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Kurzfassung

Cyber-Bedrohungen entwickeln sich ständig weiter und neue Angriffstechniken werden
rasch entwickelt. Anomalieerkennung (AE) in System-Logzeilen ist daher zunehmend
wichtiger, da sie in der Lage ist, Angriffe bekannter, aber auch unbekannter Art zu erken-
nen. Die Konfiguration von AE-Algorithmen hängt stark von den Daten ab und umfasst
die Auswahl von Merkmalen und die Festlegung von Parametern wie Schwellenwerten oder
Fenstergrößen. Der Prozess ist folglich nicht trivial und erfordert oft manuelle Eingriffe
von Experten, was Zugänglichkeit und Wirksamkeit von AE-Algorithmen einschränkt.
Diese Arbeit stellt daher die Configuration-Engine (CE) vor, ein halbüberwachter Ansatz
zur Automatisierung des Konfigurationsprozesses von AE-Algorithmen. Die CE wendet
einen datenwissenschaftlichen Ansatz an, um Eigenschaften von Teilen von Logzeilen
zu identifizieren. Dabei verwendet sie einen Parser, um in Zeilen sinnvolle statische und
variable Tokens zu erkennen, die AE-Detektoren analysieren können. Das CE kategorisiert
Variablen auf Grundlage ihrer Eigenschaften und ihres Verhaltens über die Zeit. Basierend
auf den Anforderungen der vorliegenden AE-Detektoren legt die CE fest, welche Teile
des Logs ein Detektor beobachten soll und bestimmt die entsprechenden Konfigurations-
parameter. Diese Arbeit betrachtet 6 Detektoren des AMiners, einer fortgeschrittenen
AE-Pipeline, die eine breite Palette von AE-Algorithmen umfasst. Zusätzlich enthält die
CE einen Optimierungsansatz zur weiteren Verfeinerung von Konfigurationen.

Die Leistung wurde anhand punktueller und kollektiver Anomalien bewertet, die in einer
Reihe von Apache Access- und Audit-Datensätzen auftreten. Bei kollektiven Anomalien
lieferte das CE Konfigurationen, die eine durchschnittliche Präzision von über 0.95 für
Apache- und über 0.9 für Audit-Datensätze für 5 der 6 Detektoren erreichten, während
der Recall bei 1.0 lag. Damit konkurriert sie mit der Leistung der von drei verschiedenen
Experten handgefertigten Konfigurationen, die die Grundlage für die Bewertung bildeten.
Darüber hinaus verbesserte die Optimierung die Präzision von CE- und Expertenkon-
figurationen in 29 von 32 Fällen für Apache-Daten und in 6 von 20 Fällen für Audit.
Weiters können Konfigurationen als Dictionaries dargestellt und mittels Jaccard-Index
auf Ähnlichkeit verglichen werden. Es zeigt sich, dass die Konfigurationen der Experten
denen der CE signifikant unähnlich sind, während die des CE eine bemerkenswerte
Ähnlichkeit über verschiedene Datensätze hinweg aufweisen. Dies spricht für eine effektive
Übertragbarkeit der Konfigurationen auf verschiedene Datensätze desselben Typs. Die
CE stellt einen signifikanten Fortschritt in AE dar, da es den Bedarf an Fachwissen und
manueller Konfiguration reduziert und somit AE zugänglicher und effizienter macht.
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Abstract

Cyber threats are continuously evolving, with new attack techniques developing rapidly.
Anomaly detection (AD) in system log data is thereby an increasingly important task, as it
is able to detect attacks of previously known but also unknown kind. The configuration of
AD algorithms heavily depends on the data and includes complex feature selection and the
definition of parameters such as thresholds or window sizes. This process is consequently
not straightforward and often necessitates manual intervention by domain experts which
restricts accessibility and effectiveness of AD algorithms. This work therefore introduces
the Configuration-Engine (CE), a semi-supervised approach to automate the configuration
process of AD algorithms. The CE applies a data science approach to identify properties
of parts of log lines. Thereby, it uses a parser to recognize meaningful static and variable
tokens in the log lines that AD detectors can analyze. The CE categorizes variables
based on their characteristics and behavior over time. Based on the requirements of the
AD detectors at hand, the CE specifies which log parts a detector should observe and
determines the appropriate configuration parameters. This thesis considers a set of 6
different detectors of the AMiner, an advanced AD pipeline encompassing a wide range
of AD algorithms. Additionally, the CE contains an optimization approach for further
refinement of configurations.

The performance was evaluated considering point and collective anomalies occurring in
a set of Apache Access and audit datasets. For collective anomalies the CE provided
configurations that reached an average precision of over 0.95 for Apache and over 0.9
for audit datasets for 5 out of the 6 detectors, while maintaining a recall of 1.0 during
detection. It thereby competes with the performance of handcrafted configurations
by 3 different experts that formed the baseline for the evaluation. Additionally, the
optimization improved the precision of both CE and expert configurations in 29 out of
32 cases for Apache data and in 6 out of 20 cases for audit. Moreover, the configurations
can be represented as dictionaries and thus be compared for similarity using the Jaccard
index. The experts’ configurations are thereby significantly dissimilar to the ones of the
CE. Meanwhile, the CE’s configurations exhibit remarkable similarity to each other across
various datasets, suggesting effective portability of CE configurations across different
datasets of the same type. The CE represents a significant advancement in AD, reducing
the need for domain expertise and manual configuration, making AD more accessible
and efficient across different datasets and detection techniques.
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CHAPTER 1
Introduction

1.1 Motivation and Problem Statement
The landscape of cyber threats is constantly evolving, with novel attack methodologies
emerging at a rapid pace. Current reports such as the ENISA Threat Landscape Report
2023 or the Crowdstrike 2024 Global Threat Report name ransomware as the top
cybersecurity threat. The rise of AI-enabled disinformation and supply chain attacks are
also major concerns, as are persistent DDoS threats and phishing or social engineering
tactics used to gain initial access to systems. Moreover, attacks are becoming more
targeted, with a focus on high-value sectors like manufacturing and industry. Especially,
intrusions in cloud environments are strongly increasing [LCT+23, cro24].
The dynamic nature of these threats presents a serious challenge to organisations,
governments and individuals alike. It necessitates a continuous state of vigilance and
the implementation of robust security protocols. Once an unauthorised party gains
access or control of a system, they can exfiltrate or manipulate sensitive data, implant
malware that is able to corrupt or destroy computer infrastructures and disrupt critical
services. These attacks can occur without detection by system administrators and the
longer an attack persists unnoticed, the greater the potential damage. Consequently,
early detection of potential intrusions is paramount to mitigate risks and minimise harm
[cro24, WSSF18].
The majority of detection methods involve scanning for signatures such as hashes or
IP addresses that correspond to known malware. As this approach only covers threats
that have been monitored before, it is not possible to detect intrusions based on new
and unknown techniques [LWS+23]. As a consequence, there is a growing trend towards
the use of data science methods, particularly anomaly detection (AD), to address these
challenges. These methods have gained popularity due to their ability to detect system
states that deviate from normal system behaviour, thereby enabling the identification of
both known and unknown intrusions [CBK09].
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1. Introduction

Intrusion detection systems (IDS) such as the AMiner [LWS+23] learn the normal
behavior of a system based on its log data to uncover possible intrusions by identifying
anomalies. The configuration of the AMiner tool requires customization based on the
specific type of log files generated by the system which varies depending on the system’s
expected events and thus the appropriate detectors for analysis. This includes the
determination of parameters and adjustment of thresholds. Therefore, the configuration
of the detection tool is a non-trivial task that is carried out manually by a domain
expert. The content of the configuration file determines which detectors the tool should
employ and their corresponding parameter settings. The detection of anomalies presents
significant challenges and is not always generic. Therefore, selecting the appropriate
settings to adapt to the given context is critical to find anomalies while maintaining a
low amount of false positives. To illustrate, an IDS with insufficient sensitivity may fail
to detect meaningful anomalies, while one that is overly sensitive may generate numerous
alerts for normal events along with intrusions. It would be unfeasible for administrators
of large systems to distinguish between intrusions and non-hostile events [CBK09].

1.2 Aim of the Work
In order to address the above-mentioned challenges, this work presents the “Configuration-
Engine” (CE) - a method for the automatic configuration of AD tools. The CE is a process
that addresses the configuration problem for AD tools and generates configurations from
the data it received as input for AD tools. In simple terms, it assesses what aspects of
the data are worth investigating and passes this information to the detection system.

The main goal of this thesis is therefore the definition of the underlying process of the
CE. The CE itself consists of a collection of configuration methods designed to effectively
recognize various patterns in the data that represent some kind of learnable normal
behavior. The further objective of this work is the definition and evaluation of such
methods in order to show the effective applicability and usability of the CE through
empirical testing on log data.

In summary, the following research question and associated sub-questions are stated:

1. To what extent can automated configuration methods improve the effectiveness of
anomaly detection tools in identifying intrusions compared to manually created
configurations, with respect to detection metrics such as precision and recall in
audit and Apache log data?

a) To what extent is it possible to use feedback from an anomaly detection tool
to effectively optimize configurations regarding precision and recall with the
restriction of using only (presumably) anomaly-free data?

b) How similar are artificial configurations compared to manually created config-
urations with respect to the Jaccard similarity coefficient?
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c) How similar are artificial configurations generated for different datasets col-
lected from similar infrastructures compared to each other with respect to the
Jaccard similarity coefficient?

Research question 1 is answered in Chapter 6. Questions 1a, 1b and 1c are indirectly
answered in Chapter 5.

1.3 Scope and Limitations
The general focus of this work primarily emphasizes the data science aspect of attack
detection, specifically focusing on statistical data analysis, rather than the related
cybersecurity aspects which provide motivation for the undertaken research.

This work is limited to AD tools that take log data and a configuration (file) as input
and output a report that lists all the anomalies found and, in some cases, what caused
the anomaly.

Six different detectors of the AMiner [LWS+23] were chosen to show the applicability of
the CE. Each of the detectors employs a distinct method in order to cover a wide range
of the data’s properties. Covering all available detectors of the AMiner would be beyond
the scope of this thesis but, in theory, many of the used techniques are applicable to
other detectors as well since they often address similar data characteristics but with a
different approach.

The analyzed data was limited to Apache access and audit log data but the potential
applicability of the CE goes beyond these types of data and can theoretically be applied
successfully to any kind of event data for which detection of anomalies is reasonable.
Thereby, a parser has to be applied that converts the data to a suitable format. For
the used Apache access and audit log data the predefined parsers of the AMiner were
used [LWS+23]. For new types of data where no parsers are already available one would
have to create a new parser manually or semi-automatically through parser-generating
algorithms [WLSK19, HZH+18].

As mentioned earlier, the logs were not generated by human users, but by a simulation.
On the one hand, this is convenient as labelled log data AD datasets are very rare, but
at the same time there may be patterns or properties of the data that differ from regular
human behaviour. However, since the methods defined in this thesis should be generally
applicable, we assume that the data from [LSW+20, LSF+22] is sufficient to demonstrate
the usability of these methods.

From an implementation point of view another limitation is posed by the amount of
data that can be processed at once. As some of the methods perform tedious statistical
operations on the training data, the computational complexity strongly scales with the
number of features and instances, limiting the total amount of training data one can
analyze. The further implications of this limitation are described in Sec. 3.1.

3



1. Introduction

1.4 Structure of the Work
Chapter 2 provides an introduction to AD, encompassing both a broad overview of the
field and a detailed examination of the existing literature on the related topics that this
work builds upon.

In Chapter 3 we prepare and explore the data. The character of the data and the
requirements to the input parameters of the detectors motivate the parameter selection
methods also described in this chapter. These methods represent the core components of
the model. Their composition determines how the configurations for the detectors are
constructed.

In Chapter 4 the general configuration approach is explained. We also describe the
specific composition of the configuration process for each detector, consisting of the
configuration methods explained in the previous chapter. Furthermore, we present a
method for optimizing configurations retrospectively based on direct feedback from the
detection tool and provide a step-by-step example to further clarify the process.

The evaluation of the whole process is carried out in Chapter 5. At first, we fine tune
the hyperparameters of the model with the validation datasets in order to obtain the
best possible setting for all datasets. With this setting we assess the performance and
similarity of artificial configurations compared to manually created ones from domain
experts. Additionally, the effectiveness of the optimization approach is evaluated by
comparing the performance of configurations before and after the optimization.

The work is concluded in Chapter 6, where we also answer research question 1 and
provide a future outlook.

4



CHAPTER 2
Literature Review

2.1 Anomaly Detection Overview
Anomaly detection is a critical task in data mining and machine learning aimed at
identifying patterns that differ significantly from the expected behavior within a dataset
that indicate potential fraudulent activities, system malfunctions or other phenomena
worth investigating. Anomaly detection techniques include a variety of methodologies,
ranging from conventional statistical techniques to highly sophisticated machine learning
algorithms.

As in other machine learning disciplines we differentiate between supervised, unsupervised
and semi-supervised approaches. Chandola et al. [CBK09] determine the grade of
supervision by the availability of labelled anomalies:

1. Supervised anomaly detection methods rely on labeled data to train models that
distinguish between normal and anomalous instances, offering precise classification
but requiring labeled anomalies which are often rarely available. The requirement
for labels makes supervised anomaly detection algorithms difficult for practical
applications as no information about the anomalies’ distinct characteristics are
available beforehand.

2. Unsupervised techniques operate on unlabeled data, detecting anomalies based
solely on data structure, making them suitable for scenarios that lack labeled
anomalies. Consequently, they do not require training data as they simply assume
that normal instances are much more frequently occurring than anomalous ones.
Commonly, techniques like clustering and outlier analysis are used. Unsupervised
methods are flexible and can uncover hidden insights without human supervision.
However, they may struggle with interpretability, predictability, and complex
patterns in the data [GU16].

5



2. Literature Review

3. Semi-supervised techniques also use labels but only for the normal class. Hereby,
the model is able to learn just the normal behavior of the data but no abnormal
behavior. Anomalous instances are identified by their deviation from the normal
class. Semi-supervised anomaly detection has a much wider range of applications
than supervised approaches. For many semi-supervised approaches it is possible to
transform them into an unsupervised approach. Thereby, one uses a sample of the
unlabelled data set as training data, assuming it represents normal behavior and
that the test data contains a minimal number of anomalies.

Each method comes with a set of advantages and disadvantages and is chosen based on
factors like data characteristics, anomaly nature and necessary trade-offs between perfor-
mance and scalability. These factors are often dependent on the domain of application
such as cybersecurity, finance, industrial systems, healthcare and many more [CBK09].

The challenges of anomaly detection include the interpretation of detected anomalies, the
handling of imbalanced datasets and the adaptability of anomaly detection systems to
dynamic environments. Extensive research is carried out in order to enable more robust
and effective anomaly detection solutions tailored to diverse and novel applications and
problems [CBK09].

Goldstein and Uchida [GU16] distinguish three types of anomalies:

• Point anomaly: A point anomaly consists of a single instance that is considered
anomalous. For instance, a single value in a list of values that is significantly higher
than the others may be considered as a point anomaly.

• Collective anomaly: A collective anomaly consists of a group of related data
instances that deviates from the overall dataset, even though individual instances
within the group may not be considered anomalous on their own. Anomalies of
this kind are identified by observing relationships or patterns among multiple data
points.

• Contextual anomaly: A contextual anomaly occurs when the behavior of a data
point varies depending on its context. For example, a sudden raise of sales of a
product right before Christmas may be seen as normal while it would be seen as
abnormal compared to other days of the year.

Different detection methods address different anomaly types and hence require different
approaches in evaluation. For this work point and collective anomalies are considered.

A comprehensive overview over system log analysis for anomaly detection algorithms
is provided by He et al. in [HZHL16]. They differentiate between four main steps for
anomaly detection on log data:

1. Log collection: Large-scale systems generate logs containing valuable information
about system states and runtime events.

6



2.1. Anomaly Detection Overview

2. Log parsing: Unstructured log messages are parsed into event templates with
constant parts and variable parameters.

3. Feature extraction: Extract valuable information from the log events as input
for the anomaly detection algorithm.

4. Anomaly detection: The extracted feature vectors are passed to the anomaly
detection algorithm to identify anomalies.

Additionally, the paper reviews and evaluates a set of state-of-the-art log-based anomaly
detection methods. Amongst others, the methods include three of the most common
unsupervised approaches - Log Clustering, Principal Component Analysis (PCA), and
Invariant Mining - that all exhibit different advantages and disadvantages depending on
the data.

