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Kurzfassung

Diese Arbeit präsentiert eine umfassende Überprüfung des WAVL-Baums (weak AVL),
einer Variante des klassischen AVL-Baums, der mehr Flexibilität bei den Balancierungs-
operationen ermöglicht. Die Studie konzentriert sich auf drei kritische Aspekte des WAVL
-Baums: Terminierung, funktionale Korrektheit und amortisierte Komplexitätsanalyse
seiner Ressourcennutzung. Die funktionale Korrektheit wird durch den Einsatz von Li-
quidHaskell bewertet, indem demonstriert wird, dass der WAVL -Baum seine Operationen,
Einfügen und Löschen, korrekt implementiert und dabei alle Eigenschaften beibehält.
Eine detaillierte amortisierte Komplexitätsanalyse wird durchgeführt, um den Ressourcen-
verbrauch des WAVL -Baums über eine Reihe von Operationen für die Ausbalancierung
des Baums formal zu beweisen und somit seine Effizienz und Leistungsmerkmale zu
bestätigen. Diese Überprüfung festigt nicht nur die Position des WAVL -Baums als
robuste Datenstruktur, sondern trägt auch erheblich zum Bereich der Datenstrukturen
bei, indem sie fortgeschrittene Verifikationstechniken mit LiquidHaskell detailiert darlegt,
die Zuverlässigkeit und Effizienz gewährleisten.
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Abstract

This thesis presents a comprehensive verification of the weak AVL tree, a variant of
the classic AVL tree that allows for more flexibility in balancing operations. The study
focuses on three critical aspects of the WAVL tree: termination, functional correctness,
and amortized complexity analysis of its resource usage. Functional correctness is assessed
by demonstrating, through LiquidHaskell, that the WAVL tree accurately implements
its specified operations—insertions, deletions, and searches—while maintaining all weak
AVL properties. An in-depth amortized complexity analysis is conducted to formally
verify the WAVL tree’s resource usage over sequences of operations, thereby confirming
its efficiency and performance characteristics. This verification solidifies the WAVL tree
as a robust data structure and contributes significantly to the field of data structures by
detailing advanced verification techniques with LiquidHaskell that ensure reliability and
efficiency.
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CHAPTER 1
Introduction

Formal verification of data structures and proving algorithms functionally correct gained
popularity because of some sensational bugs in real-world applications.

Besides functional correctness, good performance is an algorithm’s next most important
quality. Showing worst-case performance for algorithms via an amortised complexity
analysis has proven to be a good tool for showing average performance for algorithms
and data structures. However, formalising them and proving actual code was hard for a
long time. Because most algorithms and, in that sense, programming languages could be
influenced by implicit contexts, finding a system for theorem proving inside an existing
programming language proved to be rather challenging.

LiquidHaskell is one of the younger contenders in the theorem provers space. It shows a
good overall tool set for proving lemmas about data structures while still being written
in the Haskell programming language.

In this work, we successfully used LiquidHaskell and verified an amortised complexity
analysis by Häupler et al. [HST15] and even improved upon their original approach
by supplying a unified analysis for both the insert and deletion method. Weak AVL
Trees are relatively unknown and not yet in use in mainstream applications, but their
general structural behaviour and familiarity with both AVL trees and Red-Black-Trees
give developers an alternative implementation for specific use cases.

1.1 Motivation and Problem Statement
Our motivation for this work was to perform an amortised complexity analysis on binary
search trees and find a suitable framework or improve one s.t. the automation degree
is, for our purposes, sufficient. A common problem of automatically proving statements
about binary search trees is invariants. It is relatively easy to prove some form of explicit
change in state in a function by using input and output and calculating it. In contrast,
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1. Introduction

invariants are implicit and tied to some variables or their role in the structure. Thus,
finding a suitable framework which lets us describe an invariant and helps us prove it
was the first hurdle to overcome.

So we chose LiquidHaskell plus the RTick library as a framework and the weak AVL
Trees (WAVL) tree as a suitable, not yet fully proven data structure. It is not fully
proven in that the white paper shows only a pen-and-paper proof, and the structure is
relatively recently described in 2015 by Häupler et al. [HST15].

So, our problem was to prove the amortised runtime complexity of the rebalancing
process, which was not yet shown to be doable with LiquidHaskell.

Others did similar work, i.e. Nipkow showed some amortised complexity proofs [Nip17],
Niki Vazou et al. provided some small examples on how to use the RTick library to
prove simple examples in [HVH19], while in [Hoc24] the RTick Library is used for a more
complex use case. More on it is described in section 1.2.

1.1.1 Binary Search Trees and Invariants
Binary Search Trees (BST) have a long history being researched but, as a subject, are
still not fully figured out, and there is still active research. The main topics of interest
are concurrency, better worst-case bounds in certain operations and verification of these
bounds. Starting from the most famous ones, i.e. AVL Trees and Red-Black Trees, many
minor adjustments to their algorithmic behaviour were investigated. With good reason,
since BST are used in databases as indexes and in Linux in multiple areas.

Formalising an automated amortised complexity bound for a BST is difficult because
these data structures rely heavily on structural invariants. These are implicit constraints
over a data structure which are not explicitly expressed via variables. To prove these
structural constraints and use them in the following for proofs of their respective runtime
complexity, one needs to show that they hold at all times or use repairing actions to
correct the structure.

Only by proving that an algorithm adheres to such constraints can one show that an
algorithm exhibits a certain low worst-case bound. For BST, such structural constraints
are usually order and balance.

Balancedness is the main invariant we look at since it is needed for all proofs on worst-case
runtime bounds.

1.2 State of the Art and Related Work
Research on binary search trees and especially on WAVL was done by Häupler et al. in
[HST15] and [HOSS97], while the latter extends the WAVL definition by using a different
deletion method. The amortised complexity analysis using potentials in [Tar85] is the
current standard in the complexity analysis and is extended by using different bases of
potentials, e.g. binomials or logarithmic ones in [CFG19].
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1.3. Methodological Approach

Verification of Data structures in LiquidHaskell becomes more common and is actively
researched in [JSV15, Hoc24, Pal20] while only in [Hoc24] we find another example of
formalisation of a runtime complexity analysis. To the best of our knowledge, there is
no other functional implementation of WAVL trees or a verification of its functional
correctness. The same goes for the verification of its complexity bounds for its functions.

On a further note, we have to appreciate the fact that LiquidHaskell, while mature enough
to be part of many works of late, is still under active development and general issues
which affect the whole field of term rewriting and formal verification are addressed (i.e.
see [Vaz23, VG22]). This shows a similar mentality to how the whole Haskell Community
is developing rapidly, and changes are quickly incorporated into production code.

1.3 Methodological Approach
In the proceedings of this work, we analysed multiple BST to find suitable candidates for
thorough research on their amortised runtime complexity and did a rigorous analysis of
their existing pen-and-paper-proofs.

By doing so, we gained extensive knowledge on how a possible implementation could be
achieved. We fixated our research on LiquidHaskell as our theorem-proving tool, which
suggested some support for the BST invariant problem.

In the next step, we show a functional implementation of the WAVL tree in Haskell; for
this, we used existing implementations of AVL and Red-Black trees to guide us.

This prototype is then annotated with the refinement types, and we proved with it
balancedness and termination of the WAVL tree.

In the last step, we add the RTick framework to it, using it as a resource analysis
framework [HVH19]. The RTick library uses a monadic approach and is wrapped over
our initial prototype. This extends our functional correctness proofs, and with it, we can
prove the amortised bounds of the insert and delete methods.

1.4 Contributions
Our contributions in this work are thus three-fold:

• functional implementation of WAVL trees in Haskell

• verification of functional correctness and termination of its methods

• verification of an amortised runtime complexity analysis on WAVL trees

The sections in this work are mapped out to understand the final proofs for the WAVL
trees. In chapter 2, we lay out the amortised complexity analysis and the mathematical
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1. Introduction

fundamentals we employ. In chapter 3, we are taking an overview on LiquidHaskell as the
theorem prover of our choice and go into some details which are essential for the chapter
4 where we go first over the details of the WAVL Tree and then go into our proofs. Last,
in the final chapter 5, we take a look at some future directions and give our conclusion
on this work.
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CHAPTER 2
Amortised Complexity Analysis

In computer science, we often want to know the worst case runtime an algorithm can
have under the most unfavourable conditions. Thus, the worst case refers to the maximal
amount of computation steps an algorithm can take or how much memory it will occupy.
Such analysis gives developers predictability and guarantees in their application designs.

