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Kurzfassung

In den vergangenen Jahren bekamen Zero Knowledge Proofs immer mehr Aufmerksamkeit
im Bereich Security. Durch die steigende Zahl an Zero Knowledge Proof Sprachen
sollte auch das Testen der Compiler bedacht werden. Schon seit den frühen Tagen
des Programmierens ist automatisiertes Testen von Software ein wichtiger Teil der
Qualitätssicherung. Das gilt vor allem für sicherheitskritische Applikationen, wie zum
Beispiel Compiler. In dieser Arbeit wird ein Test-Framework vorgestellt, welches mittels
Metamorphic Testing auf der Sprache Circom evaluiert wird. Zero Knowledge Proof
Sprachen wurden bisher noch nicht mittels Metamorphic Testing getestet, weshalb dies
den Kern der wissenschaftlichen Arbeit darstellt. Das vorgestellte Framework besteht
aus Metamorphic Transformern, Orakeln und zwei Fuzzern, die für die Erstellung von
Testinstanzen und zur Verifizierung verwendet werden. Die durchgeführten Experimente
enthüllen neue Herausforderungen in Bezug auf Metamorphic Testing in diesem Kontext.
Zu den zentralen Ergebnissen dieser Arbeit zählen die 3 gefundenen Bugs, wobei die
gemessene Line-Coverage im Circom Compiler bei 33,02% liegt. Zusätzlich wurde auch
die zusätzlich benötigte Zeit für die Coverage Instrumentationen gemessen.
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Abstract

Zero knowledge proofs gained a lot of attention over the last few years in the security
domain. With the rising number of zero knowledge proof languages, the need for compiler
testing should also be considered. Since the very early days of programming, automated
software testing is an important part of quality management, especially for critical
infrastructure such as compilers. In this thesis, we propose and implement a testing
framework which utilizes metamorphic testing and evaluate it on the Circom language.
Metamorphic testing on zero knowledge proof infrastructure has not been done before and
is the main contribution of this work. The proposed framework consists of metamorphic
transformers, oracles and two fuzzers which are utilized to generate new test instances
and verify them. The experiments revealed new challenges when applying metamorphic
testing in this context. The results exposed 3 bugs while covering 33,02% of the lines in the
Circom compiler. Additionally, the time consumption of the coverage instrumentations
are measured.
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CHAPTER 1
Introduction

The topic of security got increasingly important in the last decades. Hall and Wright
(2018) analyzed data breaches and their costs induced by cyber crime [17]. In the year
2014, the report of the Center for Strategic and International Studies assessed costs of
over 400 billion dollars caused by cyber criminal activities. In the same paper, they show
that in 2017 and 2018, 29% and 24% respectively of the data breaches are caused by
internal errors of systems or employee error.

This motivates the need of testing software to avoid system errors where possible.
Especially automated testing helps reducing errors. Although Rafi et al. (2012) came to
the conclusion that automated testing does not replace manual testing, the test coverage
is improved [28].

The next section introduces the underlying concepts and the background of the work,
which is then followed by the problem definition and contribution.

1.1 Background
This section introduces the utilized concepts and motivates their usages in real life
applications.

1.1.1 Zero Knowledge Proofs
The underlying concept of Zero Knowledge Proof (ZKP) is a minimal and secure commu-
nication between two parties without revealing private information. Feige et al. (1987)
described that a sender A does not want to reveal any information about the used
language L and the input I while proving to a receiver B that A knows the state of I in
regard to L [15]. ZKP program are functions with inputs and outputs called signals. In
addition to that, intermediate signals are variables holding interim results which are not
exposed externally.

1



1. Introduction

To enable this communication, mainly 3 components are utilized [31]:

• Witness Generator - Generates an artifact called witness, which holds the values
for all intermediate and output signals.

• Prover - Generates an artifact called proof from the witness, which does not leak
any information about the applied function nor the private inputs.

• Verifier - Determines if a proof in combination with the public inputs of the ZKP
is valid or not.

These parts of the system enable the sharing of limited information, as shown in Figure
1.1. Alice knows a function f as well as their respective public and private inputs x and
y. With this information, the witness generator computes a witness W which includes
the results of the function. In the next step, the prover takes the witness and produces
the proof, P (x) which does not expose information about the private input y nor the
function f . Bob on the other side only receives the public x and P (x) which can then
be verified via the verifier. Only if Bob passes the correct combination of inputs to the
proof, the test from the verifier is passed. There is also no way to retrieve the original
private inputs or function.

Popular examples for ZKP language frameworks are ZoKrates [20], Noir [2], Lurk [1] and
Circom [5]. We focus on the latter one in this thesis. These frameworks also support the
usage in the blockchain, where applications utilize the proof system for communication.
An example program of Circom is shown in Figure 1.2.

Figure 1.1: The figure shows the process of generating the witness and the proof on the
sender side as well as the verification step on the receiving end.
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1.2. Problem Definition and Contribution

pragma circom 2 . 1 . 8 ;

template IsEqual ( ) {
s i g n a l input in [ 2 ] ;
s i g n a l output out ;

component i s z = I s Z e r o ( ) ;

in [ 1 ] − in [ 0 ] ==> i s z . in ;

i s z . out ==> out ;
}

component main = IsEqual ( ) ;

Figure 1.2: The code shows an example for a program written in Circom. This example
is taken from the util library circomlib. The IsEqual template takes an input signal
with an array size of 2 and provides one output signal in return. To calculate the result,
the component IsZero is called with the subtraction of both input values and assigns
its output accordingly. Below the template, a main component is defined to call the
implementation.

Real life applications integrate ZKPs in the blockchain to hide data while providing the
possibility to validate a transaction on the chain. Zcash is a cryptographic protocol which
incorporates ZKPs for encryption, where the hiding of private keys is made possible. A
current research topic is the use of ZKPs in authentication systems. The sender is able
to prove the validity of a password without revealing it. This is an alternative approach
to the commonly used asymmetric key cryptography [18].

