
Deep Learning-based Light
Source Estimation from Face

Images

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Philipp Hochhauser, BSc
Matrikelnummer 01527619

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Mag. Dr. Peter Kán

Wien, 1. August 2024
Philipp Hochhauser Peter Kán

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Deep Learning-based Light
Source Estimation from Face

Images

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Philipp Hochhauser, BSc
Registration Number 01527619

to the Faculty of Informatics

at the TU Wien

Advisor: Mag. Dr. Peter Kán

Vienna, August 1, 2024
Philipp Hochhauser Peter Kán

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Philipp Hochhauser, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. August 2024
Philipp Hochhauser

v

Acknowledgements

I would like to sincerely thank my supervisor, Mag. Dr. Peter Kán for supporting me
in conducting this thesis. You always provided valuable tips and insights. Thank you
for letting me freely explore the topic and applicable methodologies. All our discussions
really helped me choose a suitable way to finish my thesis, and your positive attitude
towards the topic greatly motivated me. I also want to thank all my friends and family,
who have always supported and motivated me throughout my studies.

vii

Kurzfassung

Diese Arbeit zeigt einen neuen Ansatz, um realistische Umgebungsbeleuchtung aus einem
Gesichtsbild zu berechnen. Genaue Beleuchtungsinformationen sind essenziell für eine
Vielzahl an Virtual und Mixed Reality Anwendungen. Um diese Information zu berechnen,
benötigen Deep Learning Methoden eine große Anzahl an Daten, die nicht einfach zu
erhalten sind. Wir behandeln dieses Problem, indem wir einen synthetischen Daten-
satz aus Gesichtsbildern und dazugehörigen Umgebungsbildern mithilfe von digitalen
menschlichen Charakteren erstellen. Diese digitalen Menschen aus dem MetaHuman
Framework werden von 360° Panoramabildern beleuchtet und mit Unreal Engine geren-
dert. Indem wir pro Bild mehrere Parameter automatisch verändern, erhalten wir einen
diversen Datensatz mit über 150000 Bildern. Mit diesem Datensatz trainieren wir ein
CNN, um die Helligkeit der Umgebung als Graustufenbild zu berechnen. Das Netzwerk
kann sowohl für Innen- als auch Außenszenen die dominanten Lichtrichtungen erkennen,
jedoch wirkt das Gesamtbild oft nicht wie ein Graustufenbild im ursprünglichen Format
der Umgebungsbilder. In Beispielen mit echten Gesichtsbildern schafft das Netzwerk,
die Position der Sonne zu erkennen. Um realistische Fotos statt Graustufenbildern zu
erzeugen, wird ein existierendes Diffusion Network weitertrainiert. Dazu wird zusätzlich
eine Textbeschreibung aus den Gesichtsbildern erstellt, um Kontext für das Diffusion
Network zu liefern. Um das Netzwerk dazu zu bewegen, dem ursprünglichen Layout der
Umgebung zu folgen, wird das berechnete Helligkeitsbild als weiterer Kontext angefügt.
Das Gesamtsystem schafft es, realistisch aussehende 360° Panoramas zu erzeugen, die
dem Layout der originalen Szene folgen. Zusammengefasst ist unser vorgestelltes System
daher eine sequenzielle Abfolge mehrerer Neural Networks, ausgehend von einem einzel-
nen Gesichtsbild. Zuerst wird die Umgebungshelligkeit mithilfe eines CNN berechnet.
Zusätzlich wird eine textuelle Beschreibung der Umgebung von demselben Gesichtsbild
mithilfe eines existierenden Text-zu-Bild-Generators erstellt. Aus der Textbeschreibung
wird von einem angepassten Diffusion Network ein Umgebungspanorama erzeugt. Dabei
wird die berechnete Umgebungshelligkeit als zusätzliche Information verwendet. Diese
Abfolge ergibt ein modulares System, um aus einem einzelnen Gesichtsbild die Umgebung
als realistisch aussehendes Panoramabild zu generieren.

ix

Abstract

This thesis proposes a novel method to estimate realistic-looking environment images
from an input face image. Having correct light information is crucial for a variety of
virtual and mixed reality applications, but training deep neural networks to calculate
this information requires large datasets, which are not easily obtainable for pairs of face
images and corresponding environment maps. We address this problem by creating a
synthetic dataset using digital human characters from the MetaHuman framework. These
human characters are illuminated by environment maps obtained from different sources
and rendered using Unreal Engine. Through parameter augmentation, we achieve a
diverse dataset of over 150000 face images with high-quality light information. Using this
dataset, we trained a CNN to estimate the brightness of a scene given a single face image.
The network is able to identify the most dominant light directions for most indoor and
outdoor scenes, but sometimes fails in generating output that topologically matches the
layout of equirectangular environment images. For unseen real-life examples of outdoor
scenes, it was able to correctly identify the position of the sun. To enable generating
realistic-looking images from text input, we finetuned a pretrained diffusion network on
environment images. The text prompts are generated from face images using existing
image-to-text models. By adding the estimated brightness images from our CNN, we can
guide the model to follow the layout of the original scenes. Our final proposed pipeline is
therefore a sequential combination of multiple different neural networks, starting from a
single face image. First, the brightness of the surrounding scene is estimated from the
face image with a CNN. Using the same face image, a text prompt that describes the
surrounding scene is generated using a pretrained image-to-text model. Then, the text
prompt is fed to a finetuned diffusion network which is additionally conditioned by the
estimated brightness image. This yields a modular system for estimating the surrounding
environment from a single image of a human face.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Approach . 2
1.3 Research Questions and Contributions 3
1.4 Structure of the Thesis . 3

2 Theoretical Background and Related Work 5
2.1 Deep Learning . 5
2.2 Light Representation . 10
2.3 Face Image Datasets . 11
2.4 Light Source Estimation . 12

3 Dataset Generation 15
3.1 Rendering Face Images in Unreal Engine 16
3.2 Preprocessing for Network Training . 18
3.3 Dataset for Diffusion Network Training 19

4 Light Source Estimation 23
4.1 CNN-based Brightness Estimation . 24
4.2 Brightness-Conditioned Stable Diffusion for Panorama Image Generation 41

5 Conclusion 49
5.1 Limitations and Future Work . 49
5.2 Summary . 50

List of Figures 53

List of Tables 57

xiii

Acronyms 59

Bibliography 61

CHAPTER 1
Introduction

1.1 Motivation and Problem Statement
Virtual and augmented reality applications have seen a significant increase over the last
few years. There is a variety of applications, each with an individual target audience,
ranging from end-user-focused smartphone games and image-editing apps, to medical
applications, and even industrial applications. What all these use cases have in common
is that rendering images as accurately as possible is crucial for creating an immersive
experience. To enable high-fidelity rendering, the illumination present in a scene needs
to be known or estimated. Otherwise, it is impossible to shade objects correctly. Having
this information allows for tasks such as inserting virtual objects into a natural scene
with accurate lighting and altering the look of an existing image by manipulating the
estimated illumination and relighting the image.

Manually designing the light setup of a scene can be a labor-intensive and time-consuming
task. Furthermore, it is not usable in real-time applications, where the lightning has
to be calculated in fractions of a second. Debevec [Deb08] proposed capturing the
environmental light of a scene by photographing a reflective steel ball, acting like a mirror,
that contains all the available light information. This removes the need to manually
recreate the environment, but still does not allow real-time applications and requires
on-site presence when capturing the environments. Consequently, researchers began to
create mathematical models to describe light information. They tried to map specific
features of the real world, such as the presence of the sun in the upper hemisphere or
the angle of the most dominant light direction, onto mathematical equations. Due to
the use of these hand-crafted features, such systems would often only work in controlled
environments or under certain assumptions.

Recreating the complex lighting of real-life scenes is a challenging task. Similarly to other
computer vision-related tasks, deep learning-based approaches have emerged as prominent

1

1. Introduction

solutions in the last few years, as with large enough datasets, machine learning systems
can learn to estimate complex information. The acquisition of a large enough dataset is a
problem due to the difficulty in capturing the ground truth environmental light of a scene.
Most systems therefore use some form of synthetic data, which often lacks realism and
can make neural models unable to adapt to real-world examples when the synthetic data
is not diverse enough. Due to this lack of data, many systems place heavy constraints on
the scenes they can reconstruct. Some can only classify indoor scenes, while others can
only classify outdoor scenes or work only when specific features, such as shiny objects, are
present. Although some systems can capture the overall intensity and most prominent
light sources quite well already, the output often does not result in a photorealistic image.
Artefacts of not having a photorealistic scene estimation can become apparent when
rendering objects with reflective materials, where the actual environment is visible in the
reflection.

1.2 Approach

This work proposes a method to achieve photorealistic light estimation from human face
images by training multiple neural networks on a large synthetic dataset. Face images
were chosen as the input due to their high occurrence in numerous scenarios, such as
virtual try-on in augmented reality applications. Furthermore, face images always contain
a similar distribution of features, revealing possible light directions.

The dataset consists of images showing individual human faces, and the corresponding
scene illuminations as high dynamic range (HDR) images. Using more than 3000 distinct
environments from different sources in combination with the MetaHuman framework
[Gama], we were able to generate synthetic images of realistic-looking digital human
characters, lit by the obtained environments. We created a simple setup where a
MetaHuman character is placed in front of a camera and illuminated by an environment
map. Each avatar was rendered with multiple environment maps, while randomly
manipulating different parameters such as the rotation of the environment and facial
expression of the rendered avatars. In this way, we created a dataset that contains 147056
images in the training set and 11341 images in the test set.

We trained a convolutional neural network (CNN), based on existing state-of-the-art
architectures, to estimate the scene illumination given a face image. The CNN compresses
the face image to a small latent vector and subsequently upscales that vector to generate
an image that contains the brightness of the environmental lighting. As the output of
this CNN is quite noisy and contains no information on the color of the illumination, we
finetuned a diffusion network on tone-mapped HDR environments to create a network
that can generate photorealistic panorama images from a single prompt. Combining
these two networks with conditional input in the form of a ControlNet [ZRA23], which
adds the estimated brightness calculated using our CNN as conditional input, yielded a
system to estimate photorealistic panorama images from a single face image.

2

1.3. Research Questions and Contributions

1.3 Research Questions and Contributions
The main contributions of this thesis try to answer the following research questions:

• Will the rendering of MetaHuman characters in Unreal Engine allow us to create
a realistic-looking dataset for Light Source Estimation from Face Images? We
describe a method for generating a realistic-looking dataset using Unreal Engine.
The system outputs a rendered image of a human avatar, illuminated by a given
environment map. By randomly manipulating multiple parameters, such as the
azimuth angle of the environment map and the pose of the avatar, the system can
create diverse data.

• Using this synthetic dataset, can we train a network to estimate the brightness
from real face images? Using our synthetic dataset, we successfully trained a
convolutional encoder-decoder network capable of capturing the most prominent
light direction from a real scene in an outdoor setting.

• Can we condition a diffusion-based network on the estimated brightness of a scene,
to create panorama images that plausibly describe the light information of a given
scene? We present a novel deep learning-based method to create realistic-looking
panorama images from a single face image. As the generated images are conditioned
on the estimated brightness of a given scene, we can create photorealistic panorama
images where the overall appearance and dominant light direction closely match
the ground truth, provided the brightness was estimated well enough by the initial
network.

1.4 Structure of the Thesis
We first present the theoretical background and the current state-of-the-art in light
source estimation from face images in Chapter 2. In Chapter 3 we explain how we were
able to create a realistic-looking dataset and present some necessary preprocessing steps
to be able to use the dataset for training neural networks. Chapter 4 describes the
main contribution of this thesis, the light source estimation system. We first show the
CNN-based approach to estimate the brightness of the scene, and then describe our novel
approach to train a diffusion-based network conditioned on the estimated brightness to
create a realistic-looking panorama image. In addition, we also evaluate both of these
tasks and explain our design choices in the same chapter. Finally, we summarize our
work in Chapter 5 and provide ideas for future work based on our contributions.