One of the most prominent anomaly detection approaches for log data is provided by
Du et al. in [DLZS17] where they propose DeepLog, a recurrent neural network (RNN)
model that uses Long Short-Term Memory (LSTM) to detect anomalies in system logs.
It models log data as a natural language sequence, allowing DeepLog to automatically
learn log patterns. It has been shown to achieve high detection accuracy, particularly on
the HDFS and BGL datasets. DeepLogs popularity comes from the fact that it was the
first to detect sequential anomalies in log data using deep learning [LOSW23]. Similar
approaches to DeepLog are LogAnomaly [MLZ+19], which also relies on LSTM RNN
and LogRobust [ZXL+19], which focuses on robustness against unstable log data.

However, neural networks typically require structure and entail complex dependencies.
Consequently, preparing log data for neural network ingestion and extracting relevant
features is a challenging task. Furthermore, the variety of deep learning architectures,
such as recurrent or convolutional neural networks, complicates model selection for
specific use cases [LOSW23].

Another well-known anomaly detection technique is provided by Xu et al. [XHF+09].
They utilize PCA to transform message count vectors into subspaces where anomalies
are detected if they are significantly distant from other samples. On the other hand,
Lou et al. [LFY+10] employ Invariant Mining to identify anomalies by detecting event
sequences that violate established linear relationships among log events.

The most common evaluation metrics for anomaly detection are precision, recall, false
positive rate and F1-score which is the combination of precision and recall. Less common
metrics include the accuracy, as it does not account for class imbalance in datasets
and the area under the (precision-recall) curve (AUC), as well as the receiver operator
characteristic (ROC) [LOSW23]. Throughout this work, mostly precision and recall are
used but also the F1-score:

Precision = TP

TP + FP
, Recall = TP

TP + FN
, (2.1)

7



2. Literature Review

F1 = 2 · Precision · Recall
Precision + Recall , (2.2)

where TP is the number of true positives, FP the number of false positives and FN the
number of false negatives.

2.2 Related Work
The foundation of this work is provided by Landauer et al. in [LWS+23]. This paper
describes the so-called Logdata-Anomaly-Miner - in short, AMiner - a modular pipeline
for intrusion detection on log data. The implementation of the AMiner1 is used for the
evaluation of this work. This anomaly detection tool employs a collection of algorithms
used to detect anomalies in log data. Each of these detectors addresses different data
characteristics with a variety of techniques such as text processing, time series analysis,
association rule based approaches and more. The AMiner operates in two different states:
learn mode and detection mode. In learn mode each detector learns in its own way by
extracting relevant information from the log data, mostly by building frequency tables or
associated arrays. The AMiner learns incrementally by updating the gathered information
after each processed log line. In detection mode the AMiner outputs information about
log lines whose behavior differ from the learned norm by exceeding certain thresholds or
by detecting something unprecedented, respectively. For both states it is necessary to
define a configuration that guides the detectors in learning, dictating what aspects of the
data are worth investigating and how they should be investigated.

The AMiner is part of the Automatic Event Correlation for Incident Detection toolbox
(AECID) which was developed by the Austrian Institute of Technology (AIT). This
toolbox features a variety of applications for log-related issues with its core focus on log
based intrusion detection [WSSF18].

The AMiner takes parameters extracted from log data as input to analyze the system’s
behavior forensically. Its efficiency comes from its incremental approach to data analysis,
whereby each line is processed one after another. This allows for the possibility of running
the AMiner in real-time, provided that the processing speed is sufficient to keep up with
the rate at which the logs are generated. The relevant information of the log lines is
obtained by a log parser. Parsing log data is not straightforward due to the diverse
array of formats for logs, ranging from conventional key-value pairs or human readable
text to JSON structures. This variety demands sophisticated log parsing mechanisms
to effectively classify events and extract relevant information. Parser trees outperform
traditional regular expression lists in runtime performance by processing each token in
an event only once [LWS+23]. All standard parsers of the AMiner utilize tree structures.
For the case that a standard parser does not fit the data, the AECID toolbox provides a
parser generator for creating tree-based parsers from log samples [WLSK19].

1AMiner GitHub page https://github.com/ait-aecid/logdata-anomaly-miner; accessed
13-May-2024.

8
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2.2. Related Work

Anomaly detection in categorical data has received relatively little attention compared
to quantitative data due to its challenging nature. Traditional techniques often involve
identifying a representative pattern and measuring distances from this pattern to detect
anomalies. However, this approach is difficult to apply to categorical data as identifying
patterns and measuring distances in such data is more complex than in quantitative data
[TH19]. In this work 5 out of the 6 chosen detectors operate on categorical data. One
detector analyzes the frequency of the events.
The configuration methods described here, as well as the way mathematical definitions
are handled, take inspiration from [LHW+21] - for instance, the usage of co-occurrence
for variable combinations (see Chapter 3). It proposes the so-called Variable Correlation
Detector (VCD) which is also present in the AECID toolbox and implemented for the
AMiner. The process they describe in [LHW+21] utilizes a sequence of selection and
filtering steps to disclose variable pairs with correlating values to detect anomalies.
Through its complexity and its large number of adjustable parameters the VCD is not
part of the the selection of detectors used in this work. It would be out of scope to
automate more than only this detector’s configuration process, yet other detectors, such as
EntropyDetector and NewMatchPathValueComboDetector [LWS+23], are also important
as they allow very effective detection of anomalies when configured accordingly. Still, the
VCD would be an appropriate candidate for future research. Nevertheless, the process
proposed in this thesis also includes selection and filtering steps, as the VCD, that prune
the search space beforehand to improve both efficiency and efficacy of the core methods.
Unlike other association rule techniques that utilize frequent itemset mining, the VCD
does not omit infrequent variables which possibly hold valuable information for the
detection of anomalies [LHW+21].
In general, the majority of association rule mining techniques are not well-suited for
anomaly detection with log data, as they require a standardized format. Thus, they
face the same problem as neural networks [LOSW23]. Additionally, the sheer volume
and variability of log data in large-scale systems further complicate the application of
association rule algorithms, as they may struggle to efficiently process vast and diverse
datasets which is often the case with log data [Vaa03].
Wurzenberger et al. [WHLS24] describe the importance of the variable part of log
lines. Many detection techniques solely focus on event type occurrences which are usually
strongly structured and completely neglect the message part of a log line which is typically
unstructured due to the absence of standardization. In this paper they therefore propose
an unsupervised approach for analyzing the variable part of log lines which they call the
variable type detector (VTD). This technique classifies the tokenized log line, also called
variables, as different data types such as chronological, static, ascending, descending,
continuous, unique or more. Anomalies are identified by detecting a significant change in
the data type of a variable. The idea of classifying variables into types such as static or
unique was taken from this paper.
One of the configuration methods of Sec. 3.4 utilizes similar techniques as the ones
featured in [ESL23]. The paper reviews and evaluates six window size selection (WSS)

9



2. Literature Review

algorithms on different tasks in unsupervised time series data mining (TSDM). The
authors highlight the importance of WSS in TSDM, as it is a crucial hyperparameter
that can significantly impact the results. They categorize WSS strategies into two types:
whole series based methods, such as Fourier transformations or autocorrelation methods,
as well as subsequence based methods which compare local window statistics with global
signal properties.

Another work worth mentioning is [ATD19] which proposes a novel method for adapting
the parameters of anomaly detection algorithms in order to fit the model to changes in
the data’s behavior over time, also known as concept drift. The models are trained in
an unsupervised way and therefore assume that the amount of true anomalies in the
data is negligible for training, thus anomalies are detected as outliers. The detection of
anomalies through the model depends on parameter settings that fit to the current data.
The model’s predictions are evaluated by a validation dataset. The parameters are then
adjusted to new data based on the resulting performance metrics precision and recall.
This approach exhibits similarities to the optimization approach, one of the steps of the
Configuration-Engine described in Section 4.1.4. Contrary to the approach of [ATD19],
this optimization takes a more semi-supervised perspective as we assume the data to
be totally anomaly-free. Thus the approach cannot work with metrics like precision
and recall for adjusting thresholds as true positives cannot exist. The adjustment of
parameters here is thus solely based on the assessment of the amount of produced false
positives.

In general, many parameter optimization techniques are based on evolutionary algorithms:

1. Generate an initial population of candidate solutions.

2. Evaluate the fitness of each candidate.

3. Select parents based on fitness.

4. Apply variation operators, such as crossover or mutation, to produce offspring.

5. Replace least fit individuals with the new offspring.

These steps are repeated until the termination criteria are met [BS93]. However, the
assessment of fitness is not straightforward for the case of anomaly-free data. As mentioned
above there are no true positives and minimizing false positives will always result in
the trivial case of the minimum being zero. For the same reason it is not possible to
formulate this as a mathematical optimization problem and therefore not meaningful
to use common search methods such as GridSearch or LocalSearch. The optimization
approach of Sec. 4.1.4 therefore takes a different approach.

The proposed methods in Section 3.4 are mostly feature selection methods. Feature
selection is a common problem in anomaly detection as it is critical to select input
features for the anomaly detection algorithm with a high sensitivity to anomalies, in
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order to achieve high effectivity [KBD+08]. For instance, Kloft et al. [KBD+08] propose
a method for automatic feature selection for network intrusion detection that determines
optimal mixture coefficients for various sets of features by utilizing a generalized support
vector data description [TD04] model. The problem is transformed into an optimization
problem, whereby the solution is given as the minimal-volume description of the data.
On the other hand, Pascoal et al. [PdOV+12] propose a feature selection method based
on a mutual information metric. The features are divided into two subsets by highest and
lowest mutual information. They then search for the partition that maximizes the t-test
statistic (as a measure of separation) among subsets. They utilize robust statistics in order
to handle the eventually contaminated training data (by true anomalies), thereby making
also their algorithm robust. Since in this work we pursue a semi-supervised approach
robustness of our model is not directly necessary. However, as even an anomaly-free
dataset can contain atypical behavior of any kind it is still useful. Also, most of the
methods in Sec. 3.4 apply some kinds of averaging operations and therefore exhibit some
level of robustness. Both [KBD+08] and [PdOV+12] utilize interesting approaches, yet
they are not applicable here due to the specific nature of the detectors that were chosen
for the application of the CE.

Most publications assess their approaches using well-known datasets such as HDFS,
BGL, Thunderbird, OpenStack or Hadoop which are publicly available on LogHub2

[HZHL20, XHF+09]. LogHub maintains a collection of log datasets for machine learning
driven research. These datasets became the standard evaluation playground for many
anomaly detection algorithms in literature, yet most of their anomalies can be solely
detected by analysis of event type sequences and do not require advanced techniques for
detection. An event type is a predefined template that only fits the events of the defined
type. Thereby, the parameters of the events itself are ignored [LSW23]. Nevertheless,
these parameters, or features, hold valuable information with which effective anomaly
detection is possible [KV03]. The AMiner detectors, we are mostly interested in, such
as the EntropyDetector or the NewMatchPathValueComboDetector, operate on these
features that are extracted from the event [LWS+23]. More suitable datasets for our
case are AIT Log Data Set V1.0 [LSW+20] and AIT Log Data Set V2.0 [LSF+22] as
their anomalies can often only be detected by an analysis of the event parameters. These
datasets are therefore used for training, validating and testing the implementation of the
Configuration-Engine. They are described more closely in Section 3.1.

2LogHub GitHub page https://github.com/logpai/loghub; accessed 29-May-2024.

11

https://github.com/logpai/loghub




CHAPTER 3
Data Analysis

3.1 Data
Log data represents a record of all occurrences within a system, application, or network
device. When logging functionality is activated, the system automatically generates
these logs. Each entry is marked with a precise timestamp and encompasses a variety of
information:

• User activity: Information about user interactions and logins and actions per-
formed within an application or system.

• System performance: Records regarding system startups, shutdowns, hardware
failures and currently used resources.

• Security events: Documentation of login attempts, changes in access control,
authentication and alerts triggered by built-in intrusion detection systems.

• Errors and warnings: Logs capturing errors, exceptions, warnings or debug data
for the diagnosis and resolution of issues.

• Network traffic: Details concerning network access, connections and traffic flow.

• Database transactions: Information regarding data modifications or queries.

• Application-specific events: Events specific to an application.

For the evaluation in Chapter 5 we use audit and Apache Access log data. Apache Access
logs record all requests made to the Apache web server. These logs include information
about every request processed by the server. Audit logs, on the other hand, are more
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comprehensive and focus on tracking system activities and user actions within a broader
scope and are used primarily for security and compliance purposes.

A sample audit log line is provided in Listing 3.1. The information is represented as
key-value pairs with mostly categorical values and the timestamp given in unix time
(“1642760221.565”).

Listing 3.1: Single audit log line.
1 type=USER_START msg=audit(1642760221.565:662): pid=14286 uid=0 auid=0 ses=98

msg=’op=PAM:session_open acct="root" exe="/usr/sbin/cron" hostname=?
addr=? terminal=cron res=success’

Labelled log data is very rare and hard to find which poses a common problem for
the evaluation of AD algorithms [LSW+20, LWS+23, LSF+22, CBK09]. The datasets
used for training, validating, and testing the CE originate from the AIT Log Data Set
V1.0 [LSW+20] and AIT Log Data Set V2.0 [LSF+22]. These datasets were generated
synthetically due to the limited availability of labeled intrusion detection datasets. The
scarcity of labeled log data for AD arises from the complexity of data sensitivity regarding
legal and ethical considerations, resource intensiveness and unavailability of ground truth.
The logs were sourced from diverse testbeds that were built at the Austrian Institute of
Technology (AIT), each representing a small enterprise network. Simulated user behavior
was generated over a duration of multiple days to introduce noise and at some points
attacks were launched against the networks. A variety of log types were captured, though
only the Apache access and audit logs are used for this project.

While the training of the AD tool has to be done with anomaly-free data, the validation
and test sets require anomalies. Additionally, we are dealing with event data, thus
time series data and have to maintain the temporal order of the original data. Due to
these constraints, it is not meaningful to use classic k-fold cross-validation. Given the
constraints, the test set starts at the exact time or log event when the first attack occurs
in the data and ends with the last entry in the dataset. The entries until the attack
constitute the training set.

One disadvantage of this approach is that the training and test sets remain constant within
a given dataset which may result in overfitting. To address this, multiple datasets and
log data types are employed for validation to increase model generalization. A selection
of them was used for the creation of the model while the rest remained untouched until
the final evaluation for pure testing to avoid data leakage.

Table 3.1 lists the datasets used for validation and testing and show some relevant
numbers. The datasets, “russellmitchell”, “fox” and “harrison” and “mail.onion.com” for
Apache, were used during the validation phase where the model and its method were
defined and implemented and are therefore not used for the performance assessment in
Chapter 5, except for the hyperparameter tuning.

One can see, that from the datasets “mail.spiral.com”, “mail.onion.com”, “mail.insect.com”,
“mail.cup.com” only their Apache Access data is used. Given that their audit log data
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Name Training
samples

Test
samples

Point
anomalies

Collective
anomalies

V/T

Apache Access datasets
russellmitchell 2884 8300 7696 7 V
fox 9058 413948 410841 16 V
harrison 19604 420790 415376 352 V
mail.onion.com 53004 28959 6429 19 V
shaw 8050 7696 5226 6 T
santos 6752 9032 7794 7 T
wardbeck 32454 9647 5299 9 T
wheeler 7848 433072 431560 53 T
wilson 25130 438743 428116 89 T
mail.spiral.com 65811 34634 7370 30 T
mail.insect.com 118549 50791 6973 30 T
mail.cup.com 115443 33091 6789 28 T

Audit datasets
russellmitchell 1859 457 9 2 V
fox 2078 809 19 3 V
harrison 2454 376 24 3 V
shaw 2608 787 19 3 T
santos 1968 295 19 3 T
wardbeck 2645 274 19 3 T
wheeler 2693 148 14 3 T
wilson 2622 851 22 3 T

Table 3.1: Dataset statistics. “V/T” indicates whether the dataset was used for validation
(V) or testing (T).

has a high scan volume they are simply too large for the CE. To illustrate, the smallest
audit log file is from “mail.spiral.com” and is 11GB in size and contains over 350 million
log lines. The information density is extremely low compared to the other datasets.
Therefore, it is not meaningful to just use a portion of the data as not enough information
can be extracted from a feasibly sized batch of the data to learn a useful normal model.
All methods utilize all available log lines to extract information and apply transformations.
The methods’ operations process information from all log lines simultaneously, which is
not problematic for the other, smaller datasets, but is problematic in terms of RAM for
large datasets. This poses a limitation to the CE. One potential solution would be to
stream the data in a line-by-line or batch-wise , but that would entail a significant expense
regarding the complexity of the implementation and the methods. As the implementation
is not the focus of this work this was not further investigated.
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3.2 Parsing
Before we can start analyzing the data a parser has to be applied to sort or extract the
information from the logs into a set of features which we also call variables. The used log
parser encompasses a tree-based method from [WLSK19]. In brief, this parser extracts
the information of each of the log lines into a set of different variables and assigns names
to each.

