
SIWA: Wasm Serverless Actors
for the Edge-Cloud Continuum

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Jack Shahhoud, BSc.
Matrikelnummer 01631081

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Asst. Prof. Dr. Stefan Nastic
Mitwirkung: Dipl.-Ing. Cynthia Marcelino, BSc.

Wien, 27. August 2024
Jack Shahhoud Stefan Nastic

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

SIWA: Wasm Serverless Actors
for the Edge-Cloud Continuum

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Jack Shahhoud, BSc.
Registration Number 01631081

to the Faculty of Informatics

at the TU Wien

Advisor: Asst. Prof. Dr. Stefan Nastic
Assistance: Dipl.-Ing. Cynthia Marcelino, BSc.

Vienna, August 27, 2024
Jack Shahhoud Stefan Nastic

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Jack Shahhoud, BSc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die ver-
wendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen, die
ohne substantielle Änderungen übernommen wurden, habe ich jeweils die von mir formu-
lierten Eingaben (Prompts) und die verwendete IT-Anwendung mit ihrem Produktnamen
und Versionsnummer/Datum angegeben.

Wien, 27. August 2024
Jack Shahhoud

v

Acknowledgements

I want to thank God for helping me in this long and challenging journey.

I want to thank Professor Dustdar and the advisors for the opportunity to work on this
thesis and for the guidance and support.

vii

Kurzfassung

Serverless Computing ist ein Computerparadigma, das effizientes Infrastrukturmanage-
ment und elastische Skalierbarkeit bietet. Serverless Functions werden je nach Bedarf
hoch- oder herunterskaliert, was bedeutet, dass Functions nicht direkt adressierbar sind
und auf plattformgesteuerte Aufrufe angewiesen sind. Darüber hinaus erfordert seine
Serverless Natur, dass Funktionen externe Dienste wie Objektspeicher und Key Value
Store (KVS) nutzen, um Daten auszutauschen. Serverless Actors sind entstanden, um
diese Probleme zu lösen. Dennoch verlassen sich die aktuellen Serverless Actors auf den
hochmodernen Serverless LifeCycles und event-trigger Aufrufe und zwingen die Actors
daher, Remotedienste zu nutzen, um ihren Status zu verwalten und Daten auszutauschen.

Um diese Probleme zu lösen, stellen wir in diesem Artikel ein neuartiges Serverless
LifeCycle Model vor, das die Wiederverwendung von Actors ermöglicht, sodass Actors
ihren Status zwischen Ausführungen beibehalten und zugewiesene Ressourcen in anderen
Zuständen wiederverwenden können. Darüber hinaus schlagen wir ein neuartiges Ser-
verless Aufrufmodell vor, das es Serverless Actors ermöglicht, das Verhalten zukünftiger
Nachrichten zu beeinflussen. Eine dedizierte verteilte Middleware wird verwendet, um
die Kommunikation Zwischen Actors zu ermöglichen und neue Anfragen zu verarbeiten.

Abschließend präsentieren wir SIWA, ein leicht WebAssembly Serverless Actor Plat-
form, das es Serverless Functions ermöglicht, sich wie Actors zu verhalten. SIWA-Actors
haben eine eindeutige Adresse, die eine direkte Kommunikation über die SIWA Distributed
Middleware ermöglicht. SIWA nutzt WebAssembly, um Actors im Vergleich zu anderen
Virtualisierungsmethoden eine leichtgewichtige Sandbox-Isolierung zu bieten, wodurch
sie für das Edge-Cloud-Kontinuum geeignet sind, wo Rechenleistung und Ressourcen
begrenzt sind. Viele Sprachen unterstützen WebAssembly als Kompilierungsziel und
bieten dem Entwickler so mehr Optionen zur Implementierung gewünschter Funktionen.
Versuchsergebnisse zeigen, dass SIWA die Datenaustauschlatenz um bis zu 92% optimiert
und den Durchsatz im Vergleich zu OpenFaaS und Spin um das bis zu 10× erhöht.

ix

Abstract

Serverless Computing is a computing paradigm that provides efficient infrastructure man-
agement and elastic scalability. Serverless functions scale up or down based on demand,
which means that functions are not directly addressable and rely on platform-managed
invocation. Moreover, its stateless nature requires functions to leverage external services,
such as object storage and Key Value Store (KVS), to exchange data. Serverless actors
have emerged to address these issues. Nevertheless, the current Serverless actors rely
on the state-of-the-art Serverless Lifecycle and event-trigger invocation, thus forcing
actors to leverage remote services to manage their state and exchange data. Functions
run in a dedicated container or virual machine to provide isolation. This increases the
consumption of resources and raises the configuration complexity.

To address these issues, in this paper, we introduce a novel Serverless LifeCycle Model
that allows actors to be reused, enabling actors to maintain their state between executions
and reuse allocated resources in other states. Additionally, we propose a novel Serverless
Invocation Model that enables serverless actors to influence the behaviour of future
messages using the state of the actor. A dedicated distributed middleware is used to
enable actor communication and for processing new requests.

Finally, we present SIWA, a lightweight WebAssembly Serverless Actor platform that
enables Serverless functions to behave as actors. SIWA actor has a unique address
that enables direct communication via SIWA Distributed Middleware. SIWA leverages
WebAssembly to provide the actors with lightweight sandbox isolation compared to
other virtualization methods, making them suitable for the Edge-Cloud Continuum,
where computational power and resources are limited. Functions are executed in the
actor using WebAssembly Virtual Machine. Many languages support WebAssembly as
a compilation target, providing the developer with more options to implement desired
functions. Experimental results show that SIWA optimises the data exchange latency by
up to 92% and increases the throughput by up to 10x compared to OpenFaaS and Spin.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Motivation . 3
1.3 Contributions . 5
1.4 Research Questions . 6
1.5 Methodology . 7
1.6 Structure . 8

2 Background 9
2.1 Edge Cloud Continuum . 9
2.2 Serverless Computing . 10
2.3 Edge Computing . 13
2.4 Cold Start . 13
2.5 WebAssembly . 14
2.6 Actor Model . 16

3 SIWA System Design 19
3.1 Requirements . 19
3.2 Core Concepts . 20
3.3 SIWA Models . 21
3.4 Actor Components . 23
3.5 SIWA Components . 24

4 Implementation 27
4.1 SIWA Mechanisms . 27
4.2 Implementation . 31
4.3 Workflows and Internal Calls . 34
4.4 Execution Example . 36

xiii

5 Evaluation 39
5.1 Overview . 39
5.2 Benchmarks . 40
5.3 Experiments . 40
5.4 Results . 42

6 Related Work 47
6.1 Stateful Serverless . 47
6.2 WebAssmebly in Serverless . 48
6.3 Actors . 49
6.4 Middlewares . 51

7 Conclusion 53
7.1 Contributions . 53
7.2 Research Challenges . 54
7.3 Future Work . 54

List of Figures 57

List of Tables 59

List of Listings 59

Bibliography 63

CHAPTER 1
Introduction

Serverless computing is a paradigm that offers infrastructure management and elastic
scaling. In serverless computing, stateless functions respond to an event trigger. Due to
the serverless stateless design, functions leverage external services such as object storage,
message brokers, and Key-Value Stores (KVS) to exchange data, pushing data race
management to the applications [JSS+19, RND23, NRF+22]. Additionally, functions are
not directly accessible; they are accessible via platform ingresses such as API Gateway
and Load Balancer [BFM19, WCJL23, HFG+18].

Serverless Actors [Akk, CDTV24, BGJ+21, BPSAP+19, MNW+18, HKO21, SP20] have
emerged addressing these issues, thus enabling direct communication, state persistence,
and concurrency management, which is crucial for serverless functions. Nevertheless,
existing serverless actor approaches still rely on state-of-the-art serverless design to enable
actors.

1.1 Problem Statement
1.1.1 Actors
Actors [Agh86, Hal12] are isolated entities that can [CDTV24, BGJ+21, Hal12, POPL18,
SCH24]:

1. Create other actors

2. Directly communicate with other actors

3. Influence the behavior or state for the next received message

On the other hand, some properties of Serverless functions are [NRF+22, BFM19,
WCJL23, HFG+18]:

1

1. Introduction

• Stateless

• Non-addressable

• Event-triggered

Current existing serverless actor approaches [Akk, BGJ+21, MNW+18, SP20, HKO21]
leverage the state-of-the-art serverless design characteristics such as lifecycle [Mun19] and
event-trigger invocation [JSS+19, WCJL23, KHA+23]. The serverless lifecycle facilitates
the creation and management of actors, while event-triggered messages enable distributed
and decoupled communication between serverless actors.

1.1.2 Serverless Function LifeCylce
In the current serverless function lifecycle [Mun19], serverless platforms typically launch
one stateless function instance per request that either succeeds or fails while its state is
typically stored in remote services. Existing approaches that enable functions to preserve
state include:

1. Programming Models [BGJ+21, CDTV24, BGK+11] that abstract the function
state handling from the developer and leverage external services to store it. Such
programming models provide frameworks and libraries that automatically manage
state persistence. While programming models simplify state management, they
might introduce latency overhead due to dependencies on external storage systems.

2. Sidecars [Akk, JW21a] systems that act as proxies and manage state interactions
transparently, thus ensuring that state consistency and storage are handled outside
the serverless function lifecycle, thereby reducing the function’s overhead. Despite
their benefits, sidecars run alongside the function, consuming additional CPU and
memory resources, which impacts the overall resource usage and might become a
challenge at Edge-Cloud Continuum.

3. Custom Sandboxes [SP20, CCB+22] ensure that functions can access and mod-
ify shared states in a controlled manner, providing isolation and, at the same
time, enabling efficient state management. Although custom sandboxes might be
lightweight, they are not interoperable with the current state-of-the-art platforms,
limiting their usage on different serverless platforms such as AWS Lambda, Azure,
and GCF. PaaS [CCB+22] still relies on containers to run functions, which can
influence the latency of execution upon start.

4. Some Serverless Platforms [HKO21, SWL+20] integrate native support for stateful
computing, allowing functions to maintain state across multiple invocations via
dedicated or state-of-the-art storage mechanisms. They still rely on external storage
systems.

2

1.2. Motivation

However, these approaches depend on the lifecycle of serverless functions that succeed or
fail. To fully utilize actor potential, the lifecycle must ensure actor reuse while preserving
its state. Consequently, actors maintain states between executions, avoiding unnecessary
state propagation. They also rely on external storage to import/export the state, affecting
the latency.

1.1.3 Message Exchange
In the existing event-triggered invocation design, serverless platforms typically execute
functions in response to events. This asynchronous message processing enables high
concurrency and scalability, as each function can operate independently. However, as
functions are triggered by events and therefore not addressable, they rely on remote
services to exchange data. To enable direct communication between functions, current
approaches leverage

1. Remote services such as object storage [S3], KVS [WFLH18, KWS+18, BPSAP+19]
and cache [WZM+20, RCG+21, HFC+23, MTA+23], are commonly used to enable
direct communication between serverless functions. However, remote services might
increase latency by up to 95% compared to direct communication [KNGB21].

2. Direct Communication such as message queues [ACR+18], TCP-punch hole [CBCH23],
shared-memory [SSM+23, MN23, JW21b], disk storage [MSM+21], and local
cache [MBN+21, ACR+18, SWL+20] allows serverless functions to leverage host
mechanisms to exchange data, decreasing latency. Nevertheless, these approaches
decrease the function isolation [MN23, SWN+22]

To ensure concurrency in distributed environments, actors only process a single message
at a time. However, they may influence future messages behaviour. For example, if one
actor is unavailable, it can reject or keep the next message waiting for processing. The
current approach using middleware with event-triggered invocation ensures the current
message is delivered, but it does not allow actors to influence future messages. To ensure
that actors can effectively influence the behaviour of future messages, the event trigger
invocation mechanism must guarantee that the actor’s future processing requirements can
be met. The actor’s current LifeCycle state determines the behaviour of future messages.

1.2 Motivation

1.2.1 Illustrative Scenario
To better motivate the research challenges, we present a use case for real-time video
analytics that focuses on detecting fire emergencies in smart cities. To achieve this,
cameras and sensors are strategically positioned throughout the city to detect fire patterns.
A serverless workflow is employed to identify and respond to fire emergencies.

3

1. Introduction

Our workflow utilizes five serverless functions, partially executed on the Edge and partially
executed on the cloud. To reduce communication latency in our workflow, some tasks are
executed at the edge, close to the data source. Edge tasks are responsible for processing
large real-time video streams, extracting image frames, simple object detection, and
triggering immediate local alerts for emergencies. On the other hand, tasks that require
more powerful computing resources, such as more complex object detection and model
training, are carried out in the Cloud. Our motivating scenario is inspired by a Serverless
Workflow for real-time environmental monitoring [ERGC24, SCC+23, MTZ23]

Edge Cloud

Ingest Extract
Frames

Object
Detection

Alarm
Trigger

Prepare
Dataset

Figure 1.1: Simplified Serverless Workflow for Fire Detection for Smart Cities

In 1.1, in the Ingest stage, real-time videos captured by cameras are transmitted to
edge nodes via a streaming framework, where serverless functions responsible for Extract
Frames are activated to process the video data in small chunks, effectively reducing
latency. Each Extract Frames function processes a video segment, ensuring swift data
handling. Upon completing their tasks, these functions directly pass the processed frames
to the Object Detection functions, who analyse them to identify specific fire patterns such
as smoke and flames. Following the detection process, the Object Detection functions
communicate directly with the Alert Trigger functions, who evaluate the data to decide
whether to trigger local emergency responses.

