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Abstract

In recent years, large language models have become prominent tools for a variety of
reasoning tasks, ranging from coding to solving puzzles. However, as most of these
models are offered as black-box online services, testing their reasoning performance
using traditional benchmark datasets may not reflect their true capabilities due to the
memorization of public data. To solve this problem, I establish as a main contribution
a framework that automatically generates structured datasets of formal games, which
can be used to evaluate the out-of-distribution capabilities of language models offered
as a service. The games generated by our framework are based on a novel domain-
specific language I call Grid-Games. Furthermore, I introduce a complexity metric that
categorizes each generated game based on intrinsic task difficulty. To test the distribution
shift of known games and generated games, I conduct experiments on three prominent
language models and compare the performances. Our main finding is that there exists a
large shift in performance between the new and unknown Grid-Games, which are not
included in any training data, and the known game of Tic-Tac-Toe, that I used as an
exemplary game that likely was in the training data of all tested large language models.
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CHAPTER 1
Introduction

Since the inception of ChatGPT in November of 2022,1 large language models (LLMs)
have become a household name. As with any technical artifact, continuously testing
these models to measure their performance is necessary to ensure stable results. However,
for most of the current state-of-the-art models, such as GPT 4o [Ope], Claude 3 [AI],
and others, there is no indication of which data was used for training, even if weights
are public. As with any LLM, test data should be out-of-distribution. To approach this
issue, I propose automatically generating structured datasets of formal games to evaluate
LLMs’ out-of-distribution (OOD) reasoning capabilities.

The previous methods indirectly assess the state-of-the-art systems of artificial intelligence
by measuring whether a system was able to solve the game (and how well the system
compares to humans –such as by using Elo scores [Elo78]– over multiple games, or whether
it beats humans on average). Our approach is universal and can assess any LLM or AGI
system that receives textual inputs and outputs.

Our main use case pertains to language-model-as-a-service (LMaaS) context [MPF`24],
such as GPT-4 [Ope23], Claude 2.1 [Ant], Bard [Gooa], Gemini [Goob], and others, where
users have little control over the LLM, since full papers, and, in some cases, even model
cards, are missing.

Since new LLM models are silently released, it is necessary to continuously test the
models in production environments to ensure that their performance on production tasks
remains unchanged. For reasoning tasks, this is challenging since typically little is known
about the training data LMaaS ingest [Ope23]. If a model has good performance on a
dataset, this does not exclude that the model has simply memorized it - hence the need
for generative datasets. By using a data generator instead of a data set to generate new
unseen data points, our approach is largely immune to the current widespread problem
that public evaluation benchmarks of LLMs are rendered meaningless in this way.

1https://openai.com/index/chatgpt/
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1. Introduction

At a high level, our approach works by probabilistically sampling an entire game out
of an infinite number of possible games, many of which are new and not covered by
existing training data sets or other public datasets, together with a synthetic solver that
supervises the games’ reasoning steps and verifies a reasoning step candidate is correct.
These are embedded in a framework where such a generated game is explained, in natural
language, to an LLM. The LLM then has to solve several challenges related to the game,
that are designed to test the cognitive ability of game understanding:

• Understanding the description of the game’s rules and win conditions.

• Reading the natural language representation of the current game state and relating
it to the "original" mode of representation (e.g. for board games, I may choose to
represent a grid as a list of assignments for each position).

• Deducing which actions are legal using the game state and the rules.

• Taking an action that may lead to satisfying a win condition given by the rules.

An overview of our approach is displayed in Figure 1.1. The Solver records the LLM
output generated by the Prompter and monitors the LLMs’ progress in playing (a part
of) a sampled game. The Metric module then aggregates all of the played-out game
steps to assess the level of intelligence displayed by the LLM. This entire pipeline is fully
automatic.

Figure 1.1: Architecture of our approach to generate OOD data

Concluding, I identify the following problems that current reasoning benchmarks for
LLMs experience:

• LLMs are trained on data that, therefore, should not used as testing data;

• If new test datasets are offered publicly, it is not possible to exclude them from po-
tentially being used to pre-train LLMs, which invalidates that dataset for reasoning
capability evaluation.
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Our approach solves both of these problems. To analyze the differences between in-
distribution games and those generated by our framework, I arrive at the following
research question for this thesis:

Is there a distribution shift between out-of-distribution games generated by our approach
and in-distribution games?

To answer this research question, I will propose a framework that can automatically
generate and evaluate formal games in a form that is processable by LLMs. Furthermore,
I will provide a complexity measure that is used to categorize the generated games in
Section 3.3.

Since the games are generated and diverse, I expect that fine-tuning on an existing
subset of formal games will not dramatically affect overall reasoning capabilities, as
benchmarked on another generated game. I note, however, that if large numbers of
formal games are generated, and the LLMs are fine-tuned on them, I expect it to raise
the reasoning abilities of LLMs – this is consistent with the fact that humans, when
systematically training their formal reasoning skills on various tasks, gradually become
better. Nonetheless, this doesn’t invalidate our approach.

Summarizing, our contributions are:

• I introduce, to our knowledge, the first fully automatic regression test based on
games for text-based systems, such as LLMs, that measures the reasoning capabilities
of such a system in an out-of-distribution way (Section 3.4);

• Our approach is modular, and thus future-proof, as tests can be made more complex
as LLMs evolve towards AGI systems (Section 3.4);

• I survey the current state-of-the-art in multiple domains and categorize their ap-
proaches (Section 2);

• I provide experiments that aim to show the distribution shift between generated
games and an in-distribution game (Section 3.4.1).
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CHAPTER 2
Related Work

Our approach combines five important elements:

• Automatic Evaluation of LLMs;

• Solving Formal Games using LLMs;

• Generating Formal Games using LLMs;

• Analysis of LLMs in the Context of Formal Games;

• Solving Formal Games using Formal Methods.

For each of these areas, I analyze the current state-of-the-art and split the approaches into
multiple sub-categories. For a few select papers, I provide a more in-depth comparison
between our work and theirs in Section 2.1.

2.1 Automatic Evaluation
In our review of the current literature, I have found four approaches that aim to solve
the problem of automatic evaluation of text artifacts. The following sections will describe
the current state of the art and related works for each approach.

2.1.1 Generating Executable Code
[OSG`23] introduce BioProt, a dataset of biology protocols that are represented in

natural language and pseudocode from a set of admissible pseudocode functions. To
automate the evaluation of scientific experiments in a biology laboratory, the authors
utilize GPT-3 [BMR`20] and GPT-4 [Ope23] to automatically reconstruct pseudocode
from a natural language description of the experiments. This allows them to easily
measure the performance of the experiment’s approach using pseudocode.

5



2. Related Work

2.1.2 Prompting GPT Models with an Evaluation Schema
In recent years, there has been a growing body of research focused on the automatic
evaluation of text generated by Large Language Models (LLMs) in various NLP tasks.
Notably, several studies have investigated novel evaluation protocols and methodologies
that leverage LLMs as evaluators. [FNJL23] introduces a method for defining evaluation
protocols for specific evaluation aspects and tasks and obtaining scores based on how
closely the generated text aligns with the evaluation requirements. Similarly, [WLM`23]
explore the concept of instructing an LLM to evaluate text based on task instructions
and providing a score.

Building on this foundation, [LIX`23] present a method where an LLM generates an
evaluation protocol using Auto-CoT and the evaluators’ output is formatted as a form
for the final scoring. [CH23] propose a question-based approach, asking GPT-3 to assess
specific aspects of generated text on a numerical scale. [YKG`23] propose a similar
approach, Skill-Mix, which aims to test different NL-Skills of LLMs (metaphors, allegories,
etc.) from a list of pre-defined skills and topics. They utilize GPT-4 [Ope23] (and some
open models) as a Grader LLM with a specific prompt template, which assigns points for
each skill found in the generated text.

In addition to these studies, [LC23] extended the evaluation process by using a single-
prompt template and returning evaluations in JSON schema format. [WLC`23] introduce
techniques to improve zero-shot evaluation using LLMs, involving few-shot prompting,
among other strategies.

Furthermore, [ZWS`23] conducted experiments on improving LLM judging abilities for
reasoning tasks and introduced benchmarks (MT-Bench and ChatbotArena) for comparing
LLMs to human ratings. Lastly, [LMG23] focuses on enhancing scoring by employing
pairwise comparisons between different generations of text. [CL23] improved upon the
GPT-Eval approach by allowing LLMs to provide explanations and rationalizations for
their evaluations.

These diverse sources collectively contribute to the evolving landscape of automatic
evaluation methodologies, shedding light on the potential of LLMs as alternative evaluators
and offering valuable insights for the evaluation of text generated by LLMs.

2.1.3 Finetuning an LLM on an Evaluation Dataset
A notable advancement is presented in [WYZ`23], where the authors establish a bench-
mark tailored for evaluating the instruction tuning optimization of LLMs. They showcase
a fine-tuned instance of LLama [TLI`23], PandaLM, optimized for human-aligned per-
formance, presenting it as a more cost-effective alternative to GPT-4 for automatic
evaluation tasks. Furthermore, the work [WYT`23] introduces a small 7B parameter
model named LL23, fine-tuned to act as a critic by providing refinement suggestions
and identifying errors in outputs from other LLMs, aiming to enhance alignment and
accuracy in generated responses.

6



2.2. Solving Formal Games using LLMs

Moreover, the [LSY`23] paper extends the concept of fine-tuning a LLama model on
a specially crafted dataset for evaluation, paralleling the approach of PandaLM. The
authors propose Auto-J, a 13B parameter model trained on user queries and LLM-
generated responses on real-world tasks, which they compare to GPT-4. Lastly, [KK23]
broadens the scope by presenting various decoder-based LLMs fine-tuned for tasks such
as machine translation and semantic similarity assessment. These models are evaluated
across multiple benchmarks.

2.1.4 Using an Ensemble of LLMs

[LLL23] propose an evaluation method that moves beyond traditional static dataset
evaluations. It involves multiple LLMs assuming various roles based on a task description.
These LLMs engage in multi-round discussions to solve and evaluate a problem, with a
referee LLM overseeing the process and aggregating final evaluations from participant
LLMs. Roles in this framework can include positions like programmers and code reviewers,
allowing for a dynamic and interactive evaluation process.

Complementing this, [SPH`23] introduces an approach where an LLM is used with
few-shot prompting to generate evaluation “rubrics”. These templates are then applied
to assess the intermediate steps of LLM generations using another LLM. This method
provides a structured and nuanced way to evaluate LLM outputs, focusing on the process
rather than just the result.

Another significant contribution is [BYC`23]. This approach also employs one or more
LLMs as evaluators. These LLMs question the generating LLM based on its output,
which is then used to generate a rating. The use of ensembling in this method helps
produce a more unbiased evaluation, offering a multifaceted view of LLM performance.
Each of these studies represents a step forward in automatic LLM evaluation, shifting
from static to dynamic and interactive methodologies that better capture the complexities
of LLM outputs.

Finally, [QWL`23] propose GameEval, an open-source evaluation framework that uses
dialogue-based social deduction games to compare the reasoning capabilities between
multiple LLMs that act as the players.

2.2 Solving Formal Games using LLMs
In this section of our study, I delve into several innovative approaches that enhance the
reasoning and problem-solving capabilities of LLMs.

2.2.1 Prompt Engineering & Classic Algorithms

A first view into GPT-3’s ability to solve planning problems without direct recall is
discussed in [JWJ23], where the authors present a way to prompt GPT-3 into executing
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2. Related Work

algorithmic logic, akin to a Turing machine, without resorting to code recall or halluci-
nation. Their Iterations by Regimenting Self-Attention (IRSA) technique is tested on
classic computer science problems and logic puzzles, demonstrating GPT-3’s capability
to handle structured, algorithmic tasks.

[YYZ`23] advance this concept by proposing an algorithm that converts Chains of
Thought (CoT) [WWS`23] into a decision tree. This tree can be navigated and analyzed
using depth-first and breadth-first search strategies, allowing for more systematic and
comprehensive exploration of problem-solving pathways.

Further developments are discussed in [CMS`23], where the authors analyze the logical
reasoning abilities of various LLMs. They propose enhanced prompting techniques, both
generative and retrieval-based, to improve reasoning skills. Additionally, they introduce
a specialized dataset, LLM-LR, for pre-training a LLaMA2-13B-PT model, focusing on
boosting its logical reasoning performance.

[HGM`23] presents an approach akin to the Tree of Thoughts but employs Monte-Carlo
Tree Search along with a World Model. This method, named Reasoning via Planning
(RAP), allows the LLM to evaluate the utility of different paths in the decision tree,
integrating planning techniques into language model reasoning.

Lastly, several authors [LCSH23] and [AGS`23] have introduced methods that achieve
satisfactory performance on multiple games (Resistance-Avalon, social deduction game
called “Base”, respectively) using different LLMs (GPT-3.5 and LLama-2, GPT-4 and
GPT-3.5, respectively) as the players.

2.2.2 Combining Logic Provers and LLM Prompting

In [OGL`23], the authors present an innovative method where an LLM is employed to
convert natural language logic puzzles into first-order logic expressions. This hybrid
approach leverages an automated theorem prover to scrutinize these expressions for errors
and, where feasible, deduce solutions, marking a significant stride in integrating LLMs
with formal logic systems for problem-solving.

2.2.3 Fine-Tuning LLMs for Logical Reasoning

In [LKs`23], the authors provide a comprehensive survey of logical reasoning in the
context of Large Language Models (LLMs), culminating in the introduction of a novel
benchmark, LogiGLUE, for which they fine-tune a FLAN-T5 LLM.

Furthermore, [BGP`23] introduces three new datasets based on ReClor [YJDF20] and
LogiQA [LCL`20] for evaluating LLMs on out-of-distribution logical reasoning. This study
also presents a large-scale training set with varied tasks to enhance model generalization
and robustness, specifically applied to fine-tuning LLama models of different sizes.

8



2.3. Generating Formal Games in Context of LLMs

2.2.4 Multi-Agent Prompt Engineering and Algorithms
In exploring the domain of formal games within Large Language Models (LLMs), recent
studies have seen success in using LLMs in different roles to collaborate on solving a
task. A notable example is the work of [WMW`23a] who introduced “Solo Performance
Prompting” (SPP), a technique where a single LLM adopts multiple personas, each
with distinct skill sets, to engage in self-collaboration. This approach transforms the
LLM into a cognitive synergist, showing promising results in tasks like Creative Writing,
Codenames Collaborative, and Logic Grid Puzzles.

Complementing this, [WMW`23b] proposed an architecture inspired by the prefrontal
cortex of the brain, utilizing multiple GPT-4-based modules. This architecture, evaluated
using CogEval and the Tower of Hanoi problem, mimics the human prefrontal cortex’s
functionality, focusing on planning and problem-solving in LLMs.

Further advancing the field, the “AgentVerse” framework was introduced by [CSZ`23],
leveraging a multi-agent system where each LLM plays a different role. This framework
demonstrated enhanced performance in various tasks, including coding and Logic Grid
Puzzles, underscoring the potential of multi-agent collaboration in LLMs. These devel-
opments highlight a growing trend in leveraging diverse architectures and collaborative
frameworks to enhance LLMs’ capabilities in solving formal games and complex tasks.

2.3 Generating Formal Games in Context of LLMs
In this section, I will focus on existing datasets and generation approaches for formal
games in the context of LLMs.

2.3.1 Human Annotated Datasets
The exploration of formal games in Large Language Models (LLMs) has been an area
of extensive research, with numerous studies contributing to our understanding of their
capabilities. [BCL`23] study evaluated ChatGPT using 23 datasets covering a range
of tasks in NLP, also introducing a novel multimodal dataset. Furthermore, [LNT`23]
introduced LogiEval, an out-of-distribution (OOD) logical reasoning dataset, to test
the logical reasoning abilities of ChatGPT and GPT-4 against established benchmarks.
The “True Detective” benchmark, proposed by [DF23], presented a unique challenge
in abductive reasoning, particularly for GPT-3.5 and GPT-4, using puzzles based on
detective/mystery games.

