
Navigating the Transition from
Centralized to Federated Learning

with Non-IID Data: A Human
Activity Recognition Case Study

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Rastko Gajanin, BSc
Matrikelnummer 11930500

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Assistant Prof. Dipl.-Ing. Dr.techn. Stefan Nastić, BSc
Mitwirkung: Univ.Ass. Dr. Andrea Morichetta

Anastasiya Danilenka, MSc

Wien, 20. August 2024
Rastko Gajanin Stefan Nastić

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Navigating the Transition from
Centralized to Federated Learning

with Non-IID Data: A Human
Activity Recognition Case Study

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Rastko Gajanin, BSc
Registration Number 11930500

to the Faculty of Informatics

at the TU Wien

Advisor: Assistant Prof. Dipl.-Ing. Dr.techn. Stefan Nastić, BSc
Assistance: Univ.Ass. Dr. Andrea Morichetta

Anastasiya Danilenka, MSc

Vienna, August 20, 2024
Rastko Gajanin Stefan Nastić

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Declaration of Authorship

Rastko Gajanin, BSc

I hereby declare that I have written this Diploma Thesis independently, that I have
completely specified the utilized sources and resources and that I have definitely marked
all parts of the work - including tables, maps and figures - which belong to other works
or to the internet, literally or extracted, by referencing the source as borrowed.
I further declare that I have used generative AI tools only as an aid, and that my own
intellectual and creative efforts predominate in this work. In the appendix “Overview of
Generative AI Tools Used” I have listed all generative AI tools that were used in the
creation of this work, and indicated where in the work they were used. If whole passages
of text were used without substantial changes, I have indicated the input (prompts) I
formulated and the IT application used with its product name and version number/date.

Vienna, August 20, 2024
Rastko Gajanin

v

Acknowledgements

Firstly, I would like to thank Professor Nastic for his support and guidance throughout
the past year. Our collaborations were both enlightening and enjoyable, and I am truly
fortunate to have had the opportunity to work under his mentorship.

Andrea and Anastasiya, I am deeply thankful for your supervision of this thesis. Thank
you for all the discussion and feedback sessions which kept me on the right track and
imparted countless lessons on both federated learning and academic excellence. I found
immense joy in our collaborative work, especially during the creation of the paper that
resulted from this thesis.

During the entirety of my studies, my parents provided me with unwavering support and
encouragement. Through their academic work and commitment, they inspired me to
pursue this level of education as well. I will be forever grateful to them for providing me
with the privilege to fully focus on my studies.

I wish to express my most sincere gratitude to my girlfriend, my greatest fan, Ana.
Countless hours on video calls, regular visits and outings brought me so much joy and
have been the main sources of strength and motivation throughout my academic journey.
Your encouragement, understanding and gentle reminders to rest have been some of the
most crucial factors of my success. I thank you wholeheartedly for believing in me and
for always being by my side.

To my sister, Teodora, I would like to sincerely thank you for your persistent emotional
support and the many conversations we had over coffee breaks and lunch. They helped
me get much-needed mental rest, laughter and encouragement. Your presence kept me
grounded and motivated throughout my studies and I will always remember that.

Lastly, I wish to thank my close friend, Emir, with whom I shared so many courses,
coffees and rides home. Completing our studies side by side has been an immense honor
and a huge source of motivation. Your caring advice and support kept me on track and
helped me approach my studies with a clear mind. Our friendship made the pursuit of
this degree truly unforgettable, thank you.

vii

Kurzfassung

Die zunehmende Verbreitung von IoT-Geräten im Alltag bietet einzigartige Möglichkei-
ten, die kontinuierlich erfassten Daten für personalisierte Machine-Learning-Aufgaben zu
nutzen. Ein prominentes Anwendungsbeispiel ist die Erkennung menschlicher Aktivitä-
ten (Human Activity Recognition, HAR), die in Bereichen wie dem Gesundheitswesen,
der Arbeitssicherheit, in Smart Homes und darüber hinaus Anwendung findet. In die-
sem Kontext ist der Schutz der Datenprivatsphäre von größter Bedeutung, wobei sich
Federated Learning (FL) als eine vielversprechende Methode zum dezentralen und da-
tenschutzkonformen Training von ML-Modellen erwiesen hat. Durch den Einsatz von
FL können HAR-Modelle trainiert werden, ohne dass die Daten der Endnutzer über
das Netzwerk übertragen werden, wodurch strenge Datenschutzstandards gewährleistet
werden. Allerdings stellen die ausgeprägte Heterogenität und die nicht-unabhängig und
identisch verteilten (non-IID) Daten im HAR-Bereich erhebliche Herausforderungen
für FL-Methoden dar. Die Variation lokaler Label- und Feature-Verteilungen sowie die
Heterogenität der Geräte in HAR-Datensätzen führen zu einer Verschlechterung der
Modellleistung und zu Instabilitäten im Trainingsprozess. Während asynchrones FL
die Systemaspekte der Heterogenität adressiert, verstärken sich dadurch zugleich die
negativen Auswirkungen der non-IID-Daten auf das Modelltraining durch häufigere und
differenziertere globale Modellaktualisierungen.

Da zentrales Lernen (Centralized Learning, CL) nach wie vor eine weit verbreitete Praxis
im Bereich des maschinellen Lernens ist, gestaltet sich der Übergang zu Federated Learning
(FL) aufgrund der Herausforderungen und Komplikationen, die durch extrem non-IID
HAR-Daten entstehen, als nicht trivial. Dieser Übergang stellt einen häufigen Prozess in
der FL-Forschung und -Praxis dar, der oft zeitaufwendig ist und zahlreiche Fallstricke
birgt. Zur Bewältigung dieser Problematik schlagen wir eine neuartige Methodik vor, die
den Übergang von CL zu FL bei non-IID-Daten erleichtert. Diese Methodik bietet einen
strukturierten und formalen Ansatz, der potenzielle Herausforderungen explizit hervorhebt.
Zur Evaluierung der vorgeschlagenen Methodik präsentieren wir eine Fallstudie, die den
Übergang von CL zu FL anhand eines realistischen HAR-Datensatzes untersucht. Diese
Fallstudie wird erweitert, um empirisch die Auswirkungen von Datenaugmentation,
Skalierung, Optimiererwahl, Lernrate, Batch-Größe und Serverauslastung auf das FL-
Training und die Evaluierung zu analysieren. Zu den zentralen Erkenntnissen gehören: Die
Nutzung eines zentralen Testdatensatzes für eine gerechtere Evaluierung geht zulasten
des Datenschutzes; der Stochastic Gradient Descent mit Momentum (SGD-m) zeigt

ix

im Vergleich zu ADAM eine bessere Leistung als Optimierer; globale Skalierung birgt
Datenschutzrisiken, ermöglicht jedoch eine bessere Leistung, da sie teilweise das Feature-
Skew korrigiert; trotz globaler Skalierung bleibt das Feature-Skew auf Klassenebene
bestehen und ist insbesondere bei Minderheitsklassen ausgeprägter; ausgelastete Server
können die Konvergenz des Modells auch bei verlängerten Trainingszeiten beeinflussen.
Schließlich haben wir zur Implementierung der asynchronen FL-Komponente unserer
Methodik und zur Förderung weiterer Fortschritte in diesem Bereich das populäre Flower-
Framework erweitert und die Lösung als Open-Source-Implementierung des asynchronen
FL veröffentlicht.

Abstract

The prevalence of IoT devices in everyday life provides unique opportunities to utilize
the variety of continuously acquired data for personalized Machine Learning (ML) tasks.
One such use case is human activity recognition (HAR), which can be employed in
healthcare, occupational safety, smart homes, and beyond. In HAR, data privacy is
paramount, and Federated Learning (FL) has proven itself an excellent strategy for
training ML models in a distributed and private manner. FL can be leveraged to train
HAR models without passing the client’s data over the network while maintaining strict
privacy standards. However, highly heterogeneous and non-Independent and Identically
Distributed (non-IID) HAR data introduces severe challenges for FL methods. Variations
in local label and feature distributions, as well as device heterogeneity in HAR datasets,
lead to poor performance and instability in model training. While asynchronous FL
addresses the system aspect of heterogeneity, it amplifies the negative effects of non-IID
data on model training due to more frequent and fine-grained global model updates.

Given that centralized learning (CL) is still a widespread ML practice, transitioning
to FL can be non-trivial due to the challenges and complications caused by extremely
non-IID HAR data. This transition is a frequent process in FL research and practice, and
it is often time-consuming and contains many pitfalls. To address this issue, we propose
a novel methodology for transitioning from CL to FL with non-IID data, providing a
structured and formal approach that highlights potential challenges. To evaluate this
methodology, we present a case study of transitioning from CL to FL on a realistic HAR
dataset. We extend this case study and empirically examine the implications and effects
of data augmentation, scaling, optimizer, learning rate, batch size and busy servers on FL
training and evaluation. Our main findings include: using a centralized test set for fairer
evaluation comes at the cost of privacy; better performance of SGD-m over ADAM as the
model optimizer; global scaling introduces privacy risks but enables better performance
as it partially addresses feature skew; even after global scaling class-level feature skew
persists and is more prominent for the minority class; busy servers can significantly
impact model convergence even with extended train time. Finally, to implement the
asynchronous FL component of the methodology and promote further advancements in
this field we extended the popular Flower framework and published the solution as an
open-source implementation of asynchronous FL.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Research Questions . 3
1.4 Methodology . 4
1.5 Structure . 5

2 Background 7
2.1 Human Activity Recognition . 7
2.2 Distributed Machine Learning . 8
2.3 Federated Learning . 12

3 Related Work 15
3.1 Human Activity Recognition with Deep and Federated Learning . . . 15
3.2 Non-IID Data Implications on Federated Learning 17
3.3 Differences between Centralized and Federated Learning 18

4 From Centralized to Federated Learning with Non-IID Data 21
4.1 Establishing the CL Baseline . 21
4.2 Transitioning to FL . 22
4.3 Summary . 28

5 Case Study: Federated Learning for Human Activity Recognition 31
5.1 Extrasensory Dataset . 31
5.2 Data Preprocessing . 33
5.3 Quality Assessment Metrics . 37
5.4 Model Design & Tuning . 37

xiii

6 Evaluation 43
6.1 Evaluation Testbed Setup . 43
6.2 Empirical comparison of the CL, SFL and AFL baselines 44
6.3 Data-related Decisions . 45
6.4 System & Model-related Decisions . 51
6.5 Summary . 54

7 Framework Implementation 55
7.1 Flower Framework . 55
7.2 Augmented Monitoring . 56
7.3 Asynchronous Federated Learning with Flower 57
7.4 External Packages & Versioning . 61

8 Conclusion 63
8.1 Takeaways . 64
8.2 Limitations . 64
8.3 Future Work . 65

Overview of Generative AI Tools Used 67

List of Figures 69

List of Tables 73

Bibliography 75

CHAPTER 1
Introduction

1.1 Motivation
In the last decade, IoT has been able to connect millions of devices, supplying an
unprecedented amount of data used by applications to provide innovative services.
Considering individual use, smartphones, smart wristbands and smartwatches have
become integrated into people’s everyday lives. One prominent task emerging from
the prevalence of these devices is the collection of real-time data from individuals to
provide assistance; with the most notable application being human activity recognition
(HAR). HAR rapidly became pivotal in many areas, such as healthcare, human-computer
interaction, surveillance systems, entertainment, and more [1]. HAR tasks span from
recognizing simple and common activities, such as walking or running, to assisting in
more complex ones, such as doing laundry or preparing meals [2]. Thus, gathering data
from various sensors present in smart devices, such as accelerometers, gyroscopes, and
magnetometers, becomes essential to precisely model the observed activities. At the same
time, the pervasiveness of such applications comes with costs. It increases the devices’
computation demands, the need for real-time feedback and it amplifies privacy concerns,
especially in sensitive applications [3].

Federated learning (FL) [4] has been emerging with the promise to address these challenges,
offering methods for privacy, security, and scalability by decentralizing the machine
learning (ML) model training and shifting it to the clients’ devices, therefore making it
particularly suitable for IoT systems [5]. In FL, the training of ML models is carried
out on multiple individual devices that own data, i.e., clients, while a server overlooks
and orchestrates the learning process. In each training round, the server selects a subset
of clients for model training and sends the current global model to this subset. Clients
of this subset train on the current global model. After local training, they send the
updated models back to the server, where these are aggregated into the new global
model. Indeed, FL serves numerous use cases spanning from training on privacy-sensitive

1

1. Introduction

Server

Clients

Initial
Global
Model

Broadcast

Local training

Merge and share

Figure 1.1: High-level perspective of the asynchronous federated approach for Human
Activity Recognition.

medical data [6] to search query suggestions based on user typing patterns residing
on their smartphones[7], in recent years also contributing to smart cities, industry 4.0,
autonomous driving, and more [5].

Although FL’s privacy-preserving and distributed nature introduces several benefits, it
comes together with new challenges, especially for dynamic scenarios such as HAR. HAR
typically shows broad data heterogeneity, caused by many individuals performing different
actions in different ways and at different rates. This scenario produces high intra-class
variability and inter-class dissimilarity [8], making client model training non-trivial.
Indeed, it is established that having non-independently and non-identically distributed
(non-IID) data across FL clients leads to divergent local model updates and, consequently,
undermines global model performance [9]. Furthermore, device heterogeneity in HAR-IoT
applications impacts the FL model training by introducing unreliable device connectivity
and limitations in storage and computation capabilities [10].

To mitigate the challenges associated with real-time updates in such unstable scenarios,
asynchronous FL (AFL) was proposed [11]. This approach allows clients to train models
and send updates once ready or connected while the server continuously aggregates the
received model updates. Unfortunately, AFL amplifies the problem of diverging models
with non-IID data. In fact, AFL natively favors clients that train faster and communicate
more frequently with the server [12]. Therefore, AFL on non-IID data further increases
the global variance of model updates [13].

Figure 1.1 depicts the workflow of AFL for HAR. First, the FL server broadcasts the

2

1.2. Problem Statement

global model (brick red rectangles); then, each device can immediately start the local
training (light blue rectangles). Once the client completes the local training (even in
case of device or network-induced delays, see red ‘X’), it sends the updates to the server,
which merges them with the global model and sends the new global model back. As of
today, the challenge of non-IID data in asynchronous FL remains open [12], urging the
development of robust methods to address it.

1.2 Problem Statement
The open issues in both HAR and FL research make transitioning from centralized learning
(CL) to FL and AFL with non-IID data not straightforward. Each time this scenario
arises, researchers must develop a new transition process from CL to FL. Moreover, this
involves making several key design decisions and identifying pitfalls, which typically
emerge only after extensive analyses, consuming additional research time. The absence
of a predefined standardized and structured way of approaching this transition largely
limits the adoption of FL in practice, especially when applied to highly non-IID problems
such as HAR.

In this thesis, we present a novel methodology to transition from CL to FL, outlining
an extensive evaluation of the main design decisions that need to be taken. We present
a realistic HAR case study and exhaustive empirical analysis of our newly proposed
methodology to illustrate challenges, implications and potential pitfalls arising when
developing (A)FL systems with non-IID data. We aim to enable the HAR application
developers to evaluate the key design decisions of the CL and federated model training
and to reach optimal design choices considering the performance of ML models. Our
work is part of a large Linux Foundation project, Centaurus, 1 that provides a novel
open-source platform for building unified and highly scalable public or private distributed
Edge, Cloud, and 3D continuum systems.

1.3 Research Questions
With this thesis, we aim to answer the following research questions:

• RQ.1: How to uniformly structure the process of transitioning from
centralized to synchronous and asynchronous federated learning in non-
IID settings and what design decisions are to be considered during this
process?
This question is answered through the proposal of a novel methodology introducing
structure to the transition process from CL to SFL and AFL. This novel methodology
leverages a typical ML development pipeline for CL as the base. It then introduces
modifications of the base pipeline, as well as additional design decisions, parameters
and steps required for developing ML models in FL settings with non-IID data.

1https://www.centauruscloud.io/

3

1. Introduction

• RQ.2: What are the effects and implications of different design decisions,
proposed in the methodology, on FL model training with non-IID data?

We answer this question through a comprehensive empirical evaluation of the con-
sidered design decisions applied to a HAR use case. This uncovers the effects of
these design decisions on the performance of the resulting ML models and provides
key takeaways about the significance and implications of these decisions on the FL
training and FL evaluation processes.

• RQ.3: How can the asynchronous FL step of the methodology be inte-
grated into an existing open-source FL framework?

To answer this question we implement the AFL method described in our novel
methodology as an extension of the open-source Flower [14] framework. It is
released as an open-source AFL implementation based on the works of [11, 15, 16].
The solution enables simple prototyping, reproducibility and adaptability with the
ultimate goal of promoting further research in this area.

1.4 Methodology
To answer the research questions, the thesis will follow a methodology consisting of five
main phases:

1. Relevance: Establishing the relevance of the problem of transitioning from CL to
FL in realistic non-IID settings through a literature review. The result of this phase
is a report on the state-of-the-art literature on the topics of non-IID data issues in
Federated Learning, HAR with Deep and Federated Learning and comparison of
centralized and federated learning with non-IID data.

2. Design: Designing a methodology that provides a unified view on the transition
from CL to SFL and AFL in non-IID settings. The result of this phase is a
standardized and prescriptive methodology for transitioning from CL to SFL and
AFL with defined design decisions and tunable parameters.

3. Implementation: This phase encompasses the implementation of the methodology
artifacts and, with that, the development of the flower extension for AFL. The
result of this phase is the implementation of all steps in the methodology including
the open-source flower integration that implements AFL. For the sake of clarity,
reproducibility and traceability, the result of this phase will also encompass clear
documentation of the produced artifacts and implementation details in a dedicated
chapter.