Amortised complexity analysis is a method used to calculate the time required to perform
a sequence of data structure operations, averaged over all the operations performed.
This approach provides a more nuanced understanding of performance than a worst-case
analysis, which only considers the most time-consuming operation. Such an analysis can
also be done on other resources like storage, but we focus on runtime operations in this
work.

2.1 Different Analyses Methods

there are three main key concepts of amortised Analyses: Aggregation Analysis, the
Accounting Method and the Potential Method.

For the Aggregation Analysis, we take the total time for a sequence of operations and
divide it by the number of operations to find the average time per operation. This is
useful when we can show that a costly operation decreases the possibility or cost of future
operations.

In the Accounting Method approach, we assign a hypothetical "charge" or "token" to
different operations. Some operations may have a charge higher than their actual cost,
and this extra charge can pay for other operations with a higher actual cost than their
assigned charge. The idea is to ensure that the total charge assigned to all operations is
enough to cover their total cost.

5



2. Amortised Complexity Analysis

2.2 The Potential Method
In the Potential Method, which we use in our analysis for WAVL trees, we assign a
"potential" Φ to the structure depending on its state. Potential, in this sense, is just
another way of saying that we store the cost of work for a later time to be consumed by
overpaying on the cost of some functions, thus increasing the overall potential stored.

Each function call on the structure can change the stored potential. While certain
operations increase the potential, other operations will decrease it. With this technique,
we want to show that all changes to a structure’s potential sum up to a positive number.
The potential of a structure is denoted as Φ in the following. This method works well for
us since we deal with different runtime costs for operations, and it allows us to perform
fine-grained accounting on different parts of a function or variations of the input.

The mathematical formula is then written like this:

Tamortized = Tactual + c ∗ (Φafter − Φbefore) (2.1)

Further, if we analyze over some actions n executed over a data structure T , we find that
we can summarize the actions as in 2.2

c = 1
Tamortized = ĉ

Tactual = c̄

ĉ = c̄ + c ∗ (Φafter − Φbefore)
n�

i=1
ĉ =

n�
i=1

(c̄i + (Φi − Φi−1))

n�
i=1

(c̄i + (Φi − Φi−1))

n�
i=1

c̄i +
n�

i=1
(Φi − Φi−1)

n�
i=1

c̄i + Φn − Φ0

(2.2)

Thus, in our analysis, we need to show

1. a potential of a structure is never decreased below 0 by a given operation,
i.e. Φn − Φ0 ≥ 0 (s. 2.4)
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2.3. Example: Multi-Delete in Arrays

2. potential decreases can cover c̄ costs

The second point shows that our functions (rules) for calculating potential over a given
data structure correspond to the change introduced by an operation on the structure.

Next, we need to account for the potential increasing operations for which we can extend
the amortised costs overall operations in 2.3 and find a bound for all operations such
that we can prove that the inequality in 2.3 holds. Thus, the amortised costs for all
operations become a bound for the actual costs, and our analysis is concluded.

n�
i=1

ĉi ≥
n�

i=1
c̄i (2.3)

n�
i=1

ĉi ≥
n�

i=1
c̄i

n�
i=1

c̄i + Φn − Φ0 ≥
n�

i=1
c̄i

Φn − Φ0 ≥ 0

(2.4)

2.3 Example: Multi-Delete in Arrays
A practical example of a potential analysis showcasing its application is the analysis of
an array’s insert, delete and multi-delete operation. The following ruleset applies:

• We define potential as the number of elements in the array.

insert adds an element to the array and increases the potential by 1.

delete removes an element from the array and decreases the potential by 1.

multi-delete removes up to n elements from the array and thus decreases the potential of up to
n.

Theorem 1. All three operations, insert, delete and multi-delete, can operate on a given
array in amortised time of O(1)

Without an amortised analysis, we would have to categorise these three operations such
that insert and delete would have worst-case bounds of O(1) while the multi-delete would
have a worst-case bound of O(n). To prove that over all operations we have a bound
in O(1), we apply our amortised analysis and argue that the potential is changed as
depicted in listing 2.3.

Then, we find that the situation is as depicted in 2.1.

7



2. Amortised Complexity Analysis

Figure 2.1: Multi-Delete in Arrays

Proof. We define the actual cost of inserting/deleting an array element to be 1. Potential
changes are as in listing 2.3.

ĉinsert = 1 + 1
ĉdelete = 1 − 1

ĉmulti-delete = n − n for n elements

∀ĉ =
n�
i

max(ĉi) = 2 ∗ n

A delete operation can only be applied to a non-empty array. Similarly, a multi-delete
can only delete as many elements in an array as it contains, which is incidentally the
same as the potential. Then we find that for n operations, we get amortised costs of
2 ∗ n, which for one operation is 2 ≪ O(1); thus, Theorem 1 holds.
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CHAPTER 3
LiquidHaskell

3.1 Introduction

LiquidHaskell is a static verifier for Haskell, an extension of the Haskell programming
language. LiquidHaskell uses a refinement logic to add logical predicates to Haskell’s
type system [VSJ14].

These boolean predicates can express properties like the range of an integer or the shape
of a data structure, enabling the verification of properties like array bound checks or
division safety at compile time.

Simple enough, these functions and type refinements apply to various industries and
code bases. The ability to check logical constraints on functions at compile time enables
developers to write safer and more resilient code.

For the verification, LiquidHaskell reduces the refinement annotation to a logical equiv-
alent, which is then given to a Satisfiability Modulo Theories (SMT) solver like Z3
from Microsoft Research or MathSAT [Hø14], thus dipping into the growing power of
SAT-solvers. In that context, LiquidHaskell (LH) employs the Quantifier free logic of
Equality and Uninterpreted Functions and Linear Arithmethic (QF-EUFLA) as the
general theorem to build upon, while the verifier itself is implemented as a GHC plugin
to enable verification at compile time.

As a theorem prover LH can be compared to Dafny or F* or on a more general basis in
comparison to its powers as a theorem prover, we can look at Agda or Coq. Its most
significant advantage over the others is the integration into a programming language,
which is actively used by a huge community for something other than only proofs. The
ease of writing enables developers to make a smoother entry into correct annotations
with relatively few extra steps in work to get started.

9



3. LiquidHaskell

Figure 3.1: LiquidHaskell Workflow

3.2 Workflow

The basic setup for working with LiquidHaskell requires installing a SMT solver in the
development setting. Our setup is explained in more detail in the appendix at 5.1 for
reproducible results.

The workflow in 3.1 consists of multiple stages, which annotations go through until an
Error or a Safe-to-use is reported to the developer. Since this happens behind the scenes,
developers don’t necessarily need to concern themselves with the specifics and can view
LHas a black box or an oracle.

In short, the logical predicates are taken, plus the location info is saved for later usage.
The code is simplified and enriched via the LHcore. By enriched, we mean annotations
like measure, inline and reflect are expanded to constraints to match the functional
implementation. In the same way, clauses are pruned where applicable to minimize the
overall Satisfiability Modulo Theories Library (SMT-LIB) data sent to the SMT solver.
At the reporting stage, LHcombines the location info with the reported errors given by
the SMT solver, thus allowing an IDE to mark faulty lines in the source code.

Remark. We used Visual Studio Code with the simple GHCi Integration extension to
use the error markup in our development.

3.3 Examples

In the following, we will present some syntax examples of LiquidHaskell to get a better
handle for the proofs and refinements in chapter 4. Since a case study on the whole
functionality of Haskell would be too much for this work, we expect a base knowledge of
the programming language Haskell and its syntax. We do not use any special dialects of
Haskell, and only the LH specifics need to be understood in a bit more depth.

