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Kurzfassung

Herkömmliche Ansätze des maschinellen Lernens zur Analyse von großen Mengen unstruk-
turierter Daten sind oft auf gelabelte Trainingsdaten und klar definierte Zielvorgaben
angewiesen. Diese sind jedoch meist nicht verfügbar oder realisierbar, wenn es um un-
strukturierte Daten mit unbekanntem Inhalt geht. Um diese Daten zu interpretieren,
erfordert es menschliche Überlegungen und Domänenwissen. Interaktive Systeme, welche
die menschlichen analytischen Fähigkeiten mit Techniken des maschinellen Lernens ver-
binden, können diese Einschränkungen beseitigen. Um jedoch menschliches Wissen in
solche Systeme zu integrieren, muss zuerst besser verstanden werden, welche semantischen
Informationen und Strukturen Benutzer*innen in den Daten erkennen und erwarten, und
wie sie ihr implizites Wissen explizit darstellen. Diese Arbeit verfolgt das Ziel, diese Lücke
zwischen menschlicher Kognition und der (wissensgestützten) visuellen Datenanalyse zu
verringern.

In einer qualitativen und explorativen Benutzer*innenstudie untersucht diese Arbeit,
wie Personen einen großen, unstrukturierten Datensatz erkunden und welche Strategien
sie anwenden, um ihre mentalen Modelle zu externalisieren. Durch die Analyse der
externalisierten mentalen Modelle versuchen wir besser zu verstehen, wie sich das Wissen
der Benutzer*innen während der Datenexploration entwickelt. Durch die Anwendung
quantitativer und qualitativer Methoden, einschließlich eines Crowdsourcing-Schrittes,
evaluieren wir die Ausführlichkeit, den Detailgrad und die Entwicklung der externalisierten
Wissensrepräsentationen der Benutzer*innen.

Die Ergebnisse zeigen, dass die externalisierten Strukturen der Nutzer*innen in der
Lage sind, einen gegebenen Datensatz vollständig und mit einem hohen Detailgrad
darzustellen. Während diese Repräsentationen stark subjektiv sind und Strukturen starke
Unterschiede aufweisen, konnten wir strukturelle Ähnlichkeiten zwischen den Personen
identifizieren. Neben den Erkenntnissen über die Externalisierung von implizitem Wissen
während der Datenexploration schlagen wir Designrichtlinien für (wissensgestützte)
visuelle Datenanalyse-Systeme vor.
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Abstract

Traditional machine learning approaches for analyzing large unstructured data often
depend on labelled training data and well-defined target definitions. However, these
may not be available or feasible when dealing with unknown and unstructured data. It
requires human reasoning and domain knowledge to interpret it. Interactive systems
that combine human analytical abilities with machine learning techniques can address
this limitation. However, to incorporate human knowledge in such systems, we need
a better understanding of the semantic information and structures that users observe
and expect while exploring unstructured data, as well as how they make their tacit
knowledge explicit. This thesis aims to narrow the gap between human cognition and
(knowledge-assisted) visual analytics.

In a qualitative and exploratory user study, this thesis investigates how individuals explore
a large unstructured dataset and which strategies they apply to externalize their mental
models. By analyzing users’ externalized mental models, we aim to better understand
how their knowledge evolves during data exploration. We evaluate the comprehensiveness,
detail and evolution of users’ external knowledge representations by applying quantitative
and qualitative methods, including a crowdsourcing step.

The results show that users’ externalized structures are able to represent a given dataset
comprehensively and to a high degree of detail. While these knowledge representations
are highly subjective and show various individual differences, we could identify structural
similarities between individuals. In addition to the insights about how users externalize
their tacit knowledge during data exploration, we propose design guidelines for (knowledge-
assisted) visual analytics systems.
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CHAPTER 1
Introduction

Many areas of today’s world are highly data-driven, and numerous domains face the
challenge of analyzing large amounts of data. One particular challenge in various domains,
ranging from the scientific fields of biology, chemistry, and medicine to the humanities
disciplines, is the analysis of unstructured data, which has no predefined and machine-
readable semantic structure (e.g., text, images, or videos) [Wil09]. In recent years, there
have been notable advancements in areas such as interactive data visualization, machine
learning (ML), and natural language processing. However, these machine learning
approaches typically rely on large sets of labelled training data in combination with
a well-defined target definition. When dealing with unstructured and unknown data,
these conditions are often unattainable. Consequently, conventional methods for visual
exploratory analysis may prove impractical due to the sheer size and unstructured nature
of the data [AAW21].
Interactive visual analytics approaches have the advantage of combining human domain
expertise and interpretative skills with the power and pattern recognition capabilities
of machine learning approaches. Recent works have acknowledged the potential of
incorporating the user’s knowledge into interactive visual analytics (VA) systems, with
promising results [FWR+17]. However, a lack of knowledge remains regarding how
individuals explore and make sense of unstructured data. While there are already solutions
for how the user’s knowledge can be integrated and used in a VA system [LDALG22],
most of these models assume that the domain knowledge exists in a comprehensive and
machine-readable form. It remains unclear how a system can acquire this knowledge
during the analysis process.
The study of this thesis is part of the “Joint Human-Machine Data Exploration” [Wal23]
(JDE) project, which aims to embrace the human part of the exploration process. By
questioning and reframing, an interactive visual analytics system can support the sense-
making process and encourage users to discover unexpected insights [KPRP07]. In
contrast to structured data, where we are able to query and filter the semantic concepts,
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1. Introduction

unstructured datasets do not provide this information upfront. Current solutions can
only offer similarity measures, which are insufficient as they do not provide the semantic
elements of the data. A joint exploration process between the human and the machine
might be beneficial, where the system learns with the user and curates knowledge on
the fly into an appropriate data structure. To make this possible, we first need to
better understand what semantics users observe and expect in the data. To learn from
users’ knowledge, we need a better understanding of how individuals express it and
how these explicit knowledge representations evolve over time. A key element for an
interactive system to support users during exploration is incorporating a user’s mental
model, representing their subjective understanding of a domain [JL80]. However, we
need efficient mechanisms to support users in making this tacit knowledge explicit.

Research has found that people are able to graphically externalize their mental models
[MSSW16]. In particular, concept maps are a common and proven method for externally
representing an individual’s mental model [Rui00]. This suggests that an interface that
allows users to externally represent their knowledge as a concept map-like structure could
be used to capture the user’s mental model during exploration.

The exploratory study of this thesis investigates the methods and strategies employed
by individuals to externalize their mental models when exploring large, unstructured
datasets. By analyzing these external representations, we aim to evaluate whether the
content of concept maps can be used to derive explicit knowledge that can be incorporated
into VA processes. This study contributes to the JDE project’s objective of extracting
what the user observes or expects in the data during exploration and revealing the user’s
subjective perspective on the data.

This work contributes to bridging the gap between machine learning and human analytical
skills. It is guided by the following research questions:

Q1 How well can the participants’ externalized mental structure(s) describe a large
unstructured dataset?

Q2 To what level of detail do the participants’ mental structures reflect the given dataset?

Q3 How do their suggested mental concepts and structures evolve during the exploration
process?

Q4 Are there any differences in the mental structures between individuals?

This thesis contributes to the field of human-computer interaction and visual analytics.
The findings provide knowledge about subjective and iterative external representations of
users’ mental models during data exploration. These findings result in design guidelines
for (knowledge-assisted) visual analytics systems.
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CHAPTER 2
Background

This chapter provides an overview of the concepts, terminologies and theoretical founda-
tions that are the basis of this thesis. The following sections introduce the characteristics
and challenges of unstructured data, the role of mental models in human cognition, and
the process of knowledge externalization. As we use a specific form of external knowledge
representation in our study, we introduce different approaches. This chapter concludes
with a review of related work and the current state of research in the field of knowledge
externalization and joint-human-machine data exploration.

2.1 Definitions
2.1.1 Unstructured Data
Unlike structured data, which can be organized in predefined data structures and stored
in databases, unstructured data does not have explicit semantic structures that machines
can process and interpret. While the term itself can describe a wide range of data types,
depending on the context, it typically refers to information whose semantics are not
immediately apparent and machine-readable [Wil09]. Examples of unstructured data
include text, images, audio, and video artefacts. This type of data is the most commonly
present, and diverse sources contribute to an ever-growing amount of unstructured
information [LL10, AAW21].

Most data types can be considered semi-structured, as the formats they are stored in
follow standards to add metadata [BA03]. According to the tetrahedral data model by Li
and Lang [LL10], items of unstructured data consist of four components: non-semantic
“basic attributes” (e.g. type, timestamps, authorship), “semantic features” that reflect
intentions and explanations, “low-level features” that can be obtained via data processing
(e.g. colour, shapes, or texture) and the “raw data” itself. Although the semantic features
of unstructured data are not inherently machine-readable or present, they can still be
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2. Background

processed and organized by its other non-semantic attributes in the form of taxonomies
[BA03].

Unstructured data is present in many forms. However, we primarily focus on images
during this thesis, as they provide the most accessible features that could be used for our
user study. This aspect is described in more detail in Chapter 4. Although images can
be considered a form of semi-structured data because they are stored in specific formats
and contain metadata, we further refer to any data that is not explicitly structured as
unstructured data.

It is estimated that around 80% of all data in our world is unstructured [LL10]. Extracting
insights from this vast amount of data remains difficult. Most techniques that can draw
information from structured data do not work with unstructured data [BA03] as the
semantic features and structure of the data are not known a priori. Humans, on the
other hand, can interpret this data based on its non-semantic features and describe
its semantics. In contrast to machines, humans can understand the content level of
unstructured data items and capture their semantic elements based on their understanding,
shared connotations and world knowledge [Ens00]. Adnan et al. [AAW21] identify several
issues in the usability of unstructured data, such as the lack of structure, ambiguities,
or heterogeneity. Because of these issues and the lack of tools to process this data,
valuable insights remain missing, and most data remains inaccessible for (visual) analytics
approaches.

2.1.2 Knowledge-Assisted Visual Analytics
Visual analytics combines the computational powers of machines with human analytical,
interpretative and cognitive skills to make sense of data. These approaches can be
enhanced by integrating human knowledge into the VA process, as humans can provide
valuable domain knowledge in data analysis tasks. The knowledge-assisted visual analytics
(KAVA) model proposed by Federico et al. [FWR+17] is a conceptual framework for
integrating the users’ tacit and explicit knowledge into the visual analytics process. When
users interact with an interactive VA system, they internalize knowledge, by which their
tacit knowledge evolves. To integrate the user’s tacit knowledge into the system, it
needs to be externalized into an explicit form. This model is the foundation of our work.
However, it does not discuss how explicit knowledge can be created. While it assumes that
knowledge can be either directly externalized by the user through an explicit interface
or implicitly while the user explores the data, there remains a gap in how this explicit
knowledge can be acquired. The KAVA model is illustrated in Figure 2.1, where the
highlighted process from tacit knowledge (Kτ ) to explicit knowledge (Kϵ) via knowledge
externalization (X) is the focus of this thesis.

2.1.3 Mental Models
The mental model theory by Johnson-Laird [JL80] defines mental models as internal
cognitive representations of external realities. This simplified representation of events,
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2.1. Definitions

Figure 2.1: Knowledge-assisted visual analytics (KAVA) [FWR+17]: A (analysis), V
(visualization), X (externalization), P (perception/cognition), and E (exploration); con-
tainers: Kϵ (explicit knowledge), D (data), S (specification), Kτ (tacit knowledge); and a
non-persistent artefact: image I.

systems, activities or subject areas captures relationships between its parts and reflects
an individual’s understanding. Mental models are crucial for human interpretation of the
world, learning and problem-solving. They provide a basis for decision-making, allowing
us to simulate or predict outcomes and events in complex situations. Individuals carry
deep value in their mental models, as those models are a reality on their own. Therefore,
they tend to trust and rely on them, even if they are inaccurate or incomplete [Wes06].
To an individual, their held mental model is always unambiguous as it is part of their
own context of understanding [Rei87]. Mental models are highly subjective, while they
also include patterns that apply to more than one person, which can act as guidance for
system design [Wes06].

If we want to incorporate human knowledge into visual analytics, we first need to better
understand how users explore unstructured data and how their mental models evolve.
However, a human’s mental model is not directly observable. We need to rely on its
external representations [Non98]. Mayr et al. [MSSW16] propose some techniques, such
as interviews, sorting techniques, observation, thinking aloud or problem-solving, to
measure the state of a mental model. Concept maps are especially useful, as they are a
form of external representation that can be easily presented and altered to observe the
incremental evolution of a mental model. Section 2.1.5 provides a detailed introduction
to concept maps.
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2. Background

2.1.4 From Tacit to Explicit Knowledge
Mental models are part of a human’s tacit knowledge [Non98]. This form of knowledge
is highly personal and subjective and, therefore, difficult to share with others. To make
knowledge shareable or usable in systems, it needs to be articulated into an explicit form
[Non98]. External representations of mental models have the advantage that they can be
shared and interpreted by others and the creators themselves [Rei87]. In this process of
externalization, they are translated into a conceptual model that can capture hierarchies
and relationships between concepts while irrelevant aspects regarding an application
domain are ignored [MSL21]. Humans can do this through language, visualizations,
or only their behaviour. When users interact with an external representation of their
mental model in the form of interactive visualization, their internal representation
constantly changes as it gets extended or reconstructed to include further perspectives
and information [MSSW16]. However, the resulting explicit knowledge never fully reflects
the full nuances of the tacit form [PK20]. Externalized knowledge is not always a direct
representation of tacit knowledge, as humans are not always able to see and verbally
describe their cognitive processes [Vir11].

2.1.5 Knowledge Representations
There are several ways to represent human knowledge externally. In the context of this
thesis, we focus on graphical forms of representation, as they are proven to be suited for
making mental models of users observable.

Knowledge Graphs

Knowledge graphs are a structured form of knowledge representation where entities
and elements of interest are nodes connected by edges representing relations between
these entities [HBC+21]. These graphs represent knowledge from the real world from
diverse and large data collections. They are not based on human cognition but instead
data-driven. They are widely used for semantic search, data integration, knowledge
management and machine learning applications. Knowledge graphs represent rich and
complex data structures and are intended to be readable by both humans and machines.
These graphs are created by integrating data from diverse sources, such as human input
or data extraction from text or databases [HBC+21].