3

CHAPTER 2
Theoretical Background and

Related Work

This chapter describes a brief theoretical background and the current state of the art
in light estimation. As this thesis and current state-of-the-art systems heavily depend
on deep learning methods, Section 2.1 gives a summary of important concepts in deep
learning. We describe how light information can be represented in Section 2.2 and
then explore different methods of generating datasets to train light estimation systems
on face images in Section 2.3. This should give an overview of the theory needed
to understand current and previous state-of-the-art light estimation systems. Finally,
Section 2.4 presents the evolution of the current state of the art from classical, non-deep
learning-based approaches, to CNN-based methods, and to methods based on generative
models.

2.1 Deep Learning
Deep learning has become the most dominant method for virtually any visual computing-
related task over the last few years. Knowing and understanding the fundamentals is
crucial for understanding current state-of-the-art systems in light estimation. In this
section, we summarize some key deep learning concepts and network architectures as
presented in two books Deep Learning [GBC16], by Goodfellow et al. and Dive into Deep
Learning [ZLLS23] by Zhang et al. Overall, the task of defining and training a (deep)
neural network can be described in the following steps:

• Defining the architecture. The most basic layout of the network has to consist of
an input layer that can accept values in the form of the input data and an output
layer, that outputs values in the desired output format. Hidden layers are added
between the input layer and the output layer to allow the network to learn more

5

2. Theoretical Background and Related Work

complex functions. A layer typically consists of one or more learnable parameters
and must be differentiable. Many different layer types can be chosen depending on
the purpose of the network or the topology of the data. Activation functions are
commonly used to introduce non-linearity.

• Choosing a loss function and optimization method. A loss function is used to
measure how well a model performs. Common loss functions such as the squared
error, calculating the squared difference between the input and output, or hand-
crafted functions can be used. The loss function needs to be differentiable such
that an optimization algorithm can update the network parameters based on this
loss function. Optimization algorithms are usually some modern variation of the
gradient descent algorithm.

• Training the network. During training, an input is fed into the network to compute
an output. The output is compared to the ground truth using the loss function. The
optimization algorithm then updates the weights according to this loss. Gradients
are calculated using the backpropagation algorithm.

• Evaluation and hyperparameter tuning. The performance of the training should be
continuously measured during training, by calculating different metrics. Different
combinations of hyperparameters, such as the number of epochs, the loss function,
or different parameters of the optimization algorithm, can be optimized by running
multiple training runs.

2.1.1 CNN
Since their introduction in 1995 by LeCun and Bengio [LB95], networks using convolu-
tional layers, also known as ConvNets or CNNs, have become the standard in processing
image data with neural networks. Through their use of convolutions, they can extract
features based on the structure of the grid-like input data. Figure 2.1 shows a comparison
of LeNet [LB95] by LeCun and Bengio from 1995 to the more advanced AlexNet [KSH12].
Both networks use similar layers. Convolutional layers, visualized in a light blue color,
were used to sparsely connect neurons from one layer to the next, while utilizing the
grid-like topology of the input data. The kernel size ranges from 3x3 to 11x11. The
pooling layers, visualized in a dark blue color, were added to reduce the dimensionality by
outputting a single value for each input to the kernel. Fully connected layers, visualized
with no background color, are used to transform the data from the grid-like structure
into a single output vector. The total number of layers was still quite low for AlexNet
compared to modern neural networks. A key contribution to allow for deeper CNNs
was proposed by He et al. [HZRS16] by introducing residual layers. Residual layers
allow blocks to more easily learn the identity function by adding a skip connection
from the input of the block to the output. CNNs are still widely used as a feature
extraction backbone for various tasks such as object tracking, object detection, and
semantic segmentation.

6

2.1. Deep Learning

Figure 2.1: Comparison of two well known CNN architectures. The left graph describes
LeNet [LB95] and the right graph describes the more advanced AlexNet [KSH12]. Image
obtained from the Dive into Deep Learning book [ZLLS23].

Figure 2.2: Visualization of a typical autoencoder network. Input data is transformed
into a low-dimensional latent space representation by an encoder network. The decoder
network tries to replicate the input data by decompressing the compressed latent repre-
sentation.

2.1.2 Autoencoder

Autoencoders consist of two modules, an encoder, and a decoder, consequently they are
often referred to as encoder-decoder networks. Figure 2.2 visualizes this concept. The
encoder module compresses the input into a lower-dimensional representation, whereas the
decoder module tries to decode this compressed data into a higher dimensionality, ideally
creating a copy of the initial input. There are many different forms of autoencoders,
and they are often part of more complex network architectures. An important variation

7

2. Theoretical Background and Related Work

Figure 2.3: Visualization of a typical generative adversarial network (GAN). The generator
creates fake data from some noise that the discriminator has to distinguish from real
data. Image obtained from the Dive into Deep Learning book [ZLLS23].

of the classic autoencoder are variational autoencoders (VAEs) [KW22], proposed by
Kingma and Welling in 2013. Their key contribution is that, instead of simply outputting
a latent variable from the encoder, the output of the encoder describes parameters of a
Gaussian distribution. By enforcing this constraint, the latent space will be structured
and continuous. This enables generative capabilities for autoencoders, as points that
are close in the latent space are also similar after decoding. This characteristic is not
given for standard autoencoders, where encoding an input x into latent space z and then
decoding a point z+ϵ very close to z in latent space could produce a meaningless result.

2.1.3 Generative Adversarial Networks
The introduction of GANs by Goodfellow et al. [GPM+14] marks a breakthrough in the
design of generative models. In addition to training a generative model, they propose
training a second neural network, called a discriminator, to classify whether data was
generated by the generative model or originates from the true data distribution. Figure
2.3 shows a high-level visualization of this adversarial network structure. Training a
GAN is a back-and-forth between the discriminator getting better at distinguishing fake
data from real data and the generator learning to trick the discriminator into thinking
that generated data is actually real.

2.1.4 Diffusion Models
With the paper Denoising Diffusion Probabilistic Models [HJA20] Ho et al. presented
a new way to synthesize images in the form of diffusion networks. Other network
architectures typically go from input noise to output data in a single step by passing
the input through the network. The idea of diffusion networks is to instead use a finite
number of steps to gradually generate data from noisy input. Their proposed solution
consists of a forward diffusion process generating random noise given an image, and a
reverse process generating an image given random noise. Figure 2.4 visualizes the reverse
diffusion process by going from random noise xT to an image x0 in T finite timesteps.
The following two paragraphs explain these two processes in more detail.

8

2.1. Deep Learning

Figure 2.4: Visualization of the reverse diffusion process. As the actual distribution
q(xt−1|xt) is not known, a neural network p with learnable parameters θ is trained. Image
is a modified version [Wen21] of an original image from the paper Denoising Diffusion
Probabilistic Models [HJA20].

Forward Process When adding random Gaussian noise in each step t from 0 to T,
the result will eventually end up with pure random noise. The image xt at timestep t
can be described by a Gaussian distribution q(xt|xt−1) of xt given xt−1. The strength of
the Gaussian is dependent on the current timestep t and some noise scheduling function.

Reverse Process To reverse the forward process, one would need to sample the reverse
distribution q(xt−1|xt) which is not known. The authors show that for small timesteps,
the reverse process can be estimated to also be a Gaussian distribution and train a neural
network p to estimate the parameters of this Gaussian distribution. This means that the
neural network is called once for each timestep. The inputs for this diffusion network are
the noisy image xT and the current timestep t.

To condition the image generation, most diffusion networks use an additional input
vector generated by encoding a text prompt with the CLIP model [RKH+21]. Several
contributions have improved on the proposed solution by Ho et al. [HJA20]. One of the
most important contributions is by Rombach et al. [RBL+22]. They claim that input
images are very high dimensional and that a lot of the actual information is irrelevant
for a generative system. Instead of focusing on pixel-level information, they want to
focus on the semantic meaning of the input instead. They propose using an autoencoder
to compress the image into a latent space and performing the diffusion operations in
this lower-dimensional space. This vastly increases training speed. Additionally, they
propose a network architecture with conditional input in the form of a masked input
image. Using this additional input, they are able to inpaint the conditional image in the
masked regions. The result of their contributions are the well-known Stable Diffusion
(SD) models.

9

2. Theoretical Background and Related Work

Training Diffusion Networks

Training a diffusion model takes a lot of computational power. To efficiently finetune
models on a specific domain, researchers have invented various methods. Low-Rank
Adaptation (LoRA) [HSW+21] invented by Hu et al. was originally proposed to improve
the training speed for large language models (LLMs). Their key insight is that instead of
retraining all parameters of a network, rank decomposition matrices can be inserted and
trained instead. They claim to reduce the number of trainable parameters by up to 10000
times. The Dreambooth [RLJ+23] training method proposed by Ruiz et al. describes a
novel way to enable few-shot image generation for a specific subject. This method does
not alter the architecture of the network but finetunes the network on a unique token.
The authors present a method to find tokens that work well with their training technique.
Common English words do not allow the networks to train well, because the network has
a lot of prior knowledge on them. According to the authors, choosing a random token
also does not work well. When the chosen token is present in the input text prompt, the
network trained with this method can successfully generate high-fidelity images of the
specified subject in novel contexts. Summarizing, the two mentioned training methods
together allow for efficient finetuning of a diffusion network on a specific style or subject,
with a low number of input images. However, there is no way to easily control the
models without retraining the whole network on a different architecture. The authors
of ControlNet [ZRA23] propose to train a copy of a SD network on images showing a
specific condition for the generated image. Examples for conditional input images include
depth maps, edge maps, normal maps, or skeletal poses. The output of this ControlNet is
appended to the original model using convolution layers with a kernel size of 1x1. These
layers are called "zero convolution layers", as both the weight and bias are initialized as
zero. The authors demonstrate that multiple conditions can be used by concatenating
different ControlNets. Once a ControlNet is trained, it can be used on different diffusion
models, as long as the architectures match. This enables reuse of a few ControlNets for
many different systems, as the conditional input is usually independent of the style or
subject that should be generated from the diffusion model.

2.2 Light Representation
In order to use neural networks for light estimation, some form of representing the light
information is needed. This influences the choice of the final output layer in the network
architecture. Lighting estimated from a scene is typically either represented in parametric
form, described by mathematical formulas yielding different light representations based
on parameters, or in an image format. The lighting representation should be as accurate
as possible and describe the light intensity as well as its color and the background texture.

As Einabadi et al. [EGH21] describe, Parametric light models include Spherical Harmonics
[KK14], dominant light direction [KK19], or the Lalonde-Matthews outdoor illumination
model [LM14]. Image-based light models include spherical or rectangular environment
maps [CLG+18, FCZ+24], which are usually directly generated from some deep neural

10

2.3. Face Image Datasets

network. Most rectangular 360 degree panorama images are represented as equirectangular
images, where spherical coordinates are projected onto a rectangular image [SG17]. Some
parametric models are discretized into a matrix, resulting in an image-based representation.
In standard low dynamic range (LDR) image formats, the dynamic range is limited
to 256 values. The underexposed and overexposed areas are clipped. Image-based
representations therefore typically use HDR image formats to cover the wide dynamic
range or real-world illumination.

2.3 Face Image Datasets
Together with the network architecture and a way of representing the estimated light,
a good dataset may be the most important part to train a deep learning-based light
estimation system. In this section, we describe a few ideas that researchers have used to
create real and synthetic datasets.

2.3.1 Real Datasets
Obtaining a pair of face image and corresponding environmental light description can
either be done by simultaneously taking a face image and recording a lightprobe, or by
using a controlled setup where the environmental light is already known at the time of
taking the face image. Both methods are not trivial and require specialized hardware.
Calian et al. [CLG+18] captured the environmental light, by using a robotic tripod and
taking multiple images for each orientation under different exposure settings. These
image sequences were then merged into a single HDR image. They immediately afterward
removed the tripod and photographed a person at the same location, creating pairs of
face images and corresponding illumination maps.

