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Kurzfassung

Automatisierte Tests, welche in einer Continuous Integration (CI) Umgebung ausgeführt
werden, sind ein fester Bestandteil moderner Softwareentwicklung. Sie werden sowohl von
Open-Source-Projekten als auch von Branchenriesen wie Google, Amazon und Facebook
genutzt, um Fehler frühzeitig zu erkennen. Die Herausforderung besteht darin, dass mit
zunehmender Größe eines Projekts und mit mehr geschriebenem Code die Laufzeit jeder
einzelnen Pipeline steigt. Zentral ist die Frage, wie kann das Problem langer Pipelines
gelöst werden? Die wohl einfachste Möglichkeit besteht darin, Ressourcen in horizontale
und vertikale Skalierung zu investieren. Doch welche Alternativen gibt es?

Forschung, die sich mit diesem Thema befasst, konzentriert sich hauptsächlich auf die
Auswahl von Testfällen und die Minimierung von Testsuiten. Eine Frage, die jedoch
nur selten Beachtung findet: Kann die Testausführung auf ein bestimmtes Zeitbudget
reduziert werden? Wie würde ein solcher zeitlich begrenzter Ansatz für Softwaretests
aussehen? Welche Informationen müssen genutzt und welche Metriken optimiert werden?
Wie effizient ist ein solcher Ansatz im Vergleich zur Durchführung aller Tests? Wie groß
muss ein solches Zeitbudget mindestens sein?

Diese Arbeit soll diese Fragen beantworten. Einleitend wird ein Überblick über die
Forschung zu diesem Thema gegeben. Anschließend wird eine Methode für einen solchen
zeitlich begrenzten Softwaretestansatz unter Verwendung der Design Cycle Methode
entwickelt. Ein Fallstudienprojekt aus der Industrie wird verwendet, um die Effizienz des
Ansatzes zu evaluieren.

In über 40.000 Minuten Testzeit übertraf die entwickelte Methode die Ergebnisse des
Kontrollansatzes und zeigte Ergebnisse, die mit denen einer vollständigen Pipeline
vergleichbar waren.

Keywords: Test Auswahl, Continous Integration, Automatisiertes Testing
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Abstract

Automated tests executed within a Continuous Integration (CI) environment are a staple
of state-of-the-art software engineering. They are utilized by everyone from open-source
projects to industry giants like Google, Amazon, and Facebook. However, one major
challenge remains: the bigger a project’s scope gets, the more code is written, and the
more tests accumulate, the higher the overall execution time. The issue of execution time
can be addressed in numerous ways. An easy one is to allocate ever-increasing resources
by scaling horizontally and vertically. What are the alternatives?

The research addressing this challenge centers primarily on test case selection and test
suite minimization. One idea is rarely covered: Can a test suite be reduced to a strict
time budget? What would such a time-constraint approach to software testing look like?
What information needs to be utilized? How does such an approach compare to executing
all tests? What time budget is sufficient?

This thesis aims to address these questions. It will start with an overview of the limited
research on the topic. Afterwards, a method for such a time-constraint software testing
approach will be developed using the design cycle method. An industry case study project
will be utilized to evaluate the approach.

In over 40.000 minutes of testing, the developed method outperformed random testing
and repeatedly showed results comparable to running a full test pipeline.

Keywords: Test Case Selection, Continuous Integration, Test Execution
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CHAPTER 1
Introduction

Software Engineering is a field where issues are unavoidable. The longer a project
prolongs, eventually, some will appear, and no matter the best intention of teams to keep
problems under control, they can still be overwhelmed by them [23]. This is also true for
bugs introduced during the development process. It is essential to spot them before they
are deployed, as they can cause issues for users. A way to ensure quality and adherence
to specifications is to employ Continuous Integration (CI). By maintaining a high test
coverage and quality of tests, bugs that affect functionality due to side effects can be
caught. If tests are executed within a CI environment, which triggers a pipeline that
runs tests after every commit, then errors should be caught right after the commit.

This testing and the need for swift feedback comes at a high computational cost. Com-
putational costs increase the bigger a project gets, as more functionality needs testing.

1.1 Problem Statement
Rogers [69] writes in his article on Extreme Programming, of which CI is part of the
method set, that adding new features, as well as a growing code base, leads to increased
build time and an increase of time required for the testing stage. This is caused by the
growth in the number of tests. Rogers claims that runs of 30 minutes are not unusual
and that the resulting wait time decreases productivity. This can result in fewer commits,
which can cause more conflicts.

The increase in per pipeline runtime leads to three problems:

• Longer Time to Feedback: The wait time for developers until their pipeline is
completed increases. The most significant problem is that this increase can be
longer than the per pipeline increase if other pipelines are prior in the queue. This
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1. Introduction

issue can be mitigated by adding more runners and increasing parallelization, but
at the cost of buying and powering more runners.

• Higher Computational Demands: As each pipeline lasts longer, it issues more
instructions to the CPU, leading to increased computational needs.

• Higher Power Consumption: If no other changes are made, an increase in computa-
tion leads to an increase in power consumption.

To address these issues, this thesis has the goal of developing a method to reduce a
test suite to a specific time budget. This method utilizes the information from the
Source Code Management (SCM) to determine which tests relate to code changes. The
assumption is made that the test suite ran successfully with the last commit. Therefore if
there are new errors, they have to be covered by the tests related to changed code areas
or the new tests introduced in the commit. If this is not the case, then the assumption is
that they are not covered at all.

This work addresses multiple questions to fit these tests into a time budget: Which tests
are associated with changes introduced in the new set of commits? What tests must be
selected to get the highest probability of finding introduced bugs? How can this set of
test cases be selected? What metrics can be used to select these tests?

The questions presented are closely linked to the fields of test case selection, prioritization,
and test suite minimization. Ideas used in these areas are suspected to provide starting
points for this work. Therefore, literature research into these areas is conducted.

1.2 Motivation
The main motivation for this work is to address the three problems mentioned. Addressing
these problems could lead to the following benefits:

• Faster Time to Feedback: The goal is that a shorter response allows developers to
find bugs in their implementation faster and increase their efficiency. The goal is
that this quicker feedback can be used in two ways: The short run can be used to do
a prerun, which ensures that the code has a high likelihood of being bug-free. For
this scenario, the full pipeline runs if the prerun with the time constraint approach
is successful.

• Reduce Computational Demands: The second way that the approach can be utilized
is to employ time-budgeted runs during the day and schedule full pipeline during
the night or when the demand for the CI system is low. The goal is to save
computational resources.

• A Step Towards Green IT: The reduction of computation may lead to a reduced
need for runners and less utilization of the runners installed. The consequence:
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1.3. Expected Results and Research Questions

fewer must be bought, and the installed runners require less power to execute
computation. This leads to fewer resources needed to produce runners and a
lower demand for power, which, if not produced with sustainable energy, reduces
greenhouse gas emissions.

1.3 Expected Results and Research Questions
It is expected that the method will be able to reduce the time as the research that aimed
to achieve something similar did succeed. However, the few papers published on this
topic often come with limitations, like only applying to regression test [67] or not to new
features [26].

This work will utilize three different methods where the goal is to figure out different
insights into the research area:

1. Literature Research: To find possible implementation approaches, it is required to
investigate approaches to reduce test suites already published. The main focus lies
on Test Case Selection, Prioritization, and Test Suite Minimization Methods. Ideas
from those fields are used for ideas to design the time-constraint method developed
for this thesis. Relevant approaches include reducing the number of similar test
cases [64] and the utilization of search strategies [2], [3], [67]

2. Design Cycle: The design cycle method [86] is used to develop the approach in
iterations. The goal is to react to changes quickly to develop an approach that
yields results comparable to running a full test suite in a reduced time budget.

3. Case Study: To test the approach’s feasibility, a case study is conducted. An
industrial project was selected because of the size of the codebase and the offer by
the company to provide access to their CI resources. This is the reason the approach
has not been tested with an open-source project. Although the project’s codebase
is used in the implementation phase to test the approach, the developed method is
not project specific and should apply to any other codebase. (Even though this
cannot be tested due to resource constriants.) Furthermore, it is expected that the
large codebase, as well as the provided infrastructure, provide the opportunity to
conduct a thorough investigation of the method’s feasibility.

From a scientific perspective, the following research questions are addressed:

1. What characteristics and criteria should be considered in developing a test case
selection algorithm that effectively determines the tests within a suite that are
susceptible to the impact of pushed commit(s)?

2. Which of the determined tests are feasible and essential to execute within a given
time constraint in order to maximize bug detection?

3



1. Introduction

3. How many bugs in the code does such an approach find compared to running the
whole test suite?

4. What is the relationship between the duration of the time budget and the effective-
ness of a selected test set, and how can the optimal time budget be determined for
achieving the best results?

It is expected that the following results will be achieved corresponding to the research
questions:

1. To find a suitable approach, it is expected that literature research will present
different approaches that rely on different metrics. It is suspected that some
experimentation is required to satisfy the requirements.

2. To have the data at hand when deciding on which tests to fit into the time budget,
it is suspected that the metrics need to be collected in a nightly pipeline to have
them available at all times without computation effort.

3. To evaluate the effectiveness, the developed method will have to be executed with
different commit sizes and multiple changes. The effectiveness is suspected to
depend on the number of changes made during the commit. For this analysis,
Random Testing (RT) will be utilized.

4. A universal recommendation for a time budget will most likely be impossible because
every project is different. However, it could be that the 80/20 rule [61], also called
the Pareto principle [80]. Other options are for the effectiveness to reach a plateau,
decline after a fixed peak, or have no discernable correlation.

1.4 Structure
The complete structure of this thesis can be seen in the table of contents. The thesis
started with the introduction (chapter 1). The introduction starts with the problem
statement, presenting problems caused by long Continuous Integration pipelines. These
issues serve as the foundation for the motivation part of the thesis. The third subsection
explains what this thesis hopes to achieve. The current section provides an overview of
the thesis’s structure.

Chapter 2 supplies an overview of the fundamental building blocks required as the base
for this work. It starts with the basics of testing. The first section is on the goals and
economics of testing and how code coverage can be utilized. This is followed by an
introduction to black-box and white-box testing, explaining the differences between these
test types. A section about optimization problems follows, where the knapsack problem
is introduced due to its importance for this work. The fundamentals chapter finishes
with evolutionary algorithms and their core principles.

4



1.4. Structure

Related work (chapter 3) is focused on current research in the areas of test case selection
and prioritization, as well as associating subjects. The chapter starts with information on
coverage and which goals should be set when utilizing the metric. Then, current research
on test case selection and test case prioritization is presented, followed by an overview of
work that implements a time budget, as it is done with this work.

This is followed by the chapter discussing the methodology (chapter 4) where the scientific
approach of this work is discussed.

This work’s main focus is explained in the method design (chapter 5), which follows the
design cycle methodology [86] and consists of 9 iterations plus an iteration 0 where the
requirements are defined which specify the scope of the work. Each iteration consists of
four different stages, though sometimes stages are combined if the description for a stage
is short due to reduced complexity.

The implementation is followed by a chapter called evaluation (chapter 6), where the
developed method is tested and evaluated. Afterward, the results are discussed (chapter
7) before this thesis concludes (chapter 8) and suggests possible shortcomings and ways
to improve the approach.

5





CHAPTER 2
Fundamentals

This chapter explains the fundamental terms and techniques essential for the “related
work”, “requirement analysis”, “method design”, and “evaluation” chapter. The first
section is focused on the different kinds of software testing. The second section gives an
overview of Continuous Integration/Continuous Delivery, then optimization problems
and evolutionary algorithms are explained.

2.1 Testing
Software testing is crucial to software engineering and the broader software development
landscape. According to G. O’Regan [63], software testing plays an integral part in
demonstrating that a piece of code is working for the task it was designed to fulfill.
Furthermore it shows that the functionality of the product under development is as
desired. In the third edition of one of the classical books in this field, “The Art of
Software Testing” [56], first published in 1979, stated that in 1979, software engineers
knew the importance of software testing. According to the book, the rule of thumb was
that about 50 percent or more of the total development cost was invested in testing.
Singh [77] goes even further. He states that testing failures could threaten our civilization,
which is highly dependent on the automated processes that software enables.

Therefore it can be argued that software testing is one of the most integral parts of the
software engineering domain. This section recaps the fundamentals of this topic and
serves as the foundation of this work. It starts with the goals and economics of testing.
Then, it explains the difference between white-box and black-box-testing.

2.1.1 The Goals and Economics of Testing
The ultimate goal of software testing is: to find bugs in a software project and fix them
[56]. Ultimately, however, it is impossible to find all bugs in software through testing.
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2. Fundamentals

Not even trivial ones and especially not big software projects. They are never entirely
bug-free [56].

With this in mind, the questions of how much to test and when to stop carry a lot of
importance. These can either be approached from an economical viewpoint [81] or from a
software engineering one. The question of where to set the goal is none that can be easily
answered [54]. One metric often used, that is important for this thesis, is code coverage.

Code Coverage

Code coverage is an instrument, a metric, that software engineers employ to find untested
code sections. It can be used automatically and is utilized by big companies like Google
[38]. Meyers [56] distinguishes between five different kinds of coverage:

1. Statement Coverage: As a general rule, a statement is one instruction that a
program instructs a machine to execute [92] This type of coverage is met when each
statement of a program is executed exactly once. What is important to consider
here is that the likelihood of triggering an error with this type of coverage is rather
low [47].

2. Decision Coverage: A stronger criterion than statement coverage. Each decision
must be evaluated as true or false at least once. Furthermore, this ensures that if
there is an if-else in a program, the if and the else branches have to be executed at
least once [56].

3. Condition Coverage: Condition Coverage is similar to Decision Coverage but
different in that each condition part of a decision is met at least once [56]. Or with
an example “IF A OR B”, A and B should evaluate to true and false once [47]

4. Decision/Condition Coverage: Requires the combination of Decision and Condition
coverage [56].

5. Multiple-condition Coverage: This type of coverage is defined as follows: “This
criterion requires that you write sufficient test cases such that all possible combina-
tions of condition outcomes in each decision, and all points of entry, are invoked at
least once [56].”

2.1.2 Black-box vs White-box Testing
While rarely the term gray-box testing [20] is used in the context of software testing,
usually literature [56], [63], [84] separates software testing into two sections: black and
white-box testing.

Black-box testing, data-driven testing, and sometimes input/output-driven testing all
regard the same thing. The idea is that the tester or test program has either no knowledge
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2.1. Testing

or completely disregards his knowledge of the inner workings of the System Under Test
(SUT) [56]. Moreover, as the name suggests, these tests are purely input and output-
driven, meaning that some input is fed into the program, and the test verifies that the
program gives some output. Therefore, the input for this testing is derived from the
software specification [56]. The goal of black-box testing is to show that the function-
ality of the SUT, which could be a module, a feature, or a whole system, is as intended [63].

As the name suggests, white-box testing, sometimes also called logic-driven, follows
the opposite idea to black-box testing. Where with black-box testing, there is no consid-
eration of the internal structure of a program when writing a test, with white-box testing,
the internal logic of the program is known, and tests are written with the program control
flow in mind [63]. The goal is often to do so-called “exhaustive path testing”; this is
where each path/branch of the program is executed. This should lead to full coverage
of the program. Realistically, this can rarely be done since the number of paths in a
program does increase exponentially the bigger the program becomes [56].