Further advancements include the introduction of the BIG-Bench by [S`23], a large-
scale, human-annotated benchmark covering a wide range of topics and languages,
designed to challenge current and future LLMs. Furthermore, [lTN`23] propose the
GLoRE benchmark, encompassing 12 datasets for various logical reasoning tasks, which
they use to test multiple LLMs, including LLaMA, Falcon, ChatGPT, and GPT-4.
Additionally, [SPP`23] introduce an OOD dataset focusing on general deductive reasoning,

9



2. Related Work

allowing for a more controlled evaluation of deduction rules and complexity in reasoning
tasks across several LLMs. [PPR23] conduct a comparative study that assesses the
mathematical and logical problem-solving abilities of GPT-3.5, GPT-4, and Google Bard
using a set of 30 questions, both known and original. These studies collectively underscore
the growing interest in understanding and enhancing the reasoning capabilities of LLMs
in the context of formal games and complex problem-solving scenarios.

2.3.2 Generation using LLMs
[WTY`23] introduce ByteSized32, a code generation pipeline that can test the planning

abilities of LLMs by generating Python code that implements text-based, common-sense
planning tasks. The generation pipeline is based on 32 hand-crafted game templates that
a generator LLM uses as a base for its implementation. Automatic evaluation for the
code is provided in the form of task adherence, error rate, and win rate of a GPT-4 agent.
On a similar note, [PCOT23] introduces ACES, a framework that can automatically
generate code puzzles in Python. Multiple other papers using LLMs for task generation
are elaborated on in Appendix A and listed in Table 2.1.

2.3.3 Generation using Formal Approaches
[SL23] propose a novel dynamic dataset, generated using formal methods, for dynamic

epistemic modal logic using the “Muddy Children” and “Drinking Logicians” problems.
They evaluate the LLMs Pythia, GPT-3 and GPT-4 on the novel tasks.

2.4 Analysis of LLMs in the Context of Formal Games
Various studies have delved into analyzing the capabilities and limitations of LLMs when
it comes to solving formal games and logic problems. An extensive study by [BCE`23] an-
alyzes the capabilities of GPT-4 on several challenging tasks covering a broad range of do-
mains, including extremely challenging areas such as logic and math problems. [FPC`23]
build on this and propose three novel datasets, GHOSTS (and, building on GHOSTS, the
miniGHOSTS, and microGHOSTS datasets), which aim to test ChatGPT and GPT-4 on
a higher level of mathematics. The authors also provide a novel framework for analyzing
failure modalities concerning the proposed solutions generated by the LLM, which they
use to provide deep insights into the shortcomings of GPT-4 and ChatGPT as assistants
to mathematicians.

Another pivotal study conducted by [WTB`22] analyzes the impact of scaling LLMs,
highlighting ’emergent abilities’ that are only noticeable at larger scales. This research
covers a broad spectrum of tasks, including formal games, and emphasizes the unique
capabilities that manifest at this scale. [Gro23] focuses specifically on ChatGPT, where
the authors manually analyze its performance on 144 puzzles from a textbook, categorizing
logical faults into 67 distinct types. This meticulous study provided a detailed insight into
the reasoning capabilities and limitations of ChatGPT. Complementing these, [GBWD23]

10



2.5. Solving Formal Games Using Formal Methods

critically assesses the abstract reasoning abilities of multiple leading LLMs across various
benchmarks. Finally, [XLV`24] test the Abstract Reasoning Corpus (ARC), proposed
by [Cho19], on multiple LLMs. To enable the LLMs to play the visual-based challenges,
they create a text-based encoding for it (and an object-based one using a graph-based
approach) and introduce a 1D-ARC dataset that they use to test if using textual
representations of ARC makes GPTs perform worse.

This research contributed to a growing understanding that, despite their advancements,
LLMs still face significant challenges in areas like abstract reasoning. Collectively, these
studies provide a nuanced view of the strengths and weaknesses of LLMs, particularly in
tasks requiring complex reasoning and problem-solving skills.

2.5 Solving Formal Games Using Formal Methods

Another approach to solving formal games is utilizing and adapting classic methods
such as constraint-satisfaction-problem solvers and others. The following will give a
brief overview of the methods being applied in the current research literature. [BGG21]
introduce a framework for solving constraint satisfaction problems step-wise, using an
iterative method to construct explanation sequences, evaluated on Logic Grid Puzzles.
Progressing further, [WLZ`21] developed a hybrid system combining a machine learning
model with task-specific reasoning modules and symbolic knowledge integration, tested
on the reasoning parts of the LSAT.

[GN21] introduced a system for solving logical puzzles in natural language, emphasizing
the explainability of solutions with graphical proofs. This system was evaluated on
various puzzle types, including Knight and Knaves puzzles. Additionally, a comprehensive
collection of logical games modeled in First-Order Logic was provided by one of the
authors in [Gro21], spanning a broad range of logical reasoning domains.

Furthermore, [KKSR22] released a dataset of New York Times crossword puzzles, evalu-
ated on sequence-to-sequence models, retrieval-based methods, and CSP solvers, thereby
introducing a new NLP benchmark in the form of crossword puzzles. This was comple-
mented by the Berkeley Crossword Solver, introduced by [WTX`22], which combined
neural question-answering models with belief propagation and local search techniques,
and tested on New York Times puzzles.

Moving into a more general direction than crossword puzzles, [EGH`23] propose DEMI-
STIFY, a tool using Minimal Unsatisfiable Subsets for creating interpretable explanations
for solving pen and paper puzzles, showcasing the tool’s capability in logical deduction.
Finally, [SBT23] introduce a novel system to accelerate search-based solvers for Witness-
type Triangle Puzzles using an automatically learned, human-explainable predicate, tested
on puzzles from the game “The Witness”. These developments collectively illustrate the
diverse and evolving approaches in leveraging various non-LLM-based approaches for
solving and understanding a wide range of formal games and puzzles.
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2. Related Work

2.5.1 Solving Formal Games with Planning
Another line of research relevant to our work is the domain of “Planning”, which concerns
itself with algorithms and methods designed to plan interaction with environments using
tools such as the PDDL programming language for domains such as Blocksworld. Most
of the research in planning studies robotics or other agent-driven environments, there are
however several studies that go more into the direction of reasoning. Hence, I give an
overview of relevant works in the following sections.

Combining with External Solvers

The integration of Large Language Models (LLMs) with planning and logic solvers
represents a burgeoning area of research, especially in the context of formal games and
problem-solving via planning. In [XYZ`23], researchers propose using PDDL (Planning
Domain Definition Language) to translate natural language goals into planning goals,
evaluated using Blocksworld and Alfred-J, domains pertinent to robotics. This approach
was further advanced by [LJZ`23], where an architecture was developed to convert
natural language planning into PDDL code using an LLM, process it through a planning
solver, and then retranslate the results back into natural language. This method was
evaluated using the Blocksworld domain.

Additionally, [JJL`23] employed LLMs to iteratively generate Blocksworld PDDL code,
using an SMT (Satisfiability Modulo Theories) reasoner as a verifier to iteratively improve
plans. Furthermore, [YCDD23] introduced SatLM, which involves an LLM constructing
SAT (Satisfiability) problems in First-Order Logic, input into a SAT-Solver, and tested
on various reasoning benchmarks, such as LSAT and BOARDGAMEQA.

Parallel to these developments, [YIL23] saw the coupling of LLMs with logic programming,
specifically using LLMs to extract declarative knowledge representations (answer set
programs) from natural language task descriptions. This was followed by utilizing an
ASP (Answer Set Programming) solver module to generate valid solutions. Similarly, a
study by [IYL23] proposed a method for LLMs to convert logic puzzle tasks from natural
language into ASP, enabling automatic solution generation by an ASP solver. These
innovations highlight the potential of LLMs in enhancing robust and general reasoning
capabilities, particularly in formal games and complex problem-solving scenarios, by
synergizing with various logic and planning solvers.

Prompt Engineering & Algorithms

In [SDS`23], researchers introduce a 4-stage LLM system using GPT-4 for solving
planning problems across various domains. This system involves generating a domain
summary, strategizing in Python code, code validation, and an automated debugging
process that iteratively corrects errors up to four times. Following this, [GSG23] developed
a prompt compiler for LLMs that systematically generates strategic reasoning prompts,
particularly for matrix and strategy games. This compiler leveraged tree-based search
algorithms to construct state values and beliefs for the prompts.
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Furthermore, [NCY`23] propose a novel approach for prompting LLMs cost-effectively,
enhancing the diversity in the generated results. This improvement in diversity was
shown to enhance performance on several reasoning and planning benchmarks. [TWL`23]
introduce the Inferential Exclusion Prompting (IEP) framework. IEP enhances Chain of
Thought (CoT) reasoning by guiding LLMs through a planning process that includes
an elimination step, specifically designed for puzzles and other reasoning challenges.
Finally, [GYY`23] propose Suspicion-Agent, a prompting framework for LLMs that
allows them to utilize multiple planning steps to play two-player perfect information
games with satisfactory performance.

Combination with Ideas from Reinforcement Learning

Some of the advancements have focused on enhancing the planning and problem-solving
capabilities of Large Language Models (LLMs) through the integration of Reinforcement
Learning (RL) and heuristic methods. [HACY20] propose a new framework for Interactive
Fiction (IF) Games, Jericho, which aims to make text-based adventure games playable
by Reinforcement Learning agents by extracting lower dimensional action spaces and
building a Game-World Tree from NL. Their environment aims to be used for training RL
agents for planning and commonsense reasoning tasks packaged inside of the IF games.
In [LHZ`23], the authors introduce RAFA, a system designed to improve LLMs’ reasoning
and long-term planning abilities using RL actor-critic techniques. RAFA formalizes the
interaction with an LLM as a Markov Decision Process (MDP), representing a significant
step in integrating RL principles with LLMs.

Furthermore, [HMR23] introduce the SayCanPay, a planning system consisting of three
stages. This system utilizes a fine-tuned LLM (such as Vicuna or Flan-T5) to select
actions, which are then assessed by an affordance model based on their feasibility. A
heuristic estimator subsequently scores each feasible action based on its expected reward,
aligning with classic RL concepts.

Finally, [ZYSR`23] develop an extension to the RAP and ReAct frameworks. This
extension incorporates external feedback from the environment, including state and
rewards, to guide a search process akin to Monte Carlo Tree Search (MCTS). This
approach unifies reasoning, planning, and acting in LLMs, demonstrating a sophisticated
application of search algorithms and RL in enhancing LLM capabilities. Together, these
studies showcase innovative methods for integrating RL and heuristic planning with
LLMs, advancing their application in complex decision-making and problem-solving
scenarios.

Finetuning LLMs

Another approach in current literature to solve planning problems is to fine-tune LLMs
using various planning-based datasets. [YGW23] fine-tune a small LLaMA 7B model
specifically for outcome verification in mathematical reasoning problems like GSM8K
and the “Game of 24”. This approach involves converting math problems into planning

13



2. Related Work

problems by focusing on verifying intermediate steps and showcasing a novel method to
enhance LLMs’ capabilities in mathematical reasoning.

Another study by [SFLG23], evaluates various prompting techniques to improve the
reasoning and planning abilities of LLMs like GPT-4 and ChatGPT. The authors fine-
tune a model named “ConDec” via Contrastive Decoding, augmented by hard negatives
constructed by an external reasoner. This study aims to improve LLM performance
on the EntailmentBank benchmark, indicating a focus on enhancing logical reasoning
through tailored fine-tuning approaches.

Furthermore, [WCO`23] introduce the concept of “Planning Tokens”, a method to prefix
each step of a reasoning chain to improve LLM performance. The study involved fine-
tuning three base models (Phi-1.5, LLaMA 2 7B & 13B) using a dataset containing these
“Planning Tokens” and compared the results with other approaches like Chain of Thought
(CoT). This technique signifies an innovative approach to guiding LLM reasoning through
structured prompt engineering and fine-tuning. Collectively, these studies highlight the
evolving strategies in enhancing LLMs for planning and problem-solving in formal games
and mathematical contexts, blending fine-tuning, prompt engineering, and outcome
verification techniques.

Finally, [LSS`24] introduce a search-augmented Transformer architecture and training
regime. Their proposed approach uses the optimal search paths and execution traces
from an A* search algorithm to train an initial model. Then, they use synthetic data
generated by the initial model to bootstrap a final model that produces shorter, still
optimal search paths. The authors also conduct a number of experiments comparing
their models on two search tasks in different configurations.

2.6 Comparison to Similar Approaches

In this section, I discuss what sets our work apart from several other methods proposed
by other authors. I provide an overview of each key work and elaborate on the differences
of what makes our approach unique. An overview of the contributions made by each
work can be seen in Table 2.1. For selected papers, I provide a comparison in full text in
Appendix A.

As I introduce our own domain-specific language (DSL) for combinatorial grid games, I
felt it necessary to provide context as to why I would not use an existing DSL, such as
the CGSuite developed by Siegel [Sie]. CGSuite is a desktop application that contains
a custom domain-specific scripting language for combinatorial games. The system is
based on the mathematical foundation of game theory, which provides users with the
ability to analyze games in a game theoretic sense. This is very useful if one is interested
in the mathematical properties and peculiarities of a specific formal game. Editing
script, creating games and states, as well as all other functions, have to be done via a
“Worksheet” in the desktop application.

14
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2. Related Work

Figure 2.1: Comparison between possible moves of Left

A key difference between our approach and CGSuite is the way game pieces are represented.
Our pieces are tuples that contain the piece’s coordinates, their type, and the player they
belong to prow, col, type, playerq. In CGSuite’s DSL, the game pieces are represented
solely by their coordinates and their type. This detail might seem minute but has a great
impact on the games that can be represented. This is because in every grid game, both
in CGSuite and our work, a player’s actions depend on the pieces they own and their
type. With CGSuite’s DSL, there currently is no way to differentiate ownership of a
piece apart from their type (e.g., white versus black game pieces in Go). With our DSL
it is naturally possible for both players to own pieces of every type. This also allows us
to define restrictions (or, as I will call them later, conditions) on rules available for a
specific type based on the player who owns the game piece. I can also represent win and
loss conditions based on every piece type for both or just one of the players. Both of
these features are not possible in CGSuite’s DSL. A very simple game that CGSuite can
not represent, but by our DSL can be, is shown below in Example 2.6.1. Concluding, I
chose to provide our own, simple but robust DSL that precisely encompasses the domain
of games I focus on. The language I introduce in Section 3.2 is small, concise, easy to
implement, and integrates well with the rest of our automatic evaluation framework.

Example 2.6.1. I provide a simple example of a game where the representation power of
our DSL differs to the CGSuite one. As I will use the notation of our DSL, I recommend
readers to read through Section 3.2.1 first. Assume that the game has one type of piece
available, T “ t1u, and one rule r1 “ pupq, which moves a game piece up one cell in the
grid. Furthermore, I now define that pieces of type 1 can move using r1. Up until now,
everything I have done can be represented by both DSLs.

Now, I introduce a grid of size 3 ˆ 3 with two pieces of type 1 on them at positions p3, 1q
and p3, 2q. Assume now that I want to let each player have one of these pieces. In this
example, assume that Left owns the piece at p3, 1q. If Left now wants to move, with our
approach, their options are restricted to only moving the piece at p3, 1q with r1, even
though both pieces have the same type and rules available. This would not be possible
to represent in CGSuite’s DSL without adding additional types, which would result in
a different game. With CGSuite, Left could move both pieces using r1, as there is no
differentiation between players. A visual comparison of this is shown in Figure 2.1.
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CHAPTER 3
Methodology

In the following, I describe how to design a generative dataset of formal games where
various aspects, such as the game complexity, structure of the game, and the formatting
of the prompts can be controlled by the user.