1.1.2 Metamorphic Testing
The second concept to introduce is a testing method called metamorphic testing. In
general, it is done by taking a seed program and transforming it with a known operation
s.t. the relation from the seed program output to the corresponding target output is
known [10]. After running the program, the outputs should be related to each other,
which is previously determined by the transformation. For example: given an input tuple
A = (x, y) with a program P (x, y) = x + y, a generated metamorphic test case may be
P ′(x, y) = x + y + 1 with an output relation of greater than. This is a simple example,
but the essential part is, that by mapping P to P ′, we can check the relation of both
outputs where P ′(x, y) >= P (x, y). Figure 1.3 shows an example of a program which is
transformed with a greater than relation. To increase the probability of finding issues
within the underlying infrastructure, the programs are executed multiple times with
different inputs and verify their outputs with the respective output relations.

1.2 Problem Definition and Contribution
As motivated in the introduction, security is an important part of software development
and a lot of attacks are made possible by bugs in the target system. To find these bugs,
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1. Introduction

Figure 1.3: The figure shows an example of metamorphic testing with a greater than
output relation.

sophisticated testing methods are needed. Besides the traditional unit and integration
tests, randomized test are helpful to reveal a wider range of issues. Especially for
compilers, metamorphic testing is a suitable method to extend testing.

In the context of this thesis, the novel part is to use metamorphic testing for a ZKP
language framework, which has not been done before. For that, a new testing framework is
proposed which enables the automated generation of test instances by using metamorphic
transformations and facilitates more diversity due to swarm testing [16]. The automated
generation of tests takes seed programs as a starting point and applies transformations
on them. To maintain comparability, additional information is stored on how the
transformation changed the program. These details are used during the verifying step
to check whether the results are correct or not. The actual execution of the generated
programs is done multiple times per instance with randomly generated inputs to cover a
wider range of possible paths.

To demonstrate the steps of the framework, Figure 1.4 gives an abstract example. On
the left side, a statement of a seed program is modified with different transformations
and the relation to the output, namely equals, is forwarded to the verify step. The
execution of each program is done multiple times with the inputs providing different
values of y. The result is then compared with the original values. In this example, the
operations in the expression must not change the results in comparison to the executions
of the seed program. If there are differences, there must be a bug within the underlying
infrastructure.

In addition to the testing framework, we also discuss the challenges and limitations
when testing ZKP language frameworks with an automated testing framework. In the
evaluation of the results, the performance of test runs in terms of time and coverage is
presented as well as regression testing and the found bugs during the testing phase.
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Figure 1.4: This figure provides a brief introduction to the testing process with an
example. A program gets transformed, executed with different inputs and then verified.

To the best of our knowledge, there is no comparable publication so far on this topic.
The building blocks of the system are described in Chapter 3.
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CHAPTER 2
Related Work

Metamorphic testing for program analyzers. Metamorphic testing is done in
various forms and on different environments to ensure software quality. Mansur et al.
(2020) introduced the STORM framework, which utilized blackbox mutational fuzzing to
test SMT solvers by fuzzing input instances while keeping them satisfiable [26]. This is
done by mutating existing seed instances with a fuzzer while guaranteeing, that the new
SMT instance stays satisfiable. One year later, the same researchers apply metamorphic
testing on Datalog programs to test the underlying engines [25]. They defined special
relation types for the Datalog domain to enable the metamorphic testing approach.

Metamorphic testing for other use cases. Chen et al. (2016) introduced a
different approach, where the target system is also tested with obfuscated code gathered
via metamorphic transformations [11]. However, the novelty lies in comparing two
obfuscated programs with each other instead of referring to the seed program. The
technique of metamorphic testing is researched in various domains to benefit from
the advantages [29]. Chan et al. (2005) utilizes this method to test Service-Oriented
Architectures (SOA) and for supervised machine learning, Xie et al. (2009) publish an
approach for testing classification algorithms building on metamorphic testing [7][32].

Compiler testing. The area of compiler testing is a wide field and is discussed
for different languages and implementations [13][23][24][30]. Similar to metamorphic
testing, Equivalent Modulo Inputs (EMI) is also an automated testing method. This
technique is introduced by Le et al. (2014) and mutates programs to test compilers [22].
In particular, dead code is pruned from seed programs and a specific input to create
a new test instance. Afterwards, both programs are compiled and executed with the
respective input. If the results differ, a bug is found. Kossatchev and Posypkin (2005)
looked into the different steps in compiler testing to ensure the quality thereof [21]. A
summary of current testing approaches for compilers are also discussed in the paper
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of Chen et al. (2021) [9]. To introduce even more diversity into the overall testing
process, swarm testing is used [16]. A configuration determines the features which are
applied in the test run. By automatically generating multiple configuration instances,
a broader test coverage is reached. In terms of efficiency, Chen et al. (2017) propose
a learning-to-test approach called LET, which uses the test instances of already found
bugs to prioritize future test instances to find similar bugs [8]. A prominent example of a
test-case generator for compiler testing is Csmith developed for C compilers [33]. The
authors found more than 325 unknown bugs in open source compilers applying Csmith.

Bug detection techniques. Another technique for testing programs and finding
bugs is graph abstraction, which is described by Allen et al. (1976) [3] and Ferrante
et al. (1987) [14]. In general, this concept is well known and generally applicable for
improving efficiency of opimizations or analizing programs. The tool SSLint proposed
by He et al. (2015) utilizes a Program Dependence Graph (PDG) to find faulty usages of
SSL APIs [19]. In the cryptographic domain, crypto-detectors are used to find misuses of
APIs. These softwares are critical for avoiding security vulnerabilities which means that
they need to be tested. Ami et al. (2022) introduce the MASC framework to introduce
faulty usages of cryptographic APIs in Java programs to test detectors [4].