Kinds of Tests

After distinguishing between black-box and white-box tests, what is the methodology of
testing? Which kinds of tests are there? Generally, tests are split into different categories,
which include, but are not limited to:

1. Unit Tests: Unit or module tests focus on a small part of code. Larger programs
require a more sophisticated testing strategy because they are too big to be tested
as a single unit. Therefore, testing is split to ensure that a big program’s smaller
building blocks are tested thoroughly. These smaller blocks can be sub-programs,
classes, (sub)procedures, or subroutines. This approach brings multiple benefits. It
allows better focus, easier debugging, and parallelized testing when splitting the
tests into modules [56].

2. Integration Test: This kind of test aims to verify that all modules with their
corresponding interfaces work in tandem and aims to find problems in comparability.
This is done after it is verified that each component works individually [63].

3. System Tests: As the name suggests, system tests test the system, specifically
regarding the defined requirements. As this implies, however, this can mean a wide
range of different specifications. A separate group typically does these tests and
can, apart from the typical functional constraints, include various aspects such as
security, software performance, and usability constraints [63].

4. UI Tests: Graphical User Interface tests test the Graphical User Interface (GUI)
of a program. While these can be automated, in practice, they often are not, or
not fully as there are still challenges with fully automating them, like identifying
elements of the GUI and synchronization [59]. Regardless, there are techniques
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2. Fundamentals

to automate this kind of test like capture and replay [1], different model-based
techniques [45], or artificial intelligence-based [44] ones.

2.2 Continuous Integration/ Continuous Delivery
Continuous Integration/Continuous Delivery (CI/CD) combined with a Source Code
Management (SCM) system is fundamental to deploying the approach developed for this
work. The SCM is needed to keep track of changes; therefore, it is the key to finding tests
linked to changes. Moreover, CI/CD is mandatory to automatically execute shortened
runs and especially to keep the database used to store coverage information on tests up
to date.

How important the concepts of CI/CD are in software engineering cannot be overstated.
For example, Shahin, Ali Babar, and Zhu [75] open their article on the topic with the
following statement:

Continuous practices, i.e., continuous integration, delivery, and deployment,
are the software development industry practices that enable organizations to
frequently and reliably release new features and products [75].

The topic of CI/CD is a highly researched area. Therefore, this section on the topic starts
with a definition of the terms before introducing a general overview of how a pipeline
can be used, and the implementation of the concepts will be described [75].

2.2.1 Definition
Generally, the term Continuous Integration/Continuous Delivery (CI/CD) can be split
into the sub-parts of Continuous Integration as well as Continuous Delivery; however,
according to Fitzgerald and Stol [29], there are other topics associated. This work will
define CI/CD and associated topics like it is done by the two authors[29]:

• Continuous Integration: This aims to install an automated process within a project
that repeats tasks such as compiling source code, verifying code quality, and
adherence to standards. Of particular importance is the regularity with which these
tasks are scheduled. Furthermore, a failure of the automated process should allow
problems to be caught and resolved quickly [29], [46], [69], [74], [79].

• Continuous Delivery: As the name suggests, the counterpart to Continuous Inte-
gration with the goal to put the build software onto an environment. This can be
already accessible by the end-user but is not mandatory [29], [60].

• Continuous Testing: Automated testing of software and its components. The goal
is to detect errors introduced by a code change to fix them [8], [29].

10



2.3. Optimization Problems

• Continuous Deployment: This means deploying software changes directly to cus-
tomers automatically [19], [29], [66].

2.2.2 General Pipeline Overview
The overview of a pipeline used for Continuous Integration/Continuous Delivery varies
depending on the concrete implementation and the steps. However, a generalized overview
can be seen in Figure 2.1. This image was taken from Fitzgerald and Stol [29] (they
quote two websites for the graph 1,2)

Figure 2.1: Overview of CI/CD pipeline taken from [29]

As presented in the image [29], the CI/CD pipeline is triggered through the developers
by pushing a commit onto the Source Code Management (SCM) system. This starts
the Continuous Integration section, illustrated in the image by first the build, where
the software is compiled. The build code is then utilized to run tests automatically. As
discussed in the testing sections, these can be of different types. Continuous Delivery and
possibly Continuous Deployment will run Acceptance Tests before it can either manually
or automatically be deployed to production.

2.3 Optimization Problems
Karsten Weicker [85] states in his book that optimization problems are unavoidable
in almost all areas of society. They are present in various circumstances ranging from
industrial applications to economic endeavors to scientific research questions. Examples
of optimization problems include the question of “How can resources be utilized most
effectively?” or one of the most famous being the traveling salesman problem. The
traveling salesman problem represents cities and roads and the question in which order
the salesman should visit each city so that the time he or she spends on the road is
minimized.

1http://blog. crisp.se/2013/02/05/yassalsundman/continuous-delivery-vs-continuousdeployment, ac-
cessed on: 17.07.2024

2http://www. mindtheproduct.com/2016/02/what-the-hell-are-ci-cd-and-devops-acheatsheet-for-the-
rest-of-us/, accessed on: 17.07.2024
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2. Fundamentals

Generally Weicker [85] defines optimization problems as the search for a global optimum,
which is described as follows:

X = x ∈ Ω|x′ ∈ Ω : f(x) ≥ f(x′)

Where Ω is the search space, X is the global optimum part of Ω, and f is a Mapping from
Omega to R.
An optimization problem is generally a question where a solution with the biggest gain is
searched. One important problem in this class is the knapsack problem.

2.3.1 Knapsack Problem
The knapsack problem is defined as follows [50]: Suppose there is a knapsack; this
knapsack has a capacity, denoted with M. Furthermore, there is a range of objects. Each
of these objects has a weight and a value. In total, there are n objects to choose from.
The goal is to determine which objects shall be selected so that the value of the selected
objects is maximized and the combined weight of the selected objects does not exceed
the capacity M of the knapsack.
Generally, the knapsack problem is an NP-complete problem [42]. This indicates the
difficulty in solving this problem for big instances.

2.4 Evolutionary Algorithms
Optimization problems can become quite hard in terms of complexity. Good examples of
this kind of hard issue are different NP-complete problems, like the already mentioned
knapsack problem. Generally, scientists/software engineers aim to find creative ways to
deal with such problems if confronted. As stated by Weicker [85] one idea is to utilize
the phenomenon of natural evolution. Natural evolution results from different factors
like natural selection, mutation of genes, and recombination of genomes.
Generally, when solving an optimization problem, the ultimate goal is to reach the global
optimum. The aim is to accomplish this faster than by comparing every permutation.
Still, due to time constraints, finding the global optimum is often not feasible; here,
evolutionary algorithms come in handy since their goal is usually to find a good solution
in a fraction of the time needed to find the optimal solution.
There are a variety of different models that utilize the idea of evolution and are combined in
the term evolutionary algorithms [78]. How an evolutionary algorithm can be implemented
is shown in Figure 2.1.

2.4.1 Variation vs Selection vs Recombination
Generally, it can be said that two factors are influencing each other to achieve a successful
implementation of an evolutionary algorithm. This is the interplay between variation,
also known as mutation, and selection, which represents the idea of natural selection [85].
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Figure 2.2: General outline of evolutionary algorithm by Spears [78]

In Weickers book [85], variation is also called mutation. As the name suggests, this
concept is derived from mutation genes. Here, the goal is to change small bits of the
proposed solution to achieve a better result. In evolutionary algorithms, one usually
talks about different generations where mutation is used from one generation to the
next. In contrast to this stands selection. Selection is used to exclude results or different
directions in mutation.

Compared to selection and variation, there is also recombination [78]. This is similar to
mutation in that it is used in the “evolutionary” step, or more precisely, in the candidate
creation process from one generation to the next. For example, if there is an encoding
AABB with high fitness, the goal is to preserve the encoding part that yields the high
fitness value and only mutate the rest. One strategy would be to split the part in the
middle and then keep the part AA to create the next generation and only mutate the BB
part. However, compared to mutation, where each part of the encoding/genome might
be changed when recombining, keeping parts to preserve and increase fitness is desired.

2.4.2 No Free Lunch Theorem
The no-free lunch theorem describes the differences and improvements between general-
purpose evolutionary algorithms and more optimized ones. Investigations into this field
date some years back. For example, one framework for comparing such algorithms goes
back to an article from Wolpert and Macready [88] published in 1997. In their article
[88], they concluded with an important remark: “Roughly speaking, we show that for
both static and time-dependent optimization problems, the average performance of any
pair of algorithms across all possible problems is identical [88].”

This means that there is no evolutionary algorithm that should perform better in every
problem instance. If an evolutionary algorithm is better optimized for one problem
group, it will perform worse on another [78]. Furthermore, this implies that elements
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like recombination can perform better in some situations, for example, if the number of
sub-populations has a huge impact on the algorithm’s performance but can, in others,
hurt performance.

2.4.3 Genetic Algorithms
A genetic algorithm is a technique that can be applied to search and optimization
problems. Like a normal evolutionary algorithm, the main goal is maximizing fitness,
which correlates with minimizing loss [34]. Its main characteristic is its selection of
parents for the next generation, which is based on probabilistic factors. Another common
technique is recombination. With these two aspects, the role of mutation is often lower
compared to classical evolutionary algorithms [85].

Generally, to implement a genetic algorithm, the simplest method is to encode the
population which is the search space of possible solutions as a binary string [85]. If we
go back to the knapsack problem discussed with the basics of optimization problems, it
would be possible to encode selected objects as a 1 and objects that shall be left out of
the final solution by 0. As Weicker [85] states, binary encoding is rarely sophisticated
enough to encode problems since most instances do not come down to a simple yes or no
question. For this work, however, this encoding is sufficient due to the properties of the
knapsack problem and that said encoding can be translated to a knapsack instance.

Two different fundamental techniques function as a starting point for genetic algorithms.
These are:

1. Standard Genetic Algorithm: A standard genetic algorithm is classified by one
main attribute: the complete regeneration of the population after each generation.
This means that after each generation, the parents are not used anymore, and the
complete generation is new [85].

2. Steady-State Genetic Algorithm: Compared to a standard algorithm, the steady-
state algorithm’s implementation does not throw the whole population away after
each iteration, but the generations’ populations overlap. After each generation,
only one new element is added to the population, and only its parent gets replaced
[85].

Figure 2.2 was taken from Weicker’s book [85] and illustrated the different schemes of
both approaches. Figures 2.3 and 2.4 show concrete implementations of a genetic and a
steady-state genetic algorithm.
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Figure 2.3: GA vs steady state GA [85]

Figure 2.4: Genetic algorithm pseudo-code [85]
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Figure 2.5: Steady state genetic algorithm pseudo-code [85]
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CHAPTER 3
Related Work

After the fundamentals, which are the essential building blocks of this work, this chapter
will focus on current research in test case selection and prioritization as well as areas
that influence that field or are of interest to this work.

3.1 Coverage Goals
As this work is about determining which test cases are important for the changed code
and finding good coverage for the rest of the code base, an important question is: Which
coverage goals should be aimed for? Another question is closely linked: Which coverage
data should be used to maximize efficiency and reach the objective?

As described in chapter 2, there are different kinds of code coverage. This raises the
question of which type of coverage will produce a satisfactory indication of effectiveness
for testing. Some insights into this issue was presented by Wei, Meyer, and Oriol in
their paper from 2012 [54]. They asked, “Is Branch Coverage a Good Measure of Testing
Effectiveness?” To answer this question, they researched how branch coverage evolves
when employing random testing to 14 classes for 2520 hours while tracking how branch
coverage changed and which faults were not found.
According to the paper, the results showed that, at first, there was a strong correlation
between the branch coverage and the number of faults found. However, this was only
within the first 10 minutes of testing, which is a small portion of the time compared to
the amount they spent on randomized testing. Furthermore, about 50 percent of the
failures were uncovered at a point where branch coverage barely changed. As the authors
concluded, this implies no strong correlation between branch coverage and the failure
detection rate. This demonstrates that branch coverage is not the most effective measure
for coverage.
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Figure 3.1: Summary of the coverage criteria effectiveness in five subjects of study from
[43]

This raises the question of what an effective coverage metric is. One paper from 2018 [43]
evaluated five different coverage metrics and investigated their ability to help the authors
identify faults in open-source projects. The authors compared a mixture of control flow
and data flow coverage. Control flow coverage allows the identification of uncovered parts
in the execution flow of a program, while data flow coverage allows the examination of
which values are assigned to variables and how they affect the program. More precisely,
they investigated the effectiveness of Statement Coverage, Branch Coverage, Modified
Condition-Decision Coverage (MC/DC), Loop coverage, and def-use pair coverage.
They observed that no single metric could identify 100 percent of all faults. Generally,
the control flow coverage performed worse than the data flow coverage. No single metric
performed best on its own; however, the best performance resulted from combining
these different metrics. Then, on average, 85 percent of faults were found. To find the
remaining 15 percent of faults, the authors suggest that specification-based testing could
help increase that number. Figure 3.1 was taken from the article [43] and shows the
results the authors found. The two plots were generated to illustrate the averages of the
different methods and the individual results on the different projects.
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Figure 3.2: Percent of errors found per project [43]

3.2 Test Case Selection and Prioritization
Two research areas that overlap with this work are test case selection and test case
prioritization. Therefore, the research shown in this section concentrates on selecting
test cases as well as test case prioritization techniques. Test case prioritization aims to
get test suites to fail fast or, phrased differently, get tests to fail early. Regardless of
the technique employed, at least one criterion is used to order the test cases. However,
different metrics can be used, like coverage, the history of the code base, or requirements
[89].

In comparison to test case prioritization, in test case selection, a new system version is
compared to an older version. The goal is to select the tests related to the new version
or ones that might be impacted by the changes [70]. Test case selection techniques can
be one of two things: safe or unsafe. Safe test case selection techniques select everything
that has the potential to reveal at least one fault. Unsafe techniques, however, do not
guarantee this. They select all test cases that are modification-traversing. This can lead
to similar fault detection rates but usually at a lower cost [32]. As mentioned by Di
Nardo, Alshahwan, Briand, and Labiche [58], generally, with test case selection huge
gains in time can be made, some papers show a reduction up to 98 percent [30], [33], [71],
[73]. However, the gains can be as low as zero percent [33].

The general goal of these areas is to reduce the time needed to execute the test suite.
Usually, there is no time box, which is the main distinction between their approach and
this work.
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Figure 3.3: Average percent of errors found per metric [43]

Different techniques can be utilized to implement test case selection and prioritization. A
wide number of articles focus on this topic, of which some compare different techniques
like Engstrom, Runeson, and Skoglund [24], as well as Yoo and Harmon [89] did for
regression-testing, or test suite selection [25]. Henard et al. [37] compare test case
prioritization techniques, splitting the techniques into two groups: white-box and black-
box prioritization. To provide a better overview, this work will also explain some
techniques that can be utilized.

3.2.1 Coverage-based Techniques

For white-box prioritization techniques, the first and according to Hennard et al. [37], the
most common set of techniques are the ones that employ dynamic coverage information.
So, this part inspects different approaches where coverage information is the main metric
used for selection or prioritization.

The first article found when conducting literature research for this work was from Sinaga
[76], where he focuses on comparing four different test case prioritization techniques,
which he compares against random testing. Firstly, Random Testing (RT), then ART
(Adaptive Random Testing) utilizing the Manhattan distance, then addition plus ART
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and ART plus additional. The author [76] describes the methods as followed:

• Random Testing (RT): Used as a benchmark, the test cases to be executed are
randomly selected.