After applying the audit log parser of the AMiner [LWS+23], the log line from Listing
3.1 can be represented as an associative array (or simply a dictionary) with the variable
names as keys.

Listing 3.2: Parsed log line.
1 {’/model’: ’type=USER_START msg=audit(1642760221.565:662): pid=14286 uid=0

auid=0 ses=98 msg=\’op=PAM:session_open acct="root" exe="/usr/sbin/cron"
hostname=? addr=? terminal=cron res=success\’’,

2 ’/model/type_str’: ’type=’,
3 ’/model/type/user_start’: ’USER_START msg=audit(1642760221.565:662):

pid=14286 uid=0 auid=0 ses=98 msg=\’op=PAM:session_open acct="root"
exe="/usr/sbin/cron" hostname=? addr=? terminal=cron res=success\’’,

4 ’/model/type/user_start/msg1_str’: ’USER_START msg=’,
5 ’/model/type/user_start/audit_str’: ’audit(’,
6 ’/model/type/user_start/time’: ’1642760221.565’,
7 ’/model/type/user_start/colon_str’: ’:’,
8 ’/model/type/user_start/id’: ’662’,
9 ’/model/type/user_start/pid_str’: ’): pid=’,

10 ’/model/type/user_start/pid’: ’14286’,
11 ’/model/type/user_start/uid_str’: ’ uid=’,
12 ’/model/type/user_start/uid’: ’0’,
13 ’/model/type/user_start/auid_str’: ’ auid=’,
14 ’/model/type/user_start/auid’: ’0’,
15 ’/model/type/user_start/ses_str’: ’ ses=’,
16 ’/model/type/user_start/ses’: ’98’,
17 ’/model/type/user_start/msg2_str’: ’ msg=’,
18 ’/model/type/user_start/msg2’: "’op=PAM:session_open",
19 ’/model/type/user_start/fm/acct’: ’ acct="root"’,
20 ’/model/type/user_start/opt’: ’ exe="/usr/sbin/cron" hostname=? addr=?’,
21 ’/model/type/user_start/terminal_str’: ’ terminal=’,
22 ’/model/type/user_start/terminal’: ’cron’,
23 ’/model/type/user_start/res_str’: ’ res=’,
24 ’/model/type/user_start/res’: "success’",
25 ’/model/type/user_start/opt/opt_seq’: ’ exe="/usr/sbin/cron" hostname=?

addr=?’,
26 ’/model/type/user_start/opt/opt_seq/exe_str’: ’ exe=’,
27 ’/model/type/user_start/opt/opt_seq/exe’: ’"/usr/sbin/cron"’,
28 ’/model/type/user_start/opt/opt_seq/hostname_str’: ’ hostname=’,
29 ’/model/type/user_start/opt/opt_seq/hostname’: ’?’,
30 ’/model/type/user_start/opt/opt_seq/addr_str’: ’ addr=’,
31 ’/model/type/user_start/opt/opt_seq/addr’: ’?’,
32 ’/model/type/user_start/fm/acct/acct_str’: ’ acct=’,
33 ’/model/type/user_start/fm/acct/acct’: ’"root"’}
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In the resulting dictionary of Listing 3.2 one can see how the variable names have a tree
or path-like structure. Subsequently, this dictionary is transformed into a table where
each row represents an event and each column corresponds to a variable along with its
associated values. Thus, each value is assigned to a particular variable. In this format the
data can be easily analyzed for further purposes. Note, that the table might be extremely
sparse since an event is a composition of variables that do not necessarily occur in every
event.

3.3 Detector Requirements
For the application a set of detectors of the AMiner is chosen that addresses a variety of
different properties in the data.

In-detail information about the detector’s specific settings is listed in the AMiner doc-
umentation1. We describe the selected detectors, their operating principles, the data
characteristics they address and what parameters they require in the listing below. The
detectors all require log data as input and, unless stated otherwise, require individual
variables as input parameter. Some also require special input parameters [LWS+23].

1. NewMatchPathValueDetector (NMPVD): The detector triggers an alert
whenever new and unknown (untrained) values of a variable are found. For both
training and test phase it is therefore meaningful to present variables to the detector
that contain a limited set of categorical values.

• Input: event data, individual variables.
• Output: anomalous events.

2. NewMatchPathValueComboDetector (NMPVCD): This detector is similar
to the previous one, but examines combinations of variables instead of single
variables. An alert is triggered whenever a new and unknown value combination for
the corresponding variable combination is found. Therefore, one would want to pass
variable combinations to the detector that form a limited set of value combinations.
Especially from audit data the parser generates a large number of variables (usually
over 300). As the number of possible variable combinations does no scale linearly
it is important to consider the computational cost of the configuration process.

• Input: event data, variable combinations.
• Output: anomalous events.

3. CharsetDetector (CSD): The CharsetDetector inspects the set of characters of
the values of a variable. During training this character set is extended whenever a

1AMiner documentation https://aeciddocs.ait.ac.at/logdata-anomaly-miner/
development/CONFIGURATION.html; accessed 29-April 2024.
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3. Data Analysis

new character is found in a value of the given variable, while during testing the
detector will trigger an alert. Consequently, the usage of variables with limited
character sets seems meaningful.

• Input: event data, individual variables.
• Output: anomalous events.

4. EntropyDetector (ED): The detector learns the occurrence probabilities of con-
secutive character pairs of a variable. Averaging over all character pair probabilities
of a value yields a critical value which is a measure of the likelihood of a value’s
occurrence. When learning is turned off the detector will trigger an alert whenever
the likelihood of the occurrence of a value is below a chosen limit. Consequently,
the behaviour of the critical values of variables in the training data is the important
factor to consider.

• Input: event data, individual variables, a lower limit for critical values.
• Output: anomalous events, the critical values of the anomalous events.

5. ValueRangeDetector (VRD): The ValueRangeDetector generates ranges for
numeric values, detecting values outside these ranges and extending ranges when
it is learning. Variables with numeric values and limited ranges are therefore a
beneficial choice for this detector.

• Input: event data, individual variables.
• Output: anomalous events.

6. EventFrequencyDetector (EFD): This detector assesses the occurrence of a
variable (or its specific values) within a time window of a certain window size, thus
the frequency f . Log lines are classified as anomalies whenever the frequency in the
current time window exceeds or falls below a certain limit. The expected frequency
fexp within a time window is computed from the previous time windows in the
training phase. The season is the periodicity of f . The detector’s most important
input parameters are the seasonality of the data, the number of time windows that
should be considered for the computation of fexp, the window size and a confidence
factor controlling the allowed deviation from fexp. Concluding the above, it is thus
necessary to analyze the behavior of the occurrences of a variable over time.
For this work the number of time windows is not investigated. It only makes sense
to limit this value if the behavior of the data changes over time, which is not the
case here as the datasets’ records do not cover more than a few days. Additionally,
the confidence factor is sufficiently generic to not necessitate significant changes
based on the given data, as the confidence value of the detected anomalies is in every
observed case very high (> 0.9) for both true positives (TP) and false positives
(FP). Besides, the sensitivity can in some way already be controlled by the window
size. Both the number of time windows and the confidence factor can therefore be
fixed to a constant value.
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• Input: event data; individual variables; seasonality of the data; window size;
number of windows; a confidence factor that defines the range of tolerable
deviation of measured frequency from expected frequency.

• Output: anomalous events, confidence value of anomaly.

The detectors listed above and their requirement for input parameters provide the
motivation for the definition of a set of configuration methods. These methods should
determine the detectors’ effective parameter settings based on the training data.

Note, that all the detectors analyze the properties of values of variables except the EFD
which is solely interested in their occurrence frequencies over time. For all detectors but
the EFD it is therefore not meaningful to treat the data as time series data.

3.4 Parameter Selection Methods

This section features a selection of methods used to classify the characteristics of variables
and determine other parameters that are necessary for the configuration of the chosen
detectors. In other words, the methods transform information extracted from the data
into the input parameters for the detectors. These methods represent the model’s
core components. Their composition determines how the configuration of a detector is
constructed.

In general, an AD tool employs one or more detection algorithms. Since each detector
requires different input parameters it has to be assessed individually for each method
which parameter values are suitable. In many cases, a human operator with in-depth
knowledge of the event data has to determine these parameters. The first step in finding
the right parameters is often to assess which variables to choose. This configuration step
can be automated by mapping the variable properties to the corresponding detection
method. Consequently, one has to classify the variables into certain feature sets that suit
the corresponding detector.

Some of the configuration methods explained in the sections below require thresholds or
other parameters. The selection of suitable values for these thresholds falls within the
scope of hyperparameter tuning and can be done by an educational guess or empirically
by testing with different datasets or -splits, respectively. Search algorithms such as
GridSearch or LocalSearch can theoretically also be applied. A thorough investigation of
the hyperparameters is given in Section 5.4.

To effectively use mathematical formulations in this context a set of expressions is
introduced in Table 3.2.

Note, that in this chapter the term “testing with data” or likewise refers to testing with
the validation datasets - see Table 3.1.
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Expression Description
V the set of all variables (or simply the dataset)
nV the total number of events (or the length of the dataset)
V a set of variables for which applies V ⊆ V

x, y, z variables of V
xi the value of the i-th occurrence of x, thus xi ∈ x

dim(u) : Rn → N the length of a vector u of length n

dim(x) : V → N total count of occurrences of x

V alCount(xi) : x → N total count of all occurrences of values xj ∈ x equal to xi

UniqueCount(x) : V → N total count of unique occurrences of x

UniqueCount(xi) : x → N total count of unique occurrences ∀xj with j = 0, 1, ..., i

CharSet(xi) set of all unique characters ∀xj with j = 0, 1, ..., i

min(xi) : Vnumeric → R minimum value ∀xj with j = 0, 1, ..., i for numeric vari-
ables in Vnumeric

max(xi) : Vnumeric → R maximum value ∀xj with j = 0, 1, ..., i for numeric vari-
ables in Vnumeric

Table 3.2: Definitions of mathematical expressions.

3.4.1 Static Occurrence
Variables that have the same value in almost every sample in which they occur are
classified as “static” [WHLS24]. In other words, a variable is static if the number of
unique occurrences is equal to 1. The set of static variables is defined as

Vstatic := x ∈ V | UniqueCount(x) = 1 . (3.1)

3.4.2 Random Occurrence
Variables are classified as “random” if there are different values for most occurrences.
Since it is possible that individual values of a variable are occurring randomly, the
occurrences of each unique value of a variable are counted. If this number is below a
certain threshold the variable is considered as random:

Vrandom := x ∈ V | ∃xi ∈ x : V alCount(xi) < θ . (3.2)

It is meaningful to choose threshold θ as a number higher than 1 since a value occurring
more than once indicates that it is not a random value. It would therefore be appropriate
to set θ = 2. In practice, it is possible that some variables occur with the same value in
batches, meaning that the same values occur twice or more within a certain period and
then never again. However, throughout this work θ is fixed to 2.

Randomness exhibits a very limiting condition since a variable with a value with only
a single occurrence is already classified as random, even if the remaining values are
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identical. One could therefore exchange randomness by non-stability (by occurrence)
which exhibits a higher tolerance for outliers - see next section.

3.4.3 Stability

In general, the stability of a variable can be considered from multiple points of view. It
is depending on the specific characteristic of the variable one is considering. We call a
variable “stable” regarding that characteristic if the corresponding curve approaches a
constant value within the training period. Figure 3.1 exemplarily shows the behavior
of different values regarding the number of unique occurrences against the number of
occurrences. One can see, the random variable (blue) has a new unique occurrence for
every occurrence while the static one (orange) only has a single unique occurrence and is
therefore constant. The line between them (green) shows the behavior of a variable that
could be classified as stable as no new unique values occur at some point. Consequently,
static variables are a subset of the stable variables. For many detectors there is some kind
of stability involved since it implies some kind of learnable behavior for many detectors.

Figure 3.1: Unique occurrences per occurrence of a static (orange), stable (green) and
random variable (blue).

To check whether a variable is stable, some kind of threshold curve is defined that acts as
an upper limit for the curve f(k) that represents the data characteristic we are interested
in. k(x) = k is the number of occurrences of a variable x with k ∈ N . This threshold
curve is not applied directly to f(k), but to its derivative f ′(k). The derivative represents
the change in f(k) per occurrence. For a stable variable, this curve should therefore
approach zero within the period of the training data.

For the detectors covered in this work, we are actually not interested in the magnitude of
change but rather in the information whether a change has occurred or not. Consequently,
we want f ′(k) ∈ R to be an element of the binary space {0, 1}. Therefore, we define the
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boolean conversion

gb(k) = 1 if g(k) ̸= 0,

0 otherwise
(3.3)

for an arbitrary function g(k). Thus, the function f ′
b(k) is 1 (or True) if a change in

f(k) occurred at occurrence k or 0 (or False) if no change occurred.

The concept of stability is based on the assessment of the mean values of the segments
sm(f ′

b(k)) with m = 0, 1, ..., ns − 1. ns is the number of segments. To be precise, the
m-th segment of the function f ′

b(k) is

sm(f ′
b(k)) = f ′

b(k) for m
ns

dim(x) ≤ k < m+1
ns

dim(x)
0 otherwise.

(3.4)

The set of stable variables is then defined as

Vstable := x ∈ V | l sml(f ′
b(k))

Lm
≤ θm ∀m ∈ {0, 1, ..., ns − 1} (3.5)

where each element of sm is denoted as sml with l = 0, 1, ..., Lm. Lm = dim(sm) is the
length of each segment m. Lm is not uniform if dim(x) is not divisible by ns. Therefore,

Lm = q + 1 if m + 1 ≤ r

q if m + 1 > r
(3.6)

with quotient q = dim(x) : ns and remainder r = dim(x) mod ns. This definition is
based on the function “array_split”2 from the NumPy library [HMvdW+20].

If each of the segment means is below the thresholds θm then the corresponding variable is
classified as stable. The thresholds θm represent a discretized threshold curve that serves
as an upper boundary for the change in each segment of f(k). As f ′

b(k) ∈ {0, 1} this
relation can be understood as the “relative change per segment”. This is also convenient
for the selection of the thresholds as we can define them in a relative way within the
range [0, 1]. This implies that thresholds chosen suitably for one dataset are likely to be
suitable for other datasets - in theory, also for other data types.

To illustrate this with an example, we choose f = [1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4] and θ =
[1, 0.5, 0.1] for some variable x. Consequently, we have f ′ = f ′

b = [1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0],
thus dim(x) = dim(f ′) = 11, ns = 3. Therefore, q = 3, r = 2 and L = [4, 4, 3]. The
segments themselves are then s(f ′

b) = [[1, 1, 0, 1], [0, 0, 1, 0], [0, 0, 0]] and their mean values
s(f ′

b) = [0.75, 0.25, 0.0]. As 0.75 ≤ 1, 0.25 ≤ 0.5, 0.0 ≤ 0.1 are all true we classify variable
x as stable.

2NumPy documentation of “array_split” function https://numpy.org/doc/stable/
reference/generated/numpy.array_split.html; accessed 18-July-2024
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The selection of the thresholds θm can be done in a manifold of ways. The curve described
by the function f ′(k) should, in case of a stable variable, behave similar to an exponential
decay, i.e. approach 0. It is therefore meaningful to say θm = e−cm with some constant c
determining the magnitude of decay. In general, any (discretized) function with similar
behavior to an exponential decay (e.g. 1/x) could be used for θm.
The paragraphs above described stability generically so that it can be applied to any
function f(k) representing the behavior of a certain data characteristic. In the following
we describe the specific types of stability based on different data characteristics:

Stability by Unique Occurrence

The first characteristic we are interested in is the behavior of the number of unique values
over the training period as in Figure 3.1. Therefore, we take

f(k) = UniqueCount(xk) (3.7)
and its discrete derivative

f ′(k) = UniqueCount(xk) − UniqueCount(xk−1). (3.8)
Hereby, we can assess whether the count of unique values of a variable is stable. For
a variable classified as stable by occurrence, it can be assumed that it has a limited
set of unique values. If the thresholds are reasonably set one can say that stability
by occurrence is a weaker condition than static occurrence (Sec. 3.4.1) but a stronger
condition than non-random occurrence (Sec. 3.4.2) - see Fig 3.1. Note, that the change
of the count of unique values per occurrence can be at most 1 so that f ′(k) ∈ {0, 1} and
therefore f ′(k) = f ′

b(k).