4. Case study: This phase introduces the case study of a highly heterogeneous
HAR dataset and evaluates the proposed methodology by applying it to a realistic

4

1.5. Structure

use case. The result of this phase is a clear description of the dataset characteris-
tics, presentation of the data preprocessing steps, key evaluation metrics, model
architecture and model hyperparameter tuning results.

5. Evaluation: This phase involves empirical assessment and further discussion of
the challenges and common pitfalls of various design decisions proposed in the
transition methodology. The results are key takeaways about the discussed design
decisions that allow the community to leverage our insights and facilitate further
research on this topic.

1.5 Structure
The thesis is structured as follows. Firstly, Chapter 2 provides a comprehensive overview
of the foundational concepts related to Human Activity Recognition, Distributed Machine
Learning and Federated Learning. Then, in Chapter 3 we present the results of our
literature review on the topics of HAR with deep and federated learning, implications of
non-IID data on FL and analytical comparisons of CL and FL. We proceed to introduce
our novel methodology for transitioning from CL to FL in the presence of non-IID data in
Chapter 4. This is followed by Chapter 5 where a case study of a transition to FL within
a HAR context is presented. There we utilize and evaluate our proposed methodology. In
Chapter 6 we illustrate the effects and implications of different design decisions introduced
in our methodology based on an exhaustive empirical analysis. To enhance the clarity and
reproducibility of thesis contributions and facilitate implementation navigation, Chapter 7
presents the implementation details of the produced software artifacts, focusing primarily
on the AFL extension and its relation to flower framework. Finally, in Chapter 8 we
summarize the contributions and main takeaways of this thesis and propose several
avenues for future research.

5

CHAPTER 2
Background

Before proceeding with the primary contributions of the thesis, we wish to set a common
foundation and introduce the main concepts through this chapter. Therefore, a brief
primer on Human Activity Recognition, Distributed Machine Learning and Federated
Learning is presented in the following.

2.1 Human Activity Recognition
Over the past decade, developments in sensor technologies have significantly improved the
sensor quality while reducing cost, which led to their widespread adoption. Concurrently,
the fields of Internet-of-Things (IoT) and edge/ubiquitous computing were challenged
to follow the pace of these advancements. This caused a surge of interest in Human
Activity Recognition (HAR) applications [17, 18, 19] and enabled remarkable contributions
to personal healthcare [20, 21], security & surveillance [22, 23] and human-computer
interaction [24, 25, 3].

HAR can be defined as the process of recognizing individuals’ actions and states (e.g.
walking, running, cycling, standing, laying down and sitting) based on sensor readings and
an efficient learning algorithm [3, 18]. According to [26] HAR can be categorized based on
the sensor type into Vision-based and Sensor-based. Sensors used in the former primarily
consist of cameras with a fixed position, while for the latter, they encompass wearable
devices and smartphones. Since using cameras for HAR introduces more privacy risks,
carries larger implementation costs and is less pervasive than smartphones, sensor-based
HAR has gained more popularity in recent years [3].

For performing sensor-based HAR, the most commonly used sensors are accelerometers,
magnetometers and gyroscopes. This lies in their good performance, low cost and large
prevalence (i.e. they are already built into the majority of modern smartphones) [18]. In
[3] the authors describe the typical ML pipeline for sensor-based HAR and this pipeline

7

2. Background

is depicted in Figure 2.1. Firstly, the data acquisition can be performed in a controlled
environment (lab) or in a more realistic scenario, in free-living conditions (in-the-wild
[27]). After sensor data is retrieved it is cleaned and noise is removed. Then, it is
segmented into windows, and the features are extracted (e.g. Time domain features,
Frequency domain features). Lastly, the ML model is trained on the selected subset of
features, evaluated and deployed.

Each of the steps can be modified and there is a variety of modifications that already exist,
however, the most commonly modified component is the learning algorithm. According
to [18] ML-models leveraged for sensor-based HAR can be divided into four categories:
deep learning (Deep, Convolutional and Recurrent Neural Networks), ensemble learning
(Random Forests, Gradient Boosting), shallow models (K-Nearest-Neighbors, Support-
Vector-Machines) and Fuzzy Logic Systems. Another category in this classification,
inspired by the categories provided by [26], are probabilistic models (Naive Bayes,
Hidden Markov Models). While all of these approaches address certain shortcomings and
improve the HAR performance there are still several persistent challenges in this field:
1) intra-class variability and inter-class dissimilarity - different individuals perform the
same actions differently which complicates model training [8], 2) identifying composite
activities consisting of multiple atomic activities (e.g. playing basketball consists of
walking, running and sitting) [19] 3) identifying concurrent activities (e.g. talking and
walking) [19, 3], 4) ensuring sufficient data privacy (the majority of these approaches
are centralized implying that sensitive data is communicated over potentially unsafe
networks).

2.2 Distributed Machine Learning
As the amount of data generated across the edge-cloud continuum continues to grow,
centralized machine learning solutions became processing and storage bottlenecks. This
encouraged the researchers to explore distributed processing options that would parallelize
the training process [28]. Distributed Machine Learning can be seen as an umbrella term
for all solutions that distribute ML model training and/or inference to a certain extent.

2.2.1 Categorization

Verbraeken et al. recognize several classifications of Distributed Machine Learning in
an extensive survey on this topic [28]. The first major discriminant is the parallelism
type: data parallelism refers to a setting where different datasets are used for training
the same model, while model parallelism describes a reversed context, the same dataset
being used to train different models, whose results are typically aggregated by ensembling
[28]. In certain cases, these models are not aggregated but only kept on the clients. This
leads to distributed multi-task learning [29, 30, 31, 32, 33, 34], where multiple clients
attempt to locally train different models that are related and their outputs are usually
not aggregated.

8

2.2. Distributed Machine Learning

Figure 2.1: Typical ML model development pipeline for sensor-based HAR [3]

According to [35] the communication network topologies can be classified into three
primary groups:

• centralized - Hierarchical with one level (one central node connected to all other
nodes)

• decentralized - Multi-level hierarchical (Multiple intermediary nodes between the
edge nodes and the central node)

• fully distributed - No central node, each node is connected only with its neighbors

Verbraeken et al. extend this classification by adding the following categories that are
specific to distributed ML [28]. Visualization of these topologies created by the authors
is provided in Figure 2.2:

• Trees - Typical hierarchical structure

9

2. Background

Figure 2.2: Different Distributed Machine Learning topologies [28]

• Rings - Usually employed to minimize the large communication cost of the broadcast
operations

• Parameter servers - The cenralized nodes only maintain the state of the models,
i.e. their parameters

• Peer to peer - Each node (client) has its own copy of the model parameters

Lastly, the authors classify the solutions based on the synchronization behavior of the
training process and propose the following categories [28]:

• Bulk Synchronous Parallel (BSP) - Training is performed in strictly synchronized
communication/computation rounds. Clients of one round wait until other clients
in the same round finish before being able to proceed.

• Stale Synchronous Parallel (SSP) - Several faster clients may proceed even if
stragglers (slower clients) are still training. This behavior is allowed until the
maximum staleness is reached and all clients have to wait for the slowest one.

• Approximate Synchronous Parallel (ASP) - Instead of constraining the client
contributions by staleness, this method constrains them by establishing if they are
significant or not.

10

2.2. Distributed Machine Learning

• Total Asynchronous Parallel (TAP) - Allows complete asynchrony and maximal
speedup with the risk of slower convergence and even potential model drift [28].

2.2.2 Benefits and Applications

Besides the primary goal of alleviating the processing bottleneck imposed by centralized
ML solutions, several other justifications make distributed ML an advantageous way of
training ML models [36]. Firstly, modern mobile devices have a considerable amount of
processing power (CPU and RAM) [37], making them viable options for computation
offloading. Not harnessing such immense aggregated compute power by simply sending
the data to a centralized server for training attributes inefficiency to such solutions.
Secondly, as the amount of collected data on edge devices grows, transmitting such large
quantities of data over the network is significantly more expensive than simply sending
model parameters. This makes the distributed ML solutions appropriate for big data
and training of large-scale models, as these typically require proportionally more training
samples [28]. Lastly, the privacy of the data is one of the great concerns alleviated with
distributed ML and is mainly addressed by not transmitting the client-local data over
the network, homomorphic encryption or differential privacy techniques [38].

Distributed Machine Learning has found its application in a variety of fields, from natural
language processing [7], medical data [6] and inherently distributed transactional [39]
and astronomical [40] data of large magnitudes [28]. One prominent example would be
the Google keyboard query prediction model that was trained in a federated (distributed)
fashion [41, 7]. During training, the sensitive data (queries) remained on the clients’
devices and only the updated models were sent to the server, thereby addressing the
privacy concerns. Closely related to user text data is the data collected from smartwatches
and smartphone sensors. This data is typically used for recognizing user activity [42, 43]
and can be observed and processed online. Moreover, as it is generated closer to the
edge it might contain identifiable information. Hence it would be suitable to employ
privacy-preserving distributed ML (e.g. federated learning) as the training strategy for
the models relying on this data. Likewise, federated learning has been a popular choice
for many models trained on medical data [6] where the privacy of electronic medical
record (EMR) data carries great significance. Common applications encompass EMR
Data classification, EMR data extraction, disease diagnostics and medical image analysis
[6].

2.2.3 Limitations & Challenges

As with any other problem that is being adapted for distributed processing, ML algorithms
must be accordingly adjusted as well when transitioning to DML. This brings significant
design/formulation overheads, especially when coupled with further constraints such as
performance trade-offs (e.g. energy consumption, per resource efficiency, provider costs)
[28]. The second major concern according to Verbraeken et al. is fault tolerance, which is
significantly more problematic in synchronous solutions [28]. This is primarily because,

11

2. Background

in case of a single client crash, other clients cannot make progress and are forced to wait,
incurring significant overheads. Verbraeken et al. further argue that current frameworks
lack reliable privacy support, even when the data is not transmitted over the network
[28]. Lastly, the issue that also lies at the focus of this thesis is the inherent heterogeneity
of the clients across the edge-cloud continuum. This heterogeneity does not only refer to
the resource heterogeneity in terms of compute power and memory, but it refers to the
statistical heterogeneity of the data as well. Different clients might not only have different
amounts of CPU and memory resources available but different amounts, distributions
and types of data as well. Such settings pose significant issues when training ML models,
as they usually lead to unnecessary waiting, straggler issues, model drift and overall
slower model convergence.

2.3 Federated Learning
The concept of federated learning (FL) was popularized through the work of McMahan
et al.[4] published in 2017. As the amount of privacy-sensitive data grows on mobile
(edge) devices, there is a need to process these data (train ML models) securely and
efficiently. Fundamentally, federated learning can be observed as a means of achieving
these goals. It is an encrypted [38] distributed model training approach consisting of
multiple rounds. At the beginning of each round, the centralized parameter server selects
a subset of clients and sends the current global model parameters to these clients. Each
selected client then trains on its own data samples and only sends the updated model
parameters back to the server. When all selected clients send their updates, these are
then aggregated on the server and the round is finished [4]. The aggregation is usually the
mean of all updated model parameters weighted by the number of samples the respective
client used to produce that update. This basic outline of the federated learning algorithm
is illustrated in Figure 2.4. According to the classification provided by Verbraeken et al.,
this method can be considered as a block-synchronous data-parallel form of distributed
ML, with a centralized parameter server topology. The server is also responsible for the
orchestration of local training processes, storage and distribution of the global model. The
method ultimately ensures data privacy by keeping data at the client’s premises, while
shifting the computation to the data. Furthermore, by sending only model parameters
over the network and not entire datasets a lower communication overhead is achieved [4].
Federated learning can be categorized based on multiple criteria. Firstly, the clients’
datasets can differ in both dimensions: samples and features [44, 38]. If all clients possess
the same features, but different samples, the setting is referred to as horizontal FL. On
the other hand, vertical FL represents a setting where clients represent the same samples
with different features. A visual depiction of these two settings created by [44] is provided
in Figure 2.3. The overlapping of samples and features, as well as the combination of the
two settings also represent potential contexts. These, however, introduce a high degree
of complexity and will not be discussed further. Across this thesis when we refer to
federated learning, we refer to the horizontal FL, where the clients hold different samples
of the same set of features.

12

2.3. Federated Learning

Figure 2.3: Illustration of horizontal (left) and vertical FL (right). In horizontal FL all
clients possess the same set of features representing different sets of samples, while in
vertical FL the clients represent the same set of samples with different sets of features.
[44]

Figure 2.4: Depiction of Federated Learning. At the beginning of each round, the server
sends curremnt global model parameters. Each of the clients continues training the model
on their local dataset and, after a specified amount of local epochs, sends the updated
model back to the server. The individual updates are then aggregated and this aggregate
forms the new global model.

Since the previously described federated learning procedure is carried out in rounds, it is
commonly referred to as synchronous federated learning, because the server waits for the
responses from all clients. In the following, we discuss the asynchronous variant of FL,
where the training is performed without such synchronization.

2.3.1 Asynchronous Federated Learning
Asynchronous Federated Learning was introduced as a means of alleviating the straggler
issues caused by client heterogeneity (concerning both resources and data) [11]. This

13

2. Background

adaptation is essentially characterized by the absence of training rounds that are standard
for vanilla FL. Instead, as soon as the server receives a client update, it is immediately
merged into the global model. The client can either immediately resume training with the
newest global model, or be scheduled to train, where it will pull the newest global model
after being triggered [11]. The model aggregation typically uses a staleness coefficient
that regulates how much impact an update has, based on its training time (staleness)
[11, 45].

Asynchronous Federated Learning also possesses several drawbacks. The large number
of clients might lead to frequent model updates, incurring significant overheads and
making the centralized server the bottleneck. This would especially be evident when
training bigger models as many parameters are to be updated. Besides, aggregating
individual updates into the global model violates secure aggregation protocols, weakening
the privacy properties of the solution [46, 47]. To address these limitations, semi-
asynchronous methods have been developed [44]. For instance, in works by So et al. and
Nguyen et al. K local updates are buffered and applied at once on the server [47, 46].

14

CHAPTER 3
Related Work

This chapter encompasses a literature survey on the following three topics: 1) Human
Activity Recognition with Deep and Federated Learning, 2) Establishing the negative
effects of the data skew in Federated Learning and 3) Comparison of centralized and
federated learning. The goal of this chapter is to identify current gaps and establish the
context for the contributions presented in this thesis.

3.1 Human Activity Recognition with Deep and Federated
Learning

Thanks to the advancements in both the processing as well as sensing power of smart-
phones and similar wearable devices (e.g. smart watches) the amount and quality of
data collected on such devices started carrying great potential for the development of
ML models. Several groups of researchers have successfully aggregated the readings
from smartphone and wearable device sensors into insightful datasets ready to be further
incorporated in the ML pipeline. For instance, a very popular and widely-used dataset,
published at the UCI repository is presented in [48]. It contains inertial sensor readings
of 30 subjects performing typical daily actions: standing, sitting, laying down, walking,
walking downstairs and upstairs. Data collection was conducted in a lab and the measure-
ments were taken with the same device for all users. Another prominent dataset, WISDM
[49], also collected accelerometer data from 29 subjects while they were performing their
daily activities. The dataset however significantly limits the users to keeping the phone
in a specific position while monitoring the data. Contrary to the previous datasets
the Extrasensory dataset presented by Vaizman et al. [27] was collected in-the-wild by
leveraging a large variety of devices and without constraining the users on how to use
them, thereby representing a very reliable real-world setting. It also encompasses more
labels than the six base ones (sitting, standing, laying down, walking, running, cycling)
including location (e.g. at work, at home) and compound activity labels (e.g. playing

15

3. Related Work

basketball). Based on its strong alignment with real-world scenarios, we selected this
dataset for our case study presented in Chapter 5.
In order to predict human activity from such an abundance of sensor data, the temporal,
spectral and statistical features are usually extracted first and then fed into a classifier
model. There exists an entire spectrum of solutions modifying both the feature extraction
step as well as the model design step. The authors of the Extrasensory dataset have
also provided a simple MLP baseline [50] with the features they extracted. Several other
authors also used this dataset for the evaluation of their approaches. For instance, in
[51], the authors propose a hierarchical neural network model that firstly classifies the
sample into two super-groups of the six primary labels: stationary (sitting, laying down
and standing) and non-stationary (walking, running, cycling). Furthermore, [42] have
trained convolutional neural networks on multiple HAR datasets including Extrasensory
and found out that the dataset is significantly more difficult to model compared to other
HAR datasets, primarily due to the unconstrained nature of data collection.
As smartphone devices grew more powerful, they also developed the ability to withstand
ML model training processes previously reserved only for stronger, centralized, servers.
This, coupled with the privacy-sensitive sensor data collected through these devices,
makes training HAR models in a federated manner a natural progression in this field
of research. In their work [52] leverage FL to train a deep neural network to model the
Heterogenous HAR data collected by [53]. They prove that the model performance in
both balanced and simulated imbalanced settings is acceptable for this dataset within
the federated context. However, the applicability of their insights to the Extrasensory
dataset is limited as the actions performed by the users were scripted, leading to a more
uniform label distribution. Authors of [31] introduce MOCHA, a federated multi-task
learning framework for addressing both statistical as well as system-level heterogeneities
in FL, which used the UCI-HAR dataset for evaluation [48].
Moving towards asynchronous FL, authors of ASO-Fed [15] propose learning shared
feature representations on the server with the goal of addressing non-IID-ness issues.
This, paired with a decayed update coefficient for managing the influence of the new
updates on the global model and the modification of the local loss function, similar to
[54], led to improved results on the Extrasensory dataset. In their further work, related
to asynchronous FL with sensor data [55], the same authors develop a drift detection
and drift correction scheme to address this issue in asynchronous FL and evaluate the
performance of their solution on multiple datasets, including Extrasensory as well.
While many works approach HAR with deep and federated learning, many of these
solutions are evaluated on relatively balanced datasets where data was collected in
controlled environments. Moreover, as local training updates can be delayed or dropped
due to imbalances in data, system heterogeneity and network partitions, synchronous FL
methods have only limited applicability to such real-world settings. While there exist
approaches that model HAR with asynchronous FL [15, 55], these contributions solely
use the HAR dataset as an evaluation dataset and do not dive into the challenges of
federated HAR. Our work instead proposes a HAR-oriented analysis approach while

16

3.2. Non-IID Data Implications on Federated Learning

focusing on the transition from CL to FL in the presence of highly non-IID data. We
offer a thorough examination of the HAR use case from both IoT and FL perspectives.
We further aim to provide an in-depth analysis of the causes of performance degradation
when designing FL systems that model non-IID (HAR) data.