Concurrently, Object Detection functions send data to Prepare Dataset functions for
data preprocessing. Finally, the processed data is transmitted to the cloud, where more
resource-intensive tasks are performed, such as training machine learning models to
enhance fire detection. SIWA enables this workflow execution to minimise latency by
facilitating actors communication directly instead of relying on storage services. Thus
ensuring that messages are processed without data race conditions between other actors.

Additionally, it optimises edge resources as each actor is reused instead of creating
one instance per invocation on conventional state-of-the-art serverless platforms. Finally,

4

1.3. Contributions

it enables actors to define the behaviour of the next message; actors can choose to keep
the next message in the queue waiting for processing or reject it completely. Another
actor then processes the message. Hence, it enables stateful actors to define the message
sequence they will process.

1.3 Contributions
Current state-of-the-art approaches that enable serverless actors enable direct commu-
nication and state preservation while leveraging the existing serverless lifecycle and
event-triggered invocation. As a result, multiple actor instances are created, and they
leverage external services to exchange data and store their state. Current state-of-the-art
serverless functions rely on containers and virtual machines for isolation and execution.
This leads to a slow start, resource overhead, and regular updates and security checks.
Serverless platforms do not support all languages, and some languages are slower in
the serverless context. This leads to being restricted to a set of languages to run functions.

To address these issues, we propose novel serverless lifecycle, invocation models, and
distributed middleware that enable actors to be reused, facilitate serverless actors to
influence the behaviour of future messages, and allow communication between actors.
We rely on WebAssembly for isolation and function execution instead of containers and
virtual machines. WebAssembly offers improvements in performance without weakening
isolation or security. Many languages also support WebAssembly as a compilation target,
which makes it easier for developers to implement their desired functions. Finally, we
present SIWA, Serverless Independent WebAssembly Actor based serverless platform
that executes serverless functions as actors.

The main contributions of this paper include:

• LCM: A novel SIWA Serverless Lifecycle Model that natively executes serverless
functions as actors. It allows serverless actors to be reused while enabling actors to
preserve their state between multiple executions, thereby reducing the number of
repeated actors instantiating for multiple requests. Each state is responsible for a
specific task, such as registering an actor or running a function. Actor LifeCycle
switches between states until the actor is no longer needed. The actor waits for
new execution requests without wasting resources. When a new request is received,
the actor switches to the execution state, reusing the allocated resources, such as
the WebAssembly VM, making the execution faster and less resource-consuming.

• SIM: A novel SIWA Serverless Invocation Model that facilitates serverless actors to
influence the behaviour of future messages. SIM enables busy actors to either reject
future messages or keep them waiting to process them as soon as the actor becomes
available. The Invocation Model relies on the Actor LifeCycle. The current actor
state defines the behaviour of the incoming messages. For example, an actor in

5

1. Introduction

an execution state cannot accept new execution requests. The actor informs the
distributed middleware of its availability to accept new execution requests.

• SIWA: A WebAssembly Serverless Actor Platform that leverages Wasm to provide
lightweight isolation. The SIWA architecture leverages the LCM model to enable
serverless functions to execute as actors. The user can compile their code into a
WebAssembly binary and run the binary in the actor using the Wasm VM.

• SIWA Middleware: Furthermore, SIWA introduces its dedicated message middle-
ware, which enables direct communication and leverages SIM to enable actors to
influence the behaviour of future messages. The distributed middleware supports
the actor’s characteristic of being addressable. Functions running on different hosts
can communicate through the distributed middleware using the unique ID of the
actor.

1.4 Research Questions
The actor model’s ability to deliver messages across distributed systems aligns with the
dynamic and decentralised Serverless at Edge-Cloud Continuum [Hal12]. However, the
current Serverless design limits its full potential [BPP+19, POPL18, SCH24]. Therefore,
we identify the following research challenges to enable the full capabilities of Serverless
Actors in the Edge-Cloud Continuum.

RQ-1: How to enable serverless actors to be reused in the Edge-Cloud Con-
tinuum?
The current serverless function lifecycle supports either succeeded or failed states, which
leads to platforms creating multiple instances for handling different function executions.
Current approaches for serverless actors preserve their state in remote storage and load
the previous state into the new instance.
Virtually, the new actor instance has the previous state, but physically, it is a new process
on the host. Due to the current serverless lifecycle design limitation, every request is a
new actor, which requires actors to leverage external services to maintain their state.

By enabling actors to be reused, the actor can preserve their state between executions,
avoiding external services to persist their state, potentially reducing the number of created
instances and preserving resources and costs at the edge [Mun19, HKO21, CDTV24].
Existing allocated resources, such as Wasm VM, are reused, leading to increased perfor-
mance and decreased resource consumption.
The distributed middleware is aware if the actor is available to receive new requests and
be reused, since the actor informs the middleware of its own availability. The actor exists
for a specific duration, and the duration is renewed after each function execution. Idle
actors stop running after this duration.

RQ-2: How can we enable direct communication between actors while allowing
them to influence the behaviour of future messages?

6

1.5. Methodology

Direct communication among serverless actors requires addressability. By enabling direct
message exchanges between actors, they avoid using external services to exchange data,
thus reducing latency and network overhead.
Nevertheless, the state-of-the-art event-triggered serverless function invocation enables
single message delivery, which means the platform cannot decide which function exe-
cutes the message. To enable actors to influence future messages, the event-triggering
middleware must:

• Forward to the actor for processing

• Enables actors to keep the message in the middleware until the actor becomes
available again.

• Forward to another actor in case of rejection by the existing actor

By enabling actors to influence the message processing behaviour, actors can optimise
state management by keeping state between executions, thus decreasing latency and
network traffic overhead, crucial for enhancing performance in sensitive edge environ-
ments [ACR+18]. Each actor has a unique ID assigned. The actors can communicate
directly using their IDs through the distributed middleware.

RQ-3: How to provide lightweight isolation while enabling the full potential
of serverless actors in the Edge-Cloud Continuum?

Isolation is critical to ensuring that failures by one actor do not impact others. Wasm
provides a secure, sandboxed environment that reduces the overhead associated with
traditional container-based isolation methods. This lightweight isolation allows serverless
actors to execute with minimal latency and resource consumption, which is crucial for
the Edge-Cloud Continuum. Furthermore, actors can profit from the reduced cold starts,
decreasing their startup time. [GFD22, MPFS22].
In the following chapters, we discuss how WebAssembly provides this isolation independent
of the compiled code source. Other platforms require pre-packages and platform-specific
libraries that WebAssembly does not require, making it even easier for the developer
to focus on the functionality. Each actor contains a dedicated Wasm VM to execute
the provided WebAssembly binary file. This VM is initialised once, and due to Actor
LifeCycle, it can be reused again.

1.5 Methodology
The aim of the thesis is to investigate the effect of using actors with extended functionality
and dedicated distributed communication middleware on the FaaS. We start our research
by studying papers dealing with serverless computing, specifically FaaS. We focus on
state-of-the-art FaaS that use actors to execute their functions. We also check papers that
utilise distributed middlewares for communication. We design and implement our system,
going through different requirements and technologies. We measure the performance

7

1. Introduction

of our system by applying different experiments and comparing the results with other
state-of-the-art frameworks.

1.6 Structure
In Chapter 2, we explore the history and background of related topics.

Chapter 3 goes through the process of designing our system, taking different requirements
into consideration.

In Chapter 4, we discuss the implementation and the different aspects of SIWA. We go
through the components of the system and how they work together.

Chapter 5 demonstrates the performance of SIWA by applying different experiments and
comparing the results with other frameworks.

In Chapter 6, we mention relevant work that also deals with similar aspects, such as
actors and distributed communication.

Chapter 7 summarises our work by mentioning revising the research questions, discussing
future work, and mentioning the main contributions of our work.

8

CHAPTER 2
Background

In this chapter, we cover different terms and methodologies related to serverless computing,
WebAssembly and actors and have an overview of them.

2.1 Edge Cloud Continuum
Organizations can run and host their web-based businesses and websites by themselves.
Hosting and maintaining them became more challenging, especially in terms of security
and scalability. Organizations started seeking different approaches to hosting and running
their businesses in order to save costs and time.

Cloud computing started emerging and sparked interest from different parties as an
alternative to traditional self-hosted servers. There are several advantages that make
Cloud Computing attractive [AMF+09, JSS+19]:

• The aspect of on demand computing resources.

• No up-front obligation by the users.

• Ability to pay only for used resources in short terms.

• Scalability depending on the usage leads to reduced cost and avoiding large data
centers.

• Simple and clear operation and configuration due to resource virtualization.

• Increase hardware utilization by coupling different workloads from several organiza-
tions.

9

2. Background

Companies started offering computing resources using virtualization. Amazon EC2 1,
Microsoft Azure Virtual Machine 2, and Google Compute Engine 3 provide low-level,
lightweight virtual machines that can be configured. Users configure the Virtual Ma-
chine (VM) that run in the cloud, where they can define their own custom required
functionality.
This increased the encouragement for switching from locally hosted servers to cloud-based
solutions. An important point that makes this approach more appealing is that the
hardware is made available from the providers, and the user is responsible for defining
the required computational power and resources.

Creating and maintaining VMs is not simple. Users sometimes want to execute only a
certain task, such as uploading a file, sending a notification, or storing data in a database.
For these tasks, users need to setup a VM and customize it according to its functionality.
But creating a VM for simple tasks also requires a significant amount of time and cost,
particularly when the base structure, such as the operating system and the language, is
common between functionalities and needs to be configured again. Also, there are other
challenges, such as scalability and security [JSS+19]. For these reasons, Function as a
Service came up.

2.2 Serverless Computing

2.2.1 Function as a Service

Function as a Service (FaaS) or serverless computing is very popular in the cloud comput-
ing world. FaaS means that an application is deconstructed into several function-level mi-
croservices. They are short-lived, event-driven, and provide function isolation [LGC+22].
They are not only suitable for cloud platforms, but they can also run on edge devices.
There are multiple cloud providers that support FaaS, such as Amazon Lambda 4 and
Azure functions 5.

Taking the asynchronous functions shown in Figure 2.1 as an example, these functions are
invoked by events or by sending API queries. After validating the queries, the functions
are invoked in a new sandbox (Cold Start) or reused in an existing sandbox (Warm Start).
The functions run individually and are isolated in a sandbox represented as a virtual
machine (VM) or as a container. They can be executed on-demand and scaled horizontally

1https://aws.amazon.com/ec2/
2https://azure.microsoft.com/products/virtual-machines/
3https://cloud.google.com/products/compute
4https://aws.amazon.com/lambda/
5https://azure.microsoft.com/en-us/products/functions/

10

https://aws.amazon.com/ec2/
https://azure.microsoft.com/products/virtual-machines/
https://cloud.google.com/products/compute
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/products/functions/

2.2. Serverless Computing

Figure 2.1: Asynchronous invocation in serverless computing [LGC+22].

depending on the workload [LGC+22]. Functions should support the following features
in order to be identified as FaaS [LGC+22]:

• Auto-scaling: The functions should be able to scale horizontally and vertically.
When the number of instances scales to zero, accessing the function next time leads
into cold start. This means initializing the function from the start, introducing a
slower start, and affecting the server response.

• Flexible Scheduling: The server schedules functions according to resource con-
sumption. The servers are distributed into multiple regions, and according to the
workload, the functions can be scheduled to run in different regions.

• Event-driven: The functions can be triggered by different events, message queue
updates, or updates in a storage service.

• Transparent development: Users are not responsible for maintaining the underlying
physical host, the providers are responsible for providing function isolation, sand-
boxing, execution environments, computational power, and many other resources.
They also provide various DevOps tools to the developers.

• Pay-as-you-go: The user pays only for resources that the function actually used.
This is possible by sharing CPU, network and disk and other resources among
functions. The user does not need anymore to buy dedicated servers.

2.2.2 Virtualization
In this section, we go through various virtualization techniques that are used for running
FaaS.

FireCraker

FireCraker [ABI+20] is a MircoVM that relies on Linux Kernel KVM [KKL+07] virtual-
ization. The idea behind it is to rely on components that are part of Linux instead of
creating new ones. FireCraker has been used in AWS Lambda since 2018.

11

2. Background

gVisor

gVisor [YZCH+19] is a container based sandbox and implements an Open Container
Initiative (OCI) runtime called runsc. Its main focus is to provide more security by
restricting the number of syscalls to the kernel. gVisor is being used in Google Cloud
Functions 6.

Hyper-V

Hyper-V [Mic] uses containers and microVMs. Each container instance runs in an isolated
MicroVM with a dedicated kernel, providing isolation between containers. Microsoft
Azure Functions 7 use Hyper-V.

Unikernel

Unikernel[MMR+13] is a standalone kernel that is compile-time specialized. The goal is
to reduce image size, improve cost, security and efficiency.

2.2.3 Challenges
The mentioned sandboxes face multiple challenges:

• Cold Starts: Every time a function needs to be executed, a Virtual Machine or a
container starts up. This introduces overheads and slower starts [SP20].
Hyper-V uses containers and microVMs, offering strong isolation, but this virtual-
ization method makes the start-up time slow. gVisor controls the syscalls in the
kernel, making applications that use a large number of syscalls, slower. FireCraker
is using a strong isolated microVM, but still, the initialization for mircoVM requires
a long time in different cases, such as starting JVM.

• Runtime: These virtualization techniques require language runtime stacks, including
operating system libraries and packages [SP20]. Unikernel is not flexible once built.
This makes it challenging for developers to implement their applications.

• Security: Containers can introduce multiple security challenges such as Melt-
down [LSG+18] and Spectre [KHF+19].

• Memory Footprint: Containers have a relative fast start up, but they introduce
large memory footprint, effecting scalability [SP20].

Solving these problems can not only save costs but also optimize functions, reduce
resource consumption and deliver faster executions, especially when running on edge
devices.