2.3.2 Synthetic Datasets
Calian et al. [CLG+18] created a synthetic dataset by randomly sampling a statistical
face model [PKA+09] and then rendering that model with environment maps. Yi et
al. [YZTL18] used the same face model to render synthetic images. To improve the
performance of their system on real data, they proposed an unsupervised finetuning
method based on a large dataset of celebrity images [GZH+16]. Sun et al. [SBT+19] and
LeGendre et al. [LMP+20], used a setup of multiple LED lights tessellating a sphere
with a person sitting inside to create synthetic data using a method they call "one-
light-at-a-time" (OLAT). Existing environment maps can be projected onto the images
generated in the OLAT setup, to create persons rendered with the given environment
map. To increase the number of environment maps that can be used to relight the
persons, LeGendre et al. [LMP+20] placed three small spheres with different reflective
properties in front of a camera while filming different environments. They calculated an
LDR light representation by using the appearances of the three spheres and upscaled
it to estimate an HDR representation by solving a system of linear equations. Fei et
al. [FCZ+24] used publicly available 3D face scan data with a physically-based renderer

11

2. Theoretical Background and Related Work

to generate synthetic data. They applied data augmentation such as random resizing,
cropping, white balance adjustments, and added random Gaussian noise. They used
additional datasets featuring a larger range of skin tones to reduce the bias of data
consisting mostly of lighter skin tones.

2.4 Light Source Estimation
2.4.1 Light Source Estimation on General Scenes
With the rise of deep learning-based approaches to tasks in visual computing, many
researchers started using network architectures like (residual) CNNs or encoder-decoder
networks for light estimation. Zhang and Lalonde [ZL17] proposed a system to extrapolate
HDR information from a single LDR panorama. They used an autoencoder network
with additional skip connections between each encoder layer and the corresponding
decoder layer with the same resolution. In addition, they added a second head to the
network after the latent vector, using only fully connected layers to calculate a single
value representing the angle of the sun elevation. Gardner et al. [GSY+17] proposed
a system to estimate HDR illumination from a single LDR image with a small field
of view. They used a convolutional autoencoder with residual layers and two distinct
decoder networks. One decoder branch estimates the RGB texture of the light, while the
other decoder branch estimates the light intensity in logarithmic scale. Both outputs are
represented as equirectangular panorama images. In the paper Deep Parametric Indoor
Lighting Estimation, Gardner et al. [GHS+19] presented a different method to generate
light information from a single image. Compared to the work in 2017 [GSY+17], this
method uses a parametric description of the light sources instead of outputting two image
representations, greatly reducing the size of the decoder part. By using a pretrained
feature extraction network trained on a very large dataset, training speed and stability
were improved, according to the authors.
More modern light estimation systems typically use GANs instead. Weber et al. presented
a system that allows for editable indoor light estimation. Editable light information is
generated by a CNN and editable scene layout is generated by a GAN. Together with the
original input image, this information is fed into a third network to output the final HDR
environment. Dastjerdi et al. proposed a system to allow for editable light estimation
from a single input image by using a GAN that is guided by encoded light. The encoded
light is estimated with a network similar to the light estimation network of Gardner et al.
[GHS+19] and transformed into a parametric representation of spherical Gaussians. This
parametric representation can be edited by the user. Wang et al. [WYLL22] presented a
similar idea.
The system of Tang et al. [TZC+23] generates panorama images using a diffusion model
by simultaneously generating eight 90 ° images with a 45 ° overlap, resulting in a full
360 ° panorama image. To achieve this, they proposed a novel network block called
correspondence-aware attention to merge the features of the multiple views together.
This representation is not consistent with equirectangular panorama images and can

12

2.4. Light Source Estimation

cause artefacts when used as a substitute. Wang et al. [WCL+23] proposed a system
that first projects multiple low field-of-view images with unknown orientation onto
an equirectangular image and then uses an outpainting diffusion model to generate a
consistent panorama image. During training, they enforce the rotational consistency of
panorama images by altering the latent vectors. At inference time, they additionally
pad the left and right part of the latent vectors to prevent artefacts on the border of the
generated images. Building upon this idea, Feng et al. [FLCX23] proposed a simpler
system which blends the latent vectors at inference time with variable weights. They
claimed not to need any modification of the training process, but instead directly enable
finetuning a diffusion network with their proposed adaption.

2.4.2 Light Source Estimation on Human Face Images
Similar to light estimation on general scenes, in recent years research has shifted from
calculating the light using hand-crafted features to CNNs to GANs or diffusion-based
models. Knorr and Kurz [KK14] proposed a solution that generates a spherical harmonics
light representation. They calculated specific feature points on a face and obtain radiance
transfer functions by least-squares optimization. Calian et al. [CLG+18] estimated
outdoor lighting by calculating a high-resolution mesh of the face and minimizing a loss
based on priors of face albedo and possible outdoor lighting. Sztrajman et al. [SNWS20]
proposed a system for outdoor light estimation that first trains an encoder-decoder
network on environment maps. The encoder module is then replaced by a CNN-based
encoder to estimate the latent bottleneck vector from a greyscale face image. They split
their input HDR data into two parts, based on a threshold of the pixel brightness. The
high-intensity part is trained to fit a Gaussian distribution, modeling the position, color,
and intensity of the sun. The method of Fei et al. [FCZ+24] used a stacked network
architecture that decomposes the input face image into diffuse albedo, diffuse shading,
surface normal, and specular reflection maps using two modified U-Net architectures.
They calculated a spherical HDR environment by first estimating the brightness and
position of light sources and then the texture of the light sources using two GANs.

13

CHAPTER 3
Dataset Generation

As mentioned in Section 1.2, we used a synthetic dataset consisting of pairs of face
images along with corresponding ground truth lighting information to train a light
source estimation system. In our case, the ground truth consisted of 360 ° HDR
equirectangular environment images. The panoramas were obtained from multiple sources
on the internet [Wro, iHD, Hav] and authors of other light source estimation systems
[GSY+17, BGH+23, HGAL19, CLG+18]. Environment maps from a single source were
exclusively assigned to either the training or test dataset partition.

Section 3.1 describes how we render realistic-looking face images using Unreal Engine in
combination with the MetaHuman framework. The integration of the framework, which
allows the rendering and animation of digital human characters, was the main reason we
chose Unreal Engine to render our scenes. When using a different framework for human
characters, choosing a different engine such as Blender [DT] could be more beneficial,
as Python scripting in Unreal Engine is still an experimental feature and requires some
tinkering to get right.

Figure 3.1 presents a few examples of the resulting dataset. As HDR images cannot
directly be displayed on standard displays, all HDR files displayed in this thesis were
tonemapped using the operation described by Drago et al. [DMAC03]. The left column
shows the images rendered using our Unreal Engine project, while the right column shows
the corresponding environment maps. Table 3.1 shows an overview of the total number
of images generated and the number of different environments. We did not create any
MetaHuman avatar ourselves, but used the 66 provided example avatars. Rendering a
single image took around 10 seconds, resulting in a total runtime of over 17 days to
create the dataset.

Some additional steps, which we describe in Section 3.2 are needed to use the dataset for
training the brightness estimation network. The training and architecture of the networks
are presented in Section 4.1. Finetuning a diffusion-based model requires additional input

15

3. Dataset Generation

Figure 3.1: Comparison of different rendered face images with the corresponding rotated
environment maps. The original environment maps were obtained from different websites
[iHD, Hav].

in the form of captions describing the images. Section 3.3 describes how these captions
were generated using a LLM. Training of the diffusion network is presented in Section
4.2.

3.1 Rendering Face Images in Unreal Engine
Using Unreal Engine 5.3.2 as our rendering engine, we created a template scene only
consisting of a single Blueprint of a MetaHuman avatar, a Cine Camera Actor, and a
Sky Light. Rendering was performed using the Path Tracer module in the Movie Render
Queue Plugin. To make the environment map visible to the path tracer, the variable
r.PathTracing.VisibleLights was set to 2.0. Further information on using the path tracer
in Unreal Engine can be found in the official documentation [Gamb].

16

3.1. Rendering Face Images in Unreal Engine

Training Set Test Set

Number of MetaHuman Avatars 52 14
Number of Environment Maps 2828 810
Total Number of Images 147056 11340
Images Below Brightness Threshold 3802 -

Table 3.1: Overview of the number of images rendered for our dataset using Unreal
Engine.

Figure 3.2: Visualization of the coordinate axis in an equirectangular environment map.
Image obtained from the description of the Skylibs library [Hol24].

3.1.1 Scene Setup
After setting up the Unreal Engine Project and the template scene, we used a Python
script to generate a separate scene for each MetaHuman character. The script replaced
the avatar Blueprint in the template scene with the new avatar and adjusted the camera
height to five cm below the head position. This was necessary due to the different height
of the individual avatars. When loading the MetaHuman Blueprint, we forced the engine
to use the highest level of detail. Other than the scene itself, the script also created
a Level Sequence for each avatar. This Level Sequence is used to define the individual
frames that will be rendered.

3.1.2 Automatic Render Utility
The Python script for automatically rendering the images first collects a list of all available
environment maps and sorts them alphabetically. It creates a single Movie Pipeline

17

3. Dataset Generation

Parameter Values

Facial Expression 1 out of 11
Focal Length 32 mm – 35 mm
Head Rotation -5 ° – 5 ° in x, y, z
Body Position -1 cm – 1 cm in x, y, z
Environment Azimuth Rotation 0 ° – 360 °

Table 3.2: Overview of the randomized parameters for each render pass.

Job for each pair of MetaHuman avatar and environment map. After each render pass,
multiple variables were randomized to make the dataset more diverse. Table 3.2 shows
the different parameters and the allowed values. The randomized parameters were saved
in a .csv file together with additional metadata. Images were rendered at 256x256 pixels
with 256 samples per pixel.

Although we deleted all unused references and explicitly called the garbage collection,
Unreal Engine would accumulate memory for each render pass. As it did not crash when
the memory usage got too high, the rendering PC would eventually freeze. Therefore, we
checked the available RAM and terminated the engine from within the Python script to
avoid running out of memory. A second Python script was continuously monitoring if
Unreal Engine was still running and restarting the engine otherwise. After restarting the
engine, the script continued rendering from the last rendered image.

3.2 Preprocessing for Network Training
To use our data to train a neural network, some additional preprocessing steps were
performed. At this point, our dataset consisted of over 150000 rendered face images,
around 3000 environment maps, and a .csv file containing metadata about the rendered
images. The actual ground truth for each face image is a rotated version of the original
input environment map. To avoid performing the rotations at training time, we performed
them as a preprocessing step and saved each rotated environment map as a separate
.hdr file, resulting in a dataset with the same number of input and ground truth images.
Figure 3.2 visualizes the coordinate axis of an equirectangular environment map. The
light information in the environment map is distorted compared to the real world, due
to projecting the information from a spherical representation onto a single rectangular
image. We used the Skylibs library [Hol24] to perform the rotations.

The environment maps provided by the authors of previous research [GSY+17, BGH+23,
HGAL19] needed an additional inpainting preprocessing step, as they would otherwise
contain empty pixels at the bottom of the image. We used the method provided in their
Python script [BGH+] to perform the inpainting. Figure 3.3 compares an environment
before preprocessing to after preprocessing.

18

3.3. Dataset for Diffusion Network Training

(a) Original environment map

(b) Rotated and inpainted environment map

Figure 3.3: Comparison of an HDR environment map before and after the rotation
operation. The rotated file was inpainted to remove the empty pixels at the bottom.
Original environment map was obtained from a dataset consisting of indoor HDR images
[BGH+23].

To test whether face-to-environment models would perform better if only the faces were
visible, we created a separate dataset where the background was removed using a semantic
segmentation model. Some face images were rendered very dark. We calculated the
average pixel values of each face image after rendering and deleted every image whose
average pixel value was below 10.0 to increase the quality of the dataset. This concludes
the image preprocessing that was done before using the dataset for any kind of neural
network training. Further preprocessing steps that are performed at training time, such
as converting to the right datatype and additional data augmentation, are discussed in
the next chapter.

3.3 Dataset for Diffusion Network Training

As mentioned in Section 2.1.4, standard diffusion networks typically take a prompt as
input instead of an image. Because we want to use the ability of diffusion networks to
create photorealistic images, we used the image-to-text generation functionality of BLIP-2
[LLSH23], utilizing the Flan T5-xxl [CHL+22] LLM, to create descriptive captions for
each tonemapped environment. This allows us to finetune a diffusion model on our domain

19

3. Dataset Generation

(a) "a 360 degree view of a living room with
hardwood floors and a couch in the middle"

(b) "a 360 degree view of a large mansion with a
fountain in front of it"

Figure 3.4: Environment maps with captions generated by BLIP-2. Images were obtained
from a website [Wro].

