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Kurzfassung

Musik ist vergänglich; sie existiert nur kurz, bevor sie verhallt. Um Musik über die
Zeit zu bewahren, wurden viele Notationssysteme entwickelt, die jedoch meist für die
menschliche Interpretation gedacht sind. Die optische Musikerkennung (Optical Music
Recognition, OMR)) beschäftigt sich mit der automatischen Erkennung dieser Notationen
und deren Umwandlung in maschinenlesbare Formate. Die OMR-Prozesskette umfasst
vier Hauptphasen: Bildvorverarbeitung, Erkennung von Musiksymbolen, semantische
Rekonstruktion und Kodierung. Die semantische Rekonstruktion konzentriert sich darauf,
die Bedeutungen der Musiknoten zu entschlüsseln, indem die Beziehungen zwischen den
erkannten Musiksymbolen wiederhergestellt werden. In diesem Kontext wird die Semantik
durch die Konfiguration und Anordnung musikalischer Grundelemente wie Vorzeichen,
Notenköpfe und Fähnchen definiert, deren Gruppierung ihre Interaktionen und den
intendierten Klang bestimmt. Studien betonen die grafische Natur von Musiknoten
und führen das Konzept des Music Notation Graph (MuNG) ein, in dem musikalische
Primitive als Knoten und deren Beziehungen als Kanten dargestellt werden. Diese
graphische Struktur bietet vielversprechende Möglichkeiten für den Einsatz von Graph
Neural Networks (GNN). In der vorliegenden Masterarbeit wird die Anwendung von
GNNs zur semantischen Rekonstruktion in der OMR untersucht. Es wird eine innovative
Pipeline vorgeschlagen, die GNNs in OMR integriert, und es werden Herausforderungen
wie die Bewertung und der Vergleich der OMR-Ergebnisse sowie die Definition von
MuNGs diskutiert.
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Abstract

Music is fleeting by nature, existing briefly before fading away. Yet more than one wants
to preserve it over time and many music notation systems have been developed with
this intention. However, most of these formats have been designed for humans to read
them. Optical Music Recognition (OMR) is a research field dedicated to investigating
how to computationally read music notation and create computer-readable scores from
traditional scores. The typical OMR pipeline is divided into four stages: Image pre-
processing, Music object detection, Semantic reconstruction, and Encoding. The third
stage of the pipeline aims at reconstructing the semantics of the music notation, re-
establishing connections between the objects detected previously. This work focuses
on scores written in the most common notation system called Common Western Music
Notation (CWMN). In this context, the semantics are defined by the configuration of the
musical primitives (accidental, noteheads, or flags), how they are grouped and arranged
defines their interactions and how the music should sound. Some research exhibits the
graph-like property of the music and introduces the concept of Music Notation Graph
(MuNG): graphs constructed with the music primitives as nodes and their relations as
edges. This graph structure makes it a candidate for leveraging the power of Graph
Neural Networks (GNN). This master thesis investigates how GNNs can be used to
perform the music semantic reconstruction. We propose a novel pipeline for using GNNs
in OMR and discuss a few unsolved problems of the field like how to measure and compare
the output of an OMR system or how to define MuNGs.
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CHAPTER 1
Introduction

"Unless sounds are held by the memory of man, they perish, because they
cannot be written down." St. Isidore of Seville[1]

1.1 Saving Music From Oblivion
Music is fleeting by nature, existing briefly before fading away. Yet composers strongly
desire to immortalise and share their musical creations beyond that moment. For a long
time, oral transmission was the only means to preserve music. However, music notations
progressively appeared to offer a more sustainable preservation. Music notation, as we
define it, is a system of symbols that aims to encode enough information to enable the
music to be reproduced. Nowadays, the most commonly used music notation is called
Common Western Music Notation (CWMN). It is the result of centuries of evolution:
the earliest form of music notation comes from about 1400 BCE [2]. It is a collection of
cuneiform inscriptions on clays that describe a religious hymn and how to play it on a
Sumerian lyre. Other notations were developed in Ancient Greece [3], in the Byzantine
Empire [4], and in the Middle East during the 13th century [5]. In Europe, during the
9th century, Aurelian of Réôme wrote Musica Disciplina, the earliest writing about music
theory in the Occident. With this book, he established the base of our modern notation
using symbols known as neumes to define pitches [6]. Later, many additions were made
to make the notation more versatile and to allow capturing a wider range of properties:
rhythms were added in the 13th century, and dynamics in the 17th. Even today, music
notation keeps evolving to account for new developments and to capture non-traditional
music.

Music notation is a language that needs to be embodied in a document called a score.
Music scores can dress diverse appearances. The first scores were handwritten, but
typeset scores appeared long before the advent of computers; in the middle of the 15th
century, wood blocks and metal plates were used to partially or entirely print the music
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1. Introduction

notation [7]. Later, with the widespread adoption of computers, many software programs
[8] [9] [10] [11] emerged to facilitate the creation of scores. Known as scorewriters or
music notation programs, these applications offer a convenient way to produce typeset,
digital scores. They also enable users to listen to their creations by synthesising them,
creating an audio representation of the music score. To illustrate the diversity of forms
music scores can take, we present a comprehensive taxonomy illustrated in Figure 1.1.
Scores with both handwritten and typeset typography are relatively common; e.g. many
composers write their music manually on paper with preprinted staff. We claim that
music notations and their scores are intended to be read either by humans or machines. In
theory, some score formats, like MusicXML, can be read by both, but they are intended
to be read by machines. Some character combinations lead to uncommon scores, e.g.
typeset physical scores intended to be read by machines can be piano rolls. Conversely, a
handwritten digital score intended to be read by machines can be the input of a music
notation software like StaffPad [12], where users draw the music notation manually on a
graphic tablet, and the software reads it. Knowing that music notation can’t preserve the
music without loss, reading involves the exhaustive recovery of the musical information
described in a score. The performer must fill the gaps between the notation and the actual
music to play the music. Filling these gaps is called interpreting; multiple interpretations
can correspond to the same music score.

Music score taxonomy
Typography

Handwritten

Typeset

or
Mixed

or

Machines
or

Humans

Intended toMedium

Digital
or

Physical

be read by

Figure 1.1: Music score taxonomy.

.

Music can not only be written to scores; it can also be recorded and preserved through
audio encodings. Vinyl, CDs, or digital files like MP3 or WAV encode the physical sound
wave over time. Audio encodings are mainly used for playback. Unlike music notation,
the playback of an audio encoding does not require interpretation and always sounds
the same (assuming the same room and equipment for playback). The most common
formats used to preserve music are digital audio encodings and music scores intended for
human reading, but other formats present particularly interesting properties too.

We define computer-readable scores as documents that contain a structured, symbolic
encoding of music which can be read by a computer. Computer-readable scores can
also be read and modified with music notation software. The most common formats
are Musical Instrument Digital Interface (MIDI) [13], Music Encoding Initiative (MEI)
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1.1. Saving Music From Oblivion

[14], and musicXML [15]. Computer-readable scores offer numerous advantages for
composers, musicians, and researchers. They can easily be transformed (synthesised) into
audio encodings or engraved into other score formats, such as tablatures for guitarists.
They enable easy modifications, such as transposition, which involves shifting a piece
of music to a different key. This is particularly beneficial for accommodating the vocal
ranges of different singers or the tuning of various instruments. Additionally, these
scores enhance music querying capabilities, allowing for advanced search and analysis
of musical information. For instance, one could identify recurring motifs or themes
across different works by a composer or within a particular genre, a precious feature for
musicological research. The potential applications of these scores are vast, promising
significant advancements in how we create, study, and interact with music.

Music Score

Digital medium

Audio encoding

01011000111101

0111101
1001101

Engraving

OMR Synthetizing

Transcription Playback

RecordingInterpretation

Sequencing

Transcription

Non-computer-readable 
scores

Computer-readable 
scores

Computer-readable 
audio encodings

Music

Figure 1.2: Transitions between music and some preservation means.

Figure 1.2 illustrates the transition between some music preservation formats and the
music. Some transitions are very uncommon and, therefore, not represented. In this
figure, computer-readable scores can be obtained by sequencing the music. This usually
involves saving a sequence of instructions into the appropriate format, like a MIDI
keyboard with the corresponding software would. Computer-readable scores can also
be obtained by transcribing audio encodings. This involves more advanced techniques
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1. Introduction

traditionally based on analysis of the frequencies present in the sound wave. The last
transition that gives computer-readable from non-computer-readable scores is the goal of
a field of research called Optical Music Recognition (OMR).

1.2 Optical Music Reconstruction

In Understanding Optical Music Recognition, Calvo et al. [16] address a notable issue
within the field of OMR: the lack of a universally accepted definition for the term. This
ambiguity in definition has led to inconsistencies in the scope and goals of research within
the field. To provide clarity and a cohesive direction for future studies, Calvo et al.
propose the following definition: “Optical Music Recognition is a field of research that
investigates how to computationally read music notation in documents”. With the previous
section, we can refine this definition: Optical Music Recognition is a field of research
that investigates how to transform non-computer readable scores into computer-readable
scores.

Figure 1.3: Typical architecture of an OMR system as proposed by Rebelo et al. [17]

The inherent complexity of music notation, which encodes pitch, duration, tempo, and
rhythm into a two-dimensional representation, presents a distinct set of challenges for
accurate transcription. Rebelo et al. [17] propose to compartmentalise the OMR pipeline
into four stages, illustrated in Figure 1.3:

4



1.3. Research Questions

1. Image pre-processing,

2. Recognition of musical symbols,

3. Reconstruction of the musical information in order to build a logical description of
musical notation or semantic reconstruction,

4. Construction of a musical notation model to be represented as a symbolic description
of the musical sheet.

Image pre-processing uses standard techniques to clean the input and make the content
stand out from the background. The second stage aims to find and classify the relevant
symbols of the input image. These symbols often consist of so-called musical primitives
(e.g., accidental, notehead, or flag) that aim to represent the atomic symbols of the music
notation. Figure 1.4 partially illustrates this alphabet. The output of the Music object
detection stage is the class and position (often as bounding boxes) of the primitives. In
OMR, the semantics are defined by the configuration of musical primitives (how they
are grouped and arranged) and their interactions with others. On their own, musical
primitives don’t have any musical meaning. The third stage aims at reconstructing the
semantics of the music notation, re-establishing connections between the detected objects,
emphasising their relationships, and facilitating the transformation into a computer-
readable format. This stage lacks sufficient research, but recent deep learning approaches
have emerged as promising avenues for enhancing this particular pipeline stage. The last
stage involves encoding the music into computer-readable scores.

NoteheadFull
NoteheadHalf 
Flag
Stem
Beam
Sharp
Flat
Natural
Staff

Figure 1.4: Small music score where music primitives are shown in colours.

1.3 Research Questions
This work aims to investigate the use of Graph Neural Network (GNN) in the third stage
of the OMR pipeline. It focuses on music scores in Common Western Music Notation
and explores how Graph Neural Networks can be used to reconstruct the relationships
between musical primitives. The spatial relationships between these primitives, which
are crucial for reading music, can be represented as a graph and used as input for a GNN.
In the literature, this graph of musical primitives and their relationships is referred to as
Music Notation Graph (MuNG) [18]. The semantic reconstruction task corresponds to
a link prediction or link classification task for which GNNs have demonstrated strong
capabilities.
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1. Introduction

This work investigates the following four research questions:

1. How suitable (5% of Music Error Rate (MER) or lower, see Section 4.2 for details)
are GNNs to solve the music semantic reconstruction stage?
5% of MER corresponds to the best value reached by Baro et al. [19], who introduced
the metric. No prior research enables to set a threshold to define when a system
is suitable for OMR. However, some applications, like snippet querying (finding a
score based on a snippet), don’t require a perfect comprehension of the score [20].
We consider 5% of MER a baseline, but an ideal system would achieve a MER of
0%.

2. How does such a model handle different input configurations, particularly in terms
of musical complexity (amount of musical information on a score like multiple
instruments, accompanied melody...)?

3. How well do GNN-based approaches for semantic reconstruction scale with an
increasing number of input primitives?

4. How does the GNN initialisation (fully connected, based on explicit rules) impact
the link prediction?

1.4 Organisation
The structure of this work is as follows: Chapter 2 provides background information on
how to read music and an introduction to graph neural networks. Chapter 3 presents the
datasets used during the implementation phase and discusses the challenges encountered
in creating a dataset for Optical Music Recognition. Chapter 4 covers the main imple-
mentation, detailing the key challenges faced throughout the process. This chapter also
discusses the metrics used and the results obtained. Finally, Chapter 5 concludes the
thesis, summarising the findings and suggesting directions for future work.
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CHAPTER 2
Background

2.1 How to Read Music?

Common Western Music Notation (CWMN) represents music using standardised symbols
interconnected by relations. This section outlines how CWMN functions and why reading
it can be challenging. It introduces essential concepts relevant to this work but simplifies
and omits many aspects of the notation. For a more detailed and precise introduction to
music notation, refer to Schobrun’s step-by-step guide [21].

Music scores are read from top to bottom and from left to right. They rely on staves:
five parallel lines resembling a line of text. The other symbols are displayed on the staves
(see Figure 1.4) and may form the notes. A note is a sound with a defined pitch, onset
(when to play it), duration and timbre. We can simplify the score reading by assuming
each notehead corresponds to a note. The vertical position of noteheads indicates the
pitch. The pitch of a note can also be modified by other primitives, e.g., accidentals such
as sharp or flat. The duration of the note is defined in beats or fractions of, with the
”beat” defining the tempo of the composition. The duration of a note is defined by a
combination of notehead type, presence of a stem, and optional flags or beams, among
other things. The use of more advanced indications can complexify the scores. Some
primitives specify how to articulate a note (e.g., pinched, with hard or soft attacks).
Dynamics indicate broader behaviours for multiple notes, such as loudness or tempo
acceleration. The number of primitives in CWMN is not well defined. Some music
fonts list hundreds of musical glyphs (See 3.2.1). CWMN has no theoretical limitation
regarding the density and the number of primitives that can be engraved on a score
(however there is a practical limitation, governed by the available space on the used piece
of paper). This notation also allows for symbols to overlap, which can make reading a
score very complex. Figure 2.1 illustrates what a very dense score can look like with
an extract of Faerie’s Aire and Death Waltz. This composition is close to a parody of
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2. Background

composition and is not meant to be played. Nevertheless, the notation is correct and
audible versions of this score exist.

Figure 2.1: Extract of Faerie’s Aire and Death Waltz by John Stump

The complexity of music scores is often discussed in terms of structural complexity. Calvo
et al. define four levels of structural complexity illustrated in Figure 2.2 [16]. The
structural complexity of a score mostly depends on the number of voices notated per
stave. A voice refers to a single melodic line in music; the melody is usually handled by
the most significant voice. The simplest structural complexity is called monophonic; one
single note (per staff) is played at a time. Homophonic scores allow for multiple notes to
be played at a time but still encode a single voice. In polyphonic scores, different voices
can be engraved in a single staff. Pianoform scores encode multiple voices and require
several staves, which demonstrate significant structural interactions and are often way
more complex than polyphonic scores. In contrast to polyphonic scores, they often can’t
be broken down into a series of monophonic scores.

To structure a score rhythmically, the measures offer manageable segments of a consistent
number of beats. Each measure contains a specific number of beats, which are determined
by the time signature of the composition that is usually fixed for a whole music piece (see
[21]). Measures are visually represented by vertical bar lines that divide the staff into
beat-equal sections. This segmentation facilitates reading and aids in the composition
process by providing a clear structure for arranging rhythmic patterns, melodies, and
harmonies.

Regardless of the complexity of the score, reading the music always involves recognising
the symbols and the relations that connect them to compute each note’s pitch, duration
and onset. The set of symbols and their relations can be viewed as a graph. In OMR,
the process of reading a score can be cut by task and handled by different systems.
Recognising the symbols is handled by music object detectors and recovering the edges
corresponds to the semantic reconstruction stage. Considering the resemblance to a
graph, this stage can be called a link prediction or link classification task. Graph Neural
Networks have proven to be valuable tools for this task.
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2.2. Graph Neural Networks

Figure 2.2: Examples of the four categories of structural complexity [16].