Stability by Character Set

Detectors like the CharsetDetector of the AMiner create a character set from the characters
of each value of a variable. Subsequently, new and unknown characters in values can be
identified as anomalies. The stability of the length of this character set can therefore
be an indicator for whether to pass a certain variable to a detector or not. In a similar
manner to above, the function and its derivative read as

f(k) = dim(CharSet(xk)), (3.9)

f ′(k) = dim(CharSet(xk)) − dim(CharSet(xk−1)). (3.10)

Stability by Value Range

For the ValueRangeDetector one would want to pass variables with a limited range of
numeric values. Consequently, we define a measure of stability based on the minimum-
maximum range for variables containing only numeric values Vnumeric. We have

fmin(k) = min(xk), (3.11)
fmax(k) = max(xk) (3.12)
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and their derivatives

f ′
min(k) = min(xk) − min(xk−1), (3.13)

f ′
min(k) = max(xk) − max(xk−1) (3.14)

with the minimum and maximum functions defined in Table 3.2. In order to fit the
stability relation of Eq. 3.5 we can add both functions together to get

f ′(k) = |f ′
min(k)| + |f ′

max(k)| (3.15)

where | · | denotes the absolute value. Thus, this yields a function that is 0 when no
change occurred in the minimum or maximum value of the variable and > 0 otherwise.

3.4.4 Co-occurrence
Some detectors require variable combinations as input such as the NMPVCD which raises
an alert whenever a new combination of values for a specified combination of variables is
found. The previous configuration methods assess the characteristics of each variable
individually and subsequently, select the ones that fit the corresponding characteristic.
One could say these are brute force search methods. Still, these methods are feasible in
terms of computational effort since log lines are usually held in a limited length. Hence,
the number of variables remains small enough for many methods. Since combinations do
not scale linearly we have to take computational cost into account. From combinatorics
we know that the number of combinations is given by

Ccount(n, k) = n!
k! · (n − k)! . (3.16)

For example, for audit log data it is easily possible to receive around n = 350 variables
from the parser for all log lines of a dataset. Note, that a single audit log line contains
far less variables (around 30). Also, this number strongly depends on the parser itself.
For combinations of length k = 2 there are Ccount(350, 2) = 61075 combinations or for
k = 3 there are already Ccount(350, 3) = 7145775. To reduce the number of variables, we
filter out irrelevant characteristics for the detector. The following types of variables can
be filtered from V, the set of all variables, such that only relevant variables remain:

• Random variables (Eq. 3.2): They lead to random value combinations which
means that in the most occurrences of a combination containing one or more random
variables is a new value combination. It is therefore hardly possible for the detector
to learn a useful normal behavior from combinations containing random variables.

• Static variables (Eq. 3.1): Assume a combination of a static variable and a
variable of some other characteristic (e.g. also static). A combination with a static
variable as input for a combinations based detector is equivalent to just feeding
both of these variables separately to a detector that detects an anomaly whenever
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a new unique value for a single specified variable is found - such as the NMPVD.
This kind of detector has much less computational cost compared to detectors
that evaluate combinations of variables. It is therefore not necessary to generate
combinations of this kind.

The input for the actual procedure of finding combinations is then the set of variables

V ′ = V \ (Vrandom ∪ Vstatic). (3.17)

The combinations are selected by the assessment of co-occurrence. Two or more variables
are co-occurring if they occur in the same event. Co-occurrence of two or more variables
is thereby equivalent to the occurrence of the combination of these. A combination
c is selected if it occurs at least θabs times (“abs” for “absolute”). The set of valid
combinations C ⊆ P2(V ′) is therefore defined as

C := c ∈ P2(V ′) | Count(c) ≥ θabs (3.18)

with Count(c) as the total count of occurrences of combination c and P2(V ′) as the power
set of V ′ for combinations of 2 variables. We limit combinations to 2 variables to further
decrease the computational effort for this step. However, a later step allows combinations
of more than 2 variables. The result of this step is a set of already suitable combinations.

The selection of the parameter θ is not trivial since the number of co-occurrences can
be rather arbitrary for different variable combinations and datasets. It is therefore
meaningful to choose a relative threshold θrel. Since there are several variables in a
combination that can occur with different frequencies, the threshold value is defined in
relation to the total occurrence of the most frequently occurring variable in a combination:

θabs = max Count(v) | ∀v ∈ c · θrel (3.19)

with v as an arbitrary variable in combination c.

Testing has shown that C often consists of too many combinations which can overwhelm
the AD tool in terms of computational cost. Especially when running in online mode, the
tool has to be efficient enough to process more events per time interval than events are
occurring. To address this issue, we can apply a simple graph theory method to merge
related combinations. We use graph theory because combinations can be represented as
nodes connected by edges in a graph. For instance, the combinations (x, y), (x, z), (y, z),
(v, y), (v, w) can be represented as the graph in Fig. 3.2.

Figure 3.2: Variable combinations represented as connected nodes in a graph.
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In the next step we merge all connected nodes. For the example this leads to the
combination (v, w, x, y, z). This is possible as for the NMPVCD the set of 2-combinations
and the merged combination are equivalent. For instance, assume the combinations
(x, y), (x, z), (y, z) consisting of the variables x, y and z. For the NMPVCD these
combinations are equivalent to the combination (x, y, z) and since we want to reduce the
total number of combinations the latter is preferred. To show that these combinations
are equivalent assume the following: The detector knows the triple value combination
(x1, y1, z1) from the variable combination (x, y, z) from training. In the test case, it
receives the combination (x1, y2, z1). This is an unknown combination and the detector
triggers an alert. If this would be the three double combinations (x, y), (x, z), (y, z)
instead with the known value combinations (x1, y1), (x1, z1), (y1, z1) then the combination
(x, y) would trigger an alert instead because (x1, y2) is not known. In both cases the alert
would output the same event.

3.4.5 Character Pair Probability

Anomalous values can be detected by assessing their probabilities of occurrence. This
can be done in various ways, one of which is the evaluation of the probability of the
occurrence of character pairs in an occurring value. Character pairs are consecutive
fragments of a character sequence. Such fragments are also called n-grams for sequences
of length n. The occurrence probability of such a character pair, or 2-gram, is calculated
as follows: For all occurring values, firstly, each occurrence of each character is counted
and secondly, for each occurring character the number of times this character occurs after
each other character is counted. The probability of a new value can now be calculated
by dividing the frequency of each 2-gram f(a, b) by the frequency of the first character
f(a), hence p(a, b) = f(a, b)/f(a). C is the set of distinct character pairs of xi with b
following a and character pair (a, b) ∈ C. p(a, b) is therefore defined as the probability
that character two will occur after character one. The computation of the probabilities
of subsequent character pairs builds upon the previous frequencies. Subsequent values
are thus dependent on their predecessors [LWS+23].

To exemplify this procedure, assume that some variable has two subsequent occurrences,
“data” (x0) and “cat” (x1). The word “data” consists of the 2-grams “da”, “at”, “ta”
and “cat” of “ca” and “at”. In order to take beginnings and endings of character
sequences into account, a virtual character, e.g. “#”, is added there, such that we have
“#data#” instead. The 2-gram “at” has frequency f(“a”,“t”) = 2 and the character “a”
has frequency f(“a”) = 5. The probability of “t” occurring after “a” is consequently
p(“a”, “t”) = 2/5 for this value. Note, that the occurrences of the characters of a value
xi are already taken into account for the computation of the character pair probabilities
of xi.

By taking the arithmetic mean of all character pair probabilities p(a, b) of a value xi,
including the ones for the virtual characters, we receive a measure for the likelihood of
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its occurrence which we call critical value P (xi):

P (xi) = 1
|C| (a,b)∈C

p(a, b). (3.20)

A detector that utilizes this approach is the EntropyDetector (ED) [LWS+23] which is
based on “freq”3. The learning of this detector is therefore based on the generation of a
frequency table for each character pair. For each occurring value that has a critical value
below some defined threshold ϕ an alarm is triggered. We use symbol ϕ instead of θ to
point out that this is a threshold which is directly passed to the AMiner as input and
not a threshold used to adjust the configuration methods.

To determine which variables to select for this kind of detector, we calculate the mean
of all critical values P (x) for each variable x, resulting in an overall mean probability
measure for each variable. The ones with a mean critical value above a certain threshold
are then selected as input for the detector. Variables selected by their character pair
probabilities (CPP) of their values are defined as

VCP P := x ∈ V | P (x) ≥ θCP P with P (x) := 1
dim(x)

i

P (xi). (3.21)

In general, the threshold θCP P can be understood as the minimum mean critical value
and is to be chosen empirically by validating with data. It has been observed that a
rather high value, in the range between 50% to 80%, yields better results than lower
values.

In case of the ED, its configuration expects a specific threshold parameter that decides if
a critical value belongs to an anomaly. This threshold parameter ϕ ∈ [0, 1] is an indicator
for how unlikely a value has to be in order to be detected as an anomaly. We calculate
it by taking the minimum of all critical values P (xi) of selected variable x. From this
minimum we also subtract a certain offset δ (in practice, some small non-zero value e.g.
between 0.01 and 0.1 is appropriate) to have a buffer between the least likely values that
were still considered as normal behavior, such that the same values or the ones with very
similar critical values are not considered as anomalies when the training phase is over.
Therefore,

ϕ(xi) := min
i

P (xi) − δ. (3.22)

As we take the minimum of all critical values as ϕ this will be strongly affected by
potential outliers with very low critical values within the training data. However, since
we assume this is normal behavior, this trade-off is accepted. Also, this corrects the
potentially poor selection of a certain variable by lowering ϕ to a level where only very
unlikely values will trigger an alert. In practice it is meaningful to limit ϕ to a certain
range since it is possible that the minimum critical value for a certain variable can be
arbitrarily low or high within the range of [0, 1].

3freq GitHub page https://github.com/MarkBaggett/freq/tree/master; accessed 16-July-
2024.
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3.4.6 Event Frequency
Detectors such as the EFD assess the frequencies of events. We define frequencies in this
context as “occurrences per time interval”. These detectors operate on time windows and
thus, on a collection of events rather than the exact events. The number of events in a
time window differs depending on the size of the chosen time interval and on the event
frequencies in the data. It is therefore also possible to have no events within a certain
time window or just one. A detector operating on time windows may therefore not know
the exact event that caused an alarm but only the time interval in which it occurred.
In case of the EFD of the AMiner, an alarm contains the log line at which the detector
was triggered, which may not be the actual anomalous events. This circumstance also
implies the requirement of a specific evaluation approach explained in Section 5.3.

Window size

Detectors like the EFD operate on time windows and require the size of these windows
as input parameter. Unfortunately, it is not straightforward to define a time window that
fits every scenario in the data but we can at least reduce the dependence of the window
size parameter of the EFD from the specific nature of the data to have a more generically
configured window size. Determining the size of the time windows is still one of the most
challenging tasks in time series data mining [ESL23].

The idea to generalize the window size parameter is to somehow define the number of
events that should be present in a single window. The window size, denoted by ∆twindow,
is therefore defined as the mean of the non-zero time differences between the occurrences
of a variable times a factor n. We say non-zero time differences because events in log data
are often logged with the exact same timestamp since single actions on computer systems
can generate an arbitrary number of logs that are then counted as different events. This
results in time differences between events being often equal to 0. We define these time
differences as

∆t = {t(xi) − t(xi−1) | i = 0, 1, ..., dim(x) : t(xi) − t(xi−1) ̸= 0}. (3.23)

To this end, the time of the i-th occurrence of a value is defined as t(xi). Thus, the
formula for the window size reads as

∆twindow = ∆t · n. (3.24)

This implies that the average number of events with unique timestamps within a time
window of size ∆twindow is n.

Seasonality

For the further analysis we have to resample the arbitrary timestamps of each variable
x into equidistant intervals and count the occurrences per time interval. The interval
length was chosen as 1 minute. Smaller time intervals might be unfeasible for the case
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that the data was collected over a longer time period than just a couple of days. We call
the resulting time series T (t). For convenient notation we define it as a function of time
t. For instance, T = [3, 0, 1] means the variable x is occurring 3 times in the first minute
(T (t1) = 3) and once in the third (T (t3) = 1).

Logs representing computer systems or user behavior often contain reoccurring events.
As a consequence, we assume that the occurrence of each variable is, at least partially,
behaving periodically. In many cases, this is done by trial and error or visual inspection
which is not an option here. The first step is therefore to compute the seasonality (or
periodicity) of the occurrence of variables. A common practice for the assessment of
seasonality is finding the local extrema of the unbiased autocorrelation function

R(t) = {Rk(T (t)) | k = 0, 1, ..., dim(T (t))}, (3.25)

Rk(T (t)) = 1
(n − k)σ2

n−k

i=1
T (ti) − µ T (ti + k · ∆t) − µ (3.26)

with µ and σ2 as the mean and variance of T (t) and k as the number of lags ∆t. Note,
that R(t) ∈ [−1, 1] as each point of the function is a Pearson correlation coefficient. Local
maxima in R(t) that are significantly greater (or smaller) than 0 indicate a reoccurring
pattern in the data. The seasonality is therefore the time difference between the maxima.
The identification of seasonality from a visual inspection of the autocorrelation plot is
often straightforward. However, this is considerably more challenging when implemented
through an automated process.

For the computation of the maxima we make use of the peak finding algorithm “find_peaks”
from the SciPy library [VGO+20] which identifies local maxima within the 1D input
array. It scans the array and locates points where the value is greater than that of its
neighbors, signifying a potential peak. Subsequently, for each identified local maximum,
the algorithm computes its prominence by determining the lowest contour line around
the peak. This contour line is established by tracing the valley floor from the peak to
the nearest higher peaks, ensuring that the prominence captures the peak’s significance
relative to its immediate surroundings. Peaks with prominence below a specified threshold
are filtered out, resulting in the detection of only prominent peaks. Since R(t) ∈ [0, 1] we
can set the minimum prominence to a fixed value. For the evaluation in Chap. 5 we fix
this threshold to 0.1, as a small non-zero value is sufficient to ensure a significant peak.

Based on the peak finding algorithm, we define the function peaks(·) that returns an
array of (time) indices of the local maxima of its input array. Hence, the locations (in
time) of the local maxima of the autocorrelation function R(t) are

tpeaks = peaks(R(t)) = ti | i = 1, 2, .., dim(R) : Ri is maxima . (3.27)

Given the algorithm’s sensitivity to noise, it is necessary to assess whether the identified
peaks occur regularly, meaning that the maxima occur in nearly equidistant time intervals.
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The time differences between the maxima tpeaks are

∆tpeaks = tj+1
peaks − tj

peaks | j = 1, 2, ..., dim(tpeaks) − 1 . (3.28)

The regularity condition is controlled by the coefficient of variation cV = σpeaks/µpeaks

where σpeaks and µpeaks are the standard deviation and mean value of ∆tpeaks with an
upper limit for the coefficient of variation θcV that has to be fixed to some small non-zero
value. Testing has shown that θcV = 0.1 is sufficiently large to allow small deviations
from the mean time difference between the maxima while always capturing the period if
there is one (by visual inspection). Additionally, we introduce the constraint that the
minimal number of peaks is dim(tpeaks) ≥ γpeaks. γpeaks should be chosen as some value
greater or equal 3 since it is the least amount of maxima (including the autocorrelation
peak of the series with a lag of 0) necessary for indicating a reoccurring pattern in the
autocorrelation function. We call the union of these two conditions regularity criterion.
If cv < θcV and dim(tpeaks) ≥ γpeaks we call the peaks regular and the mean of the time
differences between the peaks the seasonality s = µpeaks (of variable x).

