
Strukturbasierte
Abfrageoptimierung in

Spalten-Orientierten Datenbanken

zur Erlangung des akademischen Grades

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Jakob Aichinger
Matrikelnummer 11814579

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Mag.rer.nat. Dr.techn. Reinhard Pichler
Mitwirkung: Univ.Ass. Dipl.-Ing. Alexander Selzer

Wien, 1. Juli 2024
Jakob Aichinger Reinhard Pichler

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Structure-Guided Query
Optimization in Column-Stores

submitted in partial fulfillment of the requirements for the degree of

in

Software Engineering and Internet Computing

by

Jakob Aichinger
Registration Number 11814579

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Mag.rer.nat. Dr.techn. Reinhard Pichler
Assistance: Univ.Ass. Dipl.-Ing. Alexander Selzer

Vienna, July 1, 2024
Jakob Aichinger Reinhard Pichler

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Jakob Aichinger

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen,
die ohne substantielle Änderungen übernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT- Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

Wien, 1. Juli 2024
Jakob Aichinger

v

Danksagung

Ich möchte mich bei allen bedanken, die mich während des gesamten Prozesses der
Erstellung dieser Arbeit unterstützt und motiviert haben.

In erster Linie bin ich Professor Reinhard Pichler für seine Hilfe sehr dankbar. Von der
Unterstützung bei der Themenfindung bis hin zum kontinuierlichen und konstruktiven
Feedback war seine Betreuung von großer Bedeutung für mich. Als nächstes möchte ich
Alexander Selzer danken, der mich bei vielen technischen Fragen unterstützt hat und
dessen Input oft entscheidend für die Bewältigung vieler Herausforderungen war, auf die
ich gestoßen bin.

Des Weiteren möchte ich mich bei meinen Eltern, meiner Schwester und meinen Freunden
bedanken, die mich die ganze Zeit über motiviert haben.

Zum Schluss möchte ich mich noch bei den Mitarbeitern des Cafe Kafka bedanken, wo
ich einen großen Teil der Zeit an dieser Arbeit verbracht habe. Der dort konsumierte
Kaffee und die einladende Atmosphäre haben sehr zu meiner Produktivität beigetragen.

vii

Acknowledgements

I would like to thank everyone who supported and motivated me throughout the process
of writing this thesis.

First and foremost, I am extremely grateful to Professor Reinhard Pichler for his guidance
and support. From helping me identify an interesting topic to providing continuous and
constructive feedback, his mentorship has been very important to me. Next, I would also
like to thank Alexander Selzer who supported me many times when it came to technical
questions and his input was often crucial in overcoming many challenges I encountered.

Furthermore, I would like to thank my parents, my sister, and my friends for giving me
motivation throughout this whole time.

Lastly, I would like to thank the staff at Cafe Kafka, where I spent a significant amount of
time working on this thesis. Their coffee and welcoming atmosphere greatly contributed
to my productivity.

ix

Kurzfassung

In den letzten Jahren hat das Aufkommen von datengesteuerten Bereichen wie Datenwis-
senschaft, künstliche Intelligenz und Business Intelligence die Nachfrage nach effizienten
Datenspeicherlösungen erheblich gesteigert. Infolgedessen sind Datenbankmanagement-
systeme (DBMS) von entscheidender Bedeutung geworden, wobei spaltenbasierte Systeme
aufgrund ihrer außergewöhnlichen Leistung bei großen, leseintensiven analytischen Ar-
beitslasten an Beliebtheit gewonnen haben. Eine grundlegende Operation in diesen
Systemen ist der Join, bei der Daten aus mehreren Relationen verknüpft werden. Die
effiziente Verarbeitung von Join-Abfragen, insbesondere von solchen, die zahlreiche Rela-
tionen umfassen, stellt jedoch nach wie vor eine Herausforderung dar, da zu viele und in
vielen Fällen unnötige Zwischenergebnisse erzeugt werden. Diese Zwischenergebnisse sind
häufig viel größer als die endgültige Ausgabe, was zu einem erheblichen Speicherverbrauch
und einer geringeren Leistung führt, insbesondere bei Aggregatabfragen. Während sich
spaltenbasierte DBMS in der Regel durch die Ausführung von Aggregatabfragen aus-
zeichnen, kann die Explosion von Zwischenergebnissen während der Abfrageverarbeitung
ihre Effizienz stark beeinträchtigen.

Interessanterweise wurde in der jüngsten Forschung eine neuartige Optimierungstechnik
für genau dieses Problem entdeckt. Durch die Anwendung einer Teilausführung des so
genannten Yannakakis-Algorithmus ist es unter bestimmten Bedingungen möglich, diese
unnötigen Zwischenergebnisse zu vermeiden und damit die Leistung dieser Abfragen zu
verbessern. Dieser Ansatz unterscheidet sich von herkömmlichen Abfrageoptimierungs-
techniken, da keine Kardinalitätsschätzungen verwendet werden, sondern der Optimierer
bestimmte strukturelle Eigenschaften einer Abfrage nutzt.

Trotz ihres Potenzials wurde diese Optimierungstechnik bisher noch nicht in ein spaltenba-
siertes Datenbanksystem integriert. Diese Arbeit zielt darauf ab, diese Lücke zu schließen,
indem diese Optimierungstechnik in ClickHouse integriert wird, das laut DB-Engines als
der derzeit beliebteste Spaltenspeicher angesehen werden kann. Die Ergebnisse sind sehr
vielversprechend und zeigen, dass Abfragen, die normalerweise zu einer Zeitüberschreitung
führen würden, dank dieser Optimierung nun effizient und ohne Probleme ausgeführt
werden können.

xi

Abstract

In recent years, the rise of data-driven fields such as data science, artificial intelligence,
and business intelligence has significantly increased the demand for efficient data storage
solutions. As a result, database management systems (DBMS) have become crucial, with
column-based systems gaining popularity for their exceptional performance in large-scale,
read-heavy analytical workloads. A fundamental operation in these systems is the join,
which combines data from multiple relations. However, efficiently processing join queries,
especially those involving numerous relations, remains challenging due to the generation
of excessive, and in many cases unnecessary, intermediate results. These intermediate
results are frequently much larger than the final output, leading to significant memory
usage and reduced performance, particularly in the case of aggregate queries. While
column-stores typically excel in executing aggregate queries, the explosion of intermediate
results during query processing can severely undermine their efficiency.

Interestingly, recent research discovered a novel optimization technique for exactly this
problem. By applying a partial execution of the so-called Yannakakis’ algorithm, it is
possible under certain conditions to avoid producing these unnecessary intermediate
results and thereby improve the performance of these queries. This approach is different
from traditional query optimization techniques, as no cardinality estimates are used, but
instead, the optimizer uses certain structural properties of the query.

Despite its potential, this optimization technique has yet to be integrated into any
column-based database system. The implementation is particularly challenging due to
the impedance mismatch with the Volcano Query Evaluation Model, which is commonly
used by many DBMS. This thesis aims to fill that gap by integrating this optimization
technique into ClickHouse, which can be considered the most popular column-store at the
moment according to the rankings from DB-Engines. The results are highly promising
and show that queries that would typically timeout can now be executed efficiently
without issues, thanks to this optimization.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Research Problem and Objectives . 2
1.3 Methodology . 2
1.4 Organization of the Thesis . 3

2 Column-Stores 5
2.1 Storage Model . 5
2.2 Key Features . 6
2.3 Influential Systems . 12
2.4 ClickHouse . 15
2.5 Column-Stores in Practice . 21

3 Join Query Optimization: Traditional to Structure-Guided 23
3.1 Traditional Join Processing . 23
3.2 Query Optimization . 26
3.3 Structure-Guided Query Optimization 30

4 Integrating a Structure-Guided Query Optimizer into ClickHouse 39
4.1 ClickHouse Query Processing . 39
4.2 Challenges and Considerations . 44
4.3 The Integration . 47
4.4 Other Modifications to ClickHouse . 55

5 Evaluation 57
5.1 Setup and Methodology . 57
5.2 Testdata . 58
5.3 Queries . 59

xv

5.4 Hardware . 59
5.5 Performance Metrics and Evaluation Criteria 59
5.6 Results . 60

6 Conclusion 69
6.1 Open Questions . 69

List of Figures 71

List of Tables 73

Bibliography 75

CHAPTER 1
Introduction

1.1 Background and Motivation
In recent years, the emergence of data-driven fields, such as data science, artificial
intelligence, and business intelligence, has greatly impacted various industries and gained
huge popularity. As a result, efficient data storage has become more critical than ever
before, and database management systems (DBMS) are playing an increasingly important
role. The choice of using a certain DBMS often depends on the workload requirements. In
the case of the analytics field, column-based database systems have become particularly
popular due to their good performance in handling large-scale, read-heavy operations
[21].

One of the essential features of database systems is the ability to join different sources of
data (relations) together. This is especially relevant in business intelligence, where tools
are used for automatically generating queries with multiple join operations, sometimes
involving several hundred relations [37]. Although the join is one of the most fundamental
operations, if not the most fundamental aspect of query evaluation, efficiently evaluating
join queries still remains a challenging task for today’s DBMS.

An approach for optimizing join query performance is determining the most efficient order
in which relations are joined. The sequence of join operations can significantly impact
the query’s performance by influencing the size of the intermediate results produced
during execution. In some cases, optimizing the join order can substantially reduce
these intermediate results, leading to more efficient query processing. However, even
with such optimizations, the problem known as intermediate result explosion, where
the intermediate data grows excessively large, continues to be a critical bottleneck in
query execution [30]. This issue is especially common in complex queries that involve
many joins, where the size of intermediate results can quickly become unmanageable
and lead to significant performance degradation. In the case of aggregate queries, where

1

1. Introduction

column-stores are typically favored for their performance benefits, this challenge becomes
even more significant. Since only a small portion of the join result is ultimately needed,
avoiding the materialization of the entire result set is highly desirable.

However, if we restrict the problem to Acyclic Conjunctive Queries (ACQs) a solution
to the issue of producing unnecessary intermediate results has been found for a long
time. The so-called Yannakakis’ algorithm [44] allows under specific circumstances to
compute a join query in polynomial time of input and output size [29] and therefore makes
the computation of a join query optimal. This approach makes use of the structural
properties of an acyclic conjunctive query. The studies of the Yannakakis’ algorithm
show that for these type of queries, it is indeed possible to completely eliminate the
problem of producing unnecessary intermediate results during query evaluation [44].

Furthermore, recent research [31] has discovered that a specific class of queries, known
as zero-materialization aggregate (0MA) queries, can be answered even with a partial
execution of Yannakakis’ algorithm. This partial execution of Yannakakis’ algorithm
involves only using semi-joins and therefore not only solves the issue of producing
unnecessary intermediate results, but in fact eliminates the need for materialising join
results.

1.2 Research Problem and Objectives
While from a theoretical standpoint the approach of using Yannakakis’ algorithm is
highly promising, practically to the best of our knowledge no such implementation has
been done in the case of a state-of-the-art column store database system.

To close this gap between theory and practice, the objective of this thesis is to imple-
ment the first phase of Yannakakis’ algorithm, specifically the bottom-up semi-join, into
ClickHouse [3], which can be considered the most popular column-store at the moment
according to [11]. This integration is non-trivial and can present challenges, particularly
in understanding how ClickHouse translates queries into internal data structures and
processes them. Additionally, there is a potential impedance mismatch between the way
the optimizer operates and ClickHouse’s internal query execution, which can complicate
the integration. More details on this can be found in Section 4.2. The primary research
questions we aim to answer is whether such an integration is first of all possible and sec-
ondly investigate the potential performance gains that come from using this optimization
technique.

1.3 Methodology
In order to achieve the objectives mentioned in the previous section, the following steps
will be taken.

• Implementation of a Structure-Guided query optimizer

2

1.4. Organization of the Thesis

The implementation phase begins with an in-depth examination of ClickHouse’s
architecture, focusing specifically on query parsing and processing mechanisms.
Following this, the first part of Yannakakis’ algorithm will be integrated. This
involves constructing a join tree using GYO reduction [44] and ensuring that the
algorithm seamlessly fits within ClickHouse’s query processing workflow.

• Data Acquisition and Evaluation
Selecting an appropriate dataset is critical for the evaluation phase. The dataset
must be substantial in terms of the number of rows and tables to adequately test
the system’s performance. Additionally, a set of queries will be needed for the
evaluation. Based on [30], where the effectiveness of Yannakakis’ algorithm was
tested on the MusicBrainz dataset, a similar setup is used in this thesis.
The evaluation will compare the performance of the original ClickHouse implemen-
tation against the modified version using the structure-guided query optimizer. Key
metrics such as query execution time and memory consumption will be measured for
all tested queries. After benchmarking, the results will be analyzed and interpreted
to understand the performance differences, identifying reasons for any observed
increases or decreases in efficiency compared to the baseline (the original ClickHouse
system).

1.4 Organization of the Thesis
The first two Chapters, 2 and 3, can be seen as preliminary and introduce the background
of this thesis.

Chapter 2 starts by exploring column-stores. It looks into the storage model, key features,
influential systems, and practical applications of column-stores, with a specific focus on
ClickHouse, which is the system used for the practical part.

Chapter 3 discusses query optimization in general, the existing problems, particularly
with join queries, and finally, how a new approach, structure-guided query optimization,
can potentially solve the issue of intermediate result explosion.

Following this, Chapter 4 covers the practical part of this thesis, which involves integrating
a structure-guided query optimizer into the open-source column-store ClickHouse. It dis-
cusses query processing in ClickHouse, the challenges and considerations, the integration
process, and other modifications made to ClickHouse.

Chapter 5 explains the setup and methodology used to test the system, describes the test
data, queries, and hardware, outlines the performance metrics and evaluation criteria,
and presents and analyzes the results obtained.

Finally, the conclusion summarizes the findings of the research and suggests possible
directions for future work.

3

CHAPTER 2
Column-Stores

In this chapter, it will be explained what column-oriented database systems, often also
called column-stores, are and why they are used. Since the main part of this thesis lies in
query optimization for one specific column-store system (ClickHouse), understanding the
architecture and benefits of using such a system is essential.

In Section 2.1, the data layout (storage model) of column-oriented and row-oriented
databases will be compared. Section 2.2 talks about important characteristics of column-
stores and what optimization techniques are used specifically for these types of database
systems. Section 2.3 introduces three important column-store systems that have a
significant influence on the typical features and optimization techniques that can be
found in modern column-stores. The last Section 2.5 talks about typical use cases for
column-store and use cases that have been discovered where they have shown to be
advantageous compared to the row-store architecture.

2.1 Storage Model

Figure 2.1: Physical layout of column-oriented and row-oriented databases [21]

5

2. Column-Stores

In Figure 2.1, the main difference regarding the storage model of column-oriented and
row-oriented database systems is illustrated. For both types, a table Sales with various
attributes is stored. The main difference lies in the fact that for the row-oriented approach
(2.1c), data is stored row-wise, and in the column-oriented approach (2.1a,b), data is
stored in columns.

In practice, this means that when a user wants to access a single attribute e.g. prodid
from table Sales, the column-store system only needs to access this specific entry from
the corresponding column. In contrast, the row store would need to read the entire row
from disk and discard all attributes that the user does not request. In this particular
use case, one can already see that column stores have a significant advantage when it
comes to requests that read multiple entries from a single column because the layout
naturally allows the system to do this efficiently. These requests are especially prominent
in the analytical world, where operations involving aggregate functions are frequently
used. The main downside is that as soon as a user needs more than one column from a
table, the column-store needs to perform multiple searches for all the requested columns,
which is not the case for row-oriented databases.

2.2 Key Features
It was already mentioned that column-stores are known to be very efficient and fast in
query processing for certain use cases. In [23], key features that substantially contribute
to this efficiency gain in query processing are analyzed. In this section, the features of
column-stores will be discussed and explained.