3.2 Non-IID Data Implications on Federated Learning
In CL, data is kept centrally, meaning the model will learn from all clients simultaneously
within one training epoch, dampening the negative effects of non-IID data on model
training. However, placing the non-IID dataset in a federated context makes model
training significantly more challenging, as the models train only on a single client’s data
within one epoch, which carries a great risk of model divergence.

A survey on implications of Non-IID data on federated learning presented by Zhu et
al.[56] identifies three primary types of data skew:

1. Feature (attribute) skew - Describes settings where different clients have different
distributions of the same features.

2. Label skew - Different clients have different label proportions/distributions.

3. Temporal skew - Describes a skew in the distribution of temporal (time-series)
data. These differences appear in the correlation of the time-series samples, e.g.
different frequencies (period lengths) and/or signal amplitudes (in IoT sensors).

Quantity skew is identified as orthogonal to the prior classification and describes the
variation in the number of samples among the clients.

Many authors have confirmed that Non-IID data leads to degraded performance of para-
metric models (neural networks)[57, 58, 4, 56, 59] and always leads to model divergence
in horizontal FL[56]. In [56] the authors highlight that deep neural networks are more
prone to the negative effects of data skew than shallow networks. They further state
that Non-IID data does not influence the performance of non-parametric models (such
as decision trees) in both horizontal and vertical FL.

Zhao et al. [57] perform a more in-depth analysis of this issue. Besides empirically
measuring the negative effects of data skew through test accuracy, they also monitor
the model parameter differences among the client updates, even for each model layer.
Through experimentation, they confirm their hypothesis that model divergence is a direct
cause of reduced accuracy. The authors also visualize model parameters in IID and
non-IID FL settings within one training round consisting of multiple local training epochs.
This visualization is provided in Figure 3.1. One can observe that in IID FL settings, the
model parameters (weights) advance in similar directions, while in non-IID FL settings,
the discrepancy in model parameters between two clients (Client 1 and Client K) within
one round is much larger and continues to grow as the local epochs progress. This implies

17

3. Related Work

Figure 3.1: Visualization of model divergence within one training round in IID and
Non-IID settings provided by [57]. Clients start with the same initial parameters (after
synchronization). In IID setting, the difference between the model parameters of each
client, averaged clients (FedAvg) and centralized training (SGD) is relatively small
compared to the non-IID setting. It can further be observed that model divergence
increases together with the number of local epochs when data skew is present.

that keeping the number of local epochs lower in non-IID FL settings can be beneficial
to avoid severe model divergence.

In their work, Nguyen et al. [60] identify another specific type of data skew which they
name cluster-skew non-iid data. They argue that, in modern real-world applications,
the distributed data typically has a cluster structure. This implies that clients can be
grouped into clusters that have similar data distributions.

Current literature that establishes and analyzes the negative effects of data skew in
FL focuses primarily on synchronous FL and the evaluations are usually performed on
synthetic datasets. In contrast, we aim to extend the state-of-the-art by examining the
effects of data skew in asynchronous settings and using a realistic dataset containing
naturally distributed non-IID data for evaluation.

3.3 Differences between Centralized and Federated
Learning

A similar contribution to our work is presented by Drainakis et al.[61]. They evaluate the
effects of transitioning from centralized (CL) to FL settings in non-IID data scenarios.
While our focus lies on defining a structured methodology to transition from CL to FL
and the implications of various design decisions within this methodology, their focus is
on the comparison of model convergence for CL and synchronous FL (SFL) in terms of
network resources and energy consumption, as well as establishing the trade-off between
model performance and resource footprint during training. Furthermore, while they
compare CL and SFL performance, they do not consider the asynchronous FL (AFL)
setting which is the primary setting of our evaluation.

Another work that compares the performance difference between centralized and federated
settings is presented in [62]. Here the authors simulate non-IID-ness by assigning an
equal amount of samples from two out of ten labels to each client. In their evaluation,

18

3.3. Differences between Centralized and Federated Learning

they consider FedAvg as the representative of SFL and CO-OP [63] as the representative
of AFL. They found that, in IID settings, the performance of SFL is similar to CL, while
AFL performance is slightly degraded. In the simulated non-IID setting CL performs best,
followed by SFL and AFL as least performant. Compared to their work, our evaluation
differs in two aspects: 1) we consider what design decisions lead to degradation instead
of just establishing it, and 2) we use a realistic dataset for our evaluation instead of a
simulated one.

19

CHAPTER 4
From Centralized to Federated

Learning with Non-IID Data

The process of developing centralized ML models is quite standardized and can be
summarised (with various levels of detail) into 4 main steps: (1) data analysis and prepro-
cessing (includes activities such as data partitioning, filtering, imputation, augmentation,
feature selection, engineering, and scaling), (2) model training and tuning (includes
evaluation metrics definition, tuning of the model architecture and hyperparameters,
such as optimizer, batch size, learning rate, and stopping conditions), (3) performance
evaluation and (4) model deployment. In addition to these tasks, steps 1 and 2 require
an iterative process of choosing the right techniques for data processing and model
configuration. Through these steps, a solid centralized learning (CL) baseline can be
built and used as the foundation for transitioning to FL. In the following, we describe
how this CL baseline is established and propose the structured approach to transitioning
from CL to FL highlighting the relevant design decisions and considering the caveats
that non-IID data might bring.

4.1 Establishing the CL Baseline

Firstly, a CL baseline is built and it will be used as the foundation for the transition
to the FL setting. This process encompasses two major phases consisting of multiple
steps: data analysis & preprocessing and model training, tuning and validation.
This sequence of steps is the standard procedure for ML model training in CL pipelines,
therefore it will only be briefly outlined in the following.

21

4. From Centralized to Federated Learning with Non-IID Data

4.1.1 Data Analysis and Preprocessing
The aim of this phase is to gain an understanding and overview of the data at hand and
prepare the data before feeding it into the model. This is achieved through:

1. Exploratory Data Analysis (EDA) - Observing the data in the dataset (e.g. feature
and label distributions, missing values, relationships among features...)

2. Data Partitioning - Splitting the data into train, validation and test sets

3. Feature Selection - Extracting only the features considered useful

4. Filtering / Imputation - This involves removing or imputing missing or invalid
values

5. Scaling - Bringing the features to the same scale (either min-max or through
standardization)

6. Augmentation - Adding samples through various oversampling techniques typically
to increase the representation of minority classes

4.1.2 Model Training, Tuning and Validation
After the data has been examined and prepared, the evaluation metrics (e.g. accuracy,
mean squared error, F1-Score) are determined depending on the goal the model will try to
achieve. Then, the model architecture is defined based on the insights about the problem
complexity gained through EDA. With model architecture in place, hyperparameter
tuning is performed on the model in order to find optimal values of hyperparameters
(such as learning rate or batch size). Lastly, the model is validated on a test set and if
the target performance is reached it is deployed, otherwise data preprocessing or model
architecture are adjusted and the entire process is repeated.

4.2 Transitioning to FL
After the CL baseline is established, insights gained through EDA, adjustments and
tuning can be leveraged in FL modeling as well. In the following, we discuss additional
design decisions and adjusted steps of the typical ML pipeline that enable the transition
to FL in non-IID settings.

4.2.1 Defining the Test-Set Generation Strategy
In order to have a partitioning plan in place before performing other data pre-processing
steps, it must be defined how the test set is generated. In CL, due to the centrally
located dataset, partitioning of data can be done using random shuffling and performance
evaluation can further be reliably tracked throughout the whole training. However, the

22

4.2. Transitioning to FL

absence of a centralized dataset affects the formation of train/validation/test sets in FL,
allowing for three evaluation scenarios:

• Hold-out-clients (HOC) - Dividing clients into two subsets: 1) clients used for
training and validation and 2) clients used for testing. The first group of clients
splits local datasets only into train and validation partitions while, in the case of
the second, the entire local datasets are reserved exclusively for testing.

• Distributed evaluation (DE) - Dividing local datasets into train, validation
and test partitions, with sending and aggregating test-performance metrics on the
server

• Centralized Test Set (CTS) - Applying hybrid techniques, such as maintaining
a test dataset on the server while validating model performance on client’s subset
or parts of local datasets

The three partitioning settings influence the semantics of model evaluation. If HOC is
used, for instance, it evaluates global model performance on "new" clients and entirely
unseen feature/label distributions, whereas the CTS approach evaluates how well the
global model performs on unseen data from known clients/distributions. The former offers
a more stringent evaluation of the model’s generalization capabilities and is appropriate
for settings where model inference will be performed on clients who did not participate
in training, while the latter is more applicable to a setting where the fixed set of clients
is used for both training and inference.

Without detailed data distribution statistics, ensuring representative data partitions in
non-IID settings is challenging, leading to skewed performance indicators and suboptimal
model performance, further emphasizing the importance of the proper performance
evaluation scheme. More details on the implications of the test scheme in FL and their
empirical analysis through the HAR use case are provided in Section 6.3.1.

4.2.2 Data Analysis & Preprocessing
As data analysis and EDA have already been performed while establishing the CL baseline,
these are not required in FL. Therefore, after defining the partitioning strategy, the train,
validation and test partitions can already be made.

It is clear that, in CL, full access to the dataset enables the use of sophisticated techniques
for data analysis and preprocessing. However, to properly federate these processes, it is
necessary to establish the expected level of data heterogeneity and willingness to share
local data statistics, potentially introducing additional privacy risks. Thus, one can
choose from three main approaches for data analysis and preprocessing in FL:

• Generalized approach – employing techniques, insensitive to the diversity of
local datasets (e.g., image processors that scale images based on a set mean and
standard deviation).

23

4. From Centralized to Federated Learning with Non-IID Data

• Local approach – employing techniques that preprocess data based solely on local
dataset statistics, for instance, scaling data with local mean and standard deviation
or performing data augmentation considering local data label imbalance statistics.

• Federated analytics (Global) approach – allowing for aggregation of data
statistics from client devices on the server to form global statistics, mimicking CL
data analytics, sharing it among all clients, and using it to guide local preprocessing.

After making this decision, several steps of the pre-processing pipeline remain the same
as in the CL baseline. These include Feature Selection, Filtering / Imputation and Data
Augmentation to a certain extent.

Scaling of the features is performed based on the previous decision. Either local or global
scaling can be employed. Within the former, clients scale their features individually and
only based on the data they have, whereas for global scaling, feature means and standard
deviations (or other statistics) are shared either among the clients or with the server,
where these are aggregated. These aggregated global means and standard deviations of
all features are transmitted to the clients so they can scale their features accordingly.

Data augmentation can either mirror the approach used in CL, characterized by a fixed
oversampling rate, or deviate from it by dynamically adjusting the augmentation process
based on the client’s local data distributions or other relevant inputs.

We illustrate the effects local and global analytics approaches have on scaling and on the
resulting model performance for the non-IID HAR use case in Section 6.3.3. We further
federate data augmentation strategies in Section 5.2.4 and show their effect in FL with
non-IID data in Section 6.3.2.

4.2.3 Model Design and Tuning
In CL, the model is trained on a single device, which has consistent access to the entire
training dataset. In contrast, in FL training occurs on multiple devices and involves
recurrent broadcasting of the global model to devices and aggregating updates from
them. Introducing FL affects several model design and tuning decisions described in the
following.

Defining the training strategy

As noted in Section 2.3, FL training can advance synchronously or asynchronously. This
decision depends on the reliability and heterogeneity of devices participating in FL,
with the latter being more suitable for failure-prone scenarios such as those in IoT as
it avoids waiting for slower devices (stragglers). Depending on whether synchronous or
asynchronous FL is chosen, the process of broadcasting and aggregating the model differs,
introducing more hyperparameters for training to consider. In the following, the typical
workflows of synchronous and asynchronous FL are introduced.

24

4.2. Transitioning to FL

Synchronous Federated Learning In synchronous FL (SFL) the step of model
broadcasting involves a set of clients being chosen for the current round of training,
parametrized by the S - number of clients to choose from the available pool of clients
and a specific client selection strategy (random by default). The server sends them the
current global model xt and instructs them to train the passed global model further
with their local data. After local training, each client i sends their updated model xi

t+1
back to the server where the server aggregates the resulting client models and updates
the global model with this aggregate. The process repeats for a predefined number of
rounds or until a stopping condition is satisfied. Equation 4.1 formally describes the
synchronous update procedure where N is the total number of samples and ni is the
number of samples present on client i:

xt+1 = xt +
�
i∈S

ni

N
(xi

t+1) (4.1)

Asynchronous Federated Learning In asynchronous FL (AFL) the process of
broadcasting and aggregating model updates does not proceed in rounds; contrary to
that, clients start training as soon as they merge their newest update with the global
model and receive the new merged global model from the server [11, 16]. Thus, the
model aggregation step merges the individual client’s model update into the global model
immediately. This step is parametrized by mixing ratio/fedasync mixing alpha which
dictates the averaging weights (e.g. 50-50 or 30-70) of the global model and the current
client’s update. To normalize the update magnitudes similarily to SFL, the mixing ratio
is multiplied by the proportion of samples held by the client that sends the update
(ni

N). The client updates are merged until the stopping criterion is met or the maximum
training duration is reached.

To formally express the update rule of the asynchronous federated baseline we provide
the following Equation 4.2. Assume that client i sent its gradients ∆i after local training
and the server is about to incorporate these gradients into the global model. The current
global model is marked with xt, the number of samples available at client i is marked
with ni and the total number of samples across all clients is marked with N . αF A is the
above-defined mixing ratio (Fedasync mixing alpha).

xt+1 = xt + αF A
ni

N
(xt + ∆i) (4.2)

If, however, it is decided that instead of gradients the clients send updated model
parameters xi

t+1 (as in SFL), the update rule changes slightly and it is formalized in the
Equation 4.3.

xt+1 = xt + αF A
ni

N
xi

t+1 (4.3)

25

4. From Centralized to Federated Learning with Non-IID Data

Evaluation, Architecture & Tuning

Similar to CFL, appropriate evaluation criteria must be established. These criteria
typically build upon the existing evaluation metrics of the CFL baseline by incorporating
additional FL-specific metrics, such as communication efficiency. The model architecture
can either mirror the CFL baseline or be adapted to FL, taking into account various
constraints like memory or network limitations. Once the model architecture is determined,
we can distinguish between two categories of hyperparameters that will be tuned:

• Base Hyperparameters - These are the same as in CFL (e.g. batch size, learning
rate, optimizer)

• FL Hyperparameters - These are specific to FL (e.g. number of local epochs, number
of rounds, number of clients per round, mixing ratio in AFL)

Further, the choice of both the model architecture and hyperparameters, such as batch size
and learning rate, due to the data and resource heterogeneity across devices, is influenced
by memory constraints, convergence speed, overfitting tracking, and more. We talk more
about the effects of hyperparameters in Section 5.4 and Section 6.4.1.

4.2.4 Performance Validation & Testing
While in CL the model is validated after each epoch and tested at the end, this procedure
differs in FL. This phase encompasses monitoring the convergence (validating) and
evaluating the tuned model with the predefined test set. Test set generation strategies
are described in Section ??. Model validation in SFL usually happens after the round
is finished and before the start of the next round, therefore the model validation is
synchronized with the training procedure. In AFL, however, the validation has to
consider both the server and client load. Performing model validation after each model
update is not recommended as it overloads the server with constant computation and
the influence of these additional computations are discussed in more detail in Section
6.4.2. Therefore periodic validation initiated by the server might be a better option.
Furthermore, in case the distributed evaluation (DE), in this context distributed validation
(DV), strategy is used, the clients selected for validation might already be busy with
training, which leads to additional overheads. To address this, DV can also happen
asynchronously, but this modification comes at the cost of a larger orchestration overhead.

Due to the distributed nature of model training coupled with non-IID data distributions
the issue of biased local validation/test sets becomes more prominent. In other
words, asking the client with a skewed view of the data to validate/evaluate a model will
certainly produce skewed results as well. To address this a fair, and typically centralized,
validation/evaluation scheme can be used.

The influence and trade-offs related to the decision of how the test set is generated are
described in more detail in Section 6.3.1. If the established validation and evaluation

26

4.2. Transitioning to FL

performance suffices, the model can be deployed. Model deployment may be considered
the only step in the pipeline where FL has some sort of advantage over CL as in order to
deploy the model one should only ensure proper final model broadcasting to all clients,
allowing them to start using it for inference.

On the other hand, if the performance is insufficient, the issue is diagnosed and to
addressed by either adjusting data preprocessing, model design & tuning steps, or
introducing an adaptation of the FL workflow, described in the following.