• Additional: This technique, as suggested by Rothermel et al. [72], selects test cases
according to which test cases add the most additional branch coverage.

• Adaptive Random Testing (ART): The ART test case prioritization technique
Sinaga [76] investigated as it was proposed by Zhou [91]. It improves upon Random
Testing by adding fault detection, which utilizes information about the location
of test cases already executed. In the paper by Zhou [91] it is mentioned that
ART had quite a large number of publications look into the method [12], [13], [14],
[15], [16], [18] with one even calling it “one of the most effective approaches in
the automatic test generation area” [40]. The specific implementation used [76]
adapts a Fixed-Size Candidate Set (FSCS), which consists of ten candidates. The
difference between the candidates is calculated with the Manhattan distance of the
different test cases’ branch coverage.

• Additional with ART: As the name implies, this method combines Additional with
ART. This is done by utilizing additional until the test set covers all branches, and
then ART takes over to order the remaining test cases.

• ART with Additional: Just like the previous method, this one also combines
Additional with ART, but the difference here is ART is employed in every step of
the selection process; however, the Manhattan distance is not used; instead, the
distance is calculated using calculations employed in the additional method.

According to the results of Sinaga [76], combining Additional and ART yields better
results than Random Testing or both methods separately.

The next paper that looked at coverage-based techniques was written by Di Nardo,
Alshahwan, Briand, and Labiche [58]. It was designed as a case study comparing
different test-case selection techniques. They tested four different test case prioritization
techniques, which they deployed to four different projects. The authors compared the
methods to Random Testing to get a reference. Furthermore, they investigated a test case
minimization technique and a hybrid form of test case prioritization and minimization.
The different techniques are described [58] as follows:

• Total Coverage: For this technique, the only criteria considered is how much of
the total coverage the specific test at hand makes out to be. If it is imaged as a
percentage of the total, the test with the higher percentage is selected first. If two
tests cover the same code, they will be selected randomly.
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• Additional coverage: The additional coverage is the same as was described before in
the article of Sinaga [76]. Here, the test that adds the highest coverage is selected.

• Total coverage of modified code: As the name suggests, this technique works almost
like the total coverage technique, but in comparison to just looking at all code that
changed, it only considers code that has been modified.

• Additional coverage of modified code: Just like the technique before was to total
coverage, this one is to additional code. It considers which test adds the most
coverage, but instead of considering the coverage for the whole code base, it just
considers coverage of modified code

The authors [58] found out that coverage criteria that rely on a finer granularity achieve
better results than the ones that are more coarse. This was especially true for additional
coverage, which in testing beat out total coverage on a confidence level of 95%. Further-
more, it showed that techniques based on modified code did not perform better than
their regular counterparts. For test minimization techniques, coverage techniques on
the coarser side had a better minimization potential than those relying on finer-grained
methods. The authors discovered that hybrid methods exceeded the results of traditional
approaches, particularly in reducing the test suite size. They found that the hybrid
approach did not improve results enough to justify itself.

3.2.2 Similarity-Based Techniques
Another technique, regularly used for optimizing test suites is based on similarity or
distance functions [36], [48], [62], [65]. One approach presented by o G. de Oliveira
Neto, Ahmad, Leifler, Sandahl, and Enoiu [64]. They conducted a case study where, for
two test cases, they determined the similarity between all tests, resulting in a similarity
matrix. One value on this matrix is calculated as the similarity between tests a and
b. They described the similarity value as 1 if the tests are 100 percent similar or 0
if they have nothing in common. Otherwise, it is in between. The authors [64] state
that some studies [27], [28] instead use the term distance, which is just calculated as
distance = 1 − similarity, this means that 0 means the tests have no distance and 1
means the tests are 100 percent distinct.

Generally, for similarity-based test case selection, one of the most crucial decisions when
implementing the test case selection process is which properties to compare. For this
modification-information [65] as well as information about failure history [62] and textual
steps [10], [11] can be used. It makes a difference with which function the similarity is
calculated. Different methods exist, which researchers tested in different studies [21], [35].
For their case study, the authors [64] compared three different functions for a case study
to use similarity matrices for test case selection. The three different methods were:

1. Jaccard Index: The Jaccard Index was invented by Jacob Jaccard and his work
“The Distribution of the Flora in the Alpine Zone” [39] published in 1912. Originally,
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it was described as

Number of species common to two districts
Total number of species in the two districts ∗ 100

by Jaccard [39].

2. Normalised Levenshtein: The concrete implementation of this function was not
stated in the article [64]. However, the IEEE paper “A Normalized Levenshtein
Distance Metric” [90] by Yujian and Bo from 2007 described how it functions. The
objective is to calculate the distance between two strings, X and Y. This is done
by “a simple function of their lengths (|X| and |Y|) and the Generalized Leven-
shtein Distance (GLD)” [90]. The paper describes two versions of the Normalized
Levenshtein Function. These are denoted as NED1 and NED2 and are defined as
follows:

NED1(X, Y ) = min


W (PX,Y )
L(PX,Y )



NED2(X, Y ) = min


W (PX,Y )
|X| + |Y |


X and Y are, in this case, strings over an alphabet, and the function of L(PX,Y )
was quoted by the authors [90] to be from other works [4], [5], [52], [83] and is the
“number of elementary edit operations described by PX,Y ” [90]. The generalized
Levenshtein distance is defined as follows:

GLD(X, Y ) = min{W (PX,Y )} = min{γ(TX,Y )}

With PX,Y as a path from X to Y containing the edits needed from X to Y (editing
path). The last formula defines the edit transformations weight γ of PX,Y which is
stipulated as followed:

L(PX,Y )

k=1
γ(Ti)

Furthermore, TX,Y is exactly this weight.

3. Normalized Compression Distance: This technique was taken from one paper [28]
which conducted an analysis with it on the quantification for test sets. Normal-
ized Compression Distance (NCD) uses concepts from Information Theory like
information distance, which the authors [28] calculated with the following formula:

ID(x, y) = mac{K(x|y), K(y|x)}

Here, x and y denote two strings. K(x), which can be seen in the formula, is
the Kolmogorov complexity [49]. It can be represented in bits and denotes how
long a program has to be which outputs a given input, which in the example is x.
Originally, it was proposed by Bennet et al. [7] to utilize Kolmogorov complexity
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to calculate the information distance. There are some issues with the Kolmogorov
complexity, especially because longer strings usually have a bigger information
distance than shorter ones [28]. To address this, the Normalized Information
Distance (NID) idea proposed by Li et al. [55] was used and looks as follows:

NID(x, y) = max{K(x|y), K(y|x)}
max{K(x), K(y)}

However, due to practicability reasons, two authors [17] proposed an approxima-
tion, the Normalized Compression Distance, which was also the one used in the
analysis of this method [28] and in the comparison of the three functions [64]. The
approximation [17] looks as follows:

NCD(x, y) = C(xy) = min{C(x), C(y)}
max{(C(x), C(y)}

Here, x and y are two strings, and C(x) represents the length of the compressed
version of x.

Generally, the test suite was downsized in increments of 5 percent, using different methods
and random test case selection to verify the results. The authors conducted experiments
on two different companies. For the first company, they presented the “coverage of test
requirements” as “coverage of test dependencies” and as the “time reduction”. For the
second company they showed “coverage of test steps”. The resulting graphs from the
paper can be seen in Figures 3.2 and 3.3 and were directly taken from the article [64].

As can be seen in Figure 3.2, when “coverage of test requirements (a)” and “coverage of
test dependencies (b)” are compared, Normalised Levenshtein (NL) as well as Jaccard
Index (in graphs as JI) outperform the Random Selection (RDM) and Normalized
Compression Distance (NCD). In terms of time, this factor decreases quasi linearly for
all methods. For the second company, the results were quite similar. Generally, it can be
seen that NCD performed quite poorly, in some cases worse than the random control.
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Figure 3.4: Evaluation of first company [64]
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Figure 3.5: Evaluation of second company [64]

3.2.3 Search-Based Techniques

Another set of techniques used for test case prioritization and selection are search-based
techniques. These are used by different authors for different purposes [2], [3], [67]. One
paper to present in this regard is by Arrieta, Wang, Sagardui, and Etxeberria [2] and
utilized search-based strategies for test case prioritization in the context of Cyber-Physical
Systems (CPS).

One concept is that of feature models. Feature models are tree-like structures that allow
to break down product lines and visualize similarities [6]. In Figures 3.4 and 3.5 an
example from Batory [6] illustrates how such a feature model can look. These feature
models are crucial for the work of Arrieta, Wang, Sagardui, and Etxeberria [2]. Generally,
to represent the CPS product line, a feature model and a configuration file are provided
to a requirements parser.
Then, this parser associates the input to the requirements of the product’s features to
be tested. Then, a search algorithm is utilized to prioritize tests associated with the
requirements, thus reducing the needed time scope. The search algorithm includes the
data from the parser, information from the test history, and information about user
preferences. An overview of this process can be seen in Figure 3.6, which was taken from
the article [2].

Within the search function itself, the authors [2] implemented four different search
functions and compared them against random search as a benchmark. The results were
that local search algorithms outperformed global search algorithms.
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Figure 3.6: Feature diagram notations [6]

Figure 3.7: A feature diagram and its grammar [6]

Figure 3.8: Overall overview of the proposed approach for test case prioritization. [2]
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Another approach that utilizes local search for test case prioritization was presented by Lu
et al. [51]. Like other work before it [9], they utilized so-called Ant Colony Optimization
(ACO), which is based on an Ant Colony System (ACS). The idea of an Ant Colony
System goes back to the last century when Dorigo and Gambardella [22] presented such
a system as a possible solution for the Traveling Salesman Problem. Figure 3.7, taken
from Dorigo and Gambardella [22], illustrates how they envisioned fundamentals of the
ACS algorithm. The idea is that ants are simulated to select one route if they are at an
intersection randomly. Each time they are on the way, the ant leaves pheromones behind.
Because the lower route in the figure is shorter, it will be visited more frequently and, in
the end, will have more pheromones attached.

Now that it is clear what ACS is, how does the approach by Lu et al. [51] function? The
approach presented by the authors called Coverage-Based Ant Colony System (CB-ACS)
can be seen in figure 3.9 which was taken from the article [51]. Generally, this CB-ACS
aims to maximize statement coverage. According to the authors [51] it is possible to
express this problem as an optimization problem with the following formula:

minimize
n

t=1
Φ(ti)

ti denounces the test at position I from a test suite, and Φ(ti) gives the value of the
additional coverage when the test ti is executed. First, this problem must be converted
to a graph so that an ACS algorithm can solve it. The conversion to a graph (V, E),
with V being the vertices and E the edges works as follows:

1. Each test of the test suite gets assigned to a vertex Vi. Furthermore, one vertex is
added, with no tests assigned v−1. This vertex is added as a starting point for the
ants because the first test execution usually greatly influences the overall coverage.
To avoid this and let the ants decide for themselves with which test case to start,
the virtual vertex v−1

2. There are two parts to the edge creation process. Firstly, each vertex gets connected
to v−1 with an edge ei = (v−1, vi) Secondly, the original vertices vi (each representing
a test) all get connected to each other with an unidirectional edge.

3. Each vertex then holds the coverage information for its corresponding test.

The resulting graph can be seen in Figure 3.8, which was taken from the paper [51].
The remaining part is primarily the ACS algorithm. Some more improvements, like
an Addition Coverage-Based Heuristic (ACB) and some other improvements, were also
introduced. When comparing their approach to a benchmark their results seem promising
and are out-competing with other state-of-the-art techniques, according to the authors
[51]. Also, they state that experimental real-world results seem promising.
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Figure 3.9: Example of an ant colony system for Traveling Salesman Problem [22]

Figure 3.10: Graph for Coverage-Based Ant Colony System (CB-ACS) [51]
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Figure 3.11: Overall overview of the proposed approach for test case prioritization [51]

3.3 Test Case Selection With Time Budget
Test case selection, which utilizes a time budget, is a rarely covered topic in research.
Only one article was found during research that covered this topic when researching for

30



3.4. Test Case Generation

this thesis. This could be because of the similarity to test case prioritization; however, it
is distinct. The only paper to have covered that topic is from Farzat and de O. Barros
[26] and focuses on the selection of unit tests.

The authors [26] reason to tackle this area is to reduce the time in the development
process which is required for testing since this is well known to make up to 50 percent of
the total time spent on a project [31].

They [26] implemented their approach with a heuristic and a local search approach to
run tests within a time frame. Furthermore, they conducted a case study comparing the
two approaches against random testing. For their testing, they restricted themselves to
unit tests as defined by Myers [57] to verify software very fine-grained, allowing them
to test specific program modules. This is a major distinction to this work, where this
restriction is absent.

One unit test is described [26] by the execution time it has and by its coverage related to
the program or model at hand. The authors used data from the most current version
of the software to collect data for test case selection. A traceability matrix was used
to connect features to the code. The authors [26] emphasize that this is sometimes not
sufficient, as was shown by Ferreira and Barros [82] and needs to be further annotated
manually.) The selection is then done by local search, a heuristic approach, or the
benchmark of Random Testing.

The article [26] concludes that the heuristic approach produced the best results while
providing good results given its lower computational cost.

3.4 Test Case Generation

Test Case Selection and Prioritization can be used in conjunction with Test Case Genera-
tion. Here, the techniques can be utilized to reduce the test suite of an automatically
generated test suite so that it requires less time for execution. One paper that did this in
a novel way was released in 2023 by Rajsingh, Kumar, and Srinivasan [68]. This paper of
particular interesting since it proposed a novel Elliptical Distributions-centric Emperor
Penguins Colony Algorithm (ED-EPCA) which utilizes the Fishers Yates Shuffled Shep-
herd Optimization Algorithm (FY-SSOA). The FY-SSOA is one method that can be
used for Test Case Selection.
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Figure 3.12: Overview of the approach presented by Rajsingh, Kumar, and Srinivasan
[68]

The steps in their framework are defined as follows:

1. Input Source Code: This is the source code from a concrete project which shall be
tested.

2. Test Case Generation: In this phase, a model is used to generate test cases for the
System Under Test.

3. Factors Identification: Because the fault detection rate of the generated test suite
may not be 100%, meaning it may not find all bugs present in the implementation,
the authors utilized factors for the test case selection. These factors include, among
others:

Codecoverage = linesofcodecoveredbytests

totalnumberoftestcases
∗ 10

Dataflow = testdatautilized

Totalnumberoftestcases

FaultProneness(FP ) = nc

np
x10

Where nc defines the “number of test cases that are correctly pre-dicted as faulty
modules” and np as the “total number of predicted faulty modules”[68]

4. Factors Reduction: As the name suggests here, the number of factors is reduced by
utilizing “Log Scaling-centered Generalized Discriminant Analysis” [68].

5. Fault Detection: The Fishers Yates Shuffled Shepherd Optimization Algorithm is
utilized to select test cases. The algorithm was developed to solve optimization
problems. The selection step first randomly generates an initial population called a
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community. Then, the fitness value is calculated for every member of the community.
Then, the members get shuffled according to the Fisher-Yates algorithm. Then,
the step size is calculated, and the position is updated. With this shuffling and the
fitness calculation of new populations, the selection is made. The pseudo-code for
this algorithm can be seen in Figure 3.11, which was taken from the article [68].

6. Ranking: The selected test cases are now ranked utilizing Entropy. This is defined
as follows

EP = −ΣStcs ∗ log( 1
Stcs

)

Stcs are denoted as the selected test cases.