Implementations of ZKPs. For the calculation and verification of ZKPs, zk-
SNARK is used [27]. It implements the witness generation, prover and verifier while
keeping the proof small in terms of size (succinctly), distributable without the need of
further communication (non-interactively), correct and infeasible to compute a fake proof
(argument of knowledge) and without revealing any private information in the proof
(zero-knowledge).

Vulnerabilities within ZKPs Implementations. While testing of the underlying
compiler is important, Chaliasos et al. (2024) defined 3 categories of vulnerabilities,
where only one of them is related to the computational part of the system [6]. The others
are under-constrainted and over-constrainted programs in a way that fake proofs are
possible or real proofs are not verified correctly. Additionally, interaction between the
applied systems may also be faulty and introduce security risks. This emphasizes the
fact that the testing of the ZKP infrastructure is necessary, but it does not replace the
testing of other layers.

Analysis of ZKP Implementations. A tool for analyzing ZKP written with
Circom is Circomspect [12]. It statically analyzes programs and flags all usage of the
assignment operator without constraint <−− as dangerous. Instead, the constraint
assignment operator <== is the safer option in most cases because it adds constraint
assertions which fail on invalid states. This ensures, that no fake proofs are possible.
However, by finding the occurrences, bugs are not found immediately. A review must be
done to verify the correctness of the program.

8



CHAPTER 3
Methods

In this chapter, the newly designed testing framework and each component for testing
ZKP infrastructure is described. First, an overview of the structure is given, which shows
the data flow within the system. Afterwards, the implementation of the metamorphic
transformations and oracles are discussed, followed by the input and configuration
generation. At the end, additional adaptations are mentioned to tackle various issues.

3.1 Testing Framework
To increase the diversity of the test cases, a number of components work together to
generate new test instances, execute them against the target system and collect the results.
Figure 3.1 gives an overview of the architecture with the order in which the components
are called to contribute to the result. In each iteration, the next seed program is chosen
from a fixed selection of programs depicted on the left top of the figure. This program P0
is fed into the metamorphic transformer to generate new programs P1...n which deviate
from the original one by the applied transformations. Additionally, for each program,
input files I11...1m to In1...nm are generated alongside the transformations. The original
program receives its own input files I01...0m. The settings for the transformations are
configured by a generated test configuration, which is located on the top right part of
the figure and fed into the metamorphic transformer and input fuzzer. In each run, this
configuration is randomly created, which is described in more detail in the Configuration
Fuzzer section. Afterwards, all created programs including the original program are
compiled, executed and verified.

After running each test case, a number of details are collected. Most obviously, the
success or failure of the test run is documented and logs are stored to enable backtracking
of potential errors. Additionally, the execution time is measured for each step, namely
the input generation, the generation of a new program from a seed program, the compile
time of the ZKP compiler, the witness generation and the zk-SNARK execution. Before
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3. Methods

Figure 3.1: The proposed testing framework consists of the components shown in this
figure. The seed programs get transformed into numerous test instances, which include
the transformed program with an input file. Results are stored for evaluation.

the execution, the compiler is instrumented to enable the possibility of collecting coverage
data during the test run. The data thereof is used to analyze the effectiveness of the tool
and gives a hint on which regions need to be tested in more detail. After the execution,
an aggregated report is generated where the number of successful programs and paths
to errors are listed. Besides the success and error messages, a third category, namely
warnings, are introduced which are configured to ignore certain error messages such as
already found bugs or expected failure due to unsatisfied constraints or assertions within
the tested programs. The collected results are further discussed in Chapter 4.

3.2 Metamorphic Transformations
The first step for more diversity in the test instances is the automated creation of new
programs. As shown in the overview above, each iteration of the testing cycle starts by
picking a new seed program from a fixed set of programs. In Figure 3.2, the left side shows
an example of a seed program implementing a simple multiplication for the two input
signals a and b. The right-hand side is a transformation generated by the metamorphic

10



3.2. Metamorphic Transformations

pragma circom 2 . 1 . 8 ;

template M u l t i p l i e r 2 ( ) {
s i g n a l input a ;
s i g n a l input b ;
s i g n a l output c ;
s i g n a l output d ;

c <== a ∗ b ;
d <== a ∗ b ;

}

component main = M u l t i p l i e r 2 ( ) ;

pragma circom 2 . 1 . 8 ;

i n c l u d e " c i r c o m l i b / comparators . c ircom " ;

template M u l t i p l i e r 2 ( ) {
s i g n a l input a ;
s i g n a l input b ;
s i g n a l output c ;

c <== a ∗ b ;
component eq1 ;
eq1 = IsEqual_Copy ( ) ;
eq1 . in [ 0 ] <== ( a ∗ b ) ;
eq1 . in [ 1 ] <== <maxNumber>;
d <== ( ( a ∗ b ) + (1 − eq1 . out ) ) ;

}

component main = M u l t i p l i e r 2 ( ) ;

Figure 3.2: This figure shows two programs where the left one is the seed program
and the right side code is transformed with the ConstraintAddModificationTemplate
transformation which has a greater than or equal output relation. < maxNumber >
hereby stands for the highest non-overflowing number configured.

transformer, which takes the seed program as an input. A component is used to check
for a possible overflow when adding to the multiplication. Afterwards, the multiplication
is extended to add one if no overflow occurs. In addition to the transformed program, an
output relation file is generated, which is needed to verify the executions with the oracles
described in the next section. Each output signal gets assigned one out of three possible
relations, namely equal, greater than or equal and less than or equal. They describe the
relation between the outputs of the original execution compared to the execution of the
transformed program. In case of the example, the output relation greater than or equal
is applied.