3.1 Definition of a Formal Game for LLM Evaluation
3.1.1 The Landscape of Formal Games
Games can be studied on various levels of formality and abstraction, from very gen-
eral [JS85] to concrete [Sie13].

In thd following will give a general definition of the concept of a “game” that is sufficiently
general in order to be used to evaluate the performance of an LLM – but not too general;
e.g., some games are typically formalized using infinite action spaces, which I will exclude.
I elaborate on our reasons for exclusion in Section 3.1.2.

Our reason for introducing a formal definition is that it lends itself to a specification
language for games.

I argue that games are a sufficiently well-suited class to use as a test bed to assess LLMs’
reasoning capabilities, since, e.g., what is typically referred to as a “board game”, falls
under this class, and already can solicit highly complex cognitive feat, that human effort
to be mastered and that is correlated to general reasoning performance [Cho19].

3.1.2 Excluded Game Frameworks
Our definition of a game explicitly constrained everything to finite objects. This choice
was taken to ensure that everything will be computable within our framework introduced
in Section 3.2.

17



3. Methodology

Games with infinite action spaces (such as video games, where one can choose, for example
for a continuum of values, a specific one (e.g., the acceleration in a certain direction),
are also often discretized when implemented. A recent example of this is AlphaStar, the
large-scale RL agent for the video game Starcraft 2 developed by [MOS`23].

I note that this discretization can dramatically change important game-theoretic concepts,
such as Nash equilibria.

To further illustrate the effects of discretization, I will provide examples of two simple
games in Section 3.1.2 and Section 3.1.2. In both examples, I will show that leaving
the continuous space will alter the strategies and outcomes. For the reasons presented
there, I explicitly exclude discretized versions of games with continuous elements from
our framework, to avoid game-theoretic issues that are not relevant for LLM evaluation.

Penalty Kick

For the following, I will describe the game of “Penalty Kick”, as described by [Spa].
The game is a simple two-player game, where the kicker tries to score a goal against
the goalkeeper. To play the game, the kicker chooses a direction to aim at, while the
goalkeeper chooses a direction to jump in to try and save.

As [Spa] describe, in a real-world continuous setting, the kicker might favor one side
more and could choose different angles to aim at. Similarly, the goalkeeper can choose
different angles and jump power to dive towards the ball. This leads to different ways
that a real-world penalty kick game can be formalized, to be analyzed by game theory.
To subsequently discretize the game, one could remove all of these choices and simplify
them to the options left, right, and center for both players.

This reduction of the action space has several effects on the outcome:

• The predictability of both players is increased due to the lack of nuance. For the
kicker, using his assumed stronger right-side kick may not be effective anymore, as
the goalkeeper does not need to develop effective strategies against slight differences
in angle or strength.

• This causes the strategy space to become smaller and more influenced by chance
than skill: Each player only has three choices against each of his opponent’s three
moves. Previously, the kicker could have used his strong right kick with various
angles, whereas now he may be forced to choose equally from all three options.

Simple Market Entry Game

Another classic example from Economics is the “Market Entry Game”. The game
simulates firms that decide to produce a quantity of goods, which they base on market
demand and their competition. Each firm can choose a continuous number of goods to
produce. This allows them to fine-tune their production to meet market demands and
optimize profits under the supply being produced by the other companies.

18
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In the discretized version, each company is limited to a fixed number of quantities they
can produce.

This has various effects on the outcome of the game:

• The most important effect is the loss of a precise equilibrium between the producing
firms. Each of them can now either have excess or too little product stock available.
This will in turn remove their ability to maximize their profits against each other
to achieve an ideal equilibrium.

• Due to the previous effects the equilibrium will likely also not be as satisfying for
the firms as in the continuous version, since the discrete options may not allow for
precise optimization.

• Each firm will have less flexibility to respond to changes in the market’s supply
and demand, causing the market to become less competitive.

• Predictability of each firm’s actions will increase, as their strategy space is limited.
This potentially allows other companies to easier respond to changes made by
others.

Generalizations

I now review various further generalizations and explicitly argue why they are not
appropriate for our framework.

• Differential Games: These are games where the “time” is continuous, and
players can make a decision at any point in time. Formalizing such games adds
considerable mathematical complexity but does not yield new insights for the
reasoning performance of an LLM, as LLMs do not process information continuously

• Cooperative Games: These are games where strategies on the level of formed
coalitions are considered. These types of games are also unsuitable for analyzing
LLMs performance since the performance would depend on multiple interactions
between multiple agents. This is an unnecessary complication, since I are only
interested in testing the reasoning capabilities of one LLM at a time, not their
ability to cooperate. Furthermore, the performance of an LLM would also heavily
be influenced by the actions taken by other agents playing the game.

3.1.3 Derived Game-Theoretic Concepts
In game theory, players playing the game have to make decisions based on the information
available to them. This choice between alternatives is also referred to as move. There
are two kinds of moves available to players: personal moves (choice made by a player) or
a chance move (the choice depends on some stochastic device). A plan encoding every
possible situation into moves to take for a player is called his strategy. Players can use
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3. Methodology

multiple strategies, which are called his strategy set. Furthermore, players have a pay-off
function, which tells them the real-valued outcome of their strategy. The payoff function
is thus a map K : Σ ÞÑ R, where a strategy σi is a subset of the set of all strategies Σi.
The execution of a game from start to finish is called a play.

This method of defining a game is referred to as the normal form or also strategic form.
A game can be called zero-sum if the sum of all payoffs Ki equals to zero:

nÿ
i“1

Kipσ1, . . . , σnq “ 0,

where i is the index of each player. In contrast to zero-sum, there are also variable-sum
games, where each Ki can have different payoffs depending on the player’s strategy [Fav18].

Another important concept is that of mixed and pure strategies. A mixed strategy is
defined as a probability vector xk

i for the ith player. It means that he will play strategy
σk

i with probability xk
i . The original strategies σ

pkq
i are called pure strategies.

When players take their moves at the same time, I speak of a simultaneous game. On the
other hand, games with alternating moves between players are called sequential games.
Some games may not fit into either.

3.1.4 Remark on Markov Decision Processes

There is an obvious relationship between games and Markov decision processes, which I
describe in this Section.

The main differences boil down to the fact that these two mathematical objects formalize
different aspects that occur when playing a game: The definition of a game takes a broad
perspective, and the concepts that game theory introduces are tailored to understanding
“global” questions, such as the theoretically best possible strategy for any player given
player in a given game, Markov decision processes (MDP) take a “local” perspective. An
MDP aims to model environments that require stochastic decision-making by some agent.
The goal is then to find policies (i.e., probability distributions over the actions space for
a given state) that maximize the expected cumulative rewards. This policy may not (and
usually will not) be theoretically optimal.
What distinguishes an MDP from classical Game Theory is, that it is oriented towards
solving the “inverse problem”. In game theory, one starts with a set game, where the
rules, possible strategies, and the pay-off functions are all known. The goal is then to find
the optimal strategy for rational players. MDPs reverse this and model a probabilistic
environment of the game without explicit knowledge about the rules and the strategy
space. This environment is then used to find a policy that maximizes the reward for each
player. This can be argued to be the same as “learning the rules” of the game and then
exploiting them.
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3.1.5 More Specific Definitions of a Game and Game Representations
While the definition given above is intuitively appealing, as it allowed us to precisely
describe how it can be generalized in different ways and how various parts of the definition
needed to be modified for that purpose (as well as why these modifications are not sensible
from the standpoint of LLM evaluation) in practice, other representations may be used
to fit a certain use case. The extensive form I elaborate on in Section 3.1.5 allows for
the direct application of graph-based search algorithms, like Monte Carlo tree search
(MCTS). I employ MCTS as the foundation for our action ranking in Section 3.4 and the
complexity metric in Section 3.3.

Matrix Form

Starting simple, games in normal form can be easily represented as a matrix, containing
all combinations of move alternatives. An example of the prisoner’s dilemma is shown in
Table 3.1 (I use the example provided by [Fav18]).

Confess Lie
Confess ´8, ´8 0, ´10
Lie ´10, 0 ´1, ´1

Table 3.1: Prisoner’s Dilemma in normal form

Extensive Form

One of the most common ways to represent games is to utilize the more general graph-
based extensive form proposed by [KT53]. Kuhn bases his graph-theoretic definition on
the set-theoretic approach that [JvN04] takes but generalizes and simplifies it. Thus, I
ground our exposition in [KT53].

As the first step, some general definitions for the necessary components will be given. I
define a game tree K as a finite tree with a vertex 0 (i.e., the root node). Alternatives at
a vertex X P K are the edges e at X lying in components of K (not containing 0), if I
cut K at X. These j alternatives at X are indexed by positive integers 1, . . . , j. Those
vertices that have alternatives are called moves (as in the normal form). The remaining
vertices are referred to as plays (i.e., the leaf nodes of the tree). A play of a game is
defined as a unique path from vertex 0 to a play. A set Aj , j “ 1, 2, . . . contains all of
the moves with j alternatives and is called an alternative-partition.

Having done these definitions, I can go on to define a game using them. A general
n-person game can be defined as a game tree K if it follows the given specifications:

1. Moves are partitioned into n ` 1 sets P0, P1, . . . , Pn. These are referred to as player
partitions. Sets P1, . . . , Pn are the personal moves of players i “ 1, . . . , n. P0
contains the chances moves.
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2. Moves can be further partitioned into sets U as a refinement of the player and
alternative partitions. U is defined to not contain two moves on the same play and
U P Pi X Aj . These sets U are called information sets.

3. Each U Ă P0 X Aj has a defined probability distribution on the integers 1, . . . , j
with a positive probability for each element (e.g., taking a chance move assigns a
probability to each alternative).

4. The pay-off function is defined as an n-tuple of real numbers

hpW q – ph1pW q, etc., hnpW qq
for each play W and each player.

A play is then constructed by beginning the vertex 0 and progressing by choosing moves.
Suppose the game has progressed to a move X. Players whose information sets contain X
then choose one of the j alternatives if the move is a personal one. In the case of a chance
move, an alternative is chosen by the probabilities for the information set containing X.
Thus, a finite play W with a start at vertex 0 is constructed. Finally, the players are
paid the amount hipW q, i “ 1, . . . , n.

Now, I can define a game with perfect information as one where all information sets have
exactly one element.

Let us further define a pure strategy using this notation. A pure strategy for a player i is
a function πi mapping the set Ui “ tU |U X Piu of personal moves into positive integers
so that U X Aj implies πipUq ď j. This means that at each vertex X P U , πi chooses one
of the j alternatives (i.e., edges e). Simply spoken, a pure strategy can be considered a
pre-defined plan for a player i at each decision point in the game. The pure strategies
π “ pπ1, . . . , πnq define a probabilistic distribution on the alternatives. Given an edge e,
that is a personal move in the information set U, I can define the probability as follows:

pπpeq –

#
1 if πipUq “ vpeq,
0 otherwise.

For a chance move, this is just the probability assigned to it. Thus, the probability
distribution of the plays of K is given by: pπ “ ś

ePW pπpeq for all W . Using this, I can
now define the expected pay-off as Hiπ for player i using the pure strategies pi1, . . . , πn

by HipW q –
ř

W pπpW qhipW q, i “ 1, . . . , n

Similarly, I can define a mixed strategy as µi for player i. A mixed strategy can be
understood as a probability distribution over pure strategies: For any n-tuples of mixed
strategies µ “ pµ1, . . . , µ2q for n players, the probability distribution is defined by:

pµpW q –
ÿ
π

qπ1 . . . qπnpπpW q for all W.
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3.2. Generating Games

The expected pay-off is defined in the same way as for pure strategies, using pµ instead.

An example of the extended form of the game Tic-Tac-Toe can be seen in Figure 3.1.

Figure 3.1: Extensive Form of a game of Tic-Tac-Toe

Using a state and action-based formalization (like in an MDP or the extensive form) will
be crucial in many parts of our work. It allows us to easily track the history of a game,
which I can then use to measure, among others, the complexity of a specific game.

The notion of actions also flows nicely into our generative formal framework for games,
which I will introduce in Section 3.2.

3.2 Generating Games
A game can be abstracted into its core mechanics: rules for taking action, win and loss
conditions. I provide a formal framework, parameterized by probability distributions,
that allows for generating these components. I focus solely on 2D-grid, combinatorial
games, as the rules and win conditions for this class of games can easily generated and
then represented in natural language. I introduce the framework formally in Section 3.2.1.

Because all games are new, and an infinite amount of them can be generated, this
solves an important problem with data on LLMs:

• LLMs are trained on data that, therefore, should not used as testing data;

• If new test datasets are offered publicly, it is not possible to exclude them from
potentially being used to pretrain LLMs.
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Our approach solves both of these problems.

I note that even if there is an infinite amount of games present, it can be the case that
they are distributed around a distribution with a spike so fine-tuning on a sufficiently
large dataset of generated games will increase test scores – a scenario I want to avoid
since I want to design a testing benchmark that can be successfully used by a user who
does not have access to information regarding the model internals, as is frequent in the
languge-model-as-a-service (LMaaS) scenario [LMPF`23]).

To guard against this, I design our approach in a way that has a long tail: The games I
design are diverse and I introduce various techniques to create diverse natural-language
explanations of these games.

The entire set of possible games is partitioned by their complexity, which is derived from
these data. Our generative dataset is designed in such a way that for a fixed level of
complexity, an infinite amount of games can be theoretically generated. The user can set
the complexity to a desired value.

3.2.1 2D-grid Game Formalization
Our generation framework is inspired by the top three approaches developed to solve the
ARC Challenge introduced by [Cho19]. The three frameworks developed by [Ice], [dMAC],
and [LG] respectively, all have one thing in common: they rely on a custom DSL and
program synthesis to exploit the intrinsic rules of the puzzles included in the ARC dataset.
This is the reverse of what I are trying to do: they receive a game as input and try to
find rules for them. The approach I will introduce in this section does the opposite. I
define a DSL that describes all rules and conditions and sample new games by combining
them.

For generating games, I focus solely on combinatorial games that are played on a
two-dimensional grid. A combinatorial game has no elements of chance and exactly two
players [Sie13].

I will focus on normal play since this is the most well-explored class of combinatorial
games, as elaborated on in Section 4 of [Sie13]. In normal play, the last player to move
wins. Our game-ending conditions (win or loss) are created by a player moving a game
piece, thus either satisfying a win condition for himself or a loss condition for the opponent.
In miseré play, this is reversed, and the last player to move would lose. This class of
games is not as intuitive to play and understand, as most games that humans enjoy are
normal play games.

The Grid

In the following, I will refer to the players by the names Left and Right. For some
functions, I will use the digits 0 to refer to Left and 1 to refer to Right to make the
notation more concise. Our games are played on n ˆ k grids, which can be represented
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as an n ˆ k matrix where 1 ď n, n P N and 1 ď k, k P N. I will refer to the grid as the
board sometimes. Each position in the grid can only contain at most one game piece,
which I will define next.

Pieces

At the core of playing a game on a grid are the game pieces that can be moved by the
players. I start by giving an abstract notion of what a game piece is. A game piece is
defined as a tuple of its coordinates, type, and the player to whom the piece belongs:

p – prow, col, type, playerq, 1 ď row ď n, 1 ď col ď k, player P t0, 1u, 1 ď type,

where row, col, type are all natural numbers. I refer to this set of all possible p’s as G.
To refer to each element of the tuple p P G, I use the following indexing notation:

prow – p1,

pcol – p2,

ptype – p3,

pplayer – p4.

Each coordinate pair prow, colq on the grid contains at most one game piece. I denote
the set of all game pieces p placed on the grid as P Ď G. Additionally, I denote the set
of all types used for game pieces in P as T . Depending on the game, there might be
varying numbers of piece types used and they might have different rules that apply to
them (as I will see in further below). Finally, I create two subsets of P containing each
player’s game pieces. I denote these subsets of P as PLeft and PRight respectively.