2.2.1 Virtual and Explicit Ids
One problem with storing data in columns is that the database system somehow needs to
keep track of how different columns relate to each other. This is, for example, important
when a user wants to access multiple attributes from one tuple, e.g., access the region
for one particular saleid. Similarly to the relational model where ids are used to store
information on how different tables relate to each other, column-stores use ids to store
information on how different columns relate to each other.

Essentially, there are two different forms of how such a relation is represented, virtual
Ids and explicit Ids, which can also be seen in Figure 2.1a,b. Explicit ids are very
simple and will give every attribute of a tuple a specific id. Later, if one wants to access
a particular tuple, this id is used as a unique identifier that indicates that specific entries
from different columns belong together. The biggest downside is that first storing this
identifier for every attribute introduces a lot of overhead and is not very efficient in
terms of storage. Also, performing an equality check on the Ids to find a specific tuple is
similar to performing a join operation and, therefore, very costly. An alternative way

6

2.2. Key Features

that mitigates these issues is using virtual Ids. Here, the database system stores each
column in a fixed-size vector. Records will then be stored at the same position over
multiple columns so that the position of the record introduces a virtual id. This makes
it easy for a column-store to retrieve multiple column attributes from a single record.
Although virtual Ids can solve the problem of introducing storage overhead and efficiently
finding columns that belong together, we will later see when we talk about compression
that fixed-size vectors can also have certain disadvantages.

2.2.2 Compression

Compression is an essential concept for data storage and works exceptionally well when
the data has high data value locality [23], meaning that similar data is stored together.
Different types of data can yield different compression ratios. For row-oriented systems,
precisely this can be a problem since the tuple that needs to be compressed can often
contain columns with different data types e.g., date, region, and phone number, making
compression algorithms much less efficient.

Column-stores, on the other hand, don’t have to deal with this problem since data is
stored column-wise, which allows the system to store data with the same data types
together. If the column is then also sorted, this can lead to very high homogeneity of
data, and compression algorithms will yield excellent results.

An obvious improvement that comes from the fact that compression algorithms work so
well for column-stores is that disk space can heavily be reduced. However, compression is
not only important for saving disk space but can also have a big influence on performance.
The reason is that data is usually read from disk into memory, and compression allows
the system to reduce the time spent on doing so, leading to better I/O performance and
making query processing faster.

Various compression algorithms are used in column-stores including run-length encoding,
bit-vector encoding, and dictionary compression. Run-length encoding (RLE) is straight-
forward and replaces a "run" of the same value (e.g., 1,1,1,1) by a triplet (value, start
position, run-length) (e.g., 1, 1, 4). In this example, it can be seen that decompression
is not necessarily needed since operations such as computing the sum can directly be
done on the compressed data. While applying compression techniques such as RLE
can drastically improve I/O performance, particularly when the target column contains
many runs, it has the disadvantage of introducing complexity to the process of tuple
reconstruction across multiple columns, as it is not feasible to generate virtual IDs using
a fixed-size column. It is also important to mention that using compression introduces
additional complexity when it comes to inserting and updating existing data.

7

2. Column-Stores

2.2.3 Late Materialization
In many use cases, queries would read not only a single attribute from one entity but
multiple ones, and thus, the system needs to access the corresponding columns for all
attributes. Since these columns are stored separately in column-stores, a very frequent
operation that needs to be performed is linking different columns together in order later
to present them in the form of a tuple. It was already said in Section 2.2.1 that this can
be done using ids, and linking different columns together is similar to a join operation.

Naive column stores would link multiple columns, also called materialization, at the
beginning and then perform operations on these constructed tuple rows. This type of
processing is referred to as "early materialization". It has the disadvantage that the full
potential of the column-store data model is not used in performance optimization.

Modern column-stores, on the other hand, make use of a "late materialization," meaning
that data is kept in columns as long as possible, and certain operations, such as filtering,
will directly be performed on a specific column. An example of how such late material-
ization can be achieved is shown in 2.2. Here, two relations R and S and a particular
query are given. In (1), one can see that a filtering operation is directly applied on the
column R.a. The result is a position list inter1 containing a list of indices of qualifying
tuples. In the second step (2), this list inter1 is used to select the corresponding values
of column R.b, which is then again filtered on the second predicate in step 3.

Since these positional lists can be represented as a bit string, a bit-wise AND can be
used to compute the intersection of two filter operations, allowing the system to perform
these kinds of operations in a very efficient way.

2.2.4 Block iteration
Rather than individual rows, column-stores both access and process data in blocks.
This contradicts the so-called tuple-at-a-time processing, which many row-store systems
such as MySQL use [23]. This tuple-at-a-time processing approach, also often called
the "Volcano-style" iterator model, incrementally processes individual tuples through a
series of operations, maintaining a limited set of intermediate results but at the cost of
increased function call overheads. One bottleneck with this is that for every tuple that is
processed, the needed attributes need to be first extracted from the tuple, which leads to
the mentioned function call overhead [23].

In column-stores, on the other hand, this is not the case since a batch-oriented approach is
used. Blocks of values (vectors) are directly accessed in a single call, and the corresponding
values can then be processed as an array. This processing and accessing of data in blocks
has many benefits:

1. Enhanced I/O efficiency: Reading data in blocks minimizes disk seeks and
I/O operations, which is beneficial for large-scale analytical queries.

8

2.2. Key Features

Figure 2.2: Late Materialization [21]

2. Tailored cache utilization: Systems such as VectorWise will choose the vector
size adequately so that it fits in the CPU cache, leading to better utilization.

3. Concurrent data handling: The block iteration model offers great possibil-
ities for parallel processing, which makes it very suitable for modern multi-core
processors.

4. No overhead of unused columns: In row-stores, all columns of a table are read
into memory, even the ones that are not part of the query. This is especially critical
if the table contains a large number of columns, but only a small subset of these
will be frequently accessed.

2.2.5 Joins
The column oriented data model offers various opportunities for improving the efficiency
of join operations. In Section 2.2.3, the concept of early materialization and late materi-
alization was discussed. For the early materialization strategy, the join operator deals
with fully constructed tuples work, therefore similar to row-stores.

For late materialization, on the other hand, there exist several techniques to optimize
the join operation. One improvement that is made for joins in column stores with late

9

2. Column-Stores

materialization is to perform the join only on the columns that are part of the predicate
of the join. In the case of a hash join, this can drastically reduce the size of the data
being processed and improve access patterns.

In Figure 2.3, one can see how two columns are joined together, resulting in two position
lists of the corresponding matches in these columns, e.g., there is a match on position
1 and position 2 with value 42. An important finding is that the left positional list is
sorted, while the right one is not. This is because during the join, the left column will
be iterated in order, and at the same time, the right column will then be checked for
matches via, e.g., a hash table. Unsorted positional output like this can be problematic

Figure 2.3: [21]

for future operations performed on this data and is a major bottleneck. The reason is
that with late materialization, we only work with a single column (the join predicate).
We later need to construct the tuple, and for this, the position list should ideally be in
order. In the research community, a number of approaches exist to solve this problem,
with one of them being the so-called Jive Join.

The basic idea of a Jive join is to introduce an additional column of increasing integers
to optimize the extraction of values based on a list of unordered positions. With this
additional column, the algorithm aims to enable sequential iteration through all columns.
A good example of how this is done on a particular instance can be found in [21].
Due to introducing a lot of extra complexity, late materialization for joins is often avoided,
and commercial column-stores use a technique called hybrid materialization. The idea
is that for the right side of the join, a materialization will be performed in advance,
meaning that not only the join predicate is used but all columns relevant to the query.
The left side will send only the join predicate column, but since the position list of this
side is sorted, the materialization can be done efficiently at a later time.

2.2.6 Indexing
Although data retrieval is very fast in column-stores there is still room for optimization.
One way such optimization can be achieved is by using proper indexing. In row-stores,

10

2.2. Key Features

indexing is typically done by using a specific data structure such as B(+)-tree, which is
kept in-memory [26].

For column-stores it has been discovered that while using tree structures provides rapid
random access, sorting columns by certain attributes proves to be more beneficial [21].
One way this can be achieved is the idea of projections, which is, for example, used in
the column-store system C-Store. Here, tables will be replicated and sorted by different
attributes. Although this approach needs additional disk space since duplicate data
will be stored, the fact that compression works very well for column-stores makes this
overhead not so significant.

An alternative approach that is commonly used in the field of column-stores is the use of
so-called database cracking, which is a form of adaptive indexing. The idea is that
instead of deciding upfront which indexes to create, the system dynamically creates an
index. This is done by using information from query predicates and then, based on this,
creating indexes as needed. A big advantage of this approach is that one does not need
to spend time analyzing the expected type of queries and how to optimally create indexes
for those in advance. Also, since indexes are created dynamically, it will automatically
detect changes in the workload and adapt accordingly.

Figure 2.4: Database cracking [21]

The term database cracking comes from how column-stores partition (crack) the
physical data store depending on the predicates of incoming queries. An example of
how this type of adaptive indexing is done can be seen in Figure 2.4 . The first query
Q1 with the two predicates R.A > 10 and R.A < 14 cracks column A into three pieces
accordingly. The second query will further partition the column into multiple pieces.

11

2. Column-Stores

Another technique that is also often used in both row-stores and column-stores is bitmap
indexing. For column-stores, bitmap indexing works particularly well when the column
contains only a limited set of values (low cardinality), an example of this could be a
column that contains the gender of a person. Here, a bitmap index would map the
column values to a series of bits, allowing the system to do operations such as filtering
extremely efficiently.

2.3 Influential Systems
In this section, the three column-store systems MonetDB [33], C-Store [41], and Vectorwise
[46] are discussed regarding their architecture and important design choices. These
systems started as research prototypes and pioneered the general idea of the column
store storage model. Several of the key features that were covered in the previous Section
2.2 were initially introduced as part of those systems architectures and have since been
adopted by commercial solutions.

2.3.1 MonetDB
MonetDB [33] is an open-source column-store system that has been developed at the
CWI (Centrum Wiskunde & Informatica) research center in the Netherlands since 1993.
The system plays an essential role in academic research, particularly in the field of
column-stores, as in the past two decades, many innovations were first implemented in
MonetDB and later adopted by many other systems. It is also worth mentioning that
MonetDB is one of the first publicly available column-stores.

Data in MonetDB is always organized in columns, both in the case of persisted data on
disk and when it is processed in memory. It is mainly focused on read-oriented workloads.
Uptades in MonetDB are handled via a pending update column. Every update operation
is first translated into an append operation. Read operations are then done on both
the pending update column and the actual column. Periodically, the pending updates
will then be merged into the actual column. Differing from many other column-stores,
it also supports the use of transactions. Unlike the conventional locking mechanism,
which is commonly used in row-stores, MonetDB provides additional tables where the
transactions are applied. For indexing, it applies the idea of database cracking, which
was already discussed in Section 2.2.6.

The main format that is used to both store and process data is called BAT (=Binary
Association Table). A BAT always consists of two columns. The first column is called the
head and can either be an OID (object-identifier) or the surrogate. The second column
(tail) holds the data value of the stored attribute. For one tuple in a dataset, MonetDB

12

2.3. Influential Systems

will automatically use the same OID for all the tuple attributes, similar to the concept of
explicit indexing, which was discussed in 2.2.1. These BATs are also used through the
entire process of query evaluation. Therefore, MonetDB also applies the concept of late
materialization, meaning that tuples will only be constructed right before they are sent
to the client.

The architecture consists of three parts, namely, frontend, backend, and kernel. The
frontend can consume different types of queries: SQL, OQL, XQuery, SPARQL, and it
will be translated into BAT algebra, which the backend will then process. Internally,
MonetDB applies its own language called MAL (=MonetDB Assembly Language). This
MAL is heavily used in the backend of MonetDB where, for example, the MAL optimizer
lies, which consists of many MAL programs that apply different query optimization.

2.3.2 C-Store

C-Store is a column-store system that was developed by a team of researchers from
different universities, namely, Brown University, Brandeis University, Massachusetts
Institute of Technology, and the University of Massachusetts Boston.

In C-Store, data is organized into a read-optimized store (ROS) and a write-optimized
store (WOS). The ROS consists of column files with compressed data, which is sorted by
specific attributes. WOS, on the other hand, holds newly loaded data in an uncompressed
format to facilitate efficient data loading. Periodically, data is moved from the WOS to
the ROS. This is done through a background process called "tuple mover".

When a query is executed in C-Store, the data will be retrieved from the ROS and WOS.
The result from both tables is unified and returned. Regarding optimization techniques
for query processing, C-Store also applies the concept of late materialization that was
already discussed in Section 2.2.

Another aspect for optimizing query performance in C-Store is using "projections". The
idea is to store copies of columns and sort them in different ways so that for most queries,
there already exists a projection containing all the attributes, ideally in a sort order
that benefits the evaluation of the query. In 2.5, we see an example of this, where two
projections for the table ’Sales’ are given. They contain different attributes of the original
table and have different sort orders, while 2.5 (a) is sorted by date only, 2.5 (b) is sorted
by region and date. The idea is that with projection (a), one could easily answer queries
that, as an example, would get the number of sales for a specific time frame. If one wants
to additionally filter by a specific region, there might already exist a projection similar
to (b) that can help to improve the query performance.

13

2. Column-Stores

Figure 2.5: Two projections of a table ’Sales’ [21]

2.3.3 Vectorwise
The project of Vectorwise [46] was originally initiated in 2003 at the CWI, which is the
same institution that started MonetDB. At that time, the project was called X100 and
introduced innovative features such as vectorized query processing. As the performance
tests of X100 showed promising results, a company called Actian Corp. wanted to make
it commercially available. For this, X100 was bought up and integrated into their own
DBMS called Ingres, which resulted in Vectorwise. The original developers of X100
wrote the paper [25], which talks about some of the ideas that initiated their project in
the paper. This paper later won the "VLDB Test of Time award" [18], which selects a
paper from the past that had a significant impact in practice, highlighting the significant
influence Vectorwise had on database systems in general and specifically on column stores.

The architecture of Vectorwise consists of some features that were reused from the Ingres
DBMS, including connectivity APIs, a Query parser, and a cost-based query optimization
based on histograms, and on the other hand, features from X100 that are in the area
of query execution and the storage layer. The main innovation that came from X100
and addressed some of the problems in MonetDB was, on the one hand, an optimized
approach for data storage and, on the other hand, efficient query execution using the
so-called vectorized execution model.

For data storage, Vectorwise employs a flexible data organization model called PAX
(Partition Attributes Across). PAX stores tables in so-called PAX partitions. Each
partition will then contain a group of columns. How these grouping of columns is applied
can be either defined explicitly or otherwise will be done automatically by the system.
One notable innovation in this context is that Vectorwise uses additional boolean columns
to represent null values, allowing the system to skip null checks during query execution.
These special columns that are used for representing null values will always be within
the same PAX partition as the column in the original column holding the actual values.

14

2.4. ClickHouse

In contrast to regular row-based processing, Vectorwise applies the so-called vectorized
execution model. Here, the processing of data happens in batches of vectors, typically
involving multiple columns at the same time. This method greatly improves performance,
especially compared to other column-stores such as MonetDB, since the vectorized
processing aligns with the columnar storage format and can apply various optimization
techniques. One such optimization technique would be improved CPU cache utilization,
thus minimizing the need to fetch data from RAM.