10



3.3. Examples

3.3.1 function annotation
While in Haskell, we already write for each function-specific input/output relation using
normal Haskell syntax, by using LH, we can take the concept a step further:

Listing 3.1: absolute function
1 {−@ abso lu t e : : x : Int −> {v : Int | v >= 0} @−}
2 abso lu t e : : Int −> Int
3 abso lu t e x
4 | x < 0 = −x
5 | o the rw i s e = x

The function absolute operates on an integer and returns an integer as defined in the
first line in 3.1. We know from math what the absolute should return, namely, always a
non-negative integer. Thus, a refinement could be written as in line 1 of listing 3.1 and
checks that the function always returns an integer greater or equal to 0.

LH annotations are written as code comments, enclosed by {−@...@−} and extracted
during compile time.

3.3.2 Type annotation
LH refinements are not limited to functions. Similarly to them, we can define type
refinements, which allow you to constrain values of a given type and reuse such definitions.

The basic syntax for a type refinement in LiquidHaskell is:
1 {−@ type Al i a s = OriginalType { v a r i a b l e | c o n s t r a i n t } @−}

In 3.3.2, Alias is the new type name that can be used instead of the OriginalType with
the added constraint. The constraint is a predicate expressed in terms of a variable
that must hold true for all values of this type.

For example, we define that integers greater than or equal to 0 are of the type Pos
as defined in 3.2. With this type, we can simplify our example 3.1 and write it more
naturally as in 3.3. For brevity, we will leave out the enclosing brackets if not explicitly
needed as a distinction between the Haskell code and the refinement.

Listing 3.2: Pos type annotation
1 type Pos = {v : Int | v >= 0}

Listing 3.3: absolute function, v2
1 abso lu t e : : x : Int −> Pos

Furthermore, we can extend existing types with other constraints and create additional
sub-types, i.e. something like example 3.4 is possible.

11



3. LiquidHaskell

Listing 3.4: type with constraints
1 type l imitedBy10 = {v : Pos | v <= 10}

3.4 LiquidHaskell keywords
In this section, we want to present some of the LHkeywords used in our work because their
inner workings influence the extracted constraints. These keywords are also explained
in more detail at https://ucsd-progsys.github.io/liquidhaskell/, but the
docs are prone to change. In this work, we explicitly refer to LHversion 0.9.4.7.

3.4.1 data type
Similar to what we have seen with type refinements, we can annotate a Haskell data
class with a LHannotation. In our example listing 3.5, we define a heap tree and refine
the Tree by constraining the left and right children in listing 3.6. The refinement states
that only values greater than or equal to the value of the root node are allowed as input.

Listing 3.5: Haskell data class example
1 data Tree a = Leaf
2 | Node { value : : a
3 , l e f t : : Tree a
4 , r i g h t : : Tree a
5 }

Listing 3.6: Haskell data class refinement
1 {−@ data Tree a = Leaf
2 | Node { value : : a
3 , l e f t : : Tree {v : a | v >= value }
4 , r i g h t : : Tree {v : a | v >= value }
5 }
6 @−}

3.4.2 Termination
In Software verification, an often-asked question concerns the termination of a function.
LiquidHaskell also faced that question and introduced a syntax for it. The so-called
termination metric can be assigned to functions and data types to give the program a
function through which the program can evaluate if an execution will reach an end. If
you ask yourself if that solves the Halting problem, it doesn’t. A heuristic is used, which
essentially states that a type, if used in a loop, has a numeric value that must decrease
and go towards 0. The general syntax is like in Listing 3.7.

Listing 3.7: Haskell data refinement with termination metric
1 {−@ data T [ terminat ion_metr ic ] a = A | B @−}

12
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3.4. LiquidHaskell keywords

We use termination for our proofs to show that functions will, at most, take n steps to
complete.

3.4.3 measures
In the LHlogic, measures have a special place. A function annotated with the keyword
measure needs to conform to the following rules:

• it can be recursive but only on one argument

• it may only take one argument

LHchecks a measure for termination, usually via structural induction, on the same
argument. To prove this, all parts of the function must be present in the LHlogic. Put
another way, LHwill complain if parts of the function are not annotated with measure or
reflect since normal Haskell functions are only proven to be correct and then only their
functional refinements are reused in the LHlogic, but the proofs get pruned.

Listing 3.8: measure example
1
2 {−@ measure l en @−}
3 {−@ length : : s : S a f e L i s t −> {v : Int | v >= 0} @−}
4 l ength : : S a f e L i s t −> Int
5 l ength Ni l = 0
6 l ength a = 1 + length ( t a i l a )

The example 3.8 shows how we can define a measure to get the length of a dynamic array
from the previous example 3.6.

3.4.4 inline
The inline keyword is used to lift a Haskell function into the LHlogic. Such a function is
restricted to be non-recursive, and dependent sub-functions must also be in the LHlogic.
An advantage of an inline-defined function over the LH predicate keyword is that we
get a concrete Haskell-esque function definition for an inline function, which LHuses to
cross-check input parameters when used in annotations. An example of an inline is used
in our proofs at code ??.

3.4.5 refinement reflections, PLE and Proofs
In our proofs, we make use of Proof by Logical Evaluation (PLE), which automatically
unfolds function definitions and evaluates expressions to assist in proving properties
of Haskell programs. This automatic evaluation helps establish whether predicates
or properties hold for functions across their possible inputs. It simplifies the process
of verifying function behaviour by reasoning about their logical consequences without
manual proof steps.
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For example, when LiquidHaskell encounters a function with a known output for specific
inputs, PLE allows the system to use these concrete outputs in proofs directly. This
automatic unfolding of function definitions to instantiate proofs is a powerful feature
that leverages the Haskell type system and the underlying SMT -solver.
The general outline of a proof looks like this:

Listing 3.9: Haskell Proof Structure
1 {−@ proof_1 : : a −> { bool_statement } @−}
2 proof_1 : : a −> Proof
3 proof_1 v = ( )

In listing 3.9, we find the same syntax we use as in normal Haskell functions. Also,
the function refinement stays the same. Note that the unit type Proof is the output,
which follows other Haskell implementations of Proofs. The empty clause () represents a
trivially produced proof and is the short form of the keyword trivial.
The bool_statement in the refinement is our hypothesis, which we want to prove via
proof steps. Proof steps are similar to traditional pen-and-paper proofs derived from
previous truth statements or axioms, which we can express as Haskell terms. The chain
operator === is used to show equality between terms. Further, since many of our proofs
operate with the logic QF-EUFLA in mind, we use the chain operators =>= and =<=
for showing inequality directions between terms.
An example is shown in listing 3.10.

Listing 3.10: Proof Structure with Chaining proof steps
1 {−@ proof_2 : : a : Nat −> {b : Int | b == div a 2 } −> { a >= b } @−}
2 proof_2 : : Int −> Int −> Proof
3 proof_2 0 _ = ( )
4 proof_2 a b = b
5 === div a 2
6 =<= a
7 ∗∗∗ QED

The proof can also use other functions to deduce the correctness of steps via the ?
operator, which effectively drops the second argument but uses it to prove the output
Proof type by combining the first argument with the second. This makes for an excellent
concise proving scheme and lets us split sub-proofs into other functions. LHwill use the
second argument as a guide for PLE to prove the step is sound.
QED finalizes a proof and is derived from mathematics where it stands for the Latin
Quod erat demonstrandum, i.e. shown what was to be proven. It is not necessary but
makes for a nice mathematically looking proof.
In some of our proofs, we use multiple chained boolean sub-proofs in parallel with the
inequality chain operators =<= and =>=. This needed a separate function to tie it
together, namely the prove function in listing 3.11. A concrete usage for it can be found
in the proof 4.6.1 for the logarithmic height.
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Listing 3.11: prove function
1 {−@
2 i n l i n e prove
3 prove : : {v : Bool | v} −> {v}
4 @−}
5 prove : : Bool −> ( )
6 prove _ = ( )

3.4.6 RTick
For our amortized complexity analysis, we use the RTick module of LiquidHaskell [HVH19].
Acting as a wrapper over our tree data types, we can count the actual execution costs
of statements and compare them to our amortized cost sums. In doing so, and when
LHshows that our code is sound, we have proof of the amortized runtime cost.