Example 3.2.1. Let us assume a n ˆ k grid with n “ k “ 3. I create the set P with two
game-pieces in it, p1 “ p1, 2, 1, 0q and p2 “ p1, 1, 2, 1q. The grid with two game pieces on
it is displayed in Figure 3.2. For the following examples, I will use blue and orange as
colors for Left and Right respectively. For the game-piece types, I will use a circle for
type 1 and a square for type 2.

Figure 3.2: Example of a simple board position
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Rules

The game’s rules define which actions players can take to alter the state of their game
pieces. Each rule is made up of a configuration of atomistic, basic rules, which are
formalized as the following sets of functions:

M – tup, down, left, right, se, sw, ne, nwu,

Mcapture – tupC, downC, . . . , nwCu,

S – tswitch, exchangeu,

place .

I define the set of all basic rules as

RB “ M Y Mcapture Y S.

Below is a specification1 of all these functions and their parameters :

• up : P Ñ P : Moves a piece up one row by subtracting 1 from the pieces’ row value.

• down : P Ñ P: Moves a piece down one row by adding 1 to the pieces’ row value.

• left : P Ñ P: Moves a piece left one column by subtracting 1 from the pieces’ col
value.

• right : P Ñ P : Moves a piece right one column by adding 1 to the pieces’ col value.

• nw : P Ñ P: Moves a piece north-west by subtracting 1 from the pieces’ col and
row values.

• ne : P Ñ P: Moves a piece north-east by adding 1 to the pieces’ col value and
subtracting 1 from row value.

• sw : P Ñ P: Moves a piece south-west by adding 1 to the pieces’ row value and
subtracting 1 from the col value.

• se : P Ñ P : Moves a piece south-east by adding 1 to the pieces’ col and row values.

• switch : P ˆ P Ñ P : Takes two pieces as input and switches their coordinate values
row and col, then returns the re-positioned first piece.

• exchange : P ˆ T Ñ P : Takes a piece and a type as input and exchanges the pieces’
type by the parameter, then returns the adapted piece.

• place : N ˆ N ˆ T Ñ P: Takes coordinates and type as input, places a piece with
the parameters as values on the grid and returns it.

1For convenience, I describe them in natural language.
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All functions, except for place, take one or more pieces as input and modify their
coordinates or types, then return the modified piece. The rules in Mcapture define the
same directions of moves as those in M, except they capture an opponent’s piece (i.e.,
remove from the grid) that is in their target destination.

A composite rule is then created by concatenating basic rules from RB for c ⩾ 1 times:

MRpcq –
cą

i“1
RB Y tplaceu.

Example 3.2.2. I continue with the previous Example 3.2.1. Let c “ 3. I define a
combination of three basic rules from MCp3q, for example:

r1 “ downpdownprightqq.
The rule I just defined moves a game piece two up and one to the right. Applying r1 to
p2 from previously (recall p2 “ p1, 1, 2, 1q), I obtain: r1pp2q “ p3, 2, 2, 1q. The resulting,
updated grid is shown in Figure 3.3.

Figure 3.3: Board position after applying r1 to p2

Adding Conditions to Rules

In many games, certain rules only apply if a pre-condition is met for the pieces they
would be enacted on. An example of this is “Castling” [Wik] in Chess, which has
several pre-conditions to allow the King and Rook to move towards each other and
then exchange positions. To capture these sorts of conditions, I create a helper function
eq : P Ñ tTrue, Falseu:

eqrow,col,playerprow, col, type, playerq –

#
True, pprow, pcol, pplayerq “ prow, col, playerq,
False, otherwise.

The eq function takes a game piece from P as input and compares its coordinates and
player index against pre-defined values. The indices row, col, player have the same ranges
as the components of the game piece tuples introduced in Section 3.2.1. In addition,
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to define conditions that cover ranges of values, I introduce a special value of ´1 for
the indices row, col, player. This special value will validate any comparison against it as
True. To allow for combinations of multiple conditions, I introduce three functions that
represent boolean logic operators:

and: tTrue, Falseu ˆ tTrue, Falseu Ñ tTrue, Falseu,

andpx, yq –

#
True, if x is True and y is True,
False, otherwise.

or : tTrue, Falseu ˆ tTrue, Falseu Ñ tTrue, Falseu,

orpx, yq –

#
True, if x is True or y is True,
False, otherwise.

not : tTrue, Falseu Ñ tTrue, Falseu,

notpxq –

#
True, if x is False,
False, otherwise.

Conditions defined by eq can be combined with the following of the boolean operator
functions: tor, notu. Using the and operator is not sensible, since I only want to check
the condition of one piece at a time and it can’t have multiple coordinates or players
assigned. I define this as a function MCpjq, where j is a natural number:

MCpjq –
j´1ą
i“0

tor, notu ˆ tequ.

If I think of the function composition as a tree, the leaves have to be functions eq.
They perform the equality checks that make up the functionality of the condition. The
conditions restrict the locations on the grid where a specific rule can be applied and by
which player. Finally, I introduce a function that creates a tuple that contains a rule and
a condition:

MCRpc, jq – MRpcq ˆ MCpjq.

To move a piece p P P using an element prule, conditionq from MCR, the condition has
to evaluate to True when applied to p. Only then can the rule be applied to p. I denote
the set of the rule-and-condition tuples used in a specific game as R. These conditions
apply universally to all types on purpose. For assigning certain rules to types, I introduce
the function A at a later point.

Example 3.2.3. For this example, I define a rule from MCRpc “ 1, j “ 2q as follows:

r “ pdown, orpeq1,1,´1, eq3,3,´1qq
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The rule is restricted to game pieces in positions (1,1) and (3,3) by the condition. The
logical mask created by the condition is displayed in Figure 3.4. Now, assume that
the board state is the one created in Exercise 3.2.1. If Right wants to move their piece
p1, 1, 2, 1q down using r, they would first have to check if their piece satisfies the condition
of r. Let us check it now: Right’s piece is of Type 2 and is located at position p1, 1q. The
condition for r restricts the usage of down to pieces of any type at either position p1, 1q
or p3, 3q. As Right’s piece satisfies this condition, they are allowed to use down to move
their piece to position p2, 1q. The resulting board state is also shown in Figure 3.4

Figure 3.4: Logical Mask created by a condition and resulting board state

Actions

I denote the specific movement rules that are available to each game piece type as actions.
For example, in Chess, the Knights have a different set of rules than the Queen or Rook.
To implement this, I create a function A that maps from each type in T to subsets of
rules in R:

A : T Ñ 2R,

Aptq – tRt | Rt Ď Ru.

Example 3.2.4. Assume that I have defined 3 rules r1, r2 and r3 in MCR:

r1 “ pup, Hq,
r2 “ pdown, Hq,

r3 “ pleft, eq´1,2,´1q.
r1 and r2 have no conditions, they can be freely used. r3 is restricted to pieces located in
any row on the second column. The set of rules now consists of R “ tr1, r2, r3u. Assume
now that the grid is the one introduced in Example 3.2.2. It contains two pieces and
T “ t1, 2u. Using the sets T and R I can now define the function A:

A – p1 ÞÑ tr1, r3u, 2 ÞÑ tr1, r2uq .

The assignments made by A restrict players in moving game pieces of type 1 according
to rules r1, r3 and game pieces of type 2 according to r1, r2. Assume now that Left wants
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Figure 3.5: Logical Mask of condition eq1,2,0p´1, 2, ´1q

Figure 3.6: Board state after applying r3 to p1

to move their piece of type 1 at position p1, 2q. The subset of moves assigned to type 1
by A is tr1, r3u. If they choose to apply r3, the condition, shown in Figure 3.5 is first
checked:

p1 “ p1, 2, 1, 0q,
eq1,2,0p´1, 2, ´1q “ True.

For the selected piece, it evaluates to True. Thus, r3 can be applied to the Left’s chosen
piece and is moved one space to the left:

p̂1 “ r3pp1q “ leftpp1q “ p1, 1, 1, 0q.
The resulting board state is displayed in Figure 3.6.

Valid Rules

As discussed in previous paragraphs, rules are restricted by their type and conditions. In
addition to these restrictions, there will be board states where rules can’t be applied to
some pieces, due to creating an illegal board state. This occurs if the destination of a
move is out-of-bounds or overlaps another game piece. To represent the valid rules for
each piece, I introduce the function V:

V : P Ñ 2R,

Vprow, col, type, playerq – tRp | Rp Ď Aptypequ,
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where the rules in Rp are only those that satisfy the following:

1. The piece p to be moved by the rule satisfies the rule’s condition.

2. The target location is in the bounds of the grid.

3. The target location is unoccupied.

Example 3.2.5. For this example, assume the board state defined in Example 3.2.1.
Furthermore, assume that there are the following rules:

r1 “ pup, Hq,
r2 “ pdown, eq2,2,´1q,

r3 “ pright, Hq,
r4 “ pleft, Hq.

I also define the function A as follows:

A – p1 ÞÑ tr4u, 2 ÞÑ tr1, r2, r3uq .

Now, Right wants to move their piece p2 “ p1, 1, 2, 1q. To do this, they will first have to
check the valid rules for this piece using Vp1, 1, 2, 1q. Let us go through the process now,
step by step. The subset of rules available to pieces of type 2 is Ap2q “ tr1, r2, r3u. First,
for each of these rules, I check if p2 satisfies their conditions. The only rule where the
condition is not satisfied is r2, as it only allows pieces at row 2 and column 2. Therefore,
the set of valid rules reduces to tr1, r3u.

Second, I check if the location of p2 after applying any of the rules in tr1, r3u would be
out of the bounds of the grid. As r1 would move p2 to p´1, 1q, it is also removed from
the set of valid rules, leaving only tr3u.

Third, I will check if the location of p2 after applying any of the rules in tr3u overlaps
another piece on the grid. r3 is the only move left but would overlap p1. Hence, it is also
removed from the set of valid rules.

Therefore, the final set of valid rules for p1 is the empty set, Vp1, 1, 2, 1q “ H. Thus,
Right can’t move p1!

Positional Win Conditions

I focus solely on normal play. This means the last player to take a move wins. This can
be either winning by reaching a certain board position (e.g. three in a line in Tic-Tac-Toe)
or reaching a specific global state of the whole board (e.g. opponent has no pieces left,
thus can not move in Chess), as described by [Sie13]. In this section, I will introduce the
first type.
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I begin the definition of a positional win condition by introducing a helper function
hp : G Ñ P, which is the indicator function of P Ď G:

hpprow, col, type, playerq “ ✶Pprow, col, type, playerq –#
1 if prow, col, type, playerq P P,

0 if prow, col, type, playerq R P.

The hp function returns True if any game piece that equals the values defined by the
parameters exists in the set P . To allow any given value for any of the parameters, ´1 is
accepted and will validate that part of the expression as True.

Similar to defining rules, I can define a positional win condition w by combining j ´ 1 of
the boolean operators from tand, or, notu with the helper function hp. These combined
functions always need to have a boolean function as the outermost function, with a helper
function being the innermost functions. To represent the space of win conditions, I define
the function WPpjq as follows:

WPpjq –
j´1ą
i“0

tand, or, notu ˆ thpu.

I refer to the set of all positional win conditions w that are used in a game as W

Example 3.2.6. For this example, I assume a complexity of j “ 2. A win condition with
j “ 2 will start with a boolean function and end with a helper function. I now define a
win condition w1 in WPp3q that checks for a line of Left’s game pieces on the grid:

w1 “ andphpp0, 0, ´1, 0q, andphpp1, 1, ´1, 0q, hpp2, 2, ´1, 0qqq.

The logical mask created by the win condition, along with a board position satisfying it,
is shown in Figure 3.7.

Figure 3.7: Example of a position satisfying win-condition w1
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Loss Conditions

The second type of game-ending condition concerns itself with the losing state of the
board. It captures losing the game by, for example, possessing no more game pieces in
Go or the King being unable to move in Chess. I begin the definition by introducing the
function stuck:

stuck : P Ñ tTrue, Falseu,

stuckprow, col, type, playerq –

#
True, if Vprow, col, type, playerq “ H,

False, otherwise.

Additionally, I define a global loss condition that causes a player to lose if all of their
pieces are stuck:

all : tLeft, Rightu Ñ tTrue, Falseu,

allpplayerq –
ľ

pPPplayer

stuckppq.

Since stuck is supposed to be able to “track” the available moves of specific game pieces
and the set P does not define order, I have to introduce a sequence p as follows:

p : N Ñ P,

where pn – ppnq,

where the order of the sequence ppnq is determined by the order in which the elements of
P were added to the set.

I use a set of two of the Boolean operators, tand, oru, to describe more complex combi-
nations of conditions defined by stuck. Similar to positional win conditions, I denote a
function LCpcq with a complexity 1 ď c, c P N. As with win-conditions, the last element
in a stack of functions must always be the function movable, not a Boolean operator.
Based on this, I define:

LCpcq –
c´1ą
i“0

tand, oru ˆ tstucku,

where the parameters of stuck are always an elements of the sequence ppnq. This is
essential, as the values of the tuples in P will change during the game. Therefore, the
pre-defined parameters of stuck would not “track” a specific piece in the game, which I
want. Using a sequence that refers to specific elements in P solves this problem. To make
it clear which player will lose when a condition triggers, I allow the function stuck to
target only pieces belonging to a single player in each of the combined conditions in LC.
Finally, I define the set of all loss conditions l in a game as L. Naturally, all of these loss
conditions depend on the initial board state, which I will introduce in the next section.
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Example 3.2.7. Before I begin introducing a loss condition, I create the board shown
in Figure 3.8. It contains three pieces, P “ tp3, 1, 1, 0q, p3, 3, 1, 0q, p1, 1, 2, 1qu. Thus, the
sequence ppnq is defined as p1 “ p3, 1, 1, 0q, p2 “ p3, 3, 1, 0q, p3 “ p1, 1, 2, 1q. Furthermore,
I define the set of rules as R “ tpdown, Hqu. To create loss conditions, I assume a
complexity of c “ 2. Loss conditions with a complexity of 2 consist of a combination of
an element from b P tand, oru and functions stuck. I define a loss condition l1 in LCp2q
as follows:

l1 “ orpstuckpp1q, stuckpp2qq.
Therefore, should Left not be able to move with either p1 or p2, they would lose the game.
An example board position where this is the case, with only pdown, Hq available as a
rule, is displayed in Figure 3.8.

Figure 3.8: Board position that triggers loss-condition l1 for Left.

Initial Board State

Some games may require the definition of a non-empty initial grid. Examples of this are
Chess, Go, and Checkers. To this end, I need to define a function IP that returns the
subset of all possible pieces for given grid dimensions n, k and set T :

IP: N ˆ N ˆ T ÞÑ 2G ,

IPpn, k, T q – tprow, col, type, playerq | 1 ď row ď n, 1 ď col ď k,

type P T , player P t0, 1u,

where row, col are natural numbers. This set defines all possible initial pieces for given
grid dimensions and a set of types. The initial content of the set P is then a subset of
the set defined by IPpn, k, T q.
Example 3.2.8. To start with a non-empty initial board for the players to move in,
I create some game pieces. I assume an empty 3 ˆ 3 grid to begin with. Furthermore,
assume T “ t1, 2u. I now create four initial pieces for P that are in IPp3, 3, T q:

P “ tp1, 1, 1, 0q, p1, 3, 2, 0q, p3, 3, 1, 1q, p3, 1, 2, 1qu Ď IPp3, 3, T q.
This initial board configuration is displayed in Figure 3.9.

34



3.2. Generating Games

Figure 3.9: An initial board position with pieces in IPp3, 3, T q.

For a complete end-to-end example of creating a game and then playing it out, I refer to
Appendix C.1.

3.2.2 Sampling 2D-Grid Games

In the following, I introduce multiple methods that allow us to sample all of the compo-
nents of a game I introduced in Section 3.2.1. I also reproduce the deterministic examples
for each component using probabilistic methods.