7. Prioritization: In the last step, prioritization is done with the Elliptical Distributions-
centric Emperor Penguins Colony Algorithm

An overview of the steps of this can be seen in Figure 3.10, presented by the authors in
their paper [68].

Figure 3.13: FYSSOA pseudo-code [68]

The selection and prioritization algorithms are especially of interest to this work. The
FY-SSOA can be used with optimization problems, which could also be used for this
work as the problem can be translated to a knapsack instance.
The presented algorithm usually works very well when compared to alternatives. Ac-
cording to the authors, it produces a higher fitness with the same number of iterations
[68].
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CHAPTER 4
Methodology

This thesis aims to design a method for time-constraint software testing and evaluate
it with a case study. This framework shall allow the selection of test cases of a test
suite by inspecting changes pushed to a Source Code Management system. Furthermore,
only test cases likely to be affected by changes shall be selected. This means that if a
code change affects a test case it shall become a possible candidate for execution. The
main differentiation from existing test case prioritization, selection, and minimization
techniques is that they shall allow the execution of a suite only if it fits within a provided
time budget.

4.1 Research
The design method chapter starts with research, which is required to receive initial
ideas on how such a time-constraint software testing method might be constructed.
The main focus is literature research into the areas of test case prioritization, selection,
and minimization. The goal for this part is to answer the following research question:
What characteristics and criteria should be considered in developing a test case selection
algorithm that effectively determines the tests within a suite that are susceptible to the
impact of pushed commit(s)?

The Qualitative Content Analysis by Mayring [53] is used for this. In his book, Mayring
describes various tasks of a qualitative analysis. Relevant are especially the following:

1. Building of Hypotheses and Creation of Theories

2. Classification

3. Checking of Theories and Hypotheses
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4. Methodology

4.2 Implementation
After researching the state-of-the-art and defining the requirements, the next step is
implementing the method. This section aims to answer the following research question:
“Which of the determined tests is feasible and essential to execute within a given time
constraint to maximize bug detection?”

The design cycle method [86] will be the method of choice. The design and engineering
cycle is a process that allows it to work iteratively. The approach defined by Wieringa
can be seen in Figure 4.1, taken by the book [86]. Developing this approach is based on
prototyping, which is described as a constructive and qualitative method by Wilde and
Hess [87].

Figure 4.1: Design cycle (Wieringa) [86]

The design cycle [86] consists of the following steps:

1. Problem investigation: As seen in the circle, this phase is about determining what
needs improvement and why.

2. Treatment design: In this phase, the focus is on creating at least one design to
treat the problem.

3. Treatment validation: This step is used to check whether or not the design treats
the problem.

4. Treatment implementation: The design gets implemented to respond to the problem
and treat it with the design.

5. Implementation evaluation: At the end/beginning of the circle, the success of the
treatment is evaluated, which in turn can trigger a new iteration.
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4.3. Case Study and Analysis

4.3 Case Study and Analysis
The method developed in the implementation section shall then be implemented in a
company as a case study to see if the approach is feasible. Two research questions shall
be answered in this part:

1. How many bugs in the code does such an approach find compared to running the
whole test suite?

2. What is the relationship between the duration of the time budget and the effective-
ness of a selected test set, and how can the optimal time budget be determined for
achieving the best results?

Different iterations will be needed to deploy and fit the method onto a project. Johansson
[41] describes a case study as follows:

A case study is expected to capture the complexity of a single case, which
should be a functioning unit, be investigated in its natural context with a
multitude of methods, and be contemporary. A case study and, normally,
history focus on one case, but simultaneously take account of the context,
and so encompass many variables and qualities [41].

Wilde and Hess see the case study as a behaviouristic and qualitative method [87].

4.4 Research Questions
To recap all the research questions from chapter 1.3:

1. RQ1: What characteristics and criteria should be considered in developing a test
case selection algorithm that effectively determines the tests within a suite that are
susceptible to the impact of pushed commit(s)?

2. RQ2: Which of the determined tests are feasible and essential to execute within a
given time constraint in order to maximize bug detection?

3. RQ3: How many bugs in the code does such an approach find compared to running
the whole test suite?

4. RQ4: What is the relationship between the duration of the time budget and
the effectiveness of a selected test set, and how can the optimal time budget be
determined for achieving the best results?
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CHAPTER 5
Method Design

This chapter focuses on developing a prototype for a time-constraint testing approach
so that the feasibility can be tested. As the evaluation will be done with a case study
project, the goal during development is to work in an iterative fashion and test with the
case study project as early as possible. The reason for doing this is to test the approach
on a real project with a real scope as easily as possible and not use a small and/or
artificial project.

Generally, the prototype will be implemented as a framework and is not project-specific.
More detail on this is presented in the requirement analysis (chapter 5.2). The development
will be done in iterations with the goal to develop an Minimum Viable Product (MVP)
first, then test it on the project and improve possible shortcomings. For each iteration
(except for iteration 0, which is the requirement analysis), the design cycle method will
be used (described in chapter 4.2) where each iteration consists of the following parts:

1. Implementation Evaluation and Problem Investigation: At first, the implementation
of the previous iteration is evaluated. This, for example, means in Iteration 6,
the code base of Iteration 5 is evaluated. The same five artificially constructed
bugs are used. These artificially introduced bugs are used for repeatability. The
Implementation Evaluation is not always required and is, in some iterations, omitted.
The Problem Investigation updates the requirements based on findings from the
previous iteration and the evaluation of the previous chapter.

2. Treatment Design: This section is focused on creating or updating the implementa-
tion design so that the updated requirements are addressed. In some iterations,
only a single design is made, and sometimes it is more than one.

3. Treatment Validation: In this section, the design is analyzed to check if it can
address the requirements, and if not, the design is adjusted.
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5. Method Design

4. Treatment Implementation: Here the design is implemented, and then the next
iteration starts again with the evaluation.

5.1 Iteration Overview
Below there is a short description of the different iterations:

0. Iteration - Requirement Analysis: The discussion of the requirements for the
implementation.

1. Iteration: First research possible approaches on how a time-constraint testing
framework could be implemented. The decision was made to test a backtracking
approach. Therefore, a backtracking approach was designed and implemented.

2. Iteration: The evaluation showed that the backtracking approach is not feasible,
and the decision was made to switch to a genetic algorithm instead.

3. Iteration: The goal of this iteration was to deploy the approach to the CI system
of the case study project with the unit tests.

4. Iteration: Here the goal was to deploy the current state to the case study projects
UI tests as they take more time than the unit tests (90 minutes).

5. Iteration: The approach was improved to keep the time budget better. (As the
budget is not strict - check requirements (chapter 5.2)

6. Iteration: The Random Testing (RT) approach was developed as a control group
for the developed method (Iteration 6).

7. Iteration: The RT approach was improved to better adhere to the time budget.

8. Iteration: The RT was evaluated and the decision was made to continue with the
Evaluation and Results (chapter 6).

5.2 0. Iteration - Requirement Analysis
The requirements of a time-constrained software testing approach are presented below
and are the basis for the iterations presented in this chapter. They can be derived from
the idea of such an approach and the data that is required to execute it.

1. Test Case Selection: The main goal is to select test cases that are most likely to
fail. It is left to the implementation phase to determine how to achieve this.
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5.3. 1. Iteration

2. Time Boxing/Budget: Providing a time budget to the system and adhering to the
budget are some of the most basic functions. One key decision is whether the time
budget should be strict. A strict time budget forces the execution to be forcefully
stopped after a predetermined period of time. The decision is that the time budget
shall not be strict as otherwise a custom test runner would be needed. Rather, the
program should do its best to adhere to the time budget but not enforce it. It is
acceptable if the test execution is finished.

3. Running on Continuous Integration (CI): The goal is for the approach to have a
particularly high ease of use. It shall be useable in a CI pipeline.

4. Nightly Data Collection: As some information will be needed to decide which test
cases will likely fail, this information will be collected during a nightly job and
stored in a database. A fitting database needs to be selected.

5. Transferable: The framework must be implemented to make it transferable to other
projects. The concrete implementation can require a specific stack like Java with a
specific test/coverage framework. However, the techniques must be transferable.

5.3 1. Iteration
5.3.1 Problem Investigation
The problems/goals for the first iteration:

1. Conduct literature research and investigate possible approaches.

2. Select a fitting approach.

3. Select a technology stack.

4. Implement a method to find tests affected by code changes.

Research

The goal for this iteration is first to select an approach. In order to do this, the first
thing required is to conduct literature research. The goal is to get an overview of existing
test case prioritization, selection, and minimization techniques. This is driven by RQ1:
“What characteristics and criteria should be considered in developing a test case selection
algorithm that effectively determines the tests within a suite that are susceptible to the
impact of pushed commit(s)?”

Articles found during the literature review are described in the third chapter, “related
work”. The approaches used in articles, whether test case prioritization, selection, or
minimization, fall into one of two categories. They either use heuristics like Additional
or Total Coverage [58] [76] or sophisticated techniques including approaches like genetic
algorithms [26] and Coverage-Based Ant Colony System [51].
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5. Method Design

Especially the approach that Farzat and de O. Barros used [26] yields good results and
is easier to implement than other approaches like the CB-ACS approach [51].

One discovery made is that Jest 1, the JavaScript testing framework, supports ’–
changedOnly’. An investigation into the implementation revealed that backtracking
is utilized. The developers used a framework to retrieve changes from Git. The imports
are analyzed to get the files from which the code was imported. The imports are then
repeatedly traced until a test file is found. With this method, they found the test files
that directly or indirectly imported a changed file. Therefore, these test files might cover
the code that was changed.

The initial idea for the implementation is to do the same thing: first, backtrack and then
improve the results from there. The goal is to execute all the test files found through
backtracking and then run an evolutionary algorithm to cover the remaining files. The
framework for the approach is developed in NodeJS. The first iteration simply shall
design and implement the backtracking.

This resulted in the following requirements:

1. It should be out of the box applicable to NodeJS projects.

2. It should read the Git2 history and find files changed since the fork of a new branch
or a configurable starting point.

3. It should implement backtracking to find files affected by code changes.

5.3.2 Treatment Design
To retrieve changes files the project utilizes the ’jest-changed-files’ 3 Node Package
Manager (NPM) package. The implementation takes the same approach as Jest for the
backtracking, where it considers the file imports. It was considered to trace the more
fine-grained function calls. However, associating the function calls and the source code of
the functions, then tracing the usages and doing that until a test file is found, is more
complex. The approach traces the imports to the file and then the imports of those files
back to the files until you reach a test file.

Figure 5.1 shows the design for the backtracking algorithm and the supporting files. The
program is implemented in a modular fashion. The goal of the different classes is as
follows:

• Main: The entry point of the implementation. This is called the testfiles module,
which gathers the tests to execute and then executes them.

1https://jest-archive-august-2023.netlify.app/docs/28.x/cli#–onlychanged, accessed on: 05. April
2024

2https://git-scm.com/, accessed on: 05.April.2024
3https://www.npmjs.com/package/jest-changed-files, accessed on: 05.04.2024
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5.3. 1. Iteration

• Testfiles: This serves as the main implementation for the backtracking. The file
orchestrates the reading of the test files from the file system. Furthermore, this
reads the Git history and compares the state of the paths provided against a
specified commit or branch. The commit to be compared against can be specified.
Then, it will backtrack the files read and return the test files to execute.

• ReadDirectoryHelper: Provides the file structure from the file system. Having this
separate from test files allows changing frameworks quickly if needed.

• TypeHelper: This is an implementation to check the file types of the files read.

Time Constraint Software Testing

Main

main()

Testfiles

getTestFilesForChanges(basePath: string, excluded: string[], changedSince: string): string[]
getImportsFromPaths(paths: string[]): string[]
getImportsFromPath(path: string): string[]
getImportsPerFile(basePath: string, files: string[]): string[]

ReadDirectoryHelper

getFilesFromDir(path: string): string[]

TypeHelper

filterForJSFlavor(filenames: string[]): string[]
filterForTestFiles(filenames: string[]): string[]
checkForFileExtensions(filepath: string): string[]
isJSFlavor(filename: string): boolean
isTestFile(filename: string): boolean

Figure 5.1: Iteration 1: Backtracking architecture design
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5.3.3 Treatment Validation
The main focus for validating the approach is to check if backtracking finds introduced
bugs. To ensure this, the functionality offered by Jest is investigated. Their implementa-
tion did find the bugs. Since there was no blocker, the implementation of the approach
was started.

5.3.4 Treatment implementation
The implementation of the class diagram is simple. Complex is the backtracking algorithm.
The code is presented in algorithm 5.1. It consists of the following steps:

1. Read all source files from the file system.

2. Create a map that associates which filename imports which files.

3. Read which files were changed.

4. Read the test files.

5. Backtracking for each changed file:

a) If the changed file is a test file, add it to the result.
b) Iterate over all test files:

i. Create an empty, visited array.
ii. Create a toExplore array with the test file in it.
iii. As long as toExplore is not empty for each element of toExplore:

A. Take one element to explore.
B. Add the element to visited.
C. Add all imports of the element that were not visited into a temporary

list.
D. If the temporary list includes a changed file we can add the current

test file to the result and break out of the loop.
E. Else, add the elements to be Explored and continue.

6. Return results.

This algorithm starts from the test files and backtracks through the imported files. If
a file is reached at any point, it is selected. The only optimization implemented is the
abort. The program does not backtrack further as soon as a test is found. If it backtracks
to a changed file, the file is selected. The visited list ensures the program does not enter
an endless loop due to of circular file imports.
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5.3. 1. Iteration

Algorithm 5.1: Iteration 1: Backtracking algorithm implementation
Data: basePath, excluded, changedSince
Result: Array test names

1 const files = await glob(basePath + ’/**/*’, ignore: excluded.map((x) =>
‘basePathx/**‘) );

2 const importPerFile = await getImportsPerFile(basePath, files);
3 const changedFiles = Array.from( ( await getChangedFilesForRoots([basePath],

changedSince, ) ).changedFiles, );
4 const testFiles = filterForTestFiles(files).map((x) => resolve(‘$x‘));
5 const resolveTestFilesToChangedFiles = () =>
6 {
7 const fileTypesToIgnore = [’.spec.ts.snap’, ’.spec.tsx.snap’];
8 const testFileForChangedFile = new Map<string, string[]>();
9 for (const changedFile of changedFiles)

10 {
11 if (fileTypesToIgnore.some((x) => changedFile.endsWith(x)))
12 {
13 continue;
14 }
15 if (isTestFile(changedFile))
16 {
17 testFileForChangedFile.set(changedFile, [changedFile]); continue;
18 }
19 const foundTestFiles: string[] = [];
20 for (const testFile of testFiles)
21 {
22 const visited: string[] = [];
23 const toExplore = [testFile];
24 while (toExplore.length > 0)
25 {
26 const element = toExplore.pop();
27 if (element)
28 {
29 visited.push(element);
30 const imports = importPerFile.get(element);
31 const toAddToExplore = imports?.filter((x) =>

!visited.includes(x)) ?? [];
32 if (toAddToExplore.includes(changedFile))
33 {
34 foundTestFiles.push(testFile); break;
35 }
36 toExplore.push(...toAddToExplore);
37 }
38 }
39 }
40 testFileForChangedFile.set(changedFile, foundTestFiles);
41 }
42 return testFileForChangedFile;
43 }
44 ;
45 return resolveTestFilesToChangedFiles();
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5.4 2. Iteration

5.4.1 Implementation Evaluation/ Problem Investigation

The backtracking approach was tested with the unit tests of the case study project. Five
artificial bugs were introduced into the case study project for the evaluation. Then, the
backtracking algorithm was executed, and how long each execution took and how many
bugs were found were noted.