(a) "a room with a couch and tv" (b) "a grassy field with a starry sky"

Figure 3.5: Face images from our dataset with guided captions generated using a BLIP-2
[LLSH23] model.

20

3.3. Dataset for Diffusion Network Training

of realistic-looking 360 ° panorama images. Figure 3.4 shows two prompts generated
from the tonemapped environments.

The same functionality was used to create captions from our rendered face images.
Because we are interested in the environmental lighting and not the description of the
person in the image, we had to give additional guidance to the BLIP-2 model. This is
done by including a question-answer style prompt when inferring the model. For our face
images, we used the following prompt: "Question: What do you see? Answer: A person
standing somewhere. Question: Where does the person stand? Be as precise as you can
and describe the color and light of the environment. Answer: In ".

Figure 3.5 shows some example captions generated from face images. The captions
describe the scene well, considering the small amount of the environment that is visible
behind the person. Some captions are not accurate. An example of this is the "starry
sky" caption in Subfigure (b), which is not present in the image.

21

CHAPTER 4
Light Source Estimation

The previous chapter introduced a solution for generating a synthetic face image dataset
from HDR environment maps using Unreal Engine and the MetaHuman framework.
In this chapter, we show how this dataset was used to develop our novel light source
estimation system. The system is divided into two parts, a brightness estimation module,
and a diffusion-based image generation module conditioned on the estimated brightness.
All networks were implemented in Python using the PyTorch library [PGM+19].

To create our brightness estimation module, we follow the approach of a state-of-the-
art system [SNWS20], training a simple CNN to estimate the brightness of a scene
illumination from an input face image. Section 4.1 details the creation of the network,
starting with an environment-to-environment autoencoder that learns a latent space by
encoding and decoding panorama environment images. We then replaced the environment
image encoder with a more advanced residual CNN, which compresses an input face

Encoder Latent
Space Decoder

BLIP an alleyway with graffiti on the wall Finetuned SD1.5 +
Brightness Controlnet

Figure 4.1: Overview of the proposed light source estimation system. A brightness image
and a text prompt describing the scene is generated from a face image. Text description
is input to a finetuned SD model. The estimated brightness is added as conditional input
via a ControlNet model.

23

4. Light Source Estimation

image into this latent space, resulting in the final CNN-based brightness estimation
network.

Section 4.2 details the diffusion-based image generation system. We first describe
the process of finetuning an existing SD [RBL+22] network in Section 4.2.1. Adding
conditional input in the form of a ControlNet [ZRA23] yields our final light estimation
system. The creation and evaluation of the conditioned diffusion model is presented in
Section 4.2.2.

Figure 4.1 shows an example of a complete run through our proposed system. A brightness
image is generated from the input face image using our face-to-environment network. A
short text description that describes the scene is generated using BLIP-2. The text is
fed into the finetuned diffusion network. The brightness image is added as a conditional
input to a ControlNet pretrained on brightness images.

4.1 CNN-based Brightness Estimation
Our brightness estimation network is mostly based on previous work by Sztrajman et
al. [SNWS20] and Weber et al. [WPL18]. Similarly to their approach, we first train an
autoencoder network to encode an environment image into a small latent vector and then
decode it back to the original image, ideally replicating the input. This is an easier task
than directly calculating the environment map from a face image because the information
does not need to be extrapolated from facial features. The goal of this approach is to
generate a small latent space containing all the necessary information to recreate the
original panorama image, allowing us to subsequently train a second model to encode a
face image into the created latent space.

Parameter Values

Activation Function LeakyReLU
Batch Size 128
Bottleneck Size 64 | 512
Number of Epochs 1000
Loss Function ℓAE | ℓAElog

Optimizer Prodigy
Learning Rate 1
Weight Decay 0 | 0.1
Cosine Annealing True | False

Table 4.1: Overview of the hyperparameters used for training the autoencoder.

24

4.1. CNN-based Brightness Estimation

96

25
6x
51
2

conv1

96
12
8x
25
6

conv2

64
64
x1
28

conv3

512

fc

64
64
x1
28

deconv1
96

12
8x
25
6

deconv2

96

25
6x
51
2

deconv3

64

25
6x
51
2

conv4

1

25
6x
51
2

conv5

Figure 4.2: Overview of the environment-to-environment autoencoder network. The
input is transformed into a latent vector of size 1x512 using convolutional blocks with
maximum pooling operations. The deconvolutional layers, visualized in blue, upscale
the latent vector, ideally replicating the original input. The input environment image is
taken from the Laval Photometric Indoor HDR Dataset [BGH+23]

Figure 4.3: Results of the autoencoder hyperparameter optimization. The color gradient
displays the performance on the validation accuracy. The choice of loss function had the
biggest impact on validation performance.

4.1.1 Environment-to-environment Autoencoder
Architecture

Figure 4.2 illustrates the final architecture of our autoencoder network. The illustrations
were made using the PlotNeuralNet library [Iqb18]. The same tool was used to create
the other figures of our proposed network architectures in this thesis. The encoder
module consists of three convolutional blocks, each containing a convolutional layer, a
LeakyReLU activation function, and a batch normalization layer. After each block, a
maximum pooling operation reduces the height and width by half. In the figure, the
convolutional layers and the activation function are represented as light and dark orange

25

4. Light Source Estimation

Figure 4.4: Effects of using weight decay and cosine annealing when training the autoen-
coder.

boxes, respectively, while the maximum pooling operation is visualized by a dark red
box. The output of these convolutional blocks is compressed into a vector of size 1x512
using a linear layer without an activation function.

The decoder module consists of three convolutional upscaling blocks followed by two
additional convolutional blocks. Before the first upscaling block, the bottleneck vector of
size 1x512 is transformed into the proper input format for the following blocks using a
linear layer. Each upscaling block contains a transposed convolutional layer to increase
the resolution, a LeakyReLU activation function, and a batch normalization layer. A
ReLU activation function is used after the final layer to ensure positive output values
from our network.

Training

As we are interested in estimating brightness, the environment images are converted
to greyscale in a preprocessing step. To train our autoencoder models, we used a grid
search-based hyperparameter optimization method, which runs a training with every

26

4.1. CNN-based Brightness Estimation

Parameter Model A Model B

Bottleneck Size 512 512
Loss Function ℓAE ℓAElog

Weight Decay 0.01 0
Cosine Annealing True False

Table 4.2: Overview of the hyperparameters for the autoencoder models that were later
used to train the face-to-environment models.

MAE↓ MSE↓ RMSE↓ MAE (log)↓ MSE (log)↓ RMSE (log)↓
Model A (test) 8.434 × 10−5 0.467 0.311 3.206 × 10−5 1.660 × 10−5 0.004
Model B (test) 4.851 × 10−5 0.473 0.314 1.424 × 10−5 5.249 × 10−6 0.002

Model A (val) 0.002 3.719 1.129 2.893 × 10−5 2.047 × 10−5 0.004
Model B (val) 0.003 12.932 2.006 2.419 × 10−5 1.860 × 10−5 0.004

Table 4.3: Comparison of different metrics for the test set and the validation set. The
values indicate that our models perform better on the test set compared to the validation
set. This is likely due to the uneven data distribution, leading to higher expected errors
for the validation set, as the average brightness is higher by a factor of 100. The best
results for each metric are highlighted in bold.

possible combination, as the number of hyperparameters we were optimizing was small.
Table 4.1 presents the hyperparameters used to train our autoencoder network. Following
Weber et al. [WPL18], we use a weighted L1 loss. Our hyperparameter optimization
included experimenting with two different loss functions. A logarithmic compressed loss
function ℓAElog as described in Equation 4.1 and a loss function ℓAE without a logarithmic
operation as described in Equation 4.2. In the equations, ei describes an environment
image, while f(ei) represents the output of our network given an environment image. We
add +1 to the values before calculating the logarithm to avoid numerical issues. Each
loss function is weighted by the solid angle using pixel-wise multiplication, represented as
w⊙. An image containing the solid angle subtended by each pixel was obtained from the
Skylibs library [Hol24]. To avoid tuning the learning rate manually, we used the Prodigy
optimizer [MD24], which automatically tunes the learning rate at each step. As detailed
in Section 3.2, we created a rotated environment image for each character. In each
training epoch, we randomly choose one rotated version per environment map, which
reduces the size of each training epoch from 117624 to 2262 images and the size of each
validation epoch from 29432 to 566 images. This random selection probably introduced
some variance in the different performance metrics. The average training time for the
models with 1000 epochs each was around 7.75 hours. Training was performed with two
NVIDIA A40 graphics cards.

27

4. Light Source Estimation

(a) GT (b) Model A (c) Model B

Figure 4.5: Results on six different panoramas from our test dataset using our trained
environment-to-environment autoencoder models. The ground truth environment images
were obtained from multiple online sources [Hav, iHD].

ℓAElog =
N�

i=1
∥w ⊙ ((log10(ei + 1) − log10(f(ei) + 1)∥ (4.1)

ℓAE =
N�

i=1
∥w ⊙ (ei − f(ei))∥ (4.2)

Evaluation

The different hyperparameters resulted in 16 different models. For each training run, the
best-performing model, based on the validation accuracy, was chosen for quantitative
evaluation. We computed the root mean squared error (RMSE), the mean squared error
(MSE), and the mean average error (MAE), each weighted by the solid angle, on the
validation and the test set. Figure 4.3 shows the results of these metrics based on the
hyperparameter selection, with arrows indicating the direction of performance increase.
As visible by the color gradient, every model trained on the log-scaled loss function
(Equation 4.1) performed worse on the validation set compared to models trained using
the other loss function (Equation 4.2). On the test set, many models trained on the
log-scaled loss function (Equation 4.1) outperformed other models. Models trained with
the larger bottleneck size of 512 consistently performed better than models with a smaller
bottleneck size of 64. Figure 4.4 illustrates the effects of varying values for cosine annealing
and weight decay, showing that models trained with a weight decay of 0.01 and without

28

4.1. CNN-based Brightness Estimation

cosine annealing generally performed the best on average for all the metrics on the test
set. Certain combinations of these values yielded better individual results. Two models
were chosen as baselines to train the face-to-environment models. Table 4.2 lists the
hyperparameters of the two selected models. Further evaluation was performed for these
two models, with fixed test and validation epochs, without rotation. Table 4.3 presents
the average metrics on the test and validation set for both models. Better performance
is indicated by bold letters. Model A performed better on the MSE and the MAE, while
Model B performs better for all log-scaled metrics on the test set. Comparing the metrics
for the validation and the test set indicate that our models perform better on the test
set compared to the validation set. This is a result of the unequal data distribution,
with an average brightness of 56.56 for images in the validation set, compared to the
average brightness of 0.66 for images in the test set, leading to higher expected errors
in the validation set. The visual quality of output for panoramas from the validation
set is superior to the quality of output for panoramas from the test set, likely due to
overfitting, as the panorama images for the validation and the train set are obtained from
the same sources, whereas test set images originate from a different set of sources. Figure
4.5 shows multiple results for the test set. While the most dominant light direction is
usually detected, the resulting image does not resemble a panorama image. An example
of the performance of the trained models on the validation set is presented in Figure 4.6.
Figure 4.7 presents a further example from the test set. These figures also show results
when using estimated panoramas as environment light sources in a rendering engine. The
images were generated using Blender 3.2.0 [DT] with modified Python scripts from the
StyleLight repository [WYLL22]. Each rendered image contains an object with glossy,
diffuse, or mirror material and a diffuse plane acting as a shadow catcher. The results on
the validation set are barely distinguishable from the ground truth, while the test set
results show noticeable difference in objects with reflective materials, though the overall
light direction was estimated well, as is visible by the shadows. The inference time for the
environment-to-environment models is approximately 0.056 seconds for a single image,
and around 0.039 seconds per image when using a batch size of 16. The measurements
were taken on a Windows PC with an NVIDIA RTX 3060Ti graphics card.

29

4. Light Source Estimation

Output

Sphere
Diffuse

Sphere
Matte

Sphere
Mirror

Bunny
Diffuse

Bunny
Matte

Bunny
Mirror

(a) GT (b) Model A (c) Model B

Figure 4.6: Multiple objects rendered using the output of our trained environment-
to-environment autoencoder models as environment light sources. The input to the
brightness estimation network was taken from the validation set. The ground truth
environment image is part of the Laval Photometric Indoor HDR Dataset [BGH+23].

