Day off data:

• There are 8 day-off types, o0 to o7. Types o0 to o6 have two fixed consecutive
days off, while type o7 follows a 16-week rotating schedule, which is commonly
used in practice. This schedule includes 12 weeks rotating through day-off pairs
(e.g., So/Mo, Mo/Tu, ..., Fr/Sa), plus four additional weeks with weekends off,
due to fewer shifts on weekends.

4. Constraint data:

• A list seqfb of forbidden time frame sequences.
• A list sequd of undesirable time frame sequences and their penalties.
• A list forbwt of forbidden times frames for each workweek type wt. This

workweek type is used to encode, on one hand, the proximity of a workday to
the next day off, and on the other hand, whether a roster position is designated
for early or late shifts.

4.2 Definition of a Time Frame Roster
A time frame roster R possesses the following properties:

• The size of the roster is determined by the sum of the sizes of each day off type.
Thus, a roster R consists of |R| = �7

i=0 |oi| roster weeks.

• Each roster week r
oj

i
has an assigned day off type oi at week j and consists of 7

days.

• A roster position r
oj

i ,k
is then defined as a specific weekday k within the roster week

r
oj

i
.

• Each roster position, excluding those designated as days off, will be assigned a time
frame.

• Each roster position r
oj

i ,k
features a workweek type wt, ranging from -1 to 30.

• Ri represents a list of time frames assigned to roster R for weekday i.

16

4.3. Algorithm for Calculating the Minimum Number of Drivers Needed

4.2.1 Operating Principle of the Roster
Each driver is associated with a specific day off type oi and a unique roster week r

oj
i
.

Tram drivers rotate through the roster weeks of their own day off type in ascending
order. Upon reaching the last week of their day off type o

|oi|
i , they continue with the first

week of their day off type o1
j . However, there might be more roster weeks than drivers,

since the number of weeks assigned to each day off type has to be even. This is the case
because drivers alternate between "early" and "late" weeks. During the early week, their
shifts typically start before 10am, while in the late week, their shifts begin after 10am.
Due to this alternating schedule, an even number of roster weeks is necessary for each
day off type.

Time frame rosters are anonymous, i.e., the specific assignment of drivers to roster weeks
is not given, putting the focus solely on constructing the roster itself. To comprehend the
rotational principle of the roster, it is crucial to define what constitutes two consecutive
positions in the roster.

4.2.2 Definition of Consecutive Roster Positions
Given the roster positions

rok
i ,m, rol

i,n
∈ R

then rok
i ,m is immediately followed by rol

i,n
iff one of the following statement holds:

• Two consecutive positions (i.e., days) in the same roster week: k = l, n = m + 1.

• Sunday in one week (but not the last week of a day off type) followed by Monday
in the next week: l = k + 1, m = 6, n = 0.

• Sunday in the last week of a day off type followed by Monday in the first week of
the same day off type: k = |oi|, l = 1, m = 6, n = 0.

4.3 Algorithm for Calculating the Minimum Number of
Drivers Needed

I propose the min_demand algorithm to calculate the required number of drivers for a
certain number of shifts given the drivers’ absence probability. The algorithm starts with
a lower bound (e.g., number of shifts) and increases the demand until the lower bound is
covered with a probability of psuc, i.e., until the binomial cumulative distribution function
returns a probability greater than psuc.

This is the binomial cumulative distribution function used in the min_demand algorithm:

binom.cdf (k, n, p) = P (X ≤ k) =
k�

i=0

n

i

�
pi(1 − p)n−i

17

4. Formal Definition and Solver-Independent Model Formulation

Algorithm 4.1: min_demand(pabs, psuc, lb)
1 if lb = 0 then
2 minDemand ← 0;
3 else
4 minDemand ← lb;
5 while binom.cdf(minDemand − lb, minDemand, pabs) ≤ psuc do
6 minDemand ← minDemand + 1;
7 end
8 end
9 return minDemand

Given a number of n trials, the probability p of a trial being successful and a number of
k successes, the binomial cumulative distribution function returns the probability that
there are k or fewer successes.

The min_demand algorithm will be used in several constraints, so I want to clarify its
meaning by providing an example. Assume that drivers are absent with a probability of
10% (pabs = 0.1). Let’s also assume that we have 10 shifts and aim to cover 9 of them
(covfac = 0.9, lb = 9) with a probability of 99% (psuc = 0.99). The question is then: How
many drivers do we need to ensure that at least 9 drivers show up to work 99% of the
time?

To determine this number, I use the min_demand algorithm (min_demand(0.1, 0.99, 9)).
In the first iteration, the function binom.cdf (0,9,0.1) is called and returns the likelihood
that from 9 drivers, 0 or fewer are absent given the absence probability of 10%. This
value is 0.38742, which is smaller than the required 0.99, so the while loop continues. The
loop stops with the call binom.cdf (4,13,0.1), where the binomial cumulative distribution
function returns 0.99354. This means that in 99.354% of the days, no more than 4 out of
13 drivers are absent. Thus, we determine that the required number of drivers to cover
the shifts is 13.

One might ask: Aren’t there 10 shifts to be covered, not 9? That is correct, but I aim to
cover only a certain percentage of shifts, as the remaining ones can be handled by drivers
working overtime if necessary. If all shifts were covered with a probability of 99%, there
would quite often be too many drivers on stand-by. The coverage factor provides the
ability to regulate the extent to which you want to have more drivers working overtime
(lower coverage, risk of being understaffed) or more drivers on stand-by (higher coverage,
risk of being overstaffed).

4.4 Creating a Day Off Schedule
Before assigning time frames to roster positions, first, a a day off schedule is created
to determine the size of the roster and the placement of the days off. I assume that

18

4.4. Creating a Day Off Schedule

drivers may be absent with a binomially distributed probability pabs. Based on real-world
observations, the demand for drivers demi for each weekday i is determined by calculating
the minimum even number of drivers such that the number of drivers showing up is at
least (covfac · 100)% of the number of shifts |Si| with a probability of psuc:

demi =
�min_demand(pabs, psuc, ⌈|Si| · covfac⌉)

2

�
· 2

Every driver works 5 days per week, but the sum dem = �6
i=0 demi is not necessarily a

multiple of 5. Hence, I need to slightly adjust the demand:

frac =
�6

i=0 di

5 −
��6

i=0 di

5

�

If frac = 0.2 then dem5 += 2, dem6 += 2,
else if frac = 0.4 then dem6 −= 2,
else if frac = 0.8 then dem6 += 2,
else if frac = 0.8 then dem5 −= 2, dem6 −= 2

I decided to use only Saturdays and Sundays for the adjustment as they have separate
shift sets making sure that days with the same number of shifts have the same required
number of drivers. The number of roster positions of roster R is determined by summing
up the demands and dividing by 5:

|R| =
�6

i=0 demi

5

The day off demand doi for weekday i is then the size of the roster minus the driver
demand demi:

doi = |R| − demi, i ∈ {0, ..., 6}

The days off have to be two consecutive days. Furthermore, the size of a day off type must
be even and I limit the size of type oi to |oi| ≤ 2|oi+1| and 2|oi| ≥ |oi+1| for i ∈ {0, ..., 5}.
This is done to ensure a rather even distribution of day off types. In order to find the
optimal day off schedule, I formulate the following model in MiniZinc1 [NSB+07]:

Variables:

|oi| ... size of day off type i ∈ {0, ..., 6}

xi =
�

|oi| + |oi+1|, if i < 6
|o0| + |o6|, if i = 6

1https://github.com/lukasfruehwirth/time_frame_rostering/blob/main/day_
off_type_size.mzn

19

https://github.com/lukasfruehwirth/time_frame_rostering/blob/main/day_off_type_size.mzn
https://github.com/lukasfruehwirth/time_frame_rostering/blob/main/day_off_type_size.mzn

4. Formal Definition and Solver-Independent Model Formulation

Objective function:

min
6�

i=0
|doi − xi|

s.t.
6�

i=0
|oi| = |R|

|oi| mod 2 = 0 i ∈ {0, ..., 6}
|oi| ≤ 2|oi+1| i ∈ {0, ..., 5}
2|oi| ≥ |oi+1| i ∈ {0, ..., 5}

The decision variable is the size of each day off type, denoted as |oi|. Since drivers
have two consecutive days off, I introduce an auxiliary variable xi, which represents the
number of roster positions for weekday i designated as days off. This is achieved by
summing up the sizes of two consecutive day off types. For example, day off types o0
and o1 include a day off on Monday, thus x0 = |o0| + |o1|. The objective is to find the
sizes of day off types that minimize the absolute difference between the pre-calculated
demand for days off doi and the days off represented by the variable xi subject to the
constraints specified in the model above.

After finding the optimal size for each day off type o0 to o6, day off type o7 is introduced,
which has a 16-week-long rotating day off schedule. The structure of this schedule is
provided by a public transportation company. Based on real-world observations, the size
of day off type o7 is calculated by using a fixed share of 30%:

|o7| =
� |R| · 0.3

16

	
· 16

In the model above, the constraint is set to �6
i=0 |oi| = |R|. However, since I am now

introducing another day off type, I reduce the sizes of day off types o0 to o6 accordingly
such that �7

i=0 |oi| = |R| holds and such that the number of roster positions for weekday
i designated as days off remains unaffected:

|oi| =
�

|oi| − |o7|
8 , if i < 6

|oi| − |o7|
4 , if i = 6

Based on the day off schedule, we can proceed to construct and encode the empty roster
R. As an example, Table 4.1 presents the roster for the instance 4 containing only the
days off (encoded as -1 and 0) and the workweek type encoding (20 to 30). The first
column indicates the total roster week, the second column specifies the day off type, and
the third column denotes the roster week within that day off type. Columns 4 to 10
represent the weekdays. Given this roster R, the goal now is to assign time frames to the
empty positions (encoded with numbers 20 to 30) in R such that the hard constraints
are not violated and the objective function value is minimized. The subsequent three
sections define the hard and soft constrains, as well as the objective function.