6https://cloud.google.com/functions
7https://azure.microsoft.com/en-us/products/functions

12

https://cloud.google.com/functions
https://azure.microsoft.com/en-us/products/functions

2.3. Edge Computing

2.3 Edge Computing

Cloud computing is becoming more popular, and numerous devices, such as mobile phones,
cameras, and sensors, are capturing data and sending it to the cloud for computation
purposes. But these devices started gathering more and more data that needed to be
processed. Transferring large amounts of data is very challenging since the bandwidth
and quality of the network play an important role, and the bandwidth is not increasing in
proportion to the sent data. Furthermore, sending data across the network increases the
latency, affecting performance. For the reasons mentioned, there is a tendency to make
the computations directly on edge devices instead of sending them to the cloud. This
is still challenging since the computation power and resources available on the edge are
less than on a cloud server. Tasks running on the edge should consume as few resources
as possible and still perform almost equally to those in the cloud. For these reasons,
frameworks running on the edge should be lightweight and efficiently use resources.

2.4 Cold Start

In this section, we mention how some platforms try to reduce the cold start:

2.4.1 OpenFaas

OpenFaas is a serverless platform that relies on Kubernetes 8 and Docker containers to
deploy and run functions. OpenFaaS tries to improve the cold start by considering the
use cases of a cold start [Ell]:

• Initialization steps require creating the sandbox from scratch and fetching the
required libraries and packages from the start.

• Horizontal scaling, depending on the workload required to create new replicas.

OpenFaaS tries to resolve the cold start by making sure that at least one replica of the
function exists, assuming that the workload and number of functions are less than the
workload that larger companies have to deal with.
In this way, the cold start eliminates completely, but it is also possible to scale the
number of functions to zero by activating the cold start option in the configuration.

8https://kubernetes.io/

13

https://kubernetes.io/

2. Background

2.4.2 Preprediction
There are several methods to predict the execution of a serverless function. Xu et
al. [XZG+19] predict the invocation time of the functions to prewarm and initialize con-
tainers by taking advantage of Long Short-Term Memory networks to analyze dependence
relationships relying on historical traces.

2.5 WebAssembly
WebAssmebly (WASM) is a binary code format that is presented as a language. Since
Javascript can have inconsistent performance and other challenges, WebAssembly came
up as a solution for them. It focuses on safe, fast, portable code that can run not only
on the browser web but also outside the browser. Multiple languages, such as C, C++,
and Rust, support WebAssembly as a compilation target, as shown in Figure 2.2.

It does not need pre-packaged file systems or low-level operating-system specifics. It is a
stack-based virtual machine [MPMB20]. WebAssembly also provides better sandboxing
by introducing Software-based Fault Isolation (SFI) [Str98].

In order to run WASM outside of the browser, WebAssembly System Interface (WASI) 9

was developed. This interface provides different APIs for Wasm runtime with POSIX
style capabilities in order to access multiple resources of the system [MPMB20].
It should be also possible to run the generated byte code on the hardware. For that,
there have been multiple runtimes developed such as wasmtime 10 and wasmedge 11 that
map the byte code to native hardware instructions.

2.5.1 Components
We mention some of the WebAssembly Components [HRS+17]:

Modules

A binary is represented as a module containing definitions for functions, globals, tables,
and memories. Each definition can be imported or exported. The instantiation of modules
is provided by an embedder, such as an operating system or Javascript VM.

Functions

Modules consist of functions. Functions can have parameters and return types using
WebAssmebly values.

9https://github.com/WebAssembly/WASI
10https://wasmtime.dev/
11https://wasmedge.org/

14

https://github.com/WebAssembly/WASI
https://wasmtime.dev/
https://wasmedge.org/

2.5. WebAssembly

Figure 2.2: WebAssembly Use Cases Overview [Ray23].

Instructions

It uses a stack machine. Each instruction is popped from the stack, and values are pushed
on the stack.

Traps

Traps are thrown when something faulty or unexpected occurs while executing an
instruction. These traps should be handled by the embedder.

Machine Type

WebAssembly supports integers and IEEE 754 floating point numbers, each in 32 and 64
bit width.

Linear Memory

It uses a large array of bytes known as linear memory. Each module has its own memory
that can be shared using import/export. It offers instructions to create, grow, load, and
access memory.

2.5.2 Security
Linear memory is separated from the execution stack and engine data structure. This
ensures that the compiled code cannot access other locations, and it can only corrupt
its own memory. This facilitates running untrusted code, even compiled from other
languages.

15

2. Background

2.5.3 Webassembly Virtualization

We use WebAssembly VM as a virtualization method to run our function code. As
mentioned in Section 2.5, it provides isolation and security using Software-based Fault
Isolation. As shown in Figure 2.3, Webassembly does not need to package libraries and
is also not relying on the kernel. It makes it easier for the developer to run their custom
app without the need for pre-configuring system libraries. Each actor contains a Wasm
VM, which executes the code. The WASM binary is loaded into the VM in order to
execute the function. Languages provide different libraries to interact with the Wasm
VM. There are multiple runtimes that offer Webassembly as a runtime.

Figure 2.3: WebAssembly Virtualization12

2.6 Actor Model

Actor Model [Hew10] is a concurrent model that supports distributed systems. Ac-
tors send messages, as shown in Figure 2.4, between themselves without the need for
a live connection. This enables asynchronous communication, which is fundamental
for the actor model. Messages are sent to the target actor on a best-efforts basis, and
the sender is no longer responsible for the message. Messages can be received in any order.

The Actor Pattern is becoming more popular and many languages such JavaScript
Comedy13, Python Pykka14, Rust Actix15 and Java/Scala Akka16 are supporting it.
These libraries implement the Actor Model in different variation.

12https://wasmcloud.com/
13https://github.com/untu/comedy
14https://github.com/jodal/pykka
15https://github.com/actix/actix
16https://akka.io/
17https://www.brianstorti.com/the-actor-model/

16

https://wasmcloud.com/
https://github.com/untu/comedy
https://github.com/jodal/pykka
https://github.com/actix/actix
https://akka.io/
https://www.brianstorti.com/the-actor-model/

2.6. Actor Model

Figure 2.4: Actor Model Overview17

2.6.1 Features

An Actor offers the following capabilities:

• Communication between actors.

• Create new actors.

• Define behaviour when a new message is received.

• Concurrent execution when receiving messages.

• The receiver is responsible after getting the message from the sender.

2.6.2 Use Cases

There are multiple systems that can be modeled using Actors:

• Emails: Email accounts can be the actors, and email addresses are the actor
addresses.

• Functional and Logical Programming

• Web Services: The services can be represented as actors and endpoints as actor
addresses.

• Objects with Locks.

17

2. Background

2.6.3 Advantages

• Scalability: Scaling the number of actors can be adapted according to the system
load since actors can be created, paused, or stopped concurrently and independently.

• Actor State: Each actor has its own state, and other actors cannot access or change
the state of other actors.

• Actor Communication: Each actor has their own address. This allows actors to
run on different hosts/nodes and still, using their addresses, send/receive messages
to/from actors running on different hosts/nodes.

18

CHAPTER 3
SIWA System Design

In this chapter, we discuss the design process for SIWA. We go through the different
requirements for our system and discuss the goal and the desired improvement. We
talk through actors, distributed communication, and virtualization. After knowing the
requirements and the goals, we go through our system design, discussing the taken
approaches and the core concepts.

3.1 Requirements

3.1.1 Statefull Functions

A major disadvantage of serverless functions is that the state and data of functions
between invocations is not be stored. This leads to functions seeking external storage
systems, such as databases or object storage, to store and retrieve the data with every
new invocation. For the mentioned reasons, we make use of actor in order to support
stateful functions, for the purpose of increasing the performance and not rely on other
systems to exchange data.

3.1.2 Reusable Actors

After the actor finishes function execution, we want to make use of the same actor to
process other requests. Reusable actors help to fully utilize allocated resources to execute
functions. This leads to reduced latency, since the resources are already allocated and
also reuse available resources. We want also to decide the behaviour of future messages
that the actor receives.

19

3. SIWA System Design

3.1.3 Scalable Actors
Depending on the request load, we want to scale actors automatically in order to
maintain the performance. We also offer scale-to-zero, where if there are requests
currently processed, then no actors should run in the background.

3.1.4 Distributed Communication
Actors and functions need to be addressable and have the capability to exchange messages.
Communication and addressability should be handled distributively, where functions
running on different nodes and hosts should be able to communicate directly.
Also, functions should be able to be invoked internally or as part of a workflow. The
communication should be scalable and handle different sizes of input and load.

3.1.5 Lightweight Virtualization
As discussed in Section 2.2.2, VMs and containers are used as a wrapper for functions.
They offer strong isolation and security between functions, which often leads to slow cold
starts, increased overhead, and wasted resources.
For these reasons, we should rely on a lightweight virtualization method without weakening
isolation and security. It should maintain or decrease the cold start time and also offer
strong isolation.

3.2 Core Concepts
3.2.1 Actors
We base our functions on the actor model. As mentioned in section 2.6, actors are suitable
for executing specific tasks, where each actor is in control of its state and does not share
it with other actors. Other external management systems are not required to manage
the actors and the actor itself is responsible for handling provided messages. Each actor
represents a function that can be executed, and the state is stored and updated in the
actor itself. The actor relies on the WebAssembly runtime for running the function code
with the provided input. We use the LifeCycle model as a method to persist in the state
of the actor.
Actors can exchange messages through a distributed middleware, and they can be invoked
as part of a workflow or through actors themselves.

Actor LifeCycle

The Actor LifeCycle consists of multiple cycles or states that are responsible for managing
the actor’s functionality. LifeCycles help the actors switch to different states without the
need to rerun a previous or current state. This increases the performance and also helps
the actor maintain its state. Also, using LifeCycles, actors can remain in a warm state
and reuse resources for new executions.

20

3.3. SIWA Models

3.2.2 Actor Dispatcher
The Actor Dispatcher is responsible for creating and forwarding the messages to the
actors. The dispatcher subscribes to a specific topic and reacts to new messages available
from the middleware. We can have multiple dispatchers in order to reduce the load and
distribute the work across different dispatchers.

3.2.3 Distributed Middleware
The distributed middleware is responsible for communication between actors. It receives
requests coming from external or internal sources and handles them. Each middleware
consists of a messaging queue that makes sure that each message is passed exactly once
to the interested subscribers. Each subscriber has its own logic for handling the message.
For example, actor subscribers are responsible for passing the message to the actor. New
subscribers can subscribe to the interested message content.
Each middleware has a wrapper, called a middleware interface, that is responsible for
accepting requests. In case the middleware is not available, the wrapper does not accept
the request. The request is forwarded to a different available middleware until it is
accepted.

3.3 SIWA Models

3.3.1 SIWA LCM Serverless Lifecycle Model Overview
In order to optimise the actor itself, we created the Actor LifeCylce, where each actor has
its own lifecylce. LifeCylce Model (LCM) provides a novel Serverless lifecycle tailored for
serverless actors to facilitate state management and optimise communication by enabling
serverless actors to preserve their state between multiple executions.
The functionality is spread across multiple states, where each state has its own defined
strategy. The necessary resources are allocated once and reused in other states. In our
case, the Wasm VM is created once with all configuration in a specific state and is reused
afterwards.
Each state has its own defined steps and functionalities, shown in Figure 3.1, and is
responsible for defining the next state that should be switched into. Actor LifeCycle
consists of the following states:

• CREATED: An actor is created. Necessary resources are allocated, such as Wasm
VM, and actors are addressable using the assigned unique ID. The actor informs
using the channel about its availability to process new messages.

• IDLE: The actor is in an idle state. In this state, the actor is either waiting for new
requests to execute or passing a specific duration to switch to the termination state.
This state plays an important role by keeping the actor in a waiting state without
consuming resources. The actor notifies about it readiness to accept new messages.

21

3. SIWA System Design

• ERROR: During execution, an unexpected error occurred, and the actor could not
execute the function.

• RUNNING: The actor is running the function with the provided input. The actor
cannot process other messages while the current execution is not done, and the
channel blocks any new messages. The actor was in the IDLE state, where the
resources were already allocated, and switched to the running state. The channel
informs the middleware that the actor cannot accept any new messages at the
moment.

• COMPLETED: The actor has finished the execution successfully. SIWA middleware
is informed about the result, and the actor is marked as ready for new executions
using the channel. The actor switches to the IDLE state, waiting for new messages.

• TERMINATION: The actor is terminated and cannot accept more messages. It
deregisters itself, and SIWA does not forward any messages to this actor anymore.
Any resources related to actors are free. The actor can enter the TERMINATION
either after the IDLE state duration is passed or the actor switched from the
ERROR state to the TERMINATION state.

h CREATED
Subscribe

h ERROR
Release
Messaging

h COMPLETED
Release
Messaging

h TERMINATION

Unsubscribe
h IDLE

Waiting
Messages

h
WHI

Handler
Wasm Host
Interface
Channel

SiWA Actor

h RUNNING
Block
Messaging

Trigger

Figure 3.1: SIWA Serverless Lifecycle Model

SIWA Actor. 3.1 shows SIWA Actor and LCM Serverless lifecycle. SIWA actor is one
entity composed of Channel, Wasm Host Interface, and Handler.
LCM optimises resource usage, reduces latency, and improves performance and scalability
across the dynamic environments of the Edge-Cloud Continuum by ensuring that existing
actors are efficiently utilised and consequently minimising the overhead associated with
creating new actors.

22

3.4. Actor Components

3.3.2 SIWA Serverless Invocation Model Overview
The SIWA Serverless Invocation Model (SIM), in 3.2, introduces a new way of triggering
serverless actors in response to events such as incoming messages. The SIWA SIM model
ensures that new actors are created only when necessary, while existing actors are reused
by introducing an actor message buffer. The SIWA SIM model enables SIWA Middleware
to identify the availability and state of actors via the actor lifecycle phase. If the actor is
IDLE, it transitions to the RUNNING phase to handle the message. If the actor is busy,
the Middleware buffers the message or forwards it to another available actor, ensuring
seamless processing without message loss. The SIM invocation model enables Serverless
actors to process sticky messages.