30

4.1. CNN-based Brightness Estimation

Output

Sphere
Diffuse

Sphere
Matte

Sphere
Mirror

Bunny
Diffuse

Bunny
Matte

Bunny
Mirror

(a) GT (b) Model B (c) Model C

Figure 4.7: Multiple objects rendered using the output of our trained environment-to-
environment autoencoder models as environment light sources. The input to the brightness
estimation network was taken from the test set. The ground truth environment image
was obtained from an online source [Hav].

31

4. Light Source Estimation

4.1.2 Face-to-environment Network
In this subsection, we present the results of replacing the environment encoder presented
in the previous subsection with a new encoder. Instead of compressing environment
images to a latent vector, the new encoder compresses face images, yielding a network
that can estimate the brightness of the surrounding illumination from face images.

Architecture

The architecture of the face-to-environment network consists of an encoder module and a
decoder module, similar to our autoencoder network described in Section 4.1.1. Figure 4.8
illustrates the final architecture for this network. The encoder module consists of a single
convolutional block followed by four residual blocks. The convolutional block contains
a convolutional layer, a LeakyReLU activation function, and a batch normalization
layer. Figure 4.9 shows the slightly more sophisticated residual blocks, which contain a
maximum pooling layer, two convolutional layers, and two activation functions. Batch
normalization is used after each of the two convolutional layers. A skip connection is
placed before the final activation function. To allow concatenation of arrays with different
numbers of channels, a 1x1 convolution layer is added to the skip connection. The decoder
follows the same layout as the one used in our environment-to-environment autoencoder.

Training

We trained our face-to-environment models similarly to the environment-to-environment
models using a hyperparameter optimization, generating 20 distinct models. Table 4.4

128 25
6x
25
6

conv1

128 12
8x
12
8

res1

256 64
x6
4

res2

512 32
x3
2

res3

12816
x1
6

res4

512

fc

64
64
x1
28

deconv1
96

12
8x
25
6

deconv2

96

25
6x
51
2

deconv3

64

25
6x
51
2

conv4

1

25
6x
51
2

conv5

Figure 4.8: Overview of the full CNN-based brightness estimation network. An input face
image is transformed into a latent vector of size 1x512 using residual blocks. The encoder
decompresses this latent vector into a 256x512x1 image, representing the estimated
brightness of the scene.

32

4.1. CNN-based Brightness Estimation

maxpool conv1 act1

1x1conv

conv2

+

act2

Figure 4.9: Visualization of the residual block used in our face encoder network. Input
is passed through a maximum pooling layer to reduce the resolution, followed by two
convolutional layers and an activation function between them. Batch normalization is
used after each convolutional layer. A shortcut using a 1x1 convolution is added before
the final activation function.

lists the hyperparameters used to train our face-to-environment models. We implemented
three different training methods:

1. Both The decoder was initialized with weights from a pretrained autoencoder, and
then the entire network was trained.

2. Encoder The decoder was initialized with pretrained weights, but the weights
were not updated during training.

3. Latent The network was truncated after the encoder module, so the output was a
latent vector instead of an image.

For the Latent training method, we used an L2 loss function similar to Weber et al.
[WPL18], shown in Equation 4.3. Here, fenc(ei) represents the latent vector generated by
encoding environment ei with an already trained encoder module from an autoencoder,
while f(Ii) describes the estimated latent vector from the face-to-environment network
encoder module. For the other two methods, we used solid-angle weighted L1 losses, as
described in Equation 4.4 and Equation 4.5, where f(Ii) describes the output brightness
image generated from an input image. To reduce the size of each training and validation
epoch, we randomly selected one rotated version per environment map as the ground

33

4. Light Source Estimation

Parameter Values

Training Method Both | Encoder | Latent
Remove Background True | False
Activation Function LeakyReLU
Batch Size 64
Bottleneck Size 512
Number of Epochs 1000
Loss Function ℓF 2Elat

1 | ℓF 2E
2 | ℓF 2Elog

2

Decoder Weights Model A | Model B
Optimizer Prodigy
Learning Rate 1
Weight Decay 0.1
Cosine Annealing True
Initial Feature Maps 128

Table 4.4: Overview of the hyperparameters used
for training the face-to-environment network.

1 Only for the Latent training method.
2 Only for Both and Encoder training methods.

truth, in combination with the corresponding face image. Consequently, input images
from a specific MetaHuman avatar were used in both the training and the validation
set, but the environment maps were exclusively assigned to either the training or the
validation split. The training time for the models with 1000 epochs each ranged from 7.3
to 10.8 hours. Training was performed with two NVIDIA A40 graphics cards.

ℓF 2Elat =
N�

i=1
∥(fenc(ei) − f(Ii))∥2 (4.3)

ℓF 2E =
N�

i=1
∥w ⊙ (ei − f(Ii))∥ (4.4)

ℓF 2Elog =
N�

i=1
∥w ⊙ ((log10(ei + 1) − log10(f(Ii) + 1)∥ (4.5)

Evaluation

As with the autoencoder training, we selected the best-performing model from each
training run and calculated the RMSE, MSE, and MAE, each weighted by the solid angle,

34

4.1. CNN-based Brightness Estimation

Parameter Model C Model D Model E Model F

Training Method Latent Latent Encoder Both
Decoder Weights Model A Model B Model A Model B
Loss Function ℓF 2Elat ℓF 2Elat ℓF 2E ℓF 2Elog

Remove Background False False False False

Table 4.5: Overview of the hyperparameters for the best performing face-to-environment
models. Hyperparameters not described were chosen as in Table 4.4.

on both the validation and the test set. To allow for comparison with models trained
with the Latent training method, we computed all metrics on the decoded latent vectors.
Figure 4.10 presents the impact of using images with and without background removal.
Models trained without removing the background consistently performed better. Table
4.5 lists the hyperparameters that resulted in well-performing models, that were then
chosen for further evaluation. Table 4.6 gives an overview of the performance on the
test set for these models. Although the data suggest that Models E and F outperformed
Models C and D, comparing the metrics with the visual results of Figure 4.11 indicates
that the results of Models C and D could actually be better. This discrepancy is likely
due to the low average brightness of the test data, where simply outputting very low
pixel values results in good performance on the calculated metrics. Figures 4.12, and 4.13
present results of using the output values of our face-to-environment models environment
light sources in Blender. Models C and D effectively captured the most dominant light
directions in both examples. Model E was able to capture the most dominant light
direction for the input shown in Figure 4.12, while Model F failed to do so in both
examples. Table 4.7 shows additional metrics calculated on the rendered images. These
values suggest that Models E and F performed better with HDR output, but due to the
tonemapping, Models C and D yielded better results. Figure 4.14 shows the performance
of the models on a real face input from an outdoor scene. The best visual result was
again obtained from Model C, accurately estimating the most dominant light direction.
The other models were unable to generate a meaningful output. The inference time of the
environment-to-environment models is approximately 0.068 seconds for a single image,
and around 0.042 seconds per image when using a batch size of 16. The measurements
were taken on a Windows PC with an NVIDIA RTX 3060Ti graphics card.

35

4. Light Source Estimation

Figure 4.10: Effects of using images with and without removed background for training
the face-to-environment network. The models trained without removing the background
consistently performed better.

MAE↓ MSE↓ RMSE↓ MAE (log)↓ MSE (log)↓ RMSE (log)↓
Model C 0.000 25 0.475 0.331 7.190 × 10−5 9.233 × 10−5 0.008
Model D 0.000 22 0.486 0.350 5.494 × 10−5 6.810 × 10−5 0.007
Model E 0.000 12 0.597 0.516 3.207 × 10−5 2.492 × 10−5 0.004
Model F 0.000 11 0.475 0.329 3.372 × 10−5 3.109 × 10−5 0.005

Table 4.6: Performance of different models on the test set. The data suggests that Models
E and F perform superior to Models C and D. Comparing the metrics to the visual
results in Figures 4.11, 4.12, and 4.13 could suggest that the results of Models C and
D are actually better, likely due to the low average brightness of the test data, where
outputting very low pixel values results in a good performance on the calculated metrics.
The best results for each metric are highlighted in bold.

36

4.1. CNN-based Brightness Estimation

(a) Input Face (b) GT (c) Model C (d) Model D (e) Model E (f) Model F

Figure 4.11: Results on six different panoramas from our test dataset using our trained
face-to-environment models. The ground truth environment images were obtained from
multiple online sources [Hav, iHD].

37

4. Light Source Estimation

Input

Output

Sphere
Diffuse

Sphere
Matte

Sphere
Mirror

Bunny
Diffuse

Bunny
Matte

Bunny
Mirror

(a) GT (b) Model C (c) Model D (d) Model E (e) Model F

Figure 4.12: Multiple objects rendered using the output of our trained face-to-environment
models as environment light sources. The input to the brightness estimation network
is a rendered face from a test set panorama. The ground truth environment image was
obtained from an online source [iHD].

38

4.1. CNN-based Brightness Estimation

Input

Output

Sphere
Diffuse

Sphere
Matte

Sphere
Mirror

Bunny
Diffuse

Bunny
Matte

Bunny
Mirror

(a) GT (b) Model C (c) Model D (d) Model E (e) Model F

Figure 4.13: Multiple objects rendered using the output of our trained face-to-environment
models as environment light sources. The input to the brightness estimation network is a
rendered face from an indoor panorama from our test set. The ground truth environment
image was obtained from an online source [Hav].

39

4. Light Source Estimation

Input

Output

Sphere
Diffuse

Sphere
Matte

Sphere
Mirror

Bunny
Diffuse

Bunny
Matte

Bunny
Mirror

(a) GT (b) Model C (c) Model D (d) Model E (e) Model F

Figure 4.14: Multiple objects rendered using the output of our trained face-to-environment
models as environment light sources. The input to the brightness estimation network
is a real face image from an outdoor scene. The input face image and ground truth
environment are part of the Laval Face + Lighting HDR Dataset [CLG+18]

40

4.2. Brightness-Conditioned Stable Diffusion for Panorama Image Generation

RMSE↓ PSNR↑ SSIM↑ RMSE(tm)↓ PSNR(tm)↑ SSIM(tm)↑
Model C 0.003 19 54.445 71 0.924 08 0.007 37 43.291 05 0.969 90
Model D 0.001 44 59.543 49 0.977 01 0.006 69 44.134 66 0.960 39
Model E 0.000 36 70.214 99 0.999 08 0.008 96 41.863 22 0.893 12
Model F 0.000 46 68.085 78 0.998 76 0.007 47 42.970 66 0.969 78

Table 4.7: Average metrics calculated on images rendered using our estimated brightness
panoramas as environment light sources. For each model, the metrics were averaged over
the 12 rendered images shown in Figures 4.12 and 4.13. The metrics were calculated on
both the rendered HDR images and the tonemapped (tm) images that are shown in the
figures. The best results for each metric are highlighted in bold.

4.2 Brightness-Conditioned Stable Diffusion for Panorama
Image Generation

This section details the diffusion-based image generation system. We first describe the
process of finetuning an existing SD [RBL+22] network in Section 4.2.1. Section 4.2.2
describes adding conditional input in the form of a ControlNet [ZRA23], yielding our
final light estimation system.

4.2.1 Finetuning Generative Diffusion Models for Panorama Images

Our diffusion model is based on the SD 1.5 [RBL+22] checkpoint. We finetuned this
model using a modified version of the advanced stable diffusion training script [PT]
from the Diffusers library [vPPL+22]. This script employs LoRA to efficiently finetune
the model with a small number of necessary weight updates, in combination with the
Dreambooth [RLJ+23] training method to train the model on a specific subject or style.
Advanced usage of the script is detailed in a blog post by Tsaban and Passos [PT]. We
did not use pivotal tuning, but employed full text encoder training. Our training set
consists of 682 pairs of environment images and captions, as described in Section 3.3.
Table 4.8 lists the relevant training hyperparameters. We use the word TOK as the
special token for the Dreambooth [RLJ+23] training method. Finetuning the model took
1.62 hours using an NVIDIA A40 graphics card.