20

4.4. Creating a Day Off Schedule

|R| o |o| R0 R1 R2 R3 R4 R5 R6

1 0 1 0 30 29 28 27 26 -1
2 0 2 0 25 24 23 22 21 -1
3 0 3 0 30 29 28 27 26 -1
4 0 4 0 25 24 23 22 21 -1
5 0 5 0 30 29 28 27 26 -1
6 0 6 0 25 24 23 22 21 -1
7 0 7 0 30 29 28 27 26 -1
8 0 8 0 25 24 23 22 21 -1
9 0 9 0 30 29 28 27 26 -1

10 0 10 0 25 24 23 22 21 -1
11 0 11 0 30 29 28 27 26 -1
12 0 12 0 25 24 23 22 21 -1
13 0 13 0 30 29 28 27 26 -1
14 0 14 0 25 24 23 22 21 -1
15 0 15 0 30 29 28 27 26 -1
16 0 16 0 25 24 23 22 21 -1
17 0 17 0 30 29 28 27 26 -1
18 0 18 0 25 24 23 22 21 -1
19 0 19 0 30 29 28 27 26 -1
20 0 20 0 25 24 23 22 21 -1
21 1 1 -1 0 30 29 28 27 26
22 1 2 -1 0 25 24 23 22 21
23 1 3 -1 0 30 29 28 27 26
24 1 4 -1 0 25 24 23 22 21
25 1 5 -1 0 30 29 28 27 26
26 1 6 -1 0 25 24 23 22 21
27 1 7 -1 0 30 29 28 27 26
28 1 8 -1 0 25 24 23 22 21
29 1 9 -1 0 30 29 28 27 26
30 1 10 -1 0 25 24 23 22 21
31 1 11 -1 0 30 29 28 27 26
32 1 12 -1 0 25 24 23 22 21
33 1 13 -1 0 30 29 28 27 26
34 1 14 -1 0 25 24 23 22 21
35 1 15 -1 0 30 29 28 27 26
36 1 16 -1 0 25 24 23 22 21
37 1 17 -1 0 30 29 28 27 26
38 1 18 -1 0 25 24 23 22 21
39 1 19 -1 0 30 29 28 27 26
40 1 20 -1 0 25 24 23 22 21
41 2 1 21 -1 0 30 29 28 27
... 2
60 2 20 26 -1 0 25 24 23 22
61 3 1 22 21 -1 0 30 29 28
... 3
80 3 20 27 26 -1 0 25 24 23
81 4 1 23 22 21 -1 0 30 29
... 4

100 4 20 28 27 26 -1 0 25 24
101 5 1 24 23 22 21 -1 0 30
... 5

120 5 20 29 28 27 26 -1 0 25
121 6 1 25 24 23 22 21 -1 0
... 6

222 6 102 30 29 28 27 26 -1 0
223 7 1 0 30 29 28 27 26 -1
224 7 2 0 25 24 23 22 21 -1
225 7 3 -1 0 30 29 28 27 26
226 7 4 -1 0 25 24 23 22 21
227 7 5 20 -1 0 30 29 28 27
228 7 6 26 -1 0 25 24 23 22
229 7 7 21 20 -1 0 30 29 28
230 7 8 27 26 -1 0 25 24 23
231 7 9 22 21 20 -1 0 30 29
232 7 10 28 27 26 -1 0 25 24
233 7 11 23 22 21 20 -1 0 30
234 7 12 29 28 27 26 -1 0 25
235 7 13 24 23 22 21 20 -1 0
236 7 14 30 29 28 27 26 -1 0
237 7 15 25 24 23 22 21 -1 0
238 7 16 30 29 28 27 26 -1 0
239 7 17 0 30 29 28 27 26 -1
240 7 18 0 25 24 23 22 21 -1
241 7 19 -1 0 30 29 28 27 26
242 7 20 -1 0 25 24 23 22 21
243 7 21 20 -1 0 30 29 28 27
244 7 22 26 -1 0 25 24 23 22
245 7 23 21 20 -1 0 30 29 28
246 7 24 27 26 -1 0 25 24 23
247 7 25 22 21 20 -1 0 30 29
248 7 26 28 27 26 -1 0 25 24
249 7 27 23 22 21 20 -1 0 30
250 7 28 29 28 27 26 -1 0 25
251 7 29 24 23 22 21 20 -1 0
252 7 30 30 29 28 27 26 -1 0
253 7 31 25 24 23 22 21 -1 0
... 7

302 7 80 30 29 28 27 26 -1 0

Table 4.1: Roster for Instance 4 containing only the Days Off and the Workweek Type
Encoding

21

4. Formal Definition and Solver-Independent Model Formulation

4.5 Hard Constraints
Given an assigned time frame roster R and the probability pabs that drivers are absent, it
must be possible (with a probability of success of at least psuc

2) to assign every present
driver a shift such that the shift fits within the interval provided by the assigned time
frame and is of the correct type. There are two independent occasions to violate this
abstract constraint: First, I only ensure with a probability of P (A) = psuc that there
remain enough time frames f of type tf > 0 to accommodate all split shifts and secondly,
I guarantee with probability of P (B) = psuc that there remain enough time frames f of
type tf ̸= 1 to accommodate the regular shifts, hence the overall probability of success
is P (A ∩ B) = psuc

2. To check whether this abstract constraint holds, I would need to
simulate the shift assignment to time frames which itself is a NP-hard problem [Lau96].
Hence, I break down the abstract constraint into hard constraints h1 − h3 and soft
constraint s1. Additionally, I verify for each solution (i.e., for each time frame roster) by
simulating absences and subsequent shift assignment whether constraints h1 − h3 and
s1 were successful in ensuring that the aforementioned constraint holds (for details see
Section 5.4).

4.5.1 Minimum Coverage
First, I define a coverage: Each weekday is split into time intervals [τj , τj+1) of length
τj+1 − τj = 0.5 (30 min), starting with τ1 = 3 (i.e., 3am on the current day) and ending
with τ55 = 30 (i.e., 6am on the next day). The shift coverage of a time interval [τj , τj+1)
for weekday i is defined as the number of shifts s ∈ Si that start before τj+1, end after
τj and are either split shifts or not:

min_covi,j =
�

s∈Si, ts=0, as<τj+1, bs>τj

1

min_cov_spliti,j =
�

s∈Si, ts=1, as<τj+1, bs>τj

1

The frame coverage is defined analogously:

fr_covi,j =
�

f∈Ri, tf =0, cf <τj+1, df >τj

1

fr_cov_spliti,j =
�

f∈Ri, tf >0, cf <τj+1, df >τj

1

The frame coverage must be greater or equal the shift coverage:

h1a : fr_covi,j ≥ min_covi,j i ∈ {0, ..., 6}, j ∈ {1, ..., 54}
h1b

: fr_cov_spliti,j ≥ min_cov_spliti,j i ∈ {0, ..., 6}, j ∈ {1, ..., 54}

22

4.5. Hard Constraints

4.5.2 Minimum Frame Set
The hard constraint h1 is not sufficient by itself to ensure that shifts fit into the available
time frames. I need to guarantee that there are enough frames to accommodate the
shifts, despite drivers may be absent with a probability of pabs. A shift can lie in the
interval of several time frames, hence I obtain a set of time frames FSs covering a shift s.
I determine the minimum size required for each of these sets of time frames, similar to
how I determine the necessary count of drivers and days off:

FSs = {f | f ∈ F, tf ̸= 1, s ∈ S, [as, bs] ∈ [cf , df]}
FSsplits

= {f | f ∈ F, tf = 1, s ∈ S, [as, bs] ∈ [cf , df]}

I also compute frame sets FSj for artificial shifts of length 4 (assumed minimum shift
length) to get every possible frame set, resulting in 30 different frame sets. Subsequently,
I count the shifts having the same frame set FSj for weekday i:

countF Si,j = |{s | s ∈ Si, FSj = FSs}|
countF Sspliti,j

= |{s | s ∈ Si, FSsplitj
= FSsplits

}|

The size of a frame set FSj for weekday i is defined as the sum of the count of frame f
appearing in roster column Ri over all frames f ∈ FSj :

|FSi,j | =
�

f∈F Sj

�
f∈Ri

1 |FSspliti,j
| =

�
f∈F Ssplitj

�
f∈Ri

1

The minimum size of a frame set FSj for weekday i is then the number of frames |FSi,j |
necessary to cover at least (covfac ·100)% of shifts possessing the frame set FSj or subsets
thereof with a probability of psuc:

minF Si,j = min_demand(pabs, psuc,
�

F Sk⊆F Sj

�
covfac · countF Si,k

�
)

The size of a frame set must be greater or equal the minimum size for this set:

h2a : |FSi,j | ≥ minF Si,j i ∈ {0, ..., 6}, j ∈ {1, ..., 30}

Split shifts are treated differently since they contain a long break, which increases the
overall shift duration. This makes it more important for drivers to known if their
associated time frames allow or even require a split shift. Therefore, the number of time
frames in the roster that require split shifts to be assigned equals 80% of the total split
shifts (see h2b

, h2c). The utilization of 80% aims to accommodate small changes in the
shift plan without making the rosters unsatisfiable. The minimum size of a split frame
set FSsplitj

is defined similarly to a regular frame set, except that it must cover 100% of
split shifts (see h2d

, h2e).