Xa1
a1

h

a1

Si
W

A
Ac

to
r

SiWA Middleware

Incoming
Message

SiWA Buffer

Figure 3.2: SIWA Serverless Invocation Model

SIWA Platform Architecture Overview

The SIWA Invocation Model design prevents data races by ensuring actors only handle
one message at a time, thereby maintaining state integrity during the message delivery.
Additionally, the SIWA Invocation Model enables actors to maintain state between
executions and influence the behaviour of future messages, reducing the need for remote
services to exchange data. By enabling serverless actors to influence future messages, the
SIWA SIM Model avoids the use of remote services to store state and exchange data. As
a result, it optimises resource usage and reduces latency, which is crucial for improving
the performance of applications in the Edge-Cloud Continuum.

3.4 Actor Components
3.4.1 Channel
It is identifiable by a unique ID and serves as a dedicated communication channel for the
actor. The behaviour of the channel is defined by the current state of the actor. Upon
receiving a message, switching from state IDLE to state RUNNING, the channel sends
a signal to the middleware to temporarily block any new incoming messages, ensuring
actors process only a single message at a time. When the actor is in state RUNNING,
the channel does not accept any new messages. In COMPLETED state, the channel
informs the middleware about its availability. In addition, it enables actors to carry
their previous state to the next one. Proactive message blocking ensures that each actor

23

3. SIWA System Design

processes only one message at a time, preventing data races and maintaining the integrity
of the execution process.

3.4.2 Wasm Host Interface (WHI)
It is a sidecar process that creates the Wasm VM with all neccessary configuration,
allowing for secure, isolated execution of the Wasm binary. It acts as a mediator between
the Wasm binary and the channel, forwarding the input and output from the binary to
the message channel. Once the Wasm VM is created, it is reused in other states without
the need to recreate or reconfigure it.

3.4.3 Handler
It encapsulates the user-defined code compiled into a Wasm binary file. Functions execute
in a Wasm sandbox, which means a controlled environment that limits access to the
host system, receiving inputs and producing outputs through the Wasm Host Interface.
WebAssembly also provides secure isolation out-of-the-box.

3.5 SIWA Components

Event source

Middleware
Interface

Fn code

Si
W

A
Ac

to
r

Serverless Platform

Storage

Middleware

Channel

Registry

Data Plane

Control Plane

Actor
Dispatcher

Host
Interface

Figure 3.3: SIWA Architecture Overview

3.5.1 SIWA Middleware Interface
It connects Middleware Registry to all the middleware instances in different nodes. It
ensures the messages are routed to the middleware at the correct node.

24

3.5. SIWA Components

Each Middleware has a wrapper called the Middleware Interface. It’s the first checkpoint
for incoming requests before passing them on to the middleware itself. It controls the
following:

• Middleware Availability: Each middleware processes messages from external sources.
Since a message can be processed by any middleware, the load can exceed the
limit or put a high pressure on a specific middleware, making the middleware busy
with processing a high load of messages and causing a delay in consuming these
messages.
For this reason, the middleware interface communicates with the middleware and
checks if it is still able to process a new message or if the message should be
forwarded to a different middleware.

• Pre-processing: Each message should contain metadata. For new messages, the
message is provided with the required metadata, such as the unique message and the
current middleware ID. Also, it is possible to transform specific types of messages
into a different structure before passing them to the middleware.

3.5.2 SIWA Middleware
As shown in Figure 3.3, it accepts the message and forwards it to the Actor Dispatcher.
The Middleware Interface checks if the actor can process new messages; if not, it rejects
the event. In case of rejection, the message is kept in a buffer or forwarded to another
Actor Dispatcher until it is accepted. The message behaviour is defined by the actor,
who can choose to receive the next message or reject it. The middleware ensures that an
actor processes a single message exactly once.

3.5.3 SIWA Buffer
It is a queue for the busy actors, keeping waiting messages, thus allowing actors to
influence the sequence of processing messages. It’s also possible to redirect the message
from one buffer to another to optimise message processing.

3.5.4 SIWA Middleware Registry
It maintains a reference to the middleware across different nodes. When a middleware
initiates, it registers itself within the registry. This registration enables the middleware
proxy to route messages accurately to the designated actor. This supports the distributed
processing of functions and scatters the requests across all nodes.

3.5.5 Actor Dispatcher
Actor dispatchers are subscribed to the function execution topic. Function execution
events include information about executing a function with the provided input. The
actor dispatcher creates an OCI bundle with Docker containing the actor, and the actor

25

3. SIWA System Design

itself is implemented in Rust.
Depending on the function Id, if there is an actor waiting for a new execution with
the same function Id (Warm Function), the dispatcher forwards the input directly to
that actor. The dispatcher is written in rust and provides an GRPC interface for
communication.

26

CHAPTER 4
Implementation

In this chapter, we go through the implementation process of SIWA. We go through the
different mechanisms and methods that are being used to realise the design. We discuss
the details of an actor’s LifeCycle and invocation model.
After that, we discuss how the actors are communicating through the distributed mid-
dleware and how the distributed middleware is implemented in detail. We talk through
virtualization using WebAssembly and how it plays an important role in our framework.

4.1 SIWA Mechanisms
SIWA leverages the LCM Serverless Lifecycle Model and SIM Serverless Invocation
Model to enable an actor-native serverless platform. SIWA platform relies on two key
mechanisms: LCM Serverless Lifecycle Phases Management and the SIWA SIM Serverless
Event-triggered Message Invocation.

4.1.1 SIWA LCM Serverless Lifecycle Phases Management
To execute serverless functions as actors, SIWA leverages the LCM to create and reuse
actors. An overview of the states and their transitions is show in Figure 3.1. Figure 4.1
shows each phase and which services are necessary to enable the LCM. In 1⃝, in 4.1, when
the actor is CREATED, it subscribes to a specified channel with its unique ID. Then,
SIWA Middleware stores actor references for future usage as a warm actor. CREATED
is the initial phase where the platform executes tasks to prepare for the actor run, such
as resource allocation, Wasm VM creation, and configuration. In the next phase in 2⃝,
the actor enters the IDLE phase for a specific duration, waiting for incoming messages.
No resources are consumed in this phase.

In 3⃝, a message is received, and the middleware retrieves information from the storage

27

4. Implementation

to identify the actor, check if it exists, and forward the message to the actor via the actor
channel. Once the actor receives the message, it sends an event to the SIWA Middleware
to block new incoming messages. SIWA middleware then updates the actor reference to
the storage, finalising that this actor is busy and cannot receive any new messages. In
4⃝, the actor completes the message processing and sends a signal to SIWA middleware
to unblock the actor. SIWA Middleware updates the actor reference and marks the actor
as available. The actor informs the middleware about the result. After this phase, the
actor returns to phase 2⃝ to wait and receive new messages.

a

1 save

2

retrieve
block

subscribe

message

update
3

unblock update

6 unsubscribe delete

CREATED

RUNNING

COMPLETED

TERMINATION

IDLE

4

ACTOR SiWA
Middleware Storage

unblock updateERROR 5

Figure 4.1: SIWA Serverless Lifecycle Management

After a period defined by the user, the actor moves from IDLE to the final phase
TERMINATION in 6⃝. Phase 5⃝ represents an error state in the actor, the actor
has either failed to startup or there was an unexpected error during execution. After
entering the ERROR phase, the actor unblocks the message in SIWA Middleware, which
updates the actor reference in the storage. In 6⃝, the TERMINATION phase, the actor
unsubscribes to the channel. SIWA Middleware deletes the specific reference to the
channel and removes the actor reference from the storage. In this phase, the platform
also releases reserved resources and removes any actor reference.

4.1.2 SIWA SIM Serverless Event-triggered Message Invocation
SIM is a novel Serverless Invocation Model that enables serverless actors to influence
future messages. SIWA message middleware leverages the SIM model to trigger and
exchange messages between serverless actors. SIWA actors decide the behaviour of future
messages based on the actor input; the SIWA middleware decides whether to keep the
message waiting in the buffer or forward it to the next actor.

28

4.1. SIWA Mechanisms

Storage

Fn code

Si
W

A
Ac

to
r

Se
rv

ice
s

Control Plane Data Plane

Bus Registry

Actor
Dispatcher

Si
W

A1

4

5
3

7

8
Channel

Bus Interface

2

9

Bus

6

Host
Interface

10

11

Figure 4.2: SIWA Distributed Messaging Middleware Flow

Figure 4.2 shows how SIWA Middleware distributes the message from the event source
to the user function code. In 1⃝, an event arrives at the Middleware Interface with the
unique address of the actor. In 2⃝, the Middleware Interface queries the Middleware
Registry to find out if any existing node contains such an actor already. In 3⃝ the
Middleware Registry fetches from the storage existing actors information such as address
and its availability. In 4⃝, the Middleware Interface forwards the message either to the
dedicated current middleware or redirects the message to another middleware if the
current one is not free.
In 5⃝ the middleware checks if any actors are available with the dedicated function ID
that is waiting for new requests. In 6⃝ the middleware forwards the message to the Actor
Dispatcher or keeps the message in memory for future processing. To avoid multiple
storage queries, the middleware also forwards the actor information, which is necessary
for the decision-making in the Actor Dispatcher. In 7⃝, the Actor Dispatcher creates an
actor with its channel or forwards the message to an existing actor channel. This decision
is dependent on the information passed from the middleware alongside the message.
In 8⃝ the host interface receives the message from the channel and creates the Wasm
VM, in case the actor is newly created. In 9⃝, if the actor wants to create another actor,
e.g., send a message to another actor, the Wasm Host interface also communicates to the
middleware to send a specific message containing all necessary information. In 10⃝, the
middleware forwards the message to the middleware interface, which starts the process
for the new message receiving from in 2⃝. In 11⃝ the Host Interface starts the Wasm
VM with the user function code, and results are returned to the dedicated middleware

29

4. Implementation

directly.

4.1.3 Message Execution Sequence
In this section, we describe the interaction between SIWA components in order to process
a message. An invocation request is sent to SIWA API Gateway. The API Gateway
forwards the message to an available middleware. The middleware interface checks if the
dedicated middleware is available and has sufficient dispatchers. After confirmation of
middleware availability, the interface forwards the message to the middleware.
The middleware looks up the function ID to check if any available warm actors are
available for this specific function. The message with the gathered information as
metadata is forwarded to an available dispatcher. Depending on warm actor availability,
the dispatcher either creates a new actor or reuses an existing one with the provided
ID. The actor, upon creation, registers itself to the middleware and is ready to accept
new requests. The actor executes the desired function and returns the result to the
middleware. The entire sequence is described in Figure 4.3.

API

invoke

Middleware
Interface

Invoke

Middleware Dispatcher

Check Available
Dispatchers

Dispatchers Available

Send Message Send Message With
Additional Details

Actor

alt

Warm Actors
Available

Run with Input

Create with Input

Result

Register ActorRegister Actor

Unregister Actor

Unregister Actor

Loop

Repeat until
Workflow is

finished

Result

Figure 4.3: SIWA Execution Sequence

4.1.4 Message Execution Flow
In this section, we go through the control flow of processing a new message. The interface
receives a new request, as shown in Figure 4.4, for executing a function. It checks if a
dispatcher is available for processing new messages. If not, it forwards the message to
another middleware until the message is accepted. If no available middleware is found,

30

4.2. Implementation

the request is rejected.
After a middleware is found, the interface forwards the message to the middleware. The
middleware finds an available dispatcher and passes the message to it. The dispatcher
analyses the message to know if a warm actor is available. If there are no warm actors
available, the dispatcher creates a new actor. The dispatcher delivers the message to the
actor and is no longer responsible for the message. The actor executes the function with
the provided input and transmits the result back to the middleware. If the flow is part
of a workflow, the entire process is repeated until all steps in the workflow are executed.

Interface Receives
Request

No

Yes

Dispatcher
Available

Find Middleware
with Dispatcher

Forward Message
To Middleware Yes

No
Middleware
Available Reject Request

Forward Message
to Dispatcher

Create Actor with
Input

Run Function Notify Middleware
with Result No

yes

Workflow Done

No

Yes

Actor Warm

Figure 4.4: SIWA Execution Flow

4.2 Implementation

4.2.1 Actor

We start implementing the actor that is responsible for executing our functions. An actor
is an execution unit that reacts to messages, and each message has a defined behavior. It
can process one message at a time and is blocked until the message is processed. Each
actor has a unique ID assigned upon creation that makes the actor addressable.

Actors are addressable and communicate through a distributed middleware, which is
discussed in the following sections. The actors execute the functions by relying on Wasm
VM. The actor retrieves the code, a .wasm file, from an external storage and loads it into
the Wasm VM, which is responsible for executing the function. Each actor has its own
Wasm VM, and the actor acts as a wrapper for the Wasm VM, as shown in Figure 4.5.
In order to enable communication, each actor exposes multiple endpoints and external
resources can interact with the actor endpoints using GRPC. The interface is defined in
a .protobuf file that can be imported and used.

31

4. Implementation

Actor A

Lifecycle

WASM VM

Host
Functions

func.wasm

Figure 4.5: SIWA Actor

Actor Interface

Each actor exposes the following endpoints:

• Start: The actor is created and ready to accept new requests. It initializes the actor
with all necessary components and creates the Wasm VM. Using Actor LifeCycle,
the actor starts at state CREATED. This endpoint can be called once before
creation.