The execution was run with one, two, three, and five manually introduced bugs. For each
of these bugs, the pipeline was executed ten times, for a total of 40 executions.

The executions with one and two bugs found all introduced bugs (one and two, respec-
tively). The third bug was not detected by any run, and the executions with five bugs
found all four bugs except the third.

1 Bug 2 Bugs 3 Bugs 5 Bugs
1. 2m 29s 2m 39s 2m 43s 5m 24s
2. 2m 40s 2m 40s 2m 47s 5m 21s
3. 2m 42s 2m 45s 2m 45s 5m 26s
4. 2m 26s 3m 01s 2m 32s 5m 20s
5. 2m 28s 2m 40s 2m 39s 5m 56s
6. 2m 47s 2m 48s 2m 46s 5m 36s
7. 2m 27s 3m 07s 2m 42s 6m 14s
8. 2m 41s 2m 58s 2m 49s 5m 23s
9. 2m 28s 3m 15s 2m 44s 5m 58s
10. 2m 45s 2m 39s 2m 46s 5m 55s

Table 5.1: Evaluation of iteration 1: Execution times of backtracking run

The backtracking approach provided a substantial portion of the suites tests. The main
issue is that for the execution with five bugs, which just had the bugs in the code and
no other files were changed, implying that this is a best-case scenario, a time budget of
below 50 percent can not be kept.

Information about the execution times can be seen in Figure 5.2, which shows a box plot
of the execution durations. There is almost no timing difference between the pipelines
with one and two bugs. A detailed investigation into the test cases selected showed that
the reason for this is that there were not a lot of tests covering the second bug. There is
no timing difference between two and three bugs (except for the performance difference
of the virtual machines). This is because there were no differences in the number of tests
selected. However, the increase in the duration of five bugs is notable. The pipeline
selects over 50 percent of all tests available. While it would be possible to reduce the
tests selected, it was decided to discard the approach and investigate alternatives.
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5.4. 2. Iteration

3 4 5 6

1 Bug

2 Bugs

3 Bugs

5 Bugs

Figure 5.2: Evaluation of iteration 1: Boxplot backtracking execution times from table
5.1

The next goal is to switch the design to a different approach that can keep the time
budget. As expressed in iteration 1, two options are available for this different approach. A
heuristic such as Additional or Total Coverage [58] [76] or a more sophisticated technique
such as genetic algorithms [26] and Coverage-Based Ant Colony System [51]. The genetic
algorithm approach is chosen for the iteration because of the reduced complexity compared
to Coverage-Based Ant Colony System and the results shown by Farzat and de O. Barros
[26]. Like this work, the goal of Farzat and de O. Barros in their article was to reduce a
test suite to a time budget. However, the authors restricted their approach to unit tests
and did not consider new features. These restrictions are not made in this work.

The needed information for the new approach is stored in a database. This data is
collectible in a nightly test execution. For this iteration, it is sufficient to execute
everything locally. Test case information has to be stored on a per-test file basis. This
reduces complexity and can be adjusted to be more fine-grained later.

For this iteration, the following additional requirements were specified:

1. It should be possible to collect data about test cases.

a) It should be possible to execute test case data storage in a nightly pipeline
and store the data in a database.

b) It should store the execution time of test cases on a test file basis.
c) It should collect and store coverage information of test cases on a test file

basis.

2. It should be possible to execute test cases to fit within a specified time budget.

3. It should optimize test cases with a simple genetic algorithm.
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5.4.2 Treatment Design
The design aims to create a basic genetic algorithm; it must be expandable in future
iterations. The fitness function has to be easily swappable, with the goal of maximizing
total coverage.

The idea for the genetic algorithm’s fitness is to calculate two fitness values, one repre-
senting the percentage of total coverage and the other representing the percentage of
coverage of the changed files. A simple fitness value is calculated by multiplying each
value with a tuning parameter and then summing them up. Files affected by changes
have a bigger impact than the others.

For the design, the first challenge is the collection of coverage information from test files.
Mocha was selected as a testing framework. It is difficult to collect the coverage data
per test file because Mocha counts how often a given statement, function, or branch is
covered. So, to get the coverage per test file, it is necessary to write a custom reporter
that stores the coverage after each file change and subtracts the coverage of the previous
file. This data has to be written into a Comma-Separated Values (CSV) file as Mocha
does not allow asynchronous calls in its reporters, meaning it cannot be persisted in the
database directly, but writing the data into a file can be done synchronously.

Afterward, a script iterates over the exported coverage data and persists it into a Neo4j
database. The Neo4j database is used because it is geared toward queries representing
paths, which is useful when retrieving the data. The execution time of each test file is
persisted to study timing differences. The time limit in the genetic algorithm is realized
with the fitness function. It returns a fitness of 0 if the proposed test set exceeds the
time limit.

Program Design

Figures 5.3 to 5.5 show the proposed design of the simple genetic algorithm. Compared
to the first iteration, the design is done in an Object Oriented Programming (OOP)
fashion. The decision to move to OOP was made to change classes and optimize the
algorithm in future iterations.

48



5.4. 2. Iteration

The classes do the following:

• TestfileAdapter: Used to read the file structure and the changed files from the file
system. Some details here can be taken from Iteration 1.

• TestExecutor: This class is responsible for executing testfiles. The source directory
in which the execution command shall be run can be specified, as can the base
command to be used. This should allow me to change from Mocha to another
testing framework in future iterations or employ a different coverage framework.

• Neo4JAdapter: The idea behind this class was to make the database easily change-
able. At the same time, the investigation suggested that Neo4J would be a good
fit. It was unclear at the time of the decision if everything could be implemented
satisfyingly.

• Genome: This class was responsible for storing which test cases are selected and
allowing for things like mutation. This is a more sophisticated data structure used
for storage.

• Population: A population was one evolution within the genetic algorithm, an
abstraction of the genome with additional functionality.

• Fitness: An interface for calculating the fitness value of a population.

• BasicFitness: An implementation of the Fitness interface using total coverage in a
boolean fashion for each line.

• Genetic: The implementation of the genetic algorithm itself, supporting things like
evolution and setting of tuning parameters.

• File: An abstraction of a source code file.

• Test: An abstraction of a test file.

• Covers: An abstraction for the coverage relation between tests and files, also storing
which statement is covered.
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Time Constraint Software Testing Support Files

Neo4J Adapter

driver
neoSession

openWriteSession()
openReadSession()
closeSession()
writeFiles()
writeTests()
createRelations()
insertTestDuration()
findTestsForFile(filename: string)
extractData()
clearDatabase()
dropDatabase()
createDatabase()

TestExecutor

SRC_DIR
COMMAND

TestExecutor(SRC_DIR,
COMMAND)
exucuteTests(tests: string[])

TestfileAdapter

getTestFilesForChanges(basePath: string, excluded: string[], changedSince: string)
getImportsFromPaths(paths: string[])
getImportsFromPath(path: string)
getImportsPerFile(basePath: string, files: string[])

Figure 5.3: Iteration 2: Genetic algorithm architecture design
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Time Constraint Software Testing Genetic Algorithm

Fitness

dataset: Dataset
timeLimit: number

Fitness(dataset: Dataset, timeLimit: number
+ abstract calculateFitness (genome: Genome)

Genetic

private dataset: Dataset
- fitness: Fitness
- currentIteration: Population
- populationSize : number
- mutationRate : number
- nBestToKeep : number
- nWorstToDiscard : number
- initialProbability: number
- populationInitialized: Boolean
- crossoverRate: number

+ Genetic (dataset: Dataset, fitness: Fitness)
+ getBestTestSet(): Test[]
+ setTuningParameters( mutationRate: number,
populationSize: number,
nBestToKeep: number,
nWorstToDiscard: number,
initialProbability: number)
+ evolve()
- createFirstPopulation()
- createRandomGenome()
- holdTournamentAndEvolve()
- crover(a: Genome, b:Genome)

Genome

+genome: Genome

+genome: Genome
+copy(): Genome
+addValue(value: boolean)
+print(): void
+ mutate(probability: number: Genome

Population

-population: Population

+Population()
+ addToPopulation(genome: Genome)
+ addMultipleToPopulation(genome: Genome)
+ rankedPopulation(fitness: Fitness)

Figure 5.4: Iteration 2: Genetic algorithm architecture design
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Time Constraint Software Testing Genetic Algorithm 2

Test

+name: string
+ statementCount: number

+Test(name)
+changeStatementCount(n: number)

File

+ name: string
+ statementCount = 0

File(name: string)
+ changeStatementCount(n: number)

Covers

+ file: File
+ test: Test
+ s: number[]

Covers(test: Test, file: File, s: number[]

BasicFitness<Fitness>

BasicFitness(dataset: Dataset)
+ calculateFitness(genome: Genome): number

Figure 5.5: Iteration 2: Genetic algorithm architecture design

5.4.3 Treatment Validation
The design was evaluated, and the time budget for the fitness was added. The fitness
implementation was given special consideration during the evaluation as it was unclear if
it would fulfill the requirements, notably an ascending value for increased coverage. The
implementation can be seen in Algorithm 5.2.

The fitness is calculated twice to consider both files changed and the general coverage
of the whole project. One of these fitness values considers only changed files, while the
second considers all values. The one with the changed values is then multiplied with
a tuning parameter to emphasize the importance of the changed files. For the general
value, both are summed up.
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5.4. 2. Iteration

Algorithm 5.2: Initial basic fitness
Data: Genome
Result: Fitness

1 const coveragePerFile = new Map<string, number[]>();
2 const testFileCovers = this.dataset.testFileCovers;
3 const includedTests = this.dataset.retrieveTests(genome);
4 let duration = 0;
5 for (const test of includedTests)
6 {
7 duration += test.duration;
8 for (const filename of testFileCovers.get(test.name)?.keys() ?? [])
9 {

10 const coverage = testFileCovers.get(test.name)?.get(filename);
11 if (coveragePerFile.has(filename))
12 {
13 const newCoverage =

combineStatementCoverage(coveragePerFile.get(filename) ?? [],
coverage?.s ?? []);

14 coveragePerFile.set(filename, newCoverage);
15 }
16 else
17 {
18 coveragePerFile.set(filename, coverage?.s ?? []);
19 }
20 }
21 }
22 if (duration > this.timeLimit)
23 {
24 return 0;
25 }
26 let numberOfLinesCovered = 0;
27 for (const filename of coveragePerFile.keys())
28 {
29 const coverages = coveragePerFile.get(filename) ?? [];
30 for (const coverage of coverages)
31 {
32 numberOfLinesCovered += coverage > 0 ? 1 : 0;
33 }
34 }
35 return numberOfLinesCovered / this.dataset.totalNumberOfLinesToTest;
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5.4.4 Treatment Implementation
The implementation phase took some time due to the complexity and the need for the
components to work together. The script is a crucial component, as it works as an
orchestrator for the genetic algorithm and is, for example, responsible for setting tuning
parameters.

In Algorithm 5.3, the source code for this script can be seen. It consists of the following
steps:

1. Setup necessary data structures like tests, dataset, fitness, and the genetic algorithm.

2. Calculate the tuning parameters and set them.

3. Run the genetic algorithm.

4. Retrieve the best population and the best test set from it.

5. Execute best test set.

Algorithm 5.3: Genetic algorithm orchestration script
Data: ROOT_DIR, SRC_DIR, TEST_DIR, CHANGED_SINCE
Result: Array of issue titels

1 // setup necessary files
2 const tests = getChangedTestFiles();
3 const dataset = new Dataset(...);
4 const fitness = new BasicFitness(dataset, timeBudget);
5 const genetic = new Genetic(dataset, fitness);
6 const avgDuration = tests.map((t) => t.duration / tests.length).reduce((a, b)

=> a + b);
7 let prob = timeBudget / avgDuration / tests.length;
8 genetic.setTuningParameters(0.05, 200, 10, 10, prob > 1 || prob < 0 ? 0.5 : prob);
9 // run genetic algorithm

10 for (let i = 0; i < 100; i++)
11 {
12 genetic.evolve();
13 }
14 bestPopulation = genetic.getBetPopulation();
15 bestTestSet = genetic.getBestTestSet();
16 // execute tests
17 executeTests( ROOT_DIR, options.command, bestTestSet.map((t) =>

resolveToChildDirectory(t.name)), );
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5.5 3. Iteration
5.5.1 Implementation Evaluation/ Problem Investigation
To evaluate the genetic algorithm, the approach is tested on a local machine (a Lenovo
P1 6th gen with an Intel i9 processor and 64 GB of memory). The algorithm was run in
two variations. The first one used 100 evolutions and a population of 50. The second
one had 500 evolutions and a population size of 100. The same 5 bugs were used for the
evaluation as for the backtracking evaluation.

Table 5.2 shows the amount of time needed for a time budget of one, two, three, and five
minutes. Two things stand out from the collected results. The first one is that the actual
time varied quite drastically. For example, for the one-minute proposed time budget, the
lowest observed time was 15 seconds, and the highest was almost two minutes at 1m 52s.
This is more than seven times as much as the lowest value. The same can be observed
with the five-minute time budget: the lowest was 44 seconds, and the highest was over
twelve minutes. This huge variance between runs is immediately apparent in the boxplot
in Figure 5.6.

1 min 2 min 3 min 5 min
1. 1m 09s 0m 26s 4m 07s 0m 44s
2. 0m 15s 0m 40s 0m 38s 6m 19s
3. 0m 17s 0m 27s 3m 56s 1m 24s
4. 1m 52s 0m 44s 0m 23s 12m 19s
5. 0m 46s 0m 29s 3m 50s 11m 16s
6. 0m 20s 0m 26s 3m 59s 11m 58s
7. 0m 29s 0m 30s 0m 33s 10m 57s
8. 0m 15s 0m 34s 3m 56s 11m 12s
9. 0m 19s 0m 26s 0m 31s 1m 28s
10. 0m 35s 0m 28s 0m 26s 11m 02s

Table 5.2: Evaluation of iteration 2: Execution times of different time budgets and 5
bugs introduced. (100 iterations, population: 50)

Table 5.3 shows the number of bugs each pipeline found. One thing that stands out is
that except for four instances, no bugs or all bugs were found (in the four exceptions,
one bug was found). This justified a deeper investigation. The investigation concluded
that the calculation of the fitness function caused this behavior, especially the fitness of
changed files, as the number of changed files is low in comparison to a real commit. The
fitness value did not increase as sharply as needed always to include those files.