2.4 ClickHouse
This section gives an overview of the open-source column-oriented Database Management
System (DBMS) ClickHouse, which is also the system used for the practical part of this
thesis in Chapter 4. As of the present day, ClickHouse can be considered one of the
most popular column-oriented DBMS. According to the latest ranking by db-engines.com,
ClickHouse holds a position at 37 over all types of DBMS [11]. In contrast, competing
column-oriented systems such as MonetDB lag significantly behind, currently positioned
at rank 148. Although, its substantial increase in popularity in the past years, the amount
of academic research related to ClickHouse is limited. There can be found several papers
that compare traditional DBMS to ClickHouse in terms of performance, such as against
Oracle DBMS [34], MySQL [43], and one comparison that was performed at CERN where
it was evaluated against InfluxDB [42]. However, the focus of these papers lies mostly in
performance evaluations and lacks in giving insights into why ClickHouse is faster and
what it does differently in terms of architecture. Moreover, to our knowledge as of today,
there does not exist any research that looks into query optimization of ClickHouse.

In the following, we first look into the historical development of ClickHouse and its roots.
Following this, an overview of the key features of ClickHouse is given. The main source
used for the key features is the Clickhouse documentation [5]. This should give some
insights into some key features of ClickHouse and its historical background.

2.4.1 History
ClickHouse was initially developed at Yandex, with the goal to be used for real time
analytics processing at Yandex Metrica, which is the web analytics platform of Yandex
for trackinAcquisitionrting website traffic [8]. The initial development started in 2008 by
Alexey Milovidov and a small team of developers, and three years later they put it in
production at Yandex Metrica and later on used ClickHouse in many other services of
the company.

After the great success within Yandex, the developers recognized ClickHouse broad
applicability and potential and decided to release it as an open-source project in 2016
under the Apache 2 license. Since its open-source release, ClickHouse has today over one
thousand developers contributing to the codebase and is used as part of the infrastructure
in many companies worldwide, including Uber’s log analytics platform, GitLab’s APM

15

2. Column-Stores

datastore, and Cloudflare’s HTTP analytics infrastructure [10], [7], [4]. ClickHouse was
also used at CERN, as part of their so-called Trigger and Data Acquisition (TDAQ)
system [42].

In 2021 the original developers announced that they moved away from Yandex and
founded ClickHouse Inc. The company is headquartered in the San Francisco Bay area.
As of today, they have raised $250M Series B at a $2B valuation and the company
continues developing the open-source database system under the original lead engineer
Alexey Milovidov as CTO.

2.4.2 Key Features

Query execution performance was according to developers the main objective when design-
ing ClickHouse [19]. The increase in its popularity, its adoption by numerous companies,
and the results from various performance evaluations demonstrate the achievement of
this objective.

One such performance evaluation can be seen in Figure 2.6, where ClickHouse manages
to outperform both modern column-oriented systems including DuckDB, and also older
systems such as MonetDB. The graphic was produced using the ClickBench benchmark,
which allows one to compare the performance of various databases and uses typical queries
in the analytics space. It must be considered that the benchmark was made by the
creators of ClickHouse, and therefore there can be potential bias. Nevertheless, the results
are quite impressive, and there is also a good discussion regarding the comparability of
this benchmark, where the database author of Apache Druid offers good input on this
topic [15].

Figure 2.6: ClickBench Sample Benchmark [2]

16

2.4. ClickHouse

This raises the question of what exactly ClickHouse does differently than other conven-
tional OLAP systems and where these notable performance capabilities come from.

During a presentation at the Big Data Technology Conference in 2019, this question was
explained in detail by the CTO of Clickhouse. In the following, some key features and
architectural choices, especially on how data is stored and processed, will be discussed.

Table Engines

ClickHouse employs the concept of so-called table engines [9]. A table engine is a type
of table and has implications for many internal aspects such as how and where data is
stored. Since ClickHouse was initially built with a focus on filtering and aggregating data
as fast as possible for Yandex Metrica, table engines should provide a way of optimizing
the database for different use cases. As of today, Clickhouse supports over 20 engines in
four categories.

Every time a new table is created in ClickHouse, the table engine must be specified as
part of the query which can be seen in the following example query:

CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(

...
) ENGINE = engine

Although there do exist many different table engines including special engines for commu-
nicating with other data storage such as the PostgreSQL table engine or special engines
for logs, the most prominent one is the MergeTree engine, which is also considered
the default table engine.

One of the main features of the MergeTree engine is that the stored data is automatically
sorted by the primary key and allows the creation of a small sparse index, meaning that
not every single row has its own index, more on this will be detailed later. The name
MergeTree comes from the fact that each insert creates one or multiple parts for the
data, which are regularly merged in the background. This will be explained in 2.4.2.

Data Storage and Indexes

Tables with the engine type MergeTree are stored in so-called data parts. Data parts can
be stored in one of the two following formats:

• Wide: Each column is stored in a separate file.

• Compact: All columns are stored in one file.

17

2. Column-Stores

Each data part is further subdivided into granules, which are the smallest data sets that
ClickHouse reads. A granule holds a specific number of rows, with the default being 8192
rows per granule.

Contrary, to other RDBMS, ClickHouse does not store an index entry for every single
row, but instead applies the concept of a sparse index where every granule would have
its index.

Figure 2.7: Sparse Primary Index Example

In Figure 2.7 one can see an illustration of how ClickHouse would practically store data
and apply this concept of sparse indexing. The data contains three different columns
UserID, URL, and EventTime. The columns are all stored in different files (*.bin),
meaning the wide format is used.

The rows of each file are grouped into granules. In the case of Figure 2.7 the file is
organized from granule 0 to granule 1082, with each granule except the last one containing
the default value of 8192 rows. Based on these granules, the primary index file is created,
as shown on the right in Figure 2.7. This file, named primary.idx, is an uncompressed
flat array that stores numerical index marks starting at 0. These index marks correspond
to the primary key column values for the first row of each granule. For instance, mark
0 stores the key column values of the first row of granule 0, mark 1 stores the values of
the first row of granule 1, and so forth. The total number of entries in the primary index
is 1083, matching the number of granules in the table.

It’s important to note that the primary index file is loaded entirely into memory. If the
file size exceeds the available memory space, ClickHouse will raise an error. Each index
entry serves as a marker for the beginning of a specific data range.

For instance, the UserID values in the primary index are sorted in ascending order.
Therefore, mark 1 indicates that UserID values in granule 1 and subsequent granules
are greater than or equal to 4,073,710. This ordering allows for the application of binary
search algorithms for query filtering on the first column of the primary key.

18

2.4. ClickHouse

Focus on Low-Level Details

The developers claim that one aspect that makes ClickHouse stand out in terms of
performance is their attention to low-level details, specifically when it comes to adapting
standard algorithms to different scenarios.

This is demonstrated in many cases, with one being that they tend to avoid built-in
algorithms, but instead favor dynamically tailored algorithms depending on the workload.
For instance, when it comes to building a hash table in the case of a GROUP BY clause,
ClickHouse chooses one of over 30 different variations for each specific query.

Similarly, they looked into many different algorithms for string processing, where they
in the end implemented an adapted version of Volnitsky’s algorithm, and for sorting
ClickHouse uses adapted versions of pdqsort and radix sort [20].

Data Compression

Another factor for achieving high performance according to the developers is data
compression. ClickHouse offers both general-purpose compression codecs and specialized
codecs for specific types of data. For instance, the DoubleDelta codec calculates deltas of
deltas, optimizing compression for monotonic sequences like time series data. Similarly,
the Gorilla codec employs XOR operations between consecutive floating-point values to
achieve compact binary representation.

Distributed Processing

Column-based systems, including those mentioned in previous sections, typically do not
natively support query processing over multiple servers without additional configurations
or extensions.

One of the standout features of ClickHouse is its built-in capability to handle distributed
query processing through a dedicated table engine.

This feature offers significant advantages for scaling, enabling both the sharding and
replication of database tables across multiple servers. Sharding is particularly useful
when a database table is too large to fit on a single instance, allowing the distribution of
the workload, such as partitioning data by geographic regions. Replication enhances fault
tolerance and contributes to scaling by maintaining multiple copies of the data across
different servers.

Figure 2.8 illustrates an example architecture using ClickHouse’s distributed table engine.

The architecture consists of three nodes:

• Node 1 and Node 2: These serve as both ClickHouse servers and ClickHouse
Keeper servers.

• Node 3: This functions solely as a ClickHouse Keeper.

19

2. Column-Stores

ClickHouse Keeper is an open-source coordination system, similar to the well-known
system ZooKeeper. In a typical production environment, all Keeper services would be
hosted on dedicated nodes to ensure optimal performance and reliability. However, even
with a simple setup as illustrated in 2.8, it is possible to make use of the benefits of
distributed query processing.

Figure 2.8: Distributed Processing in ClickHouse: Example Architecture [20]

2.4.3 Limitations
Although it was shown that ClickHouse provides a wide range of unique features, there
are also certain limitations. One thing that can be considered a disadvantage is that it
lacks full-fledged transactions. Also, it has limited capability to modify or delete already
inserted data at a high rate and low latency (only batch updates and deletes are available
for tasks such as GDPR compliance).

20

2.5. Column-Stores in Practice

2.5 Column-Stores in Practice
In this section the different use cases for column-stores are explored, specifically, it will be
discussed that they have shown to be advantageous in different areas of data management,
including storage of semantic data.

2.5.1 Use Cases
The general consent is that data warehouses and analytical processing are the most
common spaces where column-stores are used and where it is shown that they can
outperform row-stores by more than an order of magnitude [22], [23]. This also aligns
with where the focus of popular column-stores such as MonetDB, C-Store, or Vectorwise
is laid, namely read-dominated workloads with less frequent updates that are mostly
appending new data [33], [41], [46].

With the increasing popularity of fields that deal with exactly these types of read-
dominated workloads, new use cases continue to emerge where column-stores show to
be advantageous. Examples include the use of a column-store system, namely C-Store,
for RDF (Resource Description Framework) data management [24], [40]. The papers
show that the architecture of the C-store DBMS is very suitable for storing semantic
data since data attributes from the same domain can benefit a lot from the compression
techniques used in C-store. The results are very promising, with a reported performance
improvement by a factor of 32 compared to the current state-of-the-art triple store [40].

Another interesting use case where column-stores excel can be found in [22]. The authors
looked into using column-stores for wide and sparse data.

For wide data, e.g., tables with multiple thousands of attributes, the main observation
that was made is that oftentimes, only a small number of those attributes is frequently
accessed. For row-stores, this is a huge performance bottleneck since scanning a row with
this enormous amount of attributes is very expensive. For column stores, on the other
hand, the total number of attributes of a table does not impact the read performance of
a fixed number of columns.

Sparse data benefits a lot from the compression features that many column-stores offer.
Depending on the characteristics of the data, a different compression algorithm can be
chosen for certain columns. In the specific case of sparse data, an appropriate NULL
suppression algorithm, depending on the sparsity of the data, can be used. With these
two observations in mind, the authors looked into applications where this type of data is
prominent and found that column-stores may be a good choice for example in the case of
Web data as well as XML data.

With this in mind, it is evident that column-stores can efficiently handle various types of
data and workloads. While the analytics space remains the most common use case for

21

2. Column-Stores

these systems, other common application scenarios are emerging, and the adoption of
column-stores is likely to increase, driving further advancements and optimizations in
this field.

22

CHAPTER 3
Join Query Optimization:

Traditional to Structure-Guided

In this chapter, the concept of structure-guided query optimization is introduced. The
aim is to provide the necessary theoretical background for the practical part of this thesis
later in this thesis.

Section 3.1 begins by exploring traditional join processing. Specifically, it is explained how
multiple relations are joined together in a DBMS, and what limitations these approaches
have, particularly the issue of intermediate results explosion. Following this, Section
3.2 dives into the general idea of query optimization, explaining how these techniques
enhance the efficiency of join queries and identifying the remaining challenges in join
query optimization.

Finally, Section 3.3 focuses on structure-guided query optimization, and explains how
these techniques can help us with the problem of large intermediate results.

The primary references for the theoretical background on query optimization and join
processing include [27] and [39].

3.1 Traditional Join Processing

In this section, it will be explained how DBMS perform join operations in practice. For
this, Section 3.1.1 talks about popular join algorithms that are often used in DBMS,
Section 3.1.2 explains how these algorithms are used for multiple relation joins, and 3.1.3
talks about limitations and problems with these approaches.

23

3. Join Query Optimization: Traditional to Structure-Guided

3.1.1 Join Algorithms
This section elaborates on different implementations for performing a join operation in
a DBMS. In 1993, a survey [32] was published, discussing three different algorithms,
namely the nested loop join, the merge join, and the hash join, among other things.
These three algorithms are fundamental and can still be found in most of today’s DBMS
that support a join operation. They will be explained in the following.

Nested Loop Joins

The Nested Loop Join is a straightforward join algorithm. To perform a natural join
of two relations R and S, the algorithm iterates through all elements of the first relation
R (the outer relation) and scans the second relation S (the inner relation) for matching
elements. This process involves two nested loops: the outer loop for relation R and the
inner loop for relation S, from which the algorithm derives its name.

Despite its simplicity, this join implementation suffers from poor runtime performance.
Since the algorithm must find all matching pairs, for every element in the outer relation,
the inner relation needs to be scanned from start to end, resulting in a runtime complexity
of O(n × m), assuming n is the size of relation R and m is the size of relation S. This
inefficiency makes the nested loop join impractical for large datasets. However, its
memory consumption is minimal, as it only requires memory for the output data, making
it suitable for certain scenarios. Various techniques can be used to enhance the efficiency
of this approach.

One such technique is the Block Nested Loop Join. In this variant, instead of
processing one tuple of the outer relation R at a time, an entire page of tuples from R is
processed in each iteration. This reduces the number of scans required over the inner
relation S, as multiple tuples from R are compared against S in a single pass. By using
larger blocks that fit into the available memory, the algorithm can significantly reduce
the number of disk I/O operations, thereby improving overall performance. The block
nested loop join maintains the simplicity of the basic nested loop join while offering a
more practical solution for larger datasets by optimizing the use of available memory
resources.

Merge Joins

The Merge Join is often referred to as Sort Merge Join in some literature. This is
because of the requirement of the algorithm to have its input data sorted on the join
attributes, which can be either done by explicitly sorting the input data or sorting the
data in advance. In 2.2.5, it was already mentioned that column-stores often store data
sorted on different attributes, which can be a huge performance gain for precisely these
types of operations.

The system can perform an interleaved linear scan with the sorted input data and find
all matching elements accordingly. The performance of the merge join for a natural join

24

3.1. Traditional Join Processing

R ▷◁ S will be O(n ∗ log(n) for sorting relation R with input size n and O(m ∗ log(m))
for sorting relation S with input size m, the actual join on the sorted input can then be
done in O(n + m) assuming that at least one of the relations is duplicate free.

With this in mind, it can be seen that merge join is especially suitable if the relations
that need to be joined are already sorted since O(n + m) is the fastest way possible to
perform a join operation.

Hash Joins

The Hash Join algorithm’s main idea is to build an in-memory hash table for the smaller
input relation, referred to as the build input, using the join attributes as keys and the
tuples as values. In the so-called probe phase, the algorithm performs a linear scan of
the larger relation. While doing so it makes use of the previously built hash table to
quickly find matching tuples by using the same hash function.

When the hash table fits in memory, the algorithm operates efficiently without needing
temporary files or additional disk reads. The combined runtime complexity for the build
and probe phases is O(n + m), where n is the size of the build input and m is the size of
the probe input.

However, in cases where the hash table cannot fit into memory, a partitioning approach
is used. This ensures that matching tuples reside within corresponding partitions from
both relations. Each partition of the smaller relation is read into memory, and the
corresponding partition of the larger relation is scanned for matches. This method
ensures that memory constraints are respected while still allowing for efficient joins, as
partitions are only scanned once during the join process.

This partitioning approach is similar to the previously described idea behind the block
nested loop join algorithm, where the join is processed in smaller chunks that fit into
memory.