Mind Maps

Mind maps are radial diagrams that start from the centre with a main topic and branch
out into further sub-topics. These diagrams represent connections between parts of
a learned material or idea in the form of branching hierarchies. Often, mind maps
contain images, symbols and different colours to add more meaning, as well as text labels
to describe connections and branches. They find their application in brainstorming,
note-taking, or hierarchically structuring a topic’s content [BB06]. Figure 2.2 shows an
example of a mind map in contrast to a concept map.
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2.1. Definitions

Concept Maps

Concept maps were developed by Joseph D. Novak as a tool to graphically represent
and organize knowledge [NC06]. The central elements of a concept map are concepts
that represent “a perceived regularity in events or objects, or records of events or objects”
[NC06]. Typically, a concept is enclosed in a circle or box, labelled with one or a few
words. Relationships between concepts are represented by connecting lines that can be
labelled with linking words to describe the relationship between two concepts. The two
concepts and the linking word form propositions that describe events or objects in the
context of use. Concept maps are constructed as top-down hierarchies, from general
to specific concepts. Cross-links between concepts of different areas in a concept map
visualize relationships between domains and indicate a deep understanding of the topic.
Concept maps can be revised and extended as the user’s understanding evolves and are
never fully finished or complete. While concept maps have their origin in education,
they are also a valuable tool to externalize tacit expert knowledge [NC06]. Constructing
concept maps is regarded as a valid technique to capture mental models and evaluate an
individual’s knowledge or learning process [Rui00].

In contrast to knowledge graphs, which are highly data-driven, concept maps are less
complex and easier to use. While knowledge graphs are intended to represent large and
diverse data collections for technical applications [HBC+21], concept maps are more
suited to represent human knowledge and understanding [NC06].

In the exploratory user study conducted during this thesis, we provided participants
with an interactive tool to externalize their mental models in the form of a concept map.
However, we do not follow Novak’s exact strict rules of concept map creation [NC06],
as we wanted not to limit the participants’ preferred externalization strategies and
influence their intuitive behaviour. The concept maps in our study represent relationships
via undirected edges. While we use shapes to represent concepts, we do not enforce
hierarchies, cross-links or linking words. Participants were not required to construct
maps as top-down hierarchies, starting from the most general concept. Instead, they were
free to arrange and connect concepts as they preferred. These simplifications of concept
maps are based on the simple structure of mind maps [Epp06]. The term concept map
in the following chapters of this thesis refers to our adapted version of Novak’s concept
maps. Eppler argues that a mixed form of different knowledge representations may be
more effective than strictly following one method, as it allows the combination of each
method’s strength [Epp06].

2.1.6 Basic Level Theory
The basic level theory by Mervis and Rosch [MR+81] describes that any object can
typically be categorized on three hierarchical levels: superordinate (e.g., plant), basic
(e.g., flower) and subordinate (e.g., tulip). Instances of the basic level are considered
to share more similarities than those on a superordinate level. In our daily lives, we
primarily use basic-level concepts when thinking about or describing things in our world.
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2. Background

Figure 2.2: Example of a mind map (left) and a concept map (right) representing.

It has been shown that this level of abstraction is the most efficient as it provides
the most information with the least cognitive effort. In this work, we use basic level
theory to classify the concepts participants used in their concept maps. Superordinate
concepts are the most general, representing no concrete objects but rather abstract
categories (e.g., clothing). They are important for disambiguation as two objects of
different superordinate categories share less similarity than concepts of neighbouring basic
level categories [MW97]. Basic concepts hold concrete information that can be associated
with an object (e.g. shirt). We do not consider subordinate concepts in our study as
they are often difficult to distinguish from basic concepts, especially in hierarchies with
multiple levels.

2.2 Related Work
Several studies investigate how users externalize their knowledge in the context of data
analysis and data exploration. This section provides an overview of the most relevant
work related to this thesis, highlighting gaps in current research and the contribution of
this work.

Lohfink et al. [LDALG22] propose a framework to augment visualization systems with
domain knowledge to support users in interacting with and interpreting the data. This
form of knowledge-assisted visualization is based on an ontology that represents the
domain knowledge and automatically analyses and classifies the input data. However, this
framework assumes that the knowledge is available in explicit form created by experts.
There remains a gap in how this explicit knowledge can be acquired from the users.
This thesis aims to narrow this gap by better understanding how users externalize their
knowledge during analysis to build systems that can incorporate this knowledge.

Rind et al. [RWA19] identify a set of desiderata for a framework to structure explicit
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2.2. Related Work

domain knowledge for visual analytics environments. Based on nine desiderata, they
propose a preliminary structural framework consisting of three components: concepts
representing domain-specific knowledge, manifestations that map concepts to data items
and utilization linking concepts to KAVA environments to incorporate the domain
knowledge. In our work, we aim to explore knowledge externalization based on these
desiderata and investigate the structure of explicit knowledge representations created by
users while exploring unstructured data.

Visual analytics approaches proposed by Li and Zhou [LZ23] incorporate human knowledge
in data embeddings and highlight strengths in the combination of humans and machine
learning algorithms. While the work focuses on multidimensional data, their approach is
not suitable for the exploration of unstructured and unlabeled data.

Zhang and Soergel [ZS16] have conducted a user study investigating how iterative sense-
making processes are linked to conceptual changes in knowledge structures. Their findings
confirm that users iteratively refine and update their external knowledge representations
during a sensemaking task. These conceptual changes could be observed in various
forms, such as changes in scope (narrowing, widening), breaking them apart or merging
them. They propose that structural changes are often subjective and performed gradually
during sensemaking, depending on a user’s prior knowledge. While their findings provide
valuable insights into the iterative nature of knowledge structures, the user study’s task
was based on collecting ideas or writing a story. Our study complements these findings
by investigating how users’ knowledge structures evolve in an exploration task.

Rorissa and Iyer [RI08] suggest that users tend to describe images in a hierarchical
structure, starting from superordinate concepts referring to groups of images, followed
by basic concepts to describe individual images. Hollink et al. [HSWW04] propose a
framework for classifying image descriptions by users based on their level of abstraction.
They argue that users prefer more general and superordinate concepts over specific
descriptions when labelling images.

Waldner et al. [WGSS21] propose an observation graph that visually connects unstruc-
tured evidence in a sensemaking environment to the resulting structured observations.
Results of their user study suggest that users prefer to create fragmented concept maps
rather than mind maps that are more restricted in their hierarchical structure. Their
results indicate that the user-created observation graphs are less scattered and more
compact than simple text notes.

A user study conducted by Geymayr et al. [GWLS17] investigated how users’ knowledge
externalization strategies and processes are influenced by the use of bidirectionally linked
concept-graphs as a sensemaking tool. The use of this graph allows analysts to externally
represent their knowledge. Their findings suggest that users tend to need more display
space to organize text documents if they do not externally represent their knowledge.

While the research on conceptual models is a long-studied field, Recker et al. [RLJ+21]
argue that the research in this field needs a shift in the conceptualization of conceptual
models to bring this field closer towards current technological developments. Their

11



2. Background

framework argues that new dependent variables in conceptual models, such as quality,
consistency or cognitive sufficiency, may be relevant when using conceptual models to
decrease cognitive loads when understanding complex algorithms or data. Empirical
methodologies have not been used in conceptual model scholarship, and their framework
includes the notion of complex human-machine interaction during conceptual modelling.
Our work bridges the research gap on conceptual modelling during unstructured data
exploration and sheds light on the connection between mental and conceptual models.

Prior studies provide insight into how knowledge externalization can support a sensemak-
ing task and how externalizations evolve in iterative processes. New frameworks allow
the incorporation of existing and properly defined knowledge to support users in visual
analytics scenarios. However, there is still a gap in understanding how user’s externalized
knowledge evolves during the exploration of unstructured data and which strategies they
apply to convert their tacit knowledge into an explicit representation.

12



CHAPTER 3
Methodology

One basic assumption for a visual analytics approach incorporating the user’s knowledge
is that the user’s externalized mental structures representing the explored dataset are
meaningful and complete. To answer the research questions defined in Chapter 1, we
combine multiple methods.

First, we conducted an exploratory user study to collect data on how users explore
unstructured data and externalize their mental models (3.1). We then performed a
crowdsourcing step to create a mapping between dataset items and elements in the
externalizations (Section 3.2). To answer each research question, we applied a combination
of quantitative and qualitative methods outlined in this chapter. Chapter 5 discusses the
analysis process and applied metrics in detail.

3.1 User Study
We conducted an exploratory user study in a controlled lab environment. For this study,
we created a set of 100 images, as visual representations allow quick perception during
exploration, compared to text and video. The creation of this dataset is described in
detail in Section 4.3. Participants were asked to perform an open-ended exploration of
those unlabeled and uncategorized images.

We created two interactive interfaces for this study. An interface on a large multitouch
display presented the images to the participants, where they could freely transform and
specially organize them. As no gold standard VA approach exists for unstructured data,
we mimicked an analogue approach where users interact with printed images on a physical
table. The benefit of using a digital interface was the ability to efficiently record the users’
interactions in a structured way. As it is known that individuals are skilled in graphically
representing their mental model and understanding of a topic [NA06], participants were
asked to graphically externalize their knowledge of the dataset on the second interactive

13
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interface in the form of a graphical representation, similar to a concept map [NC06].
Prior studies suggest that constructing concept maps is one of the most cognitively valid
techniques for assessing a person’s iterative and connected understanding of a topic
[Rui00]. For each step during the exploration task, all user activity, the states of the
concept map, observed images and their spatial organization were tracked and recorded.
Section 4.3 provides a detailed description of the interfaces, and Section 4.6 describes
how the data was collected.

By encouraging participants to apply the thinking-aloud method, expressed consideration
provided us with insights into their thought processes. Specifically, this method allows
for the identification of aspects of users’ tacit knowledge that have not been externalized.
The study design is explained in detail in Chapter 4. In an entry survey before the task,
we collected demographic data and information about the participants’ prior experiences
with the contents of the exploration task. After the task, participants were asked to
present the concept maps they had created to the experimenter. This retrospective
thinking-aloud walkthrough was used to conduct a semi-structured interview about the
created artefacts and the exploration process.

The present experimenter observed the participants’ behaviour and interactions with the
interfaces. Notes were taken to document key events, such as changes in the concept
map, interesting considerations expressed by the participants, or difficulties they faced.
The study applied different methods that Mayr et al. [MSSW16] describe as suitable for
measuring the process of constructing mental models: a problem-solving task provoking
the creation of a cognitive model about a domain, observations and interaction logs as
non-reactive methods, in combination with the more reactive process of thinking aloud
to provide a deeper understanding.

After the first pilot experiment, we evaluated the study design and made necessary ad-
justments. The final study was conducted with 20 participants with various backgrounds,
primarily from the fields of computer science and health care.

3.2 Crowdsourcing Step

The dataset we created and used for the exploration task did not yet contain any labels.
This was intentional because we wanted to explore which concepts users suggest describing
it. Participants were not asked to label the images or create associations between the
suggested concepts and the data items. However, these associations are essential in the
quantitative analysis to assess the completeness (Q1), level of detail (Q2) and differences
between individuals (Q4).

We performed a crowdsourcing step to create this mapping between participants’ suggested
concepts and the images in the dataset. To identify associations between the data points
and the externalized structures, each instance in the dataset was mapped to the concept
node(s) that the participants expressed in their concept maps. For this, we used the
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online crowdsourcing platform Amazon Mechanical Turk1 to recruit crowd workers who
were asked to assess if a certain concept is related to a given image. In Section 5.2, we
describe the process and apparatus of this step in detail.

3.3 Comprehensiveness

To address Q1, we analyzed whether each image has at least one representing node in
the concept map. Section 5.5 describes this analysis step. In addition, we qualitatively
analyzed whether users can express their considerations in a meaningful and complete
way based on the participants’ articulated thoughts by thinking aloud. In the verbal
walkthrough and semi-structured interview after the task, participants reflected on the
creation of their concept map and how they explored the dataset. After transcribing
these interviews, we applied a coding process based on Thematic Analysis [BC06, BC19].
The applied method is described in Section 5.8. By this, we could extract areas of interest
to analyze the externalized structures. Challenges, difficulties and special considerations
the participants faced during the exploration task provided us with insights that further
informed the construction of design guidelines for visual analytics systems.

3.4 Level of Detail

For Q2, we calculated a set of metrics that describe how detailed or general the proposed
concepts are and how detailed the resulting externalizations can describe the given dataset.
The metrics for measuring the level of detail are outlined in Section 5.5. Similar to
the comprehensiveness analysis, themes extracted from the post-task interviews provide
additional insights into the level of detail of users’ externalizations.

3.5 Concept Space Evolution

To gather quantitative insights into how the participants’ mental models and the resulting
externalizations evolve during the exploration process (Q3), we used the recorded
interaction logs. We could visualize the evolution of the constructed concept maps in
relation to the progress of the exploration task and analyze how the number of concepts
progressed while new data points were explored. This analysis step is discussed in detail
in Section 5.3. A qualitative evaluation of the concept maps’ structures at key points
during the externalization process highlighted events where the structure of the concept
maps changed significantly (see Section 5.7). These changes might indicate shifts in the
participants’ mental models as they explored new data points [ZS16].

1https://www.mturk.com/ (accessed August 28, 2024)
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3.6 Individual Differences and Similarities
This thesis aims to highlight differences and similarities between the individuals’ ex-
ternalized structures (Q4). For this, we analyzed the calculated characteristics of the
suggested concept sets (see Section 5.5), in combination with traditional metrics for
evaluating concept maps [BGL+04, TAA00], such as the number of concepts and relations.
Basic measurements, such as the time each participant spent constructing their concept
maps, provided additional comparative insights. We further applied the holistic metric
of structural type [KHA00, YVR+05, RDJ14] on the constructed concept maps. This
procedure is described in Section 5.7.
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CHAPTER 4
Study Design

The empirical part of this thesis is an exploratory user study that employs a mixed-
methods approach, combining quantitative and qualitative methods as described in
Chapter 3. The study was conducted in a controlled lab environment to ensure consistency
and mitigate external influences and distractions. The collected data was used to answer
the research questions posed in Chapter 1.