After training the model, we experimented with different model inference parameters.
Figure 4.15 shows the comparison of different guidance scales. According to the Diffusers
[vPPL+22] documentation, increasing the guidance scale should direct the model to
follow the text prompt more closely, while decreasing overall image quality. Our results
show that the models already follow the text prompt well for a low guidance scale of
2.5, while increasing the guidance scale to 12.5 significantly reduced the quality of the
resulting images. We continued to only using a guidance scale of 2.5 for generating images.
Figure 4.16 displays the effects of varying the number of inference steps. Increasing

41

4. Light Source Estimation

2.5 Guidance
Scale

7.5 Guidance
Scale

12.5 Guidance
Scale

(a) a TOK 360
degree view of a
road with moun-
tains in the back-
ground and clouds
in the sky

(b) a TOK 360
degree view of a
room with a win-
dow and radiator
in the corner of the
room

(c) a TOK 360
view of a wooden
bridge with the
sun in the sky and
water in the back-
ground

(d) a TOK alley-
way with graffiti
on the wall

Figure 4.15: Comparison of four text prompts with different prompt guidance scales.
The finetuned panorama diffusion model was used to generate the outputs.

15 Inference
Steps

25 Inference
Steps

40 Inference
Steps

(a) a TOK 360
degree view of a
road with moun-
tains in the back-
ground and clouds
in the sky

(b) a TOK 360
degree view of a
room with a win-
dow and radiator
in the corner of the
room

(c) a TOK 360
view of a wooden
bridge with the
sun in the sky and
water in the back-
ground

(d) a TOK alley-
way with graffiti
on the wall

Figure 4.16: Comparison of four text prompts with different number of inference steps.
The finetuned panorama diffusion model was used to generate the outputs.

the number of inference steps did not increase the quality of the generated images, but
slightly increased the inference time. Figure 4.17 demonstrates the effects of rotating
the generated panorama images by 180 °. The border artefact is visible in the middle
of every rotated image. Furthermore, Subfigure 4.17b shows signs of overfitting, with
dark spots resembling a camera tripod, a feature present in several images in the training
data, particularly in images of indoor scenes.

42

4.2. Brightness-Conditioned Stable Diffusion for Panorama Image Generation

Original

Rotated

(a) a TOK
room with a
window and
a view of a
wooded area

(b) a TOK 360
degree view of a
classroom with
desks and a
chalkboard on
the wall

(c) a TOK 360
degree view of
a room with a
lot of tools and
equipment in it

(d) a TOK
alleyway with
graffiti on the
wall

(e) a TOK
360 view of a
wooden bridge
with the sun
in the sky and
water in the
background

Figure 4.17: Effects of rotating the generated panorama images from the finetuned
diffusion network by 180 °. The border artefacts are visible in every image. The captions
in Columns (a) and (c) were generated using an image-to-text model on the ground truth
environment images, while the captions in Columns (b) and (d) were generated using the
image-to-text model on the face image.

Parameter Values

Token Abstraction TOK
Batch Size 4
Number of Epochs 50
Number of Images 682
Train Text Encoder True
Learning Rate 1
Text Encoder Learning Rate 1
Learning Rate Scheduler Constant
Optimizer Prodigy
Adam Beta 1 0.9
Adam Beta 2 0.99
Adam Weight Decay 0.01
LoRA Matrix Rank 32
SNR Gamma 5.0
Precision bf16

Table 4.8: Hyperparameters for finetuning a SD model for panorama image generation.

43

4. Light Source Estimation

4.2.2 Adding Conditional Control to Diffusion-based Panorama
Generation

The finetuned diffusion network presented in the previous subsection demonstrates the
capability to produce realistic looking results. However, the layout of the generated scenes
did not match the layout of the original scenes and visible artefacts appear when rotating
the images. We hypothesized that adding additional input in the form of estimated
brightness images could reduce these issues. To address this, we experimented with
using a pretrained ControlNet [ZRA23], trained to colorize existing greyscale images, as
an additional input to our diffusion model. Loading the ControlNet for use with our
finetuned diffusion model is straightforward with the Diffusers library, requiring only a
single additional line of code. Source Code 4.1 shows this integration and illustrates the
usage of our complete system, generating a conditioned panorama image from a single
face image.

To evaluate the model performance, we experimented with different model inference
parameters. To see the influence of the quality of the brightness images, we experimented
with using ground truth greyscale images and estimated brightness images from the
test and validation set, with different estimation quality. When using a ControlNet to
condition a diffusion network with an input brightness image, a scale parameter influences
the strength of the condition. Figure 4.18 illustrates how changing this parameter affects
the resulting images. As expected, the degree to which the model output follows the
conditional input is proportional to the scale. Columns (b) and (d) show the output
when generating BLIP-2 [LLSH23] labels and brightness estimation from the face images,
as opposed to using the ground truth greyscale environment panoramas in (a) and (c),
respectively. Column (b) uses a face image from the validation set, while Column (d) uses
a real face image. Scales greater than 0.3 tend to generate very visible artefacts, especially
if the quality of the estimation is not good. Artefacts from the inpainting preprocessing
step of the panorama in (a) and the visible camera tripod in the ground truth scene of
(c) are also visible in the generated images. The results in Column (b) suggest that even
when the estimated brightness appears to be a realistic greyscale environment image,
increasing the conditioning scale can lead to unrealistic-looking results. This is most likely
due to the blurred appearance of the estimated brightness images, as the ControlNet was
trained to recolorize greyscale images without any blurring. Overall, while the model
generally places the main light sources correctly in most images, it fails to do so in some
examples.

15 Inference Steps 25 Inference Steps 40 Inference Steps

Finetuned SD 1.23 seconds 1.87 seconds 2.91 seconds
Finetuned SD + ControlNet 1.61 seconds 2.46 seconds 3.65 seconds

Table 4.9: Average speed for generating a single image using different number of inference
steps. Adding the ControlNet increases the time by around 30 %.

44

4.2. Brightness-Conditioned Stable Diffusion for Panorama Image Generation

Face Image

GT
Environment

ControlNet
Input

Scale 0.05

Scale 0.1

Scale 0.15

Scale 0.2

Scale 0.25

Scale 0.3

Scale 0.7

Scale 1.0

(a) a TOK kitchen
with wooden cabi-
nets, a stove, and
a refrigerator in
the center of the
room. there is also
a table and chairs
on the side of the
room

(b) a TOK kitchen
with light coming
in from the win-
dows

(c) a TOK 360
view of a field with
trees and buildings
in the distance,
with the sun in the
middle of the sky
behind it. The sun
is shining brightly
in the middle of
the sky

(d) a TOK build-
ing with trees in
the background
and a tree in front
of the building

Figure 4.18: Influence of changing the ControlNet scale. Columns (b) and (d), show the
output when generating BLIP-2 [LLSH23] labels and brightness estimation from face
images instead of from ground truth greyscale environment panoramas in (a) and (c)
respectively. The ground truth environments and the input face image shown in Columns
(c) and (d) are part of the Laval Face + Lighting HDR Dataset [CLG+18].

45

4. Light Source Estimation

The results in Figure 4.19 further illustrate the influence of varying ControlNet scales.
The conditional input is calculated using face images from our test set. We present
rotated versions of the generated images to visualize artefacts at the borders. Additionally,
we experimented with using prompts generated from the ground truth panoramas to
prompts generated from the corresponding face images. Columns (b) and (d) show results
when using face image prompts. Although these prompts are much shorter and less
descriptive, the results do not show a significant difference in quality. Table 4.9 compares
the inference speed of our finetuned SD model with and without the added ControlNet,
for different number of inference steps. As expected, the inference time scales linearly
with the number of inference steps. Adding the ControlNet increases the inference time
by approximately 30 %. We used the precomputed text prompts from our dataset, as
described in Section 3.3 for this comparison. Creating text prompts on our inference
machine with an NVIDIA RTX 3060Ti is possible using a quantized version of the
BLIP-2 [LLSH23] model utilizing the OPT-2.7b [ZRG+22] LLM. Generating a single
text prompt using the described model takes around 4.5 seconds, making it the most
time-consuming part of our system.

46

4.2. Brightness-Conditioned Stable Diffusion for Panorama Image Generation

Face Image

GT
Environment

Conditional
Input

Original
Scale 0.1

Rotated
Scale 0.1

Original
Scale 0.15

Rotated
Scale 0.15

Original
Scale 0.2

Rotated
Scale 0.2

Original
Scale 0.25

Rotated
Scale 0.25

(a) TOK ruins of
a medieval fortress
in a snowy land-
scape with a lake
in the foreground
and a snowy forest
in the background

(b) a TOK snowy
area near an old
castle

(c) a TOK view
of a stairway in a
tunnel with graffiti
on the wall and a
bench on the other
side of the stair-
way

(d) a TOK dark
area with graffiti
on the wall

Figure 4.19: Effects of rotating the generated panorama images from the finetuned
diffusion network by 180 °. The artefacts are clearly visible in every image. Columns
(b) and (d), show the output when generating BLIP-2 [LLSH23] labels from face images
instead of from ground truth greyscale environment panoramas in (a) and (c) respectively.
The ground truth environment images were obtained from an online source [iHD].

47

4. Light Source Estimation

from diffusers import StableDiffusionControlNetPipeline as SDCNP

from diffusers import ControlNetModel

import torch

def generate_panorama(face_image_path,

controlnet_path = "latentcat/control_v1p_sd15_brightness",

lora_path = "path/to/trained/lora,

model_id = "runwayml/stable-diffusion-v1-5"):

Load the pretrained Stable Diffusion 1.5 model

pipe = SDCNP.from_pretrained(model_id,

controlnet=controlnet,

torch_dtype=torch.float16,

variant="fp16",

use_safetensors=True,

safety_checker = None,

requires_safety_checker = False).to("cuda:0")

Load our custom LORA + Dreambooth model

pipe.load_lora_weights(lora_path)

Load the ControlNet model

controlnet = ControlNetModel.from_pretrained(controlnet_path,

torch_dtype=torch.float16,

use_safetensors=True,

safety_checker = None,

requires_safety_checker = False)

Generate caption for the face image. Special token TOK has to be present

prompt = get_blip_prompt_from_face(face_image_path)

Estimate the brightness of the face image using face-to-environment model

brightness_estimation = estimate_brightness_from_face(face_image_path)

Generate the final image

final_environment_image = pipe(prompt,

brightness_estimation,

controlnet_conditioning_scale = 0.7,

height=256,

width=512,

num_inference_steps=25,

guidance_scale = 2.5).images

Source Code 4.1: Python Code to generate a panorama from a single face image using
the Diffusers library.

48

CHAPTER 5
Conclusion

In this chapter, we summarize our work. Section 5.1 discusses the current limitations of
our system and proposes ideas for future work to address these challenges. Section 5.2
provides a compact overview of our main contributions and insights.

5.1 Limitations and Future Work
Although our proposed dataset worked well for training light estimation systems, further
improvements could be made. To enhance the realism of the dataset, individual aspects
of each MetaHuman, such as hair color, hair style, or facial features, could be randomized.
Randomly morphing different facial expressions instead of using a fixed set could further
improve the individuality of each face image. While we did not directly observe any neg-
ative impact of choosing a low number of possible states for our character customization,
more randomization should help the model to generalize better for real-world scenarios.

Our brightness estimation network performs well in some scenes but fails to do so in
others, particularly when comparing results on the validation set to those on the test
set. This is likely due to assigning environment images from one source to either the
training/validation set or the test set, resulting in the average brightness being lower
by a factor of 100 for the test set. Furthermore, the distribution of indoor to outdoor
scenes should be balanced. LDR to HDR upsampling networks could be used if needed.
Additionally, real-world examples of indoor scenes should be included as a baseline for
comparison.