3.1.2 Multiple-Relation Join

All of the join implementations discussed in Section 3.1.1 perform a Two-Way-Join and
are often referred to as binary join algorithms, meaning they deal with joining exactly
two relations at a time.

There do exist database systems that implement other types of join algorithms, which
can join more than two relations together at a time, e.g., DBMS that implement the
worst-case optimal join [28]. However, most popular DBMS including PostgreSQL and
ClickHouse, will perform several Two-Way joins if there are more than two relations in
the FROM clause and utilize one of the join algorithms mentioned in Section 3.1.1.

25

3. Join Query Optimization: Traditional to Structure-Guided

3.1.3 Limitations of Traditional Join Processing
Inner joins have the property of being both commutative and associative. To illustrate
the effect of this property on how DBMS perform multiple-relation joins and why this is
a problem in the context of query optimization, let us consider the example of performing
a join over a so-called triangle query:

R(A, B) ▷◁ S(B, C) ▷◁ T (A, C)

What a typical DBMS will do with such a query is that it will split the query into two
pairwise joins using one out of the three algorithms mentioned in 3.1.1. For this specific
example, the system has to choose between three different join orderings, which can be
seen in Figure 3.1, and for the two join operations, it can choose one of the three possible
join algorithms.

Figure 3.1: Join orderings for triangle Query R ▷◁ S ▷◁ T

Although the result of the three orderings will be the same in the end, the produced
intermediate results might differ dramatically. This can be seen if the first two tables
that are joined together consist of many tuples while the last table in the join sequence
is significantly smaller. For example, R and S are large tables with millions of rows, and
T is a much smaller table with a couple hundred rows. The join R ▷◁ S could result in
an intermediate table that is unnecessarily large. This large intermediate table consumes
significant memory and processing resources and increases the time for the subsequent
join operation with relation S.

In the following section, it will be shown how query optimization can help to minimize
execution time and computational resources by reducing unnecessarily large intermediate
results. However, it will also be shown that although there exist numerous approaches
aimed at mitigating the problem of intermediate result explosion, it still remains chal-
lenging to completely avoid this issue.

3.2 Query Optimization
Query optimization is all about finding the "best" query plan for a query [27]. Best in
this context can refer to many things. However, typically, one wants to find a query plan

26

3.2. Query Optimization

that has the minimum execution time with minimal costs so that users get their response
as quickly as possible with minimal computational resources. A naive way to find the
best query plan would be to enumerate all possible execution plans, determine the cost
and execution time of each plan, and choose the best out of these.

Practically, this approach of considering all possible execution plans is insufficient for
many reasons. One would be that the number of possible plans may be too big, and
computing all these enumerations introduces a lot of overhead. Another problem is that
even for a small number of plans, precisely determining the costs of a query plan would
require fully executing it, which would again heavily slow down the processing of a query.

An important finding here is that query optimization techniques must be extremely fast.
This is because all time spent on optimizing the query plan could also be spent on the
actual query execution, and all the overhead that is introduced by query optimization
will directly add up to the response time. Therefore, in practice, it is often sufficient to
look only into several promising query plans, and instead of computing the costs, various
estimation techniques are used.

In the following section, some basic query optimization techniques will be discussed.
Specifically, it will also illustrate how optimizations related to the join operation are
currently performed.

3.2.1 Transformative Optimization

In most RDMS, query plans are represented as a tree. Every node in the tree represents
a query operation, and an edge between two nodes indicates the relationship between
parent and child operators. Important here is that typically, there exist many different
representations of a query as a query plan, all of which produce the same result and are
semantically equivalent.

One common optimization technique is to take the initial plan that is generated by
the DBMS and transform it into an equivalent, more efficient representation by various
transformation rules. A key rule used during this process is to execute operations that
reduce the size of intermediate results as early as possible. In practice, this means
performing SELECT and PROJECT operations first to minimize the number of tuples
and attributes involved in subsequent operations.

Additionally, the DBMS estimates the restrictiveness of SELECT and JOIN operations.
Based on these estimates, it prioritizes operations that are expected to produce the fewest
number of tuples. This approach ensures that the order of operations is optimized to
minimize the size of intermediate results, thereby enhancing the overall efficiency of query
execution.

27

3. Join Query Optimization: Traditional to Structure-Guided

3.2.2 Cost-Based Optimization
It was already mentioned in the introduction of this section that to compare different
query plans e.g. the ones produced by a transformative optimizer, one still needs to
somehow compare the costs of different query plans and choose the one with the lowest
costs. The problem was that precisely computing the actual costs is very heavy in
computation and, as a result, practically insufficient. Therefore, cost-based optimization
techniques rely on cost estimates, and the more accurate these estimates are, the better
a comparison of different plans can be performed.

To come up with a reasonably accurate cost function, many different costs are considered,
including the following:

• access to secondary storage

• computation costs

• memory usage costs

• disk storage costs

• communication costs

A critical parameter used for estimating these types of costs is the so-called selectivity.
Selectivity refers to the fraction of records that satisfy a specific condition and can be
estimated using an attribute’s number of distinct values. For this, one assumption must
be made that the range of values is distributed uniformly. An essential tool used to
improve the quality of estimates and produce reasonably accurate estimates in the case
of non-uniformly distributed data is the use of histograms. These histograms divide the
range of possible values for a particular attribute into so-called buckets. These buckets
are then stored for important attributes and can help to get better estimations for the
selectivity since it gives the DBMS an idea of how the data is distributed.

3.2.3 Join Ordering
Join ordering plays a crucial role in addressing the challenge of producing excessively
large intermediate results during query execution. One issue here is that the commutative
and associative properties of the join operation cause the number of potential query plans
to escalate quickly as the number of join operators increases. This high number of plans
makes it therefore computationally infeasible to compare all possibilities.

From a mathematical standpoint, this is analogous to the concept of permutations. For
a query involving the joining of n relations, the number of possible orderings for these
joins is given by the factorial n!. This factorial growth implies that the count of distinct
query plans to evaluate becomes exceedingly large, even for relatively small values of n
(e.g., n = 6 results in 720 different orderings).

28

3.2. Query Optimization

As practically it is not feasible to consider all possibilities, query optimizers typically
focus on a specific subset of query plans and evaluate only a limited selection from the
vast range of possibilities. While this approach may sometimes miss the optimal plan, it
dramatically simplifies the optimization process and often results in sufficiently efficient
execution plans.

The following sections examine different tree structures to illustrate such constraints in
join tree structures.

Join Tree Structures

In Figure 3.2 three popular join query tree structures are illustrated namely the left-deep
join tree (3.2a), right-deep join tree (3.2b), and the bushy query tree (3.2c).

Figure 3.2: Join Tree Structures [27]

The one thing that all three types have in common is that they are considered binary
trees, meaning that every parent has at most two children. A left-deep tree is a binary
tree with the additional property that each non-leaf node’s right child is a base relation.
Right-deep trees are the mirrored version of left-deep trees and have the property
that the left child of every leaf node is a base relation. The third common type of join

29

3. Join Query Optimization: Traditional to Structure-Guided

tree structures are bushy query trees. These are more complex binary trees where
either the left or right child of an internal node can be another internal node. They offer
a greater variety of shapes and link sequences, allowing for greater query optimization
flexibility. However, the number of possible bush tree structures proliferates with the
number of relationships, making it more challenging to find the optimal structure. This
can also be seen in Figure 3.3, where the number of permutations is compared for the
different join tree types.

Figure 3.3: Number of Permutations for n Relations [27]

3.2.4 Limitations of Query Optimization Techniques

It has been demonstrated that techniques such as cost-based optimization help DBMS
mitigate some of the limitations of join processing described in 3.1.3, allowing such queries
to be solved in a reasonable time. It is important to note that while these techniques
often find a well-optimized solution, they do not necessarily guarantee the most optimal
solution.

Despite extensive research over many years, this fundamental compromise remains: One
can either quickly compute a reasonably effective solution or strive for the optimal
solution, which can be time-consuming or impractical to achieve within a reasonable
timeframe, especially when dealing with many relations.

For this reason, in the next section, we will introduce a novel approach to address the
described problem. We will demonstrate how this approach can be effectively leveraged
to enhance query performance in practical scenarios.

3.3 Structure-Guided Query Optimization

In this chapter, the concept of structure-guided query optimization is introduced. Unlike
the conventional optimization methods discussed earlier, this approach does not rely on
cardinality estimates. Instead, it makes use of certain structural properties of a query.

30

3.3. Structure-Guided Query Optimization

This chapter begins by introducing key definitions related to the structural properties
of queries. Specifically, it covers the definition of a Conjunctive Query (CQ) in Section
3.3.1, the concept of a Join Tree in Section 3.3.2, and talks about the cyclicity of queries
in Section 3.3.3.

3.3.1 Conjunctive Query
A Conjunctive Query (CQ) is an essential type of query in database theory, and arguably
the most fundamental type of query. These queries are typically represented using
relational algebra.
In relational algebra, conjunctive queries (CQs) correspond to select-project-join queries
and therefore only use the operations select σ, project π, and join ▷◁ [30]. In SQL,
conjunctive queries correspond to SELECT FROM WHERE queries, where the WHERE
conditions contain only equalities.
The combined complexity of solving a conjunctive query is NP-complete. However, some
classes of CQs can be computed in polynomial time, which will be discussed in the
following.

3.3.2 Join Tree
Before looking into the concept of acyclic queries, it is helpful to first look into the
definition of a join tree which is taken from [38].
Let Q(x⃗) : − R1(z⃗1), . . . , Rn(z⃗n) be a Conjunctive Query (CQ). A join tree T = (V, E) is
a tree where:

• V = {R1(z⃗1), . . . , Rn(z⃗n)}, i.e., V is the set of atoms in Q.

• E satisfies the condition that for all variables z of Q, the set {Rj(z⃗j) ∈ V |
z occurs in Rj(z⃗j)} induces a connected subtree in T .

To better understand how this definition translates to a query, consider the following
example in Datalog notation:

Qe(x1, x2, x3, x4, x5) : −R1(x1, x2), R2(x2, x3), R3(x3, x4), R4(x1, x5)

A corresponding join tree can be represented as follows:

R1(x1, x2)

R2(x2, x3)

R3(x3, x4)

R4(x1, x5)

31

3. Join Query Optimization: Traditional to Structure-Guided

We can see from this example, that each node contains the query atoms, and the edges
denote the join conditions between these relations based on the shared variables. This is
called the running intersection property, which guarantees that for every query variable,
the tree nodes that contain that variable must form a connected subgraph.

3.3.3 Acyclic CQs
The primary objective of structure-guided query optimization is to find queries that have
certain properties that allow us to solve those efficiently. Acyclic Conjunctive Queries
(ACQs) satisfy exactly this.

These types of queries are significant in database theory due to those mentioned favorable
computational properties, meaning they can be evaluated in polynomial time. Formally,
a conjunctive query Q is considered acyclic if it has a join tree [38].

A very often-used example of a cyclic conjunctive query is the triangle query. It forms a
cycle involving three relations, each joining the other two. The query Qtr:

Qtr(x, y, z) : −R1(x, y), R2(y, z), R3(z, x)

can be represented as:

R1(x, y)

R2(y, z)R3(z, x)

This diagram illustrates the cyclic nature of the triangle query, where each relation
connects to the other two, forming a closed loop. Using the definition from 3.3.2, it is
impossible to form a valid join tree for this query.

3.3.4 Finding and Evaluating ACQs
We have already identified in Section 3.3.3 that Acyclic Conjunctive Queries (ACQs) can
be evaluated efficiently. However, two critical questions remain:

1. Since ACQs are defined by the existence of a join tree, how can we efficiently find
a join tree for such a query and thus decide if it is indeed acyclic?

2. Once an ACQ is identified, how can the query be evaluated efficiently?

Finding a join tree

A solution to the first problem stated is the so-called GYO-reduction, which is named
after the authors Graham, Yu, and Ozsoyoglu, who independently came up with a similar

32

3.3. Structure-Guided Query Optimization

idea in [45] and [36]. This algorithm can efficiently decide if a CQ is acyclic and if so
also produce one possible join tree. There exist different variants of the GYO-reduction,
the one used in the practical part of this thesis was introduced in [30] and follows the
pseudocde in Figure 3.4.

Figure 3.4: Flat-GYO algorithm [30]

Notice, that the input for this algorithm is a so-called hypergraph. A hypergraph is a
generalization of a graph in which an edge can join any number of vertices. In database
theory, a hypergraph is often used to represent the structure of a conjunctive query. The
vertices represent attributes (also referred to as variables), and hyperedges represent
relations that include those attributes.

To see how such a representation of a CQ using a hypergraph works, let us consider the
following example query:

Qhg(x, y, z, p) : −R1(x, y, z), R2(y, p), R3(y, z, p)

The corresponding hypergraph representation of query Qe is given in Figure 3.5. The
representation uses rectangles to represent the relations R1 (blue), R2 (red), and R3
(yellow). The variables x, y, z, p are represented as circles.

33

3. Join Query Optimization: Traditional to Structure-Guided

Figure 3.5: Qhg represented as Hypergraph

Yannakakis’ Algorithm

Up to this point, we have discussed that Acyclic Queries (AQs) can be solved efficiently.
In Section 3.3.4, we demonstrated that by using GYO-reduction, we can both determine
whether a given query is acyclic and, if so, construct a join tree.

The remaining question is: how can ACQs be solved efficiently?

The answer to this is the so-called Yannakakis’ algorithm [44]. Despite its age, the
algorithm addresses a crucial problem: preventing the explosion of intermediate results,
thus making it feasible to solve large joins that would otherwise be challenging or
impossible to handle within a reasonable time frame.

Yannakakis’ algorithm operates in three join phases. The join conditions are always
determined by an intersection of the respective nodes attributes/columns in the join.

Given a join tree of an ACQ, the algorithm proceeds through the following steps:

1. Bottom-up Semi-Join Traversal: Upwards Propagation
In the initial step, the algorithm performs a bottom-up traversal of the join tree to
eliminate dangling tuples—those that do not contribute to the final result. This is
achieved through semi-join operations, where each parent node performs a semi-join
with its child nodes (parent ⋉ child), starting from the leaves.

2. Top-Down Semi-Join Traversal: Downwards Propagation
The second step involves a top-down traversal and performing the semi-joins in
reversed order. During this phase, the algorithm refines the results obtained from
the bottom-up traversal by propagating solutions downwards through the join tree,
meaning that only those contributing to the query result are retained. This process
involves each child node performing a semi-join with its parent node: child⋉parent

3. Second Bottom-Up Traversal: Compute Solutions Using Joins
The final step uses a second bottom-up traversal where the algorithm computes

34

3.3. Structure-Guided Query Optimization

the final solutions using join operations. Join operations combine the intermediate
results obtained from the semi-join reduction steps to derive the overall result of
the conjunctive query. This step completes the enumeration process and provides
the desired output for the given acyclic query.

For any given database instance D, by applying these steps on ACQs, it is possible to
compute an answer to the query in output polynomial time.

Another important finding is that during the first step of Yannakakis’ algorithm, namely
the bottom-up traversal if any node in the join tree produces an empty intermediate
result, the final result will also be empty.

This applies to all subsequent stages of Yannakakis’ algorithm. Thus, if an intermediate
result for any node during the traversal is empty, the final result of the entire query will
be empty as well.

This means that if we only are interested in whether the query will be empty or not,
which is naturally the case for boolean queries, the computation is feasible in polynomial
time, and can be done by only applying the first step of Yannakakis’ algorithm.