This exploratory study did not aim to validate a specific hypothesis but rather to collect
data and generate insights about the iterative and subjective nature of mental structures
and their externalized representations. It does not include independent and dependent
variables that vary between or with subjects. Instead, all participants performed the
same exploratory task under the same conditions. This chapter outlines the study design,
including the recruitment process, task, apparatus and procedure, and the methods
applied for data collection.

4.1 Participants
Participants were recruited from the university student body and staff of UAS St. Pölten.
The project team reached out to potential participants via email, providing information
about the study, compensation for participation, and how to participate. The recruitment
process aimed to include individuals from diverse backgrounds, primarily from the fields
of computer science, data science, visualization and (digital) health care. Members from
these fields are expected to be in the target group of systems that support the exploration
of unstructured data, as they deal with this form of data regularly.

In total, 20 participants took part in the study. The majority of participants were aged
24-35 years (60%), followed by 18-24 years (35%) and one participant aged between 35
and 44 years (5%). Regarding gender, participants were split evenly between participants
identifying themselves as men and women (nine each) and two participants identifying
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4. Study Design

themselves as non-binary.
The largest portion of participants held a master’s degree or equivalent (45%) as the
highest level of education, followed by participants with a high school degree (40%) and
attendees with a bachelor’s degree or equivalent (15%).

Table 4.1 provides an overview of the participants’ demographic information. A balanced
representation concerning gender, age and educational/professional background ensured
that results were not biased towards a specific group and that different perspectives
were incorporated. We did not collect information about the participants’ field of study
or profession, as we focused on a general understanding of how individuals explore
unstructured data rather than domain-specific knowledge. The exploration task was
designed to be domain-agnostic so that participants from different fields without specific
domain knowledge could participate, and the results could be generalized to a broader
audience.

In the study’s task, participants explored AI-generated images (Section 4.3.2). As many
images generated by generative AI to this date may contain defects, such as unrealistic
depictions of human features or objects, we gathered information about participants’
prior experience with generative AI. Only two participants reported having not used
any generative AI tools before. While the task was designed to ignore the quality of the
images, results also showed no difference in the outcome between these two groups.

Part of the task was to create a concept map that represents the participant’s under-
standing of the dataset on an interactive interface. We asked participants if they had
previous experience with concept maps or mind maps and whether they regularly used
some form of visualization tools. The majority (65%) reported having used concept
maps or mind maps before, while 35% were novices in this regard. 15 participants (75%)
reported using visualization tools regularly, while five (25%) did not. Again, the task
and interfaces were designed to be easy to use without prior experience with these tools.
Also, no difference between these groups could be observed in the results.

For their time and effort, participants were compensated with 20 Euros. This amount
was chosen to ensure that participants felt adequately compensated for the maximum
time of 85 minutes spent on the study while also not being too high to avoid a biased
sample of participants who were only interested in the compensation. The budget for
compensation was provided by the JDE project’s funding.

4.2 Task
The study’s task was designed to be domain-agnostic, meaning that participants from
different fields could participate without requiring specific domain knowledge that would
influence the results. Participants were asked to explore a dataset of 100 AI-generated
images depicting portraits of people from various occupations. The contents and creation
of the dataset are described in detail in Section 4.3.2. The assignment was to review
all images and find as many attributes as possible that differ or are similar between
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4.2. Task

Demographic Count
Age

18 - 24 7
24 - 35 12
35 - 44 1

Gender
Man 9
Woman 9
Non-binary 2

Highest Degree
Master’s degree or equivalent 9
Bachelor’s degree or equivalent 3
High school degree 8

Prior Experience
Experience with generative AI

Yes 18
No 2

Experience with concept or mind
maps

Yes 13
No 7

Uses of visualization tools
Yes 15
No 5

Total 20

Table 4.1: Demographic information and prior experience of participants.

the images. Participants were instructed to create a concept map representing these
attributes and their relationships. This graphical representation should reflect their
internal mental model of understanding the dataset.

In the creation of the dataset (see Section 4.3.2), the AI model was prompted with
the names of different occupations, resulting in images that clearly depict people from
these professions. To ensure that participants were not distracted by the most apparent
attribute (the depicted occupation), we asked them not to include the occupation in their
concept map. As the images were generated using an AI model, they included various
common defects, such as unrealistic depictions of human features (e.g. missing limbs
or facial features), distorted objects or unrealistic backgrounds. As these defects were
clearly visible upon closer inspection and would steer participants’ attention towards
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them, we asked participants to ignore them during the exploration, similar to occupation.
By excluding the most apparent attributes, we aimed to encourage participants to explore
the dataset in more detail and externalize a more nuanced representation of their mental
model. This ensured we could better capture the participants’ subjective perspectives
on the dataset and find more detailed and diverse differences or similarities between
individuals’ mental models.
The task was performed on two interfaces: a large multitouch screen providing an interface
for exploring the dataset and a laptop for creating the concept map. Participants were
free to switch between the two interfaces as preferred. By that, participants could either
apply a more interactive approach between exploration and externalization or focus
on one subtask at a time. Section 4.3 describes the lab environment and materials in
detail. After looking at every image and completing the concept map, participants were
instructed to provide a brief walkthrough of their results (Section 4.6).
The content of the task itself was only somewhat related to the purposes of the study,
as the primary goal was to investigate the subjective, iterative and evolving nature
of mental structures during data exploration. We could have chosen any other set of
unstructured data, such as text snippets, audio files or videos. However, images are a
common and easily understandable form of data that can be explored quite quickly and
intuitively compared to other formats. The task was designed to be engaging, as the topic
of AI-generated images is present in the media, and it was interesting for participants to
see how the AI model depicted different professions. On the other hand, it also posed
a challenge, as looking through 100 images with limited space and time required some
effort and concentration, reflecting a complex scenario common in data exploration tasks,
where analysts do not know what to expect beforehand.
During the task, participants were encouraged to think aloud, meaning they should
verbalize all their thoughts, actions and considerations. This combination of a problem-
solving task, observations and thinking aloud follows common methods for measuring
mental model construction [MSSW16]. Figure 4.1 shows the task description handed out
and explained to the participants. A maximum of 40 minutes was given to complete the
task to ensure that participants could explore the dataset in detail. As no concept map
is perfect, complete or even finished [NC06], a large dataset could expose more concepts
upon further exploration that participants might want to include. However, we set a
maximum time limit to keep the study within a reasonable time frame and to keep results
comparable.
In an example task before the actual exploration task, participants could get used to the
interfaces and the assignment. In this example, we provided a smaller set of 10 images
depicting different kinds of cars from the VehicleX dataset [YZY+20]. Like the main
task, participants were asked to find and externalize attributes that represent the dataset
while ignoring one of the most apparent attributes (the colour of the cars). While in the
main task, the research team did not provide any feedback or hints, in the example task,
the experimenter provided feedback and guidance to ensure that participants understood
the task and the interfaces.
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4.2. Task

The participants could talk and construct their concept map in German or English. All
materials were provided in both languages. As most of the participants were German-
speaking, the majority worked in German.

Figure 4.1: The task description handed out to participants.
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4.3 Apparatus
The study was conducted in a controlled lab environment at the premises of UAS St.
Pölten. Seminar rooms and labs were reserved for the study, ensuring the environment
was free from distractions. The study was conducted with one participant at a time to
ensure they could focus on the task without external influences. We provided water for
participants to keep them comfortable during the study and offered breaks between each
step to reduce stress and fatigue. Two project team members were present during each
session: one experimenter who guided the participants through each step of the study
and reminded them of time limits and the thinking-aloud method, and one observer who
took notes and provided technical support if needed.

4.3.1 Lab Environment
The controlled lab was equipped with two interfaces: a laptop connected to a large
multitouch display for image exploration and a laptop for constructing the concept map.
The 55-inch multitouch display with 4K resolution was used to present the images to
the participants. It was mounted on a stand that allowed the screen to be tilted and
height-adjusted to a comfortable position for the participants, as shown in Figure 4.4.

Through the multitouch interface, participants could interact with the images via a
custom-built application. Users could freely organize the images on a canvas with touch
gestures, such as dragging and rotating. The application was designed to be as similar as
possible to physical interaction with printed images so that cognitive load was minimized
and participants could focus on the exploration and externalization task. The large scale
of the interface allowed participants to see multiple images at once while also providing
limited space to reflect the challenges of exploring extensive datasets. We chose this
setup to simulate a scenario where printed images could be arranged on a physical table.
The digital solution, however, brings the benefit of tracking and recording the users’
interaction in real-time with exact timestamps without the need to transcribe video
recordings manually.

The software for the spatial organization of images was developed specifically for this
study by a student employee at UAS St. Pölten as part of the JDE project. The
web-based application was built with the React framework [MP] and used interact.js
[Ade] for most of its interactive functionality. It was displayed inside a browser window
in full-screen mode so that only this interface was visible. Initially, all images for the
task were presented in the form of a stack, where only the uppermost image was visible.
The order of this stack was the same for all participants. As users moved images from
the stack to other locations on the canvas, more images were revealed. This mechanism
is essential, as it simulates exploring a dataset where not all data points are visible
simultaneously. It further allowed us to track which images have been observed or visible
at any step during the process. Additional controls allowed users to undo and redo actions
if needed. Figure 4.2 shows a screenshot of the exploration interface. We integrated a
logging protocol that recorded the user interaction for the consecutive analysis. At each
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interaction with the interface an entry was added to the logs. They were saved client-side
and exported as CSV files once the participant finished the task. Inside the exploration
software, we could switch between the example task and the main task, as well as reset
the state of the canvas for each new participant.

Figure 4.2: The image viewer used for the study, displaying images of the exploration
task.

We placed a separate Laptop next to the multitouch display, where participants created the
advised concept map. The 13-inch MacBook was equipped with a mouse, but participants
could also use the integrated trackpad. Due to the size of the large multitouch screen,
participants had to stand to interact with it. The laptop for creating the concept map
was placed on a standing table, which allowed participants to comfortably switch between
the two interfaces during the task. As some participants felt uncomfortable standing
for the whole task, we provided a chair to sit on if needed. The two devices were not
connected to each other, so participants had to work on the two interfaces separately.
Like the exploration interface, also the web-based concept mapping software, built with
React, was developed by us specifically for this study. The core interactive functionality
was based on the open-source whiteboard library tldraw [tld], which was customized to
fit the purposes of the study. We selected this library because it already provided the
necessary functionality for creating and connecting shapes, adding text, and moving
them around while keeping connections attached. Also, known interaction patterns,
like in other canvas-based whiteboard tools, such as zooming and panning, as well as
keyboard shortcuts, were either already provided or implemented by us. Features that
were unnecessary and would distract participants were removed, such as different shapes,
freehand drawing or text formatting. We integrated a logging protocol that recorded
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all actions performed by the user, such as creating, moving or deleting shapes and
connections and editing text.

Figure 4.3: The concept mapping tool used for the study with a concept map created by
a participant.

In the concept mapping tool, participants could insert concepts as rectangular shapes
that could be labelled by text. Shapes could be connected with undirected edges, which
could be labelled by text to define relations between concepts and building propositions.
Figure 4.3 shows the concept mapping tool containing a participant’s concept map. As
we followed an adapted version of the concept mapping method by Novak [NC06], that
simplified the process and focused on the representation of participants’ mental models
without biasing them with specific rules, we did not provide any hierarchical or structural
constraints. Concepts could exist on their own without any relations or cross-relations.
Also, reading directions or hierarchical relations from top to bottom, usually seen in
concept maps [NC06], were not enforced. While in traditional concept maps, relations
need to be labelled to represent propositions, we left this optional to participants because
our focus of interest was on the concepts themselves. Edges could exist without start
and endpoints. However, we encouraged participants to avoid unconnected edges in their
final state to reduce semantic ambiguity. Both the interactions with exact time stamps
and entire snapshots of the canvas were saved client-side. After each session, we exported
the data as JSON (snapshots for reconstructing each canvas state) and CSV (interaction
logs) files.

To allow the experimenter and observer to follow the participants’ process without
standing directly behind them, the laptop screen of the concept mapping interface was
mirrored to an external monitor. As seen in Figure 4.4, the laptop hosting the image
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viewer was arranged in a way that allowed us to see what the participant was doing on
the multitouch screen. This allowed us to stay at a distance and not interfere with task
completion. In addition, we recorded the session with a camera to revisit the participants’
process during the analysis. A smartphone recorded the session’s audio, capturing the
participants’ verbalized thoughts and the post-task walkthrough and interview.

Figure 4.4: The hardware setup for participants (left) and for the experimenter (right).

4.3.2 Dataset

The dataset used for the exploration task consisted of 100 images depicting portraits of
people from various occupations. We created the images using the latent text-to-image
diffusion model Stable Diffusion [RBL+22]. This tool has been selected because it is open
source, can be self-hosted and can be operated programmatically, simplifying the creation
of a large volume of images with the same parameters. The prompts used for image
generation were based on data from the US Bureau of Labor Statistics [oLS23], which
contains the 100 most common occupations in the United States. We used the 100 most
common occupations from this list. The occupation description was unified to a singular
form, so the prompts were grammatically correct and consistent. Some occupation
descriptions were adapted to reduce ambiguity in text-to-image prompts. The following
prompt was used for each occupation: “A professional photograph of an {occupation}”.
From all prompts, the first generated image was taken. However, since AI-generated
images of humans might contain anatomic irregularities, particularly disturbing examples
were regenerated. As the dataset included images of people, even though all prompts
were formulated in a gender-neutral way, based on the training data, the output still
reproduced certain stereotypes and biases (e.g. certain occupations portrayed a particular
gender) [WNG23]. We deliberately did not remove these biases from the dataset, as
it posed a facet of the dataset that participants could explore and externalize in their
concept maps. Figure 4.5 shows a selection of images from the dataset.

For the task, the images were exported in a resolution of 1024x1024 pixels and stored as
PNG files to be displayed in a fixed size (100x100 pixels) on the multitouch interface.
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The order of images was randomized once so that consecutive images did not depict
similar occupations. Each participant received the same images in the same order. This
ensured that each task started with the same conditions and that the results could be
compared between participants.

(a) nursing assistant (b) childcare administrator (c) welding worker

(d) carpenter (e) lawyer (f) farmer

Figure 4.5: Six images from the dataset created for the exploration task alongside the
occupation they depict.