4.2.5 FL Adaptations
Based on the discovery of issues caused by distributing the ML pipeline with non-IID
data, the need for the modification of the standard FL workflow arises. The work of
Zhu et al. [56] already provides a classification of modifications applied for non-IID data
issues: Data-Based - modifying the data distributions (e.g. data sharing, adaptive data
augmentation), Algorithm-based - personalizing the global model (e.g. adapting loss
functions, adding personalized layers, knowledge distillation) and System-based (e.g. client
clustering). Further, in their survey, Lu et al. [64] also name dynamic client selection,
adaptive aggregation and adaptive update weight adjustment as potential methods of
solving the non-IID data issue in FL. Based on the previous classifications we propose
the following locations in the methodology where they are applied:

1. Data-level modifications - Such adaptations modify the data preprocessing/par-
titioning steps.

2. Model-level modifications - These modifications encompass changing the model
architecture (e.g. modifying the layers), the hyperparameters or the loss function.

3. Client-level modifications - Such modifications happen on the clients and they
can be performed on two points: 1) before local training starts or 2) after local
training ends (before the model update is sent back to the server). These two points
serve to 1) process the received up-to-date global model before local training and
2) process the gradients/resulting models before sending them back to the server.

4. Server-level modifications - These modifications take place on the server. Two
common locations for these adaptations are:

a) Client selection step - The adaptation aims at selecting the clients dynamically
to reach a more balanced pool of client distributions

b) Model aggregation step - This adaptation encompasses changing the global
model update rule or re-weighing the clients to a more informed aggregation.

Among these four, the first modification affects the Data preprocessing step of the model
development pipeline (Section 4.2.2), while latter three modify the Model Training step
(Section 4.2.3).

27

4. From Centralized to Federated Learning with Non-IID Data

4.3 Summary
The design decisions and additional parameters introduced to the ML pipeline by tran-
sitioning to FL in non-IID settings are illustrated in Figure 4.1. To sum up, although
we can roughly apply the classical CL steps in FL, this distributed setting complicates
their proper execution and poses additional design decisions, requiring more ingenuity,
especially when facing non-IID data. These additional considerations encompass the
preprocessing approach, mode of training, mode of evaluation and, optionally, adaptations
to the FL workflow. CL baseline can provide useful insights for multiple decisions in the
FL pipeline such as data preprocessing and model design. Therefore establishing this CL
baseline is performed before considering the federated context. Chapter 5 presents the
inherently heterogeneous HAR use case and introduces the methods of how the models
were developed for CL, synchronous, and asynchronous FL. Later, in Chapter 6, we
examine the effect of the presented design decisions on model convergence within the
HAR context.

28

4.3. Summary

Analyze &
Preprocess data

Model Design
and Tuning

Preprocess data

Model Design
and Tuning

Dataset

Exploratory Data Analysis

Train Val Test Partition

Feature Selection

Filtering / Imputation
(missing values handling)

Scaling

Augmentation

Define Evaluation Metrics
(e.g. BA, F1-Score, RMSE)

Define Model Architecture
(e.g. number of layers &

neurons per layer)

Tune Base
Hyperparameters (batch

size, LR, optimizer)

Target
Performance

Reached

Model Test and
Deployment

Yes

No

Dataset

Train Val Test Partition
according to TSGS

Feature Selection

Filtering / Imputation

Scaling according to
scaling strategy

Augmentation

Define Evaluation
Metrics (+ FL-related:
e.g. communication

efficiency)

Define Model
Architecture

Tune Base
Hyperparameters (batch

size, LR, optimizer)

Target Performance
Reached (evaluated
according to TSGS)

Model Test (according to
TSGS) and Deployment

Yes

Define Test Set
Generation Strategy

(TSGS): HOC / DE / CTS

Define Preprocessing
Strategies: Generalized /

Global / Local

Tune FL
Hyperparameters (local
epochs, num. rounds,

mixing ratio)

No

Insights point to
FL Adaptation

No

Introduce FL
Adaptation

Yes

1.Establishing CL Baseline 2. Developing FL Models

Define Training Strategy:
Sync / Async

CL baseline
insights about

Data Preprocessing
and

Model Design

Diagnose Issue

Figure 4.1: Methodology for transitioning from CL to FL with non-IID data

29

CHAPTER 5
Case Study: Federated Learning
for Human Activity Recognition

Next, we introduce our use case scenario. First, we describe the used dataset and its
characteristics. Then, we present the main data preprocessing adaptations to prepare the
data for model tuning. We then introduce the key quality assessment metrics that will
be used to evaluate the effectiveness of models in this specific non-IID setting. Lastly, we
introduce the model architecture together with the results of hyperparameter tuning.

5.1 Extrasensory Dataset
Our work leverages the Extrasensory dataset [27]. This source contains sensor read-
ings from smartphones belonging to 60 different individuals including sensors such as
accelerometer, gyroscope, audio, etc. Time-series-related signal features encompassing
various statistical and spectral properties were already extracted by the authors of the
dataset. The original dataset contains in total 225 features from 11 sensors. As labels,
the authors presented 6 primary mutually exclusive labels that describe the individual’s
current status: standing, walking, sitting, laying down, running, and cycling. The indi-
viduals themselves reported the labels through a dedicated smartphone app, during or
immediately before starting an action/changing status. Additionally, the app reminded
individuals to track the labels if they have not done so in a while. In addition to this set,
there exists an expanded set of labels (non-mutually exclusive) that encompass complex
actions (e.g. cleaning, playing basketball) and locations (e.g. at work, at school). This
dataset is ideal for our work because it excellently reflects the real-world IoT setting.
The data was collected in-the-wild, thus guaranteeing naturally occurring heterogeneities
among different clients: individuals have different devices (sensor heterogeneity), different
behavior (means of performing actions or being in a certain body state), different habits
(certain individuals tend to run more, while others cycle more). The non-IID property of

31

5. Case Study: Federated Learning for Human Activity Recognition

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

Client ID

0

1000

2000

3000

4000

5000

6000
N

u
m

b
e
r

o
f

s
a
m

p
le

s
Class

WALKING

SITTING

STANDING

LYING_DOWN

RUNNING

BICYCLING

Figure 5.1: Stacked bar plot of label counts for each client. For each client (x-axis) the
height of a bar (y-axis) indicates how many samples of the given label (color) are present
in that client.

data is simulated in most federated learning research [44], whereas we use a real case.
Furthermore, only a few authors [65, 66, 15] evaluated their FL adaptations with the
Extrasensory dataset, however, without a detailed analysis.

5.1.1 Dataset Characteristics
The dataset illustrates different types of skew among the clients, namely, label, quantity,
and feature skews [56]. Label and quantity skew among the clients is visualized in
Figure 5.1, where we can observe how many samples of each label (class) each client
has. We observe that sitting and lying down are the most common, while running is
very scarce. It is clear that label distributions as well as the total number of samples
significantly vary across the clients. Figure 5.2 depicts the quantity and label skew
more compactly, through a violin plot. The x axis reports each activity, while the y
axis shows how many occurrences of that activity are present in each client. The width
represents the commonness of having y occurrences for that activity in a client. E.g.,
if 20 clients have roughly 3000 sitting samples, then for the sitting violin plot, at y =
2000 large violin width is expected. This plot allows us to see how certain activities
are underrepresented, especially running and bicycling, as well as, how each activity
is unequally distributed across clients (violin width). These label and data quantity
skews are further complicated by the natural feature skew that is present in the HAR
datasets [8] due to individual behavioral patterns expressed by humans, leading to the
variability of data representing the same activity as well as making similar activities even
harder to distinguish. This combination of several data skews materialized in a real-life

32

5.2. Data Preprocessing

WALKING SITTING STANDING LYING_DOWN RUNNING BICYCLING

Labels

0

1000

2000

3000

4000

5000

O
c
c
u
rr

e
n
c
e
s
 p

e
r

C
li
e
n
t

Figure 5.2: Violin plot highlighting the data and label skew. We can see how certain
activities are underrepresented, as well as, from the violin width, how each activity is not
equally distributed across clients.

IoT scenario makes the Extrasensory Dataset a challenging yet valuable candidate for
testing solutions for heterogeneous FL.

5.2 Data Preprocessing
In the following the data preprocessing steps described in Sections 4.1.1 and 4.2.2 of the
proposed methodology are described.

5.2.1 Data partitioning
As the data is originally partitioned by individuals we proceeded with this predefined split
among the 60 clients. Each client’s local dataset was split into three parts following the
64-16-20 % shuffled split among train, validation and test sets (applying the 80-20 rule
consecutively). Each client’s test set was sent to the server to create a fair centralized
test set (CTS) for evaluation. In the CL setting the local train and validation sets were
merged into the respective centralized train and validation sets.

5.2.2 Feature selection
For our experiments, we focused on the original set of 6 labels: walking, sitting, standing,
lying down, running, bicycling. Figure 5.3 illustrates how many missing values are to be
expected for each sensor in the worst case. We discarded the sensors with more than
60% of missing values in any feature belonging to the features of the respective sensor.
We further discarded the magnetometer sensor to make the model input smaller without
significantly impacting the performance. The final sensors used for our models are:
accelerometer (26 features), gyroscope (26), watch accelerometer (46), watch compass (9),

33

5. Case Study: Federated Learning for Human Activity Recognition

d
is

c
re

te

ra
w

_
a
c
c

a
u
d
io

_
p
ro

p
e
rt

ie
s

a
u
d
io

_
n
a
iv

e

p
ro

c
_
g
y
ro

ra
w

_
m

a
g
n
e
t

lo
c
a
ti

o
n
_
q
u
ic

k
_
fe

a
tu

re
s

w
a
tc

h
_
a
c
c
e
le

ra
ti

o
n

w
a
tc

h
_
h
e
a
d
in

g

lo
c
a
ti

o
n

lf
_
m

e
a
s
u
re

m
e
n
ts

Sensor

0.0

0.2

0.4

0.6

0.8

R
a
ti

o
 o

f
N

a
N

s
 i
n
 t

h
e
 c

o
lu

m
n
 w

it
h
 m

o
s
t

N
a
N

s

Ratio of missing values for the feature with the most missing values grouped by sensor

Figure 5.3: Ratio of missing values for a column (feature) with the most missing
values grouped by sensor. E.g. the feature with most missing values within the watch
accelerometer sensor features has approximately 30% missing values.

audio (26), audio properties (2) and phone state as one hot encoded discrete measurements
(32), resulting in 175 input features in total. This subset of sensors was selected to avoid
handling too many missing values from other sensors and to keep the input dimension
smaller.

5.2.3 Standardization & Cleaning

In our preprocessing pipeline, we apply global standardization, a process in which feature
means and standard deviations of all clients are sent to the server in order to create a
globally scaled view of the data. We impute the missing values with the feature means.

5.2.4 Data Augmentation

As the classes are already severely imbalanced without any augmentation (See Figures
5.1 and 5.6), we employ and evaluate two different data augmentation strategies after
standardization and missing value imputation.

34

5.2. Data Preprocessing

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

Client ID

0

2000

4000

6000

8000

10000

N
u
m

b
e
r

o
f

s
a
m

p
le

s

Class

WALKING

SITTING

STANDING

LYING_DOWN

RUNNING

BICYCLING

Figure 5.4: Stacked barplot of the per-client label distributions with base data augmenta-
tion setting.

Base Augmentation

We extract and replicate samples of each class an empirically defined number of times
(Running 20 times, Cycling 8 times, Standing 1 time, Walking 2 times). These values
aim to improve the representation of severely underrepresented classes, such as running
and cycling, more compared to the less underrepresented classes standing and walking.
The representation of a class can be extracted from the height of the violins in the violin
plot illustrated in Figure 5.2.

After extracting the replicas, we use Gaussian noise (Mean 0 and std 10−4) to augment
the features of each replica. We call this augmentation strategy "base’" and the resulting
per-client label distributions are presented in Figure 5.4. We observe that the running
class is significantly better represented in those clients who possess it.

Balanced Augmentation

We also examine the balanced augmentation setting; here, all existing labels are balanced
on each client separately. In this case, the number of replicas separately created for
each sample dictates the balanced augmentation result. This number is the ratio of the
number of samples of the most common label over the number of samples of the currently
augmented label. (e.g. if sitting is the most common label on the client i and has ni

s

samples, then the number of replicas of the running samples on the same client will be
⌊ni

s
ni

r
⌋. To make the process more understandable, we visualize it in Figure 5.5. In the

plot we see that each client now has approximately a balanced distribution of all classes
that are available to that client.

35

5. Case Study: Federated Learning for Human Activity Recognition

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

Client ID

0

2000

4000

6000

8000

10000

12000

14000

N
u
m

b
e
r

o
f

s
a
m

p
le

s

Class

WALKING

SITTING

STANDING

LYING_DOWN

RUNNING

BICYCLING

Figure 5.5: Stacked barplot of the per-client label distributions with balanced data
augmentation setting.

W
ALK

IN
G

SI
TT

IN
G

ST
AN

D
IN

G

LY
IN

G
_D

O
W

N

RU
N
N
IN

G

BIC
YC

LI
N
G

Labels

0

20000

40000

60000

80000

N
 S

a
m

p
le

s

No Augmentation

Base Augmentation

Balanced Augmentation

Figure 5.6: Label distribution with different data augmentation settings: none, base
and balanced. Note that in the balanced setting running and cycling are still globally
underrepresented.

36

5.3. Quality Assessment Metrics

The resulting label distributions are depicted in Figure 5.6, which shows how, previously
negligible labels, like running and cycling have a better representation and better
compensate for the data skew. In particular, the balanced augmentation brings labels
like walking and standing to have almost the same volume as the most prominent ones,
i.e., sitting and lying down.

5.3 Quality Assessment Metrics
The next essential step is to define a clear set of quantitative measures of the model’s
quality. In particular, we want metrics that aid the understanding of the goodness of
each model in their training phase while being general enough to allow the comparison
across CL and FL implementations. Therefore, we choose the following set of metrics:

1. Balanced Accuracy (BA) - a commonly used metric in label-imbalanced settings
[50]. It is defined as the macro-averaged recall across all labels.

2. Macro-averaged F1-Score - similarily to BA, in class-imbalanced settings, this
metric can assess the model’s predictive power across all classes, without the bias
toward the majority class introduced by the label imbalance.

3. F1-Score on the minority class (running) - showcases the model’s capability to
predict severely underrepresented classes.

4. F1-Score on the majority class (sitting) - shows how the model works when there
is enough information.

We use these metrics for tuning, comparing and selecting the best setting for our CL and
FL models. Furthermore, they work as a reference during the evaluation of the design
decisions, in Chapter 6.

5.4 Model Design & Tuning
We model the problem with a multi-layer perception (MLP) with 64, and 16 neurons
in each layer. Leaky ReLU was used as the activation function of the hidden layer and
softmax as the output activation. The model architecture (activation functions and
number of neurons) is inspired by the work of the Extrasensory dataset authors [50],
allowing us to have a direct comparison. The main extension to their work is that we
perform multi-class classification on the mutually exclusive labels, whereas they focus
on multi-label distribution on many different subsets of labels and also experiment with
different layer/neuron number combinations. As we employ softmax as the activation,
we use categorical cross entropy as the loss function. Stochastic Gradient Descent (SGD)
was used as the optimizer used with momentum set to a commonly selected value of 0.9.

37

5. Case Study: Federated Learning for Human Activity Recognition

0 20 40 60 80 100

Epochs

0.4

0.6

0.8

S
c
o
re

Balanced Accuracy

0 20 40 60 80 100

Epochs

0.4

0.6

0.8

S
c
o
re

Macro F1 Score

0 20 40 60 80 100

Epochs

0.2

0.4

0.6

0.8

S
c
o
re

F1 Score for Running Class

0 20 40 60 80 100

Epochs

0.2

0.4

0.6

0.8

S
c
o
re

F1 Score for Sitting Class

BS=32, LR=0.001

BS=64, LR=0.001

BS=128, LR=0.001

BS=256, LR=0.001

BS=32, LR=0.01

BS=64, LR=0.01

BS=128, LR=0.01

BS=256, LR=0.01

Figure 5.7: Zoomed-in convergence plots of the evaluation metrics for different batch
sizes (BS) and learning rates (LR) in centralized learning.

First, we focus on the CL model where we tune the batch size and learning rate to
find the optimal configuration, using the base-augmented dataset. We evaluate the
model with the following hyperparameter grid: batch size ∈ {32, 64, 128, 256} and
learning rate ∈ {0.01, 0.001}. We monitor the convergence as well as the performance
of the models on the fair test set using the metrics defined in Section 5.3. We display
the convergence of the four relevant metrics in Figure 5.7 and present the average of the
last 5 epochs for each of the four metrics in Table 5.1.

The four subplots in Figure 5.7 show on the x axis the training epochs, and on the y axis
the score for the observed metric. Going left-to-right from the top row, we can inspect the
results for BA, Macro F 1, F 1 Score for Running (F 1running), and F 1 Score for Sitting
(F1sitting). At a glance, the results indicate a plateauing of the metrics improvement
between the first 20 to 40 epochs. Overall, the [BS = 256, LR = 0.01] configuration
outperforms the others on almost all the metrics. These results tell us that the CL model
can accurately perform HAR, especially with the aforementioned configuration, reaching
up to ≈ 0.7 for BA and Macro F1 and ≈ 0.64 on F1running. We can also see how, as
expected, the larger data volume for the sitting label leads to better classification of that
label (F1sitting ≈ 0.82), especially if compared to the underrepresented running class
(F1running ≈ 0.65).