2.2 Graph Neural Networks

2.2.1 Reasoning on Graph-Structured Data

Graph Neural Networks are a class of machine learning models introduced by Gori and
Scarselli in 2005 [22]. Unlike traditional neural networks that operate on regular grid-like
structures such as images (2D grids) or sequences (1D grids), GNNs can directly process
graph-structured data. A graph is defined as ”a finite, nonempty set V of objects called
vertices [or nodes] (the singular is vertex [or node]) and a set E of 2-element subsets of
V called edges” [23]. Graphs are usually noted as G = (V, E), and the vertices associated
with edges being called their endpoints. Links and edges are synonyms. While "edges" is
the preferred term in the mathematical literature, "link prediction" is more commonly
used when referring to the task of predicting these connections. In this thesis, "links"
and "edges" are used interchangeably. GNNs take graph-structured data as input and
iteratively update the representations of their nodes with aggregated features from their
neighbours.

This thesis does not aim to provide an exhaustive explanation of how Graph Neural
Networks work; however, the key aspects are briefly summarised below. This section
heavily relies on the paper Everything is Connected by Veličkovič [24]. The following
assumes an unweighted directed graph with no edge features for simplicity.

The features of a node u ∈ V is a vector xu ∈ Rk, where k, denotes the number of
features. The graph representation usually relies on a feature matrix X and an adjacency
matrix A.

9



2. Background

X ∈ R|V |×k, X =
[︂
x1, x2, . . . , x|V |

]︂T
(2.1)

A ∈ R|V |×|V |, auv =
{︄

1 (u, v) ∈ E

0 (u, v) /∈ E
(2.2)

The matrix form of the graph imposes an order to the nodes, that contradicts the concept
of nodes and edges being unordered in a graph. To ensure this arbitrary order does not
impact the operation of a GNN, GNNs must comply with two principles: Invariance and
Equivariance. The invariance property means the operation output stays still regardless
of the order of the nodes, and the equivariance ensures some properties, such as the
conservation of symmetry. The permutation of the result of an equivariant operation is
equivalent to applying this operation on permuted inputs. Given a permutation matrix
P , these two properties can be expressed as follows:

f(PX, PAP T ) = f(X, A) (Invariance) (2.3)

F (PX, PAP T ) = PF (X, A) (Equivariance) (2.4)

Assuming f and F do not change the adjacency matrix and return graph or node-level
outputs.

The neighbourhood of a node u is the set of nodes Nu such as (v, u) ∈ E for a directed
graph. The neighbourhood of every node can be defined as XNu .

XNu = {xv | vu ∈ Nu} (2.5)

The representation of the node u in a GNN output is obtained with a function:

hu = Φ(xu, XNu) (2.6)

Or for the whole node set:

F (X) =
[︂
h1, h2, . . . , h|V |

]︂T
(2.7)

Equation 2.7 [24] implicitly assumes some information about the neighbourhoods is
known by F . The node neighbourhoods are required as input of Φ to compute the node
representation. F could be rewritten F (X, A) with A the adjacency matrix containing
the neighbourhoods reconstitution.

10



2.2. Graph Neural Networks

If Φ is permutation invariant inXNu , meaning the order of the node’s neighbourhood
doesn’t change the output of Φ, then F will be permutation equivariant. Φ is the heart
of the GNNs, it defines how to aggregate and update a node representation and defines a
GNN layer.

Bronstein et al. [25] claims most of the GNNs can be classified into three flavours:
Convolutional, Attentional and Message Passing (MP).

hu = Φ(xu ⊕v∈Nu Ψ(xv)) (Convolutional) (2.8)

hu = Φ(xu ⊕v∈Nu a(xu, xv)Ψ(xv)) (Attentional) (2.9)

hu = Φ(xu ⊕v∈Nu Ψ(xu, xv)) (Message Passing) (2.10)

Where Ψ and Φ are traditional neural network -e.g. Ψ(X) = ReLU(WX + b) and
⊕ is a permutation invariant operator, such as the mean, sum or max function. In the
Attentional equation, a is an attention mechanism, and a(xu, xv) is a scalar. This set of
equations defines what a single layer does. For multi-layer models, the matrix X(k=0)

used as input for the first layer is set to X(k+1) = [h1, h2, . . . , h|V |] T to be fed into the
next layer. The matrix A is never updated.

The choice of these flavours might seem a bit arbitrary. First, because some layers don’t
fit into one of these categories [26]. Then, the limit between Attentional and Message-
Passing GNN is controversial. In the MP equation, ψ can be defined as ψ(xv, xu) =
a(xu, xv)θ(xv), with θ a neural network. This form corresponds to an Attentional GNN
as defined by Veličkovič; every MP GNN can be rewritten as an Attentional GNN. The
other transformation is also always possible as the attention mechanism may be a neural
network. a(xu, xv)ψ(xv) can be rewritten as a(xu, xv)ψ(xv) = θ(xu, xv)ψ(xv) = γ(xu, xv)
with θ and γ being neural networks. The last equivalence relies on the fact that multiple
neural networks can be combined into one. Every Attentional GNN can be rewritten as
an MP GNN.

Veličkovič [24] states that the expressiveness of the GNNs increases through the three
categories of layers at the cost of learning stability and interpretability. The decrease
in interpretability is not that evident. Interpretability is defined by Zhang et al. [27]
as the “ability to provide explanations in understandable terms to a human”. Even the
simplest flavour of GNN (Convolutional GNN), is the generalisation of a neural network.
These systems are by nature black boxes [27] and therefore not interpretable. We can
state that no GNN is, by nature, interpretable, and the pertinence of comparing their
interpretability is hence questionable. In Section 4.7, the comparison of three GNNs
shows learning stability can be an issue when using GNNs, and even Convolutional Layers
might be unstable.
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2. Background

GNNs have proven strong capabilities in learning specific graph-related tasks on various
application domains. Three main tasks can be achieved with GNNs:

• Node classification corresponds to the tasks where a node feature is the target.
A classifier is directly applied to the node representation hu to predict the node’s
feature. A famous example is the prediction of the category of a scientific paper in
the CORA dataset [28].

• Graph classification corresponds to the task where the target is a graph property.
An invariant operator is applied to every node representation g = ⊕u∈V hu and a
classifier is then applied to g to predict the target value. A known example predicts
molecules’ properties like their toxicity [29].

• Link prediction corresponds to the task where an edge feature is the target. A
common property to predict is the existence of a link. To perform such tasks, a
classifier learns over the concatenation of the two candidate nodes’ embeddings hu,
hv. The prediction of drug-drug interaction [30] or this master thesis correspond to
this task.

2.2.2 A Closer Look at Some Layers
There exist many ways to define a suitable function that could be a GNN layer. Three
layer implementations have been selected for the implementation phase of the thesis.
They are described hereafter. GNN layers and GNNs are discussed indiscriminately in
the literature. New layers are presented in GNNs to test their capacities, therefore, a
single name is given to the GNN and its layer(s).

Geometric Graph Convolutional Neural Network (Geo-GCN)

Geo-GCN is the short name for Geometric Graph Convolutional Neural Network, a
convolutional GNN proposed by Spurek et al. [31]. They state that classical Graph
Convolutional Networks (GCN) are limiting because they cannot consider an ordering of
nodes in a neighbourhood. What they call order has more to do with the importance one
node can have for another. For some graphs, a natural order can be found. For example,
nodes that are spatially close to the target node are usually more important than the
further distant ones. The particularity of geo-GCN is to process spatial information
differently from the other node features.

To each node u, is associated pu ∈ Rt, a vector of coordinates of dimension t. pu

corresponds to the spatial position of u. Unlike the node features, P ∈ R|V |xt, P =
p1, p2, . . . , p|V |T , is fixed across layers .

The layer equation is presented as follows in the paper:

hu(u, b) =
∑︂

v∈Nu

ReLU(aT (pj − pi) + b)hv (2.11)
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2.2. Graph Neural Networks

Where a ∈ Rt, and b ∈ R are trainable.

The scalar obtained after the sum function is used to weight the influence of the feature
vectors hj in the computation of hi. To obtain the final representation of a node, a
Multi-Layer perceptron (MLP) is applied on hū.

Using the previous equation format, the equation of the layer can be rewritten as:

hu = Φ (⊕v∈Nu∪uΨ(pv − pu)xv) (2.12)

With Ψ and Φ being multi-layer perceptrons with the ReLU activation function, and ⊕
the sum aggregator.

Graph Attention Network

Graph attention networks have first been descibed by Veličkovič et al in 2018 [32]. The
key aspect of this GNN is to rely on a self-attention mechanism. Self-attention is a
technic that allows neural systems to dynamically focus on and weight elements from an
input sequence. In other words, the system learns what elements of the input are the
most relevant and weights them accordingly. In their paper, the authors claim their GNN
to be (1) efficient since the attention architecture is parallelizable across node-neighbours
pairs. (2) Largely applicable since it can be used on graph nodes having different degrees
and (3) directly applicable to inductive learning problems.

The authors claim that at least one learnable linear transformation is necessary to gain
sufficient expressive power for converting the input features into higher-level features.
Therefore, all node features are transformed with a learned matrix W ∈ RF ′×F . F ′ and
F are respectively the dimensions of the output and the input of a layer. The importance
of node v to node u, referred to as the attention coefficients, is euv, is determined by the
attention mechanism a : RF ′ × RF ′ → R:

euv = a(W−→
hu, W

−→
hv), for v ∈ {Nu, v} (2.13)

To ensure meaningful coefficient comparison across different nodes, a softmax function is
applied to normalize the coefficients of a node across neighbourhoods.

auv = softmaxv(euv) = exp(euv)∑︁
k∈{Nu,u} exp(euk) (2.14)

In the default configuration of the layer, the attention mechanism is a single-layer
feedforward neural network, parametrized by a weight vector a⃗ ∈ R2F ′ , and a LeakyReLU
activation function (with negative input slope α = 0.2).
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2. Background

To stabilise the learning process, they eventually employ a multi-head attention mechanism
(see Attention Is All You Need [33] for details). For K independent attention mechanisms,
using our previous notation, the equation corresponding to a GAT layer is:

hu = Φ

⎛⎝ 1
K

K∑︂
k=1

∑︂
v∈{Nu,u}

ak
uvW kxv

⎞⎠ (2.15)

GraphSAGE

GraphSAGE is a very popular Message Passing GNN introduced in 2017 by Hamilton et
al [34]. The novelty of this layer is that it is a general inductive framework, which means,
unlike previous approaches, it efficiently generates node embeddings for previously unseen
data. Instead of training individual embeddings for each node, it learns a function that
generate embeddings by sampling and aggregating features from a node’s neighbourhood.

In practice, a graphSAGE layer corresponds to the default message passing GNN layer
which equation was presented in the previous section: Equation 2.10.

2.2.3 PyTorch Geometric
All experiments that were conducted as part of this thesis were implemented in Python,
using the PyTorch framework with the PyTorch Geometric (PyG)[35] extension. The
code is available on GitHub1.

PyTorch is an open-source machine learning library widely used for deep learning
applications. Initially released in 2016 by Meta AI (formerly Facebook), it provides a
flexible and intuitive interface for defining and training neural networks. It also offers
GPU acceleration and is one of the most popular libraries of this type. Released in
2019, PyG is specifically designed for deep learning on irregularly structured data such
as graphs. It provides a comprehensive suite of tools for creating and training Graph
Neural Networks and efficient implementations of various GNN layers.

1https://github.com/GregoireLamb/music_semantic_reconstruction.git
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CHAPTER 3
Datasets for OMR

3.1 Datasets
The OMR field is relatively small, and constructing music notation graphs is just one
of several possible approaches to reconstruct the semantics of the notation. As a result,
only a limited number of datasets are available, each adhering to its own principles for
encoding and defining a ground truth. This chapter presents the datasets used to answer
the research questions and discusses the necessary choices to make for building such
datasets.

3.1.1 Muscima++
MUSCIMA++ is a dataset created in 2017 and updated in 2019 [36]. It was built on top
of the CVC-MUSCIMA Database [37] by adding to 140 handwritten scores their music
notation graphs. Muscima++ aims to offer an adequate dataset and ground truth for
benchmarking OMR systems. The whole dataset contains a total of 102’914 elements
and 144’386 relations. It uses a very precise set of 115 labels to categorise the music
primitives and counts 218 types of relations. A relation type is defined by the labels of
the primitive involved in the relation, e.g. ‘notehead’-‘stem’. All the labels, their number
of appearances, and the 80 most present relation types with their number of appearances
are listed in Appendix A (Tables A.1 and A.2). The 140 scores of the dataset are all
handwritten and their structural complexity varies from monophonic to polyphonic. Each
score corresponds to a single page and is accompanied by its picture. Figure 3.1 shows
an example of a polyphonic score from this dataset.
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3. Datasets for OMR

Figure 3.1: Polyphonic score extracted from Muscima++. By default the scores appear
white with a black background, the colours have been swapped for visibility

This dataset comes with some extra information, such as how it has been annotated
and two predefined test splits. The scores have been written by 50 musicians. One split
(named dependant) asserts that the scores of a writer are distributed in training and test
sets. The other test split (independent) is independent of the writers. We used version
2.1 of Muscima++ and its "independent" test.

3.1.2 Musigraph
Musigraph is a dataset developed by Baro et al. in 2022 [19]. The authors found
Muscima++ limiting due to its small number of scores. To address this, they created a
larger dataset with 15,218 scores. Each score represents a single measure of a Beethoven
symphony simplified to be monophonic. Musigraph contains 370,404 elements and
253,623 relations, uses 18 music primitive categories and 11 link types. Details about
these categories and link types are provided in annexes A (Tables A.3 and Table A.4).
All the scores are monophonic and correspond to a single measure. Figure 3.2 shows an
example of a score from Musigraph.

Figure 3.2: Example of score from Musigraph

This dataset was initially developed for a specific paper, and the meta-information only
specifies the scorewriter used to generate it, along with a test–train–validation split. This
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3.1. Datasets

dataset contains an unknown number of errors, but its simplicity makes it an interesting
base for developing a model. Figure 3.3 presents a heatmap with marginal histograms
illustrating the size and repartition of the 15’218 MuNGs corresponding to the scores.
The graphs have small numbers of nodes roughly proportional to their number of links.
Most scores have between 7 and 40 primitives, and the average node degree is 1.37, which
corresponds to the average number of relations a primitive makes.

Figure 3.3: Musigraph MuNGs repartition by number of nodes and links. In the graphs,
the number of edges and nodes are highly related. The diagram also shows the number
of scores per number of nodes or edges is very uneven.

3.1.3 DoReMi

DoReMi is the most recent dataset, published in 2021 by Shatri et al. [38]. It contains a
mix of real-world and synthetic scores. These synthetic scores were initially intended
to test music notation software. This very rich dataset comes with different encodings,
including one with MuNGs. For this version, each score corresponds to a staff or a system
(group of staff read simultaneously). DoReMi counts 5’218 scores, 466’689 nodes and
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3. Datasets for OMR

274’663 relations. It uses 71 labels and 31 relation types. Details about these categories
and link types are provided in Annexes A (Tables A.6 and A.5). The scores are all
typeset and their structural complexity varies from monophonic to pianoform. Figure 3.4
illustrates a synthetic score and a Pianoform score from this dataset.

(a) Synthetic score extracted from DoReMi

(b) The TU Wien Informatics logo at half the text width.

Figure 3.4: Pianoform score extracted from DoReMi
.

3.1.4 Brief Comparison of the Datasets

Table 3.1 gives an overview of the dataset’s main characteristics. To deal with some
problems induced by the normalisation of the score, we created a version of DoReMi and
Muscima++ with their scores divided by measure. This process, described in detail in
Section 3.2.3 induces some data loss. Therefore, those two variations are listed with the
addition measure_cut in Table 3.1.