Listing 3.12: RTick data type
1 data Tick a = {
2 t v a l : : a ,
3 t c o s t : : Int
4 }

The tval member function of T ick returns the wrapped type, which in our case will be a
tree type. The tcost function returns the accrued costs.

The amortized cost function can be found in appendix ?? and 5.1.

For other monads, there are several commonly used verbs that work on monads, such as
pure and liftM . In our context, we only use the pure function, which wraps a type in
the Tick monad and assigns a cost of 0.
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CHAPTER 4
weak AVL Trees

A WAVL tree is classified as a rank-balanced tree by Häupler et al. in [HST15]. This
height-balanced data structure is named after the AVL Tree, which was invented in 1962
[GAV62] and was the first structure in the domain of binary search trees to tackle large
search spaces and having worst-case runtime bounds in O(log n)for all of their operations,
in particular search, insert and deletion of nodes due to their self-balancing nature.

Both structures are binary search trees, meaning that a tree has a single root node, and
each node in the tree has at most two children, respectively called the left and right child
of a node, which is then called the parent node respectively. A root node has no parent.
Further, a node is a sibling to another node if they are both children of a common node.

A node without children is called a leaf.

By chaining multiple nodes as children, we get our binary tree. These connections
between the nodes build up the paths in the tree.

A path starts at the top at the root node and ends at a leaf node. The longest path in a
tree defines the height of a tree.

In this analogy, we define that relative to a node, all nodes between it and the root are
ancestors to it, including the root itself.

Characteristics of Binary search trees are:

• Balancedness in that sense describes structures’ characteristic to keep a relatively
similar amount of nodes in both its children.

• Orderedness nodes in a tree are inserted lexicographically so that the left node is
respectively either always (strictly) smaller or greater than its parent node, and
the right node is always greater than its parent.
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Figure 4.1: Right rotation at node x. the triangles A, B and C denote subtrees. For the
inverse operation, the same applies, [HST15]

• it’s height is logarithmic in relation to the number of nodes in the tree.

All these characteristics are needed for worst-case runtime in O(log n), i.e. searching for
an entry or node in such a structure starts at the root, comparing an entry against the
node and then following either along the left or right-hand side of the tree.

A key operational feature of such structures is the self-balancing nature of their functions,
i.e. after an insertion or deletion of a node, the structure checks for if it is still balanced.
Imagine this would not be the case. Then, a tree could insert a list of nodes already
sorted, starting from its smallest element. This would lead to a tree having only ever
inserted new nodes on its right-hand side, essentially becoming a list. This would degrade
the search runtime to a linear-bound (i.e. O(n)).

Rebalancing is accomplished via rotations, which means moving nodes so that the
Orderedness is preserved and balancedness is acquired again.

The main building blocks of such rotations are the left and right rotations, as seen in
figure 4.1.

4.0.1 Ranks and rank differences
A rank is an integer, and every parent node in a tree has a rank that is strictly greater
than its children’s. A tree’s rank is the rank of its root node. We define the rank of a
missing node (i.e. NIL node) to be −1. This definition is needed since we compare ranks
and classify nodes according to their rank difference with their children, even if they are
missing. A node with rank differences to both of its children of 1 is called a 1,1-node. A
node with a rank difference r to its parent is called a r-child.

A node rank is increased or promoted during the rebalancing process. Similarly, a rank
can be decreased or demoted if the rebalancing requires it.

Häupler et al. made a framework around the idea of overcoming the weak points of
AVL, namely the rebalancing after a node deletion, and created the classification of
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rank-balanced trees to describe trees which rely on information in nodes which are not
directly height-related like AVL trees or weight-related (i.e. sum of nodes).

4.1 Definition of different rank-balanced trees

• AVL trees named after its inventors, Adelson-Velsky and Landis, are trees where
the difference in heights between the left and right subtrees (balance factor) of any
node is at most 1 and the difference to the parent is at most 2.
In terms of rank difference, we allow 1,1, 1,2, and 2,1-nodes in AVL trees but not
2,2-nodes. Remark: The rank at the root node is the same as the tree’s height.

• Red-Black trees are so-called because nodes in the tree are coloured either red or
black. With this, the following rules apply:

– The root node is coloured black
– all NIL nodes are coloured black
– red nodes cannot have red children
– Every path of root to a leaf must have the same number of black nodes (Black

Property)

In Red-Black trees, we count NIL nodes as part of the tree to fulfil the Black
Property. By disallowing red children of red nodes plus the Black Property, we get
a tree with a height of at most 2log( n) with n being the number of nodes in the
tree.
Regarding ranks, we allow 1,1-, 2,2-, 1,2- and 2,1-nodes.

• WAVL trees

– rank differences are either 1 or 2
– leaves are of rank 0

This rule is a bit special, but during a deletion, a 2,1-node can become a 2,2-node
of rank 1. Such nodes are prohibited from keeping a bound on the number of
rotations needed per insertion or deletion. This rule was added since the deletion
of such a node can result in a 2,4-node, which can not be solved by two rotations
but three. More on that is explained in the proof section of this chapter.

This classification was meant to directly link AVL trees and Red-Black-Trees, which both
fit this description, even though they have different original recipes of their own when to
rebalance. By doing so, Häupler et al. found a related structure, which was somewhere
in between and this structure was then called the weak AVL tree.
On this remark, in an initial working paper, the authors still called it rank balanced tree,
but this was such a commonly used name that it was dropped, and the name weak AVL
tree was chosen instead [HST09].
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4.2 insert and delete
An insertion in a WAVL tree follows the typical process as in an AVL tree:

• start at the root

• find a node with a missing child where the new node can be inserted into

• insert the new node

• starting from the new node, follow along the path back to the root

• at each ancestor, check if the balancing condition is violated

• if it is, rebalance the tree

Remark. In an imperative programming language, we could exit the function because to
manipulate the tree, we would use pointers and rebalancing a tree is a rotation of pointers
which are exchanged between nodes to get a balanced configuration. In our functional
approach, we cannot exit the function but have to return to the root node since we don’t
deal with pointers but pure data structures, which are only defined by the functions working
on them.

At the same time, the purely functional approach gives us confidence in our proofs that
the code context is not changed by any side conditions. In an imperative language, global
variables are often assumed or at least have to be accounted for during execution. In a
functional context, this can be ignored.

4.2.1 rebalancing in insert
The rebalancing is conducted as follows:

• after the insertion of node x in y, we check for the rank difference to x.

• if the rank difference is 0, then one of three cases can be. For now, we assume that
x is the left child of y:

1. promote: node y is a 0,1-node; then y gets promoted, i.e. its rank is increased
by 1. The rebalancing will continue; y gets to set x, and the parent of y is set
to y.

2. rotate: node y is a 0,2-node, and x is a 1,2-node; then y is rotated once to the
left, and y is demoted by 1. The rebalancing stops;

3. double rotate: node y is a 0,2-node and x is a 2,1-node; then we rotate first x
to the right and then y to the left. x and y are both demoted by 1.

We have mirror cases for the rotation cases. Rebalancing is continued only after a
promote case. This is possible because a rotation case fixes the imbalance. The functional
correctness proof for that is done in LiquidHaskell for all cases.
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Figure 4.2: Insert - Rebalancing steps taken after an insertion, Numbers next to edges
are rank differences. All cases have mirror images, [HST15]

4.2.2 rebalancing in delete
Similar to the insert case, we conduct the rebalancing in the delete case. The deletion
takes place in the following:

• find the node to delete

• if the node is not a leaf, find the immediate successor of the node which is a leaf (s.
the getMin function down below)

• starting from the position of the successor (or the node itself, if it is a node), we
remove the node and start the rebalancing process beginning with its parent y
while the deleted node is x

Then the rebalancing can have the following cases, assuming x is the left child and its
sibling node is z:

• demote: y is a 3,2-node: demote y by 1 and set the parent of y to y and the y to x.
The rebalancing continues.
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Figure 4.3: rebalancing after a deletion. The same syntax as in Fig. 4.2 applies. the
demote steps may repeat, [HST15]

• double demote: y is a 3,1-node, with z being a 2,2-node itself: demote both y and z
by 1, then continue analogue to the demote case.