One major drawback of our diffusion-based environment generation system is the lack of
providing texture information to the diffusion model, which can result in images where
the overall layout matches the original scene, but the colors are completely different.
Incorporating techniques such as background removal and warping onto textures for use
with inpainting models could improve the quality of the generated scenes, due to including

49

5. Conclusion

parts of the original scene. A similar approach is shown by Wang et al. [WCL+23] for
panorama generation from unregistered images. Another limitation is the reliance on text
prompts. The system could be enhanced by exploring alternative encoders like SeeCoder
[XGW+24], which replaces text encoders with image encoders. This could lead to more
accurate scene generation, similar to using parts of the input image with inpainting
models. Furthermore, creating the text prompts is the most time-consuming task in our
pipeline, so removing the text prompts could drastically speed up the proposed system.
Our proposed method of using a ControlNet [ZRA23] to ensure that the output of the
diffusion network matches the layout of equirectangular environment images only partially
works. In some cases the scene layout is fine, but the colors are different on the edges of
the image, resulting in very visible artifacts when rotating the panorama. Combining
our method with the latent blending method proposed by Feng et al. [FLCX23] could
improve this problem. Because we used an existing ControlNet trained to recolorize
greyscale images, our diffusion model sometimes fails to generate meaningful output
when the strength of the ControlNet is too high, due to the blurry appearance of the
estimated brightness images. Training a model to estimate a parameter that describes
the accuracy of the estimated brightness images could be used to automatically adapt
the strength parameter. Otherwise, training a new ControlNet on estimated brightnesses
should also help to improve the results. The biggest limitation is that our system does
not produce HDR images, which are crucial for describing realistic light information.
Multiple solutions for this problem could be explored:

• Adding an additional trainable layer combining the diffusion output with the
estimated HDR brightness

• Using existing LDR to HDR upsampling systems

• Retraining the diffusion model to directly output HDR data

• Using exposure bracketing with versions of similar outputs by modifying the noise
scheduling of the diffusion model

5.2 Summary
In this thesis, we present a novel technique to generate datasets for light source estimation
from face images. We used realistic digital human characters illuminated by HDR
environment maps. High-quality face images were rendered using the Path Tracer module
from Unreal Engine. Through parameter augmentation, including random environment
rotation and varying body position and facial gestures, we diversified the dataset with a
wide range of appearances. We showed that CNN-based brightness estimation networks
can successfully recover dominant light directions when trained on our proposed dataset,
even with unseen real-life data.

For realistic-looking panorama image generation, we finetuned a state-of-the-art diffusion
model, enabling text-to-image panorama generation from a single text prompt. The

50

5.2. Summary

finetuned model delivers impressive results compared to the original diffusion model, by
recreating the layout of equirectangular environment images. By integrating a ControlNet
[ZRA23] pretrained on brightness images, we allow for conditioning the model using
estimated scene brightness from the CNN-based brightness estimation network, enhancing
the realism of the generated panoramas by guiding the model to follow the layout of the
original scene. The proposed system can be described in three steps:

1. Estimating the scene brightness using our CNN-based face-to-environment model.

2. Generating a text prompt describing the background of the face image with an
existing image-to-text model.

3. Creating a 360 degree panorama image using our finetuned diffusion-network,
conditioned with the generated text prompt and estimated scene brightness.

The limitations mentioned in the previous section provide a great starting point for
further research. Furthermore, we can say that the system shows promising results
when looking at the generated images in Section 4.2. Integrating the proposed solution
into existing applications in augmented reality could therefore already be beneficial, by
enabling use cases such as realistic shading of artificial objects.

51

List of Figures

2.1 Comparison of two well known CNN architectures. The left graph describes
LeNet [LB95] and the right graph describes the more advanced AlexNet
[KSH12]. Image obtained from the Dive into Deep Learning book [ZLLS23]. 7

2.2 Visualization of a typical autoencoder network. Input data is transformed
into a low-dimensional latent space representation by an encoder network.
The decoder network tries to replicate the input data by decompressing the
compressed latent representation. 7

2.3 Visualization of a typical GAN. The generator creates fake data from some
noise that the discriminator has to distinguish from real data. Image obtained
from the Dive into Deep Learning book [ZLLS23]. 8

2.4 Visualization of the reverse diffusion process. As the actual distribution
q(xt−1|xt) is not known, a neural network p with learnable parameters θ is
trained. Image is a modified version [Wen21] of an original image from the
paper Denoising Diffusion Probabilistic Models [HJA20]. 9

3.1 Comparison of different rendered face images with the corresponding rotated
environment maps. The original environment maps were obtained from
different websites [iHD, Hav]. 16

3.2 Visualization of the coordinate axis in an equirectangular environment map.
Image obtained from the description of the Skylibs library [Hol24]. 17

3.3 Comparison of an HDR environment map before and after the rotation
operation. The rotated file was inpainted to remove the empty pixels at the
bottom. Original environment map was obtained from a dataset consisting of
indoor HDR images [BGH+23]. 19

3.4 Environment maps with captions generated by BLIP-2. Images were obtained
from a website [Wro]. 20

3.5 Face images from our dataset with guided captions generated using a BLIP-2
[LLSH23] model. 20

4.1 Overview of the proposed light source estimation system. A brightness image
and a text prompt describing the scene is generated from a face image. Text
description is input to a finetuned SD model. The estimated brightness is
added as conditional input via a ControlNet model. 23

53

4.2 Overview of the environment-to-environment autoencoder network. The input
is transformed into a latent vector of size 1x512 using convolutional blocks
with maximum pooling operations. The deconvolutional layers, visualized
in blue, upscale the latent vector, ideally replicating the original input. The
input environment image is taken from the Laval Photometric Indoor HDR
Dataset [BGH+23] . 25

4.3 Results of the autoencoder hyperparameter optimization. The color gradient
displays the performance on the validation accuracy. The choice of loss
function had the biggest impact on validation performance. 25

4.4 Effects of using weight decay and cosine annealing when training the autoen-
coder. 26

4.5 Results on six different panoramas from our test dataset using our trained
environment-to-environment autoencoder models. The ground truth environ-
ment images were obtained from multiple online sources [Hav, iHD]. . . . 28

4.6 Multiple objects rendered using the output of our trained environment-to-
environment autoencoder models as environment light sources. The input to
the brightness estimation network was taken from the validation set. The
ground truth environment image is part of the Laval Photometric Indoor HDR
Dataset [BGH+23]. 30

4.7 Multiple objects rendered using the output of our trained environment-to-
environment autoencoder models as environment light sources. The input to
the brightness estimation network was taken from the test set. The ground
truth environment image was obtained from an online source [Hav]. . . . 31

4.8 Overview of the full CNN-based brightness estimation network. An input
face image is transformed into a latent vector of size 1x512 using residual
blocks. The encoder decompresses this latent vector into a 256x512x1 image,
representing the estimated brightness of the scene. 32

4.9 Visualization of the residual block used in our face encoder network. Input is
passed through a maximum pooling layer to reduce the resolution, followed
by two convolutional layers and an activation function between them. Batch
normalization is used after each convolutional layer. A shortcut using a 1x1
convolution is added before the final activation function. 33

4.10 Effects of using images with and without removed background for training
the face-to-environment network. The models trained without removing the
background consistently performed better. 36

4.11 Results on six different panoramas from our test dataset using our trained
face-to-environment models. The ground truth environment images were
obtained from multiple online sources [Hav, iHD]. 37

4.12 Multiple objects rendered using the output of our trained face-to-environment
models as environment light sources. The input to the brightness estimation
network is a rendered face from a test set panorama. The ground truth
environment image was obtained from an online source [iHD]. 38

54

4.13 Multiple objects rendered using the output of our trained face-to-environment
models as environment light sources. The input to the brightness estimation
network is a rendered face from an indoor panorama from our test set. The
ground truth environment image was obtained from an online source [Hav]. 39

4.14 Multiple objects rendered using the output of our trained face-to-environment
models as environment light sources. The input to the brightness estimation
network is a real face image from an outdoor scene. The input face image
and ground truth environment are part of the Laval Face + Lighting HDR
Dataset [CLG+18] . 40

4.15 Comparison of four text prompts with different prompt guidance scales. The
finetuned panorama diffusion model was used to generate the outputs. . . 42

4.16 Comparison of four text prompts with different number of inference steps.
The finetuned panorama diffusion model was used to generate the outputs. 42

4.17 Effects of rotating the generated panorama images from the finetuned diffusion
network by 180 °. The border artefacts are visible in every image. The captions
in Columns (a) and (c) were generated using an image-to-text model on the
ground truth environment images, while the captions in Columns (b) and (d)
were generated using the image-to-text model on the face image. 43

4.18 Influence of changing the ControlNet scale. Columns (b) and (d), show the
output when generating BLIP-2 [LLSH23] labels and brightness estimation
from face images instead of from ground truth greyscale environment panora-
mas in (a) and (c) respectively. The ground truth environments and the
input face image shown in Columns (c) and (d) are part of the Laval Face +
Lighting HDR Dataset [CLG+18]. 45

4.19 Effects of rotating the generated panorama images from the finetuned diffusion
network by 180 °. The artefacts are clearly visible in every image. Columns
(b) and (d), show the output when generating BLIP-2 [LLSH23] labels from
face images instead of from ground truth greyscale environment panoramas in
(a) and (c) respectively. The ground truth environment images were obtained
from an online source [iHD]. 47

55

List of Tables

3.1 Overview of the number of images rendered for our dataset using Unreal
Engine. 17

3.2 Overview of the randomized parameters for each render pass. 18

4.1 Overview of the hyperparameters used for training the autoencoder. . . . 24
4.2 Overview of the hyperparameters for the autoencoder models that were later

used to train the face-to-environment models. 27
4.3 Comparison of different metrics for the test set and the validation set. The

values indicate that our models perform better on the test set compared to
the validation set. This is likely due to the uneven data distribution, leading
to higher expected errors for the validation set, as the average brightness is
higher by a factor of 100. The best results for each metric are highlighted in
bold. 27

4.4 Overview of the hyperparameters used for training the face-to-environment
network. 34

4.5 Overview of the hyperparameters for the best performing face-to-environment
models. Hyperparameters not described were chosen as in Table 4.4. . . . 35

4.6 Performance of different models on the test set. The data suggests that Models
E and F perform superior to Models C and D. Comparing the metrics to the
visual results in Figures 4.11, 4.12, and 4.13 could suggest that the results of
Models C and D are actually better, likely due to the low average brightness
of the test data, where outputting very low pixel values results in a good
performance on the calculated metrics. The best results for each metric are
highlighted in bold. 36

4.7 Average metrics calculated on images rendered using our estimated brightness
panoramas as environment light sources. For each model, the metrics were
averaged over the 12 rendered images shown in Figures 4.12 and 4.13. The
metrics were calculated on both the rendered HDR images and the tonemapped
(tm) images that are shown in the figures. The best results for each metric
are highlighted in bold. 41

4.8 Hyperparameters for finetuning a SD model for panorama image generation. 43
4.9 Average speed for generating a single image using different number of inference

steps. Adding the ControlNet increases the time by around 30 %. 44

57

58

Acronyms

CNN convolutional neural network. ix, xi, 2, 3, 5–7, 12, 13, 23, 24, 32, 50, 51, 53, 54

GAN generative adversarial network. 8, 12, 13, 53

HDR high dynamic range. 2, 11–13, 15, 19, 23, 35, 41, 49, 50, 53, 57

LDR low dynamic range. 11, 12, 49, 50

LLM large language model. 10, 16, 19, 46

LoRA Low-Rank Adaptation. 10, 41

MAE mean average error. 28, 29, 34

MSE mean squared error. 28, 29, 34

RMSE root mean squared error. 28, 34

SD Stable Diffusion. 9, 10, 23, 24, 41, 43, 44, 46, 53, 57

VAE variational autoencoder. 8

59

Bibliography

[BGH+] Christophe Bolduc, Justine Giroux, Marc Hébert, Claude Demers, and
Jean-François Lalonde. beyondthepixel/learning tasks/prepare_dataset.py
at main · lvsn/beyondthepixel. https://github.com/lvsn/
beyondthepixel/blob/main/Learning%20Tasks/prepare_
dataset.py. (Accessed on 04/23/2024).

[BGH+23] Christophe Bolduc, Justine Giroux, Marc Hébert, Claude Demers, and
Jean-François Lalonde. Beyond the pixel: a photometrically calibrated HDR
dataset for luminance and color prediction. In 2023 IEEE/CVF International
Conference on Computer Vision (ICCV). IEEE, October 2023.

[CHL+22] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William
Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert
Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen,
Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent
Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi,
Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason
Wei. Scaling instruction-finetuned language models, 2022. arXiv:2210.11416.