4.4 Procedure

The following section describes the steps of the study procedure. Each session followed
the same structure designed to provide consistent conditions for all participants. The
experimenter guided the participants through the study while the observer took notes
and provided support if needed. A pilot study was conducted before the 20 main sessions
to identify potential study design problems and make necessary changes. Thanks to this,
no further adjustments were needed during the study sessions.
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4.4.1 Preparation

Participants had registered for a specific time slot via a scheduling tool and received an
email with their session’s room number and time slot. We provided participants with the
project team’s contact information and asked them to confirm their participation one day
before their slot. Before a session, the hardware and software were set up as described in
Section 4.3.1. Necessary information sheets and consent forms were printed and prepared
so participants could read and sign them before starting the task. If the session followed
another one, the setup was reset to the initial state. We planned some time between
participants to ensure that we could prepare the materials without participants having
to wait.

4.4.2 Introduction and Informed Consent

When participants arrived, the team welcomed them. They were given time to settle
and become comfortable with the environment. An information sheet provided general
information about the study, including a short introduction to the project, the study
team and the purpose of the study. It also contained information about which data would
be collected and how it would be processed and stored.

Once the participant had read the information sheet, they were asked to sign consent
forms in which they agreed to participate in the study and to be recorded. Participants
who did not want to be recorded could still participate, but only the interaction logs from
the interactive interfaces would be recorded. All 20 participants agreed to be recorded.
Persons who did not agree to participate were thanked for their time to come and were
not compensated.

4.4.3 Pre-Task Questionnaire

Participants completed a short survey that collected demographic information and prior
knowledge regarding the task’s content. It included the following questions:

• What is your age?
• What is your gender?
• What is your highest level of education?
• Do you have experience with generative AI? If yes, please elaborate.
• Do you have experience with concept or mind maps? If yes, please elaborate.
• Do you use visualization / graphical tools for work, learning, etc.? If yes, what

tools and in which way?

None of the questions were mandatory, so participants could skip any question they did
not want to answer. Questions about the participants’ gender were based on guidelines
proposed by Spiel et al. [SHL19].

27



4. Study Design

4.4.4 Example Task

We introduced participants to interactive software and the assignment they would be
working on using an example similar to the main task. They were provided with a
task description and a tutorial on how to use the interfaces based on the example task.
The information was provided in written form. The experimenter also gave a verbal
and hands-on introduction to all the features of the tools. This allowed participants to
actively get familiar with the software features. The example task included a smaller set
of images unrelated to the actual task to reduce bias.

It was important for participants to understand the task and interface so that they could
work on their own during the main task. We encouraged them to ask questions and
provided feedback if needed. The method of thinking aloud was introduced in this phase
so that participants could get used to it. We were aware that participants might feel
uncomfortable with this, and we showed understanding while still encouraging them to
verbalize their thoughts. Participants were free to perform this in German or English.

It was made clear that there was no right or wrong way to complete the task and that
we did not test their knowledge and skills. Participants did not have to follow a specific
strategy or workflow. They could choose whether to adapt their concept map directly
after uncovering a new image or to do so less often. However, they were advised that
achieving a complete concept map was the main goal of the task in the end.

4.4.5 Main Task

After the participants expressed that they were ready and used to the interfaces, the
main task was introduced. In addition to the written task description, the experimenter
provided a verbal explanation where participants could ask clarifying questions. They
were instructed to begin the task. The study team started the audio and video recordings
and reset both interfaces to their initial state, with the image viewer showing the actual
dataset.

During the task, both study members observed the participant’s process and created
notes without interfering with the participant’s work. Questions concerning the content of
the images, their spatial organization or the state of the concept map were not answered
to prevent influencing the results. However, all questions were noted and clarified once
the task was completed. Questions relating to the usage of the software clarifications
that would not influence the results were answered immediately.

During the task, we reminded participants of the time remaining time. The task was
over after 40 minutes, or the user had explored all images and expressed clearly that they
were finished. After completion, the logs from both tools were saved so that they could
not be altered during the post-task walkthrough.
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4.4.6 Post-task Walkthrough and Interview
After completing the task, an informal, semi-structured interview was conducted. This
conversation between the experimenter and the participant included the following ques-
tions:

• How did you like the task?

• What was difficult or challenging?

• How did you arrange the images on the table?

• What concepts did you find?

• Explain the structure of your concept map.

• What was your process and strategy?

• Did the concept map/touch table help you make sense of the images?

Participants were asked to give a walkthrough of the concept map they had created
and explain their intentions and considerations. Additional questions aimed to clarify
ambiguous areas of their externalizations.

After all points had been concluded, the study members answered the participant’s
questions that had not been clarified yet. The session was closed by thanking the
participants for their time and effort. 20 Euros were handed out in cash as compensation.
Participants confirmed receipt of the compensation with a signature.

4.5 Pilot Study
We conducted a preliminary pilot study to test the study design and identify potential
weaknesses. We tested the procedure with one participant, a peer researcher who took
part voluntarily. They were not informed about the research topic and aspects of the
study beforehand to ensure they were unbiased and had a neutral perspective. The pilot
study was conducted in the same environment as the main study, with the same hardware
and software setup.

We used the pilot study to measure how long each step of the study procedure took to
better estimate the time needed for each session. We found that introducing the interface
and the example task took around 10 minutes. The 40 minutes for the main task were
sufficient for the participant to explore all images and create a concept map. As it was
the first time we fully set up all the equipment and had some technical issues with the
multitouch screen, we adjusted the schedule for the main study to allow for more time at
the beginning of a block of sessions to ensure that all equipment was working properly
before participants arrived.
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We provided written instructions and tutorials for the task and interfaces, expecting the
participant to just read them. However, they preferred to have them explained verbally
to them. Therefore, we also created a short guideline and script for the experimenters to
follow to explain everything concisely. Also, it was not clear to the pilot participant that
the example task was not the actual task, so we made this more explicit in the main
study.

The multitouch display was completely tilted horizontally to simulate a physical table
better. However, the participant did not fully reach the top edges of the screen, and
images were arranged in the half of the screen that was closer to them. Also, they could
not reach the functions for undo and redo, which were located at the top of the interface.
Before the pilot study, we expected participants to walk around the table and interact
with it from different angles. However, the participant did not leave their position because
they needed to work on their concept map on the laptop. Therefore, we decided to tilt
the screen only slightly and adjust the participant’s height so that they could reach all
parts of the screen and utilize all functions and space.

The participant did not fully apply the thinking-aloud method during the task, as they
were not used to it and did not know the present people. Therefore, we talked more with
the participants to establish a more comfortable atmosphere before starting the task. We
also reminded participants more about thinking aloud by asking what they were doing or
thinking about. We also found that providing a glass of water was necessary, as talking
with a dry mouth is more difficult.

4.6 Data Collection
The study was designed to collect various data types to answer the research questions.
Logs captured by the software followed a time-dependent protocol to link the progress of
the image exploration with the states of the concept map during analysis. The image
viewer logged the entire state of each image whenever the participant interacted with it.
This included a timestamp, the image’s position and rotation, and whether it was fully
visible. This data was exported as a CSV file after the task was completed. The concept
mapping tool logged all interactions with the canvas. These logs included the type of
interaction (e.g. creating or moving a rectangle, adding or editing text, or connecting
shapes), the exact timestamp, and the IDs and contents of the edited elements. This
data was exported as a CSV file. In addition, the software saved snapshots of the entire
canvas at each edit. These snapshots were exported as JSON files to reconstruct the
state of the canvas for any point of the process using a modified version of the concept
mapping tool we used during the analysis.

We recorded the task completion with a camera, capturing the participant’s interaction
and behaviour and how they moved between the spatial organization and concept
mapping. The recordings also captured the multitouch display. The videos were recorded
to revisit the participants’ process during the analysis in case the logs were not clear
or technical issues occurred. However, this was not the case, and the videos were not
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needed for the analysis. The session audio recorded the thinking-aloud process, where
participants verbalized their thoughts and considerations. While we took notes during
the task that contained the most important aspects of the participants’ process, the
audio recordings could be used to revisit them in case of ambiguity. The audio was
primarily recorded to capture the post-task walkthrough and interview, where participants
explained their created concept maps and their process. We transcribed the interviews
using the transcription service AssemblyAI [Ass]. The transcriptions were checked for
accuracy and corrected if the software made mistakes. After that, German transcripts
were translated to English.

The notes taken during the task contained the timestamps of the noted events and
descriptions of the observed behaviour or interaction. Two study members were present
during each session, so the notes were combined and digitized for further analysis. Results
from the pre-task questionnaire were collected in a spreadsheet.

To protect the participants’ identity, we performed pseudonymization, where each user
was assigned a unique ID, which was used as a key for all recordings and created artefacts.
Only the experimenters knew the mapping between participants and IDs, which was not
stored. Videos of the study, audio recordings, interaction logs, questionnaire results, and
notes were stored on a cloud service by the university in pseudonymized form, to which
only the research team and administrators had access. Only the interaction logs and
externalized concept maps were stored in pseudonymized form for further publication in
the JDE project.

4.7 Ethical Considerations
Several ethical considerations were taken into account for the study design. Before the
task, participants were required to read a general information sheet about the study,
which data would be collected, and how it would be used and stored. They needed to
sign two consent forms. One confirmed voluntary participation in the study, and one
consented to pseudonymized data collection according to the General Data Protection
Regulation (GDPR). Participants were informed that they could withdraw from the
study or take breaks anytime. The study was not aimed at people from vulnerable age
groups, such as children or older people. All recruited participants were adults (18 years
or older) and could give informed consent.

As the images of the exploration task were generated by an AI model, some of them
contained defects, such as missing or unrealistically depicted body parts. Some people
might find such defects disturbing or uncanny, which could lead to psychological stress
or discomfort. Participants were informed about this in the information sheets and
verbally before the task. They were free to quit the procedure at any time. The
prompts for creating the dataset were phrased neutrally and intentionally, not corrected
for bias, to achieve wide variations and provide users with diverse images to explore.
Therefore, the dataset reflected stereotypes concerning gender or race from the training
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data. Participants were not informed about this intentionally so as not to influence their
exploration process.

As the study involved humans, the study design, ethical considerations and potential
risks were submitted to TU Wien’s Service Unit of Responsible Research Practices.
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CHAPTER 5
Data Analysis

The data collected during the user study was processed and analyzed in several steps.
This chapter describes each step of our analysis process, where we applied multiple
qualitative and quantitative methods. As the data was collected via different channels,
we needed to construct a data structure that would allow us to analyze it to answer
our research questions. We started by creating a superset of concepts suggested by the
participants during the study. In the second step, crowdsourcing was used to associate
each of those concepts with the elements of the dataset. These associations are important
to our quantitative analysis, incorporating various metrics to evaluate the suggested
concepts. In addition, we applied a set of metrics to assess the structural properties of
the concept maps created by the participants.

5.1 Concept Superset
All participants were provided with the same dataset and completed the same task.
However, they created a wide variety of concept maps containing diverse concepts.
Although the concept mapping software captured all interactions and the entire content
of the externalized structures, these logs were insufficient to capture the semantic contents.
To analyze the suggested concepts for similarities and differences, we first needed to
create a unified collection of all concepts suggested by the participants. Reducing the
gathered concepts by finding semantic similarities and synonyms is a common strategy
also found in the QFCA (qualitative and formal concept analysis) approach for assessing
mental models [AI11].

We first extracted all concepts from the final state of each concept map. Some participants
did not follow the pattern of creating one shape for each concept but instead listed multiple
basic concepts in one rectangle. In these cases, we listed each of them as a separate
concept. We ignored participants’ notes that did not represent concrete concepts but
rather comments or observations (e.g., “Bias in healthcare: more women”). In an open
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coding process, two independent coders manually reviewed all concepts. Concepts with
equivalent semantic meanings but different phrasings were merged into one concept with
an unambiguous name. For example, the externalized concepts “a man”, “men”, “male”,
“m” were all merged into the concept male. As the majority of participants created their
concept maps in German, this process also included translating the concepts into English.
After the initial independent coding, the two coders compared and discussed their results
and agreed on the final list of concepts.

In addition, we classified them as either a basic concept or a superordinate concept. In
the consecutive crowdsourcing step, crowd workers should have been able to make a clear
distinction, whether a concept could be associated with an image or not. For example,
the concept facial expression was classified as a superordinate concept, while smiling was
regarded as a basic concept. We linked each basic concept to the respective superordinate
concept to establish a relational structure. If the set of user-suggested concepts did not
contain an applicable superordinate concept, we created a new one for completeness (e.g.,
face visibility). As our analysis focuses on the basic level, this does not influence the
results.

From the total 906 nodes extracted from the concept maps, the final superset consists of
343 unique basic concepts and 70 superordinate concepts. In another step, we created
a database that mapped each node from the concept maps to the respective item in
the superset. Some concepts suggested by participants represented opposites of other
concepts, such as “no beard”. These were marked accordingly and linked to the respective
concept they were the opposite of.

5.2 Crowdsourcing Step
For further analysis of the suggested concepts, we needed a mapping between the concepts
and the images from the dataset. This mapping is necessary for quantitative metrics
that allow us to answer our research questions. The dataset we used did not contain any
labels yet. This was intentional because we wanted to know which concepts users suggest
that have not been labelled a priori in the dataset. To limit the effort, participants
did not have to create associations between their concepts and the data items they
applied to, so we had to create them in a separate step. Zero-shot approaches, such as
CLIP, show promising results in automated image classification [WCL23]; however, these
solutions can not yet provide the level of detail and accuracy we need for our analysis.
As this work is based on the limitations of automated systems for labelling and exploring
unstructured data, we did not want to rely on such systems, as it would contradict our
problem statement.

We needed to create a mapping between each of the 343 basic concepts and the 100
images in the dataset, resulting in 34,300 checks whether a concept applied to an image or
not. This task was too extensive and time-consuming for us to do manually. Furthermore,
we were already biased as both dataset creators and observed the participants while
suggesting the concepts. We knew the context and considerations around each concept
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and why it was suggested, which would have influenced this mapping process. Therefore,
we decided to use crowdsourcing to create the necessary associations between each concept
and the images it applied to.