23

4. Formal Definition and Solver-Independent Model Formulation

There are frames that can accommodate regular as well as split shifts, hence I also calculate
the minimum demand for all early week time frames including the once designated for
split shifts (see h2f

). Furthermore, time frames of type greater 0 are only allowed if the
set of shifts contains split shifts (see h2g).

h2b
: |FSspliti,j

| = |{s | s ∈ Si, ts = 1}| · 0.8
i ∈ {0, ..., 6}, FSsplitj

= {f | f ∈ F, tf = 1}
h2c : |FSspliti,j

| ≥ countF Sspliti,j
· 0.8

i ∈ {0, ..., 6}, |FSsplitj
| = 1

h2d
: |FSspliti,j

| ≥ min_demand(pabs, psuc, |{s | s ∈ Si, ts = 1}|)
i ∈ {0, ..., 6}, FSsplitj

= {f | f ∈ F, tf > 0}
h2e : |FSspliti,j

| ≥ min_demand(pabs, psuc, countF Sspliti,j
)

i ∈ {0, ..., 6}, FSsplitj
= {{12, 14}, {13, 15}}

h2f
: |FSi,j | + |FSspliti,h

| ≥
min_demand(pabs, psuc, |{s | s ∈ Si, ts = 1}| +

�
F Sk⊆F Sj

�
covfac · countF Si,k

�
)

i ∈ {0, ..., 6}, FSj = {1, 2, 3, 4, 11, 14, 15}
h2g : |{s | s ∈ Si, ts = 1}| = 0 =⇒ |{f | f ∈ Ri, tf > 0}| = 0

i ∈ {0, ..., 6}

For some instances, enforcing hard constraint h2d
leads to unsatisfiability. The reason is

that time frames of type tf > 0 can only be assigned to the first and second workday
of the early week (workweek types 24 and 25) and to the last workday of the late week
(workweek type 26). There are two possibilities to deal with this issue. One is to just
replace the hard constraint by a soft constraint like it is done for hard constraint h2f

(see
Section 4.6.3). The other possibility (not possible for h2f

) is to calculate the maximum of
|FSspliti,j

| in constraint h2d
. This can be done by simply counting the number of roster

positions of weekday i associated with workweek types 24 to 26. I denote this maximum
as maxspliti

. If now

min_demand(pabs, psuc, |{s | s ∈ Si, ts = 1}|) > maxspliti

I replace constraint h2d
for weekday i with

h2d
: |FSspliti,j

| ≥ maxspliti
i ∈ {0, ..., 6}, FSsplitj

= {f | f ∈ F, tf > 0}

In Section 5.3.3, I compare the above mentioned possibilities.

24

4.5. Hard Constraints

4.5.3 Maximum Frame Set

In addition to the hard constraints h1 and h2, I define maximum frame sets. Instead of
counting shifts with the same frame set, I count how many shifts can be covered using
any frame f in a frame set FSj . This gives us the maximum number of shifts coverable
by a frame of frame set FSj :

max_countF Si,j = |{s | s ∈ Si, ∃f ∈ FSj : [as, bs] ∈ [cf , df]}|

I once again employ the min_demand algorithm but this time in reverse. The maximum
size of a frame set FSj for weekday i is determined by the maximum number of frames
|FSi,j | such that there is only a probability of 1 − psuc for there to be more frames than
shifts to cover:

maxF Si,j = min_demand(pabs, 1 − psuc, max_countF Si,j + 1) − 1

The size of a frame set must be smaller or equal the maximum size for this set. However,
this is restricted to frame sets of size less than 4, as larger sets render rosters infeasible.
For frame sets of size greater than 3, I adjust the maximum to match the number of
shifts |Si| for weekday i. In case the maximum is lower than the minimum, I decrease
the minimum such that it equals the maximum:

h3a : |FSi,j | ≤ maxF Si,j i ∈ {0, ..., 6}, |FSj | < 4
h3b

: |FSi,j | ≤ |Si| i ∈ {0, ..., 6}, |FSj | ≥ 4

4.5.4 Forbidden Sequences

Some sequences of time frames are forbidden, primarily due to rest time regulations.
A consecutive time frame assignment (f1, f2) in roster R cannot appear in the list of
forbidden sequences seqfb:

h4 : ∀(f1, f2) ∈ R : (f1, f2) ̸∈ seqfb f1, f2 ∈ F

4.5.5 Forbidden Frames

Drivers follow an alternating scheme where in one week they are only assigned early shifts,
and in the subsequent week, only late shifts. Split shifts can only be assigned during the
first two days of the early week or the last day of the late week. A workweek type is
utilized to encode this information for each roster positions. A time frame assignment
f to a roster position of workweek type wt cannot appear in the list of forbidden time
frames for this workweek type:

h5 : ∀f ∈ R : f ̸∈ forbwt f ∈ F, f = r
oj

i ,k
, wt = wtr

o
j
i

,k

25

4. Formal Definition and Solver-Independent Model Formulation

Algorithm 4.2: max_deviation(min_cov, dev_allowed)
1 for i ∈ {0, ..., 5} do
2 x ← �29

j=0 min_covi,j ;
3 y ← �29

j=0 min_covi+1,j ;
4 if x < y then
5 dev ← y/x;
6 else
7 dev ← x/y;
8 end
9 maxDev[i] ← dev_allowed + ⌈(dev − 1) · 500⌉

10 end
11 return maxDev

4.5.6 Maximum Frame Deviation
Weekdays with similar shifts should also have similar time frames. To ensure this, I
define a maximum deviation in the time frame counts between two weekdays. The
max_deviation algorithm (see Algorithm 4.2) uses the minimum coverage definition (see
h1). To measure the similarity of shifts between two days, I sum the shift coverage of
these days and divide the greater coverage by the smaller one. The shift coverage between
two days is identical if dev equals 1. I allow a slight variation in the time frame counts
between days with identical shifts, using the parameter dev_allowed. For example, if
the shift coverage of one day is 5% greater than that of the next day, the maximum
deviation is calculated as maxDev = dev_allowed + 25.

For weekdays 0 to 5 the absolute difference in the count of frame f between two consecutive
days (i, i + 1) must be smaller or equal maxDev[i] (see h6a). For weekdays 0 to 4 the
absolute difference in the count of frame f between any of these days must be smaller or
equal maxDev[i] (see h6b−d).

h6a : |
�

f∈Ri

1 −
�

f∈Ri+1

1 | ≤ maxDev[i] i ∈ {0, ..., 5}, f ∈ F

h6b
: |

�
f∈Ri

1 −
�

f∈Ri+2

1 | ≤ maxDev[i] i ∈ {0, 1, 2}, f ∈ F

h6c : |
�

f∈Ri

1 −
�

f∈Ri+3

1 | ≤ maxDev[i] i ∈ {0, 1}, f ∈ F

h6d
: |

�
f∈Ri

1 −
�

f∈Ri+4

1 | ≤ maxDev[i] i = 0, f ∈ F

26

4.6. Soft Constraints

4.5.7 Night Frames
Time frames with an end time after 2am are called night frames and are only allowed
if there are also shifts ending after 2am. Furthermore, for frame sets consisting of only
night frames, the maximum frame set size is set to the minimum frame set size:

h7a : |{s | s ∈ Si, bs > 26}| = 0 =⇒ |{f | f ∈ Ri, df > 26}| = 0
h7b

: maxF Si,j := minF Si,j i ∈ {0, ..., 6}, FSj = {f | f ∈ F, df > 26}

4.5.8 Relief Frames
Two of the time frames FSr = {11, 15} are considered to be relief frames, since they can
accommodate early and late shifts. These time frames are necessary to balance potential
imbalances between early time frames FSe = {1, 2, 3, 4, 11, 14, 15} and late time frames
FSl = {5, 6, 7, 8, 9, 11, 15} and thus, appear in both sets FSr = FSe ∩ FSl. I determine
the minimum size of frame set FSr by calculating the maximum difference between early
and late frames given that drivers are absent with probability pabs:

lbi = arg min
x

(
�

1 − psuc ≤ binom.cdf(x, min(|FSi,e|, |FSi,l|), 1 − pabs) − 1

ubi = arg min
x

(1 − �
1 − psuc ≤ binom.cdf(x, max(|FSi,e|, |FSi,l|), 1 − pabs)

h8 : minF Si,r = ubi − lbi i ∈ {0, ..., 6}

4.6 Soft Constraints
4.6.1 Deviation from Desired Coverage
In addition to the hard constraints h1 − h3, I introduce a soft constraint that penalizes
the deviation from the desired coverage. The aim is to satisfy the abstract constraint
mentioned at the beginning of Section 4.5. I calculate the desired coverage by again
using the min_demand algorithm:

cov_desi,j = min_demand(pabs, psuc, min_covi,j)
cov_split_desi,j = min_demand(pabs, psuc, min_cov_spliti,j)

It is more important to avoid undercoverage than overcoverage, therefore, to calculate the
deviation penalty, I square the difference between frame coverage and desired coverage if
the frame coverage is greater, and take the difference to the power of 4 otherwise. The
difference between split coverage and desired split coverage is simply squared:

cov_peni,j =
�

(cov_desi,j − fr_covi,j)4 if cov_desi,j ≤ fr_covi,j

(cov_desi,j − fr_covi,j)2 if cov_desi,j > fr_covi,j

cov_split_peni,j = (cov_split_desi,j − fr_cov_spliti,j)2

s1 =
6�

i=0

55�
j=1

cov_peni,j + cov_split_peni,j

27

4. Formal Definition and Solver-Independent Model Formulation

4.6.2 Undesirable Sequences
Some sequences of time frames are undesirable, primarily due to rest time regulations. A
consecutive time frame assignment (f1, f2) in roster R appearing in the list of undesirable
sequences sequd incurs a penalty p(f1, f2) (penalty function p is given):

s2 =
�

(f1,f2)∈R, (f1,f2)∈sequd

p(f1, f2)

4.6.3 Below Minimum Frame
The hard constraint h2f

sometimes results in unsatisfiability. To prevent this outcome, I
transform this hard constraint into a soft constraint and introduce a high penalty if the
frame set count falls below the minimum. The function below(h) returns the extent to
which a hard constraint h is undershot:

s4 = below(h2f
) · penhard_con

4.6.4 Frame Deviation
Weekdays with similar shifts should also have similar time frames. This is in particular
the case for weekdays 0 to 4, since they usually have very similar sets of shifts. I penalize
the frame deviation between these weekdays:

s3 =
4�

i=1

15�
f=1

|
�

f∈Ri

1 −
�

f∈Ri+1

1|

4.6.5 Same Frame Next Day
To provide drivers with some variety in the sequence of time frames, I introduce a penalty
for consecutive assignments of the same time frame (f, f) in roster R:

s5 =
�

(f,f)∈R, f∈F

1

4.6.6 Same Frames Next Week
To achieve a more even distribution of time frames within a day off type, I introduce a
penalty for assigning the same time frames to two consecutive early or late weeks. The
penalty s6 is similar to s5, as simply all occurrences are counted.