Yannakakis’ Algorithm Example

To better understand the three steps of Yannakakis’ algorithm, let us take a look at a
practical example. Consider the following relations with their corresponding attributes:

• R1(x1, x2, x3)

• R2(x2, x3)

• R3(x3)

• R4(x2, x4, x3)

Each relation contains tuples. The indices in the tuples refer to specific instances or rows
in the relation. For example, t1,1 denotes the first tuple in relation to R1. Here are the
tuples for each relation:

Tuple x1 x2 x3
t1,1 s1 c1 b1
t1,2 s1 c1 b2
t1,3 s3 c3 b1
t1,4 s3 c1 b4
t1,5 s2 c2 b3

35

3. Join Query Optimization: Traditional to Structure-Guided

Tuple x2 x3
t2,1 c1 b2
t2,2 c1 b1
t2,3 c4 b6

Tuple x3
t3,1 b1
t3,2 b2

Tuple x2 x4 x3
t4,1 c1 a1 b1
t4,2 c1 a1 b2
t4,3 c1 a2 b2

The given join tree for these relations that serves as input for the Yannakakis’ algorithm
is:

R1(x1, x2, x3)

R2(x2, x3) R3(x3)

R4(x2, x4, x3)

Since we have now clarified the input for Yannakakis’ algorithm, we can apply the three
steps as follows:

1. Bottom-up semi-joins:

• R′
2 = R2 ⋉ R4

Tuple x2 x3
t2,1 c1 b2
t2,2 c1 b1

Removed tuple: t2,3 = (c4, b6) since x2 = c4 and x3 = b6 do not match any
x2, x3 pairs in R4.

• R′
1 = (R1 ⋉ R′

2) ⋉ R3
Tuple x1 x2 x3
t1,1 s1 c1 b1
t1,2 s1 c1 b2

Removed tuples: t1,3, t1,4 and t1,5.

36

3.3. Structure-Guided Query Optimization

2. Top-down semi-joins:

• R′′
2 = R′

2 ⋉ R′
1:

Tuple x2 x3
t2,1 c1 b2
t2,2 c1 b1

No tuples removed as remaining t2,1, t2,2 pairs in R′
2 match those in R′

1.
• R′

4 = R4 ⋉ R′′
2 :

Tuple x2 x4 x3
t4,1 c1 a1 b1
t4,2 c1 a1 b2
t4,3 c1 a2 b2

No tuples removed as remaining t4,1, t4,2, andt4,3 pairs in R′
4 match those in

R′′
2 .

• R′
3 = R3 ⋉ R′

1:
Tuple x3
t3,1 b2
t3,2 b1

No tuples removed as remaining t3,1 and t3,2 pairs match those in R′
1.

Step 3: Final Join

Perform the final join on the reduced relations:

πx1,x2,x3,x4(R′
1 ▷◁ R′′

2 ▷◁ R′
3 ▷◁ R′

4)

x1 x2 x3 x4
s1 c1 b1 a1
s1 c1 b2 a1
s1 c1 b2 a2

0MA Queries

In [30] a special class of queries known as zero-materialization answerable (0MA) queries
was first introduced. These queries are unique because they can be resolved by performing
only the initial bottom-up semi-join phase of Yannakakis’ Algorithm.

To characterize these 0MA queries, we first need to define a few concepts. In relational
algebra, aggregation operations, typically represented by the GROUP BY clause in SQL,
are denoted as γU (·), where U specifies the columns involved in the aggregation. A query
in aggregation normal form can be expressed as Q = γU (πS(Q′)), where Q′ involves only
natural joins and selection operations.

For a query to be classified as 0MA, it must satisfy the following conditions:

37

3. Join Query Optimization: Traditional to Structure-Guided

1. Aggregation Normal Form: The query should be in the form Q = γU (πS(Q′)),
where Q′ contains only joins and selections.

2. Guarded Query: There must exist a relation R that includes all attributes
specified in the output and the GROUP BY clause. This relation R is said to "guard"
the query.

3. Set-Safe: The query must be set-safe, meaning the result should remain consistent
whether or not duplicates are removed before aggregation.

These criteria ensure that the query can be evaluated without generating intermediate
join results. This is particularly advantageous for aggregate functions like MIN and MAX,
which are inherently set-safe. Additionally, COUNT can achieve set-safety when combined
with DISTINCT.

The main advantage of 0MA queries is the significant reduction in computational overhead,
especially for large datasets with complex relational structures. This efficiency is achieved
by leveraging the structure of the query to minimize unnecessary data processing.

Application of Structure-Guided Query Optimization

Traditional optimization strategies discussed in Section 3.2 have been studied for a long
time. These optimizes, while generally efficient, often fall short in providing a guaranteed
bound on query-answering time.

The key insight from Yannakakis’ algorithm is that for queries with acyclic hypergraphs,
it is possible that answers to such queries can be computed in polynomial time with
respect to the input and output size. This is very different from traditional optimizers
since the Yannakakis’ algorithm guarantees an upper bound on query answering and
secondly does not rely on any quantitative metrics, but instead exploits the structural
properties of a query.

Although, from a theoretical standpoint this polynomial upper bound is extremely promis-
ing, structure-guided query optimization has not found its way into mainstream database
systems. In the main part of this thesis 4, the aim is to investigate why exactly this is
the case, and if the specific investigated database system (Clickhouse) can benefit from
such an integration.

38

CHAPTER 4
Integrating a Structure-Guided

Query Optimizer into ClickHouse

In the following the integration of a structure-guided query optimizer into the column
store database system ClickHouse is presented. This optimizer implements the first
bottom-up traversal of Yannakakis’ algorithm and is specifically designed for 0MA queries
as defined in Section 3.3.4. The source code for the optimizer implementation can be
found on Github [14].

We start by looking into how ClickHouse processes queries and how they are internally
represented in Section 4.1. Next, we address the challenges and considerations encountered
during the integration process, why certain decisions were taken, and provide insights
not covered in the official documentation. Finally, in Section 4.3 the actual integration is
shown in detail.

4.1 ClickHouse Query Processing
This section aims to give an overview of how queries in ClickHouse are executed. This
includes how queries are internally represented, how they can be optimized, and what
important interfaces and classes are used during the execution. Most of these insights come
from reverse engineering the ClickHouse codebase [6] and looking into the corresponding
documentation.

In Section 4.1.1 an overview of relevant steps that happen and classes used during query
processing is given. Section 4.1.2 goes more into detail about how queries in ClickHouse
are parsed and internally represented. It is important to note that this overview of how
ClickHouse processes queries is greatly simplified and the focus lies in understanding the
parts that are relevant for the practical part of this thesis.

39

4. Integrating a Structure-Guided Query Optimizer into ClickHouse

To illustrate the query execution process, the following example query Qex will be used
throughout this section:

1 SELECT *
2 FROM
3 insert_select_testtable1,
4 insert_select_testtable2,
5 insert_select_testtable3
6 WHERE
7 insert_select_testtable1.a = insert_select_testtable2.a
8 AND insert_select_testtable1.a = insert_select_testtable3.a

Listing 4.1: Example query Qex

The tables were instantiated with the following query, using the MergeTree engine:

1 CREATE TABLE insert_select_testtable*
2 (
3 ‘a‘ Int8,
4 ‘b‘ String,
5 ‘c‘ Int8
6)
7 ENGINE = MergeTree()

Listing 4.2: Create statement used for tables in Qex

4.1.1 Query Processing Overview
One of the most central classes for query execution in ClickHouse is ExecuteQuery.cpp.
From there most of the other underlying steps are taken. An overview of some of the
relevant classes that are used during this process can be found in Figure 4.1.

When the query is sent from one of the possible ClickHouse clients, the ClickHouse
server engine will receive the query as a string. ExecuteQuery.cpp will then call a
corresponding parser for the query, that will go over the query string and turn it into an
AST structure. More on how this is done will be explained in Section 4.1.2.

After parsing the query and constructing the AST structure, a corresponding interpreter
will be called. For our example query this would be InterpreterSelectQuery.cpp.
This class takes as input the AST structure, does certain query optimizations, and returns
a query pipeline. InterpreterSelectQuery also uses a class called ExpressionAnalyzer.
This class does most of the rule-based optimizations. The query pipeline is then executed
as part of the interpreter class and will produce in the end the output that is returned
to the user. More details on what happens in the step of query interpretation and how
query pipelines in ClickHouse work will be given in Section 4.1.4.

40

4.1. ClickHouse Query Processing

Figure 4.1: Query Processing High-Level Overview

As of today, according to the developers they are working on a new interpreter called
InterpreterSelectQueryAnalyzer.cpp. The idea is that with this interpreter a
new abstraction between AST and QueryPipeline is introduced, the so-called QueryTree.
Currently, this is not yet used in production but can be manually activated using a
specific flag.

4.1.2 Query Parsing
The first step in processing the query is parsing the user query, which is given as a string,
and translating it into an internal representation.

There are different kinds of parsers, and most of them work in a recursive manner. The
most relevant one, and also the one that will be used for parsing our example query is
ParserSelectQuery.cpp.

The class will go over the input query and look for certain keywords e.g. SELECT and
call another underlying parser that will deal with the corresponding part of the query.

The different parsers systematically traverse each part of the query and convert each
segment into an abstract syntax tree (AST), which serves as the internal representation
of the query structure.

4.1.3 AST
An Abstract Syntax Tree (AST) is a tree data structure and is very often used in the
context of compilers.

In ClickHouse, the AST serves as the main data structure for internally representing and
interpreting a query. Queries and all subparts of a query are represented as AST nodes,
which are instances of IAST. Each AST node always has an attribute children, which

41

4. Integrating a Structure-Guided Query Optimizer into ClickHouse

is a list of other AST nodes. To examine this representation in more detail, let’s look at
an AST representation of our example query Qex:

1 SelectQuery, 0x00007f058c04e918
2 -ExpressionList, 0x00007f06b346b6f8
3 --Asterisk, 0x00007f057cc45a18
4 -TablesInSelectQuery, 0x00007f057cc9b218
5 --TablesInSelectElement, 0x00007f058c04e818
6 ---TableExpression, 0x00007f0576671b58
7 ----TableIdentifier_insert_select_testtable1, 0x00007f057cf

14058
8 --TablesInSelectElement, 0x00007f058c1da618
9 ---TableExpression, 0x00007f057cf133d8

10 ----TableIdentifier_insert_select_testtable2, 0x00007f058c
044198

11 ---TableJoin, 0x00007f058c1da418
12 --TablesInSelectElement, 0x00007f05dfdbb418
13 ---TableExpression, 0x00007f057cf13658
14 ----TableIdentifier_insert_select_testtable3, 0x00007f057cf

13158
15 ---TableJoin, 0x00007f057cf5b618
16 -Function_and, 0x00007f057cf1a898
17 --ExpressionList, 0x00007f057cc45af8
18 ---Function_equals, 0x00007f057cf1ad18
19 ----ExpressionList, 0x00007f06b346b618
20 -----Identifier_insert_select_testtable1.a, 0x00007f058c0442d8
21 -----Identifier_insert_select_testtable2.a, 0x00007f057ce0d0d8
22 ---Function_equals, 0x00007f059d7dfc18
23 ----ExpressionList, 0x00007f06b346b7d8
24 -----Identifier_insert_select_testtable1.a, 0x00007f057cf13798
25 -----Identifier_insert_select_testtable3.a, 0x00007f057cf138d8

Listing 4.3: Example of AST structure

The representation in Listing 4.3 shows the hierarchical structure, where each line
represents a node in the AST and its associated metadata: the type of AST element e.g.
SelectQuery and its memory address. The tree structure is shown with indentation,
where children are listed under their respective parent nodes, illustrating the hierarchical
relationship among the elements of the AST.

Since understanding this representation is an essential part of how ClickHouse interprets
and processes queries, in the following, some parts of the AST structure will be explained
in detail.

42

4.1. ClickHouse Query Processing

ExpressionList

The ExpressionList element is a fundamental component within a SelectQuery,
serving various purposes, including the selection of columns in a query. In our example
query from Listing 4.2, the columns are selected using the wildcard asterisk symbol (*).

After the parsing is done, the AST will be handed over to an interpreter, where the
Asterisk in the ExpressionList will be transformed. After the ExpressionList
is transformed it contains a list of identifiers for corresponding columns.

Notice, that ExpressionList is quite a universal AST structure and is used not only
for internally representing the SELECT part of our example query but also for the columns
that are introduced as part of the WHERE clause.

TablesInSelectQuery and TablesInSelectElement

TablesInSelectQuery represents the FROM part of a query and contains at least one
TablesInSelectElement. The TablesInSelectElement represents a resulting
table or subquery with some additional information and has the following list of possible
children:

• TableExpression: Represents the table itself or a subquery.

• TableJoin: Indicates how tables are joined if TableExpression is present.

• ArrayJoin: Specifies arrays to be joined. ClickHouse supports this operation for
generating a new table where each row corresponds to an array element from the
original column. It can be thought of as performing a JOIN operation with arrays
or nested data structures, allowing for easy manipulation of array data within
queries.

For the first element of the list of TablesInSelectElement, either TableExpression
or ArrayJoin could be non-null. For subsequent elements, both TableJoin and
TableExpression are non-null, or ArrayJoin is non-null.

This rule is quite important and it essentially guarantees, that except for the first table,
all subsequent tables must have a corresponding join operation.

TableJoin

TableJoin is an element that specifies how tables are joined together in a query. It
has the following list of possible attributes that further specify how the join operation is
performed:

• kind: The type of join (e.g., INNER, LEFT, RIGHT).

• strictness: The join behavior when matching rows (e.g., ALL, ANY, SEMI).

43

4. Integrating a Structure-Guided Query Optimizer into ClickHouse

• clauses: Conditions specifying how tables are joined, including key column names
and comparison logic.

• columns_from_joined_table: List of columns that can be accessed from the
joined table.

4.1.4 Query Interpreter

Interpreters in ClickHouse play an essential role during query processing. The main goal
of it can be summarized as turning the query from an AST representation to a query
pipeline.

There are various interpreters for different query types, with some of them being quite
simple e.g. InterpreterDropQuery, and the more complex ones e.g. InterpreterSelectQuery.

The query execution pipeline uses so-called processors that are capable of handling and
generating data in the form of chunks, which consist of columns with specific types.
Processors communicate via ports, each having multiple input and output ports.

Depending on the type of query and interpreter used for this query, different types of
pipelines will be constructed. For instance, interpreting a SELECT query yields a "pulling"
QueryPipeline equipped with a specialized output port for retrieving the result set. On
the other hand, interpreting an INSERT query results in a "pushing" QueryPipeline
featuring an input port for inserting data. Meanwhile, interpreting an INSERT SELECT
query produces a "completed" QueryPipeline.

4.1.5 Existing Optimizer

ClickHouse applies optimizations in the form of so-called “passes”. Each of these passes
applies certain optimizations to the query and it is possible to investigate what happens
during one of these passes using the EXPLAIN statement and specifying the passes
parameter.

Most of the optimizations are done on the Query Plan. Examples of these types of
optimizations include various predicate push-down optimizers such as tryPushDownLimit.

Some other optimizations are also done directly on the AST structure as part of the
interpreter. An example of this would be the cross to inner join rewriter that is executed
within the InterpreterSelectQuery interpreter.

4.2 Challenges and Considerations
In the following section, some of the challenges that were dealt with during the practical
part of this thesis will be discussed. The aim is that this should give a better understanding
of why certain steps were taken and what considerations were taken into account.

44

4.2. Challenges and Considerations

4.2.1 Reverse Engineering ClickHouse’s Codebase
The first challenge that was dealt with before starting with the actual implementation
was getting a better understanding of the codebase of ClickHouse. The main focus was
to understand how ClickHouse translates queries into internal data structures and how
the queries are then processed.

To achieve this, an extensive reverse engineering effort was undertaken. The initial
steps involved executing a variety of test queries against a local ClickHouse deployment.
Subsequently, looking into the generated logs provided insights into potentially relevant
classes for the integration.