As a result of multiple preliminary experiments, our configuration for synchronous FL
(SFL) is as follows: we train each model for a maximum of 100 rounds with 2 local epochs
on all 60 clients, as the FL model requires, overall, more epochs for converging than in
CL. We varied the number of clients per round S ∈ 20, 40, 60 and found that they all

38

5.4. Model Design & Tuning

0 20 40 60 80 100

Epochs

0.4

0.6

0.8

S
c
o
re

Validation Balanced Accuracy

0 20 40 60 80 100

Epochs

0.4

0.6

0.8

S
c
o
re

Macro F1 Score

0 20 40 60 80 100

Epochs

0.2

0.4

0.6

0.8

S
c
o
re

F1 Score for Running Class

0 20 40 60 80 100

Epochs

0.2

0.4

0.6

0.8

S
c
o
re

F1 Score for Sitting Class

BS=32, LR=0.001

BS=64, LR=0.001

BS=128, LR=0.001

BS=256, LR=0.001

BS=32, LR=0.01

BS=64, LR=0.01

BS=128, LR=0.01

BS=256, LR=0.01

Figure 5.8: Zoomed-in convergence plots of the evaluation metrics for different batch
sizes (BS) and learning rates (LR) in synchronous FL.

achieved comparable performance, where the larger values implied fewer fluctuations in
the observed metrics between each round. Therefore we select all 60 clients in each round
to make the results comparable to the AFL setting where all 60 clients run continuously.
To save computation time, we use early stopping; the training process is aborted if the
performance does not improve after 50 rounds. On top of this setup, we tune the BS and
LR, using the same values as in CL. The convergence results of different hyperparameter
configurations across the four tracked metrics evaluated after each round are presented in
Figure 5.8. We may observe that a larger learning rate performs significantly better across
BA, Macro F1 and F1running metrics and that medium batch sizes (64 and 128) are
preferred. Table 5.1 contains the average of the four metric values calculated over the last
5 evaluation rounds for each hyperparameter configuration. We can immediately notice
that the overall scores for BA and Macro F1 are lower than in CL (≈ 0.6 vs. ≈ 0.7).
This degradation seems to impact the less-represented labels more than the majority
labels such as sitting, as the F1 Score on the running class was lower in SFL than in CL
setting by approximately 0.11, while the F1 Score on the sitting class reduced only by
0.04.

In asynchronous FL (AFL), for hyperparameter tuning, we train the models for 40
minutes. The goal is to select the model with the largest macro F1-Score as the baseline
defined by batch size and learning rate. We, again, plot the convergence results of the
four metrics evaluated periodically (every 20 seconds) with a fair test set and these results
are illustrated in Figure 5.9. Similarly to SFL, we observe that larger LR yields better
results on average across the four metrics with the smallest differences in F1sitting as in

39

5. Case Study: Federated Learning for Human Activity Recognition

0 500 1000 1500 2000 2500

Time (s)

0.4

0.6

0.8

S
c
o
re

Validation Balanced Accuracy

0 500 1000 1500 2000 2500

Time (s)

0.4

0.6

0.8

S
c
o
re

Macro F1 Score

0 500 1000 1500 2000 2500

Time (s)

0.2

0.4

0.6

0.8

S
c
o
re

F1 Score for Running Class

0 500 1000 1500 2000 2500

Time (s)

0.2

0.4

0.6

0.8

S
c
o
re

F1 Score for Sitting Class

Average updates per client: 137

BS=32, LR=0.001

BS=64, LR=0.001

BS=128, LR=0.001

BS=256, LR=0.001

BS=32, LR=0.01

BS=64, LR=0.01

BS=128, LR=0.01

BS=256, LR=0.01

Figure 5.9: Zoomed-in convergence plots of the evaluation metrics for different batch
sizes (BS) and learning rates (LR) in asynchronous FL.

the previous two settings, CL and SFL. Table 5.1 summarizes the performance of the
models trained with different hyperparameters, which are comparable to the SFL tuning
results presented in the same Table. As the centralized evaluation happens periodically
in AFL the values in the Table represent the mean over the last 5 periodic centralized
evaluations. Ultimately, we select the [BS = 128, LR = 0.01] configuration as it achieves
the best performance across the majority of tracked metrics. Likewise, we performed
the experiments for various FedAsync mixing alpha settings αF A ∈ {0.2, 0.4, 0.8}. We
discovered that this only influences the speed of convergence. Therefore, to reach
convergence the fastest, αF A = 0.8 was selected.

To summarize the results of hyperparameter tuning across all three paradigms of training:
CL, SFL and AFL, we present the scores of each metric averaged across the last five
convergence observations (epochs in CL, rounds in SFL and periodic evaluations in
AFL) in Table 5.1. CL consistently outperforms both SFL and AFL across all four
metrics, while SFL and AFL reach similar performances. A comprehensive discussion
and empirical comparison of the established baselines representing the three training
paradigms (CL, SFL and AFL) is provided in Section 6.2 of the subsequent Chapter.
There the comparability of SFL and AFL is considered together with the extended set of
evaluation metrics such as communication costs & efficiency.

40

5.4. Model Design & Tuning

LR 0.001 0.01
BS 32 64 128 256 32 64 128 256

CL m-F1 0.69 0.70 0.59 0.58 0.60 0.68 0.60 0.71
BA 0.69 0.70 0.60 0.59 0.66 0.67 0.61 0.71

F1-R 0.54 0.60 0.00 0.00 0.45 0.49 0.00 0.64
F1-S 0.83 0.83 0.83 0.81 0.77 0.82 0.83 0.83

SFL m-F1 0.61 0.59 0.50 0.43 0.62 0.62 0.63 0.61
BA 0.60 0.59 0.53 0.47 0.61 0.61 0.61 0.59

F1-R 0.41 0.43 0.25 0.00 0.46 0.52 0.53 0.49
F1-S 0.79 0.77 0.77 0.76 0.79 0.79 0.79 0.78

AFL m-F1 0.58 0.56 0.46 0.44 0.62 0.62 0.63 0.61
BA 0.59 0.56 0.50 0.47 0.60 0.61 0.61 0.60

F1-R 0.36 0.29 0.00 0.09 0.48 0.46 0.54 0.47
F1-S 0.79 0.77 0.77 0.76 0.79 0.79 0.79 0.79

Table 5.1: Summary of the batch size (BS) and learning rate (LR) hyperparameter tuning
for the three settings: Centralized Learning (CL), Synchronous Federated Learning (SFL)
and Asynchronous Federated Learning (AFL). The monitored metrics are macro-averaged
F1 score (m-F1), balanced accuracy (BA) and F1 score on the underrepresented running
class (F1-R). As the performance on F1 score on the sitting class did not significantly
vary, it was omitted from the table. In the CL setting, the values are calculated as the
mean over the last 5 epochs, while in SFL, they represent the mean over the last 5 rounds,
and in AFL, they correspond to the mean over the last 5 periodic centralized evaluations.

41

CHAPTER 6
Evaluation

In this section, we evaluate the challenges and complications that may arise when
transitioning from CL to FL models in non-IID settings. We first describe our evaluation
framework together with a brief implementation description of our AFL solution. We
then provide the performance and communication efficiency comparison of CL, SFL
and AFL baselines in the context of the Extrasensory use case. We group the relevant
design decisions, presented in Chapter 4, into two groups: 1) data-related decisions and
2) system/model-related decisions and discuss their effects and implications on FL with
non-IID data based on empirical measurements.

6.1 Evaluation Testbed Setup
We need to consider various aspects when setting up the evaluation testbed. First, we
need to guarantee that the results produced for AFL are comparable with the other
methods and other AFL variants. To do so, we:

1. establish the final performance metrics scores after a fixed number of updates per
client (instead of a fixed training duration) and

2. consider two evaluation vantage points (VP):

a) central - In this VP, we perform the evaluation on the centralized test set on
the server. In synchronous settings, this step is performed before starting the
next round, while in AFL, we perform it periodically (every 20s). All of the
results presented in this evaluation relate to this, central VP.

b) distributed - In the this VP, the evaluation happens locally on each client
before the local training starts. In this case, we use the local client validation
set. As the results of this VP are usually skewed towards the client’s own
distribution, they are not discussed further in our evaluation.

43

6. Evaluation

Finally, we need to specify the performance metrics. As model quality indicators, we
leverage the metrics defined in Section 5.3, i.e., BA, Macro F 1, F 1 Score for Running, and
F 1 Score for Sitting. Furthermore, we introduce a FL-specific metric, i.e., communication
cost. This metric measures the number of model transfers between the clients and the
server; specifically, it evaluates how many times the model has iterated over the samples.

6.1.1 Asynchronous Flower

To distribute the training process in a federated manner we leverage the Flower framework
[14]. One major shortcoming of this framework is the absence for AFL support, hence we
implement this extension. We modify the thread pool executor to prevent the server from
waiting for clients to finish training. Instead, a callback is triggered upon arrival of each
client result that updates the global model according to Equation 4.2. If the maximum
train duration is not exceeded it re-submits the client for training with the updated
global model. This adaptation is transparent for the participating clients. The server
still contains one loop that periodically executes central evaluation until the maximum
training duration is exceeded. Our implementation of AFL is available in the following
GitHub repository 1. A more extensive discussion of the Flower framework and our AFL
implementation is provided in Chapter 7.

For the execution setup, we simulate the clients and the server by running a ray simulation
provided by the Flower framework [14]. We perform our experiments on a Ubuntu 24.04
LTS VM with the AMD EPYC 7742 64-Core CPU and 384GB of memory.

6.2 Empirical comparison of the CL, SFL and AFL
baselines

We now compare the performance of CL, SFL and AFL across the four evaluation metrics:
macro F1 score, balanced accuracy, F1 on running and F1 on sitting. Additionally for FL
settings we track the number of communication rounds (NCR), total train time (TTT)
in seconds and rounds per hour (RPH) to evaluate their communication efficiency. To
make the results of AFL more comparable to SFL we introduce shortened versions of
the AFL experiment: AFL-T and AFL-C. The former ensures that AFL-T and SFL
have approximately the same TTT, while the latter ensures approximately equal NCR.
Results of this evaluation are presented in Table 6.2 and visualized in Figures 6.1 (four
quality assessment metrics) and 6.2 (three communication efficiency metrics).

The hyperparameters of the three evaluated baselines are stated in Table 6.1 again, for
convenience. The test set was built using the fair centralized test set strategy (FTS), the
features were scaled globally for all three baselines and SGD-m was used as the optimizer
with a momentum of 0.9.

1https://github.com/r-gg/flower-async.
A pull request to merge our approach into the Flower framework is currently under review.

44

https://github.com/r-gg/flower-async

6.3. Data-related Decisions

Baseline LR Batch Size Paradigm Specific Parameters
CL 0.01 256 Epochs: 200
SFL 0.01 128 Rounds: 100, Clients per round: 60

(all), Local Epochs: 2
AFL 0.01 128 Local Epochs: 2, Max. train time :

40min, Mixing ratio: 0.8

Table 6.1: Overview of the hyperparameters of the selected baselines

Figure 6.1 illustrates the performance of the three training methods across the four
quality assessment metrics. We observe that, naturally, CL performs best across all
metrics. SFL, AFL and AFL-T have similar performance while AFL-C falls behind,
implying that by fixing the number of communication rounds, SFL will perform better
than AFL. This is expected, as upon each global model update SFL averages the updates
from all clients, while in AFL each global model update has a very limited view of the
problem (i.e. only one client’s model update). We observe that if training time is equal
(AFL-T) then both SFL and AFL perform similarly.

Further, in Figure 6.2 we observe the communication cost and efficiency of SFL and
AFL. CL naturally has the lowest runtime as there is no communication and aggregation
overhead. This plot is a very illustrative example of the primary benefits of AFL: by
fixing the train time (AFL-T) we observe a larger number of communication rounds in
AFL. This happens because AFL does not wait for slow clients (stragglers) contrary to
SFL. As a consequence, the number of rounds per hour increases as well.

Takeaway: CL offers the best performance across all metrics while compromising
users’ data. SFL and AFL have comparable performance if trained for an equal amount
of time. AFL requires more rounds to reach the same performance compared to SFL
but compensates for this issue with a larger rounds per hour rate.

6.3 Data-related Decisions
We now evaluate the effects of data preprocessing decisions and which challenges may
arise when transitioning from CL to FL in non-IID settings.

6.3.1 Fair vs Hold-out Test set
As discussed in Section 4.2.1 there are several ways of generating the test set in federated
learning settings with IoT data, i.e., with multiple clients. This decision significantly
impacts the semantics of evaluation as well. While distributed evaluation (DE) offers a
way to privately evaluate model performance on the participating clients considering all
label distributions, it poses the same issue as training with non-IID data. More precisely,
the evaluation on individual clients is biased towards the client’s own feature and label

45

6. Evaluation

m-F1 BA F1-R F1-S NCR TTT (s) RPH
CL 0.71 0.71 0.64 0.83 - 512 -
SFL 0.63 0.61 0.53 0.79 100 2298 157
AFL 0.63 0.61 0.54 0.79 141 2400 212
AFL-T 0.61 0.63 0.53 0.79 134 2301 210
AFL-C 0.59 0.61 0.47 0.78 100 1707 212

Table 6.2: Comparison of the CL, SFL and AFL baselines across four quality assesment
metrics: macro-averaged F1 (m-F1), balanced accuracy (BA), F1 on running class (F1-R),
F1 on sitting class (F1-S) and three communication efficiency related metrics: average
number of communication rounds (NCR), total train time in seconds (TTT (s)), number
of communication rounds per hour (RPH). AFL-C denotes the scores of the AFL baseline
with a convergence cutoff to ensure the equal number of communication rounds as in
SFL. Column wise "best" values are bolded for all columns except NCR and TTT as
these are fixed for SFL (NCR is fixed) and AFL (TTT is fixed).

BA m-F1 F1-R F1-S

Metric

0.0

0.2

0.4

0.6

0.8

1.0

S
c
o
re

CL SFL AFL AFL-T AFL-C

Figure 6.1: Visual comparison of CL, SFL and AFL baselines across four quality assesment
metrics: macro-averaged F1 (m-F1), balanced accuracy (BA), F1 on running class (F1-R),
F1 on sitting class (F1-S). AFL-C denotes the scores of AFL baseline with a convergence
cutoff to ensure the equal number of communication rounds as in SFL.

46

6.3. Data-related Decisions

NCR TTT RPH

Metric

0

500

1000

1500

2000

2500

V
a
lu

e

CL SFL AFL AFL-T AFL-C

Figure 6.2: Visual comparison of CL, SFL and AFL baselines across three communication
efficiency related metrics: average number of communication rounds (NCR), total train
time in seconds (TTT (s)), number of communication rounds per hour (RPH). AFL-C
denotes the scores of AFL baseline with a convergence cutoff to ensure the equal number
of communication rounds as in SFL.

distributions. Without the disclosure of label distributions, the aggregation of evaluation
scores returned from clients after DE becomes non-trivial and using Federated Average
for this purpose is not effective for non-IID data.

Therefore, we decided to evaluate the two remaining ways of test-set generation:

1. Hold-Out Clients (HOC), which reserves all samples of a subset of clients only
for testing

2. Fair (Centralized) Test Set (FTS), where each client selects a (fixed) portion of
data to send to the server to create the test set. This can be seen as a variant of
the Centralized Test Set (CTS) approach introduced in Section 4.2.1 because there
are multiple methods of making the centralized test set, for instance, the "golden
dataset" could be used, which does not contain samples from clients participating
in training but rather external data.

While HOC offers better privacy guarantees, the generated test set will be biased toward
the distributions of selected clients (this is also referred to as client-selection bias). This
effect is even more prominent in severe non-IID settings, due to high levels of quantity,
feature, and label skews. On the other hand, FTS carries more privacy risks but enables

47

6. Evaluation

W
ALK

IN
G

SI
TT

IN
G

ST
AN

D
IN

G

LY
IN

G
_D

O
W

N

RU
N
N
IN

G

BIC
YC

LI
N
G

Labels

0.0

0.2

0.4

D
e
n
s
it

y

Distribution Type

Fair Distribution

Hold-Out Distribution

Figure 6.3: Label distribution in the fair vs hold-out test set.

a fairer evaluation of the global model performance by sampling data (distributions) from
all clients.

Our work targets fair examination of the models; therefore, we decided to use FTS for
all our experiments. Especially considering our use case, the skew in label distribution
is so accentuated that with HOC, a subset of clients could be produced that does not
contain any samples from the minority class, leading to a partial evaluation. In Figure
6.3 we observe that running label is severely underrepresented in both types of test set
generation, however, in case of HOC the class running is not present in the test set.

Takeaway: The client-selection bias present in HOC is amplified by the high levels of
heterogeneity typical for IoT data. FTS can be used to gain a clear and stable view on
the global data distribution enabling fair evaluation while carrying privacy risks.

6.3.2 Data augmentation and its effects in non-IID FL
Here we re-visit augmentation schemes from Section 5.2.4 and consider them within the
federated learning context. Figure 6.4 depicts the convergence results of training the
AFL baseline model with varied data augmentation. Likewise, a summary of the effects
of different data augmentation schemes for CL, SFL, and AFL is presented in Table
6.3. The shorter lines in this and the following Figures are the result of the evaluation
approach introduced in Section 6.1, where the number of communication rounds is fixed
instead of the total train time. For instance, in Figure 6.4 there are 108 communication
rounds per client (as visible in the legend title).