[CLG+18] Dan A. Calian, Jean-François Lalonde, Paulo Gotardo, Tomas Simon, Iain
Matthews, and Kenny Mitchell. From Faces to Outdoor Light Probes.
Computer Graphics Forum, 37(2):51–61, 2018.

[Deb08] Paul Debevec. Rendering synthetic objects into real scenes: Bridging tradi-
tional and image-based graphics with global illumination and high dynamic
range photography. In ACM SIGGRAPH 2008 Classes, pages 1–10, Los
Angeles California, August 2008. ACM.

[DMAC03] Frédéric Drago, Karol Myszkowski, Thomas Annen, and Norishige Chiba.
Adaptive Logarithmic Mapping For Displaying High Contrast Scenes. Com-
puter Graphics Forum, 22(3):419–426, November 2003.

[DT] Blender Development Team. Blender (version 3.2.0). https://www.
blender.org/. (Accessed on 04/24/2024).

61

https://github.com/lvsn/beyondthepixel/blob/main/Learning%20Tasks/prepare_dataset.py
https://github.com/lvsn/beyondthepixel/blob/main/Learning%20Tasks/prepare_dataset.py
https://github.com/lvsn/beyondthepixel/blob/main/Learning%20Tasks/prepare_dataset.py
https://www.blender.org/
https://www.blender.org/

[EGH21] Farshad Einabadi, Jean-Yves Guillemaut, and Adrian Hilton. Deep Neural
Models for Illumination Estimation and Relighting: A Survey. Computer
Graphics Forum, 40(6):315–331, September 2021.

[FCZ+24] Fan Fei, Yean Cheng, Yongjie Zhu, Qian Zheng, Si Li, Gang Pan, and
Boxin Shi. SPLiT: Single Portrait Lighting Estimation via a Tetrad of Face
Intrinsics. IEEE Transactions on Pattern Analysis and Machine Intelligence,
46(2):1079–1092, February 2024.

[FLCX23] Mengyang Feng, Jinlin Liu, Miaomiao Cui, and Xuansong Xie. Diffusion360:
Seamless 360 Degree Panoramic Image Generation based on Diffusion Models,
November 2023. arXiv:2311.13141.

[Gama] Epic Games. MetaHuman | Realistic Person Creator. https://www.
unrealengine.com/en-US/metahuman. (Accessed on 03/07/2024).

[Gamb] Epic Games. Path tracer | epic developer community. https:
//dev.epicgames.com/documentation/en-us/unreal-engine/
path-tracer-in-unreal-engine. (Accessed on 04/23/2024).

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[GHS+19] Marc-Andre Gardner, Yannick Hold-Geoffroy, Kalyan Sunkavalli, Christian
Gagne, and Jean-Francois Lalonde. Deep Parametric Indoor Lighting Esti-
mation. In 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), pages 7174–7182, Seoul, Korea (South), October 2019. IEEE.

[GPM+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative
Adversarial Nets. In Advances in Neural Information Processing Systems,
volume 27. Curran Associates, Inc., December 2014.

[GSY+17] Marc-André Gardner, Kalyan Sunkavalli, Ersin Yumer, Xiaohui Shen, Emil-
iano Gambaretto, Christian Gagné, and Jean-François Lalonde. Learn-
ing to Predict Indoor Illumination from a Single Image, November 2017.
arXiv:1704.00090.

[GZH+16] Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and Jianfeng Gao.
Ms-celeb-1m: A dataset and benchmark for large-scale face recognition.
In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, Com-
puter Vision – ECCV 2016, pages 87–102, Cham, September 2016. Springer
International Publishing.

[Hav] Poly Haven. The public 3d asset library. https://polyhaven.com/.
(Accessed on 04/18/2024).

62

https://www.unrealengine.com/en-US/metahuman
https://www.unrealengine.com/en-US/metahuman
https://dev.epicgames.com/documentation/en-us/unreal-engine/path-tracer-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/path-tracer-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/path-tracer-in-unreal-engine
http://www.deeplearningbook.org
https://polyhaven.com/

[HGAL19] Yannick Hold-Geoffroy, Akshaya Athawale, and Jean-François Lalonde. Deep
sky modeling for single image outdoor lighting estimation. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
June 2019.

[HJA20] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic
models. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, volume 33,
pages 6840–6851. Curran Associates, Inc., December 2020.

[Hol24] Yannick Hold. Soravux/skylibs, April 2024.

[HSW+21] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li,
Shean Wang, Lu Wang, and Weizhu Chen. LoRA: Low-Rank Adaptation of
Large Language Models, October 2021. arXiv:2106.09685.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 770–778. IEEE,
June 2016.

[iHD] iHDRI.COM. lighting for creatives. https://www.ihdri.com/. (Ac-
cessed on 04/18/2024).

[Iqb18] Haris Iqbal. HarisIqbal88/PlotNeuralNet v1.0.0. Zenodo, December 2018.

[KK14] Sebastian B. Knorr and Daniel Kurz. Real-time illumination estimation from
faces for coherent rendering. In 2014 IEEE International Symposium on
Mixed and Augmented Reality (ISMAR), pages 113–122, September 2014.

[KK19] Peter Kán and Hannes Kaufmann. DeepLight: Light source estimation for
augmented reality using deep learning. The Visual Computer, 35(6-8):873–
883, June 2019.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classi-
fication with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems, volume 25. Curran Associates, Inc., 2012.

[KW22] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes,
December 2022. arXiv:1312.6114.

[LB95] Yann LeCun and Yoshua Bengio. Convolutional networks for images,
speech, and time series. The handbook of brain theory and neural networks,
3361(10):1995, 1995.

[LLSH23] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. BLIP-2: Boot-
strapping language-image pre-training with frozen image encoders and large

63

https://www.ihdri.com/

language models. In Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceed-
ings of the 40th International Conference on Machine Learning, volume 202,
pages 19730–19742. PMLR, July 2023.

[LM14] Jean-Francois Lalonde and Iain Matthews. Lighting Estimation in Outdoor
Image Collections. In 2014 2nd International Conference on 3D Vision, pages
131–138, Tokyo, December 2014. IEEE.

[LMP+20] Chloe LeGendre, Wan-Chun Ma, Rohit Pandey, Sean Fanello, Christoph
Rhemann, Jason Dourgarian, Jay Busch, and Paul Debevec. Learning
Illumination from Diverse Portraits, August 2020. arXiv:2008.02396.

[MD24] Konstantin Mishchenko and Aaron Defazio. Prodigy: An Expeditiously
Adaptive Parameter-Free Learner, March 2024. arXiv:2306.06101.

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Mar-
tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., Decem-
ber 2019.

[PKA+09] Pascal Paysan, Reinhard Knothe, Brian Amberg, Sami Romdhani, and
Thomas Vetter. A 3D Face Model for Pose and Illumination Invariant Face
Recognition. In 2009 Sixth IEEE International Conference on Advanced
Video and Signal Based Surveillance, pages 296–301. IEEE, September 2009.

[PT] Apolinário Passos and Linoy Tsaban. Dreambooth lora with stable diffu-
sion. https://github.com/huggingface/diffusers/blob/main/
examples/advanced_diffusion_training/train_dreambooth_
lora_sd15_advanced.py. (Accessed on 06/13/2024).

[RBL+22] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and
Björn Ommer. High-resolution image synthesis with latent diffusion models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10684–10695. IEEE, June 2022.

[RKH+21] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel
Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin,
Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable
visual models from natural language supervision. In Marina Meila and Tong
Zhang, editors, Proceedings of the 38th International Conference on Machine
Learning, volume 139, pages 8748–8763. PMLR, July 2021.

64

https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sd15_advanced.py
https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sd15_advanced.py
https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sd15_advanced.py

[RLJ+23] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein,
and Kfir Aberman. Dreambooth: Fine tuning text-to-image diffusion models
for subject-driven generation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 22500–22510.
IEEE, June 2023.

[SBT+19] Tiancheng Sun, Jonathan T. Barron, Yun-Ta Tsai, Zexiang Xu, Xueming
Yu, Graham Fyffe, Christoph Rhemann, Jay Busch, Paul Debevec, and Ravi
Ramamoorthi. Single Image Portrait Relighting. ACM Transactions on
Graphics, 38(4):1–12, August 2019.

[SG17] Vinay K Sriram and Wesley Griffin. A sampling agnostic software framework
for converting between texture map representations of virtual environments.
Journal of Research of the National Institute of Standards and Technology,
122:1, May 2017.

[SNWS20] Alejandro Sztrajman, Alexandros Neophytou, Tim Weyrich, and Eric Som-
merlade. High-Dynamic-Range Lighting Estimation From Face Portraits. In
2020 International Conference on 3D Vision (3DV), pages 355–363, Fukuoka,
Japan, November 2020. IEEE.

[TZC+23] Shitao Tang, Fuyang Zhang, Jiacheng Chen, Peng Wang, and Yasutaka
Furukawa. MVDiffusion: Enabling Holistic Multi-view Image Generation
with Correspondence-Aware Diffusion, December 2023. arXiv:2307.01097.

[vPPL+22] Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan
Lambert, Kashif Rasul, Mishig Davaadorj, Dhruv Nair, Sayak Paul, William
Berman, Yiyi Xu, Steven Liu, and Thomas Wolf. Diffusers: State-of-the-art
diffusion models. https://github.com/huggingface/diffusers,
2022.

[WCL+23] Jionghao Wang, Ziyu Chen, Jun Ling, Rong Xie, and Li Song. 360-Degree
Panorama Generation from Few Unregistered NFoV Images, August 2023.
arXiv:2308.14686.

[Wen21] Lilian Weng. What are diffusion models? https://lilianweng.github.
io/posts/2021-07-11-diffusion-models/, Jul 2021. (Accessed on
06/13/2024).

[WPL18] Henrique Weber, Donald Prévost, and Jean-Francois Lalonde. Learning to
estimate indoor lighting from 3d objects. In 2018 International Conference
on 3D Vision (3DV), pages 199–207. IEEE, September 2018.

[Wro] Grzegorz Wronkowski. Library of 20k hdri maps, textures, hdri timelapses
for cg artists. https://hdrmaps.com/. (Accessed on 04/18/2024).

65

https://github.com/huggingface/diffusers
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://hdrmaps.com/

[WYLL22] Guangcong Wang, Yinuo Yang, Chen Change Loy, and Ziwei Liu. StyleLight:
HDR Panorama Generation for Lighting Estimation and Editing, July 2022.
arXiv:2207.14811.

[XGW+24] Xingqian Xu, Jiayi Guo, Zhangyang Wang, Gao Huang, Irfan Essa, and
Humphrey Shi. Prompt-free diffusion: Taking ”text” out of text-to-image
diffusion models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 8682–8692, June 2024.

[YZTL18] Renjiao Yi, Chenyang Zhu, Ping Tan, and Stephen Lin. Faces as Lighting
Probes via Unsupervised Deep Highlight Extraction. In Vittorio Ferrari,
Martial Hebert, Cristian Sminchisescu, and Yair Weiss, editors, Computer
Vision - ECCV 2018, volume 11213, pages 321–338. Springer, 2018.

[ZL17] Jinsong Zhang and Jean-Francois Lalonde. Learning High Dynamic Range
from Outdoor Panoramas. In 2017 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 4529–4538, Venice, October 2017. IEEE.

[ZLLS23] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive
into Deep Learning. Cambridge University Press, February 2023. https:
//D2L.ai.

[ZRA23] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control
to text-to-image diffusion models. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages 3836–3847, October
2023.

[ZRG+22] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuo-
hui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor
Mihaylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel Simig, Punit Singh
Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer. OPT: Open
Pre-trained Transformer Language Models, June 2022. arXiv:2205.01068.

66

https://D2L.ai
https://D2L.ai

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and Problem Statement
	Approach
	Research Questions and Contributions
	Structure of the Thesis

	Theoretical Background and Related Work
	Deep Learning
	Light Representation
	Face Image Datasets
	Light Source Estimation

	Dataset Generation
	Rendering Face Images in Unreal Engine
	Preprocessing for Network Training
	Dataset for Diffusion Network Training

	Light Source Estimation
	CNN-based Brightness Estimation
	Brightness-Conditioned Stable Diffusion for Panorama Image Generation

	Conclusion
	Limitations and Future Work
	Summary

	List of Figures
	List of Tables
	Acronyms
	Bibliography