Grid Dimensions

I start by outlining the process of sampling the dimensions of the grid. To make definitions
more concise, introduce the set notation rns – t1, 2, . . . , nu, which defines sets from 1 to
n. Then, I construct the space of the variables n and k that define the dimensions of the
grid as follows:

Sgrid “ r10s ˆ r10s.
Next, I define a probability distribution over this space:

P pN X Kq : Sgrid Ñ r0, 1s.

To generate dimensions for the grid, I can sample a pair of values for pn, kq from this
distribution.

Example 3.2.9. To reproduce the grid defined in Example 3.2.1, I assume that P pNXKq
is deterministic: P pN “ 3 X K “ 3q “ 1. I then sample this distribution to produce a
pair of values for the grid dimensions n and k:

p3, 3q „ P pN X Kq.

Choosing this specific distribution would always replicate the empty 3 ˆ 3 grid from
Example 3.2.1.
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Types

As the next step, I sample the types of game pieces T . I first define the space of all
possible types as:

Stypes “
"

ris | i P r10s
*

.

Now, I create a probability distribution that covers this space:

P pTq : Stypes Ñ r0, 1s.
To fill the set of types T , it is sufficient to sample from this distribution.

Example 3.2.10. Again, I assume that the distribution P pTq is deterministic: P pT “
r2sq “ 1. To create T , I sample this distribution:

T “ r2s „ P pTq.
This result replicates the set T from Example 3.2.4.

Initial Game Pieces

To fill a grid with an initial set of game pieces, I first have to create the space of all
game pieces for the given grid dimensions n, k and set of types T . For this, I utilize the
function IP introduced earlier. Then, I can define a probability distribution that covers
all possible initial game pieces for the given n, k and T :

P pPq : IPpn, k, T q Ñ r0, 1s.
By sampling this distribution, I can create game pieces p that initially make up the
contents of the set P.

Example 3.2.11. To replicate Example 3.2.8, I first construct a distribution with spikes
in all corners of the grid as follows:

P pP “ p1, 1, 1, 0qq “ 0.25,

P pP “ p1, 3, 2, 0qq “ 0.25,

P pP “ p3, 3, 1, 1qq “ 0.25,

P pP “ p3, 1, 2, 1qq “ 0.25.

Before sampling any pieces, remember that per definition the set P contains unique game
pieces. Thus, to create a set of four pieces, I sample until |P| “ 4:

P “ ␣p1, 1, 1, 0q, p1, 3, 2, 0q, p3, 3, 1, 1q, p3, 1, 2, 1q(„ P pPq.
This set of initial pieces P replicates the one created in Example 3.2.8.
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Rules

To sample rules and their conditions, I begin by defining a probability distribution
over the space created by the function MCRpc, jq. To this end, I first introduce a joint
probability distribution over the space of the parameters c, j:

P pC X Jq : r5s ˆ r5s Ñ r0, 1s.
Furthermore, I define a probability distribution with fixed parameters c, j over the space
SMCRpc,jq created by MCRpc, jq:

P pRc X Bjq : SMCRpc,jq Ñ r0, 1s.
Note that I use B as the random variable for the condition (i.e., bounds) of the rule to
avoid confusion with another that I previously introduced. This distribution can then be
sampled to create a rule and condition for a sampled set of parameters. I denote the set
of all rules and condition pairs sampled in this manner as R.

Example 3.2.12. To replicate the rules and conditions pairs defined in Example 3.2.3, I
first define the previously introduced distributions:

P pC “ 1 X J “ 2q “ 1,

f – up,

g – orpeq1,1,´1, eq3,3,´1q,
P pR1 “ f X B2 “ gq “ 1.

To now reconstruct the rules and conditions in Example 3.2.3, I sample these distributions:

p1, 2q „ P pC X Jq,
pup, orpeq1,1,´1, eq3,3,´1qq „ P pR1 X B2q.

Actions

To sample the assignments made by the function A, I will define a probability distribution
over the space of all subsets of the rules in R. I begin by defining the space of all subsets
as:

Sactions “ 2R.

I can now define a conditional probability distribution over the combination of the types
T and the subsets of R as follows:

P pR | T “ tq : Sactions ˆ T Ñ r0, 1s.
I condition T on t, as the values are known (i.e., the parameters of A). To allow the
function A to sample the subsets of the target domain, I have to redefine it using the
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probability distribution. First, since I still want A to return the same subset of R each
time it is called, I define a helper tuple of sampled subsets:

H “ pRt | t P T , Rt „ P pR | T “ tqq .

Using the helper tuple, A can now be redefined to return a sampled subset for each type
in T : Aptq – Ht.

Example 3.2.13. To recreate the function A from Example 3.2.4 via sampling, I first
need to define the set of rules as follows:

R “ tr1, r2, r3, r4u.

The rules r1 to r4 are the same as in Example 3.2.4. Also assume that T “ t1, 2u. I now
define the conditional probabilities of the distribution I introduced above as deterministic:

P pR “ tr1, r3u | T “ 1q “ 1,

P pR “ tr1, r2u | T “ 2q “ 1.

With these assignments made, the function A I re-defined above, will return the following
subsets of R for each element of T :

Ap1q “ tr1, r3u,

Ap2q “ tr1, r2u.

Thus, I have successfully replicated Example 3.2.4 by sampling a probability distribution!

Win Conditions

To define a probability distribution over all win conditions, I first need to create a
distribution over the space of the parameter j:

P pJq : r5s Ñ r0, 1s.
Using the space SWPpjq created by the function WPpjq, I define the following probability
distribution over it:

P pWjq : SWPpjq Ñ r0, 1s.
To create a win condition w, I first sample a parameter j from P pJq and then a win
condition from the distribution P pWjq. I denote the set of all win conditions w in a
game sampled in this way as W.

Example 3.2.14. I begin the reproduction of Example 3.2.6 by defining P pJq and
P pWjq as deterministic:

P pJ “ 2q “ 1
f – andphpp0, 0, ´1, 0q, hpp1, 1, ´1, 0q, hpp2, 2, ´1, 0qq,

P pW2 “ fq “ 1.
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Finally, I replicate the win condition from Example 3.2.6 by first sampling the parameter
j from P pJq, then using it to sample our win condition distribution P pWjq:

2 „ P pJq,
andphpp0, 0, ´1, 0q, hpp1, 1, ´1, 0q, hpp2, 2, ´1, 0qq „ P pW2q.

Loss Conditions Similar to the previous section, I begin by defining a probability
distribution over the space of the function LCpcq’s parameter c:

P pCq : r5s Ñ r0, 1s.

Using the space SLCpcq created by the function LCpcq, I can define a probability distribu-
tion over it:

P pLcq : SLCpcq Ñ r0, 1s.
To sample a loss condition, I begin by sampling the parameter c from P pCq and then
use it to sample from P pLcq. I refer to the set of all loss conditions l in a game sampled
in this manner as L. This set also includes the two default loss conditions allpLeftq and
allpRightq defined in Section 3.2.1.

Example 3.2.15. To reproduce Example 3.2.7, I first define the distribution P pCq as
deterministic:

P pC “ 2q “ 1.

Next, I also define the distribution P pLcq for the parameter value of c “ 2 as deterministic:

f – orpmovablepp1q, movablepp2qq,
P pL2 “ fq “ 1.

First, I sample c from P pCq. Then, using this value, I sample a loss condition from
P pLcq:

2 „ P pCq,
orpmovablepp1q, movablepp2qq „ P pL2q.

The sampled loss condition is the same as in Example 3.2.7.

Sampling Component Quantities

In the previous paragraphs, I have introduced all the necessary tools to sample the
components of a game. However, a crucial aspect remains undefined: sampling the
quantities for rules, initial game pieces, win conditions, and loss conditions. Defining
these distributions is straightforward, as they need only generate an integer. I define the
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following distributions, denoting the random variables for each quantity with a subscript
of the set of the respective component:

P pNRq : r10s Ñ r0, 1s,
P pNPq : rn ˆ ks Ñ r0, 1s where n, k are the grid dimensions,

P pNWq : r5s Ñ r0, 1s,
P pNLq : r5s Ñ r0, 1s.

Sampling these distributions defines the exact quantities of rules, initial game pieces, win
and loss conditions for a game. For a complete end-to-end example of sampling a game
and then playing it out, I refer to Appendix C.2.

3.2.3 The Gameplay Loop
I can easily construct a formal way to represent the gameplay between Left and Right. In
the following, I will use game-theoretic concepts, such as states, and action sets for both
players and the transition function. Each game begins with a board that has the initial
pieces in P placed on it. I refer to this board as s0. In all of our games, Left and Right
alternate taking actions, with Left beginning in s0. During their turn, a player chooses
an action from Aplayer, which is a tuple of a game piece and a valid rule. Once an action
ai is chosen by the active player, the transition function is applied to it and the state.
The transition function applies the rule to the game piece contained in the chosen tuple,
constructing the next state:

T psi´1, aiq “ si.

This also passes the turn to the other player, who will choose an action, apply the
transition function, and so forth. For each state created in this way, the win and loss
conditions are checked. Should any of them be satisfied, the game has reached a terminal
state and ends. An example of a complete game from start to finish can be found in the
Appendix C.3.

3.2.4 Sampling a Whole Game
In this short section, I will provide an overview of how to sample a complete game, step
by step:

1. Sample grid dimensions n and k: n, k „ P pN X Kq.
2. Sample types in T : T „ P pTq.
3. Sample initial game pieces in P:

a) Sample the amount of game pieces np: np „ P pNPq.
b) Sample np game pieces and create P: P “ tpi „ P pPq | 1 ď i ď npu.

4. Sample rules and their conditions in R:
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a) Sample the amount of rule and condition pairs nr: nr „ P pNRq.
b) Sample nr pairs of the complexity c, j parameters for the rules:

tpci, jjq „ P pC X Jq | 1 ď i ď nru.

c) For each complexity pair, sample a rule and condition pair to create R:

R “ ␣pr, cq „ P pRc X Bjq | c, j P tpc1, j1q, pc2, j2q, . . . u(
.

5. To create the subset assignments made by A, it is sufficient to create the helper
tuple H. This tuple contains a sampled subset of rules for every type. The A
function then maps from each type in T to the appropriate sampled subset in H.

6. Sample win conditions in W:

a) Sample the amount of win conditions nw: nw „ P pNWq.
b) Sample nw complexities j for the win-conditions:

tji „ P pJq | 1 ď i ď nwu.

c) For each complexity j, sample a win condition to create W:

W “ ␣
wi „ P pWjq | j P tj1, j2, . . . u(

.

7. Sample loss conditions in L:

a) Sample the amount of loss conditions nl: nl „ P pNLq.
b) Sample nl complexities c for the loss conditions:

tci „ P pCq | 1 ď c ď nlu.

c) For each complexity c, sample a loss condition to create L:

L “ ␣
li „ P pLcq | c P tc1, c2, . . . u(

.

3.2.5 Design Choices

This short section will introduce several design choices for the game sampling process. I
will begin by introducing which distributions I choose for the sampling process, give an
overview of the approximate size of the space, and then go over how unplayable games
are handled.
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Choosing Distributions

Let us begin with the distribution of the grid dimensions, P pN X Kq. For this, I choose
a discrete distribution centered around the middle of the range of the random variables.
This results in approximately square grids, with only outliers having “weird” dimensions
of, e.g. 1 ˆ 10. This allows for more interesting games, as most rules of higher complexity
will not work many outlier grids.

For all of the other distributions, I rely on the uniform random distribution. This choice
comes with the benefit of the least amount of prior information about our generated
games. This avoids the issue of the LLMs being tested exploiting the priors of our
generated games to enable improved performance, for example, by constructing training
sets consisting of the peaks of other distributions.

Unplayable Games

Sampling from the space of all games will inevitably result in unplayable games. I will
now show a few examples of generated games that would not be deemed playable.

Example 3.2.16. Assume a game generated without initial pieces, |P| “ 0. Furthermore,
assume that R contains a few rules, but place R R. Therefore, the first player will instantly
lose the game, as they have no moves available, thus triggering loss condition allp0q.

Example 3.2.16 shows just one of many unplayable games. Other than the special
case of having no pieces on the board, the case that the rules are too complex or the
conditions too restrictive is also common in unplayable games. I show an instance of this
in Example 3.2.17.

Example 3.2.17. Assume that I have a 3 ˆ 3 board and that each player has one game
piece in opposing corners:

P “ ␣p1, 1, 1, 0q, p3, 3, 1, 0q(
.

For the sampled rules, I assume that R contains the following pairs:

r1 “ pup, eq´1,´1,0q,
r2 “ pdown, eq´1,´1,1q.

Both players can not use any of the rules due to the conditions restricting their use.

Another common cause of unplayable games is those where a piece in the initial set P
satisfies a win or loss condition. Therefore, an end state is reached before any player can
take a move. Example 3.2.18 shows an initial state that instantly terminates a game
without either playing using a rule.
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Example 3.2.18. Assume a 3 ˆ 3 board with one initial piece p1 “ p0, 0, 1, 1q. Further-
more, I define the set of win conditions as follows:

W “ ␣
hpp0, 0, 1, -1q(

.

The win condition is satisfied if either player reaches the top left corner of the board.
Since player 1 already has a piece in this location (since it is his initial game piece), they
will instantly win the game before the starting player is even allowed to move.

As there are many factors at play to generate a playable game, a vast amount of the
space of all games I could generate will be unplayable. However, since games are very
cheap to generate, generating unplayable games is not an issue. I conduct a simple test
for any generation that allows us to filter out unplayable games. If any of the below
criteria are satisfied, I discard the generated game:

1. Any win or loss condition is satisfied by the initial board state.

2. Right (i.e., the starting player), has no valid moves available in the initial board
state.

3.3 Creating a Combined Complexity Metric

3.3.1 Estimating the Difficulty of a Game
To allow players of our games to have a sense of difficulty, I introduce a complexity
metric for those generated with the framework introduced in Section 3.2.2. To begin
with, I go back to remember how a game is played. The process of playing a game can
be represented as its history, a sequence of state and action pairs. Playing multiple plays
of the same game creates various histories. They can be combined to form a game tree,
as introduced in Section 3.1.5, using the states as nodes and the actions as the edges
between nodes. The notion of a game tree allows us to use heuristic search algorithms,
such as Monte Carlo tree search (MCTS). To define our complexity metric, I will use
an MCTS-based implementation of “intrinsic task difficulty” proposed in “The Measure
of All Minds” [HO17]. In the following paragraphs, I summarize the notation and ideas
introduced by [HO17].

Tasks

First, it is necessary to define a task: An abstract framework that describes the concept
of something an agent can solve using a policy. A concrete implementation of a task is
then referred to as an instance. In our case, the task would be the abstract framework
described in Section 3.2.1, and an instance would be a game from this space, for example,
as shown in the Appendix C.1.

43



3. Methodology

Policies

A policy has three main components that contribute to the “difficulty” of a solution,
namely the resources, search steps, and information required to reach a specific task.
Since it is unrealistic to calculate this for arbitrary tasks, the definition of difficulty
proposed by [HO17] will be an approximation. Nevertheless, it is useful to compare tasks
against each other.

Difficulty

Using this view of policies, the difficulty of a task can now be defined as the effort required
to build a policy that solves it. Solving a task is interpreted as accepting a solution over
v trials with a tolerance ϵ:

Arϵ, ÞÑvspµq – tπ : RErÞÑvspπ, µq ě 1 ´ ϵu.

where µ is the task, ϵ the tolerance, π the policy, and RErÞÑvspπ, µq denotes the response
after v-many trials. I refer to [HO17], Chapter 8.3 (I slightly changed the original
notation RrÞÑvspπ, µq, to avoid confusing it with the symbol R for real numbers). Using
the acceptance A, can define a measure of difficulty as:

ℏrϵ,δ,ÞÑvspµq – min
πPArϵ, ÞÑvspµq

Frϵ,δ,ÞÑvspπ, µq.