28

4.7. Decision Variables

4.7 Decision Variables
The roster positions represent the decision variables. For each roster position r

oj
i ,k

in
roster R that is not assigned a day off, a time frame r

oj
i ,k

:= f ∈ F is assigned.

4.8 Objective Function
The objective of this problem is to assign time frames to roster positions such that the
costs associated with soft constraints s1 to s6 are minimized while ensuring that hard
constraints h1 to h8 hold. To balance the costs, each soft constraint is multiplied by an
adjustable weight before aggregation, resulting in the following function:

min w1s1 + w2s2 + w3s3 + w4s4 + w5s5 + w6s6 w1, w2, w3, w4, w5, w6 ∈ N+

s.t. h1 − h8 hold

4.9 Solver-independent Model
Based on the problem definition provided in this section, I create a solver-independent
model of the time frame rostering problem by using MiniZinc [NSB+07]. A MiniZinc
model allows one to use both linear and constraint solvers. The model2 includes all hard
and soft constraints as well as the objective function outlined in the problem definition.
Where possible, I use global constraints and provide MiniZinc with lower and upper
bounds to variables and functions.

2https://github.com/lukasfruehwirth/time_frame_rostering/blob/main/frame_
rostering_problem.mzn

29

https://github.com/lukasfruehwirth/time_frame_rostering/blob/main/frame_rostering_problem.mzn
https://github.com/lukasfruehwirth/time_frame_rostering/blob/main/frame_rostering_problem.mzn

CHAPTER 5
Experimental Evaluation

The proposed model is evaluated using a diverse set of twelve real-world instances. These
twelve distinct sets of shifts are extracted from real-world shift plans, that have been
provided by a public transportation company. I also make this data available to the
scientific community1. The evaluation process involves several steps: Firstly, I present
the experimental setup, instance properties as well as parameter settings. Secondly, I
solve the instances using two different state-of-the-art solvers and compare the results.
Thirdly, I validate the solutions using a simulation model. Finally, I discuss the obtained
results in detail.

5.1 Experimental Setup

To evaluate the solver-independent model, I solve the instances using two conceptually
different state-of-the-art solvers: mixed-integer programming solver Gurobi 11.0.0 [Gur23]
and constraint solver OR-Tools CP-SAT 9.8.3296 [PD23]. Additionally, I tested the lazy
clause generation solver Chuffed 0.13.1 [CDLBS10]. Despite extending the time limit to
10 hours, Chuffed was unable to solve any of the instances. Consequently, I excluded the
Chuffed solver from the experiments.

The test setup looks as follows: The solvers are allowed to use up to 20 threads. The
experiments are run on an Intel i5-13500 2.5GHz processor with 20 logical units and with
32GB of RAM available. Calculations for the day off schedule as well as for the hard
constraints (h1, h2, h3, h6, h7, h8) and the soft constraints (s1, s4) are done in Python
3.12 [VRD09]. The MiniZinc model and solvers are then called within Python using the
MiniZinc Python 0.9.0 interface [mzp].

1https://github.com/lukasfruehwirth/time_frame_rostering

31

https://github.com/lukasfruehwirth/time_frame_rostering

5. Experimental Evaluation

5.2 Instance Properties, Time Frames and Parameter
Settings

Table 5.1 illustrates the main properties of the twelve instances, where the column |Spi|
stands for the number of split shifts in weekday i:

Inst. |R| |S| |S0| - |S3| |S4| |S5| |S6| |Sp0| - |Sp4| |Sp5| |Sp6|
1 364 1,380 223 223 142 123 29 4 0
2 354 1,344 217 219 132 125 22 0 0
3 308 1,159 185 185 123 111 27 6 0
4 302 1,134 183 183 110 109 21 3 0
5 338 1,282 204 204 139 123 23 9 0
6 324 1,224 194 194 134 120 15 0 0
7 382 1,456 233 233 153 138 37 7 0
8 362 1,375 218 218 148 137 23 0 0
9 652 2,539 408 408 265 234 56 10 0
10 636 2,478 400 402 242 234 43 3 0
11 702 2,738 437 437 292 261 60 16 0
12 666 2,599 412 412 282 257 38 0 0

Table 5.1: Instance Properties

Table 5.2 lists all time frames including their interval length and type:

Time Frame Interval Length (hh:mm) Type
1 10:30 0
2 11:00 0
3 12:30 0
4 12:30 0
5 11:00 0
6 12:00 0
7 12:30 0
8 11:00 0
9 7:30 0
10 15:00 0
11 16:00 0
12 16:30 1
13 17:00 1
14 12:30 / 16:30 2
15 16:00 / 17:00 2

Table 5.2: Time Frame Properties

32

5.2. Instance Properties, Time Frames and Parameter Settings

Time frames 14 and 15 can accommodate regular and split shifts and are, therefore, a
combination of other time frames. This is the reason why there are two different interval
lengths given for these time frames in Table 5.2. If time frame 14 is assigned a regular
shift, then its properties are equal to those of time frame 4. If time frame 14 is assigned
a split shift, then its properties are equal to those of time frame 12. Similarly, if time
frame 15 is assigned a regular shift, then its properties are equal to those of time frame
11. Conversely, if time frame 15 is assigned a split shift, then its properties are equal to
those of time frame 13.

For all instances, I use the following parameter settings:

Parameter Setting
covfac 0.90
pabs 0.25
psuc 0.99

dev_allowed 5
penhard_con 1,000,000

w1 1
w2 1
w3 10,000
w4 1
w5 100
w6 100

Table 5.3: Parameter Settings

33

5. Experimental Evaluation

5.3 Experimental Results
I define the gap g between the objective value ov of a solution and the best known lower
bound lbbest as:

g = (|lbbest − ov|
ov

) · 100

In the following section, I present and compare the results of various search strategies
for variable selection and domain-value choice, the impact of redundant constraints and
symmetry breaking, and the performance of the two solvers Gurobi and OR-Tools.

5.3.1 Variable Selection and Domain-Value Choice
I tested the following variable selection and domain-value choice strategies for OR-Tools
CP-SAT solver with a time limit of one hour, without redundant constraints or symmetry
breaking. Gurobi was not included in the test setup, as it does not allow the specification
of these strategies:

Variable selection strategies2:

• first_fail : Select variables with the smallest domain size.

• input_order : Select variables based on the input order.

• smallest: Select variables with the smallest domain-value.

• largest: Select variables with the largest domain-value.

Domain-value choice strategies3:

• indomain_min: Choose smallest domain-value.

• indomain_max : Choose largest domain-value.

• indomain_split: Split the domain and choose the lower half.

• indomain_reverse_split: Split the domain and choose the upper half.

Table 5.4 presents the results for all combinations of search strategies using the OR-Tools
CP-SAT solver. OR-Tools was able to find solutions to all instances for 8 out of the
16 search strategies. The variable selection strategy input_order in combination with
the domain-value choice strategy indomain_max performed the best. However, when
examining the optimality gap, the variation seems quite small.

2https://www.minizinc.org/doc-2.8.4/en/lib-stdlib-annotations.html#
search-annotations

3https://www.minizinc.org/doc-2.8.4/en/lib-stdlib-annotations.html#
value-choice-annotations

34

https://www.minizinc.org/doc-2.8.4/en/lib-stdlib-annotations.html##search-annotations
https://www.minizinc.org/doc-2.8.4/en/lib-stdlib-annotations.html##search-annotations
https://www.minizinc.org/doc-2.8.4/en/lib-stdlib-annotations.html##value-choice-annotations
https://www.minizinc.org/doc-2.8.4/en/lib-stdlib-annotations.html##value-choice-annotations

5.3. Experimental Results

Variable
Selection

Domain-Value
Choice |Inst.| Avg. Obj. Value

ov
Avg. Gap

g

input_order indomain_max 12 58,800,330 96.69
largest indomain_reverse_split 12 79,484,915 97.17
largest indomain_min 12 74,455,278 97.31
smallest indomain_split 12 74,513,008 97.72
largest indomain_max 12 61,422,667 97.85
input_order indomain_min 12 67,817,118 98.07
smallest indomain_min 12 72,699,967 98.26
smallest indomain_max 12 84,509,642 98.38
largest indomain_split 11 56,521,735 96.91
input_order indomain_reverse_split 11 61,671,054 97.32
smallest indomain_reverse_split 11 64,759,774 97.59
input_order indomain_split 11 55,669,136 97.62
first_fail indomain_min 11 62,169,073 97.94
first_fail indomain_reverse_split 10 63,806,620 97.00
first_fail indomain_split 10 51,712,160 97.37
first_fail indomain_max 9 64,129,189 97.57

Table 5.4: Results of Different Variable Selection and Domain-Value Choice Strategies
for OR-Tools

5.3.2 Redundant Constraints and Symmetry Breaking
In order to improve the performance of the solvers, I experiment with redundant con-
straints and symmetry breaking.