Across all three settings, the running label is almost always ignored by the models
if no augmentation is performed. The model trained without augmentation performs
comparably on the majority label sitting as the one trained with base augmentation
because sitting is the most common class. On the other hand, excessive augmentation
can be problematic. The balanced setting, despite equal class representation, introduces

48

6.3. Data-related Decisions

0 500 1000 1500 2000

Time (s)

0.4

0.6

0.8

S
c
o
re

Validation Balanced Accuracy

0 500 1000 1500 2000

Time (s)

0.4

0.6

0.8

S
c
o
re

Macro F1 Score

0 500 1000 1500 2000

Time (s)

0.2

0.4

0.6

0.8

S
c
o
re

F1 Score for Running Class

0 500 1000 1500 2000

Time (s)

0.2

0.4

0.6

0.8

S
c
o
re

F1 Score for Sitting Class

Average updates per client: 108

DA=base DA=none DA=balanced

Figure 6.4: Zoomed-in convergence plots of the evaluation metrics for different data
augmentation schemes (DA) in asynchronous FL. Different line length is the result of
fixing a number of average client updates rather than train time.

the oversampling bias, making it perform better compared to no augmentation but worse
than base augmentation.

Takeaway: Adding Gaussian noise as data augmentation scheme partially addresses
the label skew in CL, SFL, and AFL. The magnitude of the performed data augmentation
is a tunable parameter, as excessive augmentation can lead to oversampling bias and no
augmentation leaves the minority classes severely underrepresented and, consequently,
ignored by the model.

6.3.3 Global Data Scaling and Persistence of Feature Skew
We further evaluate the influence of two data scaling (standardization) methods (in-
troduced in Section 4.2.2) on model convergence in FL with non-IID data. In local
standardization, the features are scaled based on client-local feature means and standard
deviations. In contrast, global standardization consistst of first sharing the local feature
means and standard deviations with the server before training, and then scaling the data
on all clients with the aggregated global means and standard deviations. While the latter
carries privacy risks due to the communicated statistics, it improves the performance
of the models across all four tracked metrics, as it is visible from the Figure 6.5 and
Table 6.3. Individuals’ personal habits and way of performing them influence their local
feature distributions (e.g. every individual runs differently and introduces different sensor

49

6. Evaluation

0 500 1000 1500 2000 2500

Time (s)

0.4

0.6

0.8

S
c
o
re

Validation Balanced Accuracy

0 500 1000 1500 2000 2500

Time (s)

0.4

0.6

0.8

S
c
o
re

Macro F1 Score

0 500 1000 1500 2000 2500

Time (s)

0.2

0.4

0.6

0.8

S
c
o
re

F1 Score for Running Class

0 500 1000 1500 2000 2500

Time (s)

0.2

0.4

0.6

0.8

S
c
o
re

F1 Score for Sitting Class

Average updates per client: 133

STD=local STD=global

Figure 6.5: Zoomed-in convergence plots of the evaluation metrics for different feature
standardization schemes (STD) in asynchronous FL.

readings for this class). Secondly, additional feature skew among the clients stems from
device heterogeneity. As a result, scaling the features locally tends to keep a considerable
portion of the already present feature skew and creates skewed data views that are
confusing for the model and, consequently, degrade its performance.

Global scaling addresses these causes for feature skew, however, we found that a significant
amount of feature skew remained even after global scaling, especially for the running
class samples. Figure 6.6 depicts the feature skew of running samples across 5 clients
(accelerometer sensor features are considered). It is visible that client 18 and even client
3 have significantly different "views" of the running class according to their accelerometer
feature distributions compared to clients 2 and 9. This issue is, therefore, still preventing
the federated global model from progressing effectively and reaching a performance
comparable to CL. We believe that this skew stems from the difference in local label
distributions. As each client has a different ratio of the samples of each label, feature
means and standard deviations will be skewed towards each client’s label distribution as
well. Moreover, due to the minority label having fewer samples per client, the effects of
such skews are more prominent for such labels.

Takeaway: Scaling the data globally, significantly improves the convergence of the
models, but it introduces privacy risks. Even with global data scaling, the clients might
still have different representations of the same class. This proves that feature skew
is a persistent issue in non-IID IoT (HAR) datasets and is especially prominent in
minority classes.

50

6.4. System & Model-related Decisions

5 0 5

1
0

1
5

2
0

Value

mean

std

moment3

moment4

percentile25

percentile50

percentile75

F
e
a
tu

re
Accelerometer-magnitude feature distributions of running samples

of different clients after global standardization

Client ID

1

2

3

9

18

Figure 6.6: Boxplots depicting features distributions of the running class samples for
different clients (varied by color) [Sensor: accelerometer-magnitude]

6.4 System & Model-related Decisions
In the following, we focus on the effect of different optimizers on model performance with
non-IID data and the implications of server-processing delays on AFL with non-IID data.

6.4.1 Optimizer Selection
Here, we compare two popular model optimizers for Deep Learning: ADAM [67] and
SGD with momentum (SGD-m). To examine the magnitude of the optimizer’s impact
on the model performance, we fix the remaining training parameters. We present the
results of this comparison for AFL in Figure 6.7. A tabular view of the results for both
SFL and AFL is provided in Table 6.3.

We observe that while ADAM converges faster, it has poorer final performance. Moreover,
from Figure 6.7 it is evident that training using ADAM has a more unstable behavior
compared to SGD-m, especially visible in the case of F1-score for the running class
(bottom left). We explain the unsatisfactory results with the ADAM optimizer through
extremely short local train times (2 epochs only) and the nature of training FL models.
The former does not provide ADAM enough time to develop an effective optimizer state,
while the latter involves restarting the ADAM state with each round, where the optimizer
essentially forgets any progress made.

51

6. Evaluation

0 500 1000 1500 2000

Time (s)

0.4

0.6

0.8

S
c
o
re

Validation Balanced Accuracy

0 500 1000 1500 2000

Time (s)

0.4

0.6

0.8

S
c
o
re

Macro F1 Score

0 500 1000 1500 2000

Time (s)

0.2

0.4

0.6

0.8

S
c
o
re

F1 Score for Running Class

0 500 1000 1500 2000

Time (s)

0.2

0.4

0.6

0.8

S
c
o
re

F1 Score for Sitting Class

Average updates per client: 134

optim=adam optim=sgd

Figure 6.7: Zoomed-in convergence plots of the evaluation metrics for different optimizer
(optim) in asynchronous FL.

At the same time, leveraging naïve approaches such as extending the local train time or
locally maintaining the ADAM state are not recommended for the following reasons. First,
significantly increasing the (local) train time would lead, in FL settings, to divergence of
local gradients toward the clients’ local distributions, causing issues during aggregation
due to large differences among the gradients (See Section 3.2). On the other hand,
maintaining the local ADAM state and keeping fewer local epochs carries the risk of
ADAM overfitting to the local data. To make the momentum and learning rate adaptive
and utilize ADAM’s full potential, one could consider either applying ADAM on the server
side, as presented in [68, 69], or sharing ADAM state among the clients, as presented in
[70].

Takeaway: Applying SGD-m as the optimizer in FL settings has proven to be more
advantageous than applying ADAM. As ADAM contains more stateful parameters
that are tracked over multiple epochs, the approach does not perform well in federated
optimization which is typically stateless. To improve the performance of ADAM, one
can either apply ADAM on the server or share the optimizer’s state with the server
during the entire training.

6.4.2 Effects of Busy Servers
Custom FL workflows that adapt the vanilla FL process were discussed in Section 4.2.5.
These typically include additional processing steps on the server (e.g. for clustering

52

6.4. System & Model-related Decisions

0 500 1000 1500 2000 2500

Time (s)

0.4

0.6

0.8

S
c
o
re

Validation Balanced Accuracy

0 500 1000 1500 2000 2500

Time (s)

0.4

0.6

0.8

S
c
o
re

Macro F1 Score

0 500 1000 1500 2000 2500

Time (s)

0.2

0.4

0.6

0.8

S
c
o
re

F1 Score for Running Class

0 500 1000 1500 2000 2500

Time (s)

0.2

0.4

0.6

0.8

S
c
o
re

F1 Score for Sitting Class

Average updates per client: 58

S-Delay=False S-Delay=True

Figure 6.8: Zoomed-in convergence plots of the evaluation metrics for different server-
delay (S-Delay) amounts (True if additional delay was introduced.) in asynchronous FL.

[71, 58]) that introduce delays. To examine the effect of these delays on AFL with
non-IID data we simulate them by adding busy waiting on the server on two execution
points:

1. before centralized evaluation - a busy wait of 10 seconds is added

2. before each client’s update is merged into the global model - 1 second of busy wait
is added

The results of this run compared to the baseline (without the delays) are illustrated in
Figure 6.8 and in Table 6.3. The model trained without the delays naturally reaches the
fixed number of updates sooner (hence the shorter line). However, adding delay to the
server significantly degrades model performance even with the same average number of
updates per client. This discrepancy is especially visible in the minority class, running.

This observation highlights the importance of timely model updates and underscores the
need for adequate server resources and time-efficient adaptation techniques, even without
direct model training expected on the server.

Takeaway: AFL workflows involving intensive and time-consuming computations on
the server may degrade model performance even with extended training time. This also
raises concerns about the comparability of these approaches with other baselines that
do not encompass server delays.

53

6. Evaluation

Param data augmentation standardization optimizer server delay
Value none base bal. global local adam sgd False True

CL m-F1 0.47 0.71 0.68 - - - - - -
BA 0.46 0.71 0.69 - - - - - -
F1-R 0.00 0.64 0.60 - - - - - -
F1-S 0.84 0.83 0.81 - - - - - -

SFL m-F1 0.51 0.63 0.61 0.63 0.61 0.59 0.63 - -
BA 0.47 0.61 0.59 0.61 0.61 0.56 0.61 - -
F1-R 0.00 0.53 0.49 0.53 0.44 0.31 0.53 - -
F1-S 0.79 0.79 0.77 0.79 0.78 0.79 0.79 - -

AFL m-F1 0.39 0.62 0.59 0.63 0.60 0.59 0.63 0.58 0.52
BA 0.39 0.60 0.58 0.60 0.59 0.56 0.61 0.57 0.50
F1-R 0.00 0.48 0.45 0.53 0.48 0.32 0.53 0.39 0.11
F1-S 0.78 0.78 0.78 0.79 0.77 0.79 0.79 0.77 0.77

Table 6.3: Summary of the influence of data augmentation: none, base and balanced
(bal.), standardization (scaling) : local and global, optimizer : SGD-m and ADAM and
the presence of additional server delays on model performance across the four metrics:
macro F1 score, balanced accuracy, F1 score on running class, F1 score on sitting class.
Only the federated settings were considered for the effects of data scaling and optimizer
and only AFL for server delay. Maximum values for each (row, parameter) pair are
bolded. For each parameter (e.g. data augmentation, server delay) equal number of
communication rounds was ensured for AFL, hence the variation in "best" results across
the AFL configurations. Thus the AFL results reflect the scores after a fixed number of
communication rounds and not fixed training time.

6.5 Summary
Table 6.3 provides an overview of the results obtained through empirical evaluation
of various parameters including data augmentation, standardization, optimizer and
server delay acoss the three training paradigms: CL, SFL and AFL. From the Table we
observe that base and balanced augmentation provide significantly better results than no
augmentation. We also observe that base augmentation performs better than the balanced
augmentation. Global scaling significantly improves the performance of federated models
and this is primarily indicated by better performance on the minority class running. As
stated in Section 6.3.3 even with global scaling, feature skew still persists. We further
notice that SGD-m optimizer performs significantly better than ADAM in both federated
settings and that increased server load degrades model performance significantly. Lastly,
we find that using a more representative and fairer test set comes with privacy risks.

54

CHAPTER 7
Framework Implementation

In this chapter, we provide the background and implementation details of the AFL Flower
extension with the goal of improving the clarity and reproducibility of the results. Before
delving into the implementation specifics, the Flower framework and its main components
are summarized first, along with the depiction of a typical SFL process implemented in
Flower. We then describe our workflow for enhanced metrics monitoring. Then, we turn
to our implementation of asynchronous FL in Flower and discuss the implementation
details of the three modified components. Lastly, for the sake of reproducibility, we state
the runtime information and external packages used along with their versions.

7.1 Flower Framework
A federated learning framework introduced by Beute et al. [14] has been a very popular
choice for a baseline federated learning implementation, especially in academia. It offers
user-friendly abstractions that enable quick prototyping. Under the hood, Flower uses
the Ray1 framework [72] for client-server communication. Flower can be deployed in
both multi-device and device-simulated settings. In our implementation, we rely on the
latter. Flower implements this through its Virtual Client Engine which contains a pool
of Ray actors, each representing one virtual client.

Besides the underlying client simulation, Flower also implements a customizable syn-
chronous FL server that carries out all responsibilities of an FL server (starting rounds,
monitoring metrics, aggregating the results and general management of the FL process) as
well as a multitude of model aggregation strategies, among others FedAvg[4], FedProx[73]
and FedOpt[74]. In our work, we primarily use Federated Average (FedAvg) strategy,
proposed by McMahan et al.[4]. Lastly, Flower offers a History object, containing the

1https://www.ray.io/

55

https://www.ray.io/

7. Framework Implementation

collected metrics per round, enabling a solid overview of the FL progression and quality.
There exist three types of metrics in this context:

1. centralized metrics - these are collected during central evaluation (on the server
with a dedicated test set). This process happens once per round, after model
aggregation.

2. distributed (federated) metrics - these are collected in separate evaluation rounds
similar to training rounds. Instead of training, the clients that are selected evaluate
the global model on their validation sets and the results of this distributed evaluation
are then aggregated into one scalar value per metric per round.

3. distributed fit metrics - these metrics are collected directly before/after local training
and returned among training (fit) results. They too are aggregated across clients
and saved as one scalar value per metric per round.

A sequence diagram depicting one training round of SFL in Flower is provided in Figure 7.1.
The Server contains the reference to the Strategy object, which is first used for sampling
of the clients for the upcoming round and making the fit inputs (FitIns) for each of the se-
lected clients. FitIns object is a tuple of the form (Model Parameters, Config Dictionary)
containing the current global model parameters and a configuration dictionary which can
be used to pass additional information to the client. To sample the clients, the ClientMan-
ager is used. It waits until all clients are available and then selects the subset of clients
with a predefined subset size. In the simulation, communication with the clients is carried
out via ClientProxy objects, more specifically RayClientProxy objects. After sampling
and definition of fit inputs, these are returned to the server. The ThreadPoolExecutor then
starts a thread for each (Client Proxy, F it Inputs) pair. Each thread calls the fit()
method on the client proxy with the respective fit inputs. Clients then run local training
and each of them returns a fit result (FitRes) object that contains a tuple of the form
(Model Parameters, Number of samples, Dictionary of locally tracked metrics).
The server’s executor waits until the fit method of each client proxy yields a result, before
aggregating the fit results. Fit results are aggregated in the Strategy object following
the corresponding strategy. Finally, the global model is replaced with this aggregation
and evaluated (centrally and/or distributed). The process of distributed evaluation is
identical to model training: clients are sampled, the executor calls evaluate() function
on client proxies, and the evaluation results from all clients are aggregated in the Strategy
object.

7.2 Augmented Monitoring
The original code of the FL server and clients was further adapted to track several metrics
of interest that are not tracked by Flower. These changes encompass tracking round
duration, local training time on the clients, and client-measured metrics before and after
training. Consequently, these metrics were added to the Flower’s History object. All

56

7.3. Asynchronous Federated Learning with Flower

Loop

[for each fit client proxy]

Concurrent

Strategy ClientManager ClientProxy

configure fit sample

client proxiesclient proxies + fit ins

Server

submit

execute fit()

fit resyield future

await all futures to yield
aggregate fit results

aggregated fit resuts

ThreadPoolExecutor Thread

spawn and schedule

fit res

update global model

Figure 7.1: Sequence diagram depicting one training round in Flower. More precisely
the fitting process. The distributed evaluation process is identical. It should be noted
that multiple Thread objects are spawned in the concurrent block, one for each client
participating in the training round. For the sake of clarity, interactions of only one
Thread object are represented.

metrics not related to time are collected both in a centralized and distributed-fit manner.
To facilitate metrics tracking, we implemented a wrapper around the History object
called Tracker, which contains information about the configuration that produced the
results, i.e. number of clients, data scaling, number of rounds, learning rate, testing
set mode, etc. Finally, upon the completion of the FL process, the Tracker object is
persisted as a pickle2 file that can be easily accessed and used for data analysis and
evaluation purposes.

7.3 Asynchronous Federated Learning with Flower

In total, three Flower classes were adapted to enable AFL: Server, Strategy and History.
In the following, we first describe the adaptations of each class and then provide an

2https://docs.python.org/3/library/pickle.html

57

https://docs.python.org/3/library/pickle.html

7. Framework Implementation

example of the usage of these new classes and how the usage differs from the vanilla
Flower SFL implementation.

7.3.1 Asynchronous Server
To implement asynchronous behavior, we decided to adapt the use of ThreadPoolExecutor
in the Server class as suggested by the members of the Flower repository in one of the
GitHub issues discussing AFL with flower 3. Namely, instead of synchronizing at each
training round, a callback is added for each function submitted to the executor. This
callback processes the model update and, if the maximum train time is not reached,
submits the same client (ClientProxy to the executor once again (with the same callback
function). A sequence diagram of the asynchronous workflow is depicted in Figure 7.2.
The first step is the same as in SFL: the server fetches the client proxy objects and fit
inputs (with the same structure as in SFL) from the Strategy. It is important to note
that the result contains the client proxies of all available clients and not a subset as
in SFL. Then, fit function of each client proxy is submitted to the executor and our
modified "done-callback" function is attached to this submission. The executor spawns a
thread that executes the fit function on the client proxy and awaits the fit result. Upon
arrival of the fit result, the model update is merged into the global model and if there
is still training time left it is re-submitted to the executor with the new global model
parameters as fit inputs. The same function is, again, set as the callback.

Concurrently with these processes (training, merging and re-submitting the fit tasks
to the executor) the server periodically (every 20 seconds) evaluates the current global
model on a centralized test set.