Although there also exists comprehensive documentation for the codebase, it lacks in
giving insights into the bigger picture, especially on the internal representation of queries
within ClickHouse. This exploration was therefore very important for understanding
ClickHouse’s query processing mechanism.

4.2.2 Rewrite of Joins
One important discovery that was made during reverse engineering of the code base is
that for queries with more than one join operation, ClickHouse will rewrite the query
using subqueries.

This happens using JoinToSubqueryTransformMatcher.cpp and is called within a
method called rewriteMultipleJoins in InterpreterSelectQueryAnalyzer.cpp.

This transformation is done on the AST structure of the query and allows the processing
of a query as a number of two-way joins of multiple subqueries. If we consider an example
query like the one in Listing 4.4.

Listing 4.4: Original Query
1 SELECT ...
2 FROM tableA
3 JOIN tableB ON ...
4 JOIN tableC ON ...

The manipulated AST represented as a query can be seen in Listing 4.5.

Listing 4.5: Query after JoinToSubqueryTransformMatcher was applied
1 SELECT ...
2 FROM (
3 SELECT --.s.*, ...
4 FROM tableA
5 JOIN tableB ON ...
6) AS --.s
7 JOIN tableC ON ...

45

4. Integrating a Structure-Guided Query Optimizer into ClickHouse

In this transformed query:

• The first join between tableA and tableB is wrapped in a subquery aliased as -.s.

• The necessary columns in the subquery are selected using an alias -.s.* to avoid
alias clashes.

• The outer query joins the result of the subquery (–.s) with tableC using the original
join condition.

Although there was no documentation found for this rewriter, this approach likely aligns
with the conventional strategy of translating multiple join statements into a sequence of
two-way joins, which would be an explanation for ClickHouse’s way of using subqueries
in these scenarios.

4.2.3 Experimental Analyzer
It was previously mentioned that the developers of ClickHouse are currently working on
a new analyzer called InterpreterSelectQueryAnalyzer.cpp. One huge change
that comes with this analyzer is the introduction of a new abstraction between AST and
QueryPlan, the so-called QueryTree.

This analyzer switched as part of the ClickHouse release 24.3 LTS (2024-03-27) from
experimental to beta status and can be turned on or off using a flag called
allow_experimental_analyzer.

As of today this experimental analyzer is still under development and has potentially
great impact on the way queries are processed in ClickHouse. This was an important
consideration that was taken into account for the practical part of this thesis and will be
explained in more detail in the next section.

4.2.4 Finding the right place for the modification
In Section 4.1.5 it was mentioned that most of the query optimization happens on the
level of the query plan, with some exceptions that are also done directly on the AST
structure.

In the initial implementation phase, the idea was to follow this convention and do all
the modifications that need to be done as part of one optimizer on the level of the query
plan that would be executed at the end. This also brings the benefit that the query is
processed exactly the way we want it to be.

However, there were a few challenges that had to be faced and in the end, led to a
different approach. The biggest problem was that the introduction of the new experimental
analyzer described in Section 4.2.3, which is still under development, has a significant
impact on the query representation as query plans. Also, it was uncertain if the newly

46

4.3. The Integration

introduced abstraction level of a query tree would have any impact on our integration.
Another issue was ClickHouse’s behavior, as discussed in Section 4.2.2, where queries
with multiple joins are translated into subqueries, altering table and column naming
conventions.

After facing multiple issues, those coming from the experimental analyzer and the
transformation of joins into subqueries, the decision was made to do all modifications
to the codebase before the query execution process, in particular before the rewrite
to subqueries. This meant in practice that rather than operating on the query plan
directly, the optimizer would now manipulate the AST structure. While ClickHouse does
feature optimizers, such as one that converts cross joins to inner joins, this adjustment
introduced a drawback: subsequent optimizers in the query execution pipeline could
potentially conflict with our modifications, resulting in a mismatch between the intended
query plan and the final execution. As a consequence, it was important to validate for
correctness of the optimizer and, if necessary, deactivate conflicting optimizers to avoid
such discrepancies.

4.3 The Integration
In this section, the actual implementation and architecture of the integration will be
outlined.

Generally, all manipulations that happen as part of this optimizer happen within one
class YannakakisOptimizer.cpp. This class is called from the ExecuteQuery.cpp
and manipulates the query in the form of an AST. As described in Section 4.2.4, the
call to YannakakisOptimizer.cpp is done, before the rewrite to subqueries with
JoinToSubqueryTransformMatcher.cpp happens.

The most important steps that are performed as part of this optimizer can be summarized
as follows:

• Collect tables and predicates

• GYO reduction

• Reroot

• Bottom-up semi-join

In the following sections, the different steps will be explained in detail including what
they do and why they are necessary.

4.3.1 Collect tables and predicates
The main goal of this step is to collect all necessary information from the input query
and store those in suitable data structures. This is done within a function called

47

4. Integrating a Structure-Guided Query Optimizer into ClickHouse

collectTablesAndPredicates. In this context, predicates could be elements such
as join conditions or filtering attributes used as part of a WHERE clause.

Essentially, there are five important attributes that are used for storing all the necessary
information from the query, which subsequently play important roles in the later stages
of the optimization process.

• tableWithPredicateNames: A mapping that uses the table name as a string
key, and holds a set of predicates of all predicates that are part of the ON clause or
WHERE clause of that specific table.

• tableObjects: A mapping that has again the table name as a string key. This
mapping connects to the corresponding table object within the original Abstract
Syntax Tree (AST) through an ASTPtr.

• predicateObjects: Maps all join predicates with their identifier to an ASTPtr
object that points to the corresponding predicate of the original AST.

• selectionObjects: Holding all filters (or selection in relational algebra) from
the WHERE clause that are not part of a join condition. This is done with a
mapping using the table name as a string key, and a vector containing all selection
objects as its value.

• disjointSet: Holds all join predicates, more on this will be explained in Section
4.3.2.

Generally, the main goal of getting all the information from the query is achieved by
traversing the AST of the query and updating the corresponding attributes. Most of this
can be seen as trivial, except for two things that need to be considered.

First, how can one distinguish between predicates that are used as part of a join, and
predicates that are used as part of a selection?

Second, how does one represent the join predicates such that in the later steps it is
guaranteed that all of these predicates are the same? An example of this would be if
we have two join operations such as tableA.A == tableB.B AND tableB.B ==
tableC.C, then we need to somehow efficiently store the information that all three
attributes A, B, and C must be the same.

The first consideration that handles the differentiation between predicates that are part of
a join and filtering predicates, is solved by looking into the origin of the arguments of the
predicate. For example in the case of an equality check e.g. tableA.A == tableB.B
one can see that A and B both originate from a table and therefore it can be concluded
that the predicate is part of a join. In all other cases, the predicate must be part of a
selection.

Regarding the second consideration, the idea was to use so-called equivalence classes.

48

4.3. The Integration

4.3.2 Representing Join Predicates as Equivalence Classes
In order to represent equivalence classes for join predicates, a data structure known
as a disjoint set (also known as union-find) was implemented and can be found in
DisjointSet.cpp.

A disjoint set data structure maintains a collection of disjoint (non-overlapping) sets. It
provides two main operations: Union and Find. The Union operation merges two sets
together, while the Find operation determines which set a particular element belongs to.

In the context of representing join predicates as equivalence classes, each attribute
involved in a join predicate is initially assigned to its own set. This initialization is done
by calling a function addToSet, which can be seen in Listing 4.6.

Listing 4.6: Disjoint Set: Add Key
1 bool DisjointSet::addToSet(std::string key)
2 {
3 if (parent.contains(key))
4 return false;
5

6 parent[key] = key;
7 rank[key] = 1;
8

9 return true;
10 }

The keys used in this function would in our case be the join conditions, and in the
beginning, every join condition is pointing to its equivalence class.

When encountering a join predicate such as tableA.A == tableB.B, the Union
operation is used to merge the sets containing A and B, indicating that they are equivalent.
This can be seen in Listing 4.7.

Listing 4.7: Disjoint Set: Union
1 // Union two sets containing elements x and y
2 void DisjointSet::unionSets(std::string x, std::string y)
3 {
4 if (!parent.contains(x))
5 addToSet(x);
6 if(!parent.contains(y))
7 addToSet(y);
8 std::string rootX = find(x);
9 std::string rootY = find(y);

10

11 if (rootX != rootY)
12 {

49

4. Integrating a Structure-Guided Query Optimizer into ClickHouse

13 // Union by rank to keep the tree balanced
14 if (rank[rootX] < rank[rootY])
15 {
16 parent[rootX] = rootY;
17 }
18 else if (rank[rootX] > rank[rootY])
19 {
20 parent[rootY] = rootX;
21 }
22 else
23 {
24 parent[rootY] = rootX;
25 rank[rootX]++;
26 }
27 }
28 }

For example, given the join predicates tableA.A == tableB.B AND tableB.B ==
tableC.C, after processing these predicates, all three attributes A, B, and C would
belong to the same equivalence class.
This allows subsequent processing steps to efficiently identify that these attributes are
related and must have the same value.
Notice, that the implementation also stores a "rank" for every node. This rank represents
an upper bound of the height of a node and this value is used in the union function. The
idea is that nodes with a higher rank will always be used as parents. This leads to a
more balanced tree structure, making the find operation more efficient.

4.3.3 GYO reduction
The main goal of the GYO reduction is to produce a join tree, that will tell us later in
which order the different join operations need to be executed.
As part of the integration, a variant of GYO was implemented called Flat-GYO. Initially
introduced in [30], the implementation largely follows the already presented pseudocode
that can be seen in Figure 3.4. This section focuses more on the supplementary steps
undertaken during implementation.
All these steps are done within a single function called gyoReduction. This function
takes as input parameters the attributes tablesAndPredicates (tables and corresponding
predicates) and disjointSet (join predicates equivalence classes) computed in the previous
step 4.3.1.
In the first step, which can be seen in Listing 4.8, the function transforms the input
parameters into Hypergraphs, which is the data structure used as input for the GYO
reduction.

50

4.3. The Integration

Listing 4.8: Hypergraph Representation
1 // Create data structures to store relationships
2 vertex_to_edge := empty unordered_map of string to set of

string
3 edge_to_vertex := empty unordered_map of string to set of

string
4

5 // Read input data
6 for each kv in tablesAndPredicates
7 edge := kv.first // edge of hypergraph is the table_name
8 vertices := kv.second // vertices of hypergraph are the

attributes
9

10 // Associate vertices with hyperedges
11 for each vertex in vertices
12 equivalenceClass := edge + ’.’ + vertex //

equivalenceClass is always table_alias.attribute
13 if equivalenceClass exists in ds
14 equivalenceClass := ds.find(equivalenceClass)
15 vertex_to_edge[equivalenceClass].insert(edge)
16 edge_to_vertex[edge].insert(equivalenceClass)

For efficiency reasons, an unordered map is used to store both directions of vertex and
edge relationships of the hypergraph. These maps hold the name of a table as an edge,
and the equivalence class representation of a column attribute as verta ex.

Once the input tablesAndPredicates is transformed into a hypergraph representation, the
Flat-GYO algorithm is performed by applying the following three steps until either the
vertex count reduces to one or no progress is made in a full iteration:

1. Eliminate all degree 1 vertices (i.e., vertices present in a single edge).

2. Remove empty edges.

3. Eliminate edges that are subsets of other edges.

Finally, the function will return a boolean value based on whether the count of remaining
edges exceeds one. If true, it indicates that the GYO reduction was successful and a join
tree could be constructed; otherwise, it returns false.

4.3.4 Reroot
In the case of 0MA queries all attributes involved in the aggregate function and the
group by clause must originate from a single relation, the root node. A reroot operation

51

4. Integrating a Structure-Guided Query Optimizer into ClickHouse

may be necessary due to the structure of the computed join tree. The reroot operation
essentially reorganizes the tree by starting from the identified root node and adjusting
the child-parent relationships accordingly.

Listing 4.9 shows the implementation of the reroot operation as pseudoce. It checks
whether a node that requires rerooting exists. If such a node is found, the operation
begins by selecting the identified root node. It then traverses the tree, inverting the
child-parent relationships as it progresses. This process ensures that the root node
becomes the ancestor of all other nodes in the tree.

Listing 4.9: Perform Rerooting
1 current := newRoot
2 while parents contains current: // newRoot is already root (has

no parents)
3 p := parents[current][0] // Each child has only one parent
4

5 // remove current from child list of parent
6 Remove current from join_tree[p]
7

8 // add parent as child of current
9 Append p to join_tree[current]

10

11 current := p

4.3.5 Bottom-up semi-join reduction
The core step of this optimizer is implemented as part of a function called bottomUpSemiJoin
and is intended to perform a bottom-up traversal of a join tree, creating semi-join queries
for each subtree. The pseudocode for this is given in Listing 4.10. This is the first step
that is done as part of Yannakakis’ algorithm. In the following an overview of what
exactly happens as part of this procedure is given.

The input of bottomUpSemiJoin consists of all attributes that were extracted in the
previous steps, specifically the join tree that was computed using the GYO reduction
described in 4.3.3, and other information about the input query that was described in
4.3.1. Also, the original select query represented as AST is used.

Listing 4.10: Bottom-Up Semi-Join
1 function bottomUpSemiJoin(select, join_tree,

tableWithPredicateNames, tableObjects, predicateObjects, ds,
selectionObjects)

2

3 if tables or predicates are insufficient
4 return

52

4.3. The Integration

5

6 Find root
7

8 subQuery = buildJoinTreeRec(root, tableObjects,
predicateObjects, tablesAndPredicates, join_tree, ds,
selectionObjects)

9

10 Update SELECT query with subQuery

The main goal of the function is to manipulate the AST structure of the original query
according to the join tree. The steps that are done as part of this function are:

• Do some initial checks e.g. if the number of tables in the SELECT query are
sufficient for processing. If not, it returns early.

• Find root node in join tree.

• Call recursive function buildJoinTreeRec for root node and do the following:

– Construct AST subqueries in a recursive matter.
– Process direct neighbors of the current root.
– Join construction for each neighbor.

As one can see the main logic of the AST manipulation happens in buildJoinTreeRec.
In the following, the main steps that are performed as part of this function will be
explained. Listing 4.3.3 gives again the pseudocode for this and will be used as a
reference.

Listing 4.11: Build Join Tree Recursively
1 function buildJoinTreeRec(rootIdentifier, tableObjects,

predicateObjects, tablesAndPredicates, adjacent, ds,
selectionObjects, subQueryCnt)

2

3 subqueryName = generateSubqueryName(subQueryCnt)
4 subquery = createSubqueryTemplate(subqueryName)
5

6 Add root table to subquery
7 Add selection predicates associated with root table to

subquery
8

9 for all neighborIdentifier in adjacent[rootIdentifier]
10 if neighborIdentifier is a leaf node
11 neighbor = tableObjects[neighborIdentifier]

53

4. Integrating a Structure-Guided Query Optimizer into ClickHouse

12 Add selection predicates associated with
neighborIdentifier to subquery

13 else
14 subQueryCnt = subQueryCnt + 1
15 neighbor = buildJoinTreeRec(neighborIdentifier,

tableObjects, predicateObjects,
tablesAndPredicates, adjacent, ds,
selectionObjects, subQueryCnt)

16 end if
17

18 joinPredicates = getJoinPredicates(rootIdentifier,
neighborIdentifier, predicateObjects,
tablesAndPredicates, ds)

19 join = createJoin(rootIdentifier, neighborIdentifier,
joinPredicates)

20 Add join to subquery
21 end for
22

23 Configure subquery
24

25 Return subquery
26 end function

Recursive Subquery Construction (line 1-15)

When buildJoinTreeRec is called the first thing it will do is generate a unique name
for the subquery based on the current subQueryCnt, which is a global counter that
makes sure that every subquery has a unique identifier and is always incremented every
time buildJoinTreeRec is called.