Redundant Constraints

I include a redundant constraint for the forbidden sequence constraint (h4) by exploiting
the time frames numbering. Specifically, for time frames 1-3 and 7-10, one knows from
the list of forbidden sequences that if any of these time frames are assigned to a roster
position, the subsequent roster position must be assigned a time frame with a number
smaller than or equal to the current one. This eliminates the need to check the list of
forbidden sequences for these specific cases and allows for more explicit modeling.

The definition of the redundant constraint RC is based on the definition of two consecutive
time frame assignment (f1, f2) in roster R:

RC : ∀(f1, f2) ∈ R : (0 < f1 < 4 ∨ 6 < f1 < 11) =⇒ f2 ≤ f1 f1, f2 ∈ F

35

5. Experimental Evaluation

Symmetry Breaking

To reduce the size of the search space, I aim to reduce the number of symmetrical solutions.
My approach is to pre-assign time frames f ∈ FSj when there is only a single frame in
the set (|FSj | = 1). This is the case for the following time frames: 1, 2, 6, 7, 8, 10, and
12. According to hard constraints h2a and h2c, there must be a minimum number of
these frames assigned to roster R for each weekday i: minF Si,j and countF Sspliti,j

. Thus,
I pre-assign these time frames while ensuring that they are uniformly distributed across
the roster and assigned to positions where the influence to the overall solution quality is
minimal. As a result, this approach is technically not considered symmetry breaking, as
the optimal objective values with a pre-assigned time frame roster are slightly worse than
those obtained by starting with an empty roster. However, I still use this approach, as
the impact is minimal and typically not significant in practice, with an average increase
of the objective value of only 1.5% for instances 1 to 7, as shown in Table 5.8.

The following example illustrates the pre-assignment process: Let the number of roster
positions of workweek type 21 for weekday i be denoted as p21,i, and the minimum
number of time frame 1 that must be assigned to weekday i as min1,i. To distribute the
pre-assignments evenly, I calculate for weekday i: x1,i = ⌊p21,i/min1,i⌋. I then pre-assign
time frame 1 to every xth

1,i roster position of workweek type 21 for weekday i. This
method is applied similarly to time frames 2, 6, 7, 8, 10, and 12, and to workweek types
22, 28, 29, 30, 30, and 25 respectively. However, this symmetry breaking method can
slightly influence the optimal objective value, as the time frames are pre-assigned to
positions of specific workweek types, which might not always be optimal concerning the
soft constraints.

Table 5.5 outlines a roster where the above-mentioned symmetry breaking method has
been applied to. The pre-assigned time frames are represented by the numbers 1 to 15
(see Table 5.2).

To evaluate whether the redundant constraint (RC) and/or symmetry breaking (SB)
enhance the solver’s performance, I tested four different scenarios: using neither the
redundant constraint nor symmetry breaking (-RC, -SB), using only symmetry breaking
(-RC, +SB), using only the redundant constraint (+RC, -SB), and using both (+RC,
+SB). I set the time limit to two hours.

36

5.3. Experimental Results

|R| o |o| R0 R1 R2 R3 R4 R5 R6

1 0 1 0 8 29 28 27 26 -1
2 0 2 0 12 24 23 2 1 -1
3 0 3 0 8 29 28 27 26 -1
4 0 4 0 25 24 23 22 21 -1
5 0 5 0 8 29 28 27 26 -1
6 0 6 0 25 24 23 22 21 -1
7 0 7 0 8 29 28 27 26 -1
8 0 8 0 12 24 23 2 1 -1
9 0 9 0 8 29 28 27 26 -1

10 0 10 0 25 24 23 22 21 -1
11 0 11 0 8 29 28 27 26 -1
12 0 12 0 25 24 23 22 21 -1
13 0 13 0 8 29 28 27 26 -1
14 0 14 0 12 24 23 2 1 -1
15 0 15 0 8 29 28 27 26 -1
16 0 16 0 25 24 23 22 21 -1
17 0 17 0 30 29 28 27 26 -1
18 0 18 0 25 24 23 22 21 -1
19 0 19 0 30 29 28 27 26 -1
20 0 20 0 12 24 23 2 1 -1
21 1 1 -1 0 8 29 28 27 26
22 1 2 -1 0 12 24 23 2 1
23 1 3 -1 0 8 29 28 27 26
24 1 4 -1 0 25 24 23 22 21
25 1 5 -1 0 8 29 28 27 26
26 1 6 -1 0 25 24 23 22 21
27 1 7 -1 0 8 29 28 27 26
28 1 8 -1 0 12 24 23 2 1
29 1 9 -1 0 8 29 28 27 26
30 1 10 -1 0 25 24 23 22 21
31 1 11 -1 0 8 29 28 27 26
32 1 12 -1 0 25 24 23 22 21
33 1 13 -1 0 8 29 28 27 26
34 1 14 -1 0 12 24 23 2 1
35 1 15 -1 0 8 29 28 27 26
36 1 16 -1 0 25 24 23 22 21
37 1 17 -1 0 30 29 28 27 26
38 1 18 -1 0 25 24 23 22 21
39 1 19 -1 0 30 29 28 27 26
40 1 20 -1 0 12 24 23 2 1
41 2 1 1 -1 0 8 29 28 27
42 2 2 26 -1 0 12 24 23 22
43 2 3 21 -1 0 8 29 28 27
44 2 4 26 -1 0 25 24 23 22
45 2 5 21 -1 0 8 29 28 27
46 2 6 26 -1 0 25 24 23 22
47 2 7 1 -1 0 8 29 28 27
48 2 8 26 -1 0 12 24 23 22
49 2 9 21 -1 0 8 29 28 27
50 2 10 26 -1 0 25 24 23 22
51 2 11 21 -1 0 8 29 28 27
52 2 12 26 -1 0 25 24 23 22
53 2 13 1 -1 0 8 29 28 27
54 2 14 26 -1 0 12 24 23 22
55 2 15 21 -1 0 8 29 28 27
56 2 16 26 -1 0 25 24 23 22
57 2 17 21 -1 0 30 29 28 27
58 2 18 26 -1 0 25 24 23 22
59 2 19 1 -1 0 30 29 28 27
60 2 20 26 -1 0 12 24 23 22
61 3 1 2 1 -1 0 8 29 28
... 3
80 3 20 27 26 -1 0 12 24 23
81 4 1 23 2 1 -1 0 8 29
... 4

100 4 20 28 27 26 -1 0 25 24
101 5 1 24 23 2 1 -1 0 8
... 5

120 5 20 29 28 27 26 -1 0 25
121 6 1 12 24 23 2 1 -1 0
... 6

222 6 102 30 29 28 27 26 -1 0
223 7 1 0 30 29 28 27 26 -1
... 7

302 7 80 30 29 28 27 26 -1 0

Table 5.5: Roster for Instance 4 containing Days Off, Workweek Type and pre-assigned
Time Frames 37

5. Experimental Evaluation

Objective Value – OR-Tools
Inst. -RC, -SB -RC, +SB +RC, -SB +RC, +SB
1 61,692,400 61,104,300 51,265,300 62,444,800
2 8,349,260 48,869,100 11,819,100 44,182,400
3 29,090,300 44,681,700 26,391,200 37,934,800
4 10,368,800 13,912,300 27,540,800 18,561,000
5 35,383,800 66,228,900 50,076,500 51,505,300
6 1,227,730 1,316,770 1,091,050 1,659,560
7 69,982,400 68,267,000 92,312,000 85,254,400
8 4,133,890 11,220,500 35,938,000 8,587,770
9 74,365,300 129,392,000 132,111,000 97,588,100
10 48,646,200 92,990,900 44,830,100 93,214,300
11 30,210,800 140,374,000 187,507,000 185,239,000
12 53,760,400 55,130,300 57,340,100 77,332,300
Total 427,211,280 733,487,770 718,222,150 763,503,730

Table 5.6: Comparison of Objective Values with or without Redundant Constraints and
Symmetry Breaking for OR-Tools

Optimality Gap – OR-Tools
Inst. -RC, -SB -RC, +SB +RC, -SB +RC, +SB
1 99.17 99.00 99.54 99.22
2 94.51 98.78 97.16 99.23
3 98.77 99.06 99.01 98.93
4 98.54 98.77 99.51 99.11
5 92.99 96.03 94.84 95.11
6 87.63 87.98 85.53 91.00
7 81.49 81.00 86.02 84.80
8 95.81 98.50 99.57 98.15
9 99.14 99.54 99.58 99.33
10 99.04 99.44 99.09 99.48
11 98.18 97.69 99.67 99.72
12 99.38 99.33 99.32 99.57
Avg. 95.39 96.26 96.57 96.97

Table 5.7: Comparison of Optimality Gaps with or without Redundant Constraints and
Symmetry Breaking for OR-Tools

38

5.3. Experimental Results

Objective Value – Gurobi
Inst. -RC, -SB -RC, +SB +RC, -SB +RC, +SB
1 912,721 923,031 913,055 923,031
2 876,593 907,902 876,593 907,902
3 674,730 683,559 674,730 683,559
4 397,838 408,825 397,838 412,106
5 2,882,328 2,896,002 2,882,328 2,896,004
6 379,272 381,779 379,272 381,779
7 13,358,777 13,361,053 13,361,053
8 680,880 679,934 679,958
9 2,314,417 2,347,749 2,314,417
10 1,686,856
11 5,274,173
12 1,293,978

Table 5.8: Comparison of Objective Values with or without Redundant Constraints and
Symmetry Breaking for Gurobi

Table 5.6 presents the objective values for all instances under the four different scenarios
using the OR-Tools CP-SAT solver. Table 5.7 shows the respective optimality gaps.
The best objective values and gaps are highlighted in bold. For most instances, the
scenario without the redundant constraint and without symmetry breaking performed
the best. This suggests that the CP-SAT solver does not benefit from either of these
two approaches. However, it is worth noting that the solver does not come close to the
optimum in any of the four scenarios.