Depending on the configuration, different transformations are applied. In this paper,
19 unique operations are described and used for the evaluation in Chapter 4. Table 3.1
shows a list with a short description of each available transformation. To increase the
diversity even more, chaining of transformations is possible. However, there are some
exceptions to that. To ensure the output relation, in any given chain of operations, only
either greater than or equal or less than or equal shall be applied. The equal relation is
not effected by the restrictions and can be combined arbitrarily. By default, the equal
relation does not overwrite any previous relations set in the chain. For example, if a
signal a already has the output relation greater than or equal and an equal operation is
applied, the output relation for a does not change.

To explain each transformation, a few terms need to be defined. Each Circom program
comprises templates and functions. The difference between them is the allowed types
which are embedded within the structure. Functions do not allow signals or constraints
but only simple variables. Signals can be used for inputs, outputs or intermediate results
which do only allow quadratic constraint assignments of the form A ∗ B + C. This is
the restriction of the ZKP concept. Constraints are assertions to make sure a given
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3. Methods

Metamorphic Transformations
Name Output Relation Description
InputSignalOrder equal Changes the order of the input signals in the main template

(Incompatible with AddInputSignals and DuplicateState-
ments)

Duplicate equal Duplicates a template or function
Log equal Adds a log statement to the main template
Assert equal Adds an assert statement (tautology) to the main template
DeadcodeIfFalse equal Adds an if statement with an always false condition to the

main template
AddInputSignals equal Adds new input signals to the main template (Incompatible

with InputSignalOrder)
ChangeInputSignalDimension equal Changes input signal dimensions in the main template
DuplicateStatements equal Duplicates all statements in the main template and rename

its variables (Incompatible with InputSignalOrder)
LibCall equal Adds a library call to the statements in the main template
AddZero equal Adds zero to an expression in the main template
SubZero equal Subtracts zero to an expression in the main template
MulOne equal Multiplies one to an expression in the main template
DivOne equal Divides by one with an expression in the main template
ConstraintAddModification greater than or

equal
Adds either 1 (or 0 for overflow values) to the last con-
straint in the main template

ConstraintMulModification greater than or
equal

Multiplies either by 2 (or 1 for overflow values) to the last
constraint in the main template

LoopConstraintAddModification greater than or
equal

Adds either 1 (or 0 for overflow values) to the last con-
straint in the main template in a loop

ConstraintSubModification less than or equal Subtracts either 1 (or 0 for overflow values) from the last
constraint in the main template

ConstraintDivModification less than or equal Divides the last constraint in the main template by a
random number while removing the remainder beforehand
to get an integer as a result

LoopConstraintSubModification less than or equal Subtracts either 1 (or 0 for overflow values) from last
constraint in the main template in a loop

Table 3.1: This table summarizes the metamorphic transformations with their respective
output relation.

intermediate or output signal fulfills the defined quadratic expression. In contrast to
signals, variables do not have these limitations, but are not used for template inputs
or outputs. Templates allow a combination of signals and variables and provide their
results via an output signal. Each program must have one main template, which is the
defined starting point of the execution. During that, templates from other sources may
be imported to call templates or functions of libraries to extend the functionality.

In the following paragraphs, we will discuss the transformations in more detail.

InputSignalOrder. This transformation switches the order of input signals in the
main template by swapping two random signals. For signals a, b and c in this exact order,
one valid transformation is the ordering c, b and a. The results are not affected by the
swapping and therefore, the output relation does not change for any signal.

Duplicate. When applying this transformation, a random template or function
is copied and placed with a new unique identifier appended to its name. This new
structure is never called and serves as a dead code extension for more variety in the test
instance. The original template or function which is copied does not change in any way
and therefore the output relations stay the same for all signals.

12



3.2. Metamorphic Transformations

Log. The transformation inserts a log statement into a random position of the main
template. A random string is printed in the output console, which does not affect the
output relations.

Assert. Similar to the Log transformation, Assert adds an assert statement with a
tautology as argument. The execution must not stop at this statement and is not affected
by it, resulting in the same output relations as before.

DeadcodeIfFalse. To test if-statements and their conditions, this transformation
adds an if-statement with a contradiction as condition at a random position in the
main template. As the body of the if-structure, a random number of statements from
below the inserting position are copied. During the run of the program, the body of
the if-statement must not be executed and therefore the output relations should not be
affected. For the expressions within the condition, a random operator gets picked from
the set [<=; >=; <; >; ==; ! =; ||; &&]. For the boolean OR (||) and AND (&&), two
additional expressions are generated, which form a contradiction.

AddInputSignals. This transformation adds a new signal with a unique name to
the main template. In addition to that, the input files for this newly generated program
must be modified with a value for the new signal. While adding, nothing affects the
original execution, which preserves the output relations.

ChangeInputSignalDimension. When applying this transformation, a random
zero dimensional input signal (i.e. a non-array signal) is chosen and dimensions are
added to it. To introduce more diversity while keeping the total array size reasonable for
execution, 1 out of 3 possible adjustments gets picked. The first option adds a single
dimension with a high size (i.e. up to 10000). In the second one, up to 3 dimensions are
chosen while keeping each dimension at medium size (i.e. up to 100). The last option
introduces up to 100 dimensions with each dimension only having a size of 1. Similar to
the AddInputSignals transformation, the input files are adjusted by copying the original
values of the zero dimensional signal to all array positions. Also, in all statements which
use this input signal, the access needs to be adjusted as well. For that, all calls to the
former zero dimensional signal gets replaced by a random access within the new array.
If the former signal is called a and 3 dimensions with size 10, 20 and 30 are added, a
generated access may be a[3][17][24]. The described changes to the program should not
affect the output signals in any way and the output relations stay the same.

DuplicateStatements. In contrast to Duplicate, DuplicateStatements does copy
the statements within the main template and copies them below the original code within
the same template. To preserve validity of the code, all names are renamed by appending
a unique identifier. This operation also adds new input and output signals which need to
be added within the input files and the output relations. All new outputs are referred
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to the output signal they are copied from. This process is described in more detail in
Section 3.3.