Table 3.1: Comparison of the datasets

datasets Number
of scores

Number
of primitives

Number
of relations

Number
of labels

Number of
relation types

Type
of score

Average node
degree of

the MuNGs
Musigraph 18921 370404 253623 18 11 Measure 1.37
Muscima++ 140 102914 144386 115 217 Page 2.80
Muscima
_measure_cut 2820 98095 116474 110 197 Measure 2.37

DoReMi 5218 466689 274663 71 31 Staff or
system 1.18

DoReMi
_measure_cut 11226 283529 169156 68 28 Measure 1.19
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3.2. Dataset Encoding

3.2 Dataset Encoding
This section addresses the primary challenges in creating datasets for Optical Music
Recognition with music notation graphs.

3.2.1 Set of Classes
The previous sections show the lack of consensus in labelling music primitive types. We
define the set of classes (or class set) of a dataset as the set of labels used to encode the
types of musical primitives (notehead, tie, beam. . . ). All the datasets don’t use the same
set of classes.

The class sets might differ in the primitives they can handle. Some primitives might not
have a defined class in a class set. A good example is the decomposition of flags. Flags
are primitives that tak part in the definition of the notes’ duration. For the following
discussion, we assume no other primitive than flags affect the note duration and the time
signature is 4/4 (see the chapter "How to Read Music"). 3.5 illustrates how different
flags can look like on a typeset score. The figure’s leftmost note (1) has no flag, and its
duration is one beat. The next note (2) has a single (red) flag, indicating that its duration
should be halved compared to a note without a flag. Thus, this note’s duration is half a
beat. The third note, with a ’double’ green flag, has a duration of a quarter of a beat,
half the duration of the note with one less flag. Flags function in this manner, halving
the note duration every time another flag segment is added. Traditionally multi-flags
are considered atomic musical primitives rather than accumulations of single flags. In
English, their naming is based on the fraction of a whole note their note occupies. For
example, the red flag of Figure 3.5 is called an eighth flag because eight notes with this
flag last as long as a whole note. This naming convention is used in the three datasets
presented earlier in this chapter. There is no theoretical limit for the number of flag
segments, although the readability of a score decreases with the number of flags and in
practice, notes with more than a 64th flag are extremely rare. SMuFL defines flag labels
until the 1024th fraction

1 2 3 4 5 6 7 8 9

Figure 3.5: Coloured flags. Up flags point upwards, like in notes 2 to 5, and down flags
point downwards, like those from 6 to 9.

An OMR system must distinguish between different flag types because they determine the
note’s duration. However, with this naming convention, a theoretically infinite number
of labels would be required. As a result, some datasets may limit the notation they
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3. Datasets for OMR

can support. The three datasets differentiate 8th from 16th flags, but only DoReMi has
labels for encoding 32nd flags. The definition of the set of classes might limit an OMR
system. A more flexible solution to handle any flag with a limited number of labels would
consider each ‘single flag segment’ of a ‘flag’ individually and have a relation between
each segment and the corresponding notehead. An OMR system could reconstruct the
correct duration by counting the number of relations to flags. But none of the listed
datasets works like this.

A class set can be described by its vocabulary. The vocabulary corresponds to the termi-
nology used to designate a primitive. For instance, a completely black notehead is labelled
as ‘noteheadFull’ in Muscima++, ‘notehead-full’ in Musigraph, and ‘noteheadBlack’ in
DoReMi. Despite the different names, they refer to the exact same primitive in all three
datasets. The vocabulary might depend on personal preferences and naming conventions
used during dataset creation.

A class set can also be described by its granularity. The granularity of a class set
defines the precision of the class set. One class of a class set can be decomposed into
multiple classes in another class set. A good example is again the decomposition of
flags. Muscima++ and DoReMi differentiate ‘up’ from ‘down’ flags. Even though this
distinction doesn’t impact the duration of a note it can have a different semantic. The
direction of a flag can depend on the position within the staff to visually ease reading or
indicate which voice is supposed to play the note in a polyphonic score. This distinction
doesn’t exist in Musigraph where a flag8thDown or a flag8thUp correspond to a 8th_flag.
Flags are one type of primitive, and the question of how specific the class should be also
arises for other primitive types like noteheads or accidentals.

Some initiatives try to overcome this lack of consensus in the class sets: the Standard
Music Font Layout (SMuFL) [39] [40] defines codepoints as Unicode associating classes
to glyphs. The names of the classes correspond to a standardised vocabulary. SMuFL
defines around 2600 classes that frame a very fine granularity and recommends the use of
several hundred glyphs. Initially developed for the scorewriter Dorico [41], SMuFL is now
adopted by other music notation software such as MuseScore [10] and Finale. Despite its
widespread use, SMuFL has not achieved universal adoption. For instance, LilyPond [11],
which is a popular scorewriter, employs its own granularity. Among the three datasets,
only DoReMi implements the SMuFL.

3.2.2 Music Notation Graph
The notion of “Music Notation Graph” has been used in several research [19] [42] [18], but
has no commonly accepted definition. The shared understanding is that music primitives
form the nodes, and edges model some interaction between those primitives. These
interactions are implicit in CWMN, and their definition is the barrier to a standard
definition of MuNG. Figure 3.6 illustrates a MuNG on a simple monophonic measure.

While MuNGs can exist on their own, they are typically used within the context of OMR
systems. Consequently, the definitions of their links are often tailored to the specific
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Figure 3.6: Representation of a Music Notation Graph

objectives of these systems. Some graphs utilise a rich set of interactions; for example,
Pacha et al. [18] differentiate between Precedence and Syntactic edges. Precedence edges
establish the temporal order of the symbols, while Syntactic edges connect the primitives
that constitute a musical note. Precedence edges are unambiguous, and the temporal
order of the primitives is trivial in most scores. Therefore, many MuNGs omit precedence
edges. In the datasets used for implementation, only syntactic edges are included.

Figure 3.7: Illustration of different MuNGs on simple eighth notes

Unlike precedence edges, defining which syntactic edge should be constructed is not
trivial. The relations between the primitives that constitute a note can vary from one
dataset to another. For example, one could create direct links between noteheads and
flags, while another would rather use a link between the flags and the stems and then a
link between the stem and the notehead. Figure 3.7 illustrates these two ways of building
MuNGs. Both could be used in an OMR system as they represent the semantics of the
music notation. In this example, they also contain the same information. MuNGs might
also differ by the information they encode: Muscima++ includes the relation between
the noteheads and the staff, while the other datasets don’t. One could probably claim
this information is not needed in an OMR system but it might also help when multiple
staff are used in a score. Other encoding choices are more questionable, e.g. DoReMi
does not encode the link between accidentals and noteheads. As these links are crucial
to reading the music and determining the pitch of a note, the definition of such MuNGs
might not be sufficient to recover the full semantics of the music or require additional
interpretation.

Another essential characteristic of the MuNGs is whether the graph is directed or
undirected. For syntactic edges, whether a note’s compound interacts bilaterally or
unilaterally is a matter of perception, but this concept might impact the behaviour of an
OMR system (see Section 4.5.1).
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3.2.3 Dividing Scores by Measure
Cutting the scores by measures is a necessary preprocessing step to align the data format
with the requirements of Musigraph, which operates on individual measures. Having all
the datasets with the same format allows for training models on multiple datasets. This
section presents the method used to divide the scores by measure and explains how this
process may induce loss in the dataset.

Find ‘ barlines’ Sort and order ‘ barlines’ Recover the measures

Find primitives related to the
primitive in each measure

Cut undesiredlinks Reshape initial image to
correspond to the measure

Find the primitives within
each measure

Modify the position of every
element

Save the new image
and XML file

Input
Original image

and XML

Figure 3.8: Pipeline for dividing scores by measures

Figure 3.8 shows the pipeline used to divide the scores. The goal is to obtain the MuNG
and cropped image for each measure. The measures are recovered using the ‘barlines’,
‘barlineHeavy’, or any other elements that delimit a measure. MuNGs don’t include
links between the two barlines of a measure1, but once ordered with their positions, it
is possible to define which barlines delimit a measure. Each measure contains a set of
primitives located within an area we call the Mesasure’s Surface (MS). Horizontally,
the MSs are delimited by the barlines. The vertical limits are more complex to define.
Theoretically, a measure has no upper or lower limit, and notes with high or low pitches
might land outside the staff and receive ledger lines as visual cues. Technically, most
primitives land on the staff but for scores with multiple staffs, it might not always be
obvious to which staff a primitive belongs to. Two strategies are used to process the
two datasets. For DoReMi, the measure’s upper limit is set to an extremely high value
because scores always contain a single staff or system. For Musicma++, we determined
that increasing the height of the rectangles formed by the barlines and their heights by
25% was a fair compromise to define the MS.

Once the MSs are defined, a list of primitives that land on each measure’s MS is defined.
This list is called Primitives on the Measure’s Surface (PMS). Then, for each measure,
a second list of primitives linked to the primitives in PMS is created. The primitives
common to the two lists are removed from the second list called Primitives Out of the
Measure’s Surface (POMS). POMS contain primitives from other measures or primitives

1The first barlline of a staff is often omitted and the first measure is often only delimited by its right
barline. For simplicity, these measures are ignored here.
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Cropped image

MS

Figure 3.9: Construction of a measure. The final measure is delimited by the red rectangle
and contains the primitives marked with a red dot. The green edges are included in the
final MuNGs, and the blue ones are cut.

that did not land in any SM. Figure 3.9 illustrates the objects used to construct a measure.
In this example, the POMS contains the slur and the beam with the red dots. The other
primitives marked with a red dot and landing in the blue MS belong to the PMS. The
links between the elements in POMS and elements not in PMS are cut. These links are
blue in the example. The MuNG of a measure is then built with the primitives of the
two lists. Staff are excluded from the primitives for simplicity: in Muscima++, they are
linked to every notehead. The POMS of most measures would contain all the noteheads
of the score and include them in every MuNG. Removing these links explains the drop in
node degree between Muscima-pp and Musicima_measure_cut in Table 3.1. For each
measure, the left-most, right-most, top-most, and bottom-most primitive’s bounding
boxes define the boundaries used to crop the input image. The position of the primitives
is mapped to correspond to this new image. Finally, the MuNGs and the cropped image
are saved.

This process has multiple advantages. It ensures that the correctly located primitives’
relations are preserved in the ground truth. Every relation in the produced scores exists
in the original ground truth; no edge can be arbitrarily added. Some primitives can
belong to multiple measures, which is crucial for dynamics or slurs. Saving the ID of
these duplicate primitives enables reconstructing the initial MuNGs, making this division
reversible. However, this process has many drawbacks. First, many scores do not include
barlines to define the beginning of the first measure of staff, and the process omits many
measures. Then, the definition of the MS is imperfect. Some primitives might be excluded
or wrongly attached to multiple measures, creating incomplete MuNGs or scores that do
not correspond to a measure.

The number of errors in these new datasets is unknown, but no problem was discovered
when using the dataset. We are convinced that other systems could solve this problem
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in a much more accurate way and would preserve a greater share of the initial dataset.
Nevertheless, the new datasets seem sufficient for evaluating GNNs in the context of
semantic reconstruction for OMR.
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CHAPTER 4
Semantic Reconstruction of Music

Notation With GNNs

4.1 Pipeline Overview and Practical Considerations
Figure 4.1 illustrates the pipeline implemented to train a GNN-based model for re-
constructing the semantics of the music notation. The process can be split into three
main steps. First, building a feature matrix from an XML input. Secondly, building
the Candidate Graph (CG) that serves as model input. This is achieved by adding an
adjacency matrix to the feature matrix. At the same time, the ground true graph is
constructed using the same feature matrix and the relations listed in the ground truth.
The last step involves training the GNN-based model.

GNNs require graph-structured input. Unfortunately, musical object detectors output
a list of nodes with their label and position. In other words, the pipeline input can
be turned into a node feature matrix but ultimately lacks the accompanying adjacency
matrix. An early step in using GNNs is to transform the grid-like output of the musical
object detection into a graph-like input, i.e. to recover a feature matrix and build an
adjacency matrix from scratch.

To build the adjacency matrix, the first intuition would consider every node to be
connected. Veličkovič et al. [24] state that this approach is valuable for small graphs as
it exploits the full potential of a GNN. Node information is shared across all nodes, and
the model can learn from it. Under this ‘fully connected graph’ assumption, it can be
shown that graph attention-based GNNs are equivalent to transformers [33]. However,
this approach doesn’t scale well and hasn’t been extensively tested in this work. The
opposite intuition would consider every node to be disconnected. GNNs update node
representation based on their neighbourhood; in this case, a node representation would be
updated only based on its own features. Any GNNs would be equivalent to the Deep Sets
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Figure 4.1: Training Pipeline

model [43], and no benefits of the GNNs functioning could be exploited. This approach
has, therefore, been excluded. The last possibility is to use rules or to infer a graph
from the feature matrix. Inferring such a graph is an emerging area called Latent Graph
Inferring. The key idea of this approach is to embed the latent features of the nodes into
high-dimensional spaces and predict the graph edges from the proximity of the nodes in
this hyperspace. Notable work is the Differentiable Graph Module (DGM) [44], which
introduced this idea and marked a significant breakthrough in the usual benchmarks.
Recently, Ocariz Borde et al. [45] improved this framework by leveraging planes with
non-constant curvature in the hyperspace instead of the Euclidean planes used to build
the DGM hyperspace. Such an approach could be combined with a GNN but could also
replace the whole pipeline and offer an end-to-end alternative. However, this solution’s
lack of interpretability leads to considering a rule-based approach to build the CG. We
define the positive edges as edges a candidate graph and a ground truth graph have in
common. Similarly, the negative edges are the edges of a candidate graph that are not in
its ground truth. Note that all the edges of the ground truth might not be included in
the CG. Having both types of edges in the CG is crucial to enable the model to learn
when to predict edges. Using the observation that related music primitives are spatially
close to one another and the work of Baro et al. [19], employing a K-Nearest Neighbors
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(KNN) approach appears to be a promising solution. A KNN graph constructs edges
between a node and its k nearest neighbours. Having such a graph should include both
negative and positive edges. The optimal value for k and strategies to enhance this graph
are discussed in Section 4.4.1.

A link prediction task on a graph aims to predict an edge feature. To perform such a
prediction with GNNs, a classifier uses the representations of the two endpoints of a
potential edge. This edge is called a candidate edge (CE). Usually, the classifier predicts
the existence of a set of CE, and every other edge that is not included in this set, is
considered inexistent. Defining a set of CE that includes every edge of the ground
truth is necessary to reconstruct a graph perfectly. This set of candidate edges is, in
practice, independent from the edges of the CG. To define the set of candidate edges,
the first intuition is to include every possible edge of the graph to predict. This method
ensures that with a perfect model, the ground truth can be recovered, but this method is
computationally expensive as the number of edges in a fully connected graph is given
by f(n) = n(n−1)

2 , with n the number of nodes in the graph and undirected edges. To
reduce the number of predictions, a restricted set of CE can be defined with a heuristical
approximation of the desired graph that includes at least all the ground truth edges.
Using the observation that related music primitives are spatially close to one another, the
KNN approach is a natural candidate. Considering that the CG and the set of candidate
edges are obtained similarly, the candidate edges could be defined by the edges in the
candidate graph. This selection of CE would be very efficient since the edges are already
available from the GNN training. As the links already exist, the task can be considered
as link classification instead of link prediction, but this distinction is rarely made in the
literature. Using such a method requires some practical considerations:

The set of CE must contain the set of ground-true edges; this is not a requirement for the
candidate graph, which can be built arbitrarily. To use the edges of the candidate graph
as CE, the candidate graph must include every ground-true edge. We define Inclusive
Candidate Graph (ICG) as candidate graphs that include their corresponding ground
truth. Section 4.4.1 describes how to assert candidate graphs are ICG.