• Run: The actor accepts the input and function ID. The actor fetches the function
code from a storage using the function ID and loads the code to the Wasm VM.
After the VM is initialized and ready to execute, it executes the function with the
provided input. The actor LifeCycle has switched from IDLE to RUNNING.

4.2.2 WebAssembly Virtualization

We want the actors to execute our functions using virtualization. We do not not rely on
containers and VMs for virtualization. We use WebAssembly for isolating and running
our functions.

32

4.2. Implementation

Webassmebly

Multiple languages support WebAssembly as a compilation target. We take Rust as an
example, and we write our functions in Rust. After implementing the desired function,
the code is built and compiled using Wasm32 as the target. The result is a .wasm file
that can be run using any WebAssembly runtime.

WasmEdge

In order to execute the .wasm, we need a server-side WebAssembly runtime. WasmEdge
is the fastest Wasm VM [LTHY21]. It supports WASI, microservices on edge cloud,
IoT devices, and blockchain smart contracts 1. Its recently also started being used for
running Large Lanugage Model (LLM) 2 using less resources than other models that rely
on Python.

In order to use it with actors, we need to install WasmEdge on the system that is
hosting the actors. WasmEdege supports multiple platforms, such as Linux, MacOS, and
Windows. We run our system on Ubuntu and install the required WebAssmebly and
WasmEdge packages.

Rust and WebAssembly

We want to embed the WasmEdge VM in our actors. For that, WasmEdge provides
a Rust crate called "wasmedge-sdk" 3. This crate interacts with WasmEdge installed
on the system using the WasmEdge C API. We configure the VM with the standard
configuration, enabling WASI. As discussed in Section 2.5, we need to load our .wasm
binary using modules. After loading the module in the VM, all related tables, functions,
and globals are exported and available.

Since WebAssembly only supports integers and floating-point numbers, we also need to
make it possible to pass strings or other data structures to our functions. We do this
by asking the loaded module to provide an available memory address so that the input
bytes are written directly to the memory by the actor. The same process happens when
the function returns an object; we need to get the address of the returned value and the
size of it so that the actor, after the function is done with execution, can retrieve the
result of the execution.

4.2.3 Distributed Middleware
Actors are function execution components. Actors need to be addressable and should
be able to communicate with each other. For this reason, we have created a distributed
middleware that is responsible for facilitating communication between actors.

1https://github.com/WasmEdge
2https://www.secondstate.io/articles/wasm-runtime-agi/
3https://github.com/WasmEdge/wasmedge-rust-sdk

33

https://github.com/WasmEdge
https://www.secondstate.io/articles/wasm-runtime-agi/
https://github.com/WasmEdge/wasmedge-rust-sdk

4. Implementation

SIWA leverages actor model properties such as addressability, isolation, and state to
enhance serverless function execution by transforming them into serverless actors [Hal12,
POPL18, SCH24]. Each serverless actor in SIWA is uniquely identifiable, allowing
for direct, addressable communication, thereby facilitating efficient data and message
exchanges across the actors in the Edge-Cloud Continuum.

The SIWA architecture leverages Wasm to provide an isolated and secure sandbox for
each actor. Moreover, SIWA’s LCM manages the lifecycle of serverless actors, from
initialization to termination. SIWA LCM enables Serverless actors to retain and efficiently
manage their state, thus facilitating complex applications that require persistent state
across sessions.

Event Processing

The distributed middleware is event-based and relies on the publish/subscribe pattern.
Each message is an event, and the event is pushed into an event queue. An event can be
on a specific topic, and each topic can have multiple subscribers, called dispatchers, that
are subscribed to all events on that specific topic. Each event is delivered exactly once to
a dispatcher. Each dispatcher can have its own defined behaviour, and new dispatchers
can be added.

4.2.4 Communication
The internal components of SIWA communicate through GRPC 4. There is also the
possibility to use HTTP, but we went with grpc for the following reasons:

• Grpc payload is smaller than http payload size

• Multiple requests and responses can be sent using a single connection, increasing
the performance.

• The communication interface is defined using a .protobuf file, that supports
code generation for multiple languages. This file can be imported and used for
communication between different components.

External sources have a REST API available to interact and send messages to SIWA.

4.3 Workflows and Internal Calls
4.3.1 Workflows
Functions can be executed by sending requests. We often need to execute a chain of
functions or workflows to achieve our desired functionality. In SIWA, a workflow request

4https://grpc.io/

34

https://grpc.io/

4.3. Workflows and Internal Calls

can be sent with the input and the workflow id. The metadata of the request also includes
information about the current step and workflow id. This helps to keep track of the
workflow when a function finishes execution and sends the result to the middleware.
Internally, the workflow plan, a json file shown in Listing 1, is stored in an external
system and can be retrieved upon request. The plan includes the order of the function
execution, where the output of the first function can be defined as the input of the second
function.

1 {
2 "start": "add-number",
3 "add-number": {
4 "function": "add",
5 "next": "sub-number"
6 },
7 "sub-number": {
8 "function": "sub",
9 "next": "multiply-number"

10 },
11 "multiply-number": {
12 "function": "multiply",
13 "end": true
14 }
15 }

Listing 1: Workflow Plan Example

4.3.2 Internal Function Calls

In many systems, there is a requirement to make async calls and call other systems.
WebAssembly support for async calls is still not fully supported, which means that
external calls cannot be done purely with WebAssembly. Functions often have the need
to call other functions, and they can directly send a request to the middleware using
GRPC calls. For the reason mentioned above, the actor who is wrapping the function
enables this functionality by using host functions.

Host Functions

Host functions are provided as host modules, where the host functions, globals, and
tables can be imported. In rust, to mark a function as an external function (host function
in this case), we need to mark the function as extern "C", as shown in Listing 2. The
functions are implemented in rust, and they must be provided as part of an imported
module from the actor itself. The function assumes that these external functions will be

35

4. Implementation

there at runtime, which means that the imported module must be loaded and registered
to the VM so that the WebAssembly function can have access to the functions.

1 extern "C" {

2 fn call_function(url_pointer: *const u8, url_length: i32,

3 pointer: *const u8) -> i32;

4 fn get_memory(url_length: i32) -> i32;

5 }

Listing 2: Example of host functions used in Rust

As we notice in Listing 3, the macro #[host_function] is used. This implements a
wrapper for the function. This wrapper is responsible for creating a host function instance
that can be imported into the WasmEdge VM. WasmValue represents WebAssembly value
type, and Caller makes it possible for the developer to access different WebAssembly
instances, such as Execution instance and Memory instance.

1 #[host_function]

2 fn call_function(caller: Caller, args: Vec<WasmValue>) ->

3 Result<Vec<WasmValue>, HostFuncError> {}

4 #[host_function]

5 fn get_memory(_caller: Caller, args: Vec<WasmValue>) ->

6 Result<Vec<WasmValue>, HostFuncError> {}

Listing 3: Host functions provided by the actor

After implementing the function, we need to import it to the WasmEdge VM. As shown
in Listing 4, we create an import object that contains our hosted functions. We make the
imported function available under the same name as used in our WebAssembly function,
as shown in Listing 2. This import object contains the host functions, global variables,
memory, and table.

4.4 Execution Example
We write our desired function using Rust. The function, show in Listing 5, must have
the name run, so that SIWA recognizes and executes it.

After implementing our desired functionality, we execute the following command in order
to compile the code:

36

4.4. Execution Example

1 let import = ImportObjectBuilder::new()

2 .with_func::<(i32, i32, i32,i32, i32), i32,

3 NeverType>("call_function", call_function, None)

4 .with_func::<(i32), (i32),

5 NeverType>("get_memory", get_memory, None)

6 .build::<NeverType>("env", None);

7 vm.register_import_module(&import);

Listing 4: Host Functions imported to WasmEdge

1 #[no_mangle]

2 pub unsafe extern fn run(input_pointer: *const u8,

3 input_length: i32) -> i32 {

4

5 }

Listing 5: SIWA Function

$ cargo bu i ld −−t a r g e t wasm32−wasi −−r e l e a s e

This generates a .wasm file that is uploaded to a storage with a unique ID, where SIWA
can download and load it. After importing the .wasm file, the module is created, and
the function is read to be executed. In order to run the function, we need to specify the
name of the created module, as shown in Listing 6, and the function name run 5, and
provide the function parameters.

vm.run_func(Some("functionModule"),"run",

params![input, input_length])

Listing 6: SIWA WebAssembly Function Execution

4.4.1 Function Execution
We can now execute our function by sending the request shows in Listing 7. SIWA
receives the request and executes the defined function in resource_id. We indicate
that we want to execute a function by passing function as topic, as shown in Listing 7.
In context, we can pass the input that is required. The function is executed, and
response is returned.

37

4. Implementation

POST /invoke HTTP/1.1

Host: SIWA.com

Content-Type: application/json

1 {

2 "context": {

3 "input": "data"

4 },

5 "resource_id": "FunctionA",

6 "topic": "function"

7 }

Listing 7: SIWA Function Execution Request

4.4.2 Workflow Execution
We can also execute a workflow by uploading a file, as shown in Listing 1, using a unique
ID. The functions mentioned in the workflow plan should exist in SIWA so that they can
be executed. We can execute the workflow by sending the request shown in Listing 8. The
request structure is the same as a function execution request. SIWA receives the request
and executes the defined workflow in resource_id. We indicate that we want to
execute a workflow by passing workflow as topic, as shown in Listing 8. In context,
we can pass the input that is required. The function is executed, and the response is
returned.

POST /invoke HTTP/1.1

Host: SIWA.com

Content-Type: application/json

1 {

2 "context": {

3 "input": "data"

4 },

5 "resource_id": "PlanA",

6 "topic": "workflow"

7 }

Listing 8: SIWA Workflow Execution Request

38

CHAPTER 5
Evaluation

In this chapter, we evaluate our SIWA framework using different loads and methods.
SIWA source code can be found in Github 1. We compare it with two other serverless
frameworks, OpenFaas 2 and Spin 3. Also, we use Redis 4 as a bus in OpenFaas and
Spin. We go through our setup and determine what kinds of experiments are used and
what results are achieved.

5.1 Overview
In this Section, we discuss the different frameworks that are chosen to benchmark SIWA.
We go through different benchmarks that we apply to compare the performance of SIWA
with other frameworks. Also, we talk about the different methods that are utilized for
calculating our results.

5.1.1 Frameworks
There are multiple open-source serverless platforms on the market that are available to
benchmark our framework. We chose the following frameworks:

• OpenFaas: OpenFaas is a serverless platform that relies on Kubernetes to manage
functions. Each function is running in a Docker container that is managed by
Kubernetes. They support multiple languages by providing default language
templates, but the developer can also implement a new custom template by using
Docker images. We chose this platform because it also relies on containers to wrap
the functions.

1https://github.com/JackShahhoud/SIWA/
2https://www.openfaas.com/
3https://www.fermyon.com/spin
4https://redis.io/

39

https://github.com/JackShahhoud/SIWA/
https://www.openfaas.com/
https://www.fermyon.com/spin
https://redis.io/

5. Evaluation

• Spin: Spin is a serverless platform that relies on WebAssembly to run functions. It
uses Wasmtime as the WebAssembly runtime to execute the functions. They offer
triggers to support different functionalities, such as API interfaces and database
interactions. We selected Spin since it also relies on WebAssembly to execute
functions.

• Redis: The mentioned frameworks do not provide distributed communication
methods between functions. For this reason, Redis is used for communication
between the functions. We chose Redis because it is lightweight and offers Pub/Sub
messaging. The mentioned frameworks rely on Redis Pub/Sub messaging pattern
with default settings to exchange messages.

5.2 Benchmarks
There are different criteria that are relevant for evaluating FaaS that are provided by
different frameworks. In the mentioned benchmarks, depending on the applied method,
we apply different number of parallel requests and input size. We evaluate our framework
based on the following criteria:

• Latency: This metric shows the execution time for the message passing between two
actors. We use seconds and milliseconds for our latency experiments for sequential
and parallel execution, respectively.

• Throughput: This metric measures the number of executions a framework can
process in a specific timeframe. We measure the performance of SIWA under high
loads. The goal of throughput experiments is to identify how many requests the
application can process at a time and if there are bottlenecks in the proposed
framework once the application load increases.

5.3 Experiments
We apply different methods during our evaluation of the frameworks. This allows us to
analyse the performance under different conditions. We use the same methods in all the
frameworks and observe the results.

Workflows

This method uses a chain of function executions. It’s a sequence of function executions
where the output of a function is the input of the following function. We measure how
the frameworks perform using different numbers of parallel requests sent, as shown in
Figure 5.1a, and different input sizes, as shown in Figure 5.1b. SIWA uses its own
implementation of the distributed bus, and the other frameworks rely on Redis for
communication. Each workflow consists of three functions, where the functions are
executed in sequence.

40

5.3. Experiments

Workflow

fnA fnB fnC

fnA fnB fnC

(a) Parallel Requests

Workflow

fnA fnB fnC10MB

20MB fnA fnB fnC

(b) Single Request with Input Variation

Figure 5.1: Workflow Execution

Nested Calls

In this experiment, each function during execution calls a different function. The current
execution is stopped until the results of the called function are returned. We apply
different numbers of parallel requests, as shown in Figure 5.2a, and different input sizes,
as shown in Figure 5.2b. SIWA uses its own implemented distributed bus, and the other
frameworks depend on Redis for exchanging messages. There are three nested function
executions for each experiment.