LibCall. Between the statements of the main template, 1 out of 4 templates picked
from the circomlib libraries are called. This call includes the declaration of the template
and setting the input signals thereof. The outputs are ignored, which results in no
changes within the output signals from the main template and output relations.

AddZero and SubZero. Both transformations work similarly. They pick a random
expression to add (AddZero) or subtract (SubZero) zero to it. The result of the expression
should remain the same. Therefore, no changes to the output relations are applied.

MulOne and DivOne. When applying these transformations, a random expression
is chosen and one is multiplied (MulOne) or the expression is divided by one (DivOne).
Hereby, the results of the expression remain the same and no output relations change.

ConstraintAddModification and ConstraintSubModification. These two
transformations change the output relations to greater than or equal or less than or equal
respectively. Both pick the last constraint in the main template and add (ConstraintAd-
dModification) or subtract (ConstraintSubModification) one from the expression. This
is only done, if no over- or underflow would happen after the operation is applied. To
detect this state, a separate mechanism is placed before the calculation. Figure 3.2 shows
an example of a ConstraintAddModification transformation. The program is read and
transformed on the output signal d. Before the assignment, a check for overflows is added,
where the original value is checked against the maximum value. eq.out returns 0 if no
overflow occurs and 1 is added in the expression. Otherwise, 1 gets inserted for eq.out
and 0 is added to the expression. This results in an output relation of greater than or
equal to the output signal d. All other untouched output signals get the default output
relation equal.

ConstraintMulModification and ConstraintDivModification. Similar to the
transformations in the previous paragraph, these two multiply (ConstraintMulModifi-
cation) or divide (ConstraintDivModification) the last constraint in the main template.
Again, an over- and underflow mechanism is placed before the constraint statement.
The output signal which is assigned in the constraint either gets the output relation
greater than or equal or less than or equal. On the left side of Figure 3.3, the Constraint-
MulModification transformation is applied. The original calculation (a ∗ b) is assigned
to a temporal signal tmp1 for calculating intermediate results. To ensure, that the
multiplication by 2 at the end does not overflow, the next 4 lines check, if tmp1 is less
than or equal to the maximum allowed number divided by 4. The divisor is picked such
that the calculation within the template LessEqThan_Copy which is copied from the
circomlib does not overflow on its own. This issue is discussed in more detail in Chapter
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// b e f o r e t r a n s f o r m a t i o n

c <== ( a ∗ b ) ;

// a f t e r t r a n s f o r m a t i o n

s i g n a l tmp1 ;
tmp1 <== ( a ∗ b ) ;
component l t e 3 ;
l t e 3 = LessEqThan_Copy ( 2 5 2 ) ;
l t e 3 . in [ 0 ] <== tmp1 ;
l t e 3 . in [ 1 ] <== (<maxNumber> / 4 ) ;
s i g n a l tmp2 ;
tmp2 <== ( ( 2 ∗ l t e 3 . out ) + (1 − l t e 3 . out ) ) ;
c <== ( tmp1 ∗ tmp2 ) ;

// b e f o r e t r a n s f o r m a t i o n

c <== ( a ∗ b ) ;

// a f t e r t r a n s f o r m a t i o n

var tmp2 ;
tmp2 = ( a ∗ b ) ;
component l t 1 ;
l t 1 = LessEqThan_Copy ( 2 5 2 ) ;
l t 1 . in [ 0 ] <== tmp2 ;
l t 1 . in [ 1 ] <== 7656 ;
var i 3 ;
i 3 = 0 ;
whi l e ( i 3 < 7656) {

i 3 = ( i 3 + 1 ) ;
tmp2 = ( tmp2 − (1 − l t 1 . out ) ) ;

}
c <== tmp2 ;

Figure 3.3: On the left side of this figure, an example for the ConstraintMulModification
transformation is shown. The right side is an example for the LoopConstraintSubModi-
fication transformation, where the number 7656 is randomly generated and placed to
determine the number of iterations for the loop. Both of them only show the code which
is affected. < maxNumber > hereby stands for the highest non-overflowing number
configured.

5. The last 3 lines sets the multiplication factor depending on the overflow check and
assigns the multiplication to c.

LoopConstraintAddModification and LoopConstraintSubModification. Two
transformations to iteratively add (LoopConstraintAddModification) or subtract (Loop-
ConstraintSubModification) one from the last constraint in the main definition. Again,
either the greater than or equal or less than or equal output relation is applied for
the corresponding signal. A random number is generated to determine the number of
iterations for the while loop. Inside the loop, a temporal variable which holds the original
expression is increased or decreased by one in each iteration. After the loop, the temporal
variable is assigned to the output signal. In advance, an over- or underflow check is placed.
Hereby, the number of iterations for the loop is considered. If during any iteration the
value would over- or underflow, nothing is added to the expression. Figure 3.3 shows
an example of the LoopConstraintSubModification transformation on the right side. A
temporal variable stores the original result and then an underflow check takes place to
see, if tmp2 will be decreased below 0. In this example, the while loop gets executed 7656
times which is randomly generated by the metamorphic transformer. In each iteration of
the loop, tmp2 is reduced by one if there is no underflow happening. At the end, tmp2
gets assigned to the output signal c resulting in an output relation of greater than or
equal.
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Further considerations

There are also incompatibilities between the transformation which shall not be chained
together, namely InputSignalOrder which cannot be combined with AddInputSignals or
DuplicateStatement and vice versa. This is due to the restrictions of the output file given
by the actual system which is used for the evaluation. The file only stores the results of
the signals in their order of declaration, without their respective names. When changing
the order of the signals with a new introduced signal, the backtracking of signals is
wrongly applied due to changes in the ordering.

To ease the process of program manipulation, the seed program is parsed and stored into
an Abstract Syntax Tree (AST). This object is modified by the transformer and then
written back to a new file.