The results show that the approach can work. The assumption is that the algorithm
would yield better results with more iterations and a bigger population. If that is the case,
it would indicate that more tuning is needed. To test this, the approach was executed
with 500 iterations and a population size of 100.
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Figure 5.6: Evaluation of iteration 2: Boxplot of execution times from table 5.2

1 min 2 min 3 min 5 min
1. 0 0 5 0
2. 0 0 0 5
3. 0 0 5 1
4. 5 0 0 5
5. 0 0 5 5
6. 0 1 5 5
7. 0 0 0 5
8. 0 0 5 5
9. 0 0 0 1
10. 0 0 0 5

Table 5.3: Evaluation of iteration 2: Number of bugs found with different time budgets
and five bugs introduced. (100 Iterations, Population: 50)

Table 5.4 and Figure 5.7 show better adherence to the time budget. The same improvement
is present for the number of bugs found, as seen in Table 5.5. However, the results did
not meet the requirements. The conclusion is that improvements are required.
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1 min 2 min 3 min 5 min
1. 2m 14s 1m 54s 2m 49s 10m 11s
2. 3m 02s 4m 43s 5m 57s 8m 42s
3. 2m 48s 4m 45s 5m 58s 8m 32s
4. 5m 38s 4m 31s 6m 09s 8m 17s
5. 2m 49s 2m 01s 2m 43s 9m 33s
6. 0m 46s 1m 57s 2m 56s 9m 14s
7. 2m 56s 1m 50s 7m 11s 8m 47s
8. 2m 50s 4m 40s 3m 03s 9m 03s
9. 1m 17s 2m 05s 2m 54s 8m 14s
10. 4m 16s 4m 35s 7m 26s 10m 04s

Table 5.4: Evaluation of iteration 2: Execution times of different time budgets and five
bugs introduced (500 iterations, population: 100)
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Figure 5.7: Evaluation of iteration 2: Boxplot of execution times from table 5.4
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1 min 2 min 3 min 5 min
1. 0 0 0 5
2. 0 5 5 5
3. 0 5 5 5
4. 5 5 5 5
5. 0 0 0 5
6. 0 0 0 5
7. 5 0 5 5
8. 5 5 0 5
9. 0 0 0 5
10. 5 5 5 5

Table 5.5: Evaluation of iteration 2: Number of bugs found with different time budgets
and five bugs introduced. (500 Iterations, Population: 100)

A few goals and requirements are open from Iteration 1, and new ones were added:

• It should stick better to the time budget.

• It should find more failing tests in a shorter time.

• It should run on the CI system.

• It should use a database system that does not require a pro version.

The issue with the algorithm is the fitness and the selection. This will be addressed at a
later point. This iteration aims to make the systems work on the Continuous Integration
and deploy it to the case study project. This makes repeatable testing simpler and
results comparable to the numbers expected at the end of the project. One problem
is that it takes time for Neo4J to clear the database. This was mitigated by dropping
the database in Iteration 2. However, this was unfeasible in the CI because dropping
a database requires supporting multiple databases, an enterprise feature. Thus, it was
decided to switch to another database system.

5.5.2 Treatment Design
As the system went into trial deployment for the case study project, a branch of the
project was created. Additional pipeline steps with the time budget are added. A nightly
job is scheduled for this branch to set up and update the database’s coverage data. The
nightly pipeline does this by executing all tests and overwriting the coverage data.

The approach was enhanced by automatic data collection. For each pipeline, it is stored
which test files were selected and which failed, the duration of each test, the time budget
specified, and the time it took to execute the pipeline.
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PostgreSQL was used as the database system for ease of use. The schema for the new
database is presented in Figure 5.8. Notably, a “Run” and a “Subpipeline” table are
added. The “Test” and “File” tables, and the “covers” relation are translations of the
types and relations in Neo4j. The new adapter, Figure 5.9, shows the additional functions
required for data collection.

Figure 5.8: Iteration 3: Entity relation diagram of database

5.5.3 Treatment Validation
Again, like in the previous iteration, the algorithm did not stick to the time budget, and it
did not find sufficient bugs. Furthermore, it is clear from the statistics that the setup and
tear-down process of the test suite is impacting the number of tests that can be run. The
issue is that the setup process requires different amounts of time because of variations in
hardware and the utilization of virtual machines. The decision is not to consider this
when calculating the time budget for better comparability and just incorporate the actual
time required for test execution.

5.5.4 Treatment implementation
The prototype from the design phase was used and improved. Disposing of setup and
tear-down time was implemented, and time budgeting was adjusted to accommodate
these changes.

One issue that occurred in conjunction with GitLab, which is the CI system the project is
hosted on, is that when GitLab fetches a pipeline, it initiates the History with an empty
git repository. Therefore, to get the history, it was necessary to manually fetch and pull
the main branch. Due to a limitation of GitLab, the current branch can only fetch the
last 1000 commits at most. This is a non-issue as it can be avoided if the cloning is done
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Time Constraint Software Testing Genetic Algorithm 2

PostgresAdaper

- client:Client

+ PostgresAdapter()
+ openSession()
+ closeSession()
+ writeFiles(files: string[])
+ writeTest(name: string, duration: number)
+ clearCoverage()
+ createCoverage(test: string, file: string, statement: string, f: string, branch: string)
+ createRun(
commitid: string,
pipelineid: string,
baseCommidId: string,
numOfTestsWhenExecuteing: number,
branchName: string)
+ setRunDurationAndNumberOfSubpipelines(
runid: number,
duration: number,
numOfSubpipelines: number)
+ setRunTimeBudget(runid: number, timeBudget: number)
+ createExecutes(runid: number, testname: string, failed: boolean, duration: number)
+ createSubpipelines(
runid: number,
supposedDuration: number,
actualDuration: number,
index: number)
+ setExecutesFailedAndDuration(runid: number, testid: number, failed: boolean, duration: number)
+ extractDataForAlgorithm()
+ getTestByName(name: string)
+ getOverheadFactorAndStdDeviationForTimeBudget(timebudget: number)
+ initDatabase()

Figure 5.9: Iteration 3: Postgres adapter design

manually. It was tried to make an automated design for this. However, after trying to
figure out how to construct this, it was decided to continue with the implementation and
leave this for a possible future project.
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5.6 4. Iteration

5.6.1 Implementation Evaluation/Problem Investigation
At this point it was observable that the stack of the implementation is functional. However,
a goal is to get it running on the User Interface (UI) tests. This is because this testing
section takes two and a half hours. The idea is to test the performance of the approach
on long pipelines. Therefore, with the previous unfulfilled requirements, these are the
currently open requirements:

• It should stick better to the time budget.

• It should find more failing tests in a shorter time.

• It should run with the UI tests

5.6.2 Treatment Design
As the goal is to get the approach running on UI tests, it has to be noted that for the
case study project, these serve as integration tests if these tests do not require a physical
device. The software usually needs to run on a purpose-built device with specialized
hardware. The first problem that was found was that the pipeline that ran the UI tests
utilizes psexec 4 to run the tests on Windows and get an image.

This is necessary to provide environment variables for the application over psexec. The
command length limitation of psexec in combination with Windows CMD became the
issue. While this limit is usually at 8191 characters 5, it was much shorter. So much so
that it became an issue that was hard to spot. The solution is to write the commands
into a ps1 script on the executing virtual machine during pipeline execution and execute
that. Another issue could be observed: for some reason, the propagation of the error
code was not working as intended, meaning it was not forwarded to the parent program,
resulting in pipelines that should have failed but showed up green. This bug was fixed by
reading the exit code of the child process.

5.6.3 Treatment Validation and Implementation
For the validation, one obstacle became apparent. Collecting coverage information with
WebdriverIO 6 is only possible if using it to do component testing and not desktop testing,
which is what the project is using. This is not straightforward to rewrite and would
require a lot of effort.

4https://learn.microsoft.com/en-us/sysinternals/downloads/psexec, accessed on 07.02.2024
5https://learn.microsoft.com/en-us/troubleshoot/windows-client/shell-experience/command-line-

string-limitation, accessed on 07.02.2024
6https://webdriver.io/docs/component-testing, accessed on 07.02.2024
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The other design option would be to completely rewrite either the stack of the case study
or write a custom test case executor. As the goal was to test the approach’s feasibility, it
was decided to skip testing with the project’s UI tests and focus on the unit tests. While
the unit tests do not run as long, they still provide interesting data for analysis.
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5.7 5. Iteration
5.7.1 Implementation Evaluation/Problem Investigation
This iteration aims to address the two requirements open from the last iteration. No new
requirements were added.

• It should stick better to the time budget.

• It should find more failing tests in a shorter time.

5.7.2 Treatment Design
During the preparation of the implementation evaluation, the best results of the current
implementation were investigated. Different parameters for tuning the evolutionary
algorithm were tested. The algorithm struggles to find test suites within the specified
time frame. This is caused by two things: The first issue is that considering tests with
coverage of general code and changed code simultaneously results in a poor test selection.
As stated in Iteration 2, the tests affected by changes are low in number. Therefore, the
fitness of these tests needs to be increased significantly so that shorter tests with higher
coverage of the general area are not preferred. The second problem is that the prediction
of the duration of the tests is inaccurate.

Possible solutions are investigated to address the issue and understand how the require-
ments can be better addressed.

The first plan is to use statistics from the previous pipeline run to adjust the time budget
so that it is longer or shorter according to the average overshoot. For example, suppose
a pipeline with a time budget of 60 seconds usually takes 80 seconds. It is possible to
calculate the percentage of the time budget that is exceeded and then reduce the original
time budget by that percentage. This is easy to implement thanks to the data collection
for the statistics.

The other idea is to split the pipeline into two sub-pipelines. First, the algorithm considers
tests associated with changes with higher probability (giving it a higher tuning factor
than before). Moreover, the first run collected how big the difference was between the
time observed and the time that was calculated in advance. This value is then used for
the second pipeline to fill the time budget. The second run checks if there are still tests
associated with changes remaining. If so, the calculation will stay the same. If not, it
will create the best coverage for the whole project if there is still time. This approach
can be seen in Figure 5.10.
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Figure 5.10: Iteration 5: Flow diagram of developed method
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5.7.3 Treatment Validation And Implementation
It was decided to prototype both approaches to benchmark the approaches. The issue was
that none of the ideas fixed the problem of keeping the time budget. Therefore, to address
this issue, the decision was to split the execution of the test cases into at most three
sub-pipelines, hoping that this would better fill the time budget. The first sub-pipelines
are used to check how fast the machine is compared to the other runners, whose average
test time is stored in the database. Then, the second tries to fill the pipeline. The idea is
that the overhead factor should be more precise for the third pipeline.

Algorithm 5.4 and 5.5 show how this combined implementation works:

1. Calculate the theoretical time budget of the first and the second run.

2. Retrieve the overhead statistics from the database for the given budget. This
contains the average overhead factor; for example, if the pipeline with a time budget
of 60 seconds takes 120, then this value would be 2, and if it is 30 seconds, it is 0.5.
The standard deviation is the second value returned by the database.

3. Adjust the provided budget with the new value. For the first round, divide by the
overhead factor plus two times the standard deviation. The idea was that this
should ensure the time budget is not exceeded with the first run.

4. Execute the genetic algorithm for the first time budget.

5. Execute the first round of tests.

6. Read how long the tests took and calculate the actual overhead factor

7. Remove the already executed tests from consideration for the next run.

8. Execute the second run with an adjusted time budget if there is still time.

9. Do the same steps as the second execution for the third one if time is still available.
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Algorithm 5.4: Execution algorithm with three runs part one
Data: time limit
Result: runs executed and combined duration returned

1 const firstTimeBudget = timeLimit * 0.3;
2 let secondTimeBudget = timeLimit - firstTimeBudget;
3 const overheadStatistics = await postgre-

sAdapter.getOverheadFactorAndStdDeviationForTimeBudget(options.duration);
4 const overheadMultiplyFactor = overheadStatistics.overheadfactor + 2 *

overheadStatistics.stddeviation;
5 const adjustedFirstTimeBudget = firstTimeBudget / overheadMultiplyFactor;
6 await executeRound(adjustedFirstTimeBudget);
7 const firstRunDuration = JSON.parse(readFileSync(‘$folder/runDuration.csv‘,

’utf-8’));
8 let secondRunDuration = 0;
9 let thirdRunDuration = 0;

10 let numOfPipelines = 1;
11 for (const test of bestTestSet)
12 {
13 testsMap.delete(test.name);
14 }
15 // calculate remaining time const firstDeviateFactor = firstRunDuration /

bestPopulation!.duration;
16 console.log(’deviate factor’, firstDeviateFactor);
17 let secondRun = false;
18 secondTimeBudget /= overheadMultiplyFactor + overheadStatistics.stddeviation;
19 secondTimeBudget += Math.max(adjustedFirstTimeBudget -

bestPopulation!.duration, 0);
20 secondTimeBudget /= firstDeviateFactor;
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Algorithm 5.5: Execution algorithm with three runs part two
Data: time limit
Result: runs executed and combined duration returned

1 if (secondTimeBudget > 500)
2 {
3 await executeRound(secondTimeBudget);
4 secondRunDuration = JSON.parse(readFileSync(‘$folder/runDuration.csv‘,

’utf-8’));
5 secondRun = true;
6 numOfPipelines++;
7 }
8 else
9 {

10 secondRunDuration = 0;
11 }
12 const firstAndSecondCombinedDuration = firstRunDuration +

secondRunDuration;
13 const secondDeviateFactor = secondRunDuration / bestPopulation!.duration;
14 const firstAndSecondCombinedDeviateFactor = (firstDeviateFactor +

secondDeviateFactor) / 2;
15 console.log(’first plus second deviate factor’,

firstAndSecondCombinedDeviateFactor);
16 let thirdTimeBudget = timeLimit - firstAndSecondCombinedDuration;
17 thirdTimeBudget /= overheadMultiplyFactor + overheadStatistics.stddeviation;
18 thirdTimeBudget /= firstAndSecondCombinedDeviateFactor;
19 if (thirdTimeBudget > 500)
20 {
21 thirdRun = true;
22 await executeRound(thirdTimeBudget);
23 thirdRunDuration = JSON.parse(readFileSync(‘$folder/runDuration.csv‘,

’utf-8’));
24 numOfPipelines++;
25 }
26 return firstRunDuration + secondRunDuration + thirdRunDuration;
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5.8 6. Iteration

5.8.1 Implementation Evaluation/Problem Analysis

For the analysis of Iteration 5, the same bugs were used as in the previous evaluation.
The number of bugs found can be seen in Table 5.6. One improvement is that each run
did find at least one bug, but only the pipelines with the time budget of 5 minutes found
more than 1 bug. This is because of inefficiencies with the genetic algorithm. On a close
inspection, it seemed that tests affected by the change have a very low probability of
being selected just because of numbers: the probability of the genome being true at the
position of such a test is very low. The ideas of the previous iterations did not bring the
improvements required.

1 min 2 min 3 min 5 min
1. 1 1 1 1
2. 1 1 1 1
3. 1 1 1 2
4. 1 1 1 1
5. 1 1 1 1
6. 1 1 1 1
7. 1 1 1 2
8. 1 1 1 2
9. 1 1 1 1
10. 1 1 1 1

Table 5.6: Evaluation of iteration 5: Number of bugs found with different time budgets
and five bugs introduced

The analysis of the execution times shows that the time budget is still not kept completely.
The duration of the pipelines and the accompanying boxplot are visible in Table 5.7 and
Figure 5.11. It can be observed that the adherence to the time budget is increased. This
can be seen well in the boxplot diagram. However, looking at Table 5.7, it is clear that
the variation is still huge and that many pipelines take too much time (e.g., time budget
of 5 min) or not enough time (1 min).