7.3.2 Asynchronous Strategy
As the previously used Federated average strategy was aggregating the models in a round-
based manner, it had to be replaced with a Strategy compatible with AFL. The new
strategy for merging the incoming update into the global model is implemented according
to Equation 4.2 described in the methodology. The update rule described through the
equation assumes that model-update gradients are communicated from the client by
default and not the model parameters as in SFL. For the sake of completeness, the
AsynchronousStrategy optionally allows the model parameters to be aggregated instead
of gradients, as described in Equation 4.3.

7.3.3 Asynchronous History
There are two major shortcomings of the built-in History object when considering its use
in AFL:

1. metrics are recorded on per-round level which is not applicable to AFL.
3https://github.com/adap/flower/issues/469#issuecomment-1171340206

58

https://github.com/adap/flower/issues/469#issuecomment-1171340206

7.3. Asynchronous Federated Learning with Flower

Loop

[for each fit client proxy]

Concurrent

Strategy ClientManager ClientProxy

configure fit sample

client proxiesclient proxies + fit ins

Server

submit

execute fit()

fit res

average

ThreadPoolExecutor i-th Thread

spawn and schedule

add done callback

done callback

averaged global model

submit

add done callback

Update global model

Figure 7.2: Sequence diagram of the implemented asynchronous workflow.

2. distributed fit and evaluation metrics are aggregated across clients and saved as
one scalar per round per metric which is not applicable to AFL. Through such
aggregation, useful insights about individual clients’ local training are lost.

To address these issues, we first introduce timestamps instead of the round counter to
track centralized, distributed and distributed fit metrics. Second, we restructure the
distributed and distributed-fit metrics dictionaries to enable the persistence of each client’s
scores without aggregation. These changes are illustrated through a side-by-side
example comparison presented in Figure 7.3. On the left (Figure 7.3a) is the structure
of the two History fields made for SFL, while on the right (Figure 7.3b), we see the
adaptations made to enable AFL: timestamp introduction and monitoring metrics per
client, without aggregation.

We also had concerns about the absence of explicit concurrent-access regulation mecha-
nisms preventing concurrent writes that might happen in a multi-threaded environment
such as AFL. Upon further investigation, we found that all objects (including dictionaries)
are protected from concurrent modification by Python’s global interpreter lock4.

4https://docs.python.org/3/glossary.html#term-global-interpreter-lock

59

https://docs.python.org/3/glossary.html#term-global-interpreter-lock

7. Framework Implementation

metrics_centralized: {
"accuracy": [(round1, value1

) , (round2, value2) ...]
,

"f1": [...],
...

}

metrics_distributed_fit: {
"accuracy": [(round1, value1)

, (round2, value2) ...],
"f1": [...],
...

}

(a) Example structure of the met-
rics_centralized and metrics_distributed_fit
dictionaries within the built-in History object

metrics_centralized: {
"accuracy": [(timestamp1,

value1) , ...]
"f1": [...],

}

metrics_distributed_fit_async: {
"accuracy": {

cid1: [
(timestamp1, value1),
(timestamp2, value2),
(timestamp3, value3),
...
],

...
},
"f1" : { ... }
...

}

(b) Example structure of the met-
rics_centralized and metrics_distributed_fit
dictionaries within the new AsynchronousHis-
tory object. metrics_centralized contains
central evaluation results that are happen-
ing periodically (every 20 seconds) while
metrics_distributed_fit contains metrics
monitored by each client (marked with client
id (cid)) before or after local training.

Figure 7.3: Side-by-side comparison of JSON-formatted dictionary structures of the
built-in History object and the proposed AsynchronousHistory object.

7.3.4 Usage

The usage of the modified classes is analogous to the usage of the original built-in classes.
Just as Strategy is passed as a constructor argument upon Server object instantiation,
AsynchronousStrategy is passed as a constructor argument to the AsynchronousServer
object. Upon calling fit() on the Server object, a History object is returned in SFL.
Correspondingly, when fit() is called on AsynchronousServer, an AsynchronousHistory
object is returned in AFL. Figure 7.4 contains a side-by-side comparison of these workflows
in Python.

60

7.4. External Packages & Versioning

strategy = FedAvg(...)

sfl_server = Server(
...
strategy=strategy,
...
)

history : History = \
sfl_server.fit(...)

(a) Flower’s built-in Strategy, Server and His-
tory usage for implementing an SFL workflow

async_strategy = \
AsynchronousStrategy(...)

afl_server = AsynchronousServer(
...
async_strategy= \

async_strategy,
...
)

async_history \
: AsynchronousHistory = \

afl_server.fit(...)

(b) Our new AsynchronousStrategy, Asyn-
chronousServer and AsynchronousHistory us-
age for implementing an AFL workflow

Figure 7.4: Depiction of usage differences between SFL and AFL. On the left is the typical
sequence of instances in Flower for an SFL workflow, while the right listing contains the
sequence for an AFL workflow.

Library Version
flower 1.5.0
torch 1.12.1
torchmetrics 1.3.2
numpy 1.26.4
pandas 2.2.1
scikit-learn 1.5.0
hydra-core 1.3.2

Table 7.1: Used Python packages and their versions.

7.4 External Packages & Versioning
For reproducibility, here we present the Python runtime information and versions of the
used Python packages. The framework was implemented with Python 3.10.14 runtime
and the main dependencies and their versions are summarized in Table 7.1.

61

CHAPTER 8
Conclusion

Monumental developments in IoT processing power and sensing technologies have opened
up new opportunities for training machine learning (ML) models, particularly in the area
of Human Activity Recognition (HAR). HAR, which leverages the vast amount of data
collected by smartphones and smartwatches, holds significant potential in fields such as
medicine, security, and smart cities. While the prospects of HAR data are promising, it
carries stringent privacy constraints that limit the applicability of common ML pipelines
such as centralized learning (CL) on very powerful servers. Federated Learning (FL)
offers a viable solution since it distributes model training and keeps the data on clients’
premises. Further, FL leverages the processing power of data collection devices, which
are now capable of supporting both ML model training and inference. However, HAR
poses another issue: the presence of data with a high degree of heterogeneity (non-
IIDness). This makes the transition process from CL to FL non-trivial, introducing
numerous challenges and pitfalls. Moreover, while this transition process is very common
in academia and industry, it remains largely unstandardized, introducing significant
overheads due to its repeated implementation.

In this thesis, we presented a novel and prescriptively structured methodology for
transitioning from CL to both synchronous (SFL) and asynchronous FL (AFL) in non-
IID settings. Within this methodology, a CL baseline is established and used as the
foundation of subsequent FL models. We provide a thorough discussion of all design
decisions introduced by federating the training process and non-IID data.

To illustrate and evaluate the practical feasibility of our presented methodology in real-
world settings we applied it on a realistic HAR use case. Through this case study we
examined the Extrasensory dataset and the data preprocessing steps undertaken and
offered a discussion of the model architecture and tuning decisions.

Subsequently, we empirically evaluated the influence of various FL design decisions on
model training and evaluation. Among others, these design decisions included model

63

8. Conclusion

hyperparameters, such as batch size and learning rate, optimizer, data augmentation, data
scaling, as well as the strategy for generating the test set. These insights were distilled
into key takeaways to facilitate quick access and enable the community to leverage these
findings more easily.

Lastly, to produce the AFL results presented in this work, we developed an open-source
AFL extension of the Flower framework which fosters research on AFL and is publicly
available. Together with the framework, an extensive discussion about implementation
details was provided to promote reproducibility and ease the navigation of the repository.

8.1 Takeaways
In our proposed methodology, we introduced several data- and model-related design
decisions. We then conducted an empirical evaluation of these data and model-related
decisions within the suggested non-IID HAR use case. Based on our evaluation results
we identified the following main takeaways:

1. Generating a stable and fair test set, considering data of all clients, carries privacy
risks but is crucial to ensuring reliable performance evaluation.

2. Data augmentation is a tunable parameter that can significantly improve perfor-
mance in non-IID FL. It is tunable because no data augmentation makes the model
ignore the minority classes, while excessive augmentation leads to oversampling
bias.

3. Global data scaling carries privacy risks while offering a more consistent view of
the data,

4. Even after global standardization the feature skew often persists and this is
especially prominent in minority classes.

5. Using a state-based optimizer such as ADAM degrades the performance in non-IID
FL, giving advantage to more naive optimizers such as SGD-m.

6. Additional delays on the server degrade performance even with accordingly
extended trainining time.

8.2 Limitations
In this section, we discuss the limitations and potential shortcomings of this work,
acknowledging the challenges we faced and how they might affect the broader application
of our findings.

64

8.3. Future Work

8.2.1 Simulation vs Training on Physical Devices

Instead of performing the model training on actual devices (smartphones, smartwatches),
these were simulated in our work. Simulating the devices, naturally, limits the applicability
of our findings to real-world scenarios, however, throughout this thesis we kept the models
relatively small and limited ourselves to a smaller number of packages used by the clients
with the goal of reducing the resource footprint.

8.2.2 Periodicity in asynchronous FL updates

After examining the order in which AFL updates were merged into the global model on
the server, we observed a significant amount of periodicity, i.e. the updates of different
clients were merged in similar and repeating order over time. This raises questions
about the asynchronicity properties of AFL and points to a bottleneck where clients have
to wait until their updates are merged. Moreover, once the pattern of update merges
gets established, it is only facilitated by the fact that clients immediately start training
again, which gives an advantage to the clients that merged their update sooner. We
suspected that the ThreadPoolExecutor, responsible for merging the models, might be
the bottleneck here, as only four threads were used for merging the updates coming from
60 clients, however increasing this number did not bring improvement in this regard.
Introducing random client-side delays in training partially alleviated the issue. Therefore,
we speculate that the issue might lie in the underlying mechanisms implemented by the
Flower framework.

8.3 Future Work

We conclude this work by exploring potential avenues for future research that build upon
the contributions presented in this thesis.

8.3.1 Federated Learning Adaptations

In Chapter 4, we mention targeted adaptations of the typical FL workflow. These
adaptations hold great potential for pushing the boundaries of research in this field
and many authors already contributed by suggesting various adaptations. We aim to
investigate the causes of performance degradation in non-IID settings further and find
critical points that lead to effective FL adaptations. Thus our future work will be
continued in several directions. As we already established the performance degradation
present in non-IID federated settings, we aim to further investigate the model update
gradients and develop an adaptive asynchronous solution based on the new findings. This
solution will have the goal of improving the performance of underrepresented classes and,
by proxy, the general model performance.

65

8. Conclusion

8.3.2 Online Asynchronous Federated Learning
We also intend to extend our current AFL solution and methodology to online (data
streaming) settings which are paramount for the real-time FL systems. In this scenario,
the clients would gradually gain access to new samples over time. This introduces several
new design considerations. One key decision is determining the newness and amount of
data required for starting the local training on asynchronous clients.

Placing this approach in a broader temporal context leads to the concept of continuous FL,
where there is no predefined maximum training time. Here, however, further challenges
such as client drift appear, where a client’s data distribution changes over time due to
changes in user behavior or environmental factors. This makes the older models obsolete
for such clients and demands adaptive training mechanisms. In the presence of non-IID
data, these challenges are substantially intensified, making the development of continuous
online AFL schemes for realistic and heterogeneous datasets particularly complex.

Successfully addressing these challenges would represent a significant advancement in
IoT FL and facilitate advanced Federated Learning systems that operate more effectively
and offer stable performance in dynamic, real-world environments.

66

Overview of Generative AI Tools
Used

ChatGPT-4o1 was used sporadically throughout the thesis to correct grammar and
improve the clarity of the already existing text. The tool did not generate entire sentences
but rather suggested better/correct wording of the parts of the already existing sentences.

GitHub Copilot2 (version 1.223.0) was used during the implementation primarily for a
more advanced autocomplete function and not for design suggestions.

1https://chatgpt.com/
2https://github.com/features/copilot

67

https://chatgpt.com/
https://github.com/features/copilot

List of Figures

1.1 High-level perspective of the asynchronous federated approach for Human
Activity Recognition. 2

2.1 Typical ML model development pipeline for sensor-based HAR [3] 9
2.2 Different Distributed Machine Learning topologies [28] 10
2.3 Illustration of horizontal (left) and vertical FL (right). In horizontal FL all

clients possess the same set of features representing different sets of samples,
while in vertical FL the clients represent the same set of samples with different
sets of features. [44] . 13

2.4 Depiction of Federated Learning. At the beginning of each round, the server
sends curremnt global model parameters. Each of the clients continues training
the model on their local dataset and, after a specified amount of local epochs,
sends the updated model back to the server. The individual updates are then
aggregated and this aggregate forms the new global model. 13

3.1 Visualization of model divergence within one training round in IID and Non-
IID settings provided by [57]. Clients start with the same initial parameters
(after synchronization). In IID setting, the difference between the model
parameters of each client, averaged clients (FedAvg) and centralized training
(SGD) is relatively small compared to the non-IID setting. It can further be
observed that model divergence increases together with the number of local
epochs when data skew is present. 18

4.1 Methodology for transitioning from CL to FL with non-IID data 29

5.1 Stacked bar plot of label counts for each client. For each client (x-axis) the
height of a bar (y-axis) indicates how many samples of the given label (color)
are present in that client. 32

5.2 Violin plot highlighting the data and label skew. We can see how certain
activities are underrepresented, as well as, from the violin width, how each
activity is not equally distributed across clients. 33

5.3 Ratio of missing values for a column (feature) with the most missing values
grouped by sensor. E.g. the feature with most missing values within the
watch accelerometer sensor features has approximately 30% missing values. 34

69

5.4 Stacked barplot of the per-client label distributions with base data augmenta-
tion setting. 35

5.5 Stacked barplot of the per-client label distributions with balanced data aug-
mentation setting. 36

5.6 Label distribution with different data augmentation settings: none, base and
balanced. Note that in the balanced setting running and cycling are still
globally underrepresented. 36

5.7 Zoomed-in convergence plots of the evaluation metrics for different batch sizes
(BS) and learning rates (LR) in centralized learning. 38

5.8 Zoomed-in convergence plots of the evaluation metrics for different batch sizes
(BS) and learning rates (LR) in synchronous FL. 39

5.9 Zoomed-in convergence plots of the evaluation metrics for different batch sizes
(BS) and learning rates (LR) in asynchronous FL. 40

6.1 Visual comparison of CL, SFL and AFL baselines across four quality asses-
ment metrics: macro-averaged F1 (m-F1), balanced accuracy (BA), F1 on
running class (F1-R), F1 on sitting class (F1-S). AFL-C denotes the scores
of AFL baseline with a convergence cutoff to ensure the equal number of
communication rounds as in SFL. 46

6.2 Visual comparison of CL, SFL and AFL baselines across three communication
efficiency related metrics: average number of communication rounds (NCR),
total train time in seconds (TTT (s)), number of communication rounds per
hour (RPH). AFL-C denotes the scores of AFL baseline with a convergence
cutoff to ensure the equal number of communication rounds as in SFL. . . 47

6.3 Label distribution in the fair vs hold-out test set. 48
6.4 Zoomed-in convergence plots of the evaluation metrics for different data

augmentation schemes (DA) in asynchronous FL. Different line length is the
result of fixing a number of average client updates rather than train time. 49

6.5 Zoomed-in convergence plots of the evaluation metrics for different feature
standardization schemes (STD) in asynchronous FL. 50

6.6 Boxplots depicting features distributions of the running class samples for
different clients (varied by color) [Sensor: accelerometer-magnitude] . . . 51

6.7 Zoomed-in convergence plots of the evaluation metrics for different optimizer
(optim) in asynchronous FL. 52

6.8 Zoomed-in convergence plots of the evaluation metrics for different server-delay
(S-Delay) amounts (True if additional delay was introduced.) in asynchronous
FL. 53

7.1 Sequence diagram depicting one training round in Flower. More precisely the
fitting process. The distributed evaluation process is identical. It should be
noted that multiple Thread objects are spawned in the concurrent block, one
for each client participating in the training round. For the sake of clarity,
interactions of only one Thread object are represented. 57

7.2 Sequence diagram of the implemented asynchronous workflow. 59

70

7.3 Side-by-side comparison of JSON-formatted dictionary structures of the built-
in History object and the proposed AsynchronousHistory object. 60

7.4 Depiction of usage differences between SFL and AFL. On the left is the typical
sequence of instances in Flower for an SFL workflow, while the right listing
contains the sequence for an AFL workflow. 61

71

List of Tables

5.1 Summary of the batch size (BS) and learning rate (LR) hyperparameter tuning
for the three settings: Centralized Learning (CL), Synchronous Federated
Learning (SFL) and Asynchronous Federated Learning (AFL). The monitored
metrics are macro-averaged F1 score (m-F1), balanced accuracy (BA) and F1
score on the underrepresented running class (F1-R). As the performance on
F1 score on the sitting class did not significantly vary, it was omitted from
the table. In the CL setting, the values are calculated as the mean over the
last 5 epochs, while in SFL, they represent the mean over the last 5 rounds,
and in AFL, they correspond to the mean over the last 5 periodic centralized
evaluations. 41

6.1 Overview of the hyperparameters of the selected baselines 45
6.2 Comparison of the CL, SFL and AFL baselines across four quality assesment

metrics: macro-averaged F1 (m-F1), balanced accuracy (BA), F1 on running
class (F1-R), F1 on sitting class (F1-S) and three communication efficiency
related metrics: average number of communication rounds (NCR), total train
time in seconds (TTT (s)), number of communication rounds per hour (RPH).
AFL-C denotes the scores of the AFL baseline with a convergence cutoff to
ensure the equal number of communication rounds as in SFL. Column wise
"best" values are bolded for all columns except NCR and TTT as these are
fixed for SFL (NCR is fixed) and AFL (TTT is fixed). 46

6.3 Summary of the influence of data augmentation: none, base and balanced
(bal.), standardization (scaling) : local and global, optimizer : SGD-m and
ADAM and the presence of additional server delays on model performance
across the four metrics: macro F1 score, balanced accuracy, F1 score on
running class, F1 score on sitting class. Only the federated settings were
considered for the effects of data scaling and optimizer and only AFL for
server delay. Maximum values for each (row, parameter) pair are bolded.
For each parameter (e.g. data augmentation, server delay) equal number of
communication rounds was ensured for AFL, hence the variation in "best"
results across the AFL configurations. Thus the AFL results reflect the scores
after a fixed number of communication rounds and not fixed training time. 54

7.1 Used Python packages and their versions. 61

73

74

Bibliography

[1] M. G. Morshed, T. Sultana, A. Alam, and Y.-K. Lee, “Human action recognition: A
taxonomy-based survey, updates, and opportunities,” Sensors, vol. 23, no. 4, 2023.