3.3 Oracles
After each run of a test instance and its respective seed program, the results are compared
with different oracles. These comparisons are done for each output signal of a program,
where the output relations may vary for each of them. Alongside the mutated program,
the transformer also produces an output relation file which maps the signals to their
respective relations with the signals of the seed program.

During the verify-step, each output signal gets checked with one of the following oracles:

• Equals Oracle - Checks if the output signal of the transformed program equals
the original one

• Greater than or Equals Oracle - Checks if the output signal of the transformed
program is greater than the original one

• Less than or Equals Oracle - Checks if the output signal of the transformed
program is less than the original one

For each check, a log is stored, which is included in the aggregated final report. There
is also a special case where an output signal of the newly generated program has no
respective signal in the seed program. This happens when a new signal get added to
introduce more complexity for testing. In the respective output relation file, this special
case is covered by referencing the newly introduced signal to an already existing one. For
example, the DuplicateStatements transformation duplicates each signal and the logic
of the seed program. When a is the original output signal, the transformed program
contains a copy of a called a′ and a new copied output signal b′. In the output relation
for a′ and b′ are equal to a. That way, a new relation is added, which can then be
independently modified by the next step of the transformation chaining.
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3.4 Input Fuzzer
Another option to increase the variety of test data is by generation of different input
values. The input fuzzer takes a seed program and creates an input file which fits the
needs of the input signals. The allowed input signals for ZKPs are rather trivial and only
allow unsigned numbers or arrays thereof, which may be arbitrarily nested. To increase
the number of tests, multiple input files are generated, which all have different values for
their input signals.

In addition to the features described in Section 3.2, the metamorphic transformer also
copies the input files of the seed program for each generated program. If a transformation
with input changes is applied, each input file is altered to fit the new program accordingly.

3.5 Configuration Fuzzer
The last component to describe is the configuration fuzzer which takes care of randomizing
the settings of the system. The configuration is only generated at the beginning of the
execution and configures the transformer and input fuzzer for all following transformations.
In the following list, all configurable values are described:

• Random program seed - The starting seed as integer value for the metamorphic
transformer when generating new programs. This seed’s value is increased by one
for each new generated program.

• Random input seed - The starting seed as integer value for the input fuzzer
when generating new input files. This seed’s value is increased by one for each new
generated input file.

• Number of transformations per seed program - Defines the number of
times one seed program is fed into the metamorphic transformer to generate new
programs.

• Number of inputs per seed program - Defines the number of times one seed
program is fed into the input fuzzer to generate new input files.

• Maximum number of metamorphic transformation chaining - Defines
the maximum number of metamorphic transformations which is used during one
execution of the metamorphic transformer. For each run of the transformer, the
actual number is determined randomly, depending on the current random seed
value.

• Set of equal transformations - A set of equal transformations considering the
restrictions in Section 3.2.

• Set of greater than or equal transformations - A set of greater than or equal
transformations which is empty, if any less than or equal transformation is chosen.
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• Set of less than or equal transformations - A set of less than or equal
transformations which is empty, if any greater than or equal transformation is
chosen.

The option to automatically generate configurations enables the possibility of swarm
testing to test with different settings [16]. Multiple instances of the testing framework
run in parallel while only the configuration changes. This is the final measure to increase
the diversity in the testing space.

3.6 Additional Adaptations
While the overall structure works fine, there are some extra adaptations to ensure a
smooth execution.

In some cases, the seed programs need to be pre-processed for several reasons. Depending
on the parser and write back, it may be necessary to rename variable names to a unique
name. In the case of the actual implementation, for loops are transformed into while
loops. The declaration of the iterating variable gets moved before the loop block, which
may result in errors when writing back due to non-unique variable names. Also, some
programs collected from the dataset are outdated and use invalid syntax. To test the
newest version of the compiler, all seed programs need to be compatible with that exact
version. Due to the simplicity of the input fuzzer, the seed program also needs to have
constant input array sizes. The size of an input signal array can be calculated with an
arbitrary expression or via a function. As a pre-processing step, these expressions need
to be changed to a constant value to determine the size of the array which needs to be
generated and placed in the input file.

Although the artifacts generated during the execution of the system may contain valuable
information in case of a bug, the majority of the results are correct and there is no
knowledge gained by them. All generated artifacts build up to a significant amount,
resulting in unnecessarily filled disc space. As a countermeasure, a cleaning process takes
place whenever a test case is successful. This way, only artifacts of faulty test instances
are stored for review.
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CHAPTER 4
Results

The goal of the testing framework is to find bugs in the underlying infrastructure and
provide a randomized testing mechanism which runs automatically on a regular basis.
Besides finding bugs already present in the code base, regression testing is also possible
when running with the same seed programs.

For the testing environment, the Circom [5] compiler with version 2.1.8 is used, which is
the latest released version at the time of the execution. In our test runs we found 3 bugs
where one of them was already reported by an independent individual. The remaining
two were reported and one of them is already fixed and is published with the next release.

In this chapter, the dataset and evaluation of the results is presented.

4.1 Datasets
The dataset of seed programs is collected by querying Circom programs from GitHub
repositories. The libraries imported in the seed programs are manually added, and the
references are changed accordingly. For the final evaluation, a total of 109 seed programs
are collected and evaluated.

During the evaluation, all seed programs are considered in each run and the results are
collected from runs with different configurations.

4.2 Evaluation
For the evaluation, the proposed system is implemented in Rust to extend the Circom
ecosystem, where the compiler is also written in this language. The test runs are
performed on a server with 512GB of RAM and 2 AMD EPYC 7702 64-core processors.
To get a reliable measure of time, the cores are limited per run and the number is pointed
out in the experiments below.
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In the implementation of the configuration fuzzer, boundaries for possible values are set
to limit the runtime and overall complexity. In Table 4.1, the boundaries are shown.