For this, we used the platform Amazon Mechanical Turk (MTurk), which allowed us to
split this extensive task into smaller ones that could be completed by workers recruited
via the platform. We created a task, also called Human Intelligence Task (HIT), in which
we asked whether a provided image contained a certain concept. We designed the task to
be straightforward, where the worker could see the image alongside the question that
was phrased as follows: “Does this image contain {concept}?”. If the concept’s label
was insufficient to understand the context, we also included the associated superordinate
concept. For example, the superset contains the concept grey three times, referring to
grey hair, grey clothing or a grey background. The prompt was then phrased as “Does
this image contain grey hair?”, etc. The worker could then answer with yes, no, or I
don’t know. The third option was important to ensure that workers would not guess but
give a distinct answer only if they were sure, especially because we already knew that
the superset contains concepts that might not apply to any image or no distinct answer
could be given.

The interface gave workers a short description of what we expected from them, followed by
the survey containing the question, image and answer options. We decided to compensate
the workers with the equivalent of 14 USD per hour, which corresponds with the German
minimum wage (12.41 EUR per hour) as of 2024. Pilot tests showed that workers could
complete one labelling task (one image and one concept) in about 3.5 seconds. To
optimize the task for them, we decided to group 10 labelling tasks into one HIT. By this,
the worker had to read only one question and could select answers for 10 images in a
row, whether they contained the concept or not. This resulted in 0.14 USD per HIT.
The budget for this step was provided by the JDE project’s funding. We published the
task for MTurk Masters, who are workers with high approval rates and thus considered
providing consistent results. We did not restrict workers by location, language or other
qualifications, as the task did not require specific skills.

Our aim was to collect three answers per image concept pair to have a majority vote
for each association. In total, this resulted in 6,860 HITs. We established a monitoring
process to ensure the quality of the results. We manually reviewed the HITs and rejected
submissions that were not answered thoughtfully. For example, if a worker gave the same
answer for all 10 images, where some variation would have been expected, we marked
them. We rejected those submissions if the worker repeated this behaviour in multiple
HITs. The platform automatically republished rejected assignments for other workers to
complete. As workers were not compensated for rejected HITs, we aimed to keep the
rejection rate as low as possible while still ensuring the quality of the results.

For 497 of the total 34,400 image concept pairs, the three answers did not result in a
clear majority vote (e.g. yes, no, I don’t know). In these cases, a member of the JDE
team who was not involved in the user study and did not know the concepts collected
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Metric Context Description
growth Concept map Number of concepts inside a concept map at

each point during the task
visible images Images Number of already moved (= visible) images

at each point during the task
popularity Concept Proportion of participants that suggested the

concept [0, 1]
breadth Concept Proportion of images with at least one con-

cept associated from the set [0, 1]
rank Concept Average rank the concept was added to the

concept maps [1, N]
comprehensiveness Concept set Proportion of images the concept set can

represent [0, 1]
distinctiveness Concept set Proportion of images that can be identified

with a unique subset of concepts [0, 1]
structural type Concept map Proportion of the five structural types in

the concept map, each within the range [0,
1] (hub-and-spokes, network, tree, circular,
linear)

direction Concept map In which direction the concept map evolved
(top-down, bottom-up, random)

hierarchy pattern Concept map Whether the concept map evolved clustered
or scattered

restructuring Concept map Whether major restructuring occurred dur-
ing the creation (yes, no)

Table 5.1: Metrics used for the analysis of the externalizations. N is the highest average
rank of concepts that were suggested by more than one participant.

beforehand acted as a tiebreaker. After completing all HITs, we constructed a final
dataset containing associations between each concept and the images it applies to.

We use multiple metrics on various levels to describe the quality of users’ externalizations.
Basic concepts are the most relevant for our analysis, representing concrete aspects of
the externalized knowledge. We do not consider superordinate concepts for quantitative
metrics because they can not be associated with the images or provide us with meaningful
information about the detailed and subjective structure of users’ mental models.
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5.3 Time-based Metrics
We measure the overall effort participants put into the task by the time they spent on
it. This is calculated on different aspects of the task, such as the duration until all
images were uncovered, the last interaction with the exploration tool, the last interaction
with the concept mapping tool, and the total duration for completing the task. We
calculate these metrics from the logs our software captured during the task. From the
constructed superset of concepts, we calculate the total number of concepts suggested by
each participant, separated into basic and superordinate concepts.

The superset, in combination with the interaction logs, allows us to measure both the
growth of the concept map and the progress of the image exploration. For this, we
count the number of concepts in the concept map in 10-second intervals. As not all
participants took the same amount of time for the task, we normalized this time series
to the maximum duration a participant took. This allows us to construct uniform and
comparable time series for all users that show the growth of the concept map over the
entire task. The same was done for the number of images already moved away from the
stack in the centre of the screen, which indicated how much of the dataset the user had
already seen. These time series allow us to divide the users into groups based on the
strategy they applied for the task. Metrics such as the number of suggested concepts or
the task duration are compared to identify differences between these groups.

5.4 Individual Concept Metrics
As described in Section 5.1, we created a mapping between each basic concept in the
superset and concrete nodes in users’ concept maps. With this, we calculate a concept’s
popularity, which describes how popular a basic concept was among the participants by
measuring how many participants suggested it. It is defined as:

popularity(k) = 1
M

M∑︂
j=1

1 (ck ∈ Cj) , (5.1)

where M is the total number of participants, and 1(·) is the indicator function returning
1 if the kth concept ck is contained in the concept set C, and 0 otherwise.

A concept with a high popularity of 1 was suggested by all participants, while basic
concepts with a low score of 0.05 were only used by one participant. The distribution of
the popularity across all concepts allows us to evaluate how individual and subjective the
externalized structures are.

Based on the associations between the concepts and images, we measure a concept’s
breadth, which describes how specific or general a basic concept is:

breadth(k) = 1
|I|

|I|∑︂
i=1

1 (Ii ∈ Ick
) , (5.2)
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where |I| is the total number of images, and the indicator function 1(·) returns 1 if image
Ii is in the set of images associated with the concept ck, and 0 otherwise.
Concepts with breadth 1 apply to all images, indicating a very general or broad concept,
while concepts with low scores apply to only a small set of images and thus are very
specific. Concepts that can separate the entire dataset into two equally sized groups
receive a balanced breadth of 0.5. We can identify whether participants prefer more
specific or general concepts by analyzing the correlation between a concept’s breadth and
popularity.
The concepts’ rank is calculated based on the order in which participants added them
to their concept maps. We used the interaction logs in combination with the superset to
determine the timestamp where each concept was suggested and ranked them accordingly.
We calculate each concept’s average rank across all participants to measure how early
it was externalized in general. Concepts with a rank of 1 were added first, followed
by concepts of rank 2 etc. By analyzing the correlation between a concept’s rank and
popularity, we can evaluate whether concepts that are part of multiple concept maps
were also added earlier in the process. In addition, we can measure whether more general
concepts appeared earlier in the concept maps by analyzing the correlation between a
concept’s rank and breadth.

5.5 Concept Set Metrics
In addition to metrics on the individual concept level, we measure each participant’s
entire set of concepts. A concept set’s comprehensiveness describes to which extent the
concepts suggested by a participant can describe the dataset. Based on the associations
between concepts and images, we calculate the fraction of images that have at least one
user-suggested concept associated with them:

comprehensiveness(j) = 1
|I|

|I|∑︂
i=1

1
(︂
Ii ∈ ICj

)︂
, (5.3)

where |I| is the total number of images, and the indicator function 1(·) returns 1 if image
Ii is in the set of images associated with the concept set of participant j, and 0 otherwise.
A concept set with comprehensiveness 1 means that all images can be described by at
least one concept, while a score of 0 indicates that none of the images can be associated
with any of the concepts. With this metric, we can evaluate whether participants can
represent the entire dataset with their concept maps.
To measure how detailed a participant’s concept set is, we calculated its distinctiveness,
which describes how many data items can be identified by a unique subset of concepts
the participant has used. For this, we measure the overlap between each pair of images’
associated concepts by calculating their Jaccard Similarity:

J(Iuj ,di
, Iuj ,dk

) =
|Iuj ,di

∩ Iuj ,dk
|

|Iuj ,di
∪ Iuj ,dk

| , (5.4)

38



5.6. Similarity Analysis

where Iuj ,di
and Iuj ,dk

are the concepts associated with images di and dk that are part of
the concept set of user uj .

This results in a similarity matrix for each participant, containing the similarity between
the concepts associated with each pair of images. A similarity of 1 indicates a complete
overlap between the images’ associated concepts, while a similarity of 0 means that the
two images were represented by completely different concepts. The distinctiveness of a
certain data item is defined as:

distinctiveness(di) = 1
|D| − 1

|D|∑︂
k=1
k ̸=i

1
(︂
J(Iuj ,di

, Iuj ,dk
) ̸= 1

)︂
, (5.5)

where D is the set of all data items and 1(·) is an indicator function which returns 1 if
the concepts associated with images di and dk are not identical, and 0 otherwise.

This results in the fraction of images to which the associated concepts of item di are
not identical. The average distinctiveness of all images for participant uj describes how
many images can be identified by a unique subset of the participant’s concept set. If this
value is close to 1, the participant used concepts that are specific to each image, while
a score close to 0 means that the same concepts represent most images. Therefore, a
concept set with a high distinctiveness has the potential to be considered detailed.

5.6 Similarity Analysis
To measure how similar the externalized structures are between participants, we calculate
the Jaccard Similarity (Jaccard Index) between all pairs of concept sets. This measure
describes how many concepts two sets have in common in relation to the total number of
concepts in both sets. It is defined as:

J(Ci, Cj) = |Ci ∩ Cj |
|Ci ∪ Cj | , (5.6)

where Ci and Cj are the sets of unique basic concepts contained in the concept maps
of participants i and j. The metric ranges from 0 to 1, where 0 means the two sets do
not share any concepts, while 1 indicates two identical sets. We calculate this overlap
measure for all pairs of participants to identify how similar the created concept maps are
on the conceptual level. This allows us to measure the subjectivity of the externalization.

5.7 Evaluation of Concept Map Structures
We also evaluate the structural properties of the concept maps as a whole to identify
their dominant structure and determine whether participants followed a shared pattern.
Traditional metrics, such as proposed by Turns et al. [TAA00] are straightforward to
apply, as they involve counting the total number of nodes and connections in a concept

39



5. Data Analysis

map. Various metrics, such as a map’s density or complexity, can be calculated based
on the counted elements. However, this approach is widely criticized. Ferguson et al.
[FFEP18] argue that more does not always mean better, as a greater number of nodes in
a concept map does not necessarily indicate a better understanding or greater knowledge.
These metrics also require that the concept maps are created in a specific way, where
concepts are contained in individual shapes, directed edges represent relationships, and
the map is constructed hierarchically, originating from a central main concept. If the
author of a concept map does not follow strict guidelines, simply counting elements
may lead to inconsistent and inaccurate metric values [RDJ14]. Despite the criticism,
traditional scoring methods can quickly provide quantifiable results [WPNR16, FAHD17].
The total number of concepts, relationships, cross-links and hierarchies are valuable, as
they give us a general overview of a concept map’s size, complexity and hierarchical
structure.

Besides these traditional metrics, we also apply a set of holistic metrics that describe
the overall structural type of the concept map. Based on the model by Kinchin et al.
[KHA00], concept maps can be classified into three types: chains, networks and spokes.
Yin et al. [YVR+05] extend this model to include the two additional types tree and
circle. Figure 5.1 outlines those five types. These models, however, assume that a concept
map is created in a single specific and obvious structure. However, most concept maps
are more complex and contain multiple types, as shown by Richmond et al. [RDJ14].
They propose a set of guidelines that characterize a concept map’s structure using five
values. Each value represents the proportion of one of the five structural types in a
concept map. As participants in our study were not required to follow a specific guideline
when creating their concept maps, the resulting maps also contain a variety of structures.
However, Richmond et al.’s approach still requires that the concept map contains a main
concept, which was not the case for most of the concept maps in our study. For example,
multiple concept maps do not originate from one single main concept but contain multiple
unconnected structures, with each having its own main concept. Therefore, we adapt the
criteria for determining the degree of each structure type in a way that can be applied to
our concept maps. The following describes our adapted definition of Richmond et al.’s
guideline, which we use in this step of the analysis:

1. Identify main concepts: All concepts with only outgoing and no incoming links
were considered main concepts. All stand-alone concepts without links are ignored
as they did not contribute to the concept map’s structure.

2. Count the number of concepts that can be assigned to each structural type:

a) Network: All concepts with multiple incoming links are network concepts.
b) Hub-and-Spoke: This structure shows one level of hierarchy where concepts

are connected to one main concept without links to other concepts [KHA00].
Any concept in the direct downstream level of a main concept with no outgoing
links is considered a hub-and-spoke concept.
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Figure 5.1: The five structural types of concept maps [KHA00, YVR+05, RDJ14].

c) Linear / Chain: All concepts linked in a linear chain without links to other
concepts or branches are considered linear concepts.

d) Tree: Any concept with one incoming and multiple outgoing links is counted
as a tree concept.

e) Circular: Concepts arranged in a circular structure with joined ends are
considered circular concepts.

3. Calculate the proportion of each structural type: Divide the number of concepts
assigned to each type by the total number of concepts, excluding all main concepts
and stand-alone nodes.

Our concept maps do not include directed edges. The content of nodes and how par-
ticipants constructed the relations make it easy to see whether a link was inbound or
outbound. The evaluation scheme results in the concept map’s fraction of network,
hub-and-spoke, chain, tree and circle structures.

As one of our research questions focuses on how the mental models of participants evolved
during the process, we can not just rely on the final state of the externalized structure.
Using the interaction logs captured by the concept mapping tool, we can reconstruct
each participant’s concept map at any point in their task completion. We analyze which
strategy participants applied during the creation of their concept maps. In particular,
we classify the concept map evolution into multiple types:

• Direction:
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Top-down: The person added superordinate concepts before adding related
basic concepts.

Bottom-up: The user first added basic concepts before grouping them via a
related superordinate concept.

Random: This applies to concept maps that do not show a hierarchical structure
or if no clear pattern in adding concepts can be observed.