As one can see from Table 5.8, using the proposed symmetry breaking method results
in slightly worse objective values. Gurobi achieves the best solutions for instances 1 to
7 when neither the redundant constraint nor symmetry breaking is applied. However,
under this setting, Gurobi fails to find any solutions for instances 9 to 12 within the
two-hour time limit. Disabling symmetry breaking and adding the redundant constraint
does not significantly affect the performance. The solver is then able to find a solution
for instance 9, but none for instances 7 and 8. When only symmetry breaking is applied,
I am able to also get solutions for instances 9 and 10. By employing both symmetry
breaking and the redundant constraint, Gurobi manages to find solutions for all instances,
even achieving optimal solutions for 6 of them (see Table 5.9). Here, optimal means that
the solution is optimal given the pre-assigned roster. This configuration is also the fastest
in finding optimal solutions, as shown in Table 5.10. It seems that symmetry breaking is
especially beneficial when solving larger instances.

Table 5.11 compares the average number of solutions generated for the four different
scenarios. The CP-SAT solver constructs about ten times as many time frame rosters
compared to Gurobi. However, the initial solutions found by Gurobi are usually already
better than the best solution computed by OR-Tools CP-SAT solver.

39

5. Experimental Evaluation

Optimality Gap – Gurobi
Inst. -RC, -SB -RC, +SB +RC, -SB +RC, +SB
1 0.0068 0.0245 1.2229 optimal
2 0.1254 0.0472 0.0655 0.0217
3 optimal optimal 0.0001 optimal
4 optimal 0.0646 0.0050 optimal
5 0.0395 0.0015 0.0089 optimal
6 0.0044 optimal optimal optimal
7 0.0084 0.0042 optimal
8 1.1278 0.0751 0.1021
9 0.0536 3.2458 0.0010
10 0.1425
11 0.0142
12 0.3358

Table 5.9: Comparison of Optimality Gaps with or without Redundant Constraints and
Symmetry Breaking for Gurobi

Runtime – Gurobi, Time Limit TL = 2:00 (h:mm)
Inst. -RC, -SB -RC, +SB +RC, -SB +RC, +SB
1 TL TL TL 0:56
2 TL TL TL TL
3 0:48 0:26 TL 0:22
4 1:02 TL TL 0:24
5 TL TL TL 1:43
6 TL 1:27 1:21 1:42
7 TL TL TL 1:24
8 TL TL TL TL
9 TL TL TL TL
10 TL TL TL TL
11 TL TL TL TL
12 TL TL TL TL

Table 5.10: Comparison of Runtimes with or without Redundant Constraints and
Symmetry Breaking for Gurobi

40

5.3. Experimental Results

Inst. Gurobi
Avg. #Sol.

OR-Tools
Avg. #Sol.

1 32 285
2 23 295
3 45 407
4 10 381
5 20 322
6 37 334
7 25 298
8 39 271
9 14 67
10 13 59
11 8 50
12 9 55

Table 5.11: Average Number of Solutions generated by Gurobi and OR-Tools

As an example, Table 5.12 shows an optimal time frame roster for instance 4, computed
by Gurobi utilizing both the redundant constraint and symmetry breaking.

41

5. Experimental Evaluation

|R| o |o| R0 R1 R2 R3 R4 R5 R6

1 0 1 0 8 8 8 7 6 -1
2 0 2 0 12 12 3 2 1 -1
3 0 3 0 8 7 6 5 11 -1
4 0 4 0 15 15 3 3 2 -1
5 0 5 0 8 7 6 5 11 -1
6 0 6 0 13 14 3 2 1 -1
7 0 7 0 8 7 6 11 4 -1
8 0 8 0 12 12 3 2 1 -1
9 0 9 0 8 7 6 5 11 -1

10 0 10 0 11 15 3 3 2 -1
11 0 11 0 8 8 8 7 6 -1
12 0 12 0 15 3 2 2 1 -1
13 0 13 0 8 7 6 5 11 -1
14 0 14 0 12 12 3 2 1 -1
15 0 15 0 8 7 6 5 11 -1
16 0 16 0 13 13 3 2 1 -1
17 0 17 0 7 6 5 11 4 -1
18 0 18 0 11 15 3 3 2 -1
19 0 19 0 8 7 6 5 11 -1
20 0 20 0 12 14 3 2 1 -1
21 1 1 -1 0 8 8 8 7 7
22 1 2 -1 0 12 14 3 2 1
23 1 3 -1 0 8 8 8 7 7
24 1 4 -1 0 12 3 2 1 1
25 1 5 -1 0 8 8 8 7 7
26 1 6 -1 0 11 15 3 2 1
27 1 7 -1 0 8 8 8 7 7
28 1 8 -1 0 12 12 3 2 1
29 1 9 -1 0 8 8 8 7 7
30 1 10 -1 0 13 13 3 1 1
31 1 11 -1 0 8 8 8 7 7
32 1 12 -1 0 12 12 3 2 1
33 1 13 -1 0 8 8 8 7 7
34 1 14 -1 0 12 12 3 2 1
35 1 15 -1 0 8 8 8 7 7
36 1 16 -1 0 12 14 3 1 1
37 1 17 -1 0 8 8 8 7 7
38 1 18 -1 0 11 15 3 2 1
39 1 19 -1 0 8 8 8 7 7
40 1 20 -1 0 12 12 3 2 1
41 2 1 1 -1 0 8 7 6 5
42 2 2 11 -1 0 12 14 3 2
43 2 3 1 -1 0 8 8 8 7
44 2 4 6 -1 0 15 11 4 3
45 2 5 2 -1 0 8 7 6 5
46 2 6 15 -1 0 11 15 3 2
47 2 7 1 -1 0 8 8 7 6
48 2 8 11 -1 0 12 12 4 3
49 2 9 2 -1 0 8 7 6 5
50 2 10 15 -1 0 13 3 2 1
51 2 11 1 -1 0 8 8 7 6
52 2 12 11 -1 0 15 11 4 3
53 2 13 1 -1 0 8 7 6 5
54 2 14 15 -1 0 12 14 3 2
55 2 15 1 -1 0 8 8 7 6
56 2 16 11 -1 0 11 15 4 3
57 2 17 2 -1 0 8 7 6 5
58 2 18 11 -1 0 12 12 3 2
59 2 19 1 -1 0 7 6 5 11
60 2 20 15 -1 0 12 12 4 3
61 3 1 2 1 -1 0 8 7 6
... 3
80 3 20 11 11 -1 0 12 14 3
81 4 1 3 2 1 -1 0 8 7
... 4

100 4 20 11 11 11 -1 0 11 4
101 5 1 3 2 2 1 -1 0 8
... 5

120 5 20 6 5 11 15 -1 0 4
121 6 1 12 12 3 2 1 -1 0
... 6

222 6 102 7 6 6 5 11 -1 0
223 7 1 0 8 7 6 5 11 -1
... 7

302 7 80 8 7 6 5 11 -1 0

Table 5.12: Time Frame Roster for Instance 4
42

5.4. Monte Carlo Simulation to Simulate Tram Drivers’ Absences

5.3.3 Further Experiments
Chuffed

As mentioned in the experimental setup, I also tested the lazy clause generation solver
Chuffed 0.13.1 [CDLBS10]. However, even with an extended time limit of ten hours,
Chuffed was unable to solve any of the instances. Since Chuffed does not support parallel
processing, I conducted a fair comparison by also running Gurobi and OR-Tools on
a single thread. Despite this limitation, both Gurobi and OR-Tools managed to find
solutions for almost all instances within one hour, whereas Chuffed did not find a single
solution in ten hours.

Modeling Hard Constraints as Soft Constraints

In addition to soft constraint s4, I attempted to model hard constraints h2d
and h2e as

soft constraints with high penalties in order to relax the constraints and assist Gurobi in
finding initial solutions. However, this approach did not really affect Gurobi’s performance
and significantly reduced the performance of the OR-Tools CP-SAT solver. Consequently,
I discarded the modified formulation and did not include the results in this thesis.

Extended Time Limit

To assess whether Gurobi is able to find optimal solutions for all instances within a
reasonable amount of time, I extended the time limit to four hours and re-ran instances
2 and 8 to 12 using both symmetry breaking and the redundant constraint. Gurobi
successfully found an optimal solution for instance 9 in just over two hours (2:06) and
came very close to the optimum for the remaining instances, with optimality gaps g of
less than 0.1.

5.4 Monte Carlo Simulation to Simulate Tram Drivers’
Absences

To check whether the abstract constraint formulated in Section 4.5 does indeed hold, I
simulate absences by running Monte Carlo simulations. Monte Carlo simulations are
stochastic simulations based on random samples from a probability distribution [RK07, p.
82]. In this case, the drivers’ absences pabs follow a binomial distribution. This enables
us to simulate absences by discarding some frames based on the probability pabs using
the following procedure:

Risim = [f | f ∈ Ri, r ≤ 1 − pabs]

where r is for each frame in Ri a newly sampled, random real number between 0 and 1.
If r is smaller or equal to 1 − pabs, the frame is kept. Otherwise, the frame is discarded
(i.e., the driver is absent).