4.2.1 Execution Time
In addition to the time it takes to run the tests, the overhead added by the coverage tooling
is also measured. Therefore, the dataset is executed ten times. The first five runs utilize
the code to collect the coverage data within the Circom compiler, while the remaining
five runs do not add anything to the underlying infrastructure. All executions use 32
cores of the described hardware to make the results comparable. Table 4.2 summarizes
the average results of all runs. In total, the execution without coverage took 1614,01m
while with the coverage, 3145,27m are needed which results in an increase of 94,87%. The
measurements are split up in 6 different steps, namely Compile Step, Circuit Fuzzer, Input
Fuzzer, Make Execution, SnarkJS Execution and Witness Generation. All executions
except the Compile Step have similar execution times with and without coverage, while
the compilation takes longer with coverage to finish. On average, 138,95s are needed if
the coverage is enabled while without it, only 3,91s are needed. The overhead for the
instrumentation needed to collect the coverage is therefore significant and is turned off
for all further measurements.

Another measure which is taken is the time until a bug occurs. For this reason, the 5
executions without the coverage data collection are analyzed. Figure 4.1 shows a diagram
displaying all runs and the average time until bug in minutes. On average, the first bug

Configuration Fuzzer Boundaries
Value Name Boundaries
Random program seed Random 32-bit unsigned integer
Random input seed Random 32-bit unsigned integer
Number of transformations per seed
program

Fixed at 5

Number of inputs per seed program Fixed at 10
Maximum number of metamorphic
transformation chaining

Random value between (inclusive) 1 and (ex-
clusive) 25

Set of equal transformations Contains any available equal transformation
with a chance of 50% (minimum set size of 1)

Set of greater than or equal transfor-
mations

Contains any available greater than or equal
transformation with a chance of 50% (minimum
set size of 1 if less than or equal set has size 0)

Set of less than or equal transforma-
tions

Contains any available less than or equal trans-
formation with a chance of 50% (minimum set
size of 1 if greater than or equal set has size 0)

Table 4.1: This table shows the boundaries for the values generated by the configuration
fuzzer.
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Execution Time
Scope Avg. Time with

Coverage
Avg. Time without
Coverage

Compile Step 138,95s 3,91s
Circuit Fuzzer 0,19s 0,18s
Input Fuzzer 8,98ms 9,20ms
Make 19,74s 19,29s
SnarkJS 38,81s 37,50s
Witness Generation 35,94ms 35,02ms
Total 3145,27m 1614,01m

Table 4.2: This table shows a summary of the execution time with different settings.
Each one is an average value of 5 complete runs on the dataset, and all of them utilize
32 cpu cores.

is found after 569,87m. The second one takes 1214.27m to be found. Note, that only two
bugs are found during the duration of these runs instead of the 3 bugs mentioned above.
This is due to the fact, that the logging bug described further down in this chapter was
discovered due to a bug in the developed tool, which happened to also reveal a bug in
the compiler. Two of the five executions did only reveal one bug. This is due to the
fact that the configuration for these runs didn’t allow the bug to occur, which shows the
importance of swarm testing in this setting.
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Figure 4.1: In this diagram, the time until a bug is found for each individual execution is
printed.
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4.2.2 Coverage
In addition to the time, the coverage of the target compiler is measured, as briefly
introduced in the previous paragraphs. To inspect and collect this coverage data, the
Circom compiler is instrumented with code that writes the additional information into
separate files for each execution.

We conducted a measurement on the entire dataset five times and generated a random
configuration for each of them to see how much coverage the transformations add. Table
4.3 shows the coverage results where the coverage is measured in region, function and
line coverage. The value for the coverage of only the seed programs, only the transformed
programs and the total coverage are collected and the average value of all runs is computed
and shown.

Overall, the coverage categories correlate with each other and therefore only the line
coverage is discussed in detail. The coverage for seed programs is 32,95% while the
coverage for the transformed programs is on average 32,29%. The fact that the coverage
of the transformed programs is less comes from the implementation process of writing
parsed programs back to the file. Some structures are simplified or replaced by others,
which naturally reduces the coverage. The total coverage is at 33,02%. The gain by the
transformations is 0,07% which is very low considering the amount of transformations in
use. The reason for that is the difficulty on how to design metamorphic transformations
introducing novelty into the programs while being generally applicable. This topic is also
discussed in Chapter 5.

4.2.3 Regression Testing
The practical use case of regression testing is done by running the same 5 configurations
on an older version of the Circom compiler. In our tests, we chose the version 2.1.0
and compared the results with the found bugs in the other runs. Upfront, there is one
limitation which needed to be tackled, namely the version settings in the code. If the
version in the file requires a newer release of the compiler, the compilation process fails
immediately and prints out a corresponding message, which is the expected behavior. To
counter this, all executions producing this message are ignored and cannot be evaluated.

As expected, the results also produce the already found bugs which are present in the
newer version. However, these runs did not reveal any new errors. One partial reason

Coverage
Region Cov. Function Cov. Line Cov.

Avg. seed program coverage 41,04% 40,29% 32,95%
Avg. transformed coverage 40,86% 39,85% 32,29%
Avg. total coverage 41,18% 40,40% 33,02%

Table 4.3: This table shows the average results for the coverage on the entire dataset.
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for that is the trimmed pool of seed programs due to version incompatibilities. Another
reason is the need for more coverage to really challenge as many paths in the compiler
code as possible. Nevertheless, this can be repeated many times in all different versions
to foster the regression testing process.

4.2.4 Found Bugs
During the entire testing phase and the evaluation of the system, a total of 3 bugs got
revealed for the compiler version 2.1.8. 2 bugs are forwarded to the maintainers and the
third one was already reported by an independent individual. One of them is already
fixed at the time this paper is written and is released in the next version. In the following
paragraphs, these bugs are discussed.