Since a minimum amount of occurrences is necessary for a certain number of peaks
≥ γpeaks a filter is applied to the set of all variables V beforehand. Variables with an
absolute occurrence below 2γpeaks − 1 (peaks plus the valleys) are removed from V to
form the input for the EF method:

V ′ = x ∈ V | dim(x) ≥ 2γpeaks − 1 . (3.29)

Since we are mostly interested in the largest local maxima representing the highest
peaks of the autocorrelation we apply the peak finding algorithm in an iterative manner
by “scanning” from top to bottom. In each iteration we compute the peaks of the
autocorrelation that are larger than the minimum autocorrelation threshold θR. If the
found peaks do not satisfy the regularity condition the threshold is lowered by a small
increment (e.g. 0.05). The iteration stops when θR exceeds a lower limit or if the
seasonality is found. We limit the threshold to θR ∈ [0, 1] since it is sufficient to only
inspect the positive side of the autocorrelation function.

The data often exhibits too much noise which is unfavorable for the autocorrelation
function. Consequently, a rolling mean is applied iteratively to the time series T (t) in
order to smooth the data. In each iteration, the time window of the rolling mean increases
(e.g. with a percentage of the whole time range of the time series) and the peaks are
computed (as explained in the paragraph before). If the peaks do not fulfill the regularity
criterion a new iteration starts. We condense above mentioned steps into Algorithm 3.1
(jmax is the maximal number of smoothing iterations).

Visualizations of the time series, raw and smoothed by moving average, and their
autocorrelation functions with marked maxima are given in Fig. 3.3. There one can see,
how it becomes more straightforward to find the relevant maxima in the autocorrelation
function after the occurrences per minute are smoothed by a rolling average. Note, that
the marked peaks in Fig. 3.3b are only marked above a correlation coefficient of 0.1.
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Algorithm 3.1: Computation of seasonality
Input : Timeseries T
Output : Seasonality s

1 for j in range(jmax) do
2 Compute R(T (t))
3 while θR ∈ [0, 1] do
4 Compute tpeaks, ∆tpeaks, µpeaks, σpeaks

5 cV = σpeaks/µpeaks

6 if cV < θcV and dim(tpeaks) ≥ γpeaks then
7 s = µpeaks

8 return s

9 end
10 Subtract small increment from θR and update
11 end
12 Update T with smoothed T (with window size j/jmax · dim(T ))
13 end

To conclude the above, the relevant adjustable parameters for this method are:

• the average number of values occurring within a time window n,

• the minimum prominence of the peak finding algorithm - fixed to 0.1,

• the upper limit for the coefficient of variation θcV - fixed to 0.1,

• the minimum number of peaks necessary for indicating a reoccurring pattern γpeaks

- fixed to 3,

Only the defining parameter for the window size n is not fixed. It is therefore investigated
in the hyperparameter tuning in Section 5.4.

Variables for which a seasonality and a window size > 0 is found are members of VEF .
Thus,

VEF = {x ∈ V ′ | ∃s and ∃∆twindow > 0}. (3.30)

Ermshaus et al. [ESL23] review a technique that also computes the period of a time
series in a very similar way but apply it in a different context. They use the estimation
of the period (or seasonality) as window size. An experiment with the seasonality as
the window size turned out to result in unsatisfactory performance for the EFD as the
window size is then mostly set too large. This was therefore not further investigated.
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(a) Occurrences per minute. (b) Autocorrelation of time series.

(c) Occurrences per minute smoothed. (d) Autocorrelation of smoothed time series.

Figure 3.3: Plot of the time series and its autocorrelation function.

Chapter Summary
This chapter described the used datasets, log data in general and what implications
log data brings for AD. The data is parsed into a convenient structure to allow a
comprehensive analysis. We named the features of the parsed data variables where each
occurrence of a variable yields a value.

We described the chosen detectors, that they require variables and other parameters as
input and that they output log lines and additional information of the anomalies they
detected.

A set of configuration methods was introduced that output what the corresponding
detectors require as input. Each of these methods extracts certain information from
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the data and defines a set that contains the variables that are suitable for the detector.
Furthermore, they also output other parameters such as threshold or other specifications
for the configuration process if the associated detector requires some. The configuration
methods mostly require some parameters themselves, yet they are less dependent on the
character of the data than the original parameters of the detectors and thus, they should
not require adjustments. Whether they truly do not require adjustments is investigated
in the hyperparameter tuning in Section 5.4.
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CHAPTER 4
Modelling

4.1 Pipeline
In this chapter the core functionality and thus the relevant steps of the Configuration-
Engine pipeline are explained - starting from data input to final output and every step
that takes place inbetween. Since this approach is not AMiner [LWS+23] specific and
potentially applicable to a variety of AD tools, it will be described in a more generic way.
Figure 4.1 visualizes the process in a flow chart. The steps numbered 0 to 9 in the chart
are explained in the following sections.

Figure 4.1: Flow chart of the Configuration-Engine pipeline.

4.1.1 Meta configuration (step 0)
In step 0 the configuration of the CE itself is defined. This meta configuration describes
the mappings of certain characteristics of the data to the associated detectors. These
characteristics, that are assigned to certain detectors in the meta configuration, trigger
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the corresponding functions in the CE that extract the relevant information in the data
corresponding to these characteristics. These functions are the methods described in
Section 3.4. In the best case, this meta configuration remains untouched by users. To be
more precise, once there is a meta configuration defined for a certain detector, it should
work for any use case independent of the data and, at best, even the data type.

The characteristics relate closely to the detection methods of the detectors. The mapping
of these properties to detectors is carried out for a selection of detectors of the AMiner.
Table 4.1 shows which detector corresponds to which characteristic or vice versa.

Detector type Characteristics / Methods
NewMatchPathValueDetector stability-by-occurrence

NewMatchPathValueComboDetector minimum-co-occurrence
CharsetDetector stability-by-character-set
EntropyDetector average-character-pair-probability

ValueRangeDetector numeric + stability-by-value-range
EventFrequencyDetector seasonal-event-frequency

Table 4.1: Mapping of data characteristics to detectors.

The meta configuration resembles the mappings in Table 4.1. Theoretically, every possible
detector could be listed in the meta configuration. If an according characteristic cannot
be found in the data the detector will not be listed in the final configuration for the AD
tool.

General Mapping Strategy

Before a detector can be defined in the meta configuration one has to define the mapping
to data properties. These properties are very specific for each detector and closely related
to the method they are based on. However, the mapping process itself can be generalized
for all detectors. It follows the following sequence:

1. Choose new detector.

2. Understand its detection method.

3. Define data characteristic from the detection method.

4. Expand characteristic to a measure of stability.

A simple example that incorporates these four steps is delivered by the NewMatchPath-
ValueDetector (1). This detector triggers an alert whenever a new and unknown value of
a certain class is found in a log line [LWS+23]. Consequently, we do not want to pass
certain classes of values to this detector. Imagine a class of values that has a different
value in every occurrence (e.g. random variables - Sec. 3.4.2). For this detector any
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learning would be irrelevant with this kind of values, and it would trigger false positive
alarms for every occurrence (2). The corresponding characteristic is therefore based on
“unique occurrence” (3). The corresponding measure of stability is hence the asymptotic
decrease of new unique occurrences of variables over time (4). In other words, the
occurrence of new and unknown values has to stabilize after some time or some number
of events.

Based on the defined methods of this mapping, one can then perform analysis on the
data to classify the matching variables into the according feature sets.

4.1.2 Data Ingestion and Transformation (step 1-2)
The CE expects the input to be in the form of event data which in our case is given as
log files (step 1).

For the subsequent steps the data has to be transformed into a two-dimensional matrix-
like structure that consists of columns and rows. Event data is mostly given as text based
lines. If the data is not already organized in a table, a parser has to be applied in order
to transform the textual data into a suitable format. The parsing process is covered in
Section 3.2 or [LWS+23]. Each row in the resulting table corresponds to an event (or
instance) and each column corresponds to a variable (or feature) and its values.

4.1.3 Parameter Selection (step 3-6)
Apart from the training data, for a single detector instance the AD tools we are interested
in expect 2 distinct forms of information from a user:

• delineations of where anomalies are anticipated to occur within the data, thus
variables,

• specifications regarding the detectors that should be employed, thus specific pa-
rameters such as thresholds or window sizes.

Simply put, variables instruct the detector where to search for anomalies, while the
other parameters, if given, dictate how the search should be conducted or how strict the
criterion for the detection of an anomaly is.

In order to identify suitable variables for each method and also, to assess which method
has to be applied or not, the data from the previous step is analyzed and categorized
(step 3). In detail, a selection of methods is applied that classifies each variable into a set
based on its properties. The further step is then the selection of variables (step 5) that
fit the corresponding detection method or by filtering variables (step 4) that do not fit
the corresponding detection method from the preceding selection or from the set of all
possible variables such that only suitable variables remain.

As certain detection methods require specific input parameters, it is necessary to evaluate
the value of each of these parameters. This is by nature closely related to the selection of

37



4. Modelling

variables as these specific parameters often rely on the same principles as the variable
selection process. For the case that a valid variable is already found for a certain detection
method, we can subsequently carry out further analysis on the characteristics of the
variable and its values to assess the value of a specific parameter (step 5). In some cases
this might be the other way round and we choose variables for which a suitable specific
parameter was successfully extracted from the data (as for the event frequency method
in Section 3.4).

The question, whether an available detector should be used or not, is implicitly answered
by the circumstance whether a valid parameter setting is found for this detector or not.
A detector listed in the meta-configuration may therefore not necessarily be included in
the configuration of the detection tool itself. On the other hand, this might generate a
large number of detector instances in the configuration and lead to higher runtimes for
the detection tool. However, throughout this work the runtimes of the AMiner remained
within a feasible range of less than an hour and this was therefore not investigated any
further.

The parameter selection procedure reduces the effort from selecting suitable parameters
individually to selecting the suitable type of parameters, thus translating the problem to
a meta level.

4.1.4 Parameter Optimization (step 7)
In the following, we investigate an approach to systematically optimize a configuration
by the feedback obtained from the AD tool itself. The objective is to identify false
positive (FP) sources in the configuration and to adapt or delete them in order to
minimize their occurrence. These sources can either be variables, options and thresholds
or other numerical parameters that were listed in the configuration of a detector. This
optimization approach is therefore a measure to reduce the sensitivity of the detection
tool to the training data. Thereby, it also reduces the likeliness of overfitting to the
training data.

To get feedback from the AD tool, it has to be run with the given data and an initial
configuration. The procedure’s complexity originates from the assumption that the data
does not contain anomalies. An AD tool that only runs on anomaly-free data cannot
produce true positive alerts (TP). At first glance, it may appear that having a minimum
of FP is always preferable. However, since this might lead to the detection tool being
configured too insensible, simply aiming for a minimum is not adequate. A detector, that
does not have the potential to trigger an alert, will clearly not produce any false-positives.

Each of the detectors requires a set of variables which can be obtained by the methods
of Section 3.4 or by plugging in an already existing configuration. It is not guaranteed
that a detector receiving these variables, firstly, holds the potential to identify TP and
secondly, does not produce an unreasonable amount of FP alerts. The information of
the former is not directly available since we assume anomaly-free data as input, but the
latter can be examined more closely.
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To get feedback of how the initial configuration performs regarding the amount of FP,
the detection tool has to be run with the given data. For the sake of generalization,
a cross-validation technique is used here. An adequate technique can be derived from
the function “TimeSeriesSplit” from the Scikit-Learn Package [PVG+11]. This method
splits the data K times by the time interval while maintaining the order of, first, the
train and secondly, the test split. Contrary to TimeSeriesSplit we split the training
data based on the number of events since most detection methods used here are not
directly time dependent. In fact, testing has shown that in these cases splitting by the
number of samples delivers better results. Other than that the method is equivalent to
TimeSeriesSplit.
Goldstein and Uchida name two forms of output an AD tool can have: labels and scores
[GU16]. However, some of the AMiner’s detectors include additional information into
their alerts for explanatory reasons which we make use of. From the alert report of the
tool the following information for each detector instance is extracted:

1. the number of FP alerts,

2. which event caused the alert (timestamp, line index),

3. information of what caused each alert (some critical value).

It should be noted that detected anomalies are considered as point anomalies. The
number of false positives FP and the timestamp tn of event n can be used to determine
if an action is necessary for the corresponding detector instance d. Based on this, two
conditions are constructed that assess whether an action has to be taken or not:

1. The underlying idea is simply to check if FP is greater than a certain threshold θ1
for each detector instance, but since the tool is run for K times we have an array
of FPk for each run k. The data splits are usually not equally sized. Therefore, we
take a weighted mean [Coc77], denoted by the bar with the subscripted w, where
the weights increase linearly with the size of the corresponding split. For some
array v this is

(v)w =

K

k=1
wkvk

K

k=1
wk

, wk = k

K
. (4.1)

The condition is then defined as

(FP )w > θ1. (4.2)

2. Similarly, we limit the amount of false positives per time interval. The time interval
is defined as ∆t = tn − t0 with t0 and tn as the timestamp of the first and last alert
from the corresponding detector instance. Therefore,

(FP/∆t)w > θ2. (4.3)
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The information of which event and what caused it can be used to adapt the parameters
of the detector instance. Since there is a manifold of detectors and different ways to adapt
their different parameters and their possible combinations, the scope of this procedure
was limited to the adaptation of numerical thresholds (which is why it is called “threshold
optimization”) - see Section 14. In conclusion, this decision process is described in
Algorithm 4.1 with d ∈ c as the detector instances in the configuration c:

Algorithm 4.1: Parameter Optimization
Input : Initial configuration c, number of data splits K, thresholds θ1, θ2,

thresh. minimum ϕmin, thresh. maximum ϕmax

Output : Optimized configuration c′

1 Run AD tool with config. c for K different data splits;
2 foreach di in c do
3 if (FPi)w > θ1 or (FPi/∆ti)w > θ2 then
4 if ϕi ∈ di then
5 ϕnew

i = adapted ϕi (threshold optimization);
6 if not (ϕmin < ϕnew

i < ϕmax) then
7 Delete di;
8 end
9 end

10 else
11 Delete di;
12 end
13 end
14 end

For the case that the initial configuration was already well designed, this process will in
many cases not lead to any increase in performance regarding the amount of produced
false-positive alerts, given that the thresholds θ1, θ2 were not chosen too small. Thus
no detector instances will be deleted from the configuration. However, since the initial
selection of variables is provided by a potentially incomplete selection of methods or
characteristics, or by a badly designed manually created configuration, it is not guaranteed
that all the variables in the selected set are actually suitable.

Moreover, this method could be applied alternatively to the initial variable selection
procedure by using all the variables of a dataset as the input for this approach. Since all
the variables, that are determined as unsuitable by the condition above, are removed we
obtain a set of potentially suitable variables (and thresholds). Also, no previous knowledge
of the detection method itself is necessary, assuming the output of the corresponding
tool can be analyzed accordingly. The configuration of a detector, that appears as a
black-box to the user, can therefore still be optimized.
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Threshold optimization

The information of what caused the alert can be used to adapt the thresholds of detector
instances, given that they expect one (or more) as input parameter. To be precise, we
expect that there is a critical value ϕ∗ listed in the alert report of the detection tool
that was either too high or too low compared to the threshold that was specified in the
corresponding detector instance such that an alarm was triggered.
In order to adapt the given threshold of a detector instance, the critical value for each
alarm, given that there is one, is extracted from the alert report. This is done for each of
the K runs of the detection tool. We yield multiple critical values for a detector instance
for each run k. Out of all of these the minimum is taken. The new adapted threshold for
detector instance di is therefore,

ϕnew
i = min

k
(min

n
ϕ∗

i,k,n) − δ (4.4)

with n as the number of critical values in a single run and offset δ. The offset here
has the same functioning as in Section 3.4.5. Thus, to act as a buffer between this
minimum critical value and similar critical values that might occur due to future data
points. Testing has shown that this procedure can reduce the amount of false-positive
alerts while it is still possible to detect the same number of true-positives as before the
optimization.
Even tough this procedure is applicable to a wider range of different AD algorithms, it
is in our case only relevant for the ED, as this is the only detector of the selection that
returns such a critical value for its detected anomalies.

4.1.5 Finalization (step 8-9)
After the parameters are selected (step 3-6) and possibly optimized (step 7) they can
be written into a configuration file or something likewise or passed directly to the AD
tool (step 8-9). The meta configuration thereby dictates what other information is saved
into the final configuration such as parser settings, how the events are handled or other
trivial parameters.