43

5. Experimental Evaluation

Using this reduced list of frames, I simulate the shift assignment for weekday i by de-
ploying the following simulation model4 modeled in MiniZinc:

Variables:

Si ... list of shifts for weekday i

Risim ... list of time frames for weekday i

Xi ... list of length |Risim | with domain 0 to |Si|

Constraints:

c1 : All elements of Xi except 0 must be different
c2 : ∀s[j] ∈ Si : ts[j] = 1 =⇒ j ∈ Xi

c3 : |Risim | ≤ |Si| =⇒ 0 ̸∈ Xi

c4 : |Risim | > |Si| =⇒
�

x∈Xi, x=0
1 = |Risim | − |Si|

c5 : ∀j ∈ [0, ..., |Risim |] : ((X[j] > 0) =⇒ ts[X[j]] = 0) =⇒
tRisim

[j] ̸= 1 ∧ [as[X[j]], bs[X[j]]] ∈ [cRisim
[j], dRisim

[j]]
c6 : ∀j ∈ [0, ..., |Risim |] : ((X[j] > 0) =⇒ ts[X[j]] = 1) =⇒

tRisim
[j] > 0 ∧ [as[X[j]], bs[X[j]]] ∈ [cRisim

[j], dRisim
[j]]

I cannot assign the same shift to different time frames (c1). Split shifts must be assigned
(c2). If the number of remaining time frames is less or equal the number of shifts, all
of these time frames have to be assigned a shift (c3). If the number of remaining time
frames is greater than the number of shifts, then all shifts have to be assigned to time
frames (c4). The number of time frames without a shift assigned is then |Risim | − |Si|. If
a shift of type 0 is assigned to a time frame, then this time frame cannot be of type 1
and the shift’s interval must lie within the time frame’s interval (c5). If a shift of type
1 is assigned to a time frame, then this time frame cannot be of type 0 and the shift’s
interval must lie within the time frame’s interval (c6).

Since the simulation (shift assignment) itself is NP-hard [Lau96] and rather time-
consuming, I do not simulate the entire roster week at once but separately for each
weekday. For each solution (i.e., time frame roster) and weekday i, 100 shift assignments
are simulated. The number of failed shift assignments for weekday i is denoted as simfaili .
The rate of success is then defined as:

simsuc = (1 −
�6

i=0 simfaili

700) · 100

The objective is to achieve a success rate simsuc > psuc
2 (see Section 4.5). Table 5.13

presents the simulation results for all instances and scenarios using Gurobi, while Table
5.14 presents the simulation results for all instances and scenarios using OR-Tools.

44

5.4. Monte Carlo Simulation to Simulate Tram Drivers’ Absences

Simulation Results simsuc – Gurobi
Inst. -RC, -SB -RC, +SB +RC, -SB +RC, +SB
1 99.43 99.29 99.14 99.14
2 99.57 98.71 99.14 99.29
3 99.29 99.29 99.29 99.00
4 98.43 99.43 98.86 98.86
5 99.29 99.14 98.14 99.86
6 99.14 99.86 99.29 99.43
7 97.14 96.86 96.71
8 99.00 98.86 99.29
9 99.57 99.14 98.57
10 99.29
11 98.71
12 99.43
Avg. 98.91 99.00 98.96 98.96

Table 5.13: Simulation Results for Gurobi

Simulation Results simsuc – OR-Tools
Inst. -RC, -SB -RC, +SB +RC, -SB +RC, +SB
1 95.14 92.86 97.57 92.57
2 98.86 94.71 99.14 96.57
3 97.57 95.71 97.43 95.86
4 98.86 99.71 98.71 98.57
5 97.29 89.29 94.86 96.57
6 97.86 99.14 98.43 98.57
7 92.29 90.57 83.86 87.29
8 99.00 98.43 95.71 98.71
9 98.86 94.86 95.43 98.57
10 99.29 98.14 99.00 98.86
11 97.86 92.00 68.29 67.43
12 99.29 99.14 98.57 99.00
Avg. 97.68 95.38 93.92 94.05

Table 5.14: Simulation Results for OR-Tools

4https://github.com/lukasfruehwirth/time_frame_rostering/blob/main/shift_
assignment_simulation.mzn

45

https://github.com/lukasfruehwirth/time_frame_rostering/blob/main/shift_assignment_simulation.mzn
https://github.com/lukasfruehwirth/time_frame_rostering/blob/main/shift_assignment_simulation.mzn

5. Experimental Evaluation

5.5 Discussion
Tables 5.9 and 5.7 clearly demonstrate that the proposed model performs significantly
better with the Gurobi solver compared to the OR-Tools solver, especially when the
redundant constraint and symmetry breaking is applied. Gurobi consistently achieves
superior results, quickly finding optimal solutions for 6 out of 12 instances and coming
very close to optimality for the remaining ones. Notably, even for the larger instances 9
to 12 Gurobi produces solutions with a gap to the best known lower bound smaller than
0.34%. Conversely, the constraint solver OR-Tools fails to solve any instances within
the time limit to optimality. The smallest gap reached by OR-Tools is 81%. Thus, all
solutions provided by OR-Tools are considerably far from the optimal solution. OR-Tools
performs comparably well in finding a satisfiable solution and can compute approximately
ten times more solutions than Gurobi within the designated time limit (see Table 5.11).
However, these additional solutions provide only minor improvements over the first
solution found. It appears that OR-Tools struggles with the model’s objective function,
which consists of several independent soft constraints. However, Gurobi also faces some
challenges, albeit of a different nature. Without symmetry breaking or the redundant
constraint, it occasionally fails to find any solution within two hours, particularly for the
larger instances, such as instances 9 to 12.

It is crucial to obtain solutions close to the optimum; otherwise, the success rate of the
simulation falls below acceptable levels. This observation is supported by examining
the simulation results computed for solutions provided by the OR-Tools solver. Table
5.14 shows that for 30 out of 48 solutions generated by OR-Tools, the success rate is
below psuc

2 · 100 = 98.01%. Conversely, Table 5.13 shows that for 32 out of 36 solutions
generated by Gurobi, a success rate exceeding psuc

2 · 100 = 98.01% is achieved. This
suggests that hard constraints h1 through h3 and soft constraint s1 effectively model the
abstract constraint mentioned at the beginning of Section 4.5. The only instance where
the success rate falls below 98.01% is instance 7. If we take a closer look at the solution
of this instance, we can see that the lower bound for hard constraint h2d

is decreased and
that the softened hard constraint h2f

is violated in order to not violate hard constraint
h5 (forbidden frames), resulting in an objective value significantly surpassing 1,000,000,
as Table 5.8 reveals. To improve the success rate for these instances, practitioners may
need to consider relaxing some of the hard constraints h4 to h8 and, in particular, h5.

46

CHAPTER 6
Conclusion

In this thesis, I formally introduce the time frame rostering problem, a novel challenge
arising from the desire for enhanced medium-term planning security and, generally, more
robust rosters in tram driver rostering. I provide an abstract problem description and
translate this description into a formal problem definition. Based on this defintion, a
solver-independent model using MiniZinc is created. The modeling involves processing
the given data to derive lower and upper bounds for some of the hard constraints of the
model. Additionally, I verify whether the abstract constraint mentioned in Section 4.5 is
indeed fulfilled by simulating tram drivers’ absences and subsequent shift assignments.
The results reveal that the MIP solver Gurobi is able to solve 6 out of 12 real-world
instances to optimality in less than two hours. For the remaining instances, when
redundant constraints and symmetry breaking are applied, Gurobi generates solutions
very close to the optimum within two hours. The proposed model, when used with a
state-of-the-art solver like Gurobi, efficiently constructs near-optimal time frame rosters,
even for rosters with up to 700 rows. Furthermore, the simulation shows that solutions
based on my model are indeed feasible and deployable in practice, as for almost all
instances and simulation runs, the assignment of shifts to time frames is successfully
completed. Some instances had a slightly lower success rate in the simulation because
I allowed certain hard constraints, in particular hard constraint h2d

to be violated to
satisfy others. This is a trade-off that practitioners should consider when using the model.
In summary, it can be stated that the model proposed in this thesis works as intended,
as it successfully models the abstract problem description of the time frame rostering
problem. Using this model together with state-of-the-art solvers like Gurobi, one can
solve real-world instances to (nearly) optimal levels within a reasonable amount of time.
Future work could test if other constraint solvers outperform OR-Tools and explore
approaches to improve the performance of constraint solvers. When solving larger
instances, a combination of constraint programming and integer programming could
be advantageous. The OR-Tools CP-SAT solver is typically quick at finding an initial

47

6. Conclusion

solution but performs poorly when it comes to finding solutions close to the optimum.
Hence, the idea is to generate an initial solution by the CP-SAT solver and use this
solution as a warm start for Gurobi, preventing Gurobi from getting stuck in finding an
initial solution. Future work could also address the time frame properties itself. Further
investigation into optimizing time frame rosters may involve penalizing the interval width
of the time frames to further enhanced medium-term planning security of tram drivers.
Another way to improve driver satisfaction might be to incorporate their preferences into
the time frame rostering model.

48

Overview of Generative AI Tools
Used

This diploma thesis was proofread with the assistance of ChatGPT-4o. ChatGPT-4o was
used to correct grammar and spelling errors as well as to make minor stylistic adjustments
to improve the readability of this thesis. The content and arguments of this thesis were
neither generated nor altered by ChatGPT.