This can interpreted as the minimum acquisition effort F of any ϵ-acceptable policy µ for
the task π in v trials with confidence δ. In this representation, F is a measure of effort
that considers the following elements:

• L . . . Policy Length

• Spπ, µq . . . Execution steps

• Wpπ, µq . . . Verification steps, depends on confidence δ

• ϵ . . . Tolerance

• v . . . Number of trials

For a full list of all features and dependencies of F read Table 8.2 in [HO17]. For the
notion of task difficulty, [HO17] focus on a combination of the policy length L and the
Execution steps S. L is simply the length of a program that an agent can execute. This
can be interpreted in how difficult a policy is to acquire. S are the execution steps per
trial of π when performing task µ, which can be interpreted as how computationally
complex a policy is. The combination of L and S yields the finding effort LS, which is
defined as follows:

LSrÞÑvspπ, µq – Lpπq ` log SrÞÑvspπ, µq.
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3.3. Creating a Combined Complexity Metric

This function can be interpreted in how difficult finding a specific policy through search
is. Using LS to instantiate the finding effort F, the algorithmic difficulty for a given task
can be given as

K
rϵ, ÞÑvs
t pµq – min

πPArϵ, ÞÑvspµq
LSrÞÑvspπ, µq.

Thus, algorithmic difficulty is defined as the optimal ϵ-acceptable policy in terms of the
sum of its size and the logarithm of the number of its execution steps. It is important
to note that, as mentioned before, this is an approximation that depends on the search
algorithm (execution steps and program length), as well as the tolerance. For our use
case, this is not an issue at all since I will use the same search algorithm and parameters
for all generated games. As one may have noticed, this formulation is similar to that of
Kolmogorov complexity and is used as a computable version of it [HO17].

Search Algorithm

A straightforward policy search algorithm that is commonly used to solve games [SHS`18],
[SHM`16], [SB18] is Monte Carlo tree search (see Chapter 8.11 in [SB18]), MCTS for
short. This search algorithm works by iteratively simulating games and updating a
lookup table for a partial action-value function (e.g. learning a policy for a game). An
advantage of MCTS is that it runs at decision time, requiring no prior training. Other
reinforcement learning methods, like Q-Learning [SB18], require extensive training and
fine-tuning to provide adequate results.

The disadvantage of operating at decision time comes in the form of the many simulations
required by the algorithm. If an environment is expensive to simulate, MCTS will take a
long time to find an adequate policy. For our use case, I do not have this problem, as the
actions and checks that make up our game are cheap and not complicated to execute.

Another factor to consider with MCTS is the trade-off between exploration and exploita-
tion, which is done by the action selection policy. For most modern versions of MCTS,
like AlphaGo [SHM`16] or AlphaZero [SHS`18], this is implemented by a neural network
trained via self-play ahead of time. This works well for algorithms designed to play a
single type of game, as they do not need to generalize. Since I focus on a large number of
possible games, this would require us to train a separate neural network (or a very general
one) for each generated game, increasing computational effort drastically. Therefore, I
will utilize a common action selection rule, the Upper Confidence Bound (UCB) [SB18].

Approximating Difficulty

To approximate the difficulty of our generated games, I combine ideas from the mathe-
matical framework provided by [HO17] with MCTS.

Our basic idea is to run MCTS with UCB for a fixed number of simulations for each
game. I then use the “policy”, represented as a tree of board states as nodes and actions
as edges, as the program as the basis for calculating the difficulty metric proposed earlier
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in this section. To simulate the search process for a policy, I do the following steps for
each game’s initial state:

1. Define a list of fixed simulation numbers for MCTS, i.e. p10, 50, 100, 500q.

2. Take the lowest unused simulation budget from the list, i.e. 10.

3. Simulate v games of an MCTS agent with the given simulation budget against a
random agent.

4. For each trial, record the outcome and the average number of games played.

5. If the win rate over v games exceeds 1´ϵ, the policy is accepted, and I can calculate
our metric.

6. If the policy is not accepted, continue with an increased simulation budget with
MCTS at Step 2.

7. If the maximum number of simulations is exceeded, the game has reached the
maximum difficulty of our metric.

To form the components of the difficulty metric, I start by using the returned number
of explored nodes as an approximation of the policy length L. This will always be the
same number as the simulation budget, as each simulation step explores exactly one
node. Furthermore, I can use the minimum game steps of the v trials to approximate the
execution steps S.

In the following, I refer to the search tree of policy π as Gπ and its set of vertices (i.e.,
nodes) as Vπ. Thus, our difficulty metric for games can be constructed as follows:

Ktpµqrϵ, ÞÑvs « |Vπ| ˆ minimal game length.

Of course, this metric has a dependency on the exploration-exploitation trade-off, which
is unavoidable. However, since I use the same UCB parameters for all of our games, I
expect that this will not drastically skew the resulting metric. Furthermore, the training
process itself naturally depends on MCTS and the maximal number of simulation steps.
Since I don’t have unlimited resources, it is not feasible to run an extremely large amount
of simulations.

However, since our goal is only to provide a comparable metric between our generated
games, these factors should not become a problem, as the policy search for each game is
restricted in the same way.
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3.4. LLM Evaluation

3.4 LLM Evaluation
To evaluate the reasoning capabilities of LMaaS I construct an automatic evaluation
framework in Python code for the grid games introduced in Section 3.2. In addition to
grid games, I also implement a few “static” games, like Tic-Tac-Toe or ConnectFour,
although I focus solely on the former for LLM evaluation. Our framework consists of
three main components, a (game) Generator, a Solver, and a Prompter. I will discuss the
responsibilities of each in the following paragraphs. A visual representation is displayed
in Figure 1.1.

Generator

The Generator is at the heart of our framework. Its purpose is to generate new states for
a given game. These states represent the “reasoning step” to be solved by an LLM. For
static games, each state is generated from a random playout from the game’s initial state.
With grid games, I first sample a random game as described in Section 3.2.2. Using this
sampled game, I then generate a random playout and return one of the intermediate
states. Each state generated by this module also provides a rule set, which represents the
ins and outs of how the game is played in natural language. These rule sets will later be
used to construct the prompts given to the LLMs. Finally, the Generator also calculates
an approximate complexity for each state using the methods described in Section 3.3.

Prompter

The next of the three components is the Prompter. It handles all of the communication
with an LLM. To make a game playable by text-based agents, like LLMs, the Prompter
first converts each board state into a natural language representation. I choose a simple
grid-based approach, using the “|” as the dividers between cells. The state in natural
language is then placed into a prompt that consists of the related game rules, win and
loss conditions, and a description of the required answer format. An example of complete
prompts can be seen in Appendix B. Once a prompt is constructed, the Prompter
communicates it to an LLM and parses the answer. To allow for the improvement of an
initial answer, I allow each LLM a second chance by asking it to fix any prior mistakes.
The final answer given by the LLM is parsed by the Prompter, which will be evaluated
by our next module, the Solver.

Solver

Our final component is the Solver. As the name suggests, it is tasked with providing a
heuristic for the best actions an agent could take for each given state. At this point, it is
important to note that I do not solve the generated games in the game theoretic
sense. This would require the Solver to find an optimal game plan for both players for all
states, which is not feasible given the scope and aim of this work. As an approximation,
I use MCTS with a simulation budget of 1000 steps for a given state to find the best
valid actions. This suffices to find a better than random ranking of the next actions for
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an agent. To ensure that I can compare each ranking, the action scores Q are normalized
to a range of 0 to 1 (0 is the worst action, 1 is the best) using min-max scaling:

Q1
i “ Qi ´ minpQq

maxpQq ´ minpQq .

Another task given to the Solver is the verification of the answers that the Prompter
received from the LLMs. As I already generated rankings for each valid action, this will
return either the score of the chosen move if it is valid, or a special value indicating an
invalid move otherwise.

Using these three components, I construct the automatic generation and evaluation
pipeline displayed in Figure 1.1. Summarizing, our approach works as follows: a random
state for a sampled (or static game) is created by the game Generator. This state is then
passed to the Prompter, which converts the state into a natural language prompt, passes
it to an LLM, and then parses the answer. Finally, the Solver calculates an approximate
ranking of the best actions for the state and scores the LLM’s answer based on it.

All of the states (and games) generated in this way are persisted in a local database. This
allows us to precisely control which samples are used for experiments by using specific
subsets of the states saved in the database. When running an experiment, the outcome
for each of the sampled states is recorded by a metrics module, which outputs both a chat
log and a JSON document containing the complete game state and the LLM’s solution
to it, along with the average action ranking of the tested LLM. I use the following metric
to calculate the average action ranking:

Q̄ “ 1
n

nÿ
i“1

Qi,

where Q are the action rankings of all tested samples. As all action rankings are
normalized, Q̄ is in the range of 0 to 1. For this metric, I treat invalid chosen actions
and failures to reply in the correct format as an action ranking of 0.

3.4.1 OOD Evaluation
For our experiments, I hypothesize that the grid games I introduce in Section 3.2.1 are
out-of-distribution (OOD) of LLMs. To test this, I analyze the distribution shift between
commonly known games that are surely in distribution, such as Tic-Tac-Toe, and our
generated grid games. This type of distribution shift is referred to as “background shift”,
which captures changes in the domain or style of the dataset content [YCC`23]. For this
purpose, I will leverage the evaluation scheme proposed by [YCC`23] and compare the
4-shot learning abilities of LLMs using the average action rank as the performance metric.
I opt not to fine-tune small LLMs, as evaluating LMaaS with undisclosed model weights
and datasets is at the heart of our research. Therefore, I will also not use approaches
to measuring distribution shifts, that use fine-tuning of small LLMs, like [YCC`23]
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and [CPBD`23] suggest. Furthermore, testing models that are not “black-box” is not
the focus of our work. I aim to provide a framework to test LMaaS with unavailable
weights, training data, etc. as mentioned before!

LLMs

For our tests, I will conduct experiments using the following three LMaaS:

• OpenAI GPT-4o [Ope],

• Anthropic AI Claude 3 Sonnet [AI],

• Google Gemini 1.0 Pro [Dee].

I chose these models as they are the top end of the state-of-the-art LMaaS at the time of
writing. For our experiments, I will rely on the responses generated by the API interfaces
offered by each service.

2D Grid Games Samples

I begin our evaluation by constructing an out-of-distribution test set of nOOD “ 500
game states using the generation capabilities of our framework. Each generated sample
consists of one playable state, ranked by the complexity metric introduced in Section 3.3
with approximate action rankings. During the generation process, any game states that
do not have valid moves available (the game is won/lost already, all pieces can not move,
etc.) are discarded. I call this dataset “Grid-Games”.

Tic-Tac-Toe Default Samples

To evaluate the in-distribution game the well-known game Tic-Tac-Toe, which I can
assume is in the distribution of all LLMs (all of the ones I test can explain the game’s
rules in great detail). Using our framework, I again sample a test set of nID “ 500 game
states. I call this dataset “Tic-Tac-Toe Default”. Note however that this dataset uses a
different type of prompts than the “Grid-Games” dataset, which more closely represents
the common representation of the game Tic-Tac-Toe (board with X’s and O’s).

Tic-Tac-Toe Grid Game Samples

I also provide a test set of nT IC “ 500 samples of the game Tic-Tac-Toe recreated using
our Grid Game framework. In contrast to the “Tic-Tac-Toe Default” dataset, it uses
the same prompt template, and answer format as the “Grid-Games” dataset. I call this
dataset “Tic-Tac-Toe Grid Game”.
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2D Grid Games

As is commonly done in current literature (see Section 2), I utilize few-shot prompting to
test LMaaS, which has been shown to increase performance greatly. Few-shot in our case
means I prompt the LMaaS n times and select only the best-performing answer. Due to
technical reasons, I are limited to using 4-shot prompting, as elaborated on in Section 4.
Using our framework, I evaluate the test set “Grid-Games” using 4-shot prompting. The
results are displayed in the top third of Table 3.2.

For nearly all models, I can observe that they are not very good at choosing valid actions,
which is understandable when playing new games that they are new to. I can also see,
that the three models seem to be able to adhere to the answer format in most cases, with
only Claude 3 Sonnet being noticeably worse than the other two.

Tic-Tac-Toe Grid Game

Again using 4-shot prompting, I now evaluate the in-distribution game Tic-Tac-Toe using
the “Tic-Tac-Toe Grid Game”, using the same prompt templates and representations
as the “Grid-Games” experiment. An example of the prompt and answer templates is
displayed in Example B. Due to the game being known by all of the LLMs I test, I expect
to see an increase in performance in comparison to our out-of-distribution games. The
results collected by our framework are shown in the middle third of Table 3.2.

Indeed, I see a large increase in performance for all tested models when compared to the
“Grid-Games”. Additionally, I can observe that the models take valid actions for nearly
all samples, and none of them answered in an invalid format. However, it has to be said
that choosing a valid action is easier for the “Tic-Tac-Toe Grid Game” than for other
“Grid-Games”, as there is only one action with no conditions for the models to take for
this task.

Tic-Tac-Toe Default

Finally, I use 4-shot prompting again to evaluate the in-distribution game of Tic-Tac-
Toe, represented in the “common form”, using X’s and O’s as symbols in a 2D grid,
with number labels for the LMaaS to choose from. An example prompt is displayed
in Example B. I expect similarly good performance to the “Tic-Tac-Toe Grid Game”
dataset, as the LLMs should be able to exploit their learned knowledge about the game.
The results for this dataset are displayed in the lower third of Table 3.2.

Distribution Shift

From our experimental results, it is visible that the LMaaS I test exhibit a stark difference
in performance when playing the out-of-distribution “Grid-Games” and the in-distribution
games “Tic-Tac-Toe” and “Tic-Tac-Toe Grid Game”. Below, in Figure 3.10, I provide an
overview of the distribution shifts between the average overall rank between our proposed
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in- and out-of-distribution datasets, as well as between the normal and Grid-Game
versions of Tic-Tac-Toe.

Figure 3.10: Performance comparison of three LMaaS the proposed datasets.

I can see that there is indeed a large distribution shift between the out-of-distribution
dataset, “Grid-Games”, and the two in-distribution datasets. For the two in-distribution
games, the performance is roughly equal, with “Tic-Tac-Toe Grid Game” performing
slightly worse for all models, except Claude 3 Sonnet. I attribute the slight performance
difference to the representation form of our framework for the grid games, which elaborates
the game mechanics in great detail and does not use the common X’s and O’s for the
board pieces. For a comparison between the prompts, I refer to Examples B.
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CHAPTER 4
Limitations & Future Work

I plan to conduct more experiments comparing known games to new and unknown games
generated by our framework, as I did for “Tic-Tac-Toe”. A further goal is to analyze
individual games generated with our framework that, as well as LLM performance on it,
to go beyond the performance I obtained on average, over the entire “Grid Games”.
Furthermore, I would like to extend our framework by adding more functionality and
control to allow users control testing in a more fine-grained manner. Lastly, I would like
to conduct more experiments using variations of prompt styles, prompting strategies,
and in-context learning, which was within the time and resource budget for this work. I
summarize these below:

• Improve game filtering: With our current uniform random sampling, I often
sample games with only a short or very pre-determined sequence of play. To allow
users of our framework to generate more “playable” games, I would like to add a
more elaborate filtering system to the space of games imposed by our mathematical
framework from Section 3.2.1. Our current system solely filters out games that are
“unplayable”, which means they have no valid moves or immediately result in a
game-ending state.

• 2D Grid Representation: Our current implementations depend on the ability of
LMaaS to read and understand the game state represented as a 2D grid. For future
work, I would also like to experiment with adding different types of representations
for the game state, such as textual description, cell-by-cell description, or other
methods to see how they would affect performance.