[2] P. Kumar, S. Chauhan, and L. K. Awasthi, “Human activity recognition (har) using
deep learning: Review, methodologies, progress and future research directions,”
Archives of Computational Methods in Engineering, vol. 31, no. 1, pp. 179–219, 2024.

[3] A. Saha, S. Rajak, J. Saha, and C. Chowdhury, “A survey of machine learning and
meta-heuristics approaches for sensor-based human activity recognition systems,”
Journal of Ambient Intelligence and Humanized Computing, vol. 15, no. 1, pp. 29–56,
2024.

[4] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized data,” in
Artificial intelligence and statistics, pp. 1273–1282, PMLR, 2017.

[5] T. Zhang, L. Gao, C. He, M. Zhang, B. Krishnamachari, and A. S. Avestimehr, “Fed-
erated learning for the internet of things: Applications, challenges, and opportunities,”
IEEE Internet of Things Magazine, vol. 5, no. 1, pp. 24–29, 2022.

[6] R. S. Antunes, C. André da Costa, A. Küderle, I. A. Yari, and B. Eskofier, “Feder-
ated learning for healthcare: Systematic review and architecture proposal,” ACM
Transactions on Intelligent Systems and Technology (TIST), vol. 13, no. 4, pp. 1–23,
2022.

[7] T. Yang, G. Andrew, H. Eichner, H. Sun, W. Li, N. Kong, D. Ramage, and F. Beau-
fays, “Applied federated learning: Improving google keyboard query suggestions,”
arXiv preprint arXiv:1812.02903, 2018.

[8] G. Saleem, U. I. Bajwa, and R. H. Raza, “Toward human activity recognition: a
survey,” Neural Computing and Applications, vol. 35, no. 5, pp. 4145–4182, 2023.

[9] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated learning
with non-iid data,” 2018.

75

[10] J. Pei, W. Liu, J. Li, L. Wang, and C. Liu, “A review of federated learning methods
in heterogeneous scenarios,” IEEE Transactions on Consumer Electronics, pp. 1–1,
2024.

[11] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,” arXiv
preprint arXiv:1903.03934, 2019.

[12] C. Xu, Y. Qu, Y. Xiang, and L. Gao, “Asynchronous federated learning on heteroge-
neous devices: A survey,” Computer Science Review, vol. 50, p. 100595, 2023.

[13] Y. Wang, Y. Cao, J. Wu, R. Chen, and J. Chen, “Tackling the data heterogeneity
in asynchronous federated learning with cached update calibration,” in The Twelfth
International Conference on Learning Representations, 2024.

[14] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, J. Fernandez-Marques, Y. Gao, L. Sani,
K. H. Li, T. Parcollet, P. P. B. de Gusmão, et al., “Flower: A friendly federated
learning research framework,” arXiv preprint arXiv:2007.14390, 2020.

[15] Y. Chen, Y. Ning, M. Slawski, and H. Rangwala, “Asynchronous online federated
learning for edge devices with non-iid data,” in 2020 IEEE International Conference
on Big Data (Big Data), pp. 15–24, IEEE, 2020.

[16] X. Lu, Y. Liao, P. Lio, and P. Hui, “Privacy-preserving asynchronous federated
learning mechanism for edge network computing,” Ieee Access, vol. 8, pp. 48970–
48981, 2020.

[17] C. Jobanputra, J. Bavishi, and N. Doshi, “Human activity recognition: A survey,”
Procedia Computer Science, vol. 155, pp. 698–703, 2019.

[18] N. A. Choudhury and B. Soni, “In-depth analysis of design & development for
sensor-based human activity recognition system,” Multimedia Tools and Applications,
pp. 1–40, 2023.

[19] O. D. Lara and M. A. Labrador, “A survey on human activity recognition using
wearable sensors,” IEEE communications surveys & tutorials, vol. 15, no. 3, pp. 1192–
1209, 2012.

[20] V. Bianchi, M. Bassoli, G. Lombardo, P. Fornacciari, M. Mordonini, and I. De Munari,
“Iot wearable sensor and deep learning: An integrated approach for personalized
human activity recognition in a smart home environment,” IEEE Internet of Things
Journal, vol. 6, no. 5, pp. 8553–8562, 2019.

[21] A. Chelli and M. Pätzold, “A machine learning approach for fall detection and daily
living activity recognition,” IEEE Access, vol. 7, pp. 38670–38687, 2019.

[22] R. K. Tripathi, A. S. Jalal, and S. C. Agrawal, “Suspicious human activity recognition:
a review,” Artificial Intelligence Review, vol. 50, pp. 283–339, 2018.

76

[23] Z. Sun, S. Tang, H. Huang, Z. Zhu, H. Guo, Y.-e. Sun, and L. Huang, “Sos: Real-time
and accurate physical assault detection using smartphone,” Peer-to-Peer Networking
and Applications, vol. 10, pp. 395–410, 2017.

[24] N. Siddiqui and R. H. Chan, “A wearable hand gesture recognition device based
on acoustic measurements at wrist,” in 2017 39th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4443–4446,
IEEE, 2017.

[25] L. Xie, C. Wang, A. X. Liu, J. Sun, and S. Lu, “Multi-touch in the air: Concur-
rent micromovement recognition using rf signals,” IEEE/ACM Transactions on
Networking, vol. 26, no. 1, pp. 231–244, 2017.

[26] L. Chen, J. Hoey, C. D. Nugent, D. J. Cook, and Z. Yu, “Sensor-based activity recog-
nition,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), vol. 42, no. 6, pp. 790–808, 2012.

[27] Y. Vaizman, K. Ellis, and G. Lanckriet, “Recognizing detailed human context in
the wild from smartphones and smartwatches,” IEEE pervasive computing, vol. 16,
no. 4, pp. 62–74, 2017.

[28] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and J. S.
Rellermeyer, “A survey on distributed machine learning,” Acm computing surveys
(csur), vol. 53, no. 2, pp. 1–33, 2020.

[29] R. Caruana, “Multitask learning,” Machine learning, vol. 28, pp. 41–75, 1997.

[30] O. Dekel, P. M. Long, and Y. Singer, “Online multitask learning,” in International
Conference on Computational Learning Theory, pp. 453–467, Springer, 2006.

[31] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated multi-task
learning,” Advances in neural information processing systems, vol. 30, 2017.

[32] A. Ahmed, A. Das, and A. J. Smola, “Scalable hierarchical multitask learning
algorithms for conversion optimization in display advertising,” in Proceedings of
the 7th ACM international conference on Web search and data mining, pp. 153–162,
2014.

[33] D. Mateos-Núñez, J. Cortés, and J. Cortes, “Distributed optimization for multi-task
learning via nuclear-norm approximation,” IFAC-PapersOnLine, vol. 48, no. 22,
pp. 64–69, 2015.

[34] S. Liu, S. J. Pan, and Q. Ho, “Distributed multi-task relationship learning,” in
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 937–946, 2017.

[35] P. Baran, “On distributed communications networks,” IEEE transactions on Com-
munications Systems, vol. 12, no. 1, pp. 1–9, 1964.

77

[36] S. Hu, X. Chen, W. Ni, E. Hossain, and X. Wang, “Distributed machine learning
for wireless communication networks: Techniques, architectures, and applications,”
IEEE Communications Surveys & Tutorials, vol. 23, no. 3, pp. 1458–1493, 2021.

[37] S. He, X. Lyu, W. Ni, H. Tian, R. P. Liu, and E. Hossain, “Virtual service placement
for edge computing under finite memory and bandwidth,” IEEE Transactions on
Communications, vol. 68, no. 12, pp. 7702–7718, 2020.

[38] C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao, “A survey on federated
learning,” Knowledge-Based Systems, vol. 216, p. 106775, 2021.

[39] P. A. Bernstein and E. Newcomer, Principles of transaction processing. Morgan
Kaufmann, 2009.

[40] I. Raicu, I. Foster, A. Szalay, and G. Turcu, “Astroportal: A science gateway for
large-scale astronomy data analysis,” in Teragrid conference, pp. 12–15, 2006.

[41] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Federated
learning: Collaborative machine learning without centralized training data.” Google
AI Blog, Apr 2017. Accessed: 06.02.2024.

[42] F. Cruciani, A. Vafeiadis, C. Nugent, I. Cleland, P. McCullagh, K. Votis, D. Gi-
akoumis, D. Tzovaras, L. Chen, and R. Hamzaoui, “Feature learning for human
activity recognition using convolutional neural networks: A case study for inertial
measurement unit and audio data,” CCF Transactions on Pervasive Computing and
Interaction, vol. 2, no. 1, pp. 18–32, 2020.

[43] G. M. Weiss, J. L. Timko, C. M. Gallagher, K. Yoneda, and A. J. Schreiber,
“Smartwatch-based activity recognition: A machine learning approach,” in 2016
IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI),
pp. 426–429, IEEE, 2016.

[44] C. Xu, Y. Qu, Y. Xiang, and L. Gao, “Asynchronous federated learning on heteroge-
neous devices: A survey,” Computer Science Review, vol. 50, p. 100595, 2023.

[45] Q. Wang, Q. Yang, S. He, Z. Shi, and J. Chen, “Asyncfeded: Asynchronous federated
learning with euclidean distance based adaptive weight aggregation,” arXiv preprint
arXiv:2205.13797, 2022.

[46] J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek, and D. Huba,
“Federated learning with buffered asynchronous aggregation,” in International Con-
ference on Artificial Intelligence and Statistics, pp. 3581–3607, PMLR, 2022.

[47] J. So, R. E. Ali, B. Güler, and A. S. Avestimehr, “Secure aggregation for buffered
asynchronous federated learning,” arXiv preprint arXiv:2110.02177, 2021.

78

[48] D. Anguita, A. Ghio, L. Oneto, X. Parra, J. L. Reyes-Ortiz, et al., “A public domain
dataset for human activity recognition using smartphones.,” in Esann, vol. 3, p. 3,
2013.

[49] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity recognition using cell phone
accelerometers,” ACM SigKDD Explorations Newsletter, vol. 12, no. 2, pp. 74–82,
2011.

[50] Y. Vaizman, N. Weibel, and G. Lanckriet, “Context recognition in-the-wild: Unified
model for multi-modal sensors and multi-label classification,” Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 1, no. 4,
pp. 1–22, 2018.

[51] M. Fazli, K. Kowsari, E. Gharavi, L. Barnes, and A. Doryab, “Hhar-net: H ierar-
chical h uman a ctivity r ecognition using neural net works,” in Intelligent Human
Computer Interaction: 12th International Conference, IHCI 2020, Daegu, South
Korea, November 24–26, 2020, Proceedings, Part I 12, pp. 48–58, Springer, 2021.

[52] K. Sozinov, V. Vlassov, and S. Girdzijauskas, “Human activity recognition using
federated learning,” in 2018 IEEE Intl Conf on Parallel & Distributed Processing
with Applications, Ubiquitous Computing & Communications, Big Data & Cloud
Computing, Social Computing & Networking, Sustainable Computing & Commu-
nications (ISPA/IUCC/BDCloud/SocialCom/SustainCom), pp. 1103–1111, IEEE,
2018.

[53] A. Stisen, H. Blunck, S. Bhattacharya, T. S. Prentow, M. B. Kjærgaard, A. Dey,
T. Sonne, and M. M. Jensen, “Smart devices are different: Assessing and mitigating-
mobile sensing heterogeneities for activity recognition,” in Proceedings of the 13th
ACM conference on embedded networked sensor systems, pp. 127–140, 2015.

[54] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Federated
optimization in heterogeneous networks,” Proceedings of Machine learning and
systems, vol. 2, pp. 429–450, 2020.

[55] Y. Chen, Z. Chai, Y. Cheng, and H. Rangwala, “Asynchronous federated learning
for sensor data with concept drift,” in 2021 IEEE International Conference on Big
Data (Big Data), pp. 4822–4831, IEEE, 2021.

[56] H. Zhu, J. Xu, S. Liu, and Y. Jin, “Federated learning on non-iid data: A survey,”
Neurocomputing, vol. 465, pp. 371–390, 2021.

[57] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated learning
with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[58] C. Briggs, Z. Fan, and P. Andras, “Federated learning with hierarchical clustering
of local updates to improve training on non-iid data,” in 2020 international joint
conference on neural networks (IJCNN), pp. 1–9, IEEE, 2020.

79

[59] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust and communication-
efficient federated learning from non-iid data,” IEEE transactions on neural networks
and learning systems, vol. 31, no. 9, pp. 3400–3413, 2019.

[60] N. H. Nguyen, P. L. Nguyen, T. D. Nguyen, T. T. Nguyen, D. L. Nguyen, T. H.
Nguyen, H. H. Pham, and T. N. Truong, “Feddrl: Deep reinforcement learning-based
adaptive aggregation for non-iid data in federated learning,” in Proceedings of the
51st International Conference on Parallel Processing, pp. 1–11, 2022.

[61] G. Drainakis, P. Pantazopoulos, K. V. Katsaros, V. Sourlas, A. Amditis, and D. I.
Kaklamani, “From centralized to federated learning: Exploring performance and
end-to-end resource consumption,” Computer Networks, vol. 225, p. 109657, 2023.

[62] A. Nilsson, S. Smith, G. Ulm, E. Gustavsson, and M. Jirstrand, “A performance
evaluation of federated learning algorithms,” in Proceedings of the second workshop
on distributed infrastructures for deep learning, pp. 1–8, 2018.

[63] Y. Wang, “Co-op: Cooperative machine learning from mobile devices,” 2017.

[64] Z. Lu, H. Pan, Y. Dai, X. Si, and Y. Zhang, “Federated learning with non-iid data:
A survey,” IEEE Internet of Things Journal, 2024.

[65] Q. Shen, H. Feng, R. Song, S. Teso, F. Giunchiglia, H. Xu, et al., “Federated
multi-task attention for cross-individual human activity recognition,” in IJCAI,
pp. 3423–3429, IJCAI, 2022.

[66] Y. Chen, Y. Ning, Z. Chai, and H. Rangwala, “Federated multi-task learning
with hierarchical attention for sensor data analytics,” in 2020 International Joint
Conference on Neural Networks (IJCNN), pp. 1–8, IEEE, 2020.

[67] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[68] D. Leroy, A. Coucke, T. Lavril, T. Gisselbrecht, and J. Dureau, “Federated learning
for keyword spotting,” in ICASSP 2019-2019 IEEE international conference on
acoustics, speech and signal processing (ICASSP), pp. 6341–6345, IEEE, 2019.

[69] L. Ju, T. Zhang, S. Toor, and A. Hellander, “Accelerating fair federated learning:
Adaptive federated adam,” arXiv preprint arXiv:2301.09357, 2023.

[70] S. P. Karimireddy, M. Jaggi, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and A. T.
Suresh, “Mime: Mimicking centralized stochastic algorithms in federated learning,”
arXiv preprint arXiv:2008.03606, 2020.

[71] J. Ge, G. Xu, J. Lu, C. Xu, Q. Z. Sheng, and X. Zheng, “Fedaga: A federated
learning framework for enhanced inter-client relationship learning,” Knowledge-Based
Systems, vol. 286, p. 111399, 2024.

80

[72] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol,
Z. Yang, W. Paul, M. I. Jordan, et al., “Ray: A distributed framework for emerging
{AI} applications,” in 13th USENIX symposium on operating systems design and
implementation (OSDI 18), pp. 561–577, 2018.

[73] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges,
methods, and future directions,” IEEE signal processing magazine, vol. 37, no. 3,
pp. 50–60, 2020.

[74] S. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečnỳ, S. Kumar, and H. B.
McMahan, “Adaptive federated optimization,” arXiv preprint arXiv:2003.00295,
2020.

81

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Research Questions
	Methodology
	Structure

	Background
	Human Activity Recognition
	Distributed Machine Learning
	Federated Learning

	Related Work
	Human Activity Recognition with Deep and Federated Learning
	Non-IID Data Implications on Federated Learning
	Differences between Centralized and Federated Learning

	From Centralized to Federated Learning with Non-IID Data
	Establishing the CL Baseline
	Transitioning to FL
	Summary

	Case Study: Federated Learning for Human Activity Recognition
	Extrasensory Dataset
	Data Preprocessing
	Quality Assessment Metrics
	Model Design & Tuning

	Evaluation
	Evaluation Testbed Setup
	Empirical comparison of the CL, SFL and AFL baselines
	Data-related Decisions
	System & Model-related Decisions
	Summary

	Framework Implementation
	Flower Framework
	Augmented Monitoring
	Asynchronous Federated Learning with Flower
	External Packages & Versioning

	Conclusion
	Takeaways
	Limitations
	Future Work

	Overview of Generative AI Tools Used
	List of Figures
	List of Tables
	Bibliography