Another factor to consider is the versatility of GNNs, which can accept any graph as
input. In our study, various pipelines can interpret this flexibility and construct graphs
differently during the training and testing phases. Building smaller graphs for training
the GNN could improve the training time while capturing most of the information needed
to reconstruct the semantics of the music notation. To evaluate this model, another
pipeline could then construct ICGs, which might be larger than the training graphs. This
is discussed in Section 4.4.1.
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4.2 Metrics
The following sections detail the parameters and methods used to construct the training
pipeline. To assess the impact of certain parameters, experimental results are presented
throughout these sections. As some of these metrics are unusual, they are presented
upstream in this section.

4.2.1 The Problem with OMR
Chapter 3.1 shows the need for more consensus on building datasets for OMR that contain
MuNGs. Despite a few standards, the definition of MuNGs edges and class sets are
specific to each dataset. These encoding imperfections are also reflected in the evaluation
standards: There is no standard metric or method to rigorously describe and evaluate
the output of the music semantic reconstruction stage, and specifically, no metrics for
MuNGs. This known problem has already been discussed in the literature [46] [16] [47].

Transitioning from the output of the music semantic reconstruction stage to the final
output is claimed to be straightforward. This task hasn’t been done in this work, but
we claim that a perfect semantic reconstruction system should be able to recover all the
musical information of a score. This includes recovering advanced implicit information
like omitted primitives; a running example of such primitives concerns the triples. These
notes visually look like three eight notes linked by a beam with a ‘3’ on top, but the ‘3’ is
often abusively omitted after the first triple. Figure 4.2 shows the score of the beginning
of the Moonlight Sonata from Beethoven, it illustrates this omission of ‘3’ above the
triples. A perfect semantic reconstruction system should understand such omission. With
this claim, the last stage of the OMR pipeline corresponds to the encoding of only (and,
if possible, all) the information obtained at the music semantic reconstruction stage.
Therefore, the evaluation of the semantic reconstruction stage and the evaluation of the
final output of an OMR system can be indiscriminately discussed.

Figure 4.2: First measures of the Moonlight Sonata from L. van Beethoven. The two
first measures contain triples with the ’3’ on top. On the following measures, the triplets
are missing their ’3’.

In [46], Hajič et al. distinguish between two types of evaluation methods: extrinsic and
intrinsic. Extrinsic methods evaluate systems in application contexts. For example, how
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well does an OMR system address transcription? Intrinsic evaluations don’t require any
context and would instead refer to the share of information an OMR system manages to
recover. As the information contained in a music score is limited, there is no reason why
such a metric cannot exist. The authors also state that there is no automatic method for
OMR that is (1) rigorously described and evaluated, (2) has a public implementation,
and (3) gives meaningful results. In other words, he claims that no intrinsic evaluation
method has been found for OMR yet. Such metrics would greatly benefit the field and
enable a fair comparison of OMR models. However, even in 2024, no intrinsic method
has been found, and comparing models often requires expensive user studies [47].

Despite their drawbacks, some standard metrics remain valuable for evaluating OMR
systems. For our specific case of MuNG, we can define two types of metrics: those that
rely on the task’s binary classification aspect and those that rely on its graph aspect.

Binary Classification Metrics

The task of music semantic reconstruction can be described as a binary classification task
where each link of a graph would be classified as existing or not. With this formulation,
a model can be evaluated with standard metrics of classification tasks. We denote:

Predicted Negative Predicted Positive
Actual Negative TN FP
Actual Positive FN TP

(4.1)

Accuracy = TP + TN

TP + TN + FP + FN
(4.2)

Precision = TP

TP + FP
(4.3)

Recall = TP

TP + FN
(4.4)

Specificity = TN

TN + FP
(4.5)

These metrics have important implications. They enable a fair comparison of models’
performance only under certain conditions. The model inputs must have similar input
graphs and a similar proportion of edges in the ground truth and the input graphs. In our
case, the number of neighbours used to create the KNN graph and the edge filtering could
make these metrics meaningless. Let’s take two examples to put that into perspective.
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Example 1: Restrictive input graph

Let’s imagine we set the number of neighbours of the KNN too low, and the
generated CG doesn’t cover every edge of the truth (see Section 4.4.1) for details on
the graph behaviour under the influence of k). Let’s also imagine that our model
has 100% accuracy, and that every metric described above is maximised.

Although this model’s output is 100% accurate, it would not recover all the infor-
mation needed to generate the desired output of the global OMR system because
some edges of the ground truth will still be missing.

Example 2: Over-Saturated input graph

Assume two CGs, A and B, are generated for the same score. B is a simple KNN
graph, while some negative edges in A are pruned. Let’s now imagine a model
that generates the same output (with some mistake) for the links A and B have in
common. Let’s also assume the model correctly cut the extra edges B has compared
to A.

In such a scenario, the accuracy (or any other metric listed above) would be higher
for B than for A, but the quality of the output would strictly be the same from an
OMR perspective. This problem occurs the same way if B has many negative edges
that can easily be cut.

These issues don’t make the binary metrics useless; they reflect how well a model learns
rather than how interesting its output is. They remain precious tools as long as we
compare models on the same inputs. Some drawbacks of these metrics vanish if we
consider the output not as a binary classification but as a graph.

4.2.2 Graph-based Comparison Metrics
The ground truth and the output of the pipeline can be seen as MuNGs, which are graphs.
From this angle, we can consider evaluating our model with graph-based evaluation
criteria. Graphs can be complex structures, but a considerable research effort has been
made to define comparison metrics for these structures [48]. MuNG are simple graphs,
and because we favour easy-to-interpret metrics, Graph Edit Distance (GED) seems to
be the most suitable metric. In A survey of graph edit distance, Gao et al. [49] state
that a finite sequence of graph edit operations can transform a graph into any another
one. They define the GED as the least-cost edit operation sequence. Having two graphs
G1 = (V1, E1) and G2 = (V2, E2), the GED can be defined as follows:

GED(G1, G2) = min
(o1,o2,...,ok)

k∑︂
i=1

c(oi) (4.6)

With o1, . . . , ok a set of operations that transforms G1 into G2 and c(oi) the cost of the
operation i.
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For our needs, we can make two assumptions to simplify the GED:

• A1: V1 and V2 are the same ensembles: We consider the nodes (music primitives)
to be perfectly detected; hence, our ground truth and our prediction always share
the same set of nodes.

• A2: The editing operations are limited to (1) adding and (2) cutting an edge. The
two operations have the same cost. A2 enables to transform any graph G1 = (V, E1)
into G2 = (V, E2).

Under these assumptions, we can simplify the GED as:

GED(G1, G2) = min(|o1, o2, . . . , ok|) (4.7)

With |.| the length of the sequence.

GED(G1, G2) = |E1 ∪ E2| − |E1 ∩ E2| (4.8)

This GED breaks some limitations the binary-based metrics have. The value of the GED
cannot be manipulated by the size of the input graph, and under the two assumptions
A1 and A2, for the same ground truth, a lower GED will always correspond to a better
output. This metric is very meaningful for comparing the outputs of different models for
the same score regardless of the model inputs.

The drawback of the GED comes when we aim to interpret its value for different types
and sizes of scores. Let’s imagine we want to evaluate a model on various types of scores,
e.g. monophonic vs polyphonic. We assume the polyphonic scores will have much bigger
ground truth graphs than the graphs corresponding to the monophonic scores. It could
be meaningless to compare the actual GED values obtained on the scores because, for
the same value, a much greater share of the edges would be recovered for the polyphonic
scores.

This drawback probably led Baro et al. to instead rely on the Music Error Rate in [19],
which they define as follows:

MER = I + R + S

T
(4.9)

where I, R, and S are the number of insertions, deletions, and substitutions to obtain the
ground truth sequence. T is the number of edges in the ground graph.
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This metric is designed to evaluate the second and third stages of the OMR simultaneously:
it considers substitution, which corresponds to relabeling music primitive. The two other
operations, insertion and deletion, can be applied to the edges as well as to the nodes.
Our task is limited to the third stage of the pipeline, but we could use MER as it is
defined. For an easier interpretation of the result and under assumptions A1 and A2, we
can simplify the MER and redefine it as follows:

MER = GED

T
(4.10)

With this form, MER appears very close to the GED but solves, to a certain extent, the
problem we stressed for this metric. Since we divide the GED by the length of the ground
truth, we can compare the MER value for scores with different lengths. However, the
interpretation of the MER value remains very tricky: As the inverse function is involved,
calculating the MER for each measure separately and then averaging those MERs gives
a result that isn’t directly comparable to the MER calculated for an entire graph. It is
important to be aware of this when comparing or combining MER values. The other
limitation of the MER is the choice of dividing the GED by the length. The length of the
ground truth is not an obvious candidate. One could claim that the number of primitives
could be a more natural choice regarding interpretation. In fact, we aim to balance the
GED by the score’s complexity and a better metric would use an objective measure of
the music notation complexity. Such a metric does not exist (yet). Rigorously assessing
the complexity of the music notation seems to be a research gap and no paper addresses
it. However, measuring the difficulty of playing a certain piece of music based on its score
benefits from a lot of research [50] [51]. These papers could serve as a basis for creating a
metric for the music notation complexity, but this task is out of the scope of this thesis.

Are GED or MER the Missing Metrics of the OMR Field?

According to Hajič [46], the ideal method to evaluate an OMR output needs to (1)
be rigorously described and evaluated, (2) have a public implementation, and (3) give
meaningful results. With a clear definition of MuNGs and a defined class set, only one
ground truth graph can be constructed for a score. The GED or MER can also be
clearly established by determining the different edit operations. GED or MER would
then correspond to the share of the music information an OMR system managed to
recover. The two first characteristics defined by Hajič are fulfilled in this condition. The
last characteristic concerns the interpretation of the metric. The use of ‘meaningful’ in
the description of the ideal metric lacks clarity. We demonstrated that interpreting these
metrics is not always straightforward, but one could easily claim they are meaningful.
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4.2.3 Test Procedure
Experimental results are presented throughout the thesis to assess the impact of certain
parameters. The testing procedure to obtain these results consists of running a baseline
configuration altered by one (or two) change(s) at a time. All the test results presented
in this work have been obtained using a CPU to ensure reproducibility.

By default, a configuration is tested on the dataset Musigraph. The candidate graphs
are based on KNN graphs constructed using 14 neighbours. Their edges are considered
directed (The information can only flow along the direction of the edges), and the
scores are normalised. The model is a GNN composed of 3 graphSAGE layers, having
intermediate representations of size 2048. The final layer outputs a vector of size 1x1024
for each node. Between each layer is a ReLU activation function and the final output is
normalised. The model learns over 100 epochs. The learning rate starts from 3 and is
updated during the training by a scheduler that reduces the learning rate by a factor of
0.5 when the validation loss stops improving for a patience of 10 epochs. The imbalance
of positive to negative edges is considered with a weight computed on the training set
before the first epoch.

The semantic pruning is a process that filters the edges of a CG that could never exist
in a ground truth based on their endpoints’ labels. This process is described in detail
in Section 4.4.2. Pruning the graph might modify the impact of other parameters: On
pruned graphs, a parameter can improve the pipeline but make it worse when the graphs
are not pruned. By default, the tests are run first without pruning and then with pruned
graphs. If the best configuration of the test doesn’t change with the pruning parameter,
only the first test is saved. The training pipeline is shaped by other specific parameters
presented throughout the thesis, their default values are available in Annexe B.

The test output contains a confusion matrix built on the test set as well as an average
MER, GED, and accuracy. In addition, an analysis of the output includes the accuracy
obtained for each link type, e.g. the accuracy of the model on the relations between
noteheads and stem. An option enables a visual display of the predicted graphs for a more
human-friendly output. The original image is superposed with the graph’s true positive,
false negative, or false positive edges. As true negative edges are usually numerous and
not very insightful, they are not visualised. Figure 4.3 shows an example of such graphs.
The colour also indicates the error type.
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Figure 4.3: Example of graph visualisation
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4.3 Data Preparation: from XML to feature matrix

This section discusses the first step of the training pipeline. It explains how to obtain the
feature matrix of the ground truth and candidate graphs from the input. This matrix is
composed of the feature vector of the graph nodes and is referred to as X in the GNNs
literature (see 2.2). After a music object detector, the feature vector of a node can be
defined using the primitive’s label, sizes and position.

4.3.1 Encoding the Labels

We decided to one hot encode the node’s label in the feature vectors. However, the set
of labels to use is not straightforward. This work aims to build models that deal with
scores from different datasets. To handle the different sets of labels of the dataset (see
Section 3), the first step of the pipeline maps each label into a common set of labels.

For some experiments, the set of classes employed in the datasets are used to perform the
one-hot encoding. These class set are called all_dataset_name_labels. They can only be
used with their corresponding datasets. Conversely, mono_label is a set of classes that
maps every label to the same ‘primitive’ label.

Defining other sets of classes involves trade-offs and decisions. We can decide the granu-
larity of the set: E.g., to label flags, one approach could include using multiple specific
labels, such as ‘8th_flag_up’, ‘8th_flag_down’, ‘16th_flag_up’, 16th_flag_down’,. . . .
Alternatively, a single, more generalised ‘flag’ label could be used to encompass all
variations. This echoes the problem described in Section 3.2.1, but the definition of
granularity here doesn’t have the same implication as the granularity of the dataset’s
class set. Each node (or primitive) is associated with an ID, and it is always possible to
return to its original label (the one given by the object detector). For example, every
accidental can be labelled ‘accidental’ while having a different influence on the noteheads
(sharps increase the pitch by half a ton while flat do the opposite). After the model
predictions, using the ID of the node, it is possible to recover the original label and
encode the final representation of the score in consideration. It is, therefore, always better
to have the most detailed granularity in the object detector, as it can be simplified at this
step of the pipeline. To build a proper class set for mapping multiple datasets, the least
specific granularity of the datasets’ class set is the limiting element: In Musigraph, the
distinction between empty and half-empty noteheads doesn’t exist, while Musicma++
and DoReMi make it. If the set of classes used for mapping the object detector labels
distinguishes between these two types of noteheads, mapping Musigraph’s noteheads to
their new labels would be imperfect; it would mix the two kinds of primitives under one
of the two more specific labels.

To define the set of classes, a vocabulary must be defined too. Since the labels are
one-hot-encoded, the models never get the actual name given to the primitive. The
vocabulary is only used to order the features when the one-hot encoding is performed.
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Table 4.1: Mapping to 10_labels class set
Musigraph Muscima++ DoReMi 10_labels

stem stem stem stem

notehead-full,
notehead-empty

noteheadFull, noteheadHalf,
noteheadFullSmall,

noteheadWhole

noteheadBlack,
noteheadHalf,

noteheadWhole
notehead

beam beam beam beam
(not existing) augmentationDot augmentationDot augmentationDot

sharp,
flat,

natural

accidentalSharp,
accidentalFlat,

accidentalNatural,
accidentalDoubleSharp

accidentalSharp
accidentalFlat,

accidentalNatural
accidentalDoubleFlat

accidentalQuarterToneSharpStein
accidentalQuarterToneFlatStein

accidentalDoubleSharp
accidentalThreeQuarterTonesSharpStein

accidental

16th_flag,
8th_flag

flag16thUp,
flag16thDown,
flag8thDown,

flag8thUp

flag16thUp,
flag16thDown,
flag8thDown,

flag8thUp,
flag32ndUp,

flag32ndDown

Flag

(not existing) tie tie tie
(not existing) legerLine (not existing) legerLine

(not existing)
dynamicCrescendoHairpin,

dynamicDiminuendoHairpin
slur

dynamicForte,
dynamicPiano,
dynamicFFF,
dynamicPPP,
dynamicFF,

dynamicText,
dynamicMP,

dynamicFortePiano,
dynamicPP,

dynamicSforzato,
dynamicMF,

dynamicForzando,
gradualDynamic,

slur

others_slur_dynamics_etc

8th_rest,
16th_rest,

quarter_rest,
half_rest

rest8th,
rest16th,

restQuarter,
restHalf,
restHBar,
restWhole

rest8th,
rest16th,
rest32nd,

restQuarter,
restHalf,

restWhole

rest
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The definition of the class set can also be used as a filter for the nodes that cannot be
involved in any relationships. Chapter 3.1 shows that some primitives are never part of
relations and can thus be ignored. For example, the barlines or the time signatures are
always isolated elements. Having them would probably pollute the Candidate graphs.
As for the precision of labels, the elements filtered at this step are not lost. Indeed, they
can be added directly to the final representation.