Nested Calls

fnA fnB fnC

fnA fnB fnC

(a) Parallel Requests

Nested Calls

fnA fnB fnC10MB

20MB fnA fnB fnC

(b) Single Request with Input Variation

Figure 5.2: Nested Execution

41

5. Evaluation

5.3.1 Setup
To evaluate SIWA, we execute the designed experiments on a virtual machine (VM). The
VM is running on Ubuntu 22.04 LTS, where the CPU architecture is ARM64 (AARCH64)
with 8 GB of RAM, 4 cores, and 39 GB of storage. The experimental applications are
written in Rust. The baseline applications used for the evaluation expose REST API
endpoints for receiving and processing requests from external sources. For the HTTP
requests, we use Rust reqwest5 client, and Rust streams futures6 for sending multiple
parallel requests concurrently. To ensure the consistency of the results and avoid bias, we
executed the experiments seven times and calculated the average as the desired result.

5.4 Results
In Table 5.1, we can see a sample of the performance using the latency as a benchmark.
In this section, we discuss the results of the experiments and analyse them.

Experiment Workflow-Parallel Workflow-Input Nested-Parallel Nested-Input
SIWA 5.04 0.59 6.11 0.36

OpenFaaS 51.56 6.98 51.4 3.12
Spin 47.70 4.32 53.54 2.20

Table 5.1: Latency with Parallel (50 REQ) and Input (25MB) in Seconds.

5.4.1 Workflow
Workflow Execution using different Input Size

Figure 5.3a shows the input data size on the x axis and the latency in seconds on the y
axis. SIWA displays response times ranging from 0.039 to 0.919 seconds, OpenFaaS shows
an increase from about 0.272 to 6.144 seconds, and Spin’s response time grows from 0.218
to 4.362 seconds. The latency analysis reveals that SIWA decreases the latency by up to
85% and 79% compared to OpenFaaS and Spin, respectively. These latency experiments
show a significant latency reduction of SIWA, with all three systems demonstrating a
generally linear increase in response times, indicative of stable performance across the
increasing load. Figure 5.3b shows the throughput of SIWA, OpenFaaS, and Spin as
increasing the input size. The x axis represents the input data size, while the y axis shows
requests per second. Over axis x, SIWA’s throughput decreases from about 25.93 to 1.09
requests per second, OpenFaaS declines from 3.68 to 0.16 requests per second, and Spin
drops from 4.60 to 0.23 requests per second. All systems experience a linear decrease
in throughput as the input size increases, indicating a linear throughput decrease with
the input size. Additionally, SIWA maintains a throughput up to 6.8 times higher than
OpenFaaS and up to 4.7 times higher than Spin.

5https://github.com/seanmonstar/reqwest
6https://github.com/rust-lang/futures-rs

42

5.4. Results

0MB 5MB 10MB 15MB 20MB 25MB 30MB 35MB 40MB 45MB 50MB

Input Size

0

2

4

6

8

10

12

T
im

e
 i
n
 S

e
c
o
n
d
s

Workflow Input Warm Start

SIWA

OpenFaas

Spin

(a) Latency

0MB 5MB 10MB 15MB 20MB 25MB 30MB 35MB 40MB 45MB 50MB

Input Size

0.14

0.50

1.00

3.90

1.00

0.07

23.00

R
e
q
u
e
s
ts

 p
e
r

S
e
c
o
n
d

Workflow Input Warm Start

SIWA

OpenFaas

Spin

(b) Throughput

Figure 5.3: Workflow Execution using different input size

Parallel Workflow Executions

Figure 5.4a showcases the latency from parallel execution for Serverless Workflows, where
the x axis indicates the number of parallel executions and the y axis measures the latency
in milliseconds. SIWA demonstrates stability in latency, which ranges from 6.4 ms to
4.23 ms as the parallel execution count increases. In contrast, OpenFaas and Spin display
higher latency similar to the nested functions, in 5.6a, around 50ms. Compared to the
baselines, SIWA’s latency is lower, showing an improvement of approximately 92% for
serverless workflows. In Figure 5.4b, SIWA maintains a high throughput ranging from
156.25 to 236.41 requests per second. Both OpenFaas and Spin also show consistent
throughput; however, they show around 20 requests per second, significantly lower than

43

5. Evaluation

SIWA. These results show that SIWA has up to 10x higher throughput compared to the
baselines, showing stability for high-load serverless workflows while maintaining high
throughput and low latency.

10 20 30 40 50 60 70 80 90 100

Number of Parallel Executions

4.2

5.5

7.5

50.0

14.0

120.0

T
im

e
 i
n
 M

il
li
s
e
c
o
n
d
s

Workflow Parallel Warm Start

SIWA

OpenFaas

Spin

(a) Latency

10 20 30 40 50 60 70 80 90 100

Number of Parallel Executions

17

25

50

100

225

R
e
q
u
e
s
t

p
e
r

S
e
c
o
n
d

Workflow Parallel Warm Start

SIWA

Spin

OpenFaas

(b) Throughput

Figure 5.4: Workflow Execution using parallel executions

5.4.2 Nested Calls
Nested Calls using different Input Size

Figure 5.5a presents the input data size in megabytes on the x axis and the response
latency on the y axis. As input size increases, SIWA shows latency improvements ranging
from 40 milliseconds to 1.71 seconds. OpenFaas displays latency from 363 milliseconds to
approximately 12.5 seconds, while Spin maintains an increase from 299 milliseconds to

44

5.4. Results

8.73 seconds. This experiment shows that SIWA reduces latency by up to 86% compared
to OpenFaas and 80% relative to Spin. Figure shows the throughput metrics, where
the input data size is in megabytes on the x axis and the requests per second on the y
axis. SIWA displays a throughput decrease from 24.65 to 0.59 requests per second, while
OpenFaas and Spin show reductions from 2.75 to 0.08 and from 3.34 to 0.11 requests per
second, respectively. SIWA presents up to 7.4 times higher throughput than OpenFaas
and up to 5.4 times more than Spin.

0MB 5MB 10MB 15MB 20MB 25MB 30MB 35MB 40MB 45MB 50MB

Input Size

0

1

2

3

4

5

6

T
im

e
 i
n
 S

e
c
o
n
d
s

Nested Input Warm Start

SIWA

OpenFaas

Spin

(a) Latency

0MB 5MB 10MB 15MB 20MB 25MB 30MB 35MB 40MB 45MB 50MB

Input Size

0.15
0.20

0.50

1.00

2.00

5.00

10.00

15.00

25.00

R
e
q
u
e
s
ts

 p
e
r

S
e
c
o
n
d

Nested Input Warm Start

SIWA

OpenFaas

Spin

(b) Throughput

Figure 5.5: Nested Calls using different input size

Parallel Nested Calls

Figure 5.6a presents the latency from the parallel execution experiments, where the x axis
represents the number of parallel executions and the y axis reflects latency in milliseconds.

45

5. Evaluation

Figure 5.6a that SIWA maintains a relatively stable latency ranging from 6.9 milliseconds
to around 5.75 milliseconds, even as the number of parallel executions increases. In
comparison, OpenFaas and Spin exhibit slightly higher latency under higher loads, with
OpenFaas and Sping showing a latency of around 50 milliseconds. SIWA shows up to
an 87% reduction in latency compared to OpenFaas and Spin. In Figure 5.6b, SIWA
maintains higher throughput, ranging from 123.45 to about 173.91 requests per second,
which aligns with its efficient latency results under parallel operations in 5.6a. OpenFaas
and Spin also display consistent throughput, with OpenFaas and Spin presenting around
50 requests per second even when the application load increases in axis x. Overall, SIWA
has up to 9x higher throughput when compared to OpenFaas and Spin.

10 20 30 40 50 60 70 80 90 100

Number of Parallel Executions

5.5

7.5

10.0

20.0

50.0
60.0

100.0
120.0

T
im

e
 i
n
 M

il
li
s
e
c
o
n
d
s

Nested Parallel Warm Start

SIWA

OpenFaas

Spin

(a) Latency

10 20 30 40 50 60 70 80 90 100

Number of Parallel Executions

17

25

50

100

170

R
e
q
u
e
s
t

p
e
r

S
e
c
o
n
d

Nested Parallel Warm Start

SIWA

OpenFaas

Spin

(b) Throughput

Figure 5.6: Nested Calls using parallel executions

46

CHAPTER 6
Related Work

In this chapter, we present some related work, that partially rely on the mentioned
methods and technologies.

6.1 Stateful Serverless
6.1.1 FAASM
Stateless containers do not allow to share memory directly, leading to the duplication and
serialization of data repeatedly. For this reason, a new isolation method was needed to
reduce overhead. FAASM [SP20] is a stateful serverless runtime based on WebAssembly.
It uses Faaslets to provide lightweight isolation and efficient shared memory access. We
count some of the Faaslets properties:

• Lightweight Isolation: It provides isolation by depending on software-based fault
isolation (SFI). Functions with Faaslet are compiled with its library to WebAssembly.
Each faaslet is executed in a dedicated thread within a single address space, where
isolation is provided using cgroups and network namespaces.

• Efficient State Access: Faaslet uses a two-tier state architecture. The local tier
allows in-memory sharing; the global tier supports distributed access. Also, Faaslets
are in the same address space, which allows efficient memory access.

• Initialisation Time: FAASM pre-initializes a faaslet and stores its memory. When
needed, this snapshot is restored to start a Faaslet.

• Flexible Host Interface: Faaslet provides a POSIX-like interface for accessing
network, memory, and file I/O. It provides sufficient virtualization to ensure
security.

47

6. Related Work

Both local and global tiers need to be in sync to ensure message processing, which
introduces network overhead when a large number of messages need to be processed.

6.1.2 Cloudburst

Cloudburst [SWL+20] is a stateful FaaS that focuses on low-latency mutable state and
communication without losing autoscaling capabilities. It achieves this by relying on
key-value store (KVS) and mutable caches that are co-located with function executors.
The system relies on Anna [WFLH18], an autoscalable, low-latency key value store. It
takes use of the design to ensure consistently merging concurrent updates.

It accepts programs written in vanilla python and triggers them in the cloud. Re-
sult of the computation can be returned directly to the client or stored in KVS and
retrieved later. Function parameters can be directly Python objects or KVS references
that are fetched and deserialized before function invocation.
For optimizing the performance, it tries to execute function on a machine that can have
the KVS reference value cached. To Enable statefull functionality, it offers Anna KVS
API to directly store and fetch Python objects. Object serialization and encapsulation
for consistency is handled by the runtime. Cloudburst relies on fault management of
Anna. As other FaaS, it tries on retrun the function after faulty execution. Other
unexpected side effets should be handled by the client. It might introduce duplicate
cached data, leading to network overhead and duplicate serialization, a challenge for the
limited resources of the Edge-Cloud Continuum.

6.2 WebAssmebly in Serverless

6.2.1 Spin

Spin 1 is a serverless framework that is based on WebAssembly using Wasmtime 2 as
runtime. It supports multiple languages, such as Rust, Javascript, and Go. Other
languages are supported, depending on the language’s support for WASM and WASI
features. Spin offers the following properties:

• Triggers: Functions can be invoked using triggers. An HTTP trigger can be used for
requests sent using HTTP requests. Redis trigger puts Redis pub/sub to use, spin
subscribers to messages coming from Redis, and reacts depending on the message.
It offers an experimental cron trigger that executes at a specific time and frequency.

• Kubernetes Support: Spin can also run on Kubernetes. It implements containerd
shim spin that uses runwasi to run spin functions.

1https://developer.fermyon.com/spin/v2/index
2https://wasmtime.dev/

48

https://developer.fermyon.com/spin/v2/index
https://wasmtime.dev/

6.3. Actors

Functions still need to communicate with each other over HTTP requests instead of
internal communication, which increases the response time and affects the performance.

6.2.2 Krustlet
Microsoft wanted to make it easy to deploy WebAssembly workloads on Kubernetes and
show how to build and develop Kubernetes architecture pieces in other languages than
Go. Linux containers use OS-based virtualization.
It relies on the kernel to provide isolation and a sandboxed environment, which means
that code compiled for Intel chips cannot run on other chips. On the other side, the
Wasm binary format makes it possible to run it anywhere without depending on the OS
or the hardware, but it is less flexible than the OS-based virtualization.

Krustlet3 runs on Kubernetes Kubelet. It listens to the event stream for new pods.
Kubernetes schedules pods into Krustlet, which runs the pods under the WASI runtime.
But this should not replace Kubelet, but make them complimentary. Krustlet relies
heavily on kubernetes, which increases complexity and makes it heavily depend on it to
deploy and manage functions.

6.3 Actors
6.3.1 µActor
Several companies support running serverless functions on the edge. Aws Lambda@Edge,
AWS Greengrass, and other services make it possible to execute functions directly on the
edge near the user. These approaches introduce several challenges.
These functions are typically containerized. The increased complexity of managing these
containers and problems, such as cold starts, should be avoided. Also, these functions
are stateless and need other services to store and maintain data. These services, such
as cloud-based storage, are not running on the edge, which means they are required to
communicate through the network.

µActor [HKO21] introduces actor-based functions. Actors do not share any state, they
have isolation boundaries and can be executed in the same runtime instance. It is only
required to provision the actor execution code and not the execution environment, such
as in container-based functions. Actors use messages to communicate. These messages in
µActor actors are carried through a distributed pub/sub bus.
µActor uses the following systems:

• Execution System: The actors are transient. For this reason, the code needs to
be loaded and unloaded in a process virtual machine. µActor loads the desired
code and runs it using Lua. This type of virtual machine provides isolation and

3https://krustlet.dev/

49

https://krustlet.dev/

6. Related Work

reduces overhead. The platform passes control to the actor once the actor gets a
message. When the actor is done processing the message, it passes back control to
the platform.

• Network System: Pub/Sub bus is used for communication. Actors publish messages
in key-value format. Actors subscribe to the interested message contents. There are
two types of buses. a local bus that facilitates communication between co-located
actors, and a global bus that is responsible for communication between actors at
different nodes.

Nevertheless, the introduced platform is not interoperable with the existing state-of-the-
art platforms.