• rotate: y is a 3,1-node with z having a rank difference of 1 to its right child: rotate
right at z, promote z and demote y. if z is a leaf, demote it again. This restores
the rank rule, i.e., leaves must be of rank 0.

• double rotate: y is a 3,1-node, with z being a 1,2-node (you only need to check for
the right child being a 2-child): rotate left on z, then rotate right on y. promote
the previous left child of z twice, demote z by 1 and y by 2.

Both rotation cases end the rebalancing process since the tree is balanced again.
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Implementation, Version 1
In our attempts to prove the WAVL trees invariants, we started with the classical
definition of a tree:

Listing 4.1: WAVL tree definition
1 data Tree a = Ni l | Tree { va l : : a ,
2 rd : : Int ,
3 l e f t : : ( Tree a ) ,
4 r i g h t : : ( Tree a )
5 }
6 d e r i v i n g Show

This definition is now refined with some constraints in the LiquidHaskell style:

Listing 4.2: WAVL data type refinement
1 {−@ data Tree [ rk ] a = Ni l | Tree { va l : : a ,
2 rd : : {v : Int | v >= 0 } ,
3 l e f t : : ChildT a rd ,
4 r i g h t : : ChildT a rd } @−}

In this annotation we stated, that the tree has a Termination metric rk and a rank rd,
which is essentially the same. But because we want to compare ranks of empty trees
(NIL) and non-empty trees, we define a separate function rk in which we also define the
rank of NIL trees:

Listing 4.3: rank function
1 {−@ measure rk @−}
2 {−@ rk : : t : Tree a −> {v : Rank | ( empty t | | v >= 0)
3 && ( notEmptyTree t | | v == ( −1))}
4 @−}
5 rk : : Tree a −> Int
6 rk Ni l = −1
7 rk t@( Tree _ n _ _) = n

The rk function is defined as a measure to reuse it in other LH refinements. The
annotation for this function also describes that every tree is either empty or not empty
and combines that information via logical implication with the numerical information
of the rank. This seems intuitive initially, but LH needs this constraint to infer the
connection between the rank and empty and non-empty trees in the other refinements.

To complete the definition of the WAVL tree, we still need the recursive definition:

Listing 4.4: additional WAVL type refinements
1 type ChildT a K = {v : Tree a | rk v <= K && K <= rk v + 3}
2 type Wavl = {v : Tree a | balanced v }
3 type NEWavl = {v : Wavl | not ( empty v )}
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With the balancing function implemented as a measure:

Listing 4.5: balanced function
1 {−@ measure balanced @−}
2 balanced : : Tree a −> Bool
3 balanced Ni l = True
4 balanced t@( Tree _ n l r ) =
5 rk r < n && n <= rk r + 2
6 && rk l < n && n <= rk l + 2
7 && ( ( notEmptyTree l ) | | ( notEmptyTree r ) | | (n == 0))
8 && ( balanced l )
9 && ( balanced r )

In 4.4, we define the relationship between the child node and its parent via the rank.
This is done via a structural recursion, compare 4.2.

In this first version of our tree, we defined it in a relaxed variant, i.e. we allow the rank
difference to be between 0 and 3. Why did we choose this range instead of the 1 − 2?
This approach becomes more natural if we look at how trees are usually changed in a
functional setting:

Listing 4.6: insert function, v1
1 {−@ i n s e r t : : (Ord a ) => a −> s : Wavl
2 −> { t : NEWavl | ( ( RkDiff t s 1) | | ( RkDiff t s 0 ) ) } @−}
3 i n s e r t : : (Ord a ) => a −> Tree a −> Tree a
4 i n s e r t x Ni l = l e a f x
5 i n s e r t x t@( Tree v n l r ) = case compare x v o f
6 LT −> insL
7 GT −> insR −− symmetric to insL
8 EQ −> t
9 where

10 l ’ = i n s e r t x l
11 r ’ = i n s e r t x r
12 l t ’ = Tree v n l ’ r
13 rt ’ = t r e e v n l r ’
14 insL | rk l ’ < n = l t ’
15 | rk l ’ == n && rk l ’ == rk r + 1 = promoteL l t ’
16 | rk l ’ == n && rk l ’ == rk r + 2
17 && rk ( l e f t l ’ ) + 1 == rk l ’
18 && rk ( r i g h t l ’ ) + 2 == rk l ’ = rotateRight l t ’
19 | rk l ’ == n && rk l ’ == rk r + 2
20 && rk ( r i g h t l ’ ) + 1 == rk l ’
21 && rk ( l e f t l ’ ) + 2 == rk l ’
22 = rotateDoubleRight l t ’
23 | o the rw i se = t

The LH annotation can be read like it was taken from the paper, i.e.

• the input is formed of an ordered Element a and a WAVL tree
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• and the output is then an un-empty WAVL tree (i.e. NEWavl, or not empty
WAVL tree) which has at most a rank of 1 greater than the input tree.

The rest is relatively straightforward, i.e. we define the leaf node as in 5.1. In this version
of the insert function, we use the output of the insert function to define a new Tree
object lt′. This approach follows the exact definition of the WAVL paper [HST15]. First,
do the insertion in the child node, then check the resulting tree is imbalanced. With that
in mind, our initial choice of the rank range makes sense since this makes our code more
readable in the following case matching of insL.

the case distinctions in insL follows the definition in

The rotation cases are written like this:

Listing 4.7: rotation case for Rebalancing
1 {−@ rotateRight : : {v : Node0_2 | isNode1_2 ( l e f t v ) }
2 −> { t : NEWavl | r k D i f f t v 0 } @−}
3 ro ta teRight : : Tree a −> Tree a
4 ro ta teRight ( Tree x n ( Tree y m a b) c ) =
5 Tree y m a ( Tree x (n−1) b c )

Note that the annotation of rotateRight matches the output of the insert’s refinement.
This is necessary since all LH uses in proving a function are the logical refinements of
sub-functions but not their actual definitions. This application of Hoare Logic makes
the logic decidable since recursive calls like the one in the insert function are reduced to
Hoare Logic and made solvable. At the same time, we lose some information about the
object’s transformation in the sub-call, e.g., the relationship between the nodes or which
node was moved to which exact position. LH only bubbles up the refinement, and in our
case, we are left with {t: NEWavl | rkDiff t v 0} with v being the input tree.

Remark. Our work shows that this initial approach is indeed correct and terminates, as
proven by the Termination metric set in the data annotation. We didn’t have to change
our way of writing Haskell code too much to prove it with LH. Some features were missing
from the logic we expected to be there, but overall, it was an OK experience. One of our
main takeaways is that the actual implementation of LH can be classified as academic for
the last few years and only really stabilised in the last 2 to 3 years. We had problems with
the online LH editor, which used an older version (i.e. 8.6.10) and was incompatible with
the latest versions we used for our work. Further, specific pragmas for LH were added
since 2021, which changed certain recursive refinements fundamentally, e.g. − − bscope,
see here also the This also affects a lot of older code examples found since they are often
not working anymore with the more recent versions.

4.2.3 Problems with Version 1
we started encountering smaller problems when trying to implement the delete function.
We wanted to implement it like this:
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Listing 4.8: delete function v1
1 {−@ d e l e t e : : (Ord a ) => a −> s : Wavl
2 −> { t : Wavl | ( r k D i f f t v 0) | | ( r k D i f f s t 1)} @−}
3 d e l e t e _ ( Ni l _) = n i l
4 d e l e t e y ( Tree x n l r )
5 | y < x = balLDel x n l ’ r
6 | x < y = balRDel x n l r ’
7 | o the rw i se = merge y l r n
8 where
9 l ’ = d e l e t e x l

10 r ’ = d e l e t e x r

But LiquidHaskell was returning an Error about the Pattern Matching in the l and r
cases, which were not exhaustive. Thus, we ended up with the following:

Listing 4.9: actual delete function, v1
1 d e l e t e _ ( Ni l _) = Ni l
2 d e l e t e y ( Tree x n l@ ( Ni l _) r@( Ni l _) )
3 | y < x = balLDel x n l ’ r
4 | x < y = balRDel x n l r ’
5 | o the rw i se = merge y l r n
6 where
7 l ’ = d e l e t e x l
8 r ’ = d e l e t e x r
9 d e l e t e y ( Tree x n l@ ( Ni l _) r@( Tree _ _ _ _) )

10 | y < x = balLDel x n l ’ r
11 | x < y = balRDel x n l r ’
12 | o the rw i se = merge y l r n
13 where
14 l ’ = d e l e t e x l
15 r ’ = d e l e t e x r
16 d e l e t e y ( Tree x n l@ ( Tree _ _ _ _) r@( Ni l _) )
17 . . .
18 d e l e t e y ( Tree x n l@ ( Tree _ _ _ _) r@( Tree _ _ _ _) )
19 . . .