Multiple class sets have been defined with a mapping to the datasets’ classes. Most
correspond to intuitive choices guided by the behaviour of the primitives in CWMN. The
simple set of classes called 10_labels shown in Table 4.1 maps the relationships’ most
critical and frequent endpoint labels to 10 standard labels. The mapping to this set of
classes filters many primitives like the text-based labels of Muscima++ but covers the
most important labels to reconstruct the music.

To evaluate the impact of a set of classes on model performance, we used the test
described in Section 4.2.3 For this experiment, three different sets of classes are tested:
10_labels, full_musigraph_labels, and mono_label. Table 4.2 presents the test results.
The vocabulary used in the class set doesn’t really matter but the granularity might
impact the model. The intuition is that having a larger number of classes might let the
model learn finer rules. For example, if there is a down flag, the model could learn that
the notehead should be left from its stem. However, having more labels makes learning
more complex for the model as it enables learning on more combinations. For this test,
the class set 10_labels performs best or equivalently on two out of three indicators, which
supports our intuition. However, the pipeline configuration used to train these models is
relatively simple, and all these models perform poorly. By default, the class set 10_labels
is used in the test configuration.

Table 4.2: Influence of the class set on the semantic reconstruction

Class set
Metric Accuracy (%) MER GED Number of labels

mono_label 82.43 2.79 44.96 1
10_labels 82.43 2.47 38.61 10
full_musigraph_labels 82.07 2.47 37.40 18

4.3.2 Encoding the Size and Position

In addition to their label, music object detectors provide information about the size
and position of the primitives. This information can enrich the feature vectors of the
candidate graph nodes. Usually, size and position are conveyed through bounding boxes:
rectangular shapes framing the music primitives’ symbols. These simple objects can be
defined by four coordinates or distances to a reference point. Figure 4.4 illustrates the
bounding box of a G clef.

37



4. Semantic Reconstruction of Music Notation With GNNs
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Figure 4.4: Primitive size and position encoding

To build the feature vector, we determined two sets of distances to encode size and
position. One, illustrated in blue in Figure 4.4, utilises the distances between the top,
bottom, left and right edges of the box to the limit of the score. Alternatively (in
green), the position of the primitive is described with the centre of the bounding box
(middlex and middley) and its size with the width and height of the box. The first
set of distance is referred to as bounding_box encoding in opposition to the second set
called center_dimension encoding. The information in the two configurations is strictly
equivalent. Therefore, it is natural to think that this choice of encoding should not
impact model performance in any way.

Table 4.3 presents the results of the test procedure for encoding size and position. The
table also includes the results from testing with pruned graphs, where pruning involves
removing certain negative edges based on their labels. This pruning process results in
significantly smaller candidate graphs compared to the unpruned configuration (refer
to Section 4.4.2). Although both models have access to the same information, their
performance varies depending on the encoding method used. The table highlights that
size and position encoding can significantly impact model performance. However, the
effect of these parameters is not straightforward: in the first configuration (unpruned),
the model using the center_dimension encoding outperforms others across all metrics,
while in the second configuration (pruned), the bounding_box encoding yields the best
results. By default, the encoding Center_dimension is used in the test configuration.

Table 4.3: Influence of the primitive size and position encoding on the semantic recon-
struction

Pruning Encoding
Metric Accuracy (%) GED MER

Bounding_box 82.07 38.61 2.47No Center_dimension 85.84 30.56 2.12
Bounding_box 84.19 7.35 0.47Yes Center_dimension 81.26 9.07 0.53
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4.4 Building the Candidate Graph: An Adjacency Matrix
From Scratch

The previous section explains how a feature matrix can be built from the output of a
music object detector. This section delves into constructing the remaining element of the
candidate graph: the adjacency matrix. It focuses on KNN-graphs-based approaches, as
explained in Section 4.1. In this section, the process is presented using Musigraph. It is
the same for all datasets.

4.4.1 K-Nearest Neighbour Graph
Principle

K-Nearest Neighbour graphs are built by constructing an edge between each node of a
graph and its k nearest neighbours. To construct such a graph, the centre of the music
primitive’s bounding boxes is used as the node position. Alternatively, the distance
between the boxes could be used, but this hasn’t been considered for simplicity. The
distance between the nodes is obtained using the Euclidean distance expressed in Equation
4.11.

euclideanDistance(A, B) =
√︂

(XA − XB)2 + (YA − YB)2 (4.11)

By default, KNN graphs are simple graphs, meaning they adhere to 2 conditions: (1)
they do not contain self-loops (edges connecting a node to itself), and (2) they have at
most one edge between any two nodes in undirected graphs, and at most two edges (one
for each direction) in directed graphs. In this work, KNN graphs are always constructed
as directed graphs, but this does not imply that edges in the candidate graphs are treated
as directed edges.

Choice of k

An important parameter for creating the KNN graphs is k, the number of neighbours
to generate. This section discusses the impact of the number of neighbours on the
candidate graphs and identifies interesting values for k in the context of music semantic
reconstruction.

The script k_neighbours_exploration.py, whose pseudocode is described in Table 3,
allows an understanding of the impact of k on the candidate graph. This script generates
KNN graphs for a dataset using various values for k and extracts information such as
the total size of the graphs and their proportion of positive edges. Then, for each graph,
it counts the number of edges in the ground truth that are not in the KNN graph. Three
configurations are tested with two class sets and the pruning or not of certain edges.
Pruning the graph filters the edges that could never exist in a ground truth based on
their endpoints’ labels, e.g. two noteheads can’t be linked in a ground truth because it
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has no musical sense. Section 4.4.2 gives a detailed explanation of this process. For this
exploration, the graphs are generated with directed edges, such the number of links can
be interpreted as the number of relationships between nodes.

Algorithm 4.1: k_neighbours_exploration algorithm
1 k_neighbours_exploration ()
2 begin
3 configuration ← [(all_musigraph_labels, no_prune), (10_labels,

no_prune), (10_labels, prune)]
4 k_values ← [1, 2, . . . , 14]
5 candidateGraphs ← []
6 graphSizes ← []
7 proportionOfTrueEdges ← []
8 countUncoveredEdges ← []
9 groundTrueGraphs ← []

10 foreach for k in k_values do
11 foreach labels, prune in configuration do
12 groundTrueGraph ← generateTrueGraphFromXML(labels)
13 groundTrueGraphs.append(groundTrueGraph)
14 foreach trueGraph in groundTrueGraphs do
15 candidateGraph ← generateCandidateGraph(k, trueGraph)
16 if prune then
17 pruneEdges(candidateGraph)
18 end
19 graphSizes.append(len(candidateGraph))
20 numberOfTrueEdgesInTheGraph ←

CountCommonEdges(trueGraph, candidateGraph)
21 proportionOfTrueEdges.append(numberOfTrueEdgesInTheGraph

/ len(candidateGraph))
22 countUncoveredEdges.append(len(trueGraph) -

numberOfTrueEdgesInTheGraph)
23 end
24 end
25 end
26 return sum(graphSizes), mean(proportionOfTrueEdges),

mean(countUncoveredEdges)
27 end

Figure 4.5 shows the evolution of the size of the candidate graph for an increasing number
of neighbours in the KNN graphs. The data are available in a tabular format in Annexe
C. The number of edges increases almost linearly with the first values of k. The R2 of
the linear regression of the curves for k between 1 and 13 are superior to 0.997. The
non-exact linearity is explained by the saturation of some graphs. For the score having
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less than k+1 nodes, the KNN graph corresponds to a fully connected graph. Increasing
k doesn’t change the number of edges for these scores.
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Figure 4.5: Evolution of the number of edges in the KNN by the number of neighbours

Figure 4.6 shows the proportion of positive edges in the KNN graphs for an increasing
number of neighbours. This proportion quickly drops when k growth and the high
proportions for smaller k values indicate primitives are likely to be linked to their closest
neighbours. For the configuration ‘10_labels / pruned’, 99.29% of the primitives are linked
to their closest neighbours in the ground truth. From a machine learning perspective,
this proportion corresponds to a class imbalance between positive and negative edges.
This proportion is used in the loss function during the training, but it is systematically
computed on the training set to prevent data leakage.
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Figure 4.6: Proportion of positive to negative edges in the graph for different values of k

Figure 4.7 shows the evolution of the proportion of the ground truth edges covered by
the KNN graphs. This proportion is strictly the same for configurations having the same
granularity. 100% means that for each score, the ground truth graph is a subgraph of the
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KNN graphs. This is achieved with k set to 14 for the class set all_musigraph_labels
and k=13 for the other configuration. In a musical sense, it means that in a monophonic
measure, a primitive only binds relations among its 13 or 14 closest neighbours. This
statement should be taken carefully as it remains possible to write a measure with further
distant related primitives, and it has been computed on Musigraph only; Musigraph
contains monophonic scores, and more complex notation might require a higher value for
k. The definition of the MuNG is also important to consider. Some MuNGs include links
between primitives and staves, which create distant relations and require large values for
k to cover all edges. The KNN graphs are used as candidate graphs, and the question
raised in section 4.1 finds an answer: To ensure that the ground truth is included in the
candidate graph, k must be set regarding the granularity. And any value over 14 assures
this property for Musigraph.
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Towards finer candidate graphs?

A means to get smaller Candidate Graphs while including their ground truth could be
to select the number of neighbours (k) based on some metadata, such as the number of
nodes in the feature matrix. Figure 4.8 shows the average share of ground true edges
included in the CG by the number of nodes in the CG and the value of k. The green
area corresponds to the configurations where the ground truth is included in the CG.
The upper right triangle corresponds to fully connected graphs for which increasing the
number of neighbours doesn’t change the number of edges. The purple-to-blue area
corresponds to the configuration where the ground truth is partially included in the
graph. In the previous experiments, the value of k was fixed for every graph, but based
on Figure 4.8, k could be adapted to the number of nodes. For example, if the number of
nodes in the graph is six or lower, the candidate graph could be built with k set to 1 with
the guarantee that the CG are inclusive (they contain their ground truth). Some value of
k, specific to each number of nodes in the graphs lead to ICG with the smallest amount
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Fully connected graphs
Smallest inclusive graph
Configurations where the ground 
true graphs are included in the 
candidate graphs

Proportion of ground true edges 
included in the candidate graph
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Figure 4.8: Average share of ground truth edges in the CG, by number of neighbours
and number of primitives in the score using 10_labels class set on Musigraph

of negative edges. We call these graphs, smallest inclusive graphs. These graphs are
indicated with a cross in Figure 4.8. For the graphs with one or two nodes, the candidate
graphs are anyway fully connected, any values of k superior to one lead to a smallest
inclusive graph. Having a larger value for k leads to the creation of avoidable negative
edges. For example, when scores have 45 primitives, all the relations are between a node
and its three closest neighbours. Building a candidate graph with k=13 introduces at
least 450 negative edges compared to the smallest inclusive graph built with k=3 the
minimal and inclusive k, which already ensures the candidate graph is inclusive. This
technique offers an easy means to reduce the size of the CGs. However, it seems to be
very specific to the Musigraph dataset and relies on an observation without any musical
explanation. Additionally, some outcomes are unexpected and not easily explainable.
For the graph with 45 and 46 nodes, the smallest inclusive graphs are obtained with
k=3, which is very different from the one for 44 and fewer nodes. Nothing seems to
explain this sudden change of behaviour. The small number of scores with this amount
of primitive (see Figure 3.3) rather makes these graphs outliers. The actual expected
profit of employing different values for k is also marginal. For scores with less than 15
primitives, the minimal and inclusive k is close to a value that would connect the KNN
fully. For most scores with more than 15 primitives, the minimal and inclusive k is close
to 13. For these reasons, this technique hasn’t been implemented; a single value for k is
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used to generate all the candidate graphs.

Table 4.4 illustrates the performance of models learning on different values of k and
being tested on graphs built for the same k and k=13 (ICG). These results have been
obtained with the test procedure presented in Section 4.2.3. Note that it utilises the
10_labels set of classes and the CGs are pruned. For k=5, the MER increase a lot when
testing on ICG but seems very decent on tests with k=5. On these graphs, around 15%
of the ground truth edges are missing (see Figure 4.7), and the total number of edges is
halved compared to CG when k=13 (see Figure 4.5). The MER is therefore increased by
the ground truth edges missing in the CG and the error made on the CG edges (18%
of prediction errors). These CGs have a small number of edges, therefore, the overall
MER is low (0.28). The model trained on small graphs performs worse on larger graphs;
the hypothesis that learning on smaller graphs could be relevant for predicting ICGs
is rejected. On the contrary, having larger graphs at training seems to perform even
better than testing and training with k=13. The best metrics are reached for training
with k=14 and testing with k=13. Compared to the graph built with 13 neighbours, the
graphs built with k=14 have, on average, 10% more edges. The low MER obtained for
k=13 seems a bit surprising as this configuration corresponds to a dominant heuristic
compared to the other configurations: Among the inclusive graphs, these graphs are the
closest to the ground truth in terms of GED. Furthermore, the same experience repeated
with a different learning rate scheduler gives 25% of MER; this instability is discussed in
greater detail in Section 4.7. We can also state that the training time is not impacted by
k.

Table 4.4: Influence of k on the semantic reconstruction and evaluation on ICG

Same k as training ICG (k=13)k Accuracy (%) GED MER Accuracy (%) GED MER Training time

5 82.05 5.69 0.28 71.88 12.27 0.61 4:14
10 69.30 11.37 0.66 69.21 13.43 0.79 4:18
13 73.00 11.69 0.68 73.00 11.69 0.68 4:26
14 81.04 8.82 0.50 81.61 8.48 0.49 4:22
15 78.65 10.46 0.53 78.00 9.40 0.49 4:35
16 77.00 11.80 0.64 76.44 10.30 0.58 4:26

4.4.2 Semantic Pruning
Figure 4.6 shows that augmenting k leads to a higher proportion of negative edges. This
proportion reaches 88% on average for CG based on non-pruned KNN graphs built with
k=13 and the 10_labels class set. Some of these edges can be pruned without modifying
the inclusiveness property of the candidate graphs

Leveraging the grammar of music notation, it appears that relationships between some
primitive types are impossible. For example, two noteheads cannot be linked to one
another in an errorless MuNG. Such links might be created in a KNN graph but can be
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Table 4.5: Filter used to perform the semantic pruning when using the 10_labels class
set. Any edge having a pair of endpoint labels different from those in the list is removed
from the candidate graph.

Relations types
notehead - stem
notehead - beam
notehead - flag

notehead - legerLine
notehead - accidental

notehead - tie
notehead - others_slur_dynamics_etc

notehead - legerLine
notehead - tie

notehead - augmentationDot
rest - augmentationDot

pruned without modifying the inclusive property of a graph. To perform such pruning, a
filter: a list of possible types of relation is associated with each class set. After creating
a KNN graph, its edges are filtered and removed from the graph if they are not on the
list. This pruning enables to get rid of a significant amount of negative edges. Figure
16 shows that for Musigraph, using the 10_labels class set and k=13, the proportion
of negative edges drops by 17%. The relations types authorised by the filter associated
with the 10_labels class set are listed in Table 4.5. To prune the graph further, it would
be possible to establish a maximum distance between the nodes based on the relation
type. For example, related beams and noteheads can be further distant than noteheads
and stems, which are supposed to be in contact. These distances vary between the
different fonts and handwritten notations, and because this work aims to be versatile,
these methods have been rejected.