49

List of Tables

3.1 Exemplary Day Off Schedule . 10
3.2 Exemplary Shift Roster . 10
3.3 Exemplary Time Frame Roster . 11

4.1 Roster for Instance 4 containing only the Days Off and the Workweek Type
Encoding . 21

5.1 Instance Properties . 32
5.2 Time Frame Properties . 32
5.3 Parameter Settings . 33
5.4 Results of Different Variable Selection and Domain-Value Choice Strategies

for OR-Tools . 35
5.5 Roster for Instance 4 containing Days Off, Workweek Type and pre-assigned

Time Frames . 37
5.6 Comparison of Objective Values with or without Redundant Constraints and

Symmetry Breaking for OR-Tools . 38
5.7 Comparison of Optimality Gaps with or without Redundant Constraints and

Symmetry Breaking for OR-Tools . 38
5.8 Comparison of Objective Values with or without Redundant Constraints and

Symmetry Breaking for Gurobi . 39
5.9 Comparison of Optimality Gaps with or without Redundant Constraints and

Symmetry Breaking for Gurobi . 40
5.10 Comparison of Runtimes with or without Redundant Constraints and Sym-

metry Breaking for Gurobi . 40
5.11 Average Number of Solutions generated by Gurobi and OR-Tools 41
5.12 Time Frame Roster for Instance 4 . 42
5.13 Simulation Results for Gurobi . 45
5.14 Simulation Results for OR-Tools . 45

51

List of Algorithms

4.1 min_demand(pabs, psuc, lb) . 18

4.2 max_deviation(min_cov, dev_allowed) 26

53

Bibliography

[Apt03] Krzysztof Apt. Principles of constraint programming. Cambridge university
press, 2003.

[BCBL04] Edmund K. Burke, Patrick De Causmaecker, Greet Vanden Berghe, and
Hendrik Van Landeghem. The state of the art of nurse rostering. J. Sched.,
7(6):441–499, 2004.

[BSSW17] Ralf Borndörfer, Christof Schulz, Stephan Seidl, and Steffen Weider. Integra-
tion of duty scheduling and rostering to increase driver satisfaction. Public
Transport, 9:177–191, 2017.

[CDLBS10] Geoffrey Chu, Maria Garcia De La Banda, and Peter J Stuckey. Automat-
ically exploiting subproblem equivalence in constraint programming. In
Integration of AI and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems: 7th International Conference, CPAIOR
2010, Bologna, Italy, June 14-18, 2010. Proceedings 7, pages 71–86. Springer,
2010.

[Dan51] George B Dantzig. Maximization of a linear function of variables subject to
linear inequalities. Activity analysis of production and allocation, 13:339–347,
1951. Originally published in 1947.

[Dan54] George B Dantzig. A comment on edie’s “traffic delays at toll booths”.
Journal of the Operations Research Society of America, 2(3):339–341, 1954.

[Dan57] George B Dantzig. Discrete-variable extremum problems. Operations research,
5(2):266–288, 1957.

[EJK+01] Andreas T Ernst, Houyuan Jiang, Mohan Krishnamoorthy, Helen Nott, and
David Sier. An integrated optimization model for train crew management.
Annals of Operations Research, 108(1):211–224, 2001.

[EJKS04] Andreas T Ernst, Houyuan Jiang, Mohan Krishnamoorthy, and David Sier.
Staff scheduling and rostering: A review of applications, methods and models.
European journal of operational research, 153(1):3–27, 2004.

55

[GB65] Solomon W Golomb and Leonard D Baumert. Backtrack programming.
Journal of the ACM (JACM), 12(4):516–524, 1965.

[GG61] Paul C Gilmore and Ralph E Gomory. A linear programming approach to
the cutting-stock problem. Operations research, 9(6):849–859, 1961.

[Gom58] Ralph E Gomory. Outline of an algorithm for integer solutions to linear
programs. Bulletin of the American Mathematical Society, 64(5):275–278,
1958.

[Gur23] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023.
https://www.gurobi.com.

[GVX22] Liping Ge, Stefan Voß, and Lin Xie. Robustness and disturbances in public
transport. Public Transport, 14(1):191–261, 2022.

[HHB20] Julia Heil, Kirsten Hoffmann, and Udo Buscher. Railway crew scheduling:
Models, methods and applications. European journal of operational research,
283(2):405–425, 2020.

[IEE90] IEEE. Ieee standard glossary of software engineering terminology. IEEE Std
610.12-1990, pages 1–84, 1990.

[IM15] Jonas Ingels and Broos Maenhout. The impact of reserve duties on the
robustness of a personnel shift roster: An empirical investigation. Computers
& Operations Research, 61:153–169, 2015.

[KM20] Lucas Kletzander and Nysret Musliu. Solving the general employee scheduling
problem. Computers & Operations Research, 113:104794, 2020.

[Lau96] Hoong Chuin Lau. On the complexity of manpower shift scheduling. Com-
puters & Operations Research, 23(1):93–102, 1996.

[LD60] AH Land and AG Doig. An automatic method of solving discrete program-
ming problems. Econometrica, 28(3):497–520, 1960.

[LJC20] Dung-Ying Lin, Chieh-Ju Juan, and Ching-Chih Chang. A branch-and-price-
and-cut algorithm for the integrated scheduling and rostering problem of
bus drivers. Journal of Advanced Transportation, 2020:1–19, 2020.

[LT19] Dung-Ying Lin and Meng-Rung Tsai. Integrated crew scheduling and roster
problem for trainmasters of passenger railway transportation. IEEE Access,
7:27362–27375, 2019.

[Lüb10] Marco E Lübbecke. Column generation. Wiley encyclopedia of operations
research and management science, 17:18–19, 2010.

[Mac77] Alan K Mackworth. Consistency in networks of relations. Artificial intelli-
gence, 8(1):99–118, 1977.

56

https://www.gurobi.com

[MJSS16] David R Morrison, Sheldon H Jacobson, Jason J Sauppe, and Edward C
Sewell. Branch-and-bound algorithms: A survey of recent advances in
searching, branching, and pruning. Discrete Optimization, 19:79–102, 2016.

[MMZ+01] Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: Engineering an efficient sat solver. In Proceedings of
the 38th annual Design Automation Conference, pages 530–535, 2001.

[mzp] Minizinc python 0.9.0. https://minizinc-python.readthedocs.
io/en/0.9.0/index.html. Accessed: 2024-05-30.

[NSB+07] Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand, Gre-
gory J Duck, and Guido Tack. Minizinc: Towards a standard cp modelling
language. In International Conference on Principles and Practice of Con-
straint Programming, pages 529–543. Springer, 2007.

[NW99] George Nemhauser and Laurence Wolsey. Integer and Combinatorial Opti-
mization. John Wiley & Sons, second edition, 1999.

[PD23] Laurent Perron and Frédéric Didier. Cp-sat v9.8, 2023. https://
developers.google.com/optimization/cp/cp_solver.

[PR91] Manfred Padberg and Giovanni Rinaldi. A branch-and-cut algorithm for
the resolution of large-scale symmetric traveling salesman problems. SIAM
review, 33(1):60–100, 1991.

[RK07] Reuven Y Rubinstein and Dirk P Kroese. Simulation and the monte carlo
method (wiley series in probability and statistics), 2007.

[RVBW06] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint
programming. Elsevier, 2006.

[VBD+13] Jorne Van den Bergh, Jeroen Beliën, Philippe De Bruecker, Erik Demeule-
meester, and Liesje De Boeck. Personnel scheduling: A literature review.
European Journal of Operational Research, 226(3):367–385, 2013.

[VJLS94] S. DAVID WU V. JORGE LEON and ROBERT H. STORER. Robustness
measures and robust scheduling for job shops. IIE Transactions, 26(5):32–43,
1994.

[VRD09] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. Cre-
ateSpace, Scotts Valley, CA, 2009.

[Wic19] Toni Ismael Wickert. Personnel rostering: models and algorithms for schedul-
ing, rescheduling and ensuring robustness. Doctoral thesis, Universidade
Federl Do Rio Grande Do Sul and KU Leuven, 2019.

57

https://minizinc-python.readthedocs.io/en/0.9.0/index.html
https://minizinc-python.readthedocs.io/en/0.9.0/index.html
https://developers.google.com/optimization/cp/cp_solver
https://developers.google.com/optimization/cp/cp_solver

[WSVB21] Toni I Wickert, Pieter Smet, and Greet Vanden Berghe. Quantifying and
enforcing robustness in staff rostering. Journal of Scheduling, 24(3):347–366,
2021.

[XS12] Lin Xie and Leena Suhl. A stochastic model for rota scheduling in public
bus transport. In Proceedings of 2nd Stochastic Modelling Techniques and
Data Analysis International Conference, pages 785–792, 2012.

[YMDS05] Tallys H Yunes, Arnaldo V Moura, and Cid C De Souza. Hybrid column
generation approaches for urban transit crew management problems. Trans-
portation Science, 39(2):273–288, 2005.

58

	Kurzfassung
	Abstract
	Contents
	Introduction
	Aim of the Thesis
	Contributions
	Structure of the Thesis

	Theoretical Background
	Constraint Programming
	Integer Programming

	Problem Description and Related Work
	Problem Description
	Related Work

	Formal Definition and Solver-Independent Model Formulation
	Provided Data
	Definition of a Time Frame Roster
	Algorithm for Calculating the Minimum Number of Drivers Needed
	Creating a Day Off Schedule
	Hard Constraints
	Soft Constraints
	Decision Variables
	Objective Function
	Solver-independent Model

	Experimental Evaluation
	Experimental Setup
	Instance Properties, Time Frames and Parameter Settings
	Experimental Results
	Monte Carlo Simulation to Simulate Tram Drivers' Absences
	Discussion

	Conclusion
	Overview of Generative AI Tools Used
	List of Tables
	List of Algorithms
	Bibliography