We couldn’t pinpoint the exact problem, but it became clear from the problem in listing
4.9 that the balanced constraint did not get expanded constraint-wise for the children.
In private communication with the LHmaintainers, we also couldn’t solve this problem
then (communication via LH Slack channel with Niki Vazou and Ranjit Jhala in early
2023). This first approach did not work out for us because we were unable to prove the
amortised complexity with it. In our approaches, the biggest hurdle was finding a suitable
refinement for the recursive call in insert. Finding the balance between a relaxed enough
but still strict enough definition is hard.

4.2.4 amortised cost analysis, version 1
Similar problems arose with the amortised cost analysis. We couldn’t get a hold of a
simple annotation for the recursive insert function. We amassed constraints on top of
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Figure 4.4: Workflow of finding suitable constraints for the recursive function insert

constraints to restrict the input of functions to satisfy LH, but that introduced new
problems with the calling functions since that function output was the input to the
sub-functions and vice versa, see figure 4.4. A different approach was needed.
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4.3 WAVL Version 2
In our second attempt to fix the problem with the recursive definitions, we started from
the top and redefined our data type:

Listing 4.10: WAVL data type revisited
1 {−@ data Tree [ rk ] a = Ni l | Tree { va l : : a ,
2 rd : : {v : Int | v >= 0} ,
3 l e f t : : ChildT a rd ,
4 r i g h t : : ChildT a rd } @−}
5 data Tree a = Ni l | Tree { va l : : a ,
6 rd : : Int ,
7 l e f t : : ( Tree a ) ,
8 r i g h t : : ( Tree a )} d e r i v i n g Show
9

10 {−@ type ChildT a K = {v : Tree a | rk v < K
11 && K <= rk v + 2 } @−}

Restricting the tree to only rank differences of up to 2 ingrains the rank difference
invariant even more in the data structure.

Now, the only thing left is to restrict the structure to the only allowed configurations:

Listing 4.11: additional WAVL types, v2
1 {−@ type Wavl = {v : Tree a | structLemma v } @−}
2 {−@ type NEWavl = {v : Wavl | not ( empty v ) } @−}

With the structure Lemma being:

Listing 4.12: Structure instead of balancedness
1 {−@ measure structLemma @−}
2 structLemma : : Tree a −> Bool
3 structLemma Ni l = True
4 structLemma t@( Tree _ n l r ) = isWavlNode t
5 && structLemma l
6 && structLemma r

and

Listing 4.13: node structure constraints
1 {−@ i n l i n e isWavlNode @−}
2 isWavlNode : : Tree a −> Bool
3 isWavlNode t = isNode1_1 t | | isNode1_2 t
4 | | isNode2_1 t | | isNode2_2 t
5
6 {−@ i n l i n e isNode1_1 @−}
7 isNode1_1 : : Tree a −> Bool
8 isNode1_1 t = rk ( l e f t t ) + 1 == rk t
9 && rk t == rk ( r i g h t t ) + 1
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10
11 {−@ i n l i n e isNode2_2 @−}
12 isNode2_2 : : Tree a −> Bool
13 isNode2_2 t = rk ( l e f t t ) + 2 == rk t
14 && rk t == rk ( r i g h t t ) + 2
15 && not ( empty ( r i g h t t ) )
16 && not ( empty ( l e f t t ) )

The isNode∗ other than the 2,2 case has the same structure as isNode1_1. The 2,2-case
needs special attention because we need to forbid nodes of rank 1 from having this form
by disallowing that their children need ranks of 0 or greater. While we also had the
definition isWavlNode in the first version, we did not use it in the definition of the WAVL
type, i.e. 4.11.

Then, our insert function can be written like this:

Listing 4.14: insert function v2
1 i n s e r t : : (Ord a ) => a −> Tree a −> Tree a
2 i n s e r t x Ni l = l e a f x
3 i n s e r t x t@( Tree v n l r ) = case compare x v o f
4 LT −> insL
5 GT −> insR
6 EQ −> t
7 where
8 l ’ = i n s e r t x l
9 r ’ = i n s e r t x r

10 insL
11 | rk l ’ < rk t = Tree x n l ’ r
12 | isNode1_1 t = promoteL t l ’
13 | isNode1_2 t && isNode1_2 l ’ = rotateRight t l ’
14 | isNode1_2 t && isNode2_1 l ’ =
15 rotateDoubleRight t l ’

Again, we omitted that insR is symmetric to insL. The important part to note is the
type signature of the promotion and rotation cases.

Listing 4.15: rotation case v2
1 {−@ rotateRight : : { t : NEWavl | isNode1_2 t }
2 −> { l : NEWavl | isNode1_2 l && rk t == rk l }
3 −> {v : NEWavl | r k D i f f t v 0 } @−}
4 ro ta teRight : : Tree a −> Tree a −> Tree a
5 ro ta teRight t@( Tree x n _ c ) l@ ( Tree y m a b) =
6 Tree y m a ( Tree x (n−1) b c )

Note the different approaches to building the balanced tree. Instead of creating an
imbalanced tree as an intermediate product, we give the rotate case a balanced tree to
substitute it with its former state; in the case of 4.15, we exchange leftt with l and doing
the necessary updates to the ranks and rotation in the same function call.
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Comparing this approach to the first version in 4.7, we can see that our input and output
are of the same data type, i.e. a balanced tree. This solves the problem with the recursive
constraint relaxation, as shown in Fig. 4.4 because we have input and output of the same
data type.

A further improvement using this substitution of balanced trees can be found with the
updated delete function:

Listing 4.16: delete function v2
1 {−@ d e l e t e : : (Ord a ) => a −> s : Wavl
2 −> { t : Wavl | ( ( r k D i f f s t 0) | | ( r k D i f f s t 1 ) )} @−}
3 d e l e t e : : (Ord a ) => a −> Tree a −> Tree a
4 d e l e t e _ Ni l = Ni l
5 d e l e t e y t@( Tree x n l r ) = case compare x y o f
6 LT −> delL t l ’
7 GT −> delR t r ’
8 EQ −> merge
9 where

10 l ’ = d e l e t e x l
11 r ’ = d e l e t e x r
12 merge
13 | empty r = l
14 | o the rw i s e = l e t ( r ’ ’ , x ) = getMin r
15 in delR ( Tree x n l r ) r ’ ’

One thing to note is the otherwise case in merge using a let definition. The design
choice for let can be explained with a relaxation of constraints. By writing the merge
definition directly inside the delete function, only the refinement of getMin is outside
the function’s scope. To check correctness, LHwill first check getMin and then use the
refinement of it to check the calling function for correctness. The actual code of getMin
is not inside the LHlogic in this scenario.

Compare the usage of merge with our first versions at 5.1 and 5.1.