The filter used to prune the candidate graph depends on the granularity of the class set,
and a more precise granularity can lead to better pruning. Some primitives grouped
together in class sets with little precision disallow for accurate characterisation of certain
relationships. In the 10_labels class set, all the noteheads are grouped under a single
label; The associated filter must then allow the links between all the noteheads and the
stems. But some noteheads, like whole noteheads, never make links with stems. The
filter could prune these links if the granularity differentiates whole noteheads from the
others. The filter is always defined using the minimal set of links that covers all the
relations among the class set’s primitives in the CWMN grammar.

Table 4.6 shows the result of the test procedure for pruned or unpruned graphs. The
most notable observation is the relatively modest improvement in accuracy compared
to the significant improvement of MER and GED. This suggests that while the models
don’t show an improvement in learning, outcomes are markedly improved.
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Table 4.6: Influence of the semantic pruning on the semantic reconstruction

Pruning
Metric Accuracy (%) MER GED

Prune 84.19 0.47 7.35
Not prune 82.07 2.47 38.61

4.4.3 Normalisation
Normalising the data is a standard practice for any machine learning task. It ensures that
each feature contributes equally to the learning process and usually boosts performance.
This section discusses the normalisation of the MuNG node positions.

The primal idea is to map the positions and sizes of the primitives to a 0-1 range, but
accounting for all the CWMN outlooks makes this task far from straightforward. Some
scores might cover a full page, while a small measure is also a valid input for an OMR
system. The size of the primitive could be used as a reference, but even the staff size
varies from one typography to another. Our solution relies on dividing scores by measure
and normalising them without using visual cues. We propose in section 3.2.3 an algorithm
able to perform this division.

The process which divides the scores by measure also offers a negative edge filter. When
constructing the KNN graph on a score with multiple staff and despite the semantic
pruning, edges can be established between primitives from different staff. Such relations
is impossible in an errorless MuNG.

From a measure and its image, the top-most, bottom-most, right-most and left-most
bounding box edges are used to perform a min-max normalisation. Note that the four
coordinates responsible for the size and position of primitives are normalised regardless
of whether they represent a bounding box edge position, its centre, height or width.
This seems natural for the bounding_box encoding configuration but less evident for
the center_dimension encoding. To normalise the height and position, we would like
to normalise them apart from the centre coordinates because they don’t represent a
coordinate. However, with the different fonts and the handwritten notation, primitive
can have various sizes, which makes it impossible to normalise using a size of reference.
Normalising height and width with the same parameter as the centre coordinates allows
for a scaled system where, even normalised, the height can be summed to the x-centre
parameter to obtain the lowest edge of the bounding box.

Normalising the size and positions modifies the feature matrix and isn’t supposed to
impact the adjacency matrix. Nevertheless, depending on the shape of the input, the
KNN graphs built on a raw score might be different from the ones built on its normalised
version. Normalising the input makes it a square: the top-most and bottom-most elements
are as far apart as the right-most and the left-most. Because the edges are constructed
using the Euclidean distance, on these ‘squarified’ inputs, the closest neighbours of a
node might be different from the ones in the original scores. Figure 4.7 illustrates this by
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(a) Original score

(b) Normalised score

Figure 4.9: Representation of a normalised score and illustration of normalisation’s
impact on the KNN graph construction. The circles represent the distance between the
node head and its three closest neigbhours, which differ in the two scores.

.

representing a normalised score and the three closest neighbours of a node head. The
construction of the candidate graph has been shaped for non-distorted scores, to rely
on the result obtained in the previous section, notably the value for k to get inclusive
candidate graphs, normalisation must be performed after constructing the KNN graphs.

Table 4.7 shows the result of the test procedure for normalised or not scores. Depending
on the configuration, normalisation can sometimes improve MER. Models perform best
with normalisation when graphs are not pruned, although their overall performance
remains poor. However, when applied to pruned graphs, normalisation worsens model
performance. This outcome is understandable given the nature of the dataset, which
consists of typeset scores where the distances between primitives or their sizes adhere to
specific rules. For instance, the distance between a notehead and a potential accidental
is usually consistent, but normalisation can cause these distances to vary significantly.
As a result, the model loses the ability to learn effectively from these distance values. By
default the scores are not normalised in the test procedure.
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Table 4.7: Influence of the normalisation on semantic reconstruction

Prune Normalisation
Metric Accuracy (%) MER GED

Not normalised 82.21 38.61 2.47No Normalised 87.34 27.41 1.97
Not normalised 81.26 9.07 0.54Yes Normalised 79.96 9.309 0.54
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4.5 Model Architecture
Figure 4.10 illustrates the architecture of the model. The first module utilises GNNs to
learn the graph nodes’ representation. It takes as input a candidate graph and may use
multiple layers from the three presented in the Background section (GeoGCN, GAT, or
GraphSAGE). Only one type of layer is used in a GNN. The input dimensions of the first
layer correspond to the width of the feature matrix, in our case, the number of labels in
the class set used for the one hot encoding, plus four for the sizes and positions encoding.
The output size is always 1024, and the hidden layers always have a size of 2048. The
ReLU activation function is applied after each layer, and the final output is normalised.
This module produces a node embedding matrix, which contains the representation of
each graph node.

Candidate
Graph

GNN

Layer 1

Additional layer

ReLU Normalise
Layer L

Classifier
h j

h 1h 2. . .
h n

Node embedding
matrix

. . .

Prediction

ReLU

h i

Figure 4.10: Model architecture

The second module is a simple classifier. It takes the node embedding matrix and the
list of edges in the graph as input. For simplicity, the candidate graph edges are the only
edges used at training. One could imagine using any set of edges, but this fashion is more
natural. For each edge, the classifier sums the cross-product of the embeddings. Note
that the obtained value is not modified further. At test time, values above 0.5 correspond
to the prediction of an edge. This classifier remains the same for every model.

4.5.1 Using Directed MuNGs
Section 3.2.2 describes MuNGs in detail and states that they can be directed or not.
Such a choice does not modify the musical information, but the behaviour of a GNN
changes completely whether the graph’s edges are considered directed or not.

When the edges are directed, by convention, GNNs consider the information to flow from
the source to the target nodes. A node with an in-degree of 0 is updated only based on
its own representation. For undirected edges, the information flows in both directions. In
fact, in libraries like Pytorch Geometric, edges are always directed, but when the graphs
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are considered undirected, every edge is doubled with an edge going in the opposite
direction. This has the consequence of making the number of edges less interpretable.
For our problem, two edges form a single relationship between two primitives.

Some unexpected considerations should also be taken: To predict such undirected edges,
it is natural to predict the existence of edges for both directions but with PyG, the two
predictions might be different. The model might predict an edge to exist from a beam to
a notehead but nothing prevents the opposite edges to be predicted the same. For our
specific problem and because we haven’t been further than constructing the MuNGs, we
consider the edges separately. If an undirected edge is a positive edge, we consider its
two directed edges to be true and treat them separately to compute the metrics. This
problem should be solved with a system that would re-encode the music.

Table 4.8: Influence of the edges directed property on the semantic recon- struction

Edges
Metric Accuracy (%) GED MER Training time

Directed 82.21 38.61 2.47 46:28
Undirected 90.57 11.30 0.70 2:20:05

Table 4.8 shows the result of the test procedure for directed or undirected edges. Undi-
rected edges greatly improve the metrics but at the cost of a much longer training time.
By default, edges are undirected in the configuration of the test procedure.

4.5.2 Defining the Number of Layers

In GNNs, the number of layers defines how far the information will travel. With a single
layer, a node’s representation is updated only using the node’s direct neighbours. With
two layers, a node might perceive information from nodes that are two links away from
it. Table 4.9 shows the result of the test obtained for different number of layers. For this
test, only 25 epochs (unlike the usual 100) are used because the differences between the
metrics are already significant: using three layers is by far the best compromise. This
configuration results in the best accuracy, MER, and GER. Regarding the training times,
using three layers seems to be acceptable compared to the fastest training and is much
better than the configuration with one more layer.

Table 4.9: Influence of the number of layers on the semantic reconstruction

Number of layers Accuracy (%) MER GED Training time
1 75.85 0.68 11.25 20:24
2 76.64 0.61 9.95 26:88
3 83.29 0.42 7.78 35:43
4 80.11 0.49 9.27 97:08
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4.5.3 Using Different Layers
Table 4.10 displays the results of the test procedure for the three kinds of layers presented
in the background section. For this test, a few parameters are modified to obtain a more
promising setup and compare the GNNs on a configuration closer to the final one. The
CGs are pruned, their edges are considered undirected and the scheduler’s patience is
extended to 15 epochs. The GraphSAGE layers clearly outperform the two other kind
of layers. With this configuration, the model using GAT layer didn’t manage to learn
properly and predicted every link to exist.

Table 4.10: Influence of the type of layer on the semantic reconstruction

Layer Accuracy (%) MER GED
graphSAGE 89.78 0.25 4.47
geoGCN 81.79 0.36 7.95
GAT 30.80 2.07 30.26

51



4. Semantic Reconstruction of Music Notation With GNNs

4.6 Training Parameters

4.6.1 Loss Function
The loss function used to train the model is BCEWithLogitsLoss, which combines a
Sigmoid layer and the Binary Cross Entropy (BCE) loss into a single class. This function
expressed in Equation 4.12 is more numerically stable than using a plain Sigmoid function
and a separate BCELoss. Using two functions one after the other propagates and amplifies
the errors made because of the limited size of memory used to store the intermediate
result. The combined implementation leverages the log-sum-exp trick, and treats the two
functions as one, preventing potential issues that arise from floating-point precision errors
[52]. Despite its technical advantages, BCEWithLogitsLoss is not inherently expressive.
For the same model, a lower loss might result in worse predictions, making the comparison
of loss values across different models delicate. Nevertheless, a significant advantage of
BCEWithLogitsLoss is its positive weight parameter. It allows for the reweighting of
positive examples in scenarios with imbalanced datasets. Usually, loss functions only
allow for reweighting classes, with this parameter we can indicate that positive edges
should be considered more important than negative ones.

L = 1
N

N∑︂
i=1

[︁
loge(1 + e−z) + z(1 − yi)

]︁
(4.12)

Where N is the number of samples, yi the true label and zi the output of the model

4.6.2 Learning Rate Scheduler
The learning rate is managed using the ReduceLROnPlateau scheduler from the PyTorch
library. An initial learning rate is specified in the configuration file. During training,
if the validation loss does not improve for a specified number of iterations (defined by
scheduler_patience), the learning rate is reduced by a factor (scheduler_factor), both
of which are configurable parameters. By default, scheduler_patience is set to 10 and
scheduler_factor to 0.5. This lessening of the learning rate allows us to start with a very
high learning rate of 3 (by default), which helps the model learn faster.

When training models with various configurations, it is often observed that the loss
initially decreases but then increases significantly. This pattern is seen in both the
training and validation loss. To address this, we apply early stopping by selecting the
best model with the lowest validation loss. Additionally, we introduced a mechanism
called jump_back_on_lr_change. This feature ensures that whenever the scheduler
adjusts the learning rate, the model weights revert to those from the best-performing
configuration observed so far. This approach has proven effective in enhancing training
stability and improving validation loss. Combining this mechanism with the scheduler
is exactly similar to restarting a training from a checkpoint with a lower learning rate.
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Figure 4.11 shows an example of learning curves with and without the option. By default,
this mechanism is turned off.
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Figure 4.11: Learning rate evolution and associated mechanisms
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4.7 Learning Instability and Reproducibility
In the course of our experiments, we encountered significant challenges related to the
instability and reproducibility of results.

The first barrier to reproducible and stable results is inherent to PytorchGeometric.
When executed on GPU, some operations are non-deterministic [53]. Although a seed
is set to control many sources of randomness, quantifying the exact impact of the
indeterministic operations remains challenging; On a GPU (NVIDIA 950M 2GB RAM),
the same configuration can yield significantly different results, with accuracy varying by
more than 50 points. However, this instability can be drastically reduced using a CPU,
to say, it is even supposed to be deterministic. The tests conducted locally on CPU
are deterministic but extremely slow. We used CPUs on a cluster offered by TU Wien
where runs involving CPUs are close to being deterministic. Still, we could sometimes
experience little differences of approximately 1% in accuracy for the same configuration.

The second barrier to reproducible and stable results is inherent to the GNNs. The seed
we configure governs certain behaviours that are intended to be random or unaffected
by the controlled sequence. For instance, the node aggregation order within a layer is
dictated by the seed, yet this order is not expected to alter the layer’s output. In a
stable model, however, such randomness should not significantly influence the overall
outcome. Table 4.11 presents the results of the test procedure for three different seeds
(123, 1234, 12345) and the three different GNN layers. The default configuration has
been altered to build undirected, pruned CG and the schedulers have a patience of 15
epochs and a factor of 0.7. According to P. Veličkovič, the instability should grow with
the complexity of the layers [24]. GeoGCN is supposed to be more stable than GAT,
which is supposed to be more stable than graphSAGE. In the table, the accuracy of the
graphSAGE-bases models varies by more than 40%, and geoGCN by more than 10%.
The only stable layer is the GAT, however, this configuration never managed to learn
with the default configuration and always predicted every edge to exist.

Table 4.11: GNNs instability

Layer Accuracy (%) MER GED
graphSAGE 48 - 90 0.25 - 1.26 4.47 - 22.59
geoGCN 78 - 89 0.23 - 0.44 4.96 - 7.95
GAT 31 - 31 2.07 - 2.07 30.26 - 30.26
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4.8 Results

4.8.1 Defining a Promissing Setup

Table 4.12 presents the results obtained with the test procedure for a partial grid search
combining four parameters. As the tests are realised on the same scores, the experiments
are ordered using the GED, which gives more comparable values. This table summarises
most of the tests presented earlier. For equivalent configuration, pruning is the only
parameter that always leads to a better GED. The influence of the other parameters
depends on the configuration of the pipeline: they might improve or make the GED worse.
In this table, we also see the limit of the metric we use. The order obtained with the
GED is different from the one we would obtain using the MER. This table shows GNNs
can be very sensitive to their inputs. Changing one parameter in the pipeline that builds
the graphs can lead to important differences in GED: Pruning the graph leads from the
worst to the best GED. In this configuration, pruning only removes 17% of the negative
edges. This grid search is very limited as many other parameters, like the class sets, the
number of neighbours used to generate the KNN graphs, or the learning rate, remain
fixed for every test. However, we can imagine promising configurations. Despite its
visible drawbacks we arbitrarily keep the normalisation to obtain more versatile models.

Table 4.12: Partial grid search ordered by GED

Undirected edges Normalised Pruning Size and position
encoding* GED MER

BB 38.61 2.47
CD 30.56 2.12

✓ CD 27.41 1.97
✓ BB 11.30 0.70

✓ ✓ BB 10.45 0.63
✓ CD 10.43 0.65

✓ ✓ CD 9.31 0.54
✓ ✓ ✓ BB 9.22 0.49

✓ CD 9.07 0.53
✓ ✓ ✓ CD 8.819 0.50
✓ ✓ BB 8.02 0.37
✓ ✓ CD 7.48 0.35

✓ BB 7.354 0.47

*BB: Bounding_box encoding. CD Centre_dimension encoding
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4.8.2 Current Best Models Achieved for the 10_labels Class Set
Across the Datasets with Single Models

It is important to acknowledge that achieving a 0% Graph Edit Distance or Music
Error Rate is not a realistic expectation in this study. The datasets employed, such
as Musigraph, inherently contain an unknown number of errors. For instance, in the
Musigraph dataset, a specific relation is omitted in the score 52_syn_Beethoven; a
connection between an empty notehead and a natural sign is missing. Additionally, errors
may have been introduced during the dataset preparation process. In particular, the
segmentation by measure of Muscima++ and DoReMi may have inadvertently introduced
inaccuracies.