• Hierarchical Pattern:
Clustered: The person added concepts that apply to the same cluster, category

or topic before moving on to the next group of concepts.
Scattered: The concept map evolved by adding unrelated concepts that are

unrelated or do not belong to the same category.

Finally, we analyze each concept map for significant restructuring, indicating major
changes in a user’s mental model [ZS16]. These restructurings include significant changes
of the structural type (e.g., if a map started as a chain but evolved to hub-and-spoke with
multiple levels of hierarchy), events where participants deleted a lot of their concepts,
changed concepts’ links from one area of the concept map to another or moved a high
number of nodes around.

5.8 Post-Task Interviews and Thinking-Aloud
We instructed participants to apply the thinking-aloud method and verbally express their
thoughts and considerations during the task. The experimenter and the observer took
notes on relevant observations and statements. These notes helped us to highlight special
events during the process that would be relevant for further analysis (e.g. if a participant
performed significant restructuring) and identify further questions for the post-task
interview. We did not conduct any further analysis of the notes or thinking-aloud
protocols.

The recordings of the post-task interviews were transcribed and translated into English.
The qualitative analysis of the transcripts is based on reflexive thematic analysis by
Braun and Clarke [BC19, BC06] and is guided by our research questions. In an initial
open coding process, two coders each reviewed half of the transcripts and highlighted
relevant codes. Both coders reviewed the initial codes and grouped them into overall
topics such as difficulties with the task, strategy/workflow, difficulties in externalization,
concept map content or concept map structure. These groups helped us find semantic
themes relevant to answering our research questions.
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CHAPTER 6
Results

This chapter presents the qualitative and quantitative results of this thesis. The structure
follows the defined research questions. Both the quantitative metrics and the qualitative
evaluations these results are based on are outlined in Chapter 5. Table 5.1 provides a
summarized overview of the used metrics referenced in this chapter. Table 6.1 summarizes
the notation used in the results.

Symbol Meaning
n Sample size
µ Mean
σ Standard deviation
µ̃ Median
r Pearson correlation coefficient
p Probability

Table 6.1: Notation of results.

6.1 Overall Results
The externalized concept maps created by the participants contain a total of 906 nodes.
After the coding process, which included the removal of duplicates and combining
semantically similar concepts to a single concept, the final superset contains 343 basic
concepts and 70 superordinate concepts.

Of the 343 suggested basic concepts, 332 concepts can be associated with at least one
image. The remaining 11 do not apply to any image. These concepts are: tattoos,
robe, siren, red (hair color), freckles, emergency lights, beanie, amazon (referring to the
company), bathroom, bicycle and unrecognizable (pose).
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Figure 6.1: Distribution of suggested basic concepts
by their popularity.

Basic Concept Popularity
male 75%
female 70%
headwear 60%
black and white 55%
glasses 55%
colored (image) 50%
outdoor 50%
food 45%
mask 40%
uniform 40%
indoor 40%

Table 6.2: The most popular
suggested basic concepts.

Figure 6.2: Distribution of the total number of basic concepts and the number of unique
concepts suggested by only one participant.

207 out of the 343 basic concepts suggested by participants were only mentioned by one
person. Figure 6.1 shows the distribution of concepts by their popularity. Concepts with
a popularity value of 1 were suggested by all participants, while concepts with a value
of 0.05 are only part of one concept map. Most of the suggested concepts are located
in this group. No concept was proposed by all participants. Table 6.2 lists the most
popular basic concepts. As most of the concepts were only suggested by one person, we
analyzed the distribution of these unique concepts. Figure 6.2 illustrates that 55% of all
unique concepts came only from four participants. Every participant suggested at least
one unique concept that no other person had in their concept map.
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Figure 6.3: Box-plot diagram of the durations participants took until they had seen all
images, the last interaction with the image viewer, the last interaction with the concept
map and the total time for the task.

We can observe a wide variety in the duration participants took for the task. Figure 6.3
shows the durations participants took for certain milestones during the exploration task.
The total time for completing the task ranged from 17 to 45 minutes (µ = 37; σ = 9).
The time until the participants had seen all images varied from 2.48 to 44 minutes
(µ = 17.25; σ = 13.95). The duration until the last action where participants moved
an image ranged from 16.07 to 45 minutes (µ = 34.74; σ = 9.52), whereas the last
interaction with the concept map was at 16.07 to 45 minutes (µ = 35.07; σ = 10.56).

6.2 Comprehensiveness
To answer how well the participants’ externalized mental structures can describe a large
unstructured dataset (Q1), we perform two quantitative evaluations. First, we calculate
the comprehensiveness of the suggested concept sets, which describes to which extent the
dataset is covered. Second, we use the concepts’ breadth value to evaluate whether all
suggested concepts apply to the dataset.

The comprehensiveness value of a suggested concept set describes the fraction of images to
which at least one of the suggested concepts applies. A comprehensiveness of 1 indicates
that the entire dataset is covered, whereas a value of 0 means that the set of concepts
can describe no image. All participants, except one, externalized a concept set with a
comprehensiveness of 1. Only one participant could not cover the entire dataset, as two
images cannot be matched to any of the suggested concepts. The concept map of this
participant does also not contain the most popular concepts, which were suggested by
the majority of participants (e.g. male, female) or broadest concepts, which applied to
all or most images (e.g. adult, person). It should also be mentioned that this participant
did not suggest a particularly small number of concepts, as their concept set size of
35 concepts is close to the median size of 34.3. However, as this participant can be
considered an outlier, the overall comprehensiveness of the suggested concept sets is 1,
and therefore, the dataset is generally fully covered by the externalized mental models.
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Figure 6.4: Distribution of the suggested basic concepts by their breadth value (µ =
0.2; µ̃ = 0.09; σ = 0.24).

Concepts with a higher breadth apply to a larger portion of items and are therefore
more general, while a low score indicates that the concept is more specific. The broadest
concepts are adult (1), person (0.99) and colored (referring to image color tone)(0.92).
Figure 6.4 illustrates the distribution of concepts by their breadth. It shows that most
concepts are rather specific and apply only to a small fraction of the dataset. Only 11
concepts do not apply to any image. This means that while participants could represent
the entire dataset with their externalizations, they also suggested concepts that cannot
be found in the images.

In some cases, the concept map alone does not fully reflect what a participant wanted to
express or what they had in mind and, therefore, contains quite ambiguous phrasings.
For example, one participant added nothing and no tie as a concept. Without the
person explaining what they meant by this, it is difficult to interpret and understand the
underlying mental model. In this case, the concept map contains different objects the
persons in the images are holding and men with ties. In the walkthrough, the participant
explained that they wanted to express that there are some images to which none of the
other concepts apply (the person is not holding anything and does not have a tie).

Further, some participants added concepts in a cluster, which they had seen in the images
and related to each other. For example security, uniform, badge, protective vest. While
inserting these concepts into the concept map, three participants also added concepts
they associated with this group but were not present in the images, such as siren or
emergency lights. The majority of participants, however, were able to externalize their
mental structures meaningfully and comprehensively without ambiguities in the coding
process.
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Observations and a comparison between the participants’ verbalized thoughts during
the task and the externalized concept maps show that seven out of 20 participants had
concepts in mind that were not added to the concept map. In the post-task interviews,
they mentioned several reasons, such as not finding the right words, being unsure
whether the concept was relevant enough as it only applied to a few images, or simply
forgetting them during the task. This suggests that some people might have had a more
comprehensive internal representation of the dataset than they were able to externalize.
However, we cannot validate this assumption, as we cannot access the participants’
internal mental model and rely only on its externalized representation. Therefore, we
focus on the externalized mental structures in this work.

6.3 Level of Detail

To assess to what level of detail the participants’ mental structures reflect the given dataset
(Q2), we calculate the average breadth of each participant’s concept set. As illustrated in
Figure 6.5, this score is relatively low, ranging from 0.11 to 0.47 (µ = 0.28; σ = 0.09),
indicating that the individual externalized structures are rather specific. This is not
surprising, as described in Section 6.2, most concepts are rather specific, applying to only
a small portion of the dataset.

Figure 6.5: Box-plot diagram of the average breadth over all participants’ suggested basic
concept sets (µ̃ = 0.27).

It is possible to achieve a low average breadth by suggesting many concepts that only
apply to the same few images. In this case, we would not consider the concept set as
detailed, as it does not capture nuances of the entire dataset. To account for this, we also
calculate a concept set’s distinctiveness. This metric describes the average fraction of
images that can be described by a unique subset of concepts. A high distinctiveness value
indicates that a large portion of the data items can be distinctively retrieved by querying
them with a particular concept set. Figure 6.6 shows that the overall distinctiveness
is relatively high, ranging from 0.88 to 1.0 (µ = 0.98; σ = 0.03). This suggests that
participants could represent most of the images in a detailed and distinct way.
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Figure 6.6: Box-plot diagram of the distinctiveness
over all participants (µ̃ = 0.995) and separated by
the two different task strategies (µ̃exploration−first =
0.988; µ̃interactive = 0.999).

Figure 6.7: Scatter-plot of the dis-
tinctiveness and the number of ba-
sic concepts in the set.

As described in section 6.2, some participants did not include concepts in their concept
maps they had in mind. Some users reasoned that they did not add them because they
were too specific, so we can assume that the person’s internal representation was more
detailed than what they externalized. This might suggest that the externalized structures
do not fully reflect the full details of the participants’ mental models.

6.4 Concept Space Evolution
To understand how the users’ externalized structures evolve during the exploration
process (Q3), we analyze the concept maps on various levels. First, we compare the
progress of the exploration process with the growth of the concept maps. Second, we
evaluate whether participants suggested more specific or general concepts earlier in their
process. Third, we perform qualitative analyses on the evolution of the concept maps’
structures over time.

Progress of Exploration and Externalization

In general, participants applied one of two strategies in the exploration task. This
separation is based on when the participants started to work on their concept maps
during the exploration task. All participants started the task by getting an overview of
some images in the dataset. 50% of them then continued by exploring the full dataset
before they began to create the concept map. We further refer to this strategy as the
exploration-first approach. The other half, however, started with the externalization right
after the initial overview and worked on the concept map while further exploring the
images. We called this the interactive approach.
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(a) Participants who followed the exploration-first approach.

(b) Progress of participants who applied the interactive approach.

Figure 6.8: The average number of concepts and visible images over the total task
duration, separated by the two different approaches.
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For users who followed the exploration-first approach, we are not able to observe how their
mental model evolved during the exploration process, as we can only analyze the progress
of their concept map after they had seen all images and already had a relatively complete
internal representation of the dataset. Figure 6.8 visualizes the average progress of visible
images and added concepts over time for both groups. The graph cumulates the number
of images and concepts in 10-second intervals. As not all participants took the same
amount of time for the task, we normalized the timeline to the longest time a participant
took for the task (45 minutes). In Figure 6.8a we can see, that the exploration-first group
started to add concepts after uncovering all images. After that, the number of concepts
steadily increases. As the point of time when participants had seen all images varied,
the graph shows a smooth transition and slight overlap between the exploration and the
externalization. Individually, each user in this group showed a clear separation between
the two phases.

For the interactive group, the progress of the concept map size in relation to the number
of visible images poses a more interesting pattern, as can be seen in Figure 6.8b. The
graph shows a steep increase of revealed images in the first 5 minutes of the task before the
number of concepts rises. This indicates that participants first needed to get an overview
of the dataset to build up their initial mental model, which they then externalized. This
aspect is also supported by considerations expressed while thinking aloud during the task
and their explanation of their strategy in the post-task interview. The results indicate
that the number of concepts and the number of visible images progress somewhat parallel
to each other after the initial exploration phase. Participants continuously added concepts
and revealed images until the end. However, shortly before the end of the task, where
they revealed the last few images, no more concepts were added. Also, after seeing the
last image, users did not add further concepts to their externalization. This suggests
that participants who followed the interactive approach had already built up a complete
mental model of the dataset during exploration.

We can observe a slight difference in the distinctiveness between participants who followed
the exploration-first approach (µ = 0.97; σ = 0.04) and those who applied the interactive
approach (µ = 0.99; σ = 0.01), as can be seen in Figure 6.6. This indicates that the
interactive approach leads to an even higher and consistent distinctiveness. Figure 6.7
illustrates that users who suggested a smaller set of concepts also created a less distinctive
concept map.

Rank and Breadth
Observations during the study led to our assumption that participants tended to start
with rather general concepts and progressed with more detailed and specific ones as
they further explored the dataset. Although participants were not required to follow
a particular strategy or structure in their externalization, concept maps are generally
constructed from general to specific concepts [NC06]. We calculate the average rank for
each suggested basic concept to test this assumption. This metric describes how soon a
concept appeared in the concept maps on average over all participants. We compare this
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value with the concept’s breadth. As we can only confidently calculate a concept’s average
rank over all concept maps, if multiple users suggested it, we excluded all concepts that
appeared only once in this comparison. Quantitative analysis confirms this assumption
in part, but the relationship between rank and breadth is not as clear as expected. As
illustrated in Figure 6.9, the most general concepts tend to be added relatively early in
the process. The opposite is not necessarily the case, as specific concepts were added
at any time. A negative correlation between rank and breadth is present. However, it is
weak (r = −0.192, p = 0.004), suggesting that the assumption is only partially valid and
other factors might affect the order in which concepts are added.

Figure 6.9: Scatterplots showing a weak negative correlation between a concept’s rank
and breadth (left) and a weak negative correlation between rank and popularity.

Structural Evolution
We further analyze the evolution of the created concept maps on a structural level.
For this, we qualitatively assess the direction in which the concept maps’ hierarchies
are constructed, in which pattern the concepts are added, and whether participants
performed significant restructuring of their concept map during the task.