6.3.2 Ray

Reinforcement learning (RL) [SB18] is when a learning agent interacts with a dynamic
environment in order to achieve a goal in a short period of time with limited feedback.
Current technologies, such as Apache Spark [Spa] and Map-Reduce [DG08], do not
support simulation or serving. Also, Task-Parallel systems such as CIEL [MSS+11] and
DASK [SHC+17] provide short-term support for distributed training and serving.

Ray [MNW+18] is a general-purpose cluster-computing framework. It supports training,
simulation, and serving for RL. Tasks help to dynamically and efficiently load balance
simulations and process large inputs. It provides task-parallel and actor-based computa-
tions. The main purpose of the actors is to support stateful computations, such as model
training. Ray guarantees fault tolerance and exactly-once message delivery. Nevertheless,
this approach reduces the scalability of a single function, binding the scalability of the
two functions together, which can lead to increased resource usage as all the embedded
functions must be scaled together.

6.3.3 Durable Functions

Durable Function (DF) focuses on providing stateless, statefull, and parallel computation.
It takes task and actor parallelism into account. The following function types are
supported:

• Activities: Activities are stateless functions in DF. If the function is not executed
successfully, it raises an exception. It does not retry that task, and the parent
process receives the exception.

• Entities: Entities are stateful functions, and they are based on the actor model.
They support the following functionalities:

50

6.4. Middlewares

– Orchestration Calls and Signals: Orchestrations can call an entity and wait
for it to end the operation, or they can signal an entity and not wait for the
end of the operation.

– Entity-to-Entity Signals: Entities can singal each other, which can enable
useful patterns such as stateful flows and data streaming.

– No Entity-to-Entity Calls: Entities cannot call other entities in order to prevent
deadlocks.

– Scheduled Signals: Singals can be scheduled to be sent at a specific time. This
makes it possible to run actions that need to be executed constantly at a
specific time. Predioc actions are also supported.

• Orchestrations: It allows for workflows and long-running actions by deconstruct-
ing the components into tasks. These tasks can be activities, entities, or sub-
orchestrations. The storage of the orchestration is saved automatically so that
in faulty scenarios, it can continue from the latest state. It supports sequential
composition, parallel composition, and eternal orchestrations.

However, DF is specifically designed for the Azure platform, limiting its usage across
other Serverless Platforms.

6.4 Middlewares

6.4.1 SAND
SAND [ACR+18] is a serverless platform that promises lower latency, higher resource
efficiency, and better elasticity. It offers the following mechanisms:

• Sandboxing mechanism: There are two types of isolation: isolation between dif-
ferent applications and isolation between functions in the same application. Each
application runs inside a container. Each container runs a function in a separate
process. Related application functions run on the same host.

• Hierarchical Message Queuing: SAND uses two types of messaging buses: local and
global. The local bus is responsible for communication between functions running
on the same host. The global bus facilitates communication between functions
running on different hosts, and it also serves as a backup for the local bus.

In order to prevent the same event from being processed multiple times, a backup
of the local message is sent to the global with a condition flag. This flag contains
information about the host that is processing the message, and the global bus keeps
track of the progress. Each host runs a local bus, and the global bus runs across
the infrastructure.

51

6. Related Work

Although SAND decreases latency, it reduces the isolation from the functions placed in
the shared sandbox, compromising the application scalability as all the functions in the
same sandbox need to be scaled together.

6.4.2 Sonic
Sonic [MSM+21] is an intermediate for exchanging data between functions. It provides
three different methods for interchanging data:

• VM Storage: The local state of the sending function is stored on the VM. All
receiving functions are scheduled to run on the same VM. The use of data locality
minimizes the latency. This method has its disadvantages, such as scheduling when
the sender function memory cannot fit the receiving functions.

• Direct Passing: The output of the sender function is stored on the VM. Sonic Data
Manager receives information about the location and file path of the output. Before
executing the receiving function, the metadata manager transfers the output to
the receiver VM. This method is in favor of parallelism, but a downside is that the
input needs to be transferred over the network.

• Remote Storage: The output of the sender function is uploaded to a remote storage,
and all receiving functions download it from the remote storage. This method
provides high scalability, but the output needs to be serialized during the upload
and download processes.

The user is provided with different APIs that can be chosen depending on different
factors, such as input size and network bandwidth. There is no method that can be
used in all scenarios. Sonic automatically, using the Viterbi algorithm [For73], selects the
data passing method for each scenario to optimize cost and latency. However, remote
data exchange relies on third-party services, leading to increased maintenance costs and
additional services.

52

CHAPTER 7
Conclusion

After going through our framework, the approaches that are taken, and the methods
that are used, we summarise our paper by reiterating the important aspects and what
advancement has been achieved. We talk about our contributions and improvements
compared to other frameworks. Also, we revisit the research question and revise the most
important points.

7.1 Contributions
In this paper, we introduce a serverless framework, SIWA. SIWA relies on actors to
execute functions, putting LifeCycle into use. We introduce LCM, a novel Serverless
Lifecycle Model that natively executes serverless functions as serverless actors, allowing
actors to be reused without the need to reallocate resources. The actor functionality
strongly depends on the current state of the actor. We also present SIM, a novel Server-
less Invocation Model that enables actors to influence the behaviour of future messages.
Additionally, we introduce the WebAssembly serverless actor platform designed for the
Edge-Cloud Continuum. WebAssembly provides strong isolation without any unnecessary
overhead.

SIWA leverages Wasm to provide a secure and isolated sandbox while enabling effi-
cient communication among serverless actors via SIWA Middleware. The Middleware
leverages the SIM model to enable direct communication between actors, optimising
performance and scalability in distributed environments.

Our evaluation 5 demonstrates that SIWA decreases latency and increases through-
put, thereby enhancing performance in the Edge-Cloud Continuum. Specifically, SIWA
reduces latency by up to 92% and increases throughput by up to 10 times. This has a huge
impact on applications running on Edge Devices, since the resources are limited there.

53

7. Conclusion

Other frameworks rely on containers and virtual machines to execute and isolate functions,
which introduces resource overhead and increases complexity. Using WebAssembly, we
reduce resource allocation since no platform-dependent packages or libraries are required.

7.2 Research Challenges
We revise the research challenges that we were mentioned previously and go through
their details:

RQ-1: How to enable Serverless actors to be reused in the Edge-Cloud
Continuum?
By introducing Actor LifeCycle Model, we are able to maintain the state of the actor
without the need to rely on other external systems. This also allows us to reuse the
actors by relying on the states, which helps to decrease the cold start and reduce resource
consumption.
Also, the actor informs SiWA’s distributed middleware about its availability. In order
to maintain the integrity of the state, an actor can process one message at a time. The
actor can stay in an idle state, reducing resource consumption, but also be ready for
other new executions and reuse allocated resources.
RQ-2: How can we enable direct communication between actors while allowing
them to influence the behavior of future messages?
Communication between actors is enabled by using the SIWA distributed middleware.
Each actor receives a unique ID that makes the actor addressable. The actor or an
external source can send a request to the distributed middleware, and the middleware is
responsible for delivering the messages to the actor.
Actor LifeCylce helps define the behaviour of future messages. The state is maintained
in the actor itself, allowing it to influence the behaviour of the incoming messages. Using
the distributed middleware, actors running on different hosts can communicate directly.
This allows you to execute a chain of function executions or even nested function calls.
RQ-3: How to provide lightweight isolation while enabling the full potential
of Serverless actors in the Edge-Cloud Continuum?
We rely on WebAssembly to provide lightweight and secure isolation. As discussed, it
does not only provide strong isolation by relying on SFI, but it also makes it easier
for developers to focus on the desired implementation instead of taking care of the
prerequisite libraries and packages. Also, different runtimes, such as WasmEdge, focus
on optimising applications to run on Edge devices.

7.3 Future Work
Currently, SIWA supports only Wasm sandboxes; we plan to extend to enable traditional
container actors and thus enable multiple sandbox isolation. SIWA Serverless Lifecycle

54

7.3. Future Work

Model enables actor reuse and state management. For stateful functions, SIWA leverages
existing state-of-the-art mechanisms to persist the actor state.

In the future, we plan to extend SIWA to add a smart and serialisation-free actor
state, where the platform recognises whether the actors specifically require the state,
avoiding unnecessary state persistence. Thus optimising resource usage and reducing
latency by skipping the actor state loading. Furthermore, we plan to expand SIWA by
integrating machine learning algorithms to predict traffic patterns and adjust the creation
of actors dynamically, thus improving latency.

55

List of Figures

1.1 Simplified Serverless Workflow for Fire Detection for Smart Cities 4

2.1 Asynchronous invocation in serverless computing [LGC+22]. 11
2.2 WebAssembly Use Cases Overview [Ray23]. 15
2.3 WebAssembly Virtualization1 . 16
2.4 Actor Model Overview . 17

3.1 SIWA Serverless Lifecycle Model . 22
3.2 SIWA Serverless Invocation Model . 23
3.3 SIWA Architecture Overview . 24

4.1 SIWA Serverless Lifecycle Management 28
4.2 SIWA Distributed Messaging Middleware Flow 29
4.3 SIWA Execution Sequence . 30
4.4 SIWA Execution Flow . 31
4.5 SIWA Actor . 32

5.1 Workflow Execution . 41
5.2 Nested Execution . 41
5.3 Workflow Execution using different input size 43
5.4 Workflow Execution using parallel executions 44
5.5 Nested Calls using different input size . 45
5.6 Nested Calls using parallel executions . 46

57

List of Tables

5.1 Latency with Parallel (50 REQ) and Input (25MB) in Seconds. 42

59

List of Listings

1 Workflow Plan Example . 35
2 Example of host functions used in Rust 36
3 Host functions provided by the actor 36
4 Host Functions imported to WasmEdge 37
5 SIWA Function . 37
6 SIWA WebAssembly Function Execution 37
7 SIWA Function Execution Request . 38
8 SIWA Workflow Execution Request . 38

61

Bibliography

[ABI+20] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori,
Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. Firecracker:
Lightweight virtualization for serverless applications. In 17th USENIX
symposium on networked systems design and implementation (NSDI 20),
pages 419–434, 2020.

[ACR+18] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus
Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. SAND: Towards
High-Performance serverless computing. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18), pages 923–935, Boston, MA, July 2018.
USENIX Association.

[Agh86] Gul Agha. Actors: a model of concurrent computation in distributed
systems. MIT Press, Cambridge, MA, USA, 1986.

[Akk] Akka. Akka Actor Systems. https://doc.akka.io/docs/akka/
current/general/actor-systems.html.

[AMF+09] Armbrust, Michael, Armando Fox, Armando, Griffith, Rean, Joseph, Denis
Anthony, Randy Katz, Randy H, Andy Konwinski, Andrew, Gunho Lee,
Gunho, Patterson, David A, Rabkin, Ariel, Stoica, and Matei. Above the
clouds: A berkeley view of cloud computing. 01 2009.

[BFM19] Luciano Baresi and Danilo Filgueira Mendonça. Towards a serverless
platform for edge computing. In 2019 IEEE International Conference on
Fog Computing (ICFC), pages 1–10, 2019.

[BGJ+21] Sebastian Burckhardt, Chris Gillum, David Justo, Konstantinos Kallas,
Connor McMahon, and Christopher S. Meiklejohn. Durable functions:
semantics for stateful serverless. Proc. ACM Program. Lang., 5(OOPSLA),
oct 2021.

[BGK+11] Sergey Bykov, Alan Geller, Gabriel Kliot, James R. Larus, Ravi Pandya,
and Jorgen Thelin. Orleans: cloud computing for everyone. In Proceedings
of the 2nd ACM Symposium on Cloud Computing, SOCC ’11, New York,
NY, USA, 2011. Association for Computing Machinery.

63

https://doc.akka.io/docs/akka/current/general/actor-systems.html
https://doc.akka.io/docs/akka/current/general/actor-systems.html

[BPP+19] Philip A. Bernstein, Todd Porter, Rahul Potharaju, Alejandro Z. Tom-
sic, Shivaram Venkataraman, and Wentao Wu. Serverless event-stream
processing over virtual actors. In Conference on Innovative Data Systems
Research, 2019.

[BPSAP+19] Daniel Barcelona-Pons, Marc Sánchez-Artigas, Gerard París, Pierre Sutra,
and Pedro García-López. On the faas track: Building stateful distributed
applications with serverless architectures. In Proceedings of the 20th Inter-
national Middleware Conference, Middleware ’19, page 41–54, New York,
NY, USA, 2019. Association for Computing Machinery.

[CBCH23] Marcin Copik, Roman Böhringer, Alexandru Calotoiu, and Torsten Hoefler.
Fmi: Fast and cheap message passing for serverless functions. In Proceedings
of the 37th International Conference on Supercomputing, ICS ’23, page
373–385, New York, NY, USA, 2023. Association for Computing Machinery.

[CCB+22] Marcin Copik, Alexandru Calotoiu, Rodrigo Bruno, Gyorgy Rethy, Roman
Böhringer, and Torsten Hoefler. Process-as-a-Service: Elastic and Stateful
Serverless with Cloud Processes. Technical report, 01 2022.

[CDTV24] Roberto Casadei, Ferruccio Damiani, Gianluca Torta, and Mirko Viroli.
Actor-Based Designs for Distributed Self-organisation Programming, pages
37–58. Springer Nature Switzerland, Cham, 2024.

[DG08] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing
on large clusters. Communications of the ACM, 51(1):107–113, 2008.

[Ell] Alex Ellis. Serverless Cold Start. https://www.openfaas.com/blog/
what-serverless-coldstart/.

[ERGC24] Juan José López Escobar, Rebeca P. Díaz Redondo, and Felipe Gil-
Castiñeira. Unleashing the power of decentralized serverless iot dataflow
architecture for the cloud-to-edge continuum: a performance comparison.
Annals of Telecommunications, pages 1–14, 2024.