• Prompting style & Strategies: In current literature (see Section 2), there are a
lot of proposed prompting styles and strategies that are shown to increase reasoning
performance. For future work, I would like to include them in our framework, to
allow users to experiment with multiple approaches to LLM reasoning.
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CHAPTER 5
Conclusion

Based on an extensive literature review from Section 2 and Appendix A, I introduced, to
our knowledge, the first fully automatic generation and evaluation framework for testing
the reasoning capabilities of black-box LMaaS, such as GPT-4o, Claude 3 Sonnet, and
Google Gemini 1.0 Pro. The (typically new, and thus unknown) games generated by our
approach are supported by a mathematical framework for two-dimensional games played
on a grid, which I refer to as “2D Grid Games”, from which games can easily be sampled
using statistical distributions over each component space. To calibrate game difficulty, I
introduced a complexity measure based on “Intrinsic Task Difficulty” by [HO17].

Generating games not in the training distribution of LMaaS solves a problem with the
current reasoning benchmarks: The benchmarks are usually included in the training
data, as they are offered publicly. Thus, model training can memorize and optimize for
these types of benchmarks, rendering the benchmarks, once released, invalid for further
evaluation of reasoning capabilities. Our generative approach allows a clearer separation
of LLMs’ memorization capabilities from their reasoning capabilities.

I note that [YKG`23] have presented, among other findings, evidence that LLMs have
reasoning abilities that go beyond merely being a “stochastic parrot”. Their argument has
a non-constructive character, by appealing to a pigeon-hole principle argument to show
that there must be reasoning abilities an LLMs has, that were not covered by training
data – but the question is left unanswered what the specific reasoning performance of an
LLM is, and how LLMs compare against each other. Our approach closes this gap by
allowing concrete assessment of specific LLMs.

I believe our generative dataset approach has a certain degree of immunity against its
games being scraped and incorporated into model training data, thus rendering it invalid:
Since the generated games are diverse and non-repeating, and individual games can
possess a level of complexity sufficiently large that a lot of effort needs to be expended
to train a model to a degree that allows it to master that game well [RDM`24], it will
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5. Conclusion

not be of use to train on a selection of our generated dataset, as they do not cover play
patterns needed to help the models improve.

The framework for this thesis was implemented in Python and is largely split into
one module for the grid game generation, and one that handles the three parts of the
generation pipeline, see Section 3.4. The software was designed to be future-proof,
anticipating further extensions, to easy extension to new Prompters, Solvers, and Games.
The codebase spans approximately 4600 lines of code and was a large effort during the
thesis.

Our experiments running this framework show, that, as expected, there is a clear distri-
bution shift between the proposed in- and out-of-distribution games I test. Furthermore,
the LMaaS seem to be able to leverage their learned knowledge about “Tic-Tac-Toe” in
both representation forms.

Finally, our research clearly highlights the need for more comprehensive generative,
out-of-distribution benchmarks, which developers of LLMs or other textual AI models,
as well as end-users, can apply to accurately monitor reasoning performance without the
risk of incorrect performance assessment due to test sets leaking into training data.
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APPENDIX A
Comparison To Similar Work

The following listed papers presented some overlap with our approach. The discussion
below summarizes the essential content of each article and highlights in bullet points the
differences and similarities to our setup.

A.1 Comparison to [CWF`22]
Summary: In [CWF`22] the authors propose a planning and reasoning benchmark for
out-of-distribution tasks. The novel dataset is generated by collecting human annotations
to several planning tasks (for example, “Clean the dirty dishes”) and reasoning tasks
(providing explanations to real-world scenarios and their outcomes). The authors create
prompts with three levels of difficulty by adding the most common answers from the
human annotators as constraints to the base prompts. They also propose OOD prompts
by adding constraints designed to force humans and LLMs to think “out of the box”.
They evaluate their results in two stages, once against a plain LLM (GPT-3) and once
against a combination of an LLM (GPT-Neo) and a symbolic planning module. Their
results are screened by human annotators again to filter out any degenerate generations.

• One of our main goals is to create a dynamic, generative dataset for formal games
without requiring any human annotations. In [CWF`22] the authors make use
of extensive human annotations for their experiments, both during benchmark
generation, as well as in the screening of LLM responses.

• They focus on more planning-oriented tasks, like asking an LLM to propose ways
to “wash the dishes”, which does not have a clearly defined, unique solution. I
solely focus on the domain of formal games, where a solution to a problem can be
clearly defined.
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A. Comparison To Similar Work

• I aim to test the reasoning capabilities on games the LLM has not been trained
on and has memorized a method to generate a solution. In Part I of their ex-
periments, [CWF`22] focus on forcing LLMs to make use of OOD language via
constraints added to their prompts. In Part II of their paper, they introduce a
more constrained planning domain, aimed at being solvable using a planning solver
in the PDDL language, which has more in common with our approach.

A.2 Comparison to [VOSK23]
Summary: In [VOSK23] the authors propose an extensible framework that automatically
generates random problems for a given planning/reasoning domain, which can be used to
evaluate the capabilities of LLMs. Their assessment architecture consists of a domain-
dependent component and a domain-independent component, each responsible for different
parts of the problem generation. The domain-dependent component holds a problem
generator, which uses a human-annotated domain model (e.g., a description of what
actions objects in the domain can take and how they are constrained. A translator
module then converts the problem generated from natural language to PDDL. Receiving
this PDDL as input, a planner and a planner validator, can verify the solutions generated
by the LLM using test cases. The authors evaluate their work solely on the simple
Blocksworld domain, which consists of colored blocks that have to be stacked in a certain
order under some constraints. The models they evaluate are GPT-3 and BLOOM. Finally,
they also include a human baseline from a preliminary study on Blocksworld as a reference
for their benchmark.

• In [VOSK23] a benchmarking framework is developed that, as claimed, can be
extended to other domains. It is however limited to domains that can easily be
described using the PDDL language, as this is required by the domain-dependent
components of their architecture. This limits the use cases of their work to
domains that consist of objects that have relations to each other (as is common for
planning problems). Furthermore, they also only test their work on the very simple
Blocksworld domain. Problems therefore consist only of random arrangements of
colored blocks on top of each other. I aim to provide a framework for formal games,
that are not limited to the planning domain of problems defined by objects and
their relations.

• I aim to provide a generative dataset that can be used to evaluate the OOD reasoning
capabilities of a model. [VOSK23] solely use their framework to automatically
evaluate LLMs on generated problems in the Blocksworld domain, without any
generalization testing.

• Finally, to test OOD reasoning I want to fine-tune small models using samples of
our generative dataset. [VOSK23] rely on baseline LLMs without any fine-tuning
on samples generated by their proposed architecture.
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A.3 Comparison to [CRW`23]
Summary: In [CRW`23], the GLAM method for functional grounding for LLMs is
proposed. The authors to use methods from online RL to fine-tune a Flan-T5 instance
with Proximal Policy Optimization (PPO) on a textual version of the BabyAI environment.
Their environment is a version of GridWorld, where agents have to pick up or navigate to
objects that are placed in it while only observing parts of the grid. To enable PPO in their
environment, the authors choose to add an MLP on top of their Encoder blocks, which
learns to approximate the Value function during training. Doing so severely increases
the computational complexity due to the action space determining the size of the MLP,
which in turn hinders experiments on larger state-of-the-art LLMs. Using their proposed
GLAM method, the authors aim to answer four questions in their work based on sample
efficiency, generalization to new tasks and objects, and the difference in using Behaviour
Cloning (BC).

• They finetune their model by adding a separate value head to estimate a Value
function (from RL, predicting the Value of a current state given the goal), which
they train using Proximal Policy Optimization (PPO). Thus, their work is limited
to environments that can be formalized as a partially observable MDP (PMDP)
(environment needs to define rewards, state, transitions, etc.) which our approach
does not require. Using an RL environment also comes with the task of defining a
reward function, which is hard in itself.

• I aim to provide a rigid solution for each problem generated by our approach, where
each step the LLM takes can be verified and assessed by our framework. As with
all RL problems, [CRW`23] are interested in verifying the agent having reached
the goal within a given timeframe to validate success, guiding it only by receiving
intermediate rewards for each action.

• Experiments are constrained to one small LLM (FLAN-T5) due to the nature
of their action space setup increasing computational complexity severely. I are
interested in experimenting with multiple large state-of-the-art language models
like GPT-4, Claude, and others.

A.4 Comparison to [PCOT23]
Summary: In [PCOT23] a programming-puzzle generation system is introduced that
is called Autotelic Code Exploration via Semantic Descriptors (ACES). The authors
contribute a novel approach to diversity maximization in programming puzzle generation
by utilizing a specific version of GPT-3.5-Turbo as the generator, solver, and labeler of
new puzzles. They propose the use of semantic descriptors (10-dimensional encoding of
classical areas of programming puzzles) as a goal for the few-shot in-context learning
LLM tasked to generate new pairs of puzzles and solutions. As the base for their work
they rely on a collection of programming puzzles, P3, introduced by [SKPK21]. To
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verify their approach the authors conduct multiple experiments and ablation studies,
comparing ACES to other approaches that aim to maximize diversity in programming
puzzle generation.

• I focus on the domain of formal games, where [PCOT23] only evaluates ACES
on programming puzzles with the same structure as those in the P3 dataset (e.g.,
problems have to be defined as two functions f and g).

• Our approach aims to analytically analyze the diversity of generated games, whereas
they focus on the distribution inside the matrix generated by semantic descriptors.

• In [PCOT23] only one version of ChatGPT is used for their studies, whereas I
want to explore the OOD reasoning capabilities of multiple LLMs, such as GPT-4o,
Claude, and others.

• The main goals of our works differ: [PCOT23] propose a diversity-maximization
algorithm for programming puzzles, whereas I are interested in creating an OOD
reasoning benchmark for LLMs in the domain of formal games.

A.5 Comparison to [LSS`24]
Summary: The authors of [LSS`24] introduce a Transformer architecture and training
regime that can produce optimal search paths, using next token prediction, for various
configurations of the grid games Maze and Sokoban. To train an initial Transformer
encoder-decoder model, the authors produce a training and test set of search paths and
execution traces from an A* search algorithm. To allow for seamless next token prediction,
a novel prompt format for the search process of A* is introduced. Using the training set,
the authors train two initial models: one using solely the task and the optimal search
path (solution-only) and another using the task, execution trace, and optimal search path
(search-augmented). To further improve the search performed by the search-augmented
model, they use non-deterministic A* samples generated by its decoder module to create
a second training set. A third model, which the authors call “SearchFormer”, is then
trained to optimize for the shortest optimal search path. The results indicate that the
SearchFormer outperforms both the search-augmented and solution-only models on the
test sets for both games.

• The authors of [LSS`24] aim to provide a solution for each instance of their games.
They train their Transformers to provide an optimal search path, even improving
upon A* when experimenting with their SearchFormer. I, on the other hand, do not
seek to provide optimal solutions to the games I generate. Our goal is to provide a
heuristic that can be used to judge the responses made by LLMs.

• Our focus lies in generating a vast number of OOD games to evaluate the reasoning
capabilities of LLMs. [LSS`24] only aim to demonstrate that Transformers can
solve planning tasks, for which they rely on two well-known games.
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APPENDIX B
Examples of LLM Gameplay

Gameplay example of a Grid-Game with Gemini 1.0 Pro

System

You are a helpful assistant, tasked with playing games that require reasoning.

This game is played on a 3x4 grid.
Two players take turns moving their game pieces on the grid.
The game pieces on the grid are represented by (Type,Player),as example (1,0) for
a game piece of type 1 belonging to player 0.

The following is a description of the basic rules that other rules are con-
structed from:
up: moves a piece up one row
down: moves a piece down one row
left: moves a piece left one column
right: moves a piece right one column
nw: moves a piece up one row and left one column
sw: moves a piece down one row and left one column
ne: moves a piece up one row and right one column
se: move a piece down one row and right one column
Moves with a ’_c’ appended capture another piece in its target location.
Moves can be combined with arrows ’->’, as example ’up->down’.
Each type of game piece can only be moved using a subset of rules.
In the following, I list the rules for each type of game piece.
To use a rule on a game piece, it has to satisfy the CONDITION:
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B. Examples of LLM Gameplay

RULES for Type 1:
1.: left_c-ądown_c-ąse_c-ąnw-ąse_c;CONDITION: None
2.: sw_c-ąup_c-ąleft;CONDITION: a piece at row 0 and column 2 belonging to
any player
RULES for Type 2:
3.: left_c-ądown_c-ąse_c-ąnw-ąse_c;CONDITION: None
RULES for Type 3:
4.: ne-ąsw_c-ąse_c;CONDITION: OR(OR(a piece at any row and column 1
belonging to player 1 , OR(a piece at row 0 and any column belonging to player 0
, a piece at row 2 and any column belonging to any player)) , OR(a piece at row
1 and any column belonging to player 0 , NOT(a piece at row 0 and column 3
belonging to any player)))
5.: nw-ąleft_c-ąnw_c-ąne_c;CONDITION: OR(NOT(OR(a piece at row 0 and
column 1 belonging to any player , a piece at row 0 and any column belonging to
player 0)) , NOT(NOT(a piece at row 1 and any column belonging to player 1)))
6.: left_c-ąne-ąne-ąup-ąright;CONDITION: OR(OR(OR(a piece at row 1 and
any column belonging to player 0 , a piece at row 2 and column 2 belonging to
player 1) , OR(a piece at row 2 and any column belonging to any player , a piece
at any row and column 0 belonging to player 0)) , OR(OR(a piece at row 2 and
column 0 belonging to player 1 , a piece at any row and column 2 belonging to
player 1) , OR(a piece at any row and column 2 belonging to player 1 , a piece at
any row and column 3 belonging to player 0)))

WIN CONDITIONS:
The following are the win conditions that a player must reach to win the game:
1.: OR(a piece at any row and any column with type 1 , a piece at row 0 and
column 2 with type 3)

LOSS CONDITIONS:
Players will lose the game by satisfying the following conditions :
1.: None

The following is a description of a game:
You are playing as 0
The current board is:
3x4,Types: [1, 2, 3]
(3,1) | (-,-) | (-,-) | (-,-)
(-,-) | (3,0) | (2,0) | (-,-)
(3,1) | (2,0) | (2,1) | (2,1)
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You are playing as 0.
You have the following pieces on the board:
0.: (1,1) with type 3
6.: (1,2) with type 2
7.: (2,1) with type 2
You must choose a movement rule and a game piece from the list above to move a
game piece on the board.
Reply only in the following format by choosing a number that represents the index
of the rule from above
and a game piece in the form of (row,column):
ACTION: ă 1, 2, 3, 4, 5, 6 ą,(row,column)
Reply with no additional text!
row is in the range of 0,1,2 and column is in the range of 0,1,2,3:
Take great care to reply exactly in the answer format shown above!

Gemini 1.0 Pro

ACTION: ă 4 ą,(0,1)

Gameplay example of Tic-Tac-Toe-Grid with Gemini 1.0 Pro

System

You are a helpful assistant, tasked with playing games that require reasoning.

This game is played on a 3x3 grid.
Two players take turns moving their game pieces on the grid.
The game pieces on the grid are represented by (Type,Player),as example (1,0) for
a game piece of type 1 belonging to player 0.