With the direction, we describe how a concept map’s hierarchy evolved. If the person
first added superordinate before adding related subordinate concepts, we can speak
of a top-down approach. If a user first added subordinate concepts before grouping
them via a related superordinate concept, we consider this strategy as a bottom-up
approach. Concept maps that showed no hierarchical structure at all, or if no clear
pattern in adding concepts can be discovered, the direction was classified as random.
None of the 20 participants followed a bottom-up approach during the study. 50% of
them constructed them clearly or primarily in a top-down direction, while the other half
followed a random strategy without a hierarchical pattern. This is also evenly distributed
between participants who explored the entire dataset first and those who followed the
interactive approach.
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We also analyze structural and hierarchical patterns. We distinguish this evolution of
the concept maps between two types. In a clustered evolution, the person added groups
of concepts that applied to the same cluster, category or topic before moving on to
the next group of concepts, for example, adding background immediately followed by
the connected concepts plain and scene, before adding clothes with formal and working
clothes. In contrast to this evolution stands a scattered workflow, where the concept
map evolves by adding unrelated concepts unrelated to each other or not belonging to
the same category. For example, background followed by posture and clothes. 55% of
participants added concepts in a scattered approach, while 45% added them in distinct
clusters before moving on to the next category. No tendency could be discovered, whether
a clustered or scattered evolution was more common among participants who applied an
interactive or exploration-first approach.

Finally, we analyze whether users performed major restructurings of their concept maps
while creating them. A change in a concept map’s structure would mean that the
individual’s mental model was challenged, and their understanding of the dataset no
longer applied. If the overall structure stayed the same throughout the process, their
mental model was confirmed, and the concept map was only extended. 50% of all
participants performed some way of restructuring of their concept maps during the task.
This is also evenly distributed between exploration-first and interactive users. This
result shows that the mental model is not necessarily challenged significantly during the
exploration as new concepts arise. It shows, however, that also participants who had
already seen all the images performed significant restructuring and thus, their mental
model evolved during the externalization process.

6.5 Individual Differences and Similarities
To answer whether there are any differences in the mental structures between individuals
(Q4), we compare the resulting concept maps on various qualitative and quantitative
levels.

Figure 6.10: Box-plot of the total number of concept nodes created by each participant
(µ̃ = 34) during the task, separated by basic concepts (µ̃ = 28) and superordinate
concepts (µ̃ = 6).
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Figure 6.12: Box-plot diagram of the time participants took to see all images separated
by users who applied an exploration-first (n = 10; µ̃ = 6.73) and interactive (n = 10; µ̃ =
30.62) approach.

Exploration-First vs. Interactive Approach
Overall, the concept maps created by the participants during the study contain a highly
diverse set of concepts. As can be seen in Figure 6.10, the total number of concept nodes
ranges from 10 to 109 (µ = 42.1; σ = 26.8) across all participants. Also, on a basic and
superordinate level, the number of suggested concepts varies greatly. The number of basic
concepts ranges from 9 to 94 (µ = 34.3; σ = 23.6), while the number of superordinate
concepts is between 0 and 22 (µ = 7.8; σ = 7.4).

Figure 6.11: Box-plot diagram of the number of basic concepts suggested by participants
who followed the exploration-first (n = 10; µ̃ = 22) and interactive (n = 10; µ̃ = 41)
approach.

We can see considerable differences between users who followed the exploration-first and
the interactive approach. As can be seen in Figure 6.11, the interactive group suggested
a higher number of concepts (µ = 45.7; σ = 27.15), but also with higher variation,
compared to the exploration-first group (µ = 24.4; σ = 14.5).

Not just the number of suggested concepts but also the time until participants explored
all images differs between users who followed the two different approaches. Figure 6.12
shows that participants who followed the interactive approach took notably longer on
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average to see all images (µ = 27; σ = 13.25) compared to the exploration-first group
(µ = 7.5; σ = 4.94). However, the interactive group’s exploration time is more diverse
and ranges from 3.77 to 44 minutes, while the exploration-first group’s time is more
consistent, ranging from 2.48 to 18.87 minutes.

Rank and Popularity
60% of all basic concepts are only part of one concept map and therefore not considered
by multiple users. However, 136 concepts were suggested by more than one participant.
One assumption was that concepts that more users considered might be more present in
the dataset and, therefore, added to the concept maps earlier in the process. To test this
assumption, we check the correlation between the rank of concepts suggested multiple
times and their popularity. Figure 6.9 shows a weak negative correlation between these
two metrics (r = −0.307; p = 0.0003). Although the correlation is weak, it can be
confirmed that more popular concepts tend to be added earlier in the process. However,
unpopular concepts are added at any time during the task.

Similarity between Concept Maps
The similarity between the externalized structures is evaluated based on the Jaccard
Similarity between the suggested concept sets. A similarity of 1 indicates a complete
overlap between two sets, while 0 means that they are entirely disjoint. The metric is
calculated between the basic concept sets of all pairs of participants, resulting in a matrix
as shown in Figure 6.14a, where each cell represents the similarity between the two
participants’ concept sets. The results show that the similarity between the concept sets
is generally low, ranging from 0 to 0.3 (µ = 0.09; σ = 0.06), indicating highly individual
concept maps that overlap by only 9% on average.

Overall, participants suggested a wide variety of basic concepts, whereas only 70 super-
ordinate concepts were suggested or derived during the coding process. This indicates
that while users suggested mostly individual concepts on a basic level, they might have
described the dataset on a shared higher level. To test this assumption, we use the
implicit superordinate concept related to each basic concept and compare the Jaccard
Similarity of concept sets based on this more general level. The matrix in Figure 6.14b
shows that the concept sets are still somewhat dissimilar, ranging from 0.05 to 0.57
(µ = 0.25; σ = 0.12). However, more intersections can be observed.

Concept Map Structures
To further analyze the differences between the participants’ externalized structures, we
gather various traditional and holistic metrics used to evaluate concept maps, as described
in Chapter 5. Figure 6.15 shows the results of counting various concept map elements.
These include the number of cross-links (CL), the total number of hierarchies (NH),
the concept map’s highest level of hierarchy (HH) and the number of links between
concepts. As not all participants represented relations by drawing links between concepts,
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(a) P13: Hub-and-Spoke with one main con-
cept and Tree structures.

(b) P2: Scattered Hub-and-Spoke structure
with multiple main concepts.

(c) P5: Hub-and-Spoke structure with spa-
tially represented connections.

(d) P:15: Network structure with Hub-and-
Spoke and Tree elements.

Figure 6.13: Examples of user-created concept maps with different structures.

we differentiate between explicit links, which were added as drawn lines (Le) and implicit
links, which represent relations by spatially grouping concepts (Li). Figure 6.13c is
an example of a concept map containing explicitly drawn links, while most links are
represented via their spacial arrangement.

The pure number of concept map elements cannot fully describe the individual’s un-
derstanding of their dataset [WPNR16, FFEP18], as these numbers only describe the
size and complexity of the concept map. To further evaluate the structure of the ex-
ternalizations, we apply an adapted holistic scoring method as proposed by [RDJ14].
Using this method, we evaluate the concept maps based on the types of structures they
contain. The heatmap in Figure 6.16a shows the proportion of structural types in each
participant’s concept map. The results show that most participants created concept maps
containing a mix of structures with one dominant type. Figure 6.13 contains exemplary
concept maps of different structures created by participants. For example, the majority
of hub-and-spoke structures also contain elements arranged as tree for multiple levels of
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(a) The Jaccard Similarity between all pairs of participants’ sug-
gested basic concept sets.

(b) The Jaccard Similarity between all participants’ suggested
concept sets, based on the superordinate level.

Figure 6.14: Heatmaps representing the Jaccard Similarity between participants’ sug-
gested concept sets.
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Figure 6.15: Box-plot diagrams of counted concept map elements for all participants. The
number of cross-links (CL), the total number of hierarchies (NH), the highest hierarchy
level (HH), the number of explicit links (Le) and the number of implicit links (Li).

hierarchy (e.g., Figure 6.13a).

Participants were not required to follow the standard approach of creating concept
maps, starting from a central main concept. Therefore, most of the concept maps
contain multiple main concepts leading to multiple hub-and-spoke structures that are
not connected (e.g., Figure 6.13b). While the majority of concept maps show only a few
levels of hierarchy and cross-links, some participants created more complex net structures
(e.g., Figure 6.13d).

(a) Heatmap with the proportion of
structural types in each participant’s
concept map.

(b) Barchart showing the distribution
of the dominant structural type in the
concept maps.

Figure 6.16: Structural classification of participant’s concept maps.

Figure 6.16b highlights that participants mostly externalized their mental models using
a hub-and-spoke structure. The concept map of one participant (P7) is excluded from
this analysis, as this person did not follow a clear structure by adding mostly single
concepts without any hierarchical pattern or relations. No concept map includes circular
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structures. Overall, the created concept maps share similar graphical structures, with
concepts as single nodes and relations as drawn lines between them. However, four
participants did not follow this approach, but rather represented relations by spatially
grouping concept nodes without drawing explicit links. One user even used the function
intended for creating links to draw lines between concepts and arrange them as a table.
The themes extracted from interviews also highlight that some users felt restricted by the
tool and wished for more flexibility in expression by using different shapes or colours.
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CHAPTER 7
Discussion

The findings of our exploratory user study, conducted in a controlled lab environment with
20 participants, provide insights into how users construct an external representation of
their knowledge when exploring unstructured data. By evaluating the comprehensiveness,
level of detail and the evolution of the externalized structures, we can better understand
the iterative process of knowledge externalization. Despite the strong individuality and
variety between participants’ externalizations and their applied strategies, we could
identify similarities.

7.1 Comprehensiveness
To understand how humans explore and make sense of a large unstructured dataset, we
first wanted to know whether an externalized representation of a user’s mental model can
fully describe the given dataset (Q1). The results show that participants externalized
their mental models as a set of concepts related to each item of the explored dataset.
This suggests that an external representation is comprehensive and able to describe the
entire dataset that has been explored. We see that 97% of the concepts apply to at least
one element in the dataset. This suggests that the users’ externalizations are primarily
about the dataset’s contents and do not contain their subjective associations with the
explored elements. A possible interpretation is that when users need to represent the
contents of a dataset, they focus on visually perceivable features. Yet, a few examples
also represent such associations that are not only based on visual features but also on the
person’s subjective perspective that links what they have seen with their prior knowledge.

The majority of concepts that participants used in their externalizations are basic
concepts, while only a relatively small proportion are superordinate concepts that represent
overarching categories of concepts. This might indicate that users either think about
a dataset on a basic level or prefer to choose basic concepts to represent their mental
model. This observation aligns with prior work in this field, which has found that humans
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generally tend to describe objects with basic concepts [MR+81]. As the participants in
the study did not know the contents of the dataset beforehand, they can be considered
novices in the exploration task. Studies in the literature confirm that people who are no
domain experts prefer the basic level to approach a new topic [TT91] and that categories
are labelled generally at a superordinate level [RI08]. However, our results do not confirm
the assumption of studies which argue that users prefer general concepts over specific
ones [HSWW04].

While users could describe the entire dataset, we observed that they did not externalize
all concepts they had in their mental representation of the dataset. Based on their
reasoning, we can assume that the externalized representation depends on the specific
task and context. Prior work underlines this observation, as externalized knowledge
is not considered a one-to-one representation of a person’s mental model [PK20], but
is influenced by the context in which the externalization is performed [NC06]. We
can also see evidence that the externalizations themselves can not always convey the
person’s intentions or what they have in mind. Research in mental models supports
this observation, as humans are not always able to verbally express the contents of their
mind [Vir11]. This suggests that an individual’s mental model is more complex and
comprehensive than its external representation. Users actively decide which concepts are
relevant enough to be worth including in the externalization. As participants expressed
concrete difficulties regarding this aspect, this might be a potential area for supporting
users in this process. Intelligent systems could help users find the right words for what
they have in mind or suggest potential concepts that are relevant to the context.

7.2 Level of Detail
Results from the analysis of the concepts participants used for their externalizations show
that the majority of suggested concepts apply to only a small fraction of data items. This
could indicate that the externalizations are not only comprehensive but also distinct,
as most images can be described by a particular subset of a user’s basic concepts. The
size of the externalized structures varies significantly between individuals, where some
users used many specific concepts to describe the dataset, and others only added a few
to their externalizations. While most concepts represent characteristics found in a few
dataset items, there is high variability in the number of details in the externalizations.
This level of distinctiveness was lower for less extensive externalizations. Surprisingly,
they still represent a large portion of the dataset distinctly. This might suggest that the
externalizations can represent the entire dataset with specific characteristics that are
unique to each item. While this might not capture the whole complexity of each item, it
indicates that users can still apply enough detail to reflect the varieties of the dataset
(Q2).

However, we can observe that users who externalized their mental model while exploring
the dataset tend to create more complex externalizations as they contain more concepts
and hierarchies compared to users who did so after seeing the entire dataset. This
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suggests that an interactive approach that allows users to externalize their knowledge
directly during an exploration process might capture a user’s mental model in more
detail. One reason for this might be that it is easier to update the external representation
if new aspects arise. As the mental model iteratively evolves during the exploration,
individuals only need to make minor adjustments. In contrast, externalizing the final
state of a mental model might require more cognitive effort in recalling its detailed
aspects. The results indicate that an interactive approach might require more time and
effort as users spend more time on the task. However, this approach might also lead to
more quality as interactively created externalizations are more detailed and extensive.
Knowledge externalization systems could, therefore, support users by being connected to
the exploration process to allow simple and fast updates of the externalization without
the need to switch between interfaces or devices.

7.3 Concept Space Evolution
The results show that users’ externalized conceptual structures evolve on various levels
during the exploration process (Q3). Users need to observe at least a part of the dataset
before they start to externalize their knowledge. This is not surprising as users need
to establish an initial mental model before being able to externalize it. However, our
study revealed two types of approaches that participants took when externalizing their
knowledge in an exploration task: an interactive approach where the externalization
is done during the exploration process and the exploration-first approach where users
first explore the entire dataset before externalizing the tacit knowledge they have gained.
The results indicate that an interactive approach might lead to a more extensive and
detailed externalization compared to the exploration-first approach. However, it also
requires more time. This suggests that an interactive approach might pose a higher
effort, but the cognitive load is not concentrated at the end of the task. The cognitive
effort of recalling the mental model can be offloaded to the externalized representation
throughout the process. Users reported greater difficulties in recalling the entire mental
model after exploring the entire dataset. This leads to the assumption that an ad-
hoc externalization poses an immediate high cognitive load. Prior work confirms this
assumption, as knowledge externalization can reduce the cognitive load but also requires
cognitive effort to verbalize the tacit knowledge [WGSS21, PMRC17]. This suggests that
an interactive approach should be supported to increase the externalization quality, but
it should not be forced on users who prefer to do one thing at a time.
Our analysis shows that half of the users restructured their externalized structures
during the exploration task, indicating a major change in their mental model while
making sense of the data. This result does not confirm the assumption that the mental
model is continuously challenged during the exploration as the conceptual space evolves
[FAHD17]. It shows, however, that also users who applied the exploration-first approach
and therefore had a rather complete mental model of the dataset performed considerable
restructuring. This indicates that their mental model evolved during the externalization
process, suggesting that the process of externalization itself may lead to constant re-
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evaluation of an individual’s mental model. This is an interesting finding, as it underlines
the importance of systems that allow knowledge externalization for better sensemaking
[WGSS21].