4.2 Detector Configuration Assembly
The meta configuration for each detector is either based on a single method of the
previously discussed methods in Section 3.4 or assembled as ensembles of multiple
methods. In this section we explain the specific mappings of the methods to the detectors
according to their requirements explained in Section 3.3. The output of these methods
matches the input for the detectors regarding their parameters.
In our case, the mappings require two types of operations. For each detector we can

• filter variables from the set of given variables V . Only the remaining variables
V ′ are then passed on to the subsequent operation.
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• select parameters such as variables (or combinations) from V ′ (or power set
P(V ′)) or thresholds, window sizes, options, etc. that are passed to the detector.

Based on these operations we can define the mappings for the detectors. Note, that the
order of the operations represents the order in which they are applied. The input for
the first operation is the set of all variables V. Thereby, we can filter variables that are
unnecessary or lead to an unfeasible computational effort for certain methods before they
are passed to that method. For the:

• NewMatchPathValueDetector (NMPVD) we:

– filter static variables. Even tough these might be interesting for the
evaluation, they blow up the configuration unnecessarily and are trivial to
detect. Furthermore, the anomalies they cover (of the validation datasets) are
also covered by stable variables.

– select stable variables (by occurrence) because they contain a limited
set of values.

• NewMatchPathValueComboDetector (NMPVCD) we:

– filter random variables as they lead to random combinations which do not
form a limited set of value combinations.

– filter static variables as they form unnecessary combinations. The usage
of static variables in combinations for this detector is equivalent to the usage
of static variables in the NMPVD whose configuration process exhibits less
computational effort.

– filter variables by minimum occurrence to reduce the number of possi-
ble combinations and make sure that only variables with significantly many
occurrences are combined. The choice for this measure is based on computa-
tional efficiency. Hereby, we determine the minimum amount of occurrences
0.005 · nV .

– select variable combinations based on co-occurrence as only combi-
nations of variables are relevant that co-occur at least a certain amount of
times.

• CharsetDetector (CSD) we:

– filter static variables for the same reason we filter the m for the NMPVD.
Also, a change in their character set implies the occurrence of a new value
which can already be detected by the NMPVD.

– select stable variables (by character set) as their values’ characters form
a limited set.

• EntropyDetector (ED) we:
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– filter static variables as their critical values are also static. Similar for the
CSD a change in their character pair probabilities implies the occurrence of a
new value which can also be detected by the NMPVD.

– select parameters by character pair probability as the values of the
corresponding variables are on average rather likely to occur (depending on
the choice of the threshold), and thus represent a pattern from which the ED
is effectively able to learn a normal behavior. The probability threshold is set
accordingly.

• ValueRangeDetector we:

– select stable variables (by value range) as they are numerical and their
minimum-maximum ranges are limited.

• EventFrequencyDetector we:

– filter variables by minimum occurrence as for the existence of a certain
amount of peaks in the frequency a certain minimal amount of occurrences
is necessary. This step is also beneficial for the reduction of computational
effort.

– select parameters by event frequency as the behavior of the occur-
rence frequency of the variables determines the important parameters. In
turn, the determination of suitable parameters for certain values implies the
identification of these variables as suitable.

4.3 Example Showcase

The application of the configuration process is exemplarily demonstrated for two different
detectors of the AMiner [LWS+23] with a small sample of 12 sample log lines that are
used as input for the CE and subsequently, for the training of the detection tool. The
first log line is given in Listing 4.1 below:

Listing 4.1: Example log line.
1 a b10 abc d1 c2

The contents of the line are chosen totally at random to demonstrate the applicability
of the Configuration Engine to any kind of text-based event data independent of the
contextual meaning. The rest of the data was constructed based on the first line in order
to have an expressive example. Table 4.2 shows the parsed data.
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Index A B C D E
0 a b10 abc d1 c2
1 a b0 xyz c2
2 b12 abc d1
3 a abc c1
4 a b0 xyz d1
5 a b18 xy d2 c2
6 a b12 xy d1 c1
7 b13 abc c2
8 a b2 abc c2
9 a b12 xyz d1
10 a b8 xyz c2
11 b11 xyz d2

Table 4.2: Training data that is assumed to be anomaly-free. The rows represent the
log lines, the columns the extracted variables from the log lines. A, B, C, D, E are the
variable names assigned by the parser. Note, that {A, B, C, D, E} = V.

Then we have the meta configuration from step 0 in Section 4.1.1 with the mappings of
the characteristics for each detector which is in this case a .yaml file:

Listing 4.2: Meta-configuration example.
1 ParameterSelection:
2 NewMatchPathValueComboDetector:
3 Variables:
4 PreFilter:
5 Static: {}
6 Random: {}
7 Select:
8 Co-OccurrenceCombos:
9 min_co_occurrence: 0.5

10 EntropyDetector:
11 Variables:
12 PreFilter:
13 Static: {}
14 Select:
15 CharacterPairProbability:
16 thresh_cpp: 0.8
17 SpecificParams:
18 CharacterPairProbability:
19 parameter_name: prob_thresh
20 min: 0.1
21 max: 0.7
22 offset: 0.1
23 Optimization:
24 SampleSplit:
25 k: 3
26 detectors: [EntropyDetector]
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27 max_FP: 1
28 max_FP_per_minute: 0.05
29 weighted_split: true
30 thresh_optimization:
31 EntropyDetector:
32 name: prob_thresh
33 min: 0.1
34 max: 0.7
35 offset: 0.05

The meta-configuration is structured into levels denoted by indents. The first level is
reserved for “ParameterSelection” (line 1) and “Optimization” (line 23) which are the
two sub-processes of which the CE consists.

The second level in “ParameterSelection” (line 2-22) specifies the detectors that should
be used. For each detector there are the options “Variables” (line 3-9 and 11-16) and
“SpecificParams” (line 17-22) that define the type of parameters that the corresponding
detector expects. Next, the mapping to variable properties is defined. In “Variables” this
is one level deeper because it has to be specified first what happens with the variables
that correspond to the chosen characteristics. The action “PreFilter” (line 4-6 and 12-13)
filters the variables, that were classified into the listed characteristics, from the set of all
variables. The other methods of the characteristics then use this set of variables as their
input and not the set of all variables. The action “Select” (line 7-9 and 14-16) specifies
the variables that should be selected for the configuration of the detection tool. There
is also an option “PostFilter” that filters from the set of selected variables before they
are written into the configuration (not used here). The lowest levels in the branches
of “ParameterSelection” (line 9 and 16) are the meta-parameters of the functions and
formulas from Section 4.1.3. For “Optimization” there are the options “Samplesplit” and
“Timesplit” (the latter is not given here) which specify the splitting type which is either
splitting by number of samples or by time interval.

Configuration of the NewMatchPathValueComboDetector

For each detector we will pre-filter the static and the random variables. This means that
they will be removed from the set of all variables so that V \ (Vstatic ∪ Vrandom) remains
for the following steps. From the data in Table 4.2 we get the following number of unique
values per variable in Listing 4.3.

Listing 4.3: Unique values per variable.
1 {’A’: 1, ’B’: 8, ’C’: 3, ’D’: 2, ’E’: 2}

Therefore, variable A is classified as static because (UniqueCount(A) = 1 as in Eq. 3.1.
Variable B is classified random because V alCount(b10) < 2 as in Eq. 3.2.

Next, the process computes all possible combinations of variables. The input variables
are C, D, E. Their possible pair combinations are given in Listing 4.4.
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Listing 4.4: Possible pair combinations.
1 [(’C’, ’E’), (’C’, ’D’), (’E’, ’D’)]

For each combination the CE computes the number of co-occurrences as in Listing 4.5:

Listing 4.5: Number of co-occurrences per variable.
1 (’C’, ’E’) : 8
2 (’C’, ’D’) : 7
3 (’E’, ’D’) : 3

In Listing 4.2 the threshold “min_co_occurrences” (= θrel) was set to 0.5, meaning
that for each variable combination at least 50% of their values have to co-occur with
the variable with the most occurrences. The combination (E, D) is therefore removed.
The remaining two combinations can be merged together since they are connected (co-
occurrence between variables present in both combinations is sufficiently high - see Sec.
3.4.4), thus we have (C, D, E).

These combinations are now written into the configuration file of the NMPVCD. The
configuration file’s relevant part can look like Listing 4.6.

Listing 4.6: Configuration of the NewMatchPathValueComboDetector.
1 Analysis:
2 - type: NewMatchPathValueComboDetector
3 id: id0_CoOccurrenceCombo
4 variables:
5 - C
6 - D
7 - E

Configuration of the EntropyDetector

Just as for the NMPVCD we remove the static variable A from the set of all variables
before initializing the other methods. In general, this is not necessary, but a change of
any kind in static values can already be detected by simpler detectors.

The next step is the computation of the character pair probabilities as in Section 3.4.5.
The corresponding function counts the occurrences of each value and each occurring
value pair. As an example, the frequency counts of the two consecutive values “abc” and
“xyz” in variable C are given below. Note, that -1 is a virtual character that represents
the delimiters of the character sequence (delimiters are only counted once per value).
Listing 4.7 shows what we get for value “abc”:

Listing 4.7: Frequency counts and critical values of value “abc” of variable “C”.
1 Character pair counts:
2 {-1: {’a’: 1}, ’a’: {’b’: 1}, ’b’: {’c’: 1}, ’c’: {-1: 1}}
3 Total character counts:
4 {-1: 2, ’a’: 1, ’b’: 1, ’c’: 1}
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5 Critical values:
6 {’C’: [1.0]}

Since every count is 1, the probabilities of the character pairs are uniformly 1. Their
mean, and thus the critical value, is consequently also 1.

Subsequently, “xyz” extends the character pair probabilities of variable C as given in
Listing 4.8.

Listing 4.8: Frequency counts and critical values of values “abc” and “xyz” of variable
“C”.

1 Character pair counts:
2 {-1: {’a’: 1, ’x’: 1}, ’a’: {’b’: 1}, ’b’: {’c’: 1}, ’c’: {-1: 1}, ’x’:

{’y’: 1}, ’y’: {’z’: 1}, ’z’: {-1: 1}}
3 Total character counts:
4 {-1: 2, ’a’: 1, ’b’: 1, ’c’: 1, ’x’: 1, ’y’: 1, ’z’: 1}
5 Critical values:
6 {’C’: [1.0, 0.875]}

The probability of the first character pair, (-1, x), is 0.5 because -1 occurred already as
the beginning of a character sequence in “abc” and now in “xyz”. The probabilities of
the other character pairs are 1.0 since they occur the first time. Therefore, the critical
value is 0.5+1+1+1

4 = 0.875.

Calculating the critical values for the other values of C yields Listing 4.9.

Listing 4.9: Critical values of variable “C”.
1 {’C’: [1.0, 0.875, 0.917, 0.9375, 0.85, 0.611, 0.69, 0.875, 0.889, 0.775,

0.803, 0.824]}

The minimum critical value for C is P (x5 =“xy”) = 0.611. With an offset of δ = 0.1 the
threshold for the EntropyDetector is ϕ = 0.511 (Eq. 3.22).

The computation of the variables’ mean critical values yields Listing 4.10

Listing 4.10: Mean critical values of variables.
1 {’B’: 0.7625454545454545,
2 ’C’: 0.83725,
3 ’D’: 0.9127142857142856,
4 ’E’: 0.90075}

Since θCP P = 0.8, we discard variable B and write the remaining variables into the
configuration of the EntropyDetector in Listing 4.11.

Listing 4.11: Configuration of the EntropyDetector.
1 Analysis:
2 - type: EntropyDetector
3 id: id1_CharacterPairProbability
4 variables:
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5 - C
6 prob_thresh: 0.511
7 - type: EntropyDetector
8 id: id2_CharacterPairProbability
9 variables:

10 - D
11 prob_thresh: 0.7
12 - type: EntropyDetector
13 id: id3_CharacterPairProbability
14 variables:
15 - E
16 prob_thresh: 0.728

Optimization

To optimize the configuration generated in the previous steps, we feed it into the detection
tool along with the training data. Actually, a larger amount of data is necessary for
meaningful results regarding the optimization approach, but this would be beyond the
scope of this small example. Therefore, we assume the already used training data was
sampled from a roughly three-times larger dataset such that splitting into K = 3 splits
can deliver potentially meaningful results. Furthermore, we assume the alert reports
for splits k = 2 and k = 3 of the detection tool are empty, but for the split k = 1 two
anomalies were reported as given in Listing 4.12:

Listing 4.12: Alert report for split k = 1.
1 [{’Detector’: EntropyDetector, ’Name’: ’id1_CharacterPairProbability’,

’AffectedVariables’: [’C’], ’AffectedValues’: [’acb’], ’CriticalValue’:
0.24, ’Timestamp’: ’04/Nov/2023:07:26:48’},

2 {’Detector’: EntropyDetector, ’Name’: ’id1_CharacterPairProbability’,
’AffectedVariables’: [’C’], ’AffectedValues’: [’bac’], ’CriticalValue’:
0.339, ’Timestamp’: ’04/Nov/2023:07:29:12’}]

The optimization procedure checks if the sensibility of the configuration was too high.
Thereby, it has to calculate (FP )w and (FP/∆t)w (with ∆t1 = 2.4 minutes) for every
detector instance that appears in the alert report as in the Algorithm 4.1 in Section 4.1.4.

Only “id1_CharacterPairProbability” is present in the alert report. For this detector
instance we get:

(FP )w =

3

k=1
k
3 · FPk

3

k=1
k
3

= 1
3 , (4.5)

(FP/∆t)w =

3

k=1
k
3 · F Pk

∆tk

3

k=1
k
3

= 1
3∆t1

= 0.139. (4.6)
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(FP )w is less than the false-positive threshold θ1 = 1, but (FP/∆t)w is greater than
θ2 = 0.05 the threshold for false-positives per minute. Consequently, the method checks if
a threshold parameter is given in the configuration of the corresponding detector instance
“id1_CharacterPairProbability”. Since there is a threshold given, the optimization of the
threshold “prob_thresh” is initialized. The minimum critical value that was reported for
“id1_CharacterPairProbability” is 0.24 which is the new value for “prob_thresh” ϕnew.
This fulfills ϕmin < ϕnew < ϕmax with ϕmin = 0.1 and ϕmax = 0.7. This means that the
detector instance is not removed from the configuration, but its threshold “prob_thresh”
is updated from ϕ = 0.511 to ϕnew = 0.24.

Chapter summary
This chapter described the pipeline of the CE and each of its steps. It takes data as
input, processes it through the methods explained in Section 3.4 and outputs the final
configuration.

The CE itself is controlled by the meta configuration whose parameters we furthermore
call hyperparameters. These are the same parameters that control the configuration
methods of Section 3.4. The best possible hyperparameters are determined in the next
chapter.

The processing includes the optimization step that prunes or adjusts instances from the
configuration that were determined as unfitting. The optimization trains and runs the
AMiner multiple times with the initial configuration on the training data and analyzes
the feedback to determine if an instance causes too many FP.

Finally, a constructed example was shown to further clarify how each of the steps of the
CE works.
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CHAPTER 5
Evaluation

5.1 Evaluation Environment
All results were produced with the same evaluation environment. The system runs 64-bit
Windows 10 with Ubuntu 20.04 via Windows Subsystem for Linux (WSL) and uses an
Intel Core i7-8665U CPU with a base clock speed of 1.90 GHz and 16GB RAM.

The algorithm was programmed and executed in Python 3.8.10. Thereby, the most
important tool was the Pandas library [pdt24, McK10] which provides powerful operations
and data structures for easy and efficient manipulation of tabular data.

The implementation of the CE can be found at https://github.com/ait-aecid/
aminer-configuration-engine.

5.2 Evaluation Pipeline
For validation and testing variations of the input are fed into an evaluation pipeline.
Each variation of the input consists of a dataset and a meta configuration that holds the
parameters for the configuration engine itself.

A single run of the evaluation pipeline consists of the following steps:

1. Split data into train and test (or validation) set.

2. Run CE with training data and meta configuration to produce a configuration file,
or take a predefined configuration.

3. Run AD tool with training set and configuration.

4. Run AD tool with test set and configuration.

51

https://github.com/ait-aecid/aminer-configuration-engine
https://github.com/ait-aecid/aminer-configuration-engine


5. Evaluation

5. Evaluate by comparing attack labels (ground truth) to alerts (prediction).

This process represents a single run of the evaluation pipeline. By analyzing the output
that was produced by different input variations, problems, limitations but also capabilities
of the model can be assessed and used for refinement of the process in the validation phase.
Application of the same procedure in the test phase shows the model’s applicability
across different datasets and data types - in this case, Apache access and audit log data
(see Section 3.1) - and how different input parameters affect the performance.