The data showed that the sub-runs nearly never hit the intended time budget, not even
when the adjusted time budget was used. This comes down to run-to-run variation.
Tests can sometimes take up to 10 times longer or shorter than what was stored in the
database. Execution times during the nightly run showed that the duration of all tests
can vary by almost one minute; this is a problem when aiming to hit a time budget of 60
or 120 seconds.
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1 min 2 min 3 min 5 min
1. 0m 44s 2m 11s 3m 23s 6m 57s
2. 0m 40s 1m 40s 3m 33s 5m 59s
3. 0m 19s 2m 18s 3m 00s 8m 28s
4. 0m 36s 2m 08s 3m 14s 7m 27s
5. 0m 33s 1m 47s 3m 08s 6m 13s
6. 0m 30s 1m 56s 3m 37s 3m 52s
7. 0m 55s 2m 26s 3m 04s 7m 05s
8. 0m 37s 2m 09s 3m 38s 5m 18s
9. 0m 16s 2m 08s 3m 58s 6m 38s
10. 0m 25s 2m 58s 4m 27s 6m 17s

Table 5.7: Evaluation of iteration 5: Execution times of different time budgets and five
bugs introduced

0 2 4 6 8

1 min

2 min

3 min

5 min

Figure 5.11: Evaluation of iteration 5: Boxplot of execution times from table 5.7

From here, the goal is to get the pipelines to stick closer to the specified time budgets
and to find more bugs:

1. It should stick closer to the time budget.

2. It should find more bugs.
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5.8.2 Treatment Design
The design is adjusted: the first decision is not to limit the number of pipelines. This is
possible because of the earlier decision to consider only the actual test duration and not
count the execution time of the genetic algorithm or the setup time.

The second decision is to consider just tests affected by changes as long as those were
not all executed. If there is still time remaining, the goal of the next genetic algorithm is
to maximize the coverage of the remaining areas of the code.

The flow of this new approach can be seen in Figure 5.12. The steps associated are:

1. Fetch test and commit data

2. Check if there are files associated with changes and untested.

3. If yes, execute the genetic algorithm with only files associated with changes.

4. If not, execute the genetic algorithm considering all files which have to be only files
not associated with changes.

5. Execute the selected test cases.

6. Check if there is still time remaining.

7. If yes, return to step 2.

8. If no, finish execution.

Another consideration is to check whether genetic algorithm implementation performed
poorly. Therefore, different frameworks that allow genetic algorithm implementation are
investigated. The geneticalgorithm7 package was selected. The proposed design changes
are presented in Figure 5.13.

7https://www.npmjs.com/package/geneticalgorithm, accessed on: 01.05.2024
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Figure 5.12: Iteration 5: Flow diagram of developed method
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This design mainly encompassed the following changes:

1. Store when the last fitness changes was. This is now used to determine when to
terminate.

2. Move fitness function out of a separate file and into a genetic algorithm function.

3. provides a “doesABeatBFunction” which was needed for the framework.

4. Implement all necessary changes for the introduction of the framework.

Time Constraint Software Testing Genetic Algorithm 2

ImprovedGeneticAlgorithm

- totalNumberOfLines: number;
- geneticAlgorithm: any;
- tests: string[];
- timeBudget: number;
- coverageByTest: Map<string, Map<string, number[]>;
- durationByTest: number[];
- lastFitnessChange: number;
- previousBestFitness: number;
- probabilityOfMutation: number;

+ ImprovedGeneticAlgorithm(covers: Covers[], timeBudget: number);
- combineCoverage(a: number[], b: number[]);
- fitnessOfSingleFile(a: number[]);
- cloneJSON(item: any);
+ runEvolution(): string[];
- mutationFunction(phenotype: any);
- crossoverFunction(a: any, b: any);
- fitnessFunction(phenotype: any);
- doesABeatBFunction(a: any, b: any);

Figure 5.13: Iteration 5: PostgresAdaper design
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5.8.3 Treatment Evaluation
During the evaluation of the last iteration, one interesting aspect was the overshooting of
the pipelines, especially with a time budget of 5 minutes. This issue was investigated
during the design phase.

This behavior appears if a high number of tests are selected where the duration during
the nightly run is lower than the observed time. This is because the conditions with the
runners were ideal during the night; however, because not each runner is a dedicated
machine, if many pipelines were run in parallel the execution time can vary drastically.
This was mentioned before, with tests taking up to ten times more or less during the
nightly run.

There were two potential solutions to address this issue. The first option is to write a
custom test runner to stop test execution when the time budget is filled. This means
making the time budget strict. This would be the ideal fix, but it was decided this issue
is out of scope because of the time it would take to implement. The second option is
to split the pipelines into more sub-pipelines. However, the overhead of selecting tests
would take too much time at this point. Exceeding the time used for the time budget. If
this method were to be used as a general framework, the first solution would need to be
implemented. The decision is to accept the current behavior and just focus on the test
selection.

5.8.4 Treatment Implementation
A few steps are key for adapting to the new framework. The first one is the new fitness,
presented in Algorithm 5.6. The main differentiator to the previous iteration is the
simplicity of the implementation. Because only either one or all of the files the algorithm
receives are changed, no tuning is required. The fitness is now -1 if the time budget is
exceeded (see line 18). Other than that, it just sums up the coverage of each file. The
calculation of this can be seen in the fitnessOfSingleFile function declared in line 28.
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Algorithm 5.6: Fitness functions of new genetic algorithm
1 private fitnessFunction(phenotype: any)
2 {
3 let sumOfTime = 0;
4 let coverageByFile = new Map<string, number[]>();
5 for (let i = 0; i < phenotype.genome.length; i++)
6 {
7 if (phenotype.genome[i]) const testname = this.tests[i];
8 sumOfTime += this.durationByTest[i];
9 const coveredFiles = this.coverageByTest.get(testname) ?? new Map();

10 for (const filename of coveredFiles.keys())
11 {
12 const previousFileCoverage = coverageByFile.get(filename) ?? [];
13 coverageByFile.set(filename,

this.combineCoverage(previousFileCoverage,
coveredFiles.get(filename)));

14 }
15 }
16 if (sumOfTime > this.timeBudget)
17 {
18 return -1;
19 }
20 if (coverageByFile.size == 0)
21 {
22 return 0;
23 }
24 return Array.from(coverageByFile.values())
25 .map((x) => this.fitnessOfSingleFile(x))
26 .reduce((x, y) => x + y);
27 }
28 private fitnessOfSingleFile(a: number[])
29 {
30 return a.reduce((a, b) => a + Math.min(b, 1)) / a.length;
31 }
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The crossover function is also crucial to the implementation presented in Algorithm
5.7. All that is done here is swapping the arrays’ first half between the genomes. This
implementation is simple and might be sufficient but could be changed in the next
iteration if needed.

Algorithm 5.7: Crossover function of new genetic algorithm
1 private crossoverFunction(a: any, b: any)
2 {
3 let x = this.cloneJSON(a);
4 let y = this.cloneJSON(b);
5 for (let i = 0; i < this.tests.length / 2; i++)
6 {
7 const swap = x[i];
8 x[i] = y[i];
9 y[i] = swap;

10 }
11 return [x, y];
12 }

Algorithm 5.8 shows how the coverage of two different genomes is combined.

Algorithm 5.8: Combine coverage helper function used by crossover
1 private combineCoverage(a: number[], b: number[])
2 {
3 const result = []; for (let i = 0; i < a.length || i < b.length; i++)
4 {
5 result.push((a[i] ?? 0) + (b[i] ?? 0));
6 }
7 return result;
8 }
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Algorithm 5.9 shows the improved genetic algorithm’s new finishing function. Notable
here is that the program keeps track of how the fitness value changes. If the fitness
value does not change for 50 iterations, the execution is terminated. The sophisticated
implementation allowing each iteration to be faster this means that over 1000 iterations
required just seconds in the trial experiments.

Algorithm 5.9: Finish function of new genetic algorithm
1 private finished()
2 const bestPhenotype = this.ga.best();
3 const newBestFitness = this.fitnessFunction(bestPhenotype);
4 if (newBestFitness == 0)
5 {
6 return false;
7 }
8 if (newBestFitness === this.oldBestFitness)
9 {

10 this.lastFitnessChange++;
11 if (this.lastFitnessChange > 50)
12 {
13 return true;
14 }
15 }
16 else
17 {
18 this.oldBestFitness = newBestFitness;
19 this.lastFitnessChange = 0;
20 }
21 return false;
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5.9 7. Iteration
5.9.1 Implementation Evaluation/Problem Analysis
A pipeline with the 5 bugs and the improved algorithm was triggered. The durations
(Table 5.8) show that the time budget is well-filled. The overshoot mentioned in the
previous treatment evaluation can be observed. The biggest overshoot was 24 seconds
(2 min budget 9. run). How close the algorithm now sticks to the time budget can be
observed in the boxplot. It is the widest for two minutes, but even there, it is not as
wide as in the previous iterations.

1 min 2 min 3 min 5 min
1. 0m 59s 1m 59s 3m 12s 4m 59s
2. 1m 01s 2m 17s 3m 11s 4m 59s
3. 0m 59s 2m 20s 2m 59s 4m 59s
4. 0m 59s 2m 10s 3m 10s 5m 13s
5. 1m 05s 2m 08s 2m 59s 5m 00s
6. 0m 59s 2m 12s 3m 11s 5m 15s
7. 1m 00s 2m 13s 3m 12s 5m 08s
8. 1m 02s 1m 59s 3m 12s 5m 12s
9. 1m 08s 2m 24s 2m 59s 5m 00s
10. 1m 05s 2m 10s 2m 59s 4m 59s

Table 5.8: Evaluation of iteration 6: Execution times of different time budgets and five
bugs introduced

1 2 3 4 5

1 min

2 min

3 min

5 min

Figure 5.14: Evaluation of iteration 6: Boxplot of execution times from table 5.8
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Table 5.9 shows the number of bugs found. Compared with previous iterations, this is a
complete success. In each run, all bugs were found.

1 min 2 min 3 min 5 min
1. 5 5 5 5
2. 5 5 5 5
3. 5 5 5 5
4. 5 5 5 5
5. 5 5 5 5
6. 5 5 5 5
7. 5 5 5 5
8. 5 5 5 5
9. 5 5 5 5
10. 5 5 5 5

Table 5.9: Evaluation of iteration 6: Number of bugs found with different time budgets
and five bugs introduced

Following the implementation evaluation, it was decided that the implementation is
sufficient for demonstrating practicability and drawing conclusions. For this, it is still
necessary to implement an algorithm for Random Testing as a benchmark to verify the
feasibility of the improved genetic algorithm presented in Iteration 6. Therefore, the
requirements for this iteration are:

1. It should supply a random algorithm that can be used as a control against the
improved genetic algorithm.

5.9.2 Treatment Design
The idea for a RT is to select a test using a random index and then sum up the supposed
time duration for all tests selected. No additional tests are be selected if the supposed
time budget is exceeded. The design for this can be seen in Figure 5.15.
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5.9. 7. Iteration

Figure 5.15: Iteration 7: Flow Diagram of RT approach

5.9.3 Treatment Evaluation and Treatment Implementation
Due to the simplicity of the approach it was decided to implement it completely and
see how well it adheres to the time budget, then evaluate it in the next iteration and
improve it if needed.

79



5. Method Design

5.10 8. Iteration
5.10.1 Implementation Evaluation/ Problem Investigation
Because of the randomness of the RT algorithm, introducing bugs made no sense for
the evaluation. Therefore, the pipelines were triggered with different time budgets and
observed how well the implementation stuck to it.

1 min 2 min 3 min 5 min
1. 3m 11s 3m 45s 3m 28s 6m 42s
2. 3m 40s 4m 27s 6m 10s 6m 37s
3. 2m 47s 4m 29s 6m 11s 5m 40s
4. 3m 17s 4m 03s 5m 37s 6m 44s
5. 4m 02s 3m 21s 7m 04s 6m 33s
6. 2m 57s 3m 49s 6m 14s 5m 28s
7. 3m 11s 4m 22s 6m 02s 6m 39s
8. 3m 10s 3m 43s 5m 39s 6m 55s
9. 2m 55s 3m 44s 6m 11s 6m 30s
10. 3m 18s 4m 35s 6m 24s 5m 06s

Table 5.10: Evaluation of iteration 7: RT approach: Evaluation of keeping time budget

3 4 5 6 7

1 min

2 min

3 min

5 min

Figure 5.16: Evaluation of iteration 8: RT approach: Boxplot diagram of execution times
from table 5.10
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5.10. 8. Iteration

Table 5.10 shows the execution times, and Figure 5.16 is a box plot of the data from the
table. It is clear that this implementation is not sufficient. If comparing an execution
taking about 1 minute from the improved algorithm and 3 minutes from the random
testing algorithm it is not a fair comparison.

The main objective for this stage is to make the RT stick to the time budget. This results
in the new requirement:

1. The Random Testing (RT) should adhere to the time budget.

5.10.2 Treatment Design
Several changes were made to the design of the Random Testing algorithm to fulfill the
requirements. The new flow of the algorithm is presented in Figure 5.17. It includes the
following changes:

1. Overhead Statistics: The improved version now uses the overhead statistics to
better address the run-to-run variation of test execution times.

2. Multiple runs: If the time is not used up, another run with the remaining time is
started.

3. Splitting of Run: Just like it was decided for the genetic algorithm, the pipeline
shall always be split into multiple sub-runs. It was decided only to use a fourth of
the available time budget.

5.10.3 Treatment Evaluation and Implementation
This approach will presumably work because it has already been used for the improved
genetic algorithm. Therefore, there is nothing to evaluate, and the changes were imple-
mented.
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Figure 5.17: Iteration 8: RT approach: Improved flow diagram
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5.11 9. Iteration
5.11.1 Implementation Evaluation
Another pipeline was triggered with the improved Random Testing approach. The results
are presented in Table 5.11 and Figure 5.18. While there is still some variation between
runs, this ranges in the same time frames as the improved genetic algorithm. Based on
this similarity of variations, the decision is that the implementation is finished and to
continue with the overall evaluation.

1 min 2 min 3 min 5 min
1. 0m 56s 1m 52s 2m 45s 4m 36s
2. 1m 12s 1m 51s 2m 42s 4m 30s
3. 0m 56s 1m 51s 2m 46s 4m 52s
4. 1m 01s 2m 02s 3m 24s 4m 38s
5. 0m 56s 1m 57s 2m 44s 4m 34s
6. 0m 54s 1m 50s 2m 50s 4m 30s
7. 0m 58s 1m 48s 3m 06s 5m 00s
8. 0m 54s 1m 49s 2m 43s 4m 55s
9. 1m 10s 1m 48s 2m 42s 4m 30s
10. 0m 59s 1m 50s 2m 43s 4m 55s

Table 5.11: Evaluation of iteration 8: RT Approach: Evaluation of keeping time budget

1 2 3 4 5

1 min

2 min

3 min

5 min

Figure 5.18: Evaluation of iteration 8: Boxplot of execution times from table 5.11
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CHAPTER 6
Evaluation and Results

This chapter is split into multiple parts. The first section compares the algorithm with
RT as a benchmark with different commit sizes. The second part focuses on evaluating
different numbers of bugs with varying sizes of commits. For both of these sections, a
specified number of bugs is introduced, and in addition, files are changed in a way that
they are considered as changed but have no bugs introduced. For this, empty lines are
utilized to increase the number of files changed and include these files to be covered. To
conclude, there is a discussion about the optimal time budget.

6.1 Benchmark Validation
This section is focused on analyzing the algorithm by comparing it to Random Testing.
A pipeline with one bug and different commit sizes was used for this. The file labels in
the graphs (Figures 6.1 and 6.2) indicate how many files were changed besides the bug.
For the changed files, empty lines were added to be considered changed, but the changes
do not trigger new bugs. The algorithm does not differ between files where functionality
was changed and files where just an empty line was added. This means that the total
commit size for ten files and one bug is eleven. This labeling is relevant for all graphs
and tables for this chapter.