The generation of a subquery happens within a function called makeSubqueryTemplate
which takes the unique name as an input parameter and returns an AST.

Next, all neighbors of the current root will be iterated. For every neighbor node, there
can happen two things depending on whether the node is a leaf node in the join tree or
not:

• Node is a leaf node: The corresponding ASTPtr to that node will be used and be
set as a TablesInSelectElement.

• Node is not a leaf node: buildJoinTreeRec will be called again, this time with
the neighbor as a root node. The returned ASTPtr to that subquery will be set as
a TablesInSelectElement.

54

4.4. Other Modifications to ClickHouse

Join Construction (line 17-19)

For each neighbor, it creates a join AST node (ASTTableJoin) and configures it based
on whether join predicates exist. The join predicates are identified using the disjoint set
data structure described in Section 4.3.2.

If no join predicates exist, a cross-join is created. Otherwise, a left semi-join is con-
structed with the join predicates. The join node is then added to the right table’s AST
representation (rightTable).

Configure Subquery (line 23)

In the last step of buildJoinTreeRec, some additional modifications are applied to
the subquery before it is ultimately returned. This includes setting a WHERE clause
containing all filter predicates from the original query, that can be applied within the
just-created subquery. Essentially, this process represents a form of selection pushdown,
facilitating the execution of filtering operations at the earliest feasible stage.

4.4 Other Modifications to ClickHouse
In addition to the modifications described in the previous sections, a flag was introduced
that allows one to turn on or off the optimizer during runtime. This flag is quite convenient
for the process of comparing results and assessing performance.

To activate or deactivate the optimizer in ClickHouse on the fly, the SET command is
used within a SQL query:

SET optimizer = 1;

In the code, an attribute is used to store the value of this setting and through a conditional
statement, the optimizer is either enabled or disabled.

55

CHAPTER 5
Evaluation

In this chapter, we evaluate the optimizer presented in Chapter 4. We do this evaluation
using a set of 0MA queries, running them on both the original ClickHouse system and
the system with the implemented optimizer. The comparison focuses on two performance
metrics: runtime and memory consumption. The corresponding setup including the
queries used can also be found on GitHub [13].

Section 5.1 provides an overview of the test setup used for this evaluation. Sections 5.2
and Section 5.3 discuss the testdata and the queries selected for the evaluation, including
the rationale behind their selection. In Section 5.5, we further define and elaborate on
the performance metrics used. Finally, Section 5.6 presents the evaluation results.

5.1 Setup and Methodology
To evaluate the performance of the modified ClickHouse instance, a straightforward setup
was used. An overview can be seen in Figure 5.1. At the core of this setup is a Jupyter
notebook. Initially, all queries were loaded as strings, available in two variants: one
with standard queries and another with the appended string SET optimizer = 1;,
indicating that the optimizer should be applied.

ClickHouse offers a feature that allows one to select tables from different sources, including
other database systems. During the evaluation phase, this functionality was utilized
by connecting to a pre-configured PostgreSQL database containing the test data. This
means in practice that ClickHouse would still be used as a database system, but the
tables containing the test data would be loaded from a Postgres instance.

The decision to use PostgreSQL for this purpose was based on two main reasons. Firstly,
while ClickHouse generally follows the ANSI SQL standard, there are some exceptions,
particularly with the CREATE statement, where a table engine must be specified. This
would have required modifying all statements for creating a test database. Secondly,

57

5. Evaluation

Figure 5.1: Setup High-Level Overview

PostgreSQL is widely used and there are many datasets available as pre-configured docker
containers, which significantly simplifies the setup process.

To integrate PostgreSQL tables into the evaluation, the table part of each query was
replaced with a statement that reads from the PostgreSQL instance:

SELECT * FROM
postgresql(’localhost:5432’, ’public’, ’table’, ’user’, ’password’);

Once the test queries were prepared, the ClickHouse Python client was used to execute
these queries on a ClickHouse server instance.

The server instance was started by directly running the executable produced by the
compiler, as we found that using an IDE such as CLion has a significant impact on the
performance.

5.2 Testdata
In order to assess the performance of the modified ClickHouse system compared to the
original system without the optimizer, an appropriate dataset was needed.

Given that our optimizer primarily focuses on evaluating join queries, particularly aiming
to reduce intermediate results, our dataset needed to comprise numerous relations, ideally
with each relation containing a substantial number of tuples.

58

5.3. Queries

After reviewing related literature and similar experiments, including [30] and [16], we
identified the following datasets as fitting candidates for our testing:

• IMDB: The Join Order Benchmark (JOB) [35] is a benchmark first introduced
in [35] for evaluating query optimizers. The dataset that is used for this benchmark
comes from the Internet Movie Database (IMDB) [12]. It contains various
information about movies, including actors, producers, and more. This benchmark
transformed a May 2013 snapshot of the IMDB dataset, totaling 3.6 GB, into 21
distinct tables. Furthermore, the benchmark includes 33 queries, each with 2-6
variants, resulting in a total of 113 queries.

• SNAP: The Stanford Network Analysis Platform (SNAP) offers a collection
of over 50 large network datasets [17]. These datasets cover diverse domains such
as social networks, web graphs, and citation networks. For our evaluation, the used
data is focused on patent relations, containing over 3 million different patents and
their citations.

5.3 Queries
The evaluation was done using two sets of queries on the two previously mentioned
datasets. In both cases, the queries required slight modifications to the FROM part
of the query, as the data for our evaluation was stored in a PostgreSQL instance, and
ClickHouse requires additional meta-information to identify the correct data source, as
detailed in the setup Section 5.1.

For the first set of queries that were done on the IMDB dataset, a subset of queries was
taken from the paper [30]. For the second dataset, which involves patent relationships
from SNAP, the queries used are constructed in increasing path length, starting from
length 2 and going up to length 5. If necessary, queries were also slightly adapted
regarding the SELECT part in order to satisfy the properties of a 0MA query.

5.4 Hardware
The used hardware for running all evaluations was a MacBook Pro 16-inch using the M1
SoC with 32 GB of memory and a 512 GB SSD.

5.5 Performance Metrics and Evaluation Criteria
To measure the impact of our optimizer, we looked into the following two performance
metrics:

• Runtime: This metric captures the time required for a query to execute, measured
in seconds. Lower values indicate better performance.

59

5. Evaluation

• Memory consumption: This metric reflects the memory utilized during query
processing, measured in Megabytes (MB). Reducing memory usage enhances system
resource allocation, contributing to better performance. For the evaluation, we
always looked at the peak memory consumption during the execution of a query.

It is important to note that a manual timeout of 50 seconds was configured for the
evaluation, meaning any query execution exceeding this threshold would be automati-
cally terminated by the system. Additionally, both query execution time and memory
consumption can be significantly influenced by external factors, such as other processes
running on the test system and CPU optimizations. To minimize these effects, all test
queries were executed five times for both ClickHouse systems, the original one and the
one using the optimizer.

5.6 Results
The runtime performance results are presented in Table 5.1, while the memory consump-
tion results are shown in Table 5.2. Both tables report the average of the corresponding
performance metrics (runtime and memory consumption) and the standard deviation
(±) for the base system (without optimizer) and the modified system (with optimizer).
The average and standard deviation are computed by running the evaluation five times
in total for both performance metrics.

Additionally, a column is included that shows the difference between the two measure-
ments, calculated as the optimized system minus the base system, meaning a negative
value indicates an improvement. In case of a timeout, the corresponding entry is left
blank.

The bar charts in Figure 5.2 and in Figure 5.3 summarize the reported numbers in the
tables visually for both runtime and memory consumption.

In the following, the presented results will be discussed. First in Section 5.6.1 we present
some general observations. In Section 5.6.2 we look in more detail into the snap queries,
including the effects of disabling timeouts. Finally, in 5.6.3 we talk about the applicability
of our optimizer.

5.6.1 General Observation
The evaluation results in Table 5.1 and Table 5.2 show the significant impact our optimizer
can have on the ClickHouse system when it comes to the processing of certain types of
join queries.

In the case of the IMDB dataset, one can see that queries where the original ClickHouse
system had a timeout can now be solved in a couple of seconds (query 17.*). This is in
line with the findings in [30] which also shows that for the chosen queries, conventional
optimizers struggle to efficiently process them. Furthermore, our modified system has

60

5.6. Results

Table 5.1: Runtime measured in seconds

Dataset Query Without Optimizer With Optimizer Difference Runtime
imdb 17a.sql timeout 14.95 ± 2.07 s -
imdb 17b.sql timeout 15.20 ± 1.58 s -
imdb 17c.sql timeout 15.77 ± 2.45 s -
imdb 17d.sql timeout 15.07 ± 2.27 s -
imdb 17e.sql timeout 15.30 ± 1.97 s -
imdb 20a.sql 22.57 ± 0.67 s 18.42 ± 2.55 s -4.14181
imdb 20b.sql 19.59 ± 1.16 s 16.86 ± 2.18 s -2.73661
imdb 3a.sql 5.19 ± 0.48 s 3.77 ± 0.60 s -1.420542
imdb 3b.sql 3.52 ± 0.23 s 2.75 ± 0.53 s -0.776138
imdb 3c.sql 6.77 ± 0.54 s 4.05 ± 0.57 s -2.720183
imdb q2a.sql 4.23 ± 0.35 s 3.45 ± 0.66 s -0.776462
imdb q2b.sql 4.35 ± 0.36 s 3.52 ± 0.34 s -0.827537
imdb q2c.sql 4.18 ± 0.18 s 3.09 ± 0.54 s -1.097451
imdb q2d.sql 5.01 ± 0.37 s 3.22 ± 0.47 s -1.784314
imdb q5a.sql 1.63 ± 0.13 s 2.49 ± 0.35 s 0.863208
imdb q5b.sql 1.61 ± 0.29 s 1.61 ± 0.24 s 0.002995
imdb q5c.sql 2.18 ± 0.12 s 2.78 ± 0.41 s 0.595921
snap patents-path02.sql 17.48 ± 0.95 s 14.48 ± 1.03 s -2.997295
snap patents-path03.sql 37.37 ± 1.91 s 19.26 ± 2.11 s -18.112656
snap patents-path04.sql timeout 26.40 ± 1.96 s -
snap patents-path05.sql timeout 31.95 ± 1.64 s -

significant enhancements in memory efficiency. All test queries show a significant decrease
in memory consumption compared to the original system.

For the SNAP dataset and the chosen queries, similar observations can be made. All
queries involving path lengths greater than three were not able to be solved by the original
ClickHouse system. This aligns with the challenges faced by conventional optimizers, as
discussed in [16], where even state-of-the-art systems struggle to efficiently evaluate these
queries.

In the modified ClickHouse system, on the other hand, all queries were able to be solved
within a reasonable time frame. The results also show that as the path length increases,
the more advantageous our optimizer becomes regarding the runtime.

While the positive impact of the optimizer was clearly shown, some limitations still need
to be addressed.

First, the integration did not always lead to an improvement, as can be seen in Table 5.1,
where queries q5a, q5b, and q5c, have an increase in execution time with the optimizer
enabled. Also, in some cases, the improvement can be seen as not significant e.g. 3b with
a difference of under 0.1s. A possible explanation for this could be that the reduction in

61

5. Evaluation

Figure 5.2: Runtime Comparison

execution time coming from the optimizer is smaller than the overhead introduced by
the semi-join rewriting. It is important to note that this analysis is restricted due to the
limited amount of test queries and datasets. In order to draw valid conclusions regarding
these performance differences, it is necessary to conduct a more thorough investigation
encompassing a greater variety of datasets and queries.

Secondly, the evaluation was performed on a single machine and with a specific set
of queries. Also, all measurements were conducted with the experimental analyzer in
ClickHouse disabled. Further testing is needed to validate the optimizer’s effectiveness
under various conditions, including different query types, larger datasets, and diverse
deployment environments.

62

5.6. Results

Table 5.2: Peak Memory consumption measured in MB

Dataset Query Without Optimizer With Optimizer Difference Memory
imdb 17a.sql timeout 6719 ± 325 MB -
imdb 17b.sql timeout 6730 ± 381 MB -
imdb 17c.sql timeout 6458 ± 252 MB -
imdb 17d.sql timeout 6542 ± 317 MB -
imdb 17e.sql timeout 6458 ± 85 MB -
imdb 20a.sql 9011 ± 556.71 MB 7190 ± 1026 MB -1821 MB
imdb 20b.sql 7437 ± 1026.86 MB 6716 ± 323 MB -721 MB
imdb 3a.sql 6641 ± 259.83 MB 6492 ± 294 MB -149 MB
imdb 3b.sql 9393 ± 435.52 MB 6403 ± 425 MB -2991 MB
imdb 3c.sql 6535 ± 760.14 MB 6477 ± 256 MB -58 MB
imdb q2a.sql 7528 ± 889.78 MB 6464 ± 93 MB -1064 MB
imdb q2b.sql 7810 ± 1057.93 MB 6275 ± 197 MB -1535 MB
imdb q2c.sql 9327 ± 514.49 MB 6882 ± 340 MB -2445 MB
imdb q2d.sql 8062 ± 401.19 MB 6990 ± 1522 MB -1072 MB
imdb q5a.sql 6593 ± 494.26 MB 6076 ± 216 MB -516 MB
imdb q5b.sql 9085 ± 344.97 MB 6402 ± 417 MB -2683 MB
imdb q5c.sql 6751 ± 135.01 MB 6730 ± 381 MB -20 MB
snap patents-path02.sql 10339 ± 464.41 MB 6585 ± 392 MB -3754 MB
snap patents-path03.sql 8248 ± 635.96 MB 6487 ± 411 MB -1760 MB
snap patents-path04.sql timeout 6542 ± 375 MB -
snap patents-path05.sql timeout 6632 ± 388 MB -

5.6.2 Detailed Analysis
Despite the limitations outlined in the previous section, such as conducting the evaluation
on a single machine with a limited dataset and set of queries, the results achieved by our
optimizer are highly promising.

In the initial evaluation, we set a timeout threshold of 50 seconds for all queries. To better
understand the effect of the optimizer and how ClickHouse behaves for computationally
intensive queries, we wanted to see what happens when we turn off the timeout.

Interestingly, when we re-ran the SNAP queries without the timeout and again with
and without the optimizer, ClickHouse still was not able to successfully execute certain
queries in the case of the optimizer being disabled.

The results of this run without a timeout can be seen in Table 5.3 and 5.4 and clearly
demonstrate the effectiveness of the optimizer. Without it, ClickHouse struggled with
high memory usage, leading to timeouts and system crashes in some cases. In contrast,
the optimizer significantly reduced both runtime and memory consumption, enabling all
queries to be completed successfully. Although it was possible to compute the results for
patents-path04.sql without the optimizer this time, the execution time was extremely

63

5. Evaluation

Figure 5.3: Peak Memory Consumption Comparison

Table 5.3: Runtime SNAP queries without timeout

Dataset Query Without Optimizer With Optimizer Difference Runtime
snap patents-path02.sql 15.79 s 9.12 s -6.67 s
snap patents-path03.sql 36.42 s 14.10 s -22.32 s
snap patents-path04.sql 104.01 s 19.94 s -84.07 s
snap patents-path05.sql - 24.53 s -

high compared to using the optimizer. The improvements for this query were also the
most significant ones, where runtime decreased by 84.07 seconds and memory usage
dropped by 3900 MB.