The following is a description of the basic rules that other rules are con-
structed from:
up: moves a piece up one row
down: moves a piece down one row
left: moves a piece left one column
right: moves a piece right one column
nw: moves a piece up one row and left one column
sw: moves a piece down one row and left one column
ne: moves a piece up one row and right one column
se: move a piece down one row and right one column
place: places a piece at an EMPTY cell at row and column (only if there is not a
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B. Examples of LLM Gameplay

piece there already!)
Moves with a ’_c’ appended capture another piece in its target location.
Moves can be combined with arrows ’- ’, as example ’up- down’.
Each type of game piece can only be moved using a subset of rules.
In the following, I list the rules for each type of game piece.
To use a rule on a game piece, it has to satisfy the CONDITION:
RULES for Type 1:
1.: place;CONDITION: None

WIN CONDITIONS:
The following are the win conditions that a player must reach to win the game:
1.: AND(a piece at row 0 and column 0 with type 1 , AND(a piece at row 0 and
column 1 with type 1 , a piece at row 0 and column 2 with type 1))
2.: AND(a piece at row 1 and column 0 with type 1 , AND(a piece at row 1 and
column 1 with type 1 , a piece at row 1 and column 2 with type 1))
3.: AND(a piece at row 2 and column 0 with type 1 , AND(a piece at row 2 and
column 1 with type 1 , a piece at row 2 and column 2 with type 1))
4.: AND(a piece at row 0 and column 0 with type 1 , AND(a piece at row 1 and
column 0 with type 1 , a piece at row 2 and column 0 with type 1))
5.: AND(a piece at row 0 and column 1 with type 1 , AND(a piece at row 1 and
column 1 with type 1 , a piece at row 2 and column 1 with type 1))
6.: AND(a piece at row 0 and column 2 with type 1 , AND(a piece at row 1 and
column 2 with type 1 , a piece at row 2 and column 2 with type 1))
7.: AND(a piece at row 0 and column 0 with type 1 , AND(a piece at row 1 and
column 1 with type 1 , a piece at row 2 and column 2 with type 1))
8.: AND(a piece at row 0 and column 2 with type 1 , AND(a piece at row 1 and
column 1 with type 1 , a piece at row 0 and column 2 with type 1))

LOSS CONDITIONS:
Players will lose the game by satisfying the following conditions :

The following is a description of a game:
You are playing as 0
The current board is:
3x3,Types: [1]
(-,-) | (-,-) | (-,-)
(-,-) | (-,-) | (-,-)
(-,-) | (-,-) | (-,-)
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You are playing as 0.
You have the following pieces on the board:

You must choose a movement rule and a game piece from the list above
to move a game piece on the board, or choose an empty cell if placing a piece.
Reply only in the following format by choosing a number that represents the index
of the rule from above
and a game piece or empty cell in the form of (row,column):
ACTION: ă 1 ą,(row,column)
Reply with no additional text!
row is in the range of 0,1,2 and column is in the range of 0,1,2:
Take great care to reply exactly in the answer format shown above!

Gemini 1.0 Pro

Action: 1,(0,0)
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Gameplay example of Tic-Tac-Toe with Gemini 1.0 Pro

System

You are a helpful assistant, tasked with playing games that require reasoning.

User

Players take turns placing symbols on a 3x3 grid.
The starting players uses ’X’, the other ’O’ to mark their fields.
It is not allowed to place symbols on fields that already have one assigned to them.
The first player to have three of their symbols next to each other wins the game
(can be diagonal or straight lines).

The following is a description of a game:
You are playing as X
X | O | X
| |
X | | O

—
You must place the next symbol on the board.
The cells of the board are labeled from 0 to 8, starting in the top left corner.
Reply using only one of the following numbers: 0,1,2,3,4,5,6,7,8
Reply with exactly one character that is the chosen number in the following
format: ACTION:<1,etc.,8>
Make sure that you don’t include any additional text!

Gemini 1.0 Pro

ACTION: 4
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APPENDIX C
A Full Example of Game

Generation and Gameplay

C.1 Creating a Game Deterministically
The Grid

I begin by defining a positive integer n and a positive integer k. For this example assume
that n “ 6 and k “ 8. Next, I create an empty n ˆ k “ 6 ˆ 8 matrix that represents our
grid, as shown in Figure C.1.

Figure C.1: Initial empty grid

Creating Types

Next, I create a number nt to define the amount of types of game pieces. I assume nt “ 3
for this example, which means that our available types are t1, 2, 3u.
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In the following, I are going to represent game pieces of type 1 by a circle, type 2 by
a square, and type 3 by a star. Player 0’s pieces will be colored blue, while player 1’s
pieces will be orange. An illustration of this can be seen in Figure C.2.

Figure C.2: Symbols used for different game-pieces

Creating Rules

As the next step, I create nr-many (rule, condition) pairs from the space of MCRpc, jq.
For this example, let us assume nr “ 6. To make the example easier to follow, I restrict
ourselves to rules with rule-complexity of c P t1, 2u and condition-complexity of j P t0, 1u.
Using these parameters, I define r1 to r8:

r1 “ pup, Hq,
r2 “ pdown, Hq,

r3 “ pexchangepup, 3q, eq1,´1,1q,
r4 “ pexchangepdown, 3q, eq5,´1,0q,

r5 “ pleft, Hq,
r6 “ pright, Hq,
r7 “ pleftC, Hq,

r8 “ prightC, Hq,

The conditions on r3 and r4 allow each player to only use those rules for game pieces
in either the 5th row (for player 0) or the 1st row (for player 1). The conditions are
illustrated in Figure C.3.

Assigning Rules to Types

To assign rules to each of the piece types, I will now define the function A. I do this by
assigning a subset of rules to each type. Assume now that A is the following:

Aptq – p1 ÞÑ tr1, r2, r3, r4u, 2 ÞÑ tr5, r6, r7, r8u, 3 ÞÑ Hq .

Game pieces of type 1 can now move up and down. They also have a special move that
allows them to exchange the piece for one of type 3 after moving up or down from the
first to the last row, depending on the player. Pieces of type 2 can move left and right
and can capture pieces that belong to the opponent in those directions.
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Figure C.3: Conditions for r3 and r4

Creating Win Conditions

To create a goal for our game, I will now define nwp win conditions. For this example,
I assume nwp “ 1. I define the following win condition w1 using a complexity of j “ 2
from the space of WPp2q:

w1 “ orphpp0, ´1, 3, ´1q, hpp6, ´1, 3, ´1qq.

The win condition covers the first row and last row of the grid. Each player can win by
reaching it with one piece of type 3 (which can only be achieved by using r3 and r4). An
illustration of win condition w1 is displayed in Figure C.4.

Figure C.4: Positional Win-Condition w1

Creating the Initial Board State

I now proceed to create an initial board state, consisting of np game pieces for each
player. I assume np “ 5, thus creating 5 pieces for each player. I define the following five
game pieces for both players, creating P:
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P “ ␣p6, 1, 1, 0q, p6, 3, 1, 0q, p6, 5, 1, 0q, p6, 7, 1, 0q, p5, 4, 2, 0q(Y␣p1, 2, 1, 1q, p1, 4, 1, 1q, p1, 6, 1, 1q, p1, 8, 1, 1q, p2, 5, 2, 1q(
.

The new pieces are now placed on the grid, creating the starting position of the game, as
shown in Figure C.5.

Figure C.5: Initial state of the game

Creating a Loss Condition

For the loss condition, I will rely on the default contents of L, which contains both of
the all conditions:

L “ tallpLeftq, allpRightqu.

The loss condition makes each player lose the game if they have no more moves available
for any of their pieces.

C.2 Recreating the Game by Sampling
I will now reconstruct the game from the previous Section C.1. However, I will rely on the
probability distributions introduced in Section 3.2.2 to sample the game’s components,
instead of choosing them directly.

Sampling the Grid

I define the distribution P pN X Kq as deterministic. Sampling from this distribution, I
receive the following:

P pN “ 6 X K “ 8q “ 1,

p6, 8q „ P pN X Kq.
As in the previous section, our grid is now a n “ 6 ˆ k “ 8 matrix.
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Sampling Types

To sample the types used in game created in Section C.1, I construct a deterministic
distribution for P pTq and sample from it to create T :

P pT “ r3sq “ 1,

T “ r3s „ P pTq.

Sampling Rules & Conditions

Recreating the rules and conditions will require a bit more effort. Before going over
the distributions, it is important to note that R is a set, thus it does not contain any
duplicates. As the first step, I need to define the distribution of the parameters:

P pC “ 1 X J “ 0q “ 0.5,

P pC “ 2 X J “ 1q “ 0.5.

I continue by defining the distribution for P pR1 X B0q:

P pR1 “ up XB0 “ Hq “ 0.16,

P pR1 “ down XB0 “ Hq “ 0.16,

P pR1 “ left XB0 “ Hq “ 0.16,

P pR1 “ right XB0 “ Hq “ 0.16,

P pR1 “ leftC XB0 “ Hq “ 0.16,

P pR1 “ rightC XB0 “ Hq “ 0.16.

I now also define the distribution for P pR2 X B1q:

P pR2 “ exchangepup, 3q X B1 “ eq1,´1,1q “ 0.5,

P pR2 “ exchangepdown, 3q X B1 “ eq5,´1,0q “ 0.5.

As before, remember that the rule and condition pairs that are put into the set R must
be unique! Therefore, if I sample values of the fixed parameters c, j from PC,J and rule
& condition pairs from P pR X Bq until |R| “ 8, I receive the same rule and conditions
as in Section C.1. For the readers’ sake, I have omitted the sampling of all 8 rules here.
They can be seen in the previous section. I show the sampling of one of the rules as an
example:

p1, 0q „ P pC X Jq,
pup, Hq „ P pR1 X B0q.
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Sampling Actions

To recreate the assignments made by the A function, I will first define the probability
distribution P pR | T “ tq as deterministic:

P pR “ tr1, r2, r3, r4u | T “ 1q “ 1,

P pR “ tr5, r6, r7, r8u | T “ 2q “ 1,

P pR “ H | T “ 3q “ 1.

With the now deterministic distribution, I can create the helper tuple H by sampling the
three elements:

H “ ptr1, r2, r3, r4u „ P pR | T “ 1q, tr5, r6, r7, r8u „ P pR | T “ 2q, H „ P pR | T “ 3qq .

As I have sampled H, the function A is now defined as follows:

Aptq – p1 ÞÑ tr1, r2, r3, r4u, 2 ÞÑ tr5, r6, r7, r8u, 3 ÞÑ Hq .

The replicates the A function that was created in Section C.1.

Sampling Win Conditions

To recreate the win conditions, I begin by defining the distributions for P pJq and P pWjq
as:

2P pJ “ 2q “ 1
f – orphpp0, ´1, 3, ´1q, hpp6, ´1, 3, ´1qq

P pW2 “ fq “ 1

By first sampling a parameter j from P pJq and then sampling a win condition from
P pWjq, I receive the same win condition as introduced in Section C.1:

2 „ P pJq,
orphpp0, ´1, 3, ´1q, hpp6, ´1, 3, ´1qq „ P pWjq.

Sampling Loss Conditions

As the game in Section C.1 example relied on the default set of loss conditions, I can
omit this section and also use the default contents of L.

Sampling the Initial Board State

To finalize our game, I will also sample the same set of initial game pieces as in Section C.1.
To achieve this, first define the distribution P pPq as follows:
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P pP “ p6, 1, 1, 1qq “ 0.1,

P pP “ p6, 3, 1, 1qq “ 0.1,

P pP “ p6, 5, 1, 1qq “ 0.1,

P pP “ p6, 7, 1, 1qq “ 0.1,

P pP “ p5, 4, 2, 1qq “ 0.1,

P pP “ p1, 2, 1, 0qq “ 0.1,

P pP “ p1, 4, 1, 0qq “ 0.1,

P pP “ p1, 6, 1, 0qq “ 0.1,

P pP “ p1, 8, 1, 0qq “ 0.1,

P pP “ p2, 5, 2, 0qq “ 0.1.

Sampling from this distribution until the size of the initial set of game pieces |P| “ 10, I
recreate the same set as in the previous section. I only show one of the sampled pieces
here as an example:

p6, 1, 1, 0q „ P pPq.

C.3 Gameplay
Below I display players taking turns of the game introduced in the previous sections of
this chapter. I provide a visual representation of the board state as needed and aggregate
turns to avoid unnecessary length.

Turn 1

The game begins in state s0, which is depicted in Figure C.5, with Left choosing a valid
action from the set ALeft. Their choice lands on the tuple pp1, 8, 1, 0q, r2q as action a1.
This would move the chosen piece down. By applying the transition function, the game
piece is moved and the board state T ps0, a1q “ s1 is created. The board at the end of
Turn 1 is shown in Figure C.6.

Figure C.6: Board state s0 in Turn 1

Before moving on the win and loss conditions of the game are checked. To avoid repeating
the same text multiple times, I will omit writing out this detail until an end state is
reached.
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C. A Full Example of Game Generation and Gameplay

Turn 2

Now in board state s1, it’s Right’s turn to choose an action from the set ARight. Their
choice lands on the tuple pp5, 4, 2, 1q, r6q as a2. This action would move their “goalkeeper”
piece to the right. Again, by applying the transition function the piece is moved and
state T ps1, a2q “ s2 is created. The board state is shown in Figure C.7.

Figure C.7: Board state s2 in Turn 2

Turn 3 - 10

To keep the example short, I aggregate the moves both players take in turns 3 to 10. I
also do not explicitly mention the selection of actions and the transition to new states.
Left uses 3 of their turns to try and move his piece from Turn 1 into the win condition.
Right uses 3 of their moves to counter this and capture the piece with r8 before it enters
the goal line. Both players use their other two turns to move the leftmost pieces up/down
2, creating the board state s10 shown in Figure C.8.

Figure C.8: Board state s10 in Turn 10
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C.3. Gameplay

Turn 11 - 16

As is apparent from the board state s10 after Turn 10, Left can now proceed to move
their leftmost piece down, and then finally use r4 to move down into the “goal-line” and
exchange their piece for one of type 3 in s16. Right can’t do much but match moving
their leftmost piece up on each of their turns but has no more chance to win. The board
state s16 is shown in Figure C.9.

As mentioned at the beginning of this section, I will now proceed to check the win
conditions for state s16. As this game only has one of them, w1, this is quite easy. Before
I begin, let us recall how w1 was defined:

w1 “ orphpp0, ´1, 3, ´1q, hpp6, ´1, 3, ´1qq.
The function hp evaluates to True if there is a piece in P that matches the parameters.
Let us check it for Left’s pieces first. Their leftmost piece is at p6, 2, 3, 0q, which does
not satisfy hpp0, ´1, 3, ´1q. However, it does satisfy hpp6, ´1, 3, ´1q, which causes the
whole win condition to be satisfied. Thus, Left has won the game and a terminal state is
reached!

Figure C.9: End state s16 at Turn 16
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Overview of Generative AI Tools
Used

ChatGPT was used to connect the already written summaries of research papers from a
text document during the literature review into paragraphs. No additional information
was added by the AI Assistant and no research was done by it (e.g., finding papers,
summarizing, etc.), it was solely used to connect the independent sentences in order of
date. The following prompt was used to connect the sentences:

Prompt for connecting paper summaries for related work

You are a scientist working on a machine learning paper on Large Language Models.
You are currently writing the ’Related Work’ section for your paper focused on
Automatic Evaluation for LLMs.
Using the following sources, write a short paragraph for the ’Related Work’ section
of your paper:
You are a scientist working on a machine learning paper on Large Language Models.
You are currently writing the ’Related Work’ section for your paper focused on
Automatic Evaluation for LLMs.
Using the following sources, write a short paragraph for the ’Related Work’ section
of your paper:

[8. Jun 2023] "PandaLM: An Automatic Evaluation Benchmark for LLM
Instruction Tuning Optimization" [arxiv-lite: ’automatic evaluation’, p1-5 end
of rel.res.] [autoeval] (Authors introduce a benchmark for automatic evaluation
and introduce a finetuned LLama instance using a custom dataset designed for
human-aligned evaluation as a cost-effective alternative to GPT-4)

. . .
[17. Oct 2023] "Exploring Automatic Evaluation Methods based on a Decoder-
based LLM for Text Generation" [arxiv-lite: ’automatic evaluation’, p1-5 end of
rel.res.] [autoeval] (Authors introduce a number of Decoder-based LLMs finetuned
on evaluation of machine translation and semantic similarity tasks and compare
them on a number of benchmarks)
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