Despite the results obtained in Table 4.13, extended tests show better results when training
on graphs constructed with k=13 for Musigraph. For the other dataset, we set k to 20.
The algorithm used to divide the scores has a couple of drawbacks including that some
one-page scores (notably for Muscima++) are considered as a single measure. In addition,
the increased complexity of the scores makes 13 insufficient to obtain ICG. Setting k to
20 doesn’t guarantee the CG to be inclusive either. In fact for Muscima_measure_cut,
80% of the ground true edges are included in the CG and for DoReMi_measure_cut the
share of edges included in the CG is 91%. A better algorithm for dividing the scores by
measure should be used to select a more meaningful value for k. The detailed pipeline
configuration is available in Annexe B.

Table 4.13: Best models obtained for the different datasets with the 10_labels class set
Models Dataset k Accuracy (%) Precision (%) Recall (%) Specificity (%) MER (%) GED
model1 Musigraph 13 94.45 96.97 95.15 97.00 13.48 2.41
model2 DoReMi_measure_cut 20 89.71 71.20 84.75 91.00 37.02 8.39
model3 Muscima_measure_cut 20 84.37 64.71 72.00 88.00 38.08 13.87

4.8.3 Toward a Better Music Semantic Reconstruction
In this Section, we implement a solution based on multiple models and leverage a new
set of classes.

The new class set is called 6_labels. It is available with its associated filter in Annex D;
it offers a slightly more precise granularity than the 10_labels, e.g. it differentiates a
notehead type from another. It also filters many primitives: dynamics and many rarer
primitives are ignored. Nevertheless, it enables the encoding of most of the music and all
the relationships from Musigraph.

The evaluation of the models includes the accuracy reached by the model for each link type.
Table 4.14 presents the accuracy reached by a selection of models for the relation types
corresponding to the 6_labels class set. Not all models perform equally across different
link types; some exhibit superior performance for certain link types compared to others.
Based on this observation, we can imagine an ensemble approach, where multiple models
are employed together. During the testing phase, various models generate predictions.
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For each link, depending on its specific type, we select the prediction from the model
that has demonstrated the best performance for that particular link type.

Table 4.14: Accuracy obtained for each link type by a selection of models trained and
evaluated on Musigraph for the 6_labels class set

Models Layer
noteheadBlack

-
stem

noteheadBlack
-

accidental

noteheadBlack
-

Flag

noteheadBlack
-

Beam

Notehead
WholeOrHalf

-
stem

noteheadWholeOrHalf
-

accidental

model4 graphSAGE 98.84 99.00 99.38 70.41 98.80 90.87
model5 graphSAGE 98.89 98.96 99.37 69.02 98.80 90.83
model6 geoGCN 91.52 90.53 90.34 89.43 96.63 89.99
model7 graphSAGE 98.85 98.97 99.41 68.45 98.61 90.83

Leveraging this strategy and combining the 4 models from the previous table, we obtained
the results presented in Table 4.15. This strategy greatly improves the metrics obtained
with a simple model in the previous section.

Table 4.15: Metrics obtained by the model ensemble
Dataset k Accuracy (%) Precision (%) Recall (%) Specificity (%) MER (%) GED

Musigraph 13 97.09 97.76 92.70 99.06 6.09 0.70
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CHAPTER 5
Conclusion

5.1 Training Insights
The main insight of the training process is the instability of the GNNs. This instability
comes from different sources and has already been addressed in the literature. Klabunde
et al. [54] demonstrated that GNNs based on different layers, but trained with the
same data and presenting similar global metrics (same accuracy, Mean Absolute Error)
could make their errors on very different nodes. This type of error motivates model
ensemble solutions like the ones we built: Models employing GraphSAGE layers often
struggle to predict relationships involving beams. In contrast, although models using
Geo-GCN layers typically perform poorly overall, they manage to learn these specific
types of relationships quite well. We experience that the instability is significant for any
configuration and the seed heavily modifies the models’ performances. On GPU even
with similar configuration, significant differences can be experienced. Reproducibility and
faith in a specific configuration are therefore altered and it’s difficult to establish a “best
setup”. GNNs are very sensitive and might struggle to learn. For many configurations,
despite a weight imbalance, the models ended up predicting every candidate edge to be
connected or never connected.

GNNs sometimes learn best on unexpected configurations. We experienced that using
three graphSAGE layers was best for the music semantic reconstruction. The main
purpose of using multiple layers is to propagate information from a node through the
graph. Considering the way music is usually read, this number of layers sounds odd.
With inclusive candidate graphs, one layer could be sufficient to learn and predict the
graph. It should not be needed to get information from so far away to predict an edge.

In this work, we also state that for a monophonic measure, a primitive is not related
to another primitive beyond its 14th closest neighbour. This value depends on the
definition of the MuNGs (what edges should be created). We didn’t state any value for
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polyphonic scores as the process of dividing scores in measures sometimes creates very
large scores that do not represent actual measures, and the value we could find would
not be representative.

5.2 Discussion
The pipeline developed for this thesis involved several debatable decisions that have
shaped both the approach’s strengths and limitations.

The first criticism we can address is the limiting aspect of the solution regarding the
set of classes. Our model relies on specific class sets and the primitives’ labels must be
one-hot encoded to form the feature vectors. Such a framework makes it impossible to
adapt a pre-trained model for accepting new classes.

A critical area to address is the normalisation step. While intended to standardise
musical scores for versatility, the approach was excessive. A more moderate strategy,
using staff size as a reference for normalisation, would have aligned better with the inherent
properties of the musical data and potentially improved the model’s performance. An
important majority of scores leverage typeset staff and considering them different from
one to another is probably excessive.

Another point of criticism pertains to the parameter selection process for constructing the
pipeline. The experiments were conducted with a fixed setup, and many conclusions drawn
from this setup were applied to others. For instance, while three layers of graphSAGE
appeared optimal in this particular setup, it was assumed that this number of layers would
also be ideal for other types of layers. However, the assumption that these parameters
would generalise well across different configurations is likely overly optimistic. The
observed sensitivity of the model suggests that allowing more flexibility in parameter
tuning could potentially uncover more effective configurations.

Despite these criticisms, the testing framework itself is robust and provides a solid
foundation for evaluating model performance. It is bounded by the metrics extensively
discussed in Section 4.2. This allows for an objective comprehensible measurement of how
good the models are. In summary, the music semantic reconstruction method developed
here shows limited performance, but a better combination of parameters could probably
improve it.

5.3 Answer to the Research Questions

1. How suitable (5% of MER or lower) are GNNs to solve the music semantic recon-
struction stage?
The best MER we achieved is on Musigraph and is just above 6%. If the baseline
set by Baro et al. [19] hasn’t been reached, no upper bound for GNNs has been
found during this work. The comparison to the model obtained by Baro et al is
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not trivial. First, because the 5% they obtained includes the error made by their
music object detector. We used the ground true object as input and our MER only
reflects the error made during the reconstruction stage. Then because the model
they use is very specific to the font used in Musigraph: They include knowledge
based on the distance between the objects to prune their candidate graphs. We
also want to mention that their model architecture (mostly kept private) might be
very different from ours. They obtained their final weights after 5 iterations while
our model requires a few hundred.

2. How does such a model handle different input configurations, particularly in terms
of musical complexity (amount of musical information on a score like multiple
instruments, accompanied melody...)?

Without a perfect metric, it is not possible to properly answer this question. We
can state that our models output better MER on Musigraph which only contains
monophonic scores than on DoReMi and Muscima++. But as discussed in Section
4.2, comparing MER on different scores remains delicate. Nevertheless, the number
of errors made on the more complex scores is significantly more important than on
the score from Musigraph.

3. How well do GNN-based approaches for semantic reconstruction scale with an
increasing number of input primitives?

As discussed in Section 4.4.3, this question doesn’t make a lot of sense. Scores can
be split and reassembled. The few models trained on non-split scores showed very
poor results but only a few configurations have been tried.

4. How does the GNN initialisation (fully connected, based on explicit rules) impact
the link prediction?

The best models we obtained are based on the smallest ICG. The tests specifically
to observe the impact of pruning the candidate graphs show significant differences
and that having a limited number of links helps the model to learn. This statement
is to be considered carefully as Table 4.4 shows that the lightest graphs don’t always
lead to the best result. The instability of the model makes it hard to answer this
question but we can state that in most situations smaller graphs lead to better
results.

5.4 Future Work
This work could be further extended in several important areas. One key aspect is the
development of a new metric specifically for evaluating the complexity of musical notation.
Creating these metrics would provide a more objective way to assess the performance of
OMR systems and allow for a fair comparison between models performing on different
datasets for example.
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To aim for a better model, several promising directions were identified during this research.
For instance, exploring alternative distance metrics, such as the distance between the
primitives’ bounding box rather than their centre, could yield improvements in model
performance. Additionally, implementing automated model ensemble learning systems
could enhance overall performance by integrating multiple models and leveraging their
collective strengths.

This pipeline could also be altered to leverage novel GNN-inspired models. The current
research has highlighted the potential for improving link prediction models by transforming
the task into a graph classification problem. To perform such transformation the SEAL
framework has become popular [55]. This framework is used for link prediction based
on the enclosing subgraph of the potential link endpoints. We experienced the best
performances for models using 3 layers, which allows the information of a node to travel
across three links to build the final node embeddings. In theory, it could be possible
to predict a link solely based on the information contained by the direct neighbours
of the link endpoints. This number of layers might indicate that giving an overview
of the link environment helps the model. As SEAL integrates this enclosing graph
directly, it might be specifically interesting for music semantic reconstruction. Further
advanced variations of this framework transform the task further and convert the graph
classification problems into node classification tasks [56]. These model architectures have
demonstrated state-of-the-art performance in other domains and could potentially be
applied to music semantic reconstruction. To keep more common GNN architectures,
the heterogeneous graphs neural networks could also be interesting candidates. These
GNNs can treat nodes differently depending on their class [57].

Despite the goal of achieving versatile models, none have been trained on multiple
datasets. This is primarily due to the significant differences in how MuNGs are defined
across datasets, which would require substantial reannotation to establish a consistent
ground truth (specifically to align DoReMi to the other datasets). Additionally, the stark
imbalance in dataset sizes raises concerns about the effectiveness of such a merge. For
example, incorporating the 140 scores from Muscima++ into the 18,921 scores from
Musigraph would likely have a negligible impact on model performance. Future work
could focus on conducting a deeper investigation into how structural complexity influences
the performance of GNN-based models for music notation semantic reconstruction.
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Overview of Generative AI Tools
Used

In this thesis, generative AI tools such as Grammarly and ChatGPT (versions 3 and 4)
were employed to refine and reformulate specific sentences, ensuring clarity and coherence
in the writing. Additionally, DeepL was used for translation tasks and to identify suitable
synonyms, enhancing the precision and fluidity of the language. These tools served as
assistants, aiding in the refinement of the text, but were never used to generate large
blocks of content.
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APPENDIX A
Datasets

This first appendix gives more details on the datasets presented in Chapter 3.

I



A. Datasets

Table A.1: Muscima++ labels and their number of appearances in the dataset

Labels Counts Labels Counts
noteheadBlack 135583 articTenutoAbove 332
stem 120339 articAccentAbove 316
kStaffLine 33960 accidentalDoubleSharp 308
beam 28788 timeSig3 298
rest16th 28284 dynamicForte 298
flag16thUp 17931 timeSig2 293
barline 16467 articTenutoBelow 284
rest8th 14247 accidentalDoubleFlat 240
rest32nd 10001 restHalf 233
flag32ndUp 7244 articMarcatoAbove 191
gClef 6173 cClef 156
accidentalFlat 6056 dynamicPP 141
accidentalSharp 6052 dynamicSforzato 132
accidentalNatural 4592 timeSignatureComponent 115
slur 3586 flag16thDown 113
tie 3454 dynamicMF 96
augmentationDot 2463 accidentalQuarterToneSharpStein 86
restQuarter 2191 timeSig5 77
noteheadHalf 2138 accidentalQuarterToneFlatStein 73
flag8thUp 1817 dynamicFF 63
articStaccatoAbove 1339 dynamicText 50
tupletText 1015 dynamicMP 45
flag8thDown 1010 timeSig6 40
fClef 927 timeSig7 37
gradualDynamic 875 ornamentTrill 34
articStaccatoBelow 867 timeSigCommon 34
systemicBarline 859 dynamicFortePiano 28

tupletBracket 752 accidentalThreeQuarter -
TonesSharpStein 26

timeSig4 573 timeSig9 25
timeSig8 518 articMarcatoBelow 21
noteheadWhole 493 dynamicForzando 18
articStaccatissimoAbove 452 dynamicFFF 18
articAccentBelow 369 dynamicPPP 14
dynamicPiano 351 flag32ndDown 12
restWhole 336 timeSigCutCommon 8
articStaccatissimoBelow 332

II



Table A.2: Muscima++’s 80 most present relation types and number of appearances in
the dataset

Relation types Counts Relation types Counts
noteheadFull - stem 21451 noteheadFullSmall - stem 351
noteheadFull - staff 21333 noteheadFullSmall - staff 348
noteheadFull - beam 18083 dynamicsText - dynamicLetterP 330
noteheadFull - staffSpace 8743 noteheadFullSmall - beam 330
noteheadFull - staffLine 8201 clefF - staff 284
noteheadFull - slur 7889 noteheadFull - accidentalFlat 284
noteheadFull - legerLine 6348 otherText - characterSmallE 274
staff - staffSpace 5298 repeat - repeatDot 266
measureSeparator - staff 4549 noteheadFull - flag16thDown 235
staff - staffLine 4415 noteheadFull - flag16thUp 227
measureSeparator - barline 3204 tuple - numeral3 225
noteheadFull - articulationStaccato 1628 restHalf - staff 216
noteheadHalf - stem 1497 otherText - characterSmallC 212
noteheadHalf - staff 1497 stem - multipleNoteTremolo 212
noteheadFull - augmentationDot 1449 noteheadFull - noteheadFullSmall 209
noteheadFull - accidentalSharp 1355 clefC - staff 194
noteheadFull - flag8thDown 1204 otherText - characterSmallO 193
rest8th - staff 1134 timeSignature - staff 192
noteheadFull - tie 967 noteheadFull - articulationAccent 190
noteheadFull - flag8thUp 957 otherText - characterSmallS 176
noteheadFull - accidentalNatural 948 ornamentTrill - characterSmallR 174
noteheadFull - tuple 805 noteheadHalf - noteheadFullSmall 173
restQuarter - staff 803 ornamentTrill - characterSmallT 171
noteheadFull - dynamicCrescendoHairpin 747 noteheadWhole - staff 171
keySignature - accidentalFlat 731 tempoText - characterSmallE 169
keySignature - staff 695 noteheadFullSmall - flag8thUp 169
noteheadHalf - staffSpace 624 noteheadFullSmall - legerLine 162
keySignature - accidentalSharp 614 otherText - characterDot 162
staffGrouping - staff 611 noteheadFullSmall - slur 156
noteheadHalf - staffLine 566 restWhole - staff 153
noteheadFull - dynamicDiminuendoHairpin 541 noteheadFull - articulationTenuto 150
noteheadHalf - augmentationDot 505 otherText - characterSmallR 140
dynamicsText - characterSmallF 494 timeSignature - numeral4 139
noteheadHalf - legerLine 439 tempoText - characterSmallO 133
rest16th - staff 436 noteheadFullSmall - staffSpace 133
dynamicsText - dynamicLetterF 405 repeat - barline 124
clefG - staff 402 staffGrouping - staffGrouping 121
dynamicsText - characterSmallP 395 noteheadHalf - ornamentTrill 116
noteheadHalf - tie 393 staffGrouping - brace 115
noteheadHalf - slur 366 rest8th - augmentationDot 112
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A. Datasets

Table A.3: Musigraph labels and their number of appearances in the dataset

Labels Counts
stem 98417
notehead-full 91338
thin_barline 37505
flat 24272
sharp 23962
16th_flag 20084
beam 16068
8th_flag 12560
natural 10957
notehead-empty 7309
quarter_rest 4790
half_rest 4484
16th_rest 4436
8th_rest 3358
c-clef 2970
timeSig_2-2 2837
timeSig_cut 2595
f-clef 2462