Our findings indicate that concepts which describe the data on a higher level and apply to
a larger portion of items, as well as concepts that represent a shared understanding, tend
to appear in an early stage of the externalization process. However, users add concepts of
varying breadth and popularity during the process. This is supported by the observation
that users apply top-down and clustered strategies to externalize multiple hierarchies of
concepts. In random and scattered approaches, users externalize their structures without
a distinct strategy. The choice of strategy seems to be highly individual and might
depend on the user’s cognitive style. However, there is a clear tendency that users prefer
to represent the dataset in a hierarchical structure that does not evolve from the most
specific to the most general concepts (bottom-up). This is in line with the theories behind
concept maps [NC06]. This finding also underlines the importance of supporting users
in their personal strategy, as there is no one-fits-all approach [WZC+20, Wes06]. When
designing visual analytics systems, designers must consider that users might use different
approaches and strategies, and the interface should support these individual preferences.

7.4 Individual Differences and Similarities
Our study reveals that users’ externalizations are highly individual and show little
similarity to the contents of other users’ structures. On a basic level, individuals used
highly diverse concepts to represent the given dataset, which is mostly disjoint between
users. 60% of concepts that participants suggested in our study were only used by a single
person, with the most popular concept being used by only 75% of the participants. This
might imply a high degree of subjectivity in the external representation of tacit knowledge.
However, a detailed analysis showed that on a higher level, users’ externalizations share
more conceptual similarities. These findings might provide evidence that although
individuals use different examples and details to describe the dataset, they still share
some common understanding. VA systems, therefore, should allow and support individual
expression while they could also provide guidance on higher levels of abstraction. For
example, a system could suggest a set of rather general and broad concepts that allow
users to refine the externalization with their individual details. However, it remains an
open question of how these suggestions can be generated from an unlabeled dataset.

Despite the high individuality of the externalizations’ contents, our results show that
users tend to prefer similar structural representations (Q4). Hub-and-spoke structures
are the most common typography of externalizations, which often contain tree elements
to represent branching hierarchies. This suggests that hub-and-spoke structures are
especially suitable for a hierarchical representation that can be extended with additional
concepts as the user’s understanding of the dataset grows. However, this might also
be because participants in our study were already familiar with the technique of mind
mapping that follows a similar structure. Nevertheless, this finding aligns with prior
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studies, which have found that novices prefer hub-and-spoke structures with multiple
levels of hierarchy when making sense of a complex scenario [FAHD17]. We can, therefore,
assume that an interface for knowledge externalization is more readily accepted and
understood if it is based on hub-and-spoke structures that allow users to easily add
further complexity by extending hierarchies via branches and links. The results also
show that not all users explicitly connect concepts via links. While this might be due to
the given time limit of the study, it might also suggest that linking concepts requires
additional effort. Well-designed interfaces could support users in this regard by providing
easy-to-use linking mechanisms to represent relationships.

In our study, some users wished for more flexibility in expressing their mental model,
which the interface we used could not provide. The results show different user approaches
to represent concept nodes, relations and hierarchies. In contrast to prior work, which
suggested that these methods for adding structure are rarely used [WGSS21], we argue
that externalization interfaces should provide enough function and flexibility to allow
users to choose their preferred way of expressing their knowledge. This could be achieved
by providing different shapes, colours, and sizing options, as well as different ways
to represent relationships. However, it should not add unnecessary complexity to the
interface, as not all users might bring the same experience with graphical tools.

7.5 Limitations
This study was conducted with a small sample size of 20 participants, which is acceptable
for qualitative exploratory studies [MCPF13]. However, the methods applied in this work
are quantitative to a large extent. Our findings might, therefore, not be generalizable to
a larger population, given the strong individuality of knowledge externalization we could
observe. We recruited participants with diverse backgrounds and experiences to increase
variability. However, our study does not include domain experts, who are typically the
target group of systems for unstructured data exploration and knowledge externalization.
A similar study with domain experts might produce different results, as they might apply
different strategies and prior knowledge.

Unstructured data is a broad term and refers to a wide range of data types. In this study,
we focused on images as this form of data was the most accessible for our user study.
As other data types might require different cognitive processes in the exploration and
externalization, the results of this study can not be generalized to unstructured data as a
whole. This work originated from the problems of exploring large sets of unstructured
data. The task in our user study was to explore 100 images, which is a reasonably large
dataset but still not comparable to the amount of data in real-world scenarios.

We designed the task in a way that not only allowed participants to explore the entire
dataset but also explicitly instructed and forced them to do so. This might have influenced
the results as users already knew they could see all data items. In a real-world scenario,
a user might not know how much data is available. Half of the participants in our
study explored the dataset first before constructing their externalization. If users cannot
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work through the entire dataset, the results might differ, with more users choosing an
interactive approach. This also led to a large portion of participants where we could not
observe the evolution of the mental model during the exploration process.

The task in our study had a time limit to keep the study manageable for us and the
participants. While this limit was sufficient for most participants, we could observe a shift
in some users’ strategies after we reminded them to conclude. This might have posed
additional pressure and influenced the results. Furthermore, the lack of a particular goal
that users could work towards, besides our instruction to create a comprehensive dataset
representation, might also not reflect a practical scenario. If users could benefit from
their externalization, it might lead to higher quality and more effort.

We gave participants total freedom in choosing how to create the externalizations. While
this was intended to allow users to apply their own preferences and strategies, it made
the analysis more complex. Stricter guidelines might have made the analysis easier by
using common automated evaluation methods and results more generalizable. However,
our approach allowed us to gain better insights into the subjectivity of knowledge
externalization.

7.6 Open Questions and Future Work
Our study suggests that users’ externalizations are comprehensive and distinct, given an
unstructured dataset of limited size. Follow-up studies could investigate which strategies
users apply when making sense of a large dataset that cannot be fully explored. This
could provide more realistic insight into how detailed externalizations can be in practice.

As we only used images in our study, future work could examine the evolution of the
conceptual space if users are faced with other types of unstructured data, such as text,
audio, or video. This could uncover different cognitive processes and other forms of
external representation that are required to describe the content of these data types.

We found that the way how novice users visually externalize their knowledge shows simi-
larities and is focused on basic concepts. It remains an open question how domain experts
who follow a specific task would externally represent the dataset or their mental model.
Following studies could investigate the strategies of domain experts and the influence
of prior knowledge and expectations in such tasks. This could lead to further design
implications for systems that support expert users in their knowledge externalization.

The mapping of concepts to data items in our study was done manually, which simulates
perfect machine support. In reality, however, a system cannot do this with the level of
accuracy we achieved because current classification models do not reach human-level
performance, especially on a semantic level, if the data is unlabeled beforehand and
for very specific tasks. This might require additional effort from the user. Future work
could incorporate foundation models for zero-shot learning to automatically classify
data items based on the user’s conceptual model. This could be a further step towards
knowledge-assisted visual analytics systems for unstructured data.
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CHAPTER 8
Conclusion

This diploma thesis aimed to collect insights into how users’ mental models evolve while
exploring a large unstructured data set. Knowing what a human thinks about while
making sense of unstructured data is essential for designing knowledge-assisted visual
analytics systems. As we cannot directly observe an individual’s mental model, we must
rely on an external representation of it. Understanding the subjective and iterative
aspects of these explicit knowledge representations is crucial for incorporating them into
interactive VA systems that support users in the exploration and externalization process
and ultimately learn from and with the user.

We conducted an exploratory user study with 20 participants in a controlled lab en-
vironment. Participants were asked to explore 100 images and create a concept map
that represents what characteristics and attributes they associate with the dataset. We
provided them with an exploration tool that allowed them to interactively explore the
images on a large multitouch screen along with a digital concept mapping tool to exter-
nalize their knowledge. Both tools collected interaction data throughout the task. After
a time limit of 40 minutes, participants gave a verbal walkthrough of their results and
answered additional questions in a semi-structured interview.

In a thorough qualitative and quantitative analysis of the collected interaction data and
participants’ concept maps, we evaluated the externalization strategies applied by the
users. Furthermore, we investigated how comprehensive and detailed the externalized
structures represent the given dataset and identified key similarities and differences
between individuals. These insights can inform the design of (knowledge-assisted) visual
analytics systems.
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8.1 Summary of Results

The results of our study indicate that users’ externalized knowledge representations are
comprehensive and able to represent an entire unstructured dataset where the content is
not known beforehand. Individuals’ externalizations represent each data item, regardless
of the extensiveness and size of the created structure. Only a small fraction of concepts
(3%) suggested by the users in our study can not be associated with any dataset item,
suggesting that users primarily focus on the visual features of images on a basic conceptual
level while using more abstract concepts for grouping and categorizing.

The users’ externalizations are not only comprehensive but also show a high level of
detail as each item of the dataset can be described by a distinct subset of an individual’s
used concepts. We found that the size of the externalized structures varies considerably
between users. While smaller concept maps contain less detail, they can still represent
the entire dataset comprehensively and distinctly. This is underlined by the fact that
users primarily suggest specific concepts that apply to only a few items rather than
general attributes.

Our results indicate that an approach where users externalize their mental models while
exploring the dataset might result in more extensive and detailed representations than
an approach where the externalization is done afterwards. While this approach tends to
be more time-consuming for users, we argue that it might be generally more beneficial as
it better corresponds with the iterative nature of mental models. However, the results
indicate that the externalization process itself leads to constant re-evaluation of a user’s
mental model, even if they already have a clear idea of the dataset’s entire content. This
finding underlines the importance of VA systems that allow users to continuously refine
and adapt the externalized structures.

We found that users tend to prefer to construct their externalizations as hierarchies.
However, it is highly individual how these hierarchies and structures evolve, depending
on the user’s cognitive style and the dataset’s content.

The study reveals that users also tend to use highly individual concepts to describe
the dataset, which are mostly not shared among participants. On a higher level of
abstraction, the conceptual space might share more similarities between users, suggesting
that individuals tend to describe similar overarching themes but use different examples
to do so. Despite this high degree of individuality, we found that users tend to prefer
the same type of structural elements in their externalizations. Hub-and-spoke structures
with tree-like hierarchies of different depths are the most common topologies, allowing
users to iteratively extend and refine their externalizations.

The main contribution of this thesis is insights into the subjective and iterative aspects
of knowledge externalization. These insights can inform the development of knowledge-
assisted VA systems. The following section outlines the learnings and design implications
for visual analytics systems based on the findings of this study.
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8.2 Design Implications
Based on the results and insights gained from the conducted user study, we can derive
several design implications for interactive systems that support users in their knowledge
externalization during the exploration of unstructured data. It can be assumed that
switching interfaces or devices can interfere with cognitive processes when users externalize
their knowledge during an exploration task. Knowledge externalization interfaces should,
therefore, be integrated into the exploration tool to allow for simple and seamless updates
of the externalization. A seamless transition between exploration and externalization can
reduce cognitive demands and encourage users to continuously refine their externalized
knowledge representation.

Our results suggest that users who directly externalize their mental model while exploring
a dataset might create more extensive and detailed representations. Externalization itself
is a cognitive process where a user can reflect on their mental model. Interactive systems
should support users by providing tools that allow them to re-arrange and refine the
externalization. For example, users should be able to add or remove concepts easily. If
relations between concepts are represented via connections, these should stay intact when
concepts are moved.

We found that hub-and-spoke structures that allow users to add multiple levels of
hierarchies and branches might be well-suited for most users. These structures provide a
good overview and enough flexibility for further adjustments and extension. However,
a good externalization interface should allow users to choose their preferred way of
expression. Different shapes, colours, or sizes of nodes can provide users with additional
creative freedom. Functions like these should, however, not add unnecessary complexity
to the interface.

While one benefit of explicit knowledge is that it can reduce cognitive loads by offloading
information from the user’s working memory [WGSS21, MSSW16], the externalization
process itself is also cognitively demanding. Users constantly re-evaluate their mental
model and need to verbalize these thoughts to create a meaningful and comprehensive
externalization [Non98]. It is sometimes challenging for users to find the right words to
describe parts of their mental model. Approaches like context-aware word suggestions or
auto-completion could support users in this regard.

The content of the externalizations tends to be highly individual on a basic concept level.
When creating systems that support users by suggesting concepts or relations, it should
do so on a higher level of abstraction and allow users to refine them with their individual
details.

Users apply different strategies when creating hierarchical structures. While some users
prefer to create complete hierarchies from top to bottom, others may prefer to add
unrelated concepts in different parts of the structure and connect them later. Designers
should be aware that there is no one-fits-all approach and support users in their individual
preferences. As Westbrook points out, it is not realistic to design systems for the needs
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8. Conclusion

of every single individual, but we can find advantages in mental models’ patterns that
apply to more than one person [Wes06]. As the centre of design should be the target
users, who might differ depending on the context of use, it is essential to consider the
individual needs and find patterns that apply to a large group of users while still not
neglecting each individual’s preferences.
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Overview of Generative AI Tools
Used

The images were created using the latent the text-to-image diffusion model Stable Diffusion
[RBL+22]. The exact workflow of the image creation is described in Section 4.3.2.

Interviews recorded during the user study were transcribed using the free API of the
transcription service AssemblyAI [Ass]. The transcription were checked for accuracy and
corrected if the software made mistakes.

The literature review was supported by ChatGPT, version 4o [Ope24] to generate initial
summaries for first overview of papers’ contents. These summaries were not used for the
final writing process.

During the writing process, ChatGPT 4o [Ope24] was used to suggest phrasings or
synonyms for specific terms. Text passages were not directly copied without further
editing. In addition, the grammar and spelling checker Grammarly was used to find
spelling and grammar mistakes or misleading phrasings. These suggestions were reviewed
and text was rephrased using own words.
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