The delL represents our rebalancing steps and needs a separate function apart outside
the delete function because we want to restrict the input to only non-empty trees:

Listing 4.17: delete rebalancing function
1 {−@ delR : : t : NEWavl
2 −> { r : Wavl | ( r k D i f f ( r i g h t t ) r 0
3 | | r k D i f f ( r i g h t t ) r 1)}
4 −> {v : NEWavl | ( r k D i f f t v 0) | | ( r k D i f f t v 1)} @−}
5 delR t@( Tree x n Ni l _) r = treeR t r
6 delR t@( Tree x n l@ ( Tree _ _ l l l r ) _) r
7 | rk t <= rk r + 2 = treeR t r
8 | c h i l d 3 t r && c h i l d 2 t l = demoteR t r
9 | c h i l d 3 t r && c h i l d 2 l l r && c h i l d 2 l l l =

10 doubleDemoteR t r
11 | c h i l d 3 t r && c h i l d 1 l l l = rotateRightD t r
12 | c h i l d 3 t r && c h i l d 1 l l r = rotateDoubleRightD t r
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Here, we describe the input tree for the substitution analogue and what we expect from
the output definition of delete so that LH can prove delete as a whole. A special case
here that needs the case expansion is the left child of t: Because we need differentiation in
the following rotation cases and LH cannot infer if l is empty from the rk differences, we
need a separate case where we explicitly write the type pattern as delRt@(TreexnNil)r.

The function treeR is special because it is basically a wrapper for the tree function but
substitutes the r child for the second parameter.

Listing 4.18: default case for insert with no rebalancing required
1 {−@ treeR : : t : NEWavl
2 −> { r : Wavl | ( r k D i f f ( r i g h t t ) r 0 | | r k D i f f ( r i g h t t ) r 1)
3 && rk t <= rk r + 2}
4 −> {v : NEWavl | r k D i f f t v 0 | | r k D i f f t v 1} @−}
5 treeR : : Tree a −> Tree a −> Tree a
6 treeR ( Tree x 1 Ni l ( Tree _ 0 Ni l Ni l ) ) Ni l = l e a f x
7 treeR ( Tree x n l _) r = Tree x n l r

As noted previously, because insert and delete are recursive, we need to concisely match
the input and output refinements. On the other hand, after we find a fitting definition,
this hassle proves to be of great value since, without a concrete mention of the recursive
nature of the function, we prove its functional correctness.

4.3.1 refinement of delete and insert
Now to the actual LH refinement for the two functions:

Listing 4.19: insert annotation, v2
1 i n s e r t : : (Ord a ) => a −> s : Wavl
2 −> { t : NEWavl | ( ( r k D i f f t s 1) | | ( r k D i f f t s 0 ) )
3 && ( ( r k D i f f t s 1 && rk s >= 0)
4 => ( isNode1_2 t | | isNode2_1 t ) )}

The insert annotation in 4.19 got beside the already known NEWavl and rkDiff parts,
which we already know from 4.6, another clause which describes the situation that if
an input tree is not empty, then we expect the output tree if a rank difference to the
original tree exists, i.e. a promote step was executed, then the resulting node/tree must
be a 1,2-node. This information is necessary because we check further down for 1,2-nodes
and whether a rotation shall happen. This case is only possible on NEWavl trees, so the
rotation cases are constrained on their resp. inputs.

This information is implicit knowledge of the developer, and we, as the designer, can see
that, but LH needs to be made aware of. Otherwise, a "Pattern matching non exhaustive"
exception will be thrown.

Compared to the insert refinement, the one for delete becomes more straightforward,
which only needs the information about rank differences in the output tree t, see listing
4.16.
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Listing 4.20: delete annotation, v2
1 {−@ d e l e t e : : (Ord a ) => a −> s : Wavl
2 −> { t : Wavl | ( ( r k D i f f s t 0) | | ( r k D i f f s t 1 ) )} @−}

4.3.2 Summarised Improvements for Version 2
In our effort to find a suitable definition for the complexity analysis, we adapted the data
type constraints and added the structural Lemma. This results in shorter code but also
restricts us. Since we disallowed imbalanced trees, we have to use the tree substitution
strategy. We find ourselves adjusting our code for the analysis to the needs of LH. On the
other hand, functional correctness is proven by relatively simple one-liners of annotation
over concrete functions. LH automates the whole reasoning about the structural invariant.
In our opinion, this seems like a reasonable trade-off. Further, by using the notion of
isNode directly in the structLemma definition, we can reuse it in the pattern matching
in delete and insert. This makes for a more explicit connection to the original definition.

4.4 Amortised Cost Analysis
The original amortised analysis by Häupler et al. considers two separate cases: delete
and insert, which both receive their own analysis.

In the original paper, the authors state the following theorems:

• Theorem 4.1. “In a WAVL tree with bottom-up rebalancing, there are at most d
demote steps over all deletions, where d is the number of deletions”

• Theorem 4.2. “In a WAVL tree with bottom-up rebalancing, there are at most
3m + 2d ≥ 5m promote steps over all insertions, where m and d are the number of
insertions and deletions, respectively.”

The proofs for these two can be looked up in [HST15], site 10ff. Häupler et al. call their
amortised cost analysis potential analysis. Still, it can also be seen as an Accounting
Method, since the potential can be compared one to one with charge accounted for.

We found that the second Theorem could be improved upon, and a theorem that includes
both insert and delete calls for both functions could be formulated.

Our improved Theorem is now thus:

Theorem 2. In a WAVL tree with bottom-up rebalancing, there are at most 3 demote
steps for a deletion and at most 3 promote steps for an insertion over all insertions and
deletions combined.

The proof follows from the safety check by LH. In the following, we explain the code and
show that our implementation is sound.
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For the proof, we use the RTick library to wrap our tree data type in the RTick monad
to count actual cost. For costs, we counted 1 for each promote step in insert and the
same for each demote / double demote step.

Listing 4.21: insert annotation with Tick monad
1 {−@ i n s e r t : : (Ord a ) => a −> s : Wavl −>
2 {t ’ : Tick ({ t : NEWavl | ( ( r k D i f f t s 1) | | ( r k D i f f t s 0 ) )
3 && ( ( r k D i f f t s 1 && rk s >= 0)
4 => ( isNode1_2 t | | isNode2_1 t ) ) } )
5 | amortizedStmt s t ’ && ( empty s => amortized s t ’ ) }
6 @−}
7 i n s e r t : : (Ord a ) => a −> Tree a −> Tick ( Tree a )

And with the actual implementation:

Listing 4.22: insert function with Tick monad
1 i n s e r t x Ni l = pure ( l e a f x )
2 i n s e r t x t@( Tree v n l r ) = case compare x v o f
3 LT −> insL
4 GT −> insR
5 EQ −> pure t
6 where
7 l ’ = i n s e r t x l
8 r ’ = i n s e r t x r
9 l ’ ’ = t v a l l ’

10 r ’ ’ = t v a l r ’
11 insL
12 | rk l ’ ’ < rk t = inTreeL t l ’
13 | isNode1_1 t = promoteL t l ’
14 | isNode1_2 t && isNode1_2 l ’ ’ = rotateRight t l ’
15 | isNode1_2 t && isNode2_1 l ’ ’ =
16 rotateDoubleRight t l ’

Let’s break that apart:

• the output of the function is now of type Tick, which wraps a WAVL tree

• We state analogue to 4.14, that the function’s output is a non-empty WAVL Tree
with either rank difference (rkDiff) of up to 1. We write it like this because the
solver would otherwise expand it similarly, but at the same time, he could fail
at doing so. We want precisely these two cases for which we define some further
implications, so this is a deliberate choice in our definition.

• (rkDiff t s 1 ∧ rk s ≥ 0) =⇒ (isNode1_2 t ∨ isNode2_1 t): a bit complicated
way of saying if the insertion happens to a non-empty tree and a promote case
was executed, then the output node (tree) is a 1,2-node. This is necessary for the
rotation cases since we want to state that the rotation case is the last step in the
rebalancing process, and in a pointer-based setting, we could exit the function call.
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Why didn’t we need that constraint in listing 4.14? Because we don’t need to argue
about the amortised cost, we only show that each call produces a legit WAVL tree
and has a specific rank difference.
So, to say that this is the last step, we state that a rotation can only happen if a
rank difference happens in the previous step, but it still needs to pass the check rk
l” < rk t. This is the equivalent of saying if the tree is balanced again, you have to
return to the root node (or exit the recursion at that point)

• amortizedStmt: implementation at 4.23 states our constraint of only ever needing
costs per call of only up to 3.

• pure: wraps an object in the appropriate monad, in our case RTick with zero costs.

• tval: extract the actual object from a monad

• inTreeL: create the tree but constrain the input/output tree via the annotation
s.t. it fits the insertion. s. the appendix for details 5.1.