Table A.4: Musigraph relation types and number of appearances in the dataset

Relation types Counts
notehead-full - stem 91338
notehead-full - beam 64218
notehead-full - flat 22472
notehead-full - sharp 22155
notehead-full - 16th_flag 20110
notehead-full - 8th_flag 12560
notehead-full - natural 10083
notehead-empty - stem 7079
notehead-empty - sharp 1807
notehead-empty - flat 1800
notehead-empty - natural 1
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Table A.5: DoReMi labels and their number of appearances in the datase

Labels Counts Labels Counts
noteheadBlack 135583 articTenutoAbove 332
stem 120339 articAccentAbove 316
kStaffLine 33960 accidentalDoubleSharp 308
beam 28788 timeSig3 298
rest16th 28284 dynamicForte 298
flag16thUp 17931 timeSig2 293
barline 16467 articTenutoBelow 284
rest8th 14247 accidentalDoubleFlat 240
rest32nd 10001 restHalf 233
flag32ndUp 7244 articMarcatoAbove 191
gClef 6173 cClef 156
accidentalFlat 6056 dynamicPP 141
accidentalSharp 6052 dynamicSforzato 132
accidentalNatural 4592 timeSignatureComponent 115
slur 3586 flag16thDown 113
tie 3454 dynamicMF 96
augmentationDot 2463 accidentalQuarterToneSharpStein 86
restQuarter 2191 timeSig5 77
noteheadHalf 2138 accidentalQuarterToneFlatStein 73
flag8thUp 1817 dynamicFF 63
articStaccatoAbove 1339 dynamicText 50
tupletText 1015 dynamicMP 45
flag8thDown 1010 timeSig6 40
fClef 927 timeSig7 37
gradualDynamic 875 ornamentTrill 34
articStaccatoBelow 867 timeSigCommon 34
systemicBarline 859 dynamicFortePiano 28
tupletBracket 752 accidentalThreeQuarterTonesSharpStein 26
timeSig4 573 timeSig9 25
timeSig8 518 articMarcatoBelow 21
noteheadWhole 493 dynamicForzando 18
articStaccatissimoAbove 452 dynamicFFF 18
articAccentBelow 369 dynamicPPP 14
dynamicPiano 351 flag32ndDown 12
restWhole 336 timeSigCutCommon 8
articStaccatissimoBelow 332
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A. Datasets

Table A.6: DoReMi relation types and number of appearances in the dataset

Relation types Count
noteheadBlack - stem 135850
noteheadBlack - beam 96265
noteheadBlack - slur 17488
noteheadBlack - tie 5437
noteheadBlack - tupletText 4762
noteheadBlack - tupletBracket 2548
noteheadHalf - stem 2379
noteheadBlack - articStaccatoAbove 2341
noteheadBlack - articStaccatoBelow 1484
noteheadBlack - articStaccatissimoAbove 1044
noteheadBlack - articStaccatissimoBelow 700
noteheadBlack - articAccentAbove 660
noteheadHalf - slur 629
noteheadBlack - articAccentBelow 594
noteheadHalf - tie 543
noteheadBlack - articTenutoAbove 520
noteheadBlack - articTenutoBelow 492
noteheadBlack - articMarcatoAbove 401
noteheadWhole - tie 161
noteheadHalf - articAccentBelow 78
noteheadHalf - articTenutoAbove 62
noteheadWhole - slur 60
noteheadHalf - articMarcatoAbove 56
noteheadHalf - articTenutoBelow 27
noteheadHalf - articAccentAbove 26
noteheadBlack - articMarcatoBelow 23
noteheadWhole - articTenutoBelow 14
noteheadWhole - articTenutoAbove 9
noteheadHalf - articMarcatoBelow 7
noteheadHalf - articStaccatoBelow 2
noteheadWhole - articAccentBelow 1
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APPENDIX B
Test Configuration

This second appendix contains the pipeline configurations used during the tests and final
training of the models. These configurations are consistent with those employed in the
implementation, though the terminology may slightly differ from that used in the master
thesis. We begin with a brief explanation of each configuration parameter.

• dataset: Name of the dataset to use.
• labels_to_use: Set of classes used to one-hot-encode the labels.
• position_as_bounding_box: If True, the bounding_box encoding is used, if

False, the centre_dimension.
• n_neighbors_KNN: Number of neighbours used to generate the KNN Graph

(k).
• prefilter_KNN: If True, semantic pruning is performed.
• normalize_positions: If True, normalise the score.
• seed: Value for the random seed.
• learning_rate: Starting value of the learning rate.
• load_model: Path to the model to load and use as checkpoint.
• start_from_best_model: If True and a path is provided in load_model the

learning uses the best model of the checkpoint, if False it uses the last model
(continue the learning). If the parameter load_model is False, this parameter is
ignored. In the following configurations, the paths are replaced by path if they were
set.

• scheduler_factor: Factor for the learning rate scheduler.
• scheduler_patience: Patience for the learning rate scheduler.
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B. Test Configuration

• undirected_edges: If True, consider the edges to be undirected.
• jump_back_on_lr_change: If True, the model weights are modified to corre-

spond to the best model obtained so far when the lr is updated.
• layer_type: Type of layer (’graphSAGE’, ’GAT’ or ’geoGCN’.
• batch_size: Batch size.
• weight_imbalance: Weight given to the loss function, if its value is -1, the weight

is computed on the training test.
• n_epochs: Number of epochs.
• visualize_first_score: Generate a visual representation of the graph predicted

for a test score.
• save_model: If True, save the model as a checkpoint.
• model_config: Description of the model layer by layer (employ the __str__

function of the layers).
• fine_tunning: [OPTIONNAL] if True, the best model is updated anyway during

the training: the best model is the best model obtained during the training even if
its validation loss value is superior to the checkpoint one.

• starting_epoch: [OPTIONNAL] This configuration parameter is generated au-
tomatically. If the model starts from a checkpoint, the starting epoch is saved
here.

Test Procedure configuration

The baseline for the test procedure is defined by the following parameters. For each test
one or a few parameters are modified.

• dataset: ’musigraph’
• labels_to_use: ’10_labels’
• position_as_bounding_box: True
• n_neighbors_KNN: 14
• prefilter_KNN: True
• normalize_positions: True
• seed: 123
• learning_rate: 3
• load_model: False
• start_from_best_model: True
• scheduler_factor: 0.5
• scheduler_patience: 10
• undirected_edges: False

• jump_back_on_lr_change: False
• layer_type: ’graphSAGE’
• batch_size: 1024
• weight_imbalance: -1
• n_epochs: 100
• visualize_first_score: True
• save_model: True
• model_config: " ’in_channels’: 14,

’out_channels’: 2048, ’aggr’: ’mean’,
’in_channels’: 2048, ’out_channels’:
2048, ’aggr’: ’mean’, ’in_channels’:
2048, ’out_channels’: 2048, ’aggr’:
’mean’, ’in_channels’: 2048,
’out_channels’: 1024, ’aggr’: ’mean’"
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The following models correspond to the configuration of the seven models selected for
the final results. These models have been obtained after reusing a few checkpoints and
pusuing the training from them. The checkpoints have always the same configuration as
the models that pursued their training. Note that these models are trained on GPU and
their training is not perfectly reproducible.

model1

• dataset: ’musigraph’
• labels_to_use: ’10_labels’
• position_as_bounding_box: True
• n_neighbors_KNN: 13
• prefilter_KNN: True
• normalize_positions: True
• seed: 12345
• learning_rate: 3
• load_model: False
• start_from_best_model: True
• scheduler_factor: 0.7
• scheduler_patience: 15
• undirected_edges: True

• jump_back_on_lr_change: True

• layer_type: ’graphSAGE’

• batch_size: 1024

• weight_imbalance: 3.2722200546234883

• n_epochs: 250

• visualize_first_score: True

• save_model: True

• model_config: " ’in_channels’: 14,
’out_channels’: 2048, ’aggr’: ’mean’,
’in_channels’: 2048, ’out_channels’:
2048, ’aggr’: ’mean’, ’in_channels’:
2048, ’out_channels’: 2048, ’aggr’:
’mean’, ’in_channels’: 2048,
’out_channels’: 1024, ’aggr’: ’mean’"

model2

• dataset: ’doremi_measure_cut’
• labels_to_use: ’10_labels’
• position_as_bounding_box: True
• n_neighbors_KNN: 20
• prefilter_KNN: True
• normalize_positions: True
• seed: 12345
• learning_rate: 3
• load_model: ’./models/doremi_08-

12-2024_11-40.pth’
• start_from_best_model: True

• scheduler_factor: 0.7
• scheduler_patience: 30
• undirected_edges: True
• jump_back_on_lr_change: True
• layer_type: ’graphSAGE’
• batch_size: 2048
• weight_imbalance: 5.577372875211054
• n_epochs: 250
• visualize_first_score: True
• save_model: True
• fine_tunning: False
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B. Test Configuration

• starting_epoch: 1814

• model_config: " ’in_channels’: 14,
’out_channels’: 2048, ’aggr’: ’mean’,

’in_channels’: 2048, ’out_channels’:
2048, ’aggr’: ’mean’, ’in_channels’:
2048, ’out_channels’: 1024, ’aggr’:
’mean’"

model3

• dataset: ’doremi_measure_cut’
• labels_to_use: ’10_labels’
• position_as_bounding_box: True
• n_neighbors_KNN: 20
• prefilter_KNN: True
• normalize_positions: True
• seed: 12345
• learning_rate: 3
• load_model: ’./models/doremi_08-

12-2024_11-40.pth’
• start_from_best_model: True
• scheduler_factor: 0.7
• scheduler_patience: 30
• undirected_edges: True

• jump_back_on_lr_change: True
• layer_type: ’graphSAGE’
• batch_size: 2048
• weight_imbalance: 5.577372875211054
• n_epochs: 250
• visualize_first_score: True
• save_model: True
• fine_tunning: False
• starting_epoch: 1814
• model_config: " ’in_channels’: 14,

’out_channels’: 2048, ’aggr’: ’mean’,
’in_channels’: 2048, ’out_channels’:
2048, ’aggr’: ’mean’, ’in_channels’:
2048, ’out_channels’: 1024, ’aggr’:
’mean’"

model4

• dataset: ’musigraph’
• labels_to_use: ’6_labels’
• position_as_bounding_box: True
• n_neighbors_KNN: 13
• prefilter_KNN: True
• normalize_positions: True
• seed: 123
• learning_rate: 3
• load_model: ’./models/musigraph_6lab_08-

12-2024_11-52.pth’
• start_from_best_model: True

• scheduler_factor: 0.7
• scheduler_patience: 30
• undirected_edges: True
• jump_back_on_lr_change: True
• layer_type: ’graphSAGE’
• batch_size: 2048
• weight_imbalance: 3.278202627129666
• n_epochs: 250
• visualize_first_score: True
• save_model: True
• fine_tunning: False
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• model_config: " ’in_channels’: 10,
’out_channels’: 2048, ’aggr’: ’mean’,
’in_channels’: 2048, ’out_channels’:
2048, ’aggr’: ’mean’, ’in_channels’:

2048, ’out_channels’: 1024, ’aggr’:
’mean’"

• starting_epoch: 596

model5

• dataset: ’musigraph’
• labels_to_use: ’6_labels’
• position_as_bounding_box: True
• n_neighbors_KNN: 13
• prefilter_KNN: True
• normalize_positions: True
• seed: 123
• learning_rate: 3
• load_model: ’./models/musigraph_6lab_08-

12-2024_12-26.pth’
• start_from_best_model: True
• scheduler_factor: 0.7
• scheduler_patience: 30
• undirected_edges: True

• jump_back_on_lr_change: True
• layer_type: ’graphSAGE’
• batch_size: 2048
• weight_imbalance: 3.278202627129666
• n_epochs: 250
• visualize_first_score: True
• save_model: True
• fine_tunning: False
• model_config: " ’in_channels’: 10,

’out_channels’: 2048, ’aggr’: ’mean’,
’in_channels’: 2048, ’out_channels’:
2048, ’aggr’: ’mean’, ’in_channels’:
2048, ’out_channels’: 1024, ’aggr’:
’mean’"

• starting_epoch: 808

model6

• dataset: ’musigraph’
• labels_to_use: ’6_labels’
• position_as_bounding_box: True
• n_neighbors_KNN: 13
• prefilter_KNN: True
• normalize_positions: True
• seed: 123
• learning_rate: 3
• load_model: ’./models/musigraph_6lab_08-

12-2024_13-01.pth’
• start_from_best_model: True

• scheduler_factor: 0.7
• scheduler_patience: 30
• undirected_edges: True
• jump_back_on_lr_change: True
• layer_type: ’graphSAGE’
• batch_size: 2048
• weight_imbalance: 3.278202627129666
• n_epochs: 250
• visualize_first_score: True
• save_model: True
• fine_tunning: False

XI



B. Test Configuration

• model_config: " ’in_channels’: 10,
’out_channels’: 2048, ’aggr’: ’mean’,
’in_channels’: 2048, ’out_channels’:
2048, ’aggr’: ’mean’, ’in_channels’:

2048, ’out_channels’: 1024, ’aggr’:
’mean’"

• starting_epoch: 882

model7

• dataset: ’musigraph’
• labels_to_use: ’6_labels’
• position_as_bounding_box: True
• n_neighbors_KNN: 13
• prefilter_KNN: True
• normalize_positions: True
• seed: 12345
• learning_rate: 1
• load_model: ’./models/musigraph_geo_08-

10-2024_12-51.pth’
• start_from_best_model: True
• scheduler_factor: 0.7
• scheduler_patience: 30
• undirected_edges: True
• jump_back_on_lr_change: True

• layer_type: ’geoGCN’
• batch_size: 2048
• weight_imbalance: 3.278202627129666
• n_epochs: 250
• visualize_first_score: True
• save_model: True
• fine_tunning: False
• starting_epoch: 700
• model_config: " ’coors’: 2,

’in_channels’: 10, ’out_channels’:
2048, ’hidden_size’: 1, ’dropout’:
0, ’coors’: 2, ’in_channels’: 2048,
’out_channels’: 2048, ’hidden_size’: 1,
’dropout’: 0, ’coors’: 2, ’in_channels’:
2048, ’out_channels’: 1024, ’hid-
den_size’: 1, ’dropout’: 0"
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KNN configuration
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C. KNN configuration
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APPENDIX D
6 labels class set

Table D.1: 6_labels granularity mapping
Musigraph Muscima++ DoReMi 6_labels

stem stem stem stem
notehead-full noteheadFull noteheadBlack noteheadBlack

notehead-empty
noteheadHalf,

noteheadFullSmall,
noteheadWhole

noteheadHalf, noteheadWhole noteheadWholeOrHalf

beam beam beam beam

sharp, flat,
natural

augmentationDot,
accidentalSharp,
accidentalFlat,

accidentalNatural,
accidentalDouble

Sharp

augmentationDot, accidentalSharp
accidentalFlat,

accidentalNatural
accidentalDoubleFlat

accidentalQuarterToneSharpStein
accidentalQuarterToneFlatStein

accidentalDoubleSharp
accidentalThreeQuarterTonesSharpStein

accidental

16th_flag,
8th_flag

flag16thUp,
flag16thDown,f
lag8thDown,
flag8thUp,
flag16thUp,

flag16thDown,
flag8thDown,

flag8thUp

flag16thUp,
flag16thDown,
flag8thDown,

flag8thUp,
flag32ndUp,

flag32ndDown

flag
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D. 6 labels class set

Table D.2: Filter used to perform the semantic pruning when using the 6_labels granu-
larity. Any edge having a pair of endpoint labels different from those in the list is cut off
the candidate graph

Relations types
noteheadBlack - stem,
noteheadBlack - beam,
noteheadBlack - flag,

noteheadBlack - accidental,
noteheadWholeOrHalf - stem,

noteheadWholeOrHalf - accidental
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