5.3 Anomaly Definition
The definition of the absolute performance metrics such as the number of true positives
(TP), false positives (FP), true negatives (TN) and false negatives (FN) is not always
straightforward in AD and depends on what kind of anomaly (point, collective or
contextual) one is considering. Consequently, we have to compare the ground truth
(the attack labels) to the prediction (the detected events), to compute the performance
metrics [CBK09].

All detectors, except for the EFD, return the exact event index that triggered an alarm.
Hence, we compare the line number (or event index) of the attacks and the line number
of the detected event and can classify it accordingly into TP, FP, TN, FN. On the other
hand, there are detectors that do not return the exact log line of the anomalous event
because they operate on time windows. As a consequence, we do not have a unique
identification for the anomalous event since there is the possibility of multiple events
occurring at the same time or in the specified time period. An anomaly can, in this case,
only be identified within a collection of subsequent events or a time frame but not for the
exact event (except for the case that only the anomalous event is given in the frame).

Consequently, we treat the detected anomalies in two different ways:

1. We treat all detected anomalies as point anomalies and assume their indepen-
dence from each other. Thereby, it is possible that a detector may identify a
significant proportion of the anomalous lines associated with a single attack type,
yet simultaneously fails to detect any lines belonging to other attack types.

2. We treat all detected anomalies as collective anomalies. For our case, we define
a collective anomaly, or attack period, as a sequence of log lines that belong to a
specific attack type and are subsequently occurring with no non-attack log lines
in between. Attack periods separated by non-attack lines are treated as different
collective anomalies or attacks, respectively. A collective anomaly is considered
detected if at least one log line of the collective anomaly is detected.

In practice, a system administrator would in case of an alert from the detection tool
start an investigation whether it was really a TP or a FP. Hereby, it is important that at
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least a single log line of the collective anomaly is detected, under the assumption that
the administrator is able to identify the true nature of the alert.

Another issue is posed by the EventFrequencyDetector which detects anomalies within
time windows. Hereby, the detection of an anomalous log line can be delayed by up to
the length of the time window the detector uses. Therefore, the detector might output a
log line which is not part of an attack but is detected due to an attack.

This issue is accommodated by extending the attack period of all collective anomalies.
The initial attack period Tattack is therefore extended by a certain amount of time δt
with tstart and tend as the first and last timestamp belonging to an attack:

Tattack(tstart, tend) → T ′
attack(tstart, tend + δt). (5.1)

Consequently, this is not as precise as evaluating the exact event index, treating anomalies
as point anomalies.

5.4 Hyperparameter Tuning
Most of the methods from Section 3.4 require input parameters besides the input data.
We call these parameters hyperparameters since they are used to control the learning
process of the AD tool. They are defined to be as independent of the data as possible,
meaning that once an optimal hyperparameter setting is identified it should be suitable
for any kind of dataset. This approach aims to minimize the number of settings the user
has to adjust. The extent to which the parameters are truly independent of the data
can be gauged by examining their performance across different datasets. The desired
outcome is for the performance to be consistent across different datasets for the same
parameters and at best also for different data types, speaking of Apache and audit log
data.

The detectors of the AMiner [LWS+23] operate totally independent from each other.
Hence, hyperparameters of methods applied to different detectors can also be tuned
independently from each other. The performance of methods with multiple parameters
is contingent upon the collective influence of all of them and thus must be addressed
accordingly which would require methods like GridSearch, LocalSearch or likewise. For
each evaluation the configuration methods, but also the AMiner, have to run for each
dataset (16 in total counting both Apache and audit datasets) and for each different
parameter. Therefore, the use of search methods is avoided by fixing as many adjustable
parameters as possible to a constant such that the tuning can concentrate on the most
crucial ones. An evaluation for every possible adjustment would go beyond the scope of
this thesis.

To assess what constitutes satisfactory performance, the evaluation metrics of precision
and recall (Eq. 2.1) are considered which are often used in the context of AD [LOSW23].
For the selection of the best parameter settings we favor precision over recall as is more
important for a single detector to have more TP while little FP than detecting a large
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proportion of all the positives irregardless of the FP. Usually multiple different detectors
are employed within the AMiner, therefore it is hoped that the undetected attacks by one
detector are detected by another. Moreover, it is important to note that some detectors
may be unable to detect certain anomalies, as some anomalies may not exhibit any
deviations from normal behaviour with respect to certain characteristics.

As static variables are not affected by any change of parameters for the detectors that
analyze their values’ (constant) properties it is not meaningful to include them for these
detectors for the hyperparameter tuning. Thus, they are filtered beforehand which is
also convenient regarding the computational effort of this process. The EFD does not
take the character of values of variables into account, only their occurrence in time and
thus static variables are included for this detector.

5.4.1 NewMatchPathValueDetector
According to the mapping described in Sec. 4.2 the NMPVD expects variables that
are stable regarding their unique occurrences. The modifiable parameter is the discrete
threshold curve with the thresholds θm. As the thresholds should describe some kind of
exponential decay we set θm = e−cm and try different values of the decay c. In general,
the larger ns, the smaller are the segments and the less robust the method is to outliers.
One would therefore want to have ns as small as possible while still large enough to
capture the behavior of an exponential decay. Furthermore, playing around with this
value in the validation phase revealed that how fine-grained the discretization is has little
influence on precision and recall (as long as it represents and exponential decay). We
therefore fix ns = 5.

The thresholds used for the tuning process are visualized in Fig. 5.1. The c’s are chosen
in a way so that the thresholds cover the meaningful range of all possible thresholds.
Additionally, c = 100 should show that a too strong decay usually poses a too limiting
constraint.

Figure 5.1: Visualization of the stability thresholds θm for different values of c.

From visual inspection of the performance metrics in Fig. 5.2 we conclude that the best
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(a) Performance for Apache (point) (b) Performance for Apache (collective).

(c) Performance for audit (point). (d) Performance for audit (collective)

Figure 5.2: Precision and recall for the NewMatchPathValueDetector, configured with
different threshold curves.

setting of the thresholds is c = 1.8, thus θ = [1.0, 0.165, 0.027, 0.005, 0.001], as it yields
high precision for all datasets while the average recall is still at least 0.75.

5.4.2 CharsetDetector

The procedure for the CSD is exactly the same as for the NMPVD but different values
for the stability thresholds are used. We fix the number of thresholds to 10 and test
for c = 0.5, 1, 2, 4, 6, 100. A higher resolution and more restrictive thresholds seemed
necessary.
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In Fig. 5.3 one can see that there is only change visible between c = 2 and c = 4.
It seems that each threshold c < 4 is suitable. We choose c = 1 and thus θm =
[1.0, 0.368, 0.135, 0.05, 0.018, 0.007, 0.002, 0.001, 0.0, 0.0] for the further analysis. In gen-
eral, the characteristic “stability of character set” seems to be quite robust for all datasets
as long as it is not too strict (c > 2). One could argue that the stability criterion for
this detector is unnecessarily complex. However, since there is no downside, except a
negligible increase in runtime for the selection process, we keep this criterion for the
CharsetDetector as it makes sense to have some kind of limitation to the variables.

(a) Performance for Apache (point). (b) Performance for Apache (collective).

(c) Performance for audit (point). (d) Performance for audit (collective).

Figure 5.3: Precision and recall for the CharsetDetector, configured with different
threshold curves and tested on each dataset.
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5.4.3 ValueRangeDetector

The VRD also expects stable variables and thus it is the same procedure as for the NMPVD.
For this detector we expect little change as in the data there are almost no numeric
variables given in the datasets. For instance, for the russellmitchell Apache dataset there
are only 2 (“status code” and “content size”), for audit there are 0. Consequently, the
number of different values the performance metrics can have for Apache data is very
limited and it is not necessary to assess the performance of the VRD for audit data.
However, in order to not use “magic values” for the stability thresholds it is necessary to
justify them in some way.

(a) Performance for Apache (point). (b) Performance for Apache (collective).

Figure 5.4: Precision and recall for the ValueRangeDetector, configured with different
threshold curves and tested on each dataset.

One can see, the performance remains unchanged until c > 4. As for the CSD this could
indicate that the stability criterion is unnecessarily complex for this detector and that
the only necessary constraint on the variables is that they are numeric. In the case of
our data, this is indeed the situation, as by inspecting the generated configuration files,
there are always both numeric variables specified for each run where neither precision nor
recall is 0 (only variables are specified for the VRD). Nevertheless, to keep the stability
criterion for this detector guarantees that numerical variables for possible other datasets
are limited in their value range and there is no downside except a negligible increase in
runtime. For convenience we choose c = 1 as for the CSD for further investigations.

5.4.4 NewMatchPathValueComboDetector

The modifiable parameter for the NMPVCD is the relative minimum co-occurrence θrel.
We evaluate the following values θrel = 0, 0.01, 0.1, 0.5, 0.9, 1.0.
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(a) Point anomalies for Apache data. (b) Collective anomalies for Apache data.

(c) Point anomalies for audit data. (d) Collective anomalies for audit data.

Figure 5.5: Precision and recall for the NewMatchPathValueComboDetector, configured
with different minimum co-occurrence thresholds and tested on each dataset.

The plots of Figure 5.5 exhibit an “all-or-nothing” behavior for the performance which
reveals quite an interesting property of the data: that if variables of a suitable combination
co-occur a certain minimum number of times they occur almost always together (with
the variable in the combination with the most occurrences). Hence, enforcing a higher
minimum co-occurrence of variables is not necessary and we choose θrel = 0.1 for the
evaluations with the test data.
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5.4.5 EntropyDetector

The meaningful range for the lower limit of the mean critical value θCP P is covered by
θCP P = 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. We limit the parameter for the probability threshold to
ϕ ∈ [0.0, 0.9] as we can reasonably conclude that every occurrence with a critical value
above 0.9 is likely enough to occur and also, to exclude the possibility of ϕ = 1. The
offset is set to δ = −0.05 whereby any small non-zero value (with a significant magnitude)
is sufficient.

(a) Performance for Apache (point). (b) Performance for Apache (collective).

(c) Performance for audit (point). (d) Performance for audit (collective).

Figure 5.6: Precision and recall for the EntropyDetector, configured with different θCP P .

From the plots in Fig. 5.6 we conclude that θCP P = 0.7 clearly poses the best setting
for the ED for Apache access data. Interestingly, for audit data the performance is very
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robust to changes in this parameter while still performing outstandingly well. If we would
only evaluate with audit data, we could not determine θCP P = 0.7 as the best setting.

5.4.6 EventFrequencyDetector
The time period of the collective anomalies was extended by 5 minutes. To justify the
selection of this value empirically, we let the EFD run on the audit validation datasets
with n = 0.5 and evaluate the results with a time extension of δt = 0 and δt = 5 minutes.
In Table 5.1 one can see that the performance improves by a decrease of FP and increase
of TP (for harrison and fox). For all these datasets the attacks occur in a period of less
than 3 minutes. After the attack each dataset has more than 10 hours of normal log
lines. Thus, it would be very unlikely if the detected anomalies are this close to the true
anomalies by coincidence. Therefore, we assume that 5 minutes is a valid number for
extending the attack periods of the collective anomalies. Too large extensions would
skew the evaluation in an overly optimistic way.

Dataset FP TN TP FN δt

russellmitchell 0 455 0 2 0
russellmitchell 0 455 0 2 5
harrison 1 372 0 3 0
harrison 0 373 3 0 5
fox 2 804 1 2 0
fox 1 805 3 0 5

Table 5.1: Absolute performance metrics depending on the time extension (in minutes)
of the attack periods for the audit validation datasets with n = 0.5.

The modifiable parameter was tested with n = 0.1, 0.25, 0.5, 0.75, 1, 10, 25, 50, 100. The
plots of Fig. 5.7 show a relatively chaotic behavior compared to the plots of the previous
methods. Nevertheless, the average over all datasets’ performances indicates a common
behavior. For audit the best setting is n = 0.25 with an average performance of over
75% precision and 100% recall, yet the chaotic behavior might indicate that this is only
by coincidence the best value. The results for Apache are less satisfying but present an
opportunity for improvement through the optimization in a later section. For Apache we
choose n = 0.5 for the further evaluations. Given that the results for the other detectors
are rather similar for both audit and Apache Access data, it is possible to choose a
suitable value for both data types. For the case of the EFD we unfortunately have two
different values and thus, this would be a setting chosen by a user.

The rather chaotic results indicate that the event frequency method leaves room for
possible improvements as it would be favourable to have similar behavior for audit and
Apache data. Every difference in behavior implies the necessity of adjustments for users.
However, there is the possibility that no common setting is suitable for all datasets
regarding the window size and that the problem lies with the EFD.
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(a) Performance for Apache (point). (b) Performance for Apache (collective).

(c) Performance for audit (point). (d) Performance for audit (collective).

Figure 5.7: Precision and recall for the EventFrequencyDetector, configured with different
θCP P .

5.5 General Performance

5.5.1 Baseline

The baseline consists of 3 manually created configurations from experts in the domain of
cybersecurity, each of which has deep knowledge about the AMiner and is involved in
its development or maintenance. The time it takes to manually create a configuration
depends on the experience, how complex and diverse the data is and which detectors one
wants to employ, just to name a few of the uncertainties. A very vague estimation would
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suggest that the process takes between one hour and a whole work day.

A snippet of one of the expert’s configurations is given in Listing 5.1 and shows two
detector instances. Both instances contain multiple variables in a single instance. For the
NMPVCD this is the expected scenario. However, for the case of the EFD the AMiner
will analyze all variables as if they are one. This also works for all the other selected
detectors. In many cases this is equivalent if, for instance, both variables contain values
that are totally different. Of course, this also depends on the detector and in which
aspect it assesses two values as different. Sometimes this is done out of convenience to
reduce the number of instances, but mostly the expert combines variables that he or she
believes interconnected. Such decisions are often based on experience. The CE does not
account for these possibilities as no significant increase in performance is expected by
passing multiple variables in a single instance and always passes only a single variable
per detector instance (except for the NMPVCD).

Listing 5.1: Cutout of an experts’ configuration file.
1 - type: "NewMatchPathValueComboDetector"
2 paths:
3 - "/model/client_ip/client_ip"
4 - "/model/combined/combined/user_agent"
5 - "/model/fm/request/request"
6 - "/model/fm/request/method"
7
8 - type: "EventFrequencyDetector"
9 id: "accesslog_frequency"

10 paths:
11 - "/model/fm/request/request"
12 - "/model/fm/request/method"
13 window_size: 10

Configurations for the AMiner may also contain variables that are not given in the data.
The AMiner ignores instances containing such variables. However, when comparing the
baseline to the CE only the relevant parts of the expert configurations are considered.
Relevant parts of the configuration in this context are the variables present in the used
dataset and detector instances of detectors in the made selection. This is especially
important for the assessment of similarity in Section 5.6.

The configurations of the experts are evaluated for their performance by plugging them
into the evaluation pipeline instead of generating a configuration from scratch (step 2).

5.5.2 Performance of initial Parameter Selection
In order to demonstrate the efficacy of each detector for both the CE and the baseline we
will first assess the performance of each detector individually. The graphs in Fig. 5.8 and
5.9 show the detection performance of each detector configured with the CE compared
to the performance of the experts’ configurations. The evaluation metrics shown in the
plots are computed for each Apache and audit data as an average of the configurations’
performances on the datasets.
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Figure 5.8: Precision, recall and F1-score averaged over all Apache Access datasets for
each detector configured with the CE and the experts’ configurations.

Figure 5.9: Precision, recall and F1-score averaged over all audit datasets for each detector
configured with the CE and the experts’ configurations.
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Besides precision and recall we also show the F1-score (Eq. 2.2) which is the combination of
both. This score is often used in literature and thus also used here for better comparability
to other works in literature [LOSW23].

Especially for Apache data, the CE can keep up with the experts, maintaining a high
precision for all detectors but the EFD. Since the expert configurations are similarly
unsatisfactory for the EFD it can be assumed that the problem lies with the detector. In
terms of collective anomalies for Apache, the CE even outperforms the experts, indicating
that a wide range of different attack types are precisely detected with the help of the CE.