Each type of pipeline was run 100 times. This means that Tables 6.1 and 6.2 show
directly the number of pipelines that found bugs. This number was taken from the CI
system.
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Table 6.1: Developed method: Percentage of pipelines finding the introduced bug with x
additional files in commit

1 min 2 min 3 min 5 min
0 additional Files 100% 100% 100% 100%
5 additional Files 100% 100% 100% 100%
10 additional Files 97% 100% 100% 100%
15 additional Files 97% 100% 100% 100%
20 additional Files 93% 100% 100% 100%
25 additional Files 94% 88% 95% 100%
30 additional Files 90% 91% 93% 100%
35 additional Files 84% 87% 94% 100%
40 additional Files 86% 80% 90% 100%
45 additional Files 80% 85% 96% 100%
50 additional Files 58% 74% 90% 100%

Figure 6.1: Developed method: Percentage of pipelines finding the introduced bug with
x additional files in commit
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6.1. Benchmark Validation

Table 6.1 shows the numbers for the improved version of the genetic algorithm. Noticeable
is that with a commit size of 30, the bug was still found in 90 percent of pipelines. It can
be seen that with a commit size of 50, the results dropped quite drastically compared to
45, however they are still above 50 percent for all pipelines.

Figure 6.1 presents the results as a graph. The graph illustrates how the approach
performs, except for the 50 additional files line, it never drops below 80 percent.

The random testing starkly contrasts the approach created in the method design chapter
(chapter 5). The graph (Figure 6.2) almost resembles a line. Statistically, this is expected.
For each duration, the expected number of pipelines finding the introduced bug is
calculated by:

E(Tb) = Tb ∗ 100
Tt

Where E(Tb) is the expected average number of pipelines finding the bug for a given time
budget, Tb is the time budget, and Tt is the total execution time for the whole test suite.
As an example, for a total pipeline of about 8 minutes (for the case study project, it is
seven to nine minutes for all unit tests), it’s about 12.5 percent for a 1-minute budget.

E(1) = 1 ∗ 100
8 = 12.5

For a 5-minute time budget, it is 62.5 percent.

E(5) = 5 ∗ 100
8 = 62.5

These are the numbers represented in the graph. The detailed numbers shown in Table
6.2 seem to support this.

The developed approach works well based on the available data, given that there is
enough time to fit all tests associated with changes into the time budget. However, the
numbers seem to indicate that the coverage is still reasonable even if not all tests can
be fitted into the time budget since the genetic algorithm seems to still provide good
coverage.
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Figure 6.2: Random testing: Percentage of pipelines finding the introduced bug with x
additional files in commit
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Table 6.2: RT approach: Percentage of pipelines finding the introduced bug with x
additional files in commit

1 min 2 min 3 min 5 min
0 additional Files 15% 23% 31% 61%
5 additional Files 24% 28% 52% 56%
10 additional Files 14% 24% 43% 59%
15 additional Files 26% 29% 37% 48%
20 additional Files 21% 34% 39% 59%
25 additional Files 12% 22% 37% 65%
30 additional Files 17% 26% 42% 51%
35 additional Files 13% 28% 40% 57%
40 additional Files 17% 28% 41% 59%
45 additional Files 13% 21% 47% 53%
50 additional Files 19% 22% 42% 59%
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6.2. Commit Size Analysis

6.2 Commit Size Analysis

This section tests the algorithm’s performance when different numbers of bugs are
introduced with varying sizes of commits.

Figure 6.3 shows the algorithm’s performance when one bug is introduced. This graph is
the same as 6.1 and serves as a baseline. It is observable from Figures 6.4 to 6.6 that
the number of pipelines that find a bug does increase. The only exception where the
effectiveness did not changed is the three bugs graphs. It seems that this is because the
code section which was changed is not covered properly.

Figure 6.6 shows that the pipeline’s effectiveness is over 80 percent, even with a commit
size of 50 for five introduced bugs. This consistent increase indicates that the algorithm’s
effectiveness increases with additional files. The conclusion is that the worst case is the
baseline of a single bug introduced into the codebase.

The graphs in Figures 6.7 to 6.10 indicate that if multiple bugs are introduced, the
approach can find all of them. The only bug not detected is the third one, which was not
covered by the code coverage. The bad news is that not all bugs are found within the
60-second time budget. Most of the five introduced bugs are only found within a time
budget of three minutes.

Figure 6.3: Improved algorithm: Percentage of pipelines finding at least one bug with
one bug introduced plus x additional files in commit

60 12
0

18
0

24
0

30
050%

55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

Av
er

ag
e

Pe
rc

en
t

of
Pi

pe
lin

es
Fi

nd
in

g
O

ne
Bu

g

10 additional Files
20 additional Files
30 additional Files
40 additional Files
50 additional Files

89



6. Evaluation and Results

Figure 6.4: Improved algorithm: Percentage of pipelines finding at least one bug with
two bugs introduced plus x additional files in commit
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Figure 6.5: Developed method: Percentage of pipelines finding at least one bug with
three bugs introduced plus x additional files in commit
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6.2. Commit Size Analysis

Figure 6.6: Developed method: Percentage of pipelines finding at least one bug with five
bugs introduced plus x additional files in commit
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Figure 6.7: Developed method: Number of bugs found on average with one bug introduced
plus x additional files in commit
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Figure 6.8: Developed method: Number of bugs found on average with two bugs
introduced plus x additional files in commit
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Figure 6.9: Developed method: Number of bugs found on average with three bugs
introduced plus x additional files in commit
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6.3. Ideal Time Budget

Figure 6.10: Developed method: Number of bugs found on average with five bugs
introduced plus x additional files in commit
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6.3 Ideal Time Budget
The data indicates that an approach limiting execution time to a time budget that there
is no ideal universal time budget. From the implementation and also the evaluation, some
factors can be presented to have an impact on how high such a time budget should be:

1. Expected Bug-to-Noise Ratio: Depending on the number of bugs expected to be
in the code and the number of comparative noise, the time budget needs to be
adapted. Furthermore, as shown in the Bug Evaluation section, it might be that
only a few or all bugs are found depending on the time budget. This means it must
also be considered if all bugs should be found or if it is sufficient to find at least
one.

2. Number of additional Files: Of course, the number of files in a project has an
impact. This comes down to the likelihood of detecting a bug. The commit size
analysis section might help when looking at this factor.

3. Coverage of Remaining Code: One factor considered only as a side note is also
important to the coverage over the whole project. The developed approach tries
to maximize the coverage over the whole project if time is still available. Due to
time constraints, no investigations were made on how well the approach performs
in that regard; it is expected that if good coverage of the remaining code needs to
be achieved, the time budget needs to be higher.
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CHAPTER 7
Discussion

This chapter discusses the findings concerning the research question.

7.1 Research Question 1
The first research question is: “What characteristics and criteria should be considered in
developing a test case selection algorithm that effectively determines the tests within a
suite that are susceptible to the impact of pushed commit(s)?”

This question is focused on the metrics available for the development of the time-constraint
testing approach. The literature research, as well as the investigation into jest, presented
different choices. In this regard, the following findings were achieved:

1. Dependencies via File Import: The first characteristic explored is dependencies.
Dependency relations were retrieved from the file imports of source code files. Each
dependency was read from the file consuming the code. With this, an association
between a provider and a consumer is possible. A provided file offers some code,
like a function, and a consumer imports and executes the function. The tested
approach was to backtrack from a file changed in a SCM commit to the test cases.
This is done by analyzing which files this changed file consumed functionality from.
Then, make the same association for the producer file. Repeat this process until
either a test file is reached or a circle is detected.
The findings for this approach utilizing dependencies are that test files can be found
this way, but the import characteristic alone is too unspecific. It returned too many
test files, some of which did not touch the code area.

2. Total Coverage: This metric, described in several papers [58], aims to maximize
the coverage over the whole code of a project. This approach was tested with the
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genetic algorithm and included a higher fitness value for test cases associated with
changes.
Analysis during the development of the time-constraint method showed that this
characteristic is not precise enough to reliably find errors introduced into the
codebase.

3. Per File Changed Coverage Association: The characteristic employed in the final
version of the method is the association of changed files with test files that cover
each changed file.
Testing for the iterations showed that when this association was leveraged, the best
results were achieved among all tested approaches. For this, the coverage of the
changed files was maximized, and if possible, all test files associated with changes
were eventually selected.

7.2 Research Question 2
The second research question: “Which of the determined tests are feasible and essential
to execute within a given time constraint in order to maximize bug detection?” is
investigated in the method design chapter (chapter 5). An approach that answers this
question was developed. The developed approach selects the tests employing the workflow
presented in iteration six. It consists of three parts:

1. Pre-Loop Phase: This phase (shown in Figure 7.1) fetches the data required for
selecting test cases. This includes:

a) Test Data: The run information stored inside the database of execution times
during the last nightly run and the coverage on a per-test file basis.

b) Overhead Statistics: Consists of two metrics: The average duration and the
standard deviation of the time constraint pipeline executions with the same
time budget.

c) Commit Data: The commit information retrieved from the SCM system since
the branch was forked from the main branch.

2. Method Loop: This section repeatably selects and executes the test cases until the
time budget is filled. The steps presented in Figure 7.2 are:

a) Adjust Time Budget: In the first step, the overhead statistics are used to
adjust the time budget. For this, a deviation factor is calculated. This factor
is the difference between the last observed run during the nightly and the
average plus two times the standard deviation of the time constraint runs.
Then, the time budget is adjusted by this factor. Furthermore, it is divided
into three parts, which increases the number of sub-runs and shows better
adherence to the time budget.
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7.2. Research Question 2

b) Test Case Selection and Execution: This is described in its dedicated part. It
selects and executes the tests.

c) Continue Run Decision: Following test execution, a decision is made to continue
the loop if time is left or otherwise terminate.

d) Update Overhead Statistics: A new overhead factor is calculated to adjust
the remaining time. The supposed time according to the nightly pipeline is
divided by the observed time for test execution.

3. Test Case Selection and Execution: In this section, shown in Figure 7.3, the genetic
algorithm for the test case selection and the selected test suite is executed. It
includes the sub-steps:

a) Changes Left Check: At first, there is a check whether all the test files
associated with changes, this means that they cover a changed file, have
already been executed. If so, the genetic algorithm is run with all tests.
Otherwise, only with tests that have coverage over the changed files.

b) Genetic Algorithm with additional Files Associated with Changes or All
additional Files: The implementation of the genetic algorithm is the same
regardless of the test set provided to it. The algorithm encodes the available
test files as a genome, and the fitness is calculated as the selected coverage over
the possible coverage in a binary fashion. This means it is not considered how
often a line is selected; it is just that it is. This was done as a simplification.
The initial populations are created randomly. The genetic algorithm terminates
when the highest observed fitness does not change for 50 evolutions. However,
at least 1000 evolutions are run.

c) Execute Round: Executes all test files the Genetic algorithm selects.

Figure 7.1: Pre-loop phase of the developed method
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Figure 7.2: Loop phase of the developed method

Figure 7.3: Test selection and execution of the developed method

7.3 Research Question 3

The answer to the third research question “How many bugs in the code does such an
approach find compared to running the whole test suite?” was presented in the method
design (chapter 5) and the evaluation chapter(chapter 6). This research question can only
be addressed with experimental evidence. However, the results presented in Table 6.9
indicate that it is possible for the time-constraint approach to reveal all bugs that were
introduced into the code. Compared to the evaluation done during method development,
the bugs introduced for the bug evaluation section of the evaluation chapter indicate that
while it is possible to find all bugs, this is not always the case. For the 8 bugs introduced
pipeline, it can be seen that the more other files are changed, the fewer bugs can be
found.

For the time-constraint approach, the following reasons lead to a lower bug detection
rate.

98



7.4. Research Question 4

1. Coverage: In order to find a bug, it must be covered. This means that if a bug is
not found with the full test suite, it can also not be found with the shortened one.

2. Time-Budget: As was shown in the Bug Evaluation, if not all files that cover a test
fit within the time budget, then not all of them get executed. This results in a
reduction in coverage, and a bug might not be found.

3. Commit-Size: The second variable determining how many tests need to be covered
within the time budget is the number of files that have been changed. So if the
number of files changed is too high, then it cannot be guaranteed that the bug(s)
are found.

7.4 Research Question 4
The fourth and last research question is: “What is the relationship between the duration
of the time budget and the effectiveness of a selected test set, and how can the optimal
time budget be determined for achieving the best results?”

As with research question three, this was addressed in the evaluation chapter. The commit
size analysis showed that for the case study project, up to 45 files can be changed, and a
single bug can still be found in 80 percent of cases. This indicates that the effectiveness of
the developed approach can be comparable to running a full test suite. However, because
of the effort required to validate this, the case study project was the only one tested.
More data is required to draw a final conclusion on the effectiveness.

The collected data shows that the duration of the ideal time budget is highly dependent
on factors like the number of changes, whether every bug should be found, and the
duration of each test case. Regardless a conclusion from the data can be made which
is that the effectiveness does not peak at a specific time budget and that a higher time
budget yields generally better results than a lower one.
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CHAPTER 8
Conclusion

This work tried to investigate whether a time-constrained approach to software testing
is possible. The developed method utilizes a genetic algorithm and per-test-file-based
coverage. It outperformed the Random Testing benchmark. The experiments conducted
during the evaluation indicate that finding bugs in a reduced amount of time is possible.
However, the analysis of the commit size suggests that it cannot be guaranteed that all
bugs are found.

8.1 Threats to Validity
While the work done for this thesis was done with as much rigor as possible, there are
still a few points that could threaten the validity of the presented results.

The first issue is that the approach was only tested on a single case study project. The
reason for this is the enormous amount of resources required for analyzing the approach,
especially on the CI side. For the data presented in the evaluation chapter, over 14800
pipelines were executed, totaling over 40.000 pipeline minutes, over 28 days. Therefore,
the decision was to keep this for future work.

The second issue is that no statistical analysis was conducted. There are two main
reasons why this is the case. The first one is that the evaluation was conducted only with
artificially introduced bugs. While this ensures better comparability, it also diminishes
the significance of the data. Ideally, the data for this analysis would be collected with
actual commits, where the commit is tested with different time budgets for the developed
approach and the RT approach. However, the required resources to test multiple commits
are enormous.

The third issue is that no actual commits were used for evaluation. The reason for this is
better comparability of artificially introduced bugs. However, ideally, to collect this data,
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8. Conclusion

the approach would have to be utilized in a production environment for some time in
order to generate enough data. This was not feasible for this work.

8.2 Future Work
The following things are considered to be of interest for future work:

• Implement a Strict Time Budget: Ideally, to restrict the execution time to a
specified time, a custom test runner would need to be implemented.

• Different Projects: It would be interesting to apply the approach to different case
study projects in order to generate more data to prove the effectiveness of the
approach.

• Allow More Commits: As stated in the method design chapter (chapter 5), currently,
only 1000 commits are considered for changes; it would be ideal if this restriction
is removed.

• Deploy to Production: As stated in the threats to validity, deployment to a
production environment would bring additional data that could underscore the
feasibility of the developed approach.

• Different Selection Methods: It would be interesting to see how other methods to
select the test cases like Ant Colony Optimization mentioned in chapter3.2 compare
to the genetic algorithm.
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