• insR is symmetric to insL and left out for shortness.

• The actual cost is added in the function promoteL by updating the Tick monad.
The potential change is updated by comparing input/output trees in all functions
via the amortised call inlined in the refinement.

With that, we can move on to the actual proof:

Proof. We use the amortised potential analysis technique as described in 2 for the proof.
We define the problem such that we are only interested in the needed rebalancing steps
during an insert or delete action on a given WAVL tree. We also assume that the actual
insertion of a node into a tree has an actual cost in O(1) and is not regarded in this proof
since we only look at the cost of the rebalancing steps. The rebalancing itself has two
parts: the promotion/demotion and the rotation step. A rotation step only happens once
during an insert/delete action, while the promotion/demotion steps are only bounded at
this point by the height of a tree, which is bounded by the number of nodes in the tree.
Theorem 3.

For our analysis, we define that a tree’s potential is only increased by a rotation step
and decreased by the promotion and demotion steps, respectively. We further say that
the potential of 2,2-nodes (and of 2,3-nodes) is equal to 2, and the potential of 1,1-nodes
(and of 1,0-nodes) with a rank greater than 0 is equal to 1 (i.e. non-leaf nodes). The
potential of all other nodes is 0.

For insertion, we look at the three possible cases which are part of a rebalancing process:

• promote: a promote changes a node from 0,1 to 1,2 and thus decreases the potential
of a node by 1. This consumption of potential is balanced out by adding actual costs
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of 1. This consumption of potential only works IF the node has potential to begin
with. An insertion at rank 0 makes a previous leaf into a 0,1-node, but we argue
that we are missing the previous step, which explicitly increases the structure’s
potential. So, to account for that, the first promote step does need to be covered
and incurs an potential increase of 1 in our calculation, s. the implication in the
annotation at 4.24.

• rotate: two nodes are affected, i.e. a 0,2- and a 1,2-node become 1,1-nodes. Thus,
the potential is increased by 2. No actual costs are counted, and we have a total
increase of at most 2. Remark: the potential increase can be only 1 if the lower
1,1-node is a leaf.

• double rotate: We start on the input side with at most one 1,1-node and end up
with at most three 1,1-nodes. At most, there is a potential increase of at most 2.

For all three cases, the symmetric ones apply as well. By adding up the potential changes
of the first promote step with the worst case in the rotation, we end with at most 3 costs
per insert. This statement is also in the refinement of 4.23, and with LH proving the
code safe, the proof follows from the soundness of LH.

Listing 4.23: Amortised Lemma as a constraint
1 {−@ i n l i n e amortizedStmt @−}
2 {−@ amortizedStmt : : Wavl −> Tick (Wavl) −> Bool @−}
3 amortizedStmt : : Tree a −> Tick ( Tree a ) −> Bool
4 amortizedStmt t v = ( r k D i f f ( t v a l v ) t 0 => amortized3 t v )
5 && ( r k D i f f ( t v a l v ) t 1 => amortized1 t v )

Remark. In 4.23 we state that as long as there is a rank difference there can be at
most 1 cost to account for all function calls in the rebalancing process. On the other
hand, if both trees are equal in rank, we need to pay up to 3 to cover the actual cost plus
the potential change. The amortised3 statement is the coded version of the amortised
definition 2.1 with adding 3 costs to the one side of the equation. The actual code is at
5.1.

The constraint relies on the fact that we only allow rank difference (rkDiff) of either 0
or 1. We use this case distinction on many separate occasions to differentiate between
the rebalancing process still going on and being concluded. Again, this is necessary for
our functional setting, in an imperative language we could write a proof like in Dafny
differently, probably.

Listing 4.24: promote case with Ticks and amortised Lemma
1 {−@ promoteL : : { t : NEWavl | isNode1_1 t }
2 −> { l : Tick (NEWavl) | rk ( t v a l l ) == rk t &&
3 ( rk ( l e f t t ) >= 0 => amortized1 ( l e f t t ) l ) &&
4 ( rk ( l e f t t ) ==(−1) => amortized ( l e f t t ) l ) }
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5 −> {v : Tick ({v ’ : NEWavl | r k D i f f v ’ t 1 && isNode1_2 v ’ }) |
6 amortized1 t v } @−}
7 promoteL : : Tree a −> Tick ( Tree a ) −> Tick ( Tree a )
8 promoteL t@( Tree a n _ r ) l =
9 Tick ( t c o s t l + 1) ( Tree a (n+1) ( t v a l l ) r )

Proof. similar to the proof 4.4, we look at the 4 cases of the rebalancing process to show
the potential changes taking place:

• demote: changes a 3,2-node to a 2,1-node, decreasing the potential by 2.

• double demote: changes a 3,1-node with a child 2,2-node to a 2,1-node with a
child 1,1-node, thus decreasing the potential by 1.

• rotate: Depending on the structure, this generates a new 2,2-node, thus increasing
the potential by at most 2. After a rotation, if z is demoted again and becomes a
leaf, y becomes a 2,2-node, resulting in a potential increase of 2.

• double rotate: depending on the structure of the children, the potential is
increased most when the v is a 1,1-child. Then we get a potential increase of at
most 3.

For all cases, mirror structures apply. We find that the total increase per rebalancing
process is at most 3 (caused by the rotations), and thus, we end up by definition of the
potential analysis and our code being proven safe by LH that theorem 2 holds for the
delete case.

The code follows a similar way to the insert function, for details see appendix 5.2.

4.5 Remarks on the potential cost analysis approach
In Theorem 2, we find a few advantages to the original theorems:

• we do not have to make a case for how often a method is executed because our
Theorem addresses the combined value over all actions

• With a combined analysis of overall function calls, we can argue that at most
per function call amortised over all function calls, a better amortised value of 3
rebalancing steps per call

Thus, we can define the following Lemma:

Lemma 1. For a WAVL tree with bottom-up rebalancing, there are amortised at most 3
demote or promote steps for insert and delete function calls.
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1 follows from the Proof 2.

Remark. In our analysis, we omitted the cost for the concrete insertion, the rotation
and the search of the insertion spot / to be deleted node. This is grounded in

• the search for the node is limited by the height/rank of a tree, s. the proof for that
in 4.6.1

• The insertion and the rotation steps are constant in relation to the promotion/de-
motion steps.

Our analysis shows that the demote and promote cases are indeed bounded and in
conclusion, we show that the total amortised cost for the rebalancing process is bounded
by O(1) steps.

4.6 logarithmic height
But wait, we only ever proved that the rebalancing steps are in O(1). What about the
actual runtime costs of insert and delete? We prove the Termination of these functions
via the rank function rk. So, an execution of inserting a leaf on a given tree will reach a
leaf after at most rk steps within a full tree. But how does the rank relate to the amount
of nodes in the tree? Similar to Red-Black trees, an initial guess would say that rank
behaves similarly to the black height of Red-Black trees, [GS78].

Thus, we define the height of a tree as in Listing 4.25 with the max function as in Listing
4.26.

Listing 4.25: Height property
1 {−@ measure he ight @−}
2 {−@ he ight : : t : Tree a −>
3 { r : Int | ( ( empty t ) <=> ( r = −1)) && ( ( not ( empty t ) ) <=> ( r >= 0))}
4 @−}
5 he ight : : Tree a −> Int
6 he ight Ni l = −1
7 he ight ( Tree _ _ l r ) = 1 + max ( he ight l ) ( he ight r )

Listing 4.26: Max function
1 {−@ i n l i n e max @−}
2 max : : Ord a => a −> a −> a
3 max a b = i f a >= b then a e l s e b

The height of a tree is the same as the worst-case execution path in a tree. Further, we
define the number of nodes in a tree as follows:

Listing 4.27: tree size function
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1 {−@ measure s i z e @−}
2 {−@ s i z e : : Tree v −> Nat @−}
3 s i z e : : Tree v −> Int
4 s i z e Ni l = 0
5 s i z e ( Tree _ _ l r ) = 1 + s i z e l + s i z e r

Comparing the rank function rk and height, one can see that we defined them similarly
and define thus the following lemma 2:

Lemma 2. A WAVL tree’s rank is