For audit data the CE performs slightly less satisfying than for Apache. However, the
decrease in performance is almost only caused by the shaw dataset. For instance, the
NMPVD, NMPVCD, CSD and ED all have precision 1.0 when using the median instead
of the mean. We anticipate that the optimization is the remedy. Furthermore, one can
see that the expert configurations often have 0 in their performance metrics. This is due
to the fact that the configurations do not contain instances for all detectors for audit
data, as in many cases it is not straightforward which variables or even which detectors
are meaningful for a data type.

Additionally, Fig. 5.10 shows the runtimes of the CE for generating the configurations
averaged over each dataset. In order to increase the reliability of the results the runtimes
were averaged over 3 runs of the CE.

(a) Runtimes for Apache. (b) Runtimes for audit.

Figure 5.10: Averaged runtimes for the CE for each detector.

One can see that the runtimes are mostly relatively low, whereas the configuration
method for the NMPVCD exhibits larger execution times for Apache data because of the
strong scaling of the method and the large number of samples in some of the Apache
datasets (see Table 3.1). The maximum runtime was on average 2559 seconds (roughly
42 minutes) for the dataset mail.cup.com.

We let the CE now configure all detectors at once and allow all detectors of the selection
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for the expert configurations. Figures 5.11 and 5.12 show the aggregated performances of
all detectors of the selection.

Figure 5.11: Precision, recall and F1-score for each Apache dataset, configured with the
CE and the experts’ configurations.

For Apache data the aggregated performances seem very promising for point anomalies
while at the same time the precision for collective anomalies is less satisfactory. This is
due to the fact that there are simply less true collective anomalies while the amount of
false positives is the same as for point anomalies. Especially, the configuration of expert
1 maintains a solid precision for both audit and Apache compared to the others, yet with
a lower recall for audit.

The precision for the audit datasets seems less satisfactory at first sight, yet one has to
consider that the number of true anomalies is also very small (see Table 3.1). A single
FP is therefore much more weighted for the audit datasets than for the Apache ones.
For instance, for audit dataset shaw there are 14 FP and 18 TP. The comparison of
the precision for the individual detectors in Fig. 5.9 with the aggregated precision in
Fig. 5.12 indicates that the different detectors are often detecting different FP in the
same dataset which leads to a poorer aggregated precision. Nevertheless, the experts’
configurations outperform the CE which suggests that the CE is simply less reliable for
audit data.
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Figure 5.12: Precision, recall and F1-score for each audit dataset, configured with the
CE and the experts’ configurations.

5.5.3 Optimization

For the evaluation of the optimization approach we take the configuration of the CE
and the experts as input. The optimized configurations are then fed into the evaluation
pipeline. We fix the number of allowed FP to θ1 = 10 and the number of FP per minute
to θ2 = 0.05 (both weighted) as they proved to be effective during the validation phase.
In general, some small numbers have to be chosen for these thresholds to tolerate a small
amount of falsely detected anomalies as we only present limited portions of the training
data. The number of splits is set to K = 3.

Figures 5.13, 5.14 and 5.15, 5.16 visualize the detection performances of the different
configurations for each dataset, with and without the optimization. We can see, that the
optimization indeed improves the overall performance for both CE and the experts at
the cost of almost no reduction in recall, except for the 3 Apache datasets from the AIT
Log Data Set V1.0, especially for collective anomalies. However, the precision greatly
increased for both types of datasets.
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Figure 5.13: Precision and recall for point anomalies for each Apache dataset, configured
with the CE and the experts’ configurations with and without the optimization.

Figure 5.14: Precision and recall for collective anomalies for each Apache dataset,
configured with the CE and the experts’ configurations with and without the optimization.
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Figure 5.15: Precision and recall for point anomalies for each audit dataset, configured
with the CE and the experts’ configurations with and without the optimization.

Figure 5.16: Precision and recall for collective anomalies for each audit dataset, configured
with the CE and the experts’ configurations with and without the optimization.
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5.6 Similarity of Configurations
The previous evaluation approach is solely based on the evaluation of traditional machine
learning metrics, but the generated configurations themselves might hold additional
information worth investigating. Therefore, we want to assess how similar the artificial
configurations are, compared to the manually created ones from domain experts. Note,
that for the evaluation of the similarity we use the optimized configurations of the CE
and the non-optimized expert configurations.

The configurations can be represented as associative arrays. They consist of different
keys and values of different types. Consequently, it is not straightforward how to measure
their similarity. A meaningful and general approach is therefore to assess the similarity
of all present detector-variable pairs since this defines what features of the data the
corresponding detector should investigate. In case of the manual configurations, it shows
which features the domain expert considers as important.

A detector-variable pair is given as (da, A) with detector d and the set of variables A for
the configuration a which is defined as a set of detector-variable pairs

a = {(da, A)i | i = 1, ..., |a|}. (5.2)

For all detectors but the NMPVCD we have |A| = 1 since they take a single variable as
input. The NMPVCD expects combinations of variables which is why we define A as
a set of variables and |A| ≥ 1. The comparison of two configurations a and b is then
between the sets of variables A and B for which da = db holds. For this comparison we
use the Jaccard similarity coefficient [dFC21] which is generally defined as the size of the
intersection of two sets A and B divided by the size of their union

J(A, B) = |A ∩ B|
|A ∪ B| (5.3)

where | · | denotes the cardinality of a set. The comparison of pairs that are not from
the NMPVCD can only yield J(A, B) = 0 or J(A, B) = 1. If it would not be for the
NMPVCD we would not need the Jaccard index. We define

J(a, b) = J(A, B) if da = db,

0 otherwise
(5.4)

to impose the condition. The similarity s(a, b) ∈ [0, 1] of configuration a and configuration
b is then the sum over all Jaccard indices where da = db divided by the size of the
configuration b. Thus,

s(a, b) = 1
|b|

|a|

i

|b|

j

J(ai, bj). (5.5)

The sums over the modified Jaccard indices J are equivalent to the sum of every element
of a matrix where only the elements are non-zero where da = db.

69



5. Evaluation

For the graphs in Fig. 5.17, 5.18 we use a as the artificial configuration of the CE
and b as the expert’s configuration. Since the formula divides by the size of the expert
configuration b the similarity can be understood as: the percentage of detector-variable
pairs in the expert configuration b that are also given in the artificial configuration a.

Figure 5.17: Similarity between the CE and the expert configurations for different Apache
datasets.

Figure 5.18: Similarity between the CE and the expert configurations for different audit
datasets.

By comparison of the performance of Fig. 5.15 and the similarities in 5.18 one can see
that even tough a similarity of only 0.07 at most is given between the configurations of
the CE and expert 1 for e.g. dataset santos and wheeler, expert 1 and the CE achieve a
precision of 1.0. This suggests that there are many different variables that exhibit the
same anomalies. It is also interesting that the configurations of expert 2 exhibit very
little similarity, just as the expert 1 configurations, but performing very poor for audit
data.

The heatmaps from Fig. 5.19, 5.20 show how similar the configurations from the CE are
with each other compared across different datasets. Since the similarity formula defined
in Eq. 5.5 is not commutative we get different values for whichever configuration we
define as a and which as b. As we also get a satisfying performance for precision and
recall across almost all datasets it follows that the configurations are effectively portable
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from one dataset to another, due to their high similarity, especially for Apache datasets.
This further implies that for Apache the important variables for the detection are mostly
the same across different datasets (of the same type). At least for the made selection
of detectors and datasets, this suggests that it is possible to define a single suitable
configuration for all Apache datasets, at least in terms of the variables. Interestingly,
the configuration of dataset mail.spiral.com differs the most from all the other Apache
datasets, yet it does not differ significantly in performance, not even from the other
datasets from AIT Log Data Set V1.0. One reason why the similarity of configurations
for the shaw and santos audit configurations is significantly lower than for the wardbeck,
wheeler and wilson ones is that the santos and shaw audit configurations do not contain
instances with the NMPVCD.

Figure 5.19: Heatmap of similarities s(a, b) across the configurations generated on different
Apache datasets (a on y-axis, b on x-axis).

Figure 5.20: Heatmap of similarities s(a, b) across the configurations generated on different
audit datasets (a on y-axis, b on x-axis).

Listing 5.2 shows a snippet of the configuration created by expert 3. The snippet contains
detector instances with variables that usually appear in Apache Access datasets. In
the following, we exemplarily describe the differences between the CE configuration
for dataset shaw1 (a) and Listing 5.2 (b). Given the high similarity among all Apache

1Configuration for dataset “shaw” on CE GitHub page, https://github.com/ait-aecid/
aminer-configuration-engine/blob/main/configurations/generated/apache/shaw/
shaw.yaml; accessed 21-July-2024.
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configurations (Fig. 5.19), comparing just one configuration is sufficient. From Listing
5.2 we are only interested in “type” which refers to the detector type and “paths” which
refers to variables. There we have the following detectors:

1. NewMatchPathValueDetector (line 2-8): “/model/client_ip/client_ip” is also
listed in the NMPVD instances of the shaw configuration but not “/model/user_id”
and “/model/fm/request/request”. Therefore, s1(a, b) = 1/3.

2. NewMatchPathValueComboDetector (line 10-22)): Is not present in the shaw
configuration, thus s2(a, b) = 0.

3. CharsetDetector (line 24-30): “/model/combined/combined/referer” is also
present for the CSD in the shaw configuration. s3(a, b) = 1.

4. EntropyDetector (line 32-36): “/model/fm/request/request” is not given for any
EntropyDetector instance. s4(a, b) = 0.

5. ValueRangeDetector (line 38-42): “/model/content_size” is given for the VRD
of the shaw configuration. s5(a, b) = 1.

6. EventFrequencyDetector (line 44-49): The detector is not listed in the shaw
configuration, thus s6(a, b) = 0

With |b| = 7 this leads to s(a, b) = 6
i si(a, b)/7 = 1/3 + 0 + 1 + 0 + 1 + 0 ≈ 0.33 which

is exactly the value visible in Fig. 5.17 for the similarity between the configurations of
the CE and expert 3.

Listing 5.2: Snippet of the configuration file of expert 3.
1 Analysis:
2 - type: NewMatchPathValueDetector
3 id: apache_NMPVD
4 persistence_id: apache_NMPVD
5 paths:
6 - "/model/client_ip/client_ip"
7 - "/model/user_id"
8 - "/model/fm/request/request"
9

10 - type: NewMatchPathValueComboDetector
11 id: apache_NMPVCD
12 persistence_id: apache_NMPVCD
13 paths:
14 - "/model/client_ip/client_ip"
15 - "/model/combined/combined/user_agent"
16
17 - type: NewMatchPathValueComboDetector
18 id: apache_NMPVCD2
19 persistence_id: apache_NMPVCD2
20 paths:
21 - "/model/combined/combined/referer"

72



5.6. Similarity of Configurations

22 - "/model/fm/request/request"
23
24 - type: CharsetDetector
25 id: apache_CD
26 persistence_id: apache_CD
27 id_path_list:
28 - "/model/client_ip/client_ip"
29 paths:
30 - "/model/combined/combined/referer"
31
32 - type: EntropyDetector
33 id: apache_ED
34 persistence_id: apache_ED
35 paths:
36 - "/model/fm/request/request"
37
38 - type: ValueRangeDetector
39 id: apache_VRD
40 persistence_id: apache_VRD
41 paths:
42 - "/model/content_size"
43
44 - type: EventFrequencyDetector
45 id: apache_EFD
46 persistence_id: apache_EFD
47 paths:
48 - "/model/status_code"
49 window_size: 60

The CE’s configurations contain significantly more instances of detectors than the experts’
ones, as the CE analyzes every available variable of the data. The experts focus on a
smaller set of variables, which are typically more obvious indicators for anomalies. For
instance, for audit the experts consider the variables related to “syscall” (system call),
“exe” (executable) or “uid” (user id) as especially important. The user id, for example, is
important to see which user triggered which actions. For Apache data the status code is
considered the most important, but also the most obvious variable for the manifestation
of anomalies. Also “request” related variables are present in all three configurations of
the experts. Such variables occur many times in a short period of time for scan attacks
and are therefore especially useful for the EFD. An attacker aware of the typical variables
in which an intrusion attempt might manifest itself might be able to evade an anomalous
behavior in such a variable. On the other hand, detection tools configured by the CE
might find anomalies that manifest themselves in variables that neither experts nor
attackers would consider. For instance, for the CSD the configurations generated on the
shaw dataset contain 17 instances for Apache and 37 for audit, while the configurations of
expert 1, 2 and 3 contain 3, 2 and 2 CSD instances (for both audit and Apache variables).
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Chapter Summary
In this chapter we provided a clear definition for anomalies and how we evaluate them to
guarantee a transparent evaluation.

Furthermore, this chapter contains the results of the hyperparameter tuning that deter-
mined which are the best hyperparameters for the parameter selection methods or the
meta configuration, respectively. With this setting we showed the overall performance of
the CE compared to the baseline of manually created configurations and the performance
with and without the optimization.

Additionally, the similarity of manual and synthetic configurations is computed with the
Jaccard index to show how different or how similar the experts and the Configuration-
Engine configure the AMiner and how similar the generated configurations are across
different datasets.

With the results presented in this chapter the research question and the associated
sub-questions from Section 1.2 can be answered satisfactorily.
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CHAPTER 6
Conclusion

This work introduces the Configuration-Engine (CE), a novel approach for the configu-
ration of anomaly detection algorithms in a semi-supervised manner. The CE analyzes
system log data under the assumption of the data being anomaly-free. The dataset is
parsed into a set of variables. The core of the CE is the classification of these vari-
ables into sets based on their character and behavior over time. The objective is the
automation of the tedious configuration process that usually requires domain expertise.
These sets of variables exhibit some measure of learnability for the associated detector.
The characteristics that define a variable set totally depend on the requirements of the
detector one wants to configure. The most important characteristics that were defined
in this work are stability, co-occurrence, character pair probability and event frequency.
Each configuration method is based on these characteristics and serves as an extension
to their associated detection algorithm to minimize the necessary input by transforming
the extracted information from the data into the input parameters of the associated
detectors.

The approach is demonstrated and evaluated on the AMiner and its detectors, yet the
general approach of defining a configuration method for a detector is applicable to any
kind of anomaly detection algorithm. On the other hand, the defined configuration
methods are more tailored to the specific detectors of the AMiner or to those utilizing
similar detection techniques. Encouragingly, the evaluated configuration methods achieve
satisfactory results with which we can answer the research question:

To what extent can automated configuration methods improve the effectiveness of anomaly
detection tools in identifying intrusions compared to manually created configurations,
with respect to detection metrics such as precision and recall in audit and Apache log
data?

With the CE the detectors of the AMiner are able to detect collective anomalies with
an average precision of over 0.95 for the Apache datasets and over 0.9 for the audit
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datasets for all detectors excluding the EFD. In fact, almost all of the collective and
point anomalies were discovered in each dataset with and without the optimization
approach. Nevertheless, the aggregated performance of the detectors for audit datasets
was mediocre while 2 of the 3 experts’ configurations performed very well with precision
and recall being mostly 1.0. Encouragingly, the optimization was able to effectively
improve the overall precision of almost all configurations by a significant amount (while
mostly maintaining a high recall), by pruning the FP sources that were often introduced
by the EFD.

Moreover, it is shown that the experts’ configurations are considerably dissimilar to
the artificial configurations of the CE. At the same time, the CE’s configurations are
surprisingly similar to each other across different datasets, indicating the possibility of
effective portability of configurations across different datasets, especially for Apache data.

Future Work
The CE and its underlying methods provide a solid basis for future research with numerous
possibilities for improvements and extensions that were not covered due to the limited
scope of this work.

Thereby, one area of interest is the expansion of the range of configuration methods for
detectors. The existing framework is robust, yet only a decent selection of configuration
methods is defined which have potential for refinement, especially the method for the EFD.
Furthermore, testing the methods of the CE with more diverse datasets and incorporating
additional parsers or even a parser generator would increase its universal applicability.

Also, it would be beneficial to improve the efficiency of the configuration methods or
even the whole process itself. In terms of the implementation, especially streaming in the
data in a line-by-line or batch-wise manner, maybe coupled with parallelization, could
improve the CE’s efficiency and lower the computational limitation for the amount of
input data. In the same context, it might be useful to extract and condense the data of
datasets with low information density beforehand to reduce the computational effort for
the CE.
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