The first issue produces invalid artifacts when generating specific code with the Circom
compiler. When introducing a line break into the code within a log statement string,
this line break is copied into the CPP file, which is part of the artifacts produced in
the compile step. As a result, an error message is printed when trying to work with the
invalid artifact, but no error message is thrown during the compile step. Figure 4.2 shows
an example of the logging bug and its message.

A second issue is reproduced when having a program with over 256 input signals. The
compiler does not exit without an error and also does not shut down gracefully. The
expected behavior would be to either preferably not depend on the number of input
signals or to shut down gracefully.

pragma circom 2 . 1 . 8 ;

template M u l t i p l i e r 2 ( ) {
s i g n a l input a ;
s i g n a l input b ;
s i g n a l output c ;

l o g ( " abc
abc " ) ;

c <== a ∗ b ;
}

component main = M u l t i p l i e r 2 ( ) ;

bug . cpp : 8 4 : 8 : warning :
miss ing t e r m i n a t i n g " c h a r a c t e r

84 | p r i n t f ( " abc
| ^

bug . cpp : 8 4 : 8 : e r r o r :
miss ing t e r m i n a t i n g " c h a r a c t e r

84 | p r i n t f ( " abc
| ^~~~

bug . cpp : 8 5 : 4 : warning :
miss ing t e r m i n a t i n g " c h a r a c t e r

85 | abc " ) ;
| ^

bug . cpp : 8 5 : 4 : e r r o r :
miss ing t e r m i n a t i n g " c h a r a c t e r

85 | abc " ) ;
| ^~~

Figure 4.2: This figure shows an example how to reproduce the log bug and the cor-
responding error output when compiling the CPP artifacts produced by the Circom
compiler.
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The last found bug happens during witness generation. During the generation, an
assertion within the CPP code fails. The error message printed by the compiler says:

fr.cpp:166: void Fr_fail: Assertion ‘false’ failed.

A similar bug is already reported by an independent individual and fixed by the developers
in Circom version 2.1.9. To validate, that this bug is the same as we found during our
tests, we executed the program which revealed the bug with version 2.1.9 which is newly
released at the time of evaluation of the bugs. The run succeeds, and the bug is therefore
fixed.

In addition to the found bugs, in some cases, the transformation of seed programs resulted
in large programs not allowed by the ceremony setup. These instances provide a way of
testing this limit in a randomized way.
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CHAPTER 5
Discussion

While metamorphic testing is suitable for testing [25][29], the process for testing the
Circom compiler has some extra challenges which need to be overcome. In the following
sections, the limitations are described and a conclusion with an outlook for the future is
given.

5.1 Limitations
While the proposed framework found bugs in the compiler, there are limitations which
reduce the effectiveness and the potential of this solution. One of the biggest factors is
time. While the transformation of a program is negligible, the compilation and execution
process takes most of the time, as shown in Chapter 4. This limits the amount of test
instances per time and therefore reduces the effectiveness.

Adding more transformations is also a way to increase the probability of finding bugs.
However, it is hard to design transformations which are generally usable. Trivial ones
are easier to implement, but do not contribute as much as more complex ones. While
adding more seed programs helps with diversity, those programs are very likely to not be
faulty because they are already tested by the owners which use them in their software.

As described before, the limitation of fuzzing the input files forces changes in the seed
programs before sending them into the system. To tackle this, an expression evaluation
is needed to allow arbitrary input signal dimensions. In addition to that, the input fuzzer
operates in a purely random manner, meaning that there is no focus on edge cases. An
additional analysis of the program would enable the generation of input values focusing
on these special cases.

The parser used in the implementation of the testing framework simplifies the code before
storing it in the AST. This causes the code which is written back after transformations to
miss out on certain structures. Part of the lost information are comments and for-loops,
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which are converted into while-loops. Therefore, these structures are only tested with the
seed programs, while the transformed versions do not contain any comments or for-loops.
This however also brings some novelty into the generated programs.

Configurations are also randomly generated and therefore special cases are unlikely to be
covered. For example, applying only one transformation and chaining it to itself multiple
times is possible, but statistically rare. Multiple fuzzer modes would bring the possibility
of having specialized and purely random configurations for the system.

5.2 Conclusion
In this thesis, we proposed a new testing framework for ZKP infrastructure utilizing
metamorphic testing and swarm testing. Moreover, metamorphic transformations are
described and applied during execution. The results are collected by running the system
multiple times with 109 seed programs and the transformations thereof. The coverage of
the compiler code is measured and reached a line coverage of 33,02%. Additionally, the
execution is tested with and without coverage instrumentation to show the overhead.

Overall, the testing framework enabled us to find 3 bugs, which is a success. However,
the time-consuming executions and missing coverage limited the effectiveness of our tool.
There is still work to be done in this domain, such as finding new complex metamorphic
transformations and trying other configuration settings to force other edge cases. Also,
the generation of inputs can be improved by allowing general expressions for array sizes.
Besides metamorphic testing, the framework may also be extended by other similar forms
of testing, such as EMI [22].

The bugs we found are forwarded to the developers of the Circom compiler and are
partially fixed at the time of writing this thesis. The result also motivates a further look
into this topic to continue the testing of this system by extensions of our tool or other
similar tools. We are looking forward to seeing the automated testing techniques evolve
further and increase their efficiency as well as the amount of use cases which they are
applicable for.
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Overview of Generative AI Tools
Used

While writing this thesis, no generated text from AI tools is used. The text in this thesis
is written by myself and only corrected by LanguageTool (https://languagetool.org/de)
which provides feedback for grammar and spelling.
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Übersicht verwendeter Hilfsmittel

Beim Schreiben dieser Arbeit wurde kein generierter Text von KI Tools verwendet. Der
gesamte Text dieser Arbeit wurde von mir geschrieben und nur durch LanguageTool
(https://languagetool.org/de) verbessert, welches Feedback zur Grammatik und zur
Rechtschreibung gibt.
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