[For73] G.D. Forney. The viterbi algorithm. Proceedings of the IEEE, 61(3):268–278,
1973.

[GFD22] Philipp Gackstatter, Pantelis Frangoudis, and Schahram Dustdar. Pushing
serverless to the edge with webassembly runtimes. pages 140–149, 05 2022.

[Hal12] Philipp Haller. On the integration of the actor model in mainstream
technologies: the scala perspective. In Proceedings of the 2nd Edition
on Programming Systems, Languages and Applications Based on Actors,
Agents, and Decentralized Control Abstractions, AGERE! 2012, page 1–6,
New York, NY, USA, 2012. Association for Computing Machinery.

64

https://www.openfaas.com/blog/what-serverless-coldstart/
https://www.openfaas.com/blog/what-serverless-coldstart/

[Hew10] Carl Hewitt. Actor model for discretionary, adaptive concurrency. CoRR,
abs/1008.1459, 2010.

[HFC+23] Zhuo Huang, Hao Fan, Chaoyi Cheng, Song Wu, and Hai Jin. Duo: Improv-
ing data sharing of stateful serverless applications by efficiently caching
multi-read data. In 2023 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 875–885, 2023.

[HFG+18] Joseph M Hellerstein, Jose Faleiro, Joseph E Gonzalez, Johann Schleier-
Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. Server-
less computing: One step forward, two steps back. arXiv preprint
arXiv:1812.03651, 2018.

[HKO21] Raphael Hetzel, Teemu Kärkkäinen, and Jörg Ott. actor: Stateful serverless
at the edge. In Proceedings of the 1st Workshop on Serverless Mobile
Networking for 6G Communications, MobileServerless’21, page 1–6, New
York, NY, USA, 2021. Association for Computing Machinery.

[HRS+17] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael
Holman, Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. Bring-
ing the web up to speed with webassembly. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2017, page 185–200, New York, NY, USA, 2017. Association
for Computing Machinery.

[JSS+19] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, João Carreira, Karl
Krauth, Neeraja Jayant Yadwadkar, Joseph E. Gonzalez, Raluca Ada Popa,
Ion Stoica, and David A. Patterson. Cloud programming simplified: A
berkeley view on serverless computing. CoRR, abs/1902.03383, 2019.

[JW21a] Zhipeng Jia and Emmett Witchel. Boki: Stateful serverless computing
with shared logs. In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles, SOSP ’21, page 691–707, New York, NY,
USA, 2021. Association for Computing Machinery.

[JW21b] Zhipeng Jia and Emmett Witchel. Nightcore: Efficient and scalable server-
less computing for latency-sensitive, interactive microservices. In Proceed-
ings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’21, page
152–166, New York, NY, USA, 2021. Association for Computing Machinery.

[KHA+23] Samuel Kounev, Nikolas Herbst, Cristina L. Abad, Alexandru Iosup, Ian
Foster, Prashant Shenoy, Omer Rana, and Andrew A. Chien. Serverless
computing: What it is, and what it is not? Commun. ACM, 66(9):80–92,
aug 2023.

65

[KHF+19] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploiting
speculative execution. In 40th IEEE Symposium on Security and Privacy
(S&P’19), 2019.

[KKL+07] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. kvm:
the linux virtual machine monitor. In Proceedings of the Linux symposium,
volume 1, pages 225–230. Dttawa, Dntorio, Canada, 2007.

[KNGB21] Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and Arkaprava Basu.
Faastlane: Accelerating Function-as-a-Service workflows. In 2021 USENIX
Annual Technical Conference (USENIX ATC 21), pages 805–820. USENIX
Association, July 2021.

[KWS+18] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas
Pfefferle, and Christos Kozyrakis. Pocket: Elastic ephemeral storage for
serverless analytics. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), pages 427–444, Carlsbad, CA,
October 2018. USENIX Association.

[LGC+22] Zijun Li, Linsong Guo, Jiagan Cheng, Quan Chen, Bingsheng He, and
Minyi Guo. The serverless computing survey: A technical primer for design
architecture. ACM Comput. Surv., 54(10s), sep 2022.

[LSG+18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and
Mike Hamburg. Meltdown. CoRR, abs/1801.01207:1–19, 2018.

[LTHY21] Ju Long, Hung-Ying Tai, Shen-Ta Hsieh, and Michael Juntao Yuan. A
lightweight design for serverless function as a service. IEEE Software,
38(1):75–80, 2021.

[MBN+21] Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang, Lucien Ngale,
Stéphane Pouget, Josiane Kouam, Renaud Lachaize, Jinho Hwang, Tim
Wood, Daniel Hagimont, Noël De Palma, Bernabé Batchakui, and Alain
Tchana. Ofc: An opportunistic caching system for faas platforms. In
Proceedings of the Sixteenth European Conference on Computer Systems,
EuroSys ’21, page 228–244, New York, NY, USA, 2021. Association for
Computing Machinery.

[Mic] Microsoft. Windows Containers Isolation Modes. https://learn.
microsoft.com/en-us/virtualization/windowscontainers/
manage-containers/hyperv-container.

[MMR+13] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott,
Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon

66

https://learn.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/hyperv-container
https://learn.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/hyperv-container
https://learn.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/hyperv-container

Crowcroft. Unikernels: library operating systems for the cloud. In Proceed-
ings of the Eighteenth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’13, page
461–472, New York, NY, USA, 2013. Association for Computing Machinery.

[MN23] Cynthia Marcelino and Stefan Nastic. Cwasi: A webassembly runtime shim
for inter-function communication in the serverless edge-cloud continuum.
In The Eighth ACM/IEEE Symposium on Edge Computing (SEC 2023),
2023.

[MNW+18] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,
Michael I. Jordan, and Ion Stoica. Ray: A distributed framework for
emerging AI applications. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages 561–577, Carlsbad,
CA, October 2018. USENIX Association.

[MPFS22] Jämes Ménétrey, Marcelo Pasin, Pascal Felber, and Valerio Schiavoni. We-
bassembly as a common layer for the cloud-edge continuum. In Proceedings
of the 2nd Workshop on Flexible Resource and Application Management on
the Edge, FRAME ’22, page 3–8, New York, NY, USA, 2022. Association
for Computing Machinery.

[MPMB20] Seán Murphy, Leonardas Persaud, William Martini, and Bill Bosshard. On
the use of web assembly in a serverless context. In Maria Paasivaara and
Philippe Kruchten, editors, Agile Processes in Software Engineering and
Extreme Programming – Workshops, pages 141–145, Cham, 2020. Springer
International Publishing.

[MSM+21] Ashraf Mahgoub, Karthick Shankar, Subrata Mitra, Ana Klimovic, Somali
Chaterji, and Saurabh Bagchi. SONIC: Application-aware data passing
for chained serverless applications. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21), pages 285–301. USENIX Association, July
2021.

[MSS+11] Derek G Murray, Malte Schwarzkopf, Christopher Smowton, Steven Smith,
Anil Madhavapeddy, and Steven Hand. {CIEL}: A universal execution
engine for distributed {Data-Flow} computing. In 8th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 11), 2011.

[MTA+23] Alex Merenstein, Vasily Tarasov, Ali Anwar, Scott Guthridge, and Erez
Zadok. F3: Serving files efficiently in serverless computing. In Proceedings of
the 16th ACM International Conference on Systems and Storage, SYSTOR
’23, page 8–21, New York, NY, USA, 2023. Association for Computing
Machinery.

67

[MTZ23] Fatma M. Talaat and Hanaa Zaineldin. An improved fire detection approach
based on yolo-v8 for smart cities. Neural Computing and Applications, 07
2023.

[Mun19] Chris Munns. Tracking the state of aws lambda functions, 2019.

[NRF+22] Stefan Nastic, Philipp Raith, Alireza Furutanpey, Thomas Pusztai, and
Schahram Dustdar. A serverless computing fabric for edge & cloud. In
2022 IEEE 4th International Conference on Cognitive Machine Intelligence
(CogMI), pages 1–12, 2022.

[POPL18] Daniel Barcelona Pons, Alvaro Ruiz Ollobarren, David Arroyo Pinto, and
Pedro Garcia Lopez. Studying the feasibility of serverless actors. In
Proceedings of the European Symposium on Serverless Computing and
Applications, ESSCA@UCC 2018, Zurich, Switzerland, December 21, 2018,
volume 2330, pages 25–29. CEUR-WS.org, 2018.

[Ray23] Partha Pratim Ray. An overview of webassembly for iot: Background,
tools, state-of-the-art, challenges, and future directions. Future Internet,
15(8), 2023.

[RCG+21] Francisco Romero, Gohar Irfan Chaudhry, Íñigo Goiri, Pragna Gopa, Paul
Batum, Neeraja J. Yadwadkar, Rodrigo Fonseca, Christos Kozyrakis, and
Ricardo Bianchini. Faast: A transparent auto-scaling cache for serverless
applications. In Proceedings of the ACM Symposium on Cloud Computing,
SoCC ’21, page 122–137, New York, NY, USA, 2021. Association for
Computing Machinery.

[RND23] Philipp Raith, Stefan Nastic, and Schahram Dustdar. Serverless edge
computing—where we are and what lies ahead. IEEE Internet Computing,
27(3):50–64, 2023.

[S3] Amazon S3. Amazon S3. https://aws.amazon.com/de/s3/.

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 2018.

[SCC+23] C. Sicari, A. Catalfamo, L. Carnevale, A. Galletta, D. Balouek-Thomert,
M. Parashar, and M. Villari. Tema: Event driven serverless workflows
platform for natural disaster management. In 2023 IEEE Symposium on
Computers and Communications (ISCC), pages 1–6, Los Alamitos, CA,
USA, jul 2023. IEEE Computer Society.

[SCH24] Jonas Spenger, Paris Carbone, and Philipp Haller. A Survey of Actor-Like
Programming Models for Serverless Computing, pages 123–146. Springer
Nature Switzerland, Cham, 2024.

68

https://aws.amazon.com/de/s3/

[SHC+17] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever.
Evolution strategies as a scalable alternative to reinforcement learning,
2017.

[SP20] Simon Shillaker and Peter Pietzuch. Faasm: Lightweight isolation for
efficient stateful serverless computing. In Proceedings of the 2020 USENIX
Conference on Usenix Annual Technical Conference, USENIX ATC’20,
pages 419–433, USA, 2020. USENIX Association.

[Spa] Apache Spark. Apache Spark. https://spark.apache.org/.

[SSM+23] Simon Shillaker, Carlos Segarra, Eleftheria Mappoura, Mayeul Fournial,
Lluis Vilanova, and Peter Pietzuch. Faabric: Fine-grained distribution of
scientific workloads in the cloud. arXiv preprint arXiv:2302.11358, 2023.

[Str98] Volker Strumpen. Portable and fault-tolerant software systems. IEEE
Micro, 18(05):22–32, 1998.

[SWL+20] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-
Smith, Joseph E. Gonzalez, Joseph M. Hellerstein, and Alexey Tumanov.
Cloudburst: stateful functions-as-a-service. Proceedings of the VLDB
Endowment, 13(12):2438–2452, August 2020.

[SWN+22] Qiang Su, Chuanwen Wang, Zhixiong Niu, Ran Shu, Peng Cheng,
Yongqiang Xiong, Dongsu Han, Chun Xue, and Hong Xu. Pipedevice:
a hardware-software co-design approach to intra-host container communi-
cation. pages 28–30, 10 2022.

[WCJL23] Jinfeng Wen, Zhenpeng Chen, Xin Jin, and Xuanzhe Liu. Rise of the planet
of serverless computing: A systematic review. ACM Trans. Softw. Eng.
Methodol., 32(5), jul 2023.

[WFLH18] Chenggang Wu, Jose Faleiro, Yihan Lin, and Joseph Hellerstein. Anna: A
kvs for any scale. In 2018 IEEE 34th International Conference on Data
Engineering (ICDE), pages 401–412, 2018.

[WZM+20] Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar, Lukas Rupprecht,
Dimitrios Skourtis, Vasily Tarasov, Feng Yan, and Yue Cheng. InfiniCache:
Exploiting ephemeral serverless functions to build a Cost-Effective memory
cache. In 18th USENIX Conference on File and Storage Technologies
(FAST 20), pages 267–281, Santa Clara, CA, February 2020. USENIX
Association.

[XZG+19] Zhengjun Xu, Haitao Zhang, Xin Geng, Qiong Wu, and Huadong Ma.
Adaptive function launching acceleration in serverless computing platforms.
In 2019 IEEE 25th International Conference on Parallel and Distributed
Systems (ICPADS), pages 9–16, 2019.

69

https://spark.apache.org/

[YZCH+19] Ethan G Young, Pengfei Zhu, Tyler Caraza-Harter, Andrea C Arpaci-
Dusseau, and Remzi H Arpaci-Dusseau. The true cost of containing: A
{gVisor} case study. In 11th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 19), 2019.

70

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Statement
	Motivation
	Contributions
	Research Questions
	Methodology
	Structure

	Background
	Edge Cloud Continuum
	Serverless Computing
	Edge Computing
	Cold Start
	WebAssembly
	Actor Model

	SIWA System Design
	Requirements
	Core Concepts
	SIWA Models
	Actor Components
	SIWA Components

	Implementation
	SIWA Mechanisms
	Implementation
	Workflows and Internal Calls
	Execution Example

	Evaluation
	Overview
	Benchmarks
	Experiments
	Results

	Related Work
	Stateful Serverless
	WebAssmebly in Serverless
	Actors
	Middlewares

	Conclusion
	Contributions
	Research Challenges
	Future Work

	List of Figures
	List of Tables
	List of Listings
	Bibliography