The runtime comparison in Figure 5.4 illustrates that for the snap queries ClickHouse
benefits from the optimizer in any scenario, and the more challenging the query becomes

64

5.6. Results

Table 5.4: Memory consumption SNAP queries without timeout

Dataset Query Without Optimizer With Optimizer Difference Memory
snap patents-path02.sql 3538 MB 2325 MB -1213 MB
snap patents-path03.sql 5339 MB 2519 MB -2820 MB
snap patents-path04.sql 6468 MB 2568 MB -3900 MB
snap patents-path05.sql - 2568 MB -

Figure 5.4: Runtime Comparison Snap Queries

due to increasing path length, the greater the benefit from the optimizer. The runtime
for queries without the optimizer increased significantly with the path length, up to a
point where the database instance was terminated. In contrast, the runtime with the
optimizer enabled increased only marginally as the path length increased.

For memory consumption, which can be seen in Figure 5.5, a similar conclusion can be
made. The memory usage was almost constant with the optimizer, while it increased
dramatically without it. This consistency can be attributed to the optimizer’s ability to
efficiently remove overhead tuples, reducing the overall memory footprint.

With this in mind, we can conclude that the significant reduction in both runtime and
memory usage coming from the optimizer shows the potential of structure-guided query
optimization techniques. This improvement is in particular observable for computationally

65

5. Evaluation

Figure 5.5: Memory Comparison Snap Queries

demanding queries, such as the SNAP queries, where the optimizer can be the difference
between an unprocessable query due to intermediate result explosion and a query that
executes efficiently, even within tight time constraints.

5.6.3 Applicability
Integrating a structure-guided query optimizer, as described in this work, into a column-
store such as Clickhouse comes with certain challenges. The primary difficulty comes from
the impedance mismatch with the Volcano Query Evaluation Model, which is commonly
applied by many DBMS. Additionally, the current implementation of the optimizer is
restricted to a limited subset of queries.

Despite this restriction, the optimizer has proven effective in executing complex queries
that were previously infeasible. It must also be noted that the performance overhead
introduced by the optimizer is minimal. The maximum observed overhead across all
queries evaluated was only 4 milliseconds, with the majority of queries having less than 1
millisecond of overhead. In contrast, the optimizer has achieved significant reductions in
execution time, with extreme cases showing reductions of up to 84.07 seconds. For these
types of queries, it can therefore be said that the optimizer significantly reduces total
runtime and significantly improves the overall performance of join query evaluations in
ClickHouse.

66

5.6. Results

These results align with recent research [1], [30] and suggest that integrating such
optimizers into other database systems could be highly beneficial.

67

CHAPTER 6
Conclusion

In this thesis, we investigated a novel optimization technique: structure-guided query
optimization, which leverages specific characteristics of join queries. Current research [31],
[1] suggested that this technique could potentially mitigate intermediate result explosions
and therefore improve the performance of join queries. However, it was unclear whether
this approach could be implemented in a column-based database system and how it
would perform in practice.

A key outcome of our investigation is that we demonstrated, for the first time to our
knowledge, the feasibility of integrating a structure-guided query optimizer into a column-
based database system.

Following the integration of the optimizer, we successfully showed that this approach is
highly beneficial for certain types of queries (0MA), significantly improving runtime and
reducing memory consumption. Additionally, we found that the optimizer enabled the
execution of some queries that would otherwise fail due to intermediate result explosion.

Beyond the evaluation results that confirmed the performance improvements of structure-
guided query optimization and its feasibility within a columnar system like ClickHouse,
we also provided insights into the internal architecture and behavior of ClickHouse. These
insights, necessary for the integration process, were not covered in existing documentation.

6.1 Open Questions
Currently, significant work is being done on an experimental analyzer in ClickHouse, as
discussed in Section 4.2.3. An important open question for future research is how the
optimizer will perform once the development of this experimental analyzer is completed,
particularly with the introduction of the new abstraction level, the Query Tree. This
new abstraction could potentially simplify and enhance the integration of a complete
implementation of Yannakakis’ algorithm.

69

6. Conclusion

Another open question concerns the optimizer’s adaptability across different database
systems and a wider range of queries. While in our evaluation we have seen that the
optimizer shows great potential for one specific column-based system (ClickHouse) and
one particular set of queries, its performance under varying conditions requires further
research.

70

List of Figures

2.1 Physical layout of column-oriented and row-oriented databases [21] 5
2.2 Late Materialization [21] . 9
2.3 [21] . 10
2.4 Database cracking [21] . 11
2.5 Two projections of a table ’Sales’ [21] . 14
2.6 ClickBench Sample Benchmark [2] . 16
2.7 Sparse Primary Index Example . 18
2.8 Distributed Processing in ClickHouse: Example Architecture [20] 20

3.1 Join orderings for triangle Query R ▷◁ S ▷◁ T 26
3.2 Join Tree Structures [27] . 29
3.3 Number of Permutations for n Relations [27] 30
3.4 Flat-GYO algorithm [30] . 33
3.5 Qhg represented as Hypergraph . 34

4.1 Query Processing High-Level Overview . 41

5.1 Setup High-Level Overview . 58
5.2 Runtime Comparison . 62
5.3 Peak Memory Consumption Comparison 64
5.4 Runtime Comparison Snap Queries . 65
5.5 Memory Comparison Snap Queries . 66

71

List of Tables

5.1 Runtime measured in seconds . 61
5.2 Peak Memory consumption measured in MB 63
5.3 Runtime SNAP queries without timeout 64
5.4 Memory consumption SNAP queries without timeout 65

73

Bibliography

[1] [2406.17076] avoiding materialisation for guarded aggregate queries. https://
arxiv.org/abs/2406.17076. (Accessed on 08/04/2024).

[2] ClickBench. https://benchmark.clickhouse.com/. [Accessed 1-Apr-2024].

[3] Clickhouse. https://clickhouse.com. [Accessed 13-April-2023].

[4] clickhouse-cloudflare. https://blog.cloudflare.com/
http-analytics-for-6m-requests-per-second-using-clickhouse/.
[Accessed 25-Feb-2024].

[5] clickhouse-distinctive-features. https://clickhouse.com/docs/en/
about-us/distinctive-features. [Accessed 26-Feb-2024].

[6] clickhouse-github. https://github.com/ClickHouse/ClickHouse. [Ac-
cessed 11-March-2024].

[7] clickhouse-gitlab. https://www.youtube.com/watch?v=cMdQsxolcqc. [Ac-
cessed 25-Feb-2024].

[8] clickhouse-history. https://clickhouse.com/blog/
introducing-click-house-inc. [Accessed 25-Feb-2024].

[9] clickhouse-table-engines. https://clickhouse.com/docs/en/engines/
table-engines. [Accessed 2-March-2024].

[10] clickhouse-uber. https://www.uber.com/en-AT/blog/logging/. [Accessed
25-Feb-2024].

[11] db-engines. https://db-engines.com/en/ranking. [Accessed 25-Feb-2024].

[12] Imdb. https://www.imdb.com/. (Accessed on 05/04/2024).

[13] optimizer-benchmark. https://github.com/Jakob1010/
query-optimizer-benchmark/tree/main. [Accessed 26-Feb-2024].

[14] optimizer-integration. https://github.com/Jakob1010/ClickHouse. [Ac-
cessed 26-Feb-2024].

75

https://arxiv.org/abs/2406.17076
https://arxiv.org/abs/2406.17076
https://benchmark.clickhouse.com/
https://clickhouse.com
https://blog.cloudflare.com/http-analytics-for-6m-requests-per-second-using-clickhouse/
https://blog.cloudflare.com/http-analytics-for-6m-requests-per-second-using-clickhouse/
https://clickhouse.com/docs/en/about-us/distinctive-features
https://clickhouse.com/docs/en/about-us/distinctive-features
https://github.com/ClickHouse/ClickHouse
https://www.youtube.com/watch?v=cMdQsxolcqc
https://clickhouse.com/blog/introducing-click-house-inc
https://clickhouse.com/blog/introducing-click-house-inc
https://clickhouse.com/docs/en/engines/table-engines
https://clickhouse.com/docs/en/engines/table-engines
https://www.uber.com/en-AT/blog/logging/
https://db-engines.com/en/ranking
https://www.imdb.com/
https://github.com/Jakob1010/query-optimizer-benchmark/tree/main
https://github.com/Jakob1010/query-optimizer-benchmark/tree/main
https://github.com/Jakob1010/ClickHouse

[15] Show hn: A benchmark for analytical databases (snowflake, druid, redshift) | hacker
news. https://news.ycombinator.com/item?id=32084571. (Accessed on
04/01/2024).

[16] Spark eval github. https://github.com/arselzer/spark-eval. (Accessed
on 04/01/2024).

[17] Stanford large network dataset collection. https://snap.stanford.edu/
data/. (Accessed on 05/04/2024).

[18] Vldb 10 years awards. https://vldb.org/archives/10year.html. (Ac-
cessed on 10/27/2023).

[19] why-clickhouse-is-so-fast. https://clickhouse.com/docs/en/concepts/
why-clickhouse-is-so-fast. [Accessed 26-Feb-2024].

[20] why-clickhouse-is-so-fast-presentation. https://presentations.clickhouse.
com/meetup59/building_for_fast/. [Accessed 26-Feb-2024].

[21] D. Abadi, P. Boncz, S. Harizopoulos, S. Idreaos, and S. Madden. The Design and
Implementation of Modern Column-Oriented Database Systems. 2013.

[22] D. J. Abadi. Column stores for wide and sparse data. In Third Biennial Conference
on Innovative Data Systems Research, CIDR 2007, Asilomar, CA, USA, January
7-10, 2007, Online Proceedings, pages 292–297. www.cidrdb.org, 2007.

[23] D. J. Abadi, S. R. Madden, and N. Hachem. Column-stores vs. row-stores: How
different are they really? In Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’08, page 967–980, New York, NY,
USA, 2008. Association for Computing Machinery.

[24] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach. Scalable semantic web
data management using vertical partitioning. In Proceedings of the 33rd International
Conference on Very Large Data Bases, VLDB ’07, page 411–422. VLDB Endowment,
2007.

[25] P. A. Boncz, S. Manegold, and M. L. Kersten. Database architecture optimized for
the new bottleneck: Memory access. In M. P. Atkinson, M. E. Orlowska, P. Valduriez,
S. B. Zdonik, and M. L. Brodie, editors, VLDB’99, Proceedings of 25th International
Conference on Very Large Data Bases, September 7-10, 1999, Edinburgh, Scotland,
UK, pages 54–65. Morgan Kaufmann, 1999.

[26] J. Dittrich, J. Nix, and C. Schön. The next 50 years in database indexing or: The case
for automatically generated index structures. Proc. VLDB Endow., 15(3):527–540,
2021.

[27] Elmasri and Navathe. Fundamentals of database systems. 2017.

76

https://news.ycombinator.com/item?id=32084571
https://github.com/arselzer/spark-eval
https://snap.stanford.edu/data/
https://snap.stanford.edu/data/
https://vldb.org/archives/10year.html
https://clickhouse.com/docs/en/concepts/why-clickhouse-is-so-fast
https://clickhouse.com/docs/en/concepts/why-clickhouse-is-so-fast
https://presentations.clickhouse.com/meetup59/building_for_fast/
https://presentations.clickhouse.com/meetup59/building_for_fast/

[28] M. J. Freitag, M. Bandle, T. Schmidt, A. Kemper, and T. Neumann. Adopting
worst-case optimal joins in relational database systems. Proc. VLDB Endow.,
13(11):1891–1904, 2020.

[29] L. Ghionna, L. Granata, G. Greco, and F. Scarcello. Hypertree decompositions
for query optimization. In 2007 IEEE 23rd International Conference on Data
Engineering, pages 36–45, 2007.

[30] G. Gottlob, M. Lanzinger, D. M. Longo, C. Okulmus, R. Pichler, and A. Selzer.
Structure-guided query evaluation: Towards bridging the gap from theory to practice,
2023.

[31] G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and tractable
queries. Journal of Computer and System Sciences, 64(3):579–627, 2002.

[32] G. Graefe. Query evaluation techniques for large databases. ACM Comput. Surv.,
25(2):73–169, jun 1993.

[33] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S. Mullender, and M. L. Kersten.
Monetdb: Two decades of research in column-oriented database architectures. IEEE
Data Eng. Bull., 35(1):40–45, 2012.

[34] B. Imasheva, N. Azamat, A. Sidelkovskiy, and A. Sidelkovskaya. The practice
of moving to big data on the case of the nosql database, clickhouse. In H. A.
Le Thi, H. M. Le, and T. Pham Dinh, editors, Optimization of Complex Systems:
Theory, Models, Algorithms and Applications, pages 820–828, Cham, 2020. Springer
International Publishing.

[35] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann. How
good are query optimizers, really? Proc. VLDB Endow., 9(3):204–215, nov 2015.

[36] D. Maier, J. D. Ullman, and M. Y. Vardi. On the foundations of the universal
relation model. ACM Trans. Database Syst., 9(2):283–308, jun 1984.

[37] T. Neumann and B. Radke. Adaptive optimization of very large join queries. In
Proceedings of the 2018 International Conference on Management of Data, SIGMOD
’18, page 677–692, New York, NY, USA, 2018. Association for Computing Machinery.

[38] R. Pichler. Database theory. Course materials and lecture notes, 2022. Course
materials and lectures.

[39] R. Ramakrishnan and J. Gehrke. Database management systems (3. ed.). 2003.

[40] L. Sidirourgos, R. Goncalves, M. Kersten, N. Nes, and S. Manegold. Column-store
support for rdf data management: Not all swans are white. Proc. VLDB Endow.,
1(2):1553–1563, aug 2008.

77

[41] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau,
A. Lin, S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and S. Zdonik. C-store:
A column-oriented dbms. In Proceedings of the 31st International Conference on
Very Large Data Bases, VLDB ’05, page 553–564. VLDB Endowment, 2005.

[42] M.-E. Vasile, G. Avolio, and I. Soloviev. Evaluating influxdb and clickhouse database
technologies for improvements of the atlas operational monitoring data archiving.
Journal of Physics: Conference Series, 1525:012027, 04 2020.

[43] A. Wickramasekara, M. Liyanage, and U. Kumarasinghe. A comparative study be-
tween the capabilities of mysql and clickhouse in low-performance linux environment.
In 2020 20th International Conference on Advances in ICT for Emerging Regions
(ICTer), pages 276–277, 2020.

[44] M. Yannakakis. Algorithms for acyclic database schemes. In Proceedings of the
Seventh International Conference on Very Large Data Bases - Volume 7, VLDB ’81,
page 82–94. VLDB Endowment, 1981.

[45] C. Yu and M. Ozsoyoglu. An algorithm for tree-query membership of a distributed
query. In COMPSAC 79. Proceedings. Computer Software and The IEEE Computer
Society’s Third International Applications Conference, 1979., pages 306–312, 1979.

[46] M. Zukowski and P. A. Boncz. Vectorwise: Beyond column stores. IEEE Data Eng.
Bull., 35(1):21–27, 2012.

78

	Kurzfassung
	Abstract
	Contents
	Introduction
	Background and Motivation
	Research Problem and Objectives
	Methodology
	Organization of the Thesis

	Column-Stores
	Storage Model
	Key Features
	Influential Systems
	ClickHouse
	Column-Stores in Practice

	Join Query Optimization: Traditional to Structure-Guided
	Traditional Join Processing
	Query Optimization
	Structure-Guided Query Optimization

	Integrating a Structure-Guided Query Optimizer into ClickHouse
	ClickHouse Query Processing
	Challenges and Considerations
	The Integration
	Other Modifications to ClickHouse

	Evaluation
	Setup and Methodology
	Testdata
	Queries
	Hardware
	Performance Metrics and Evaluation Criteria
	Results

	Conclusion
	Open Questions

	List of Figures
	List of Tables
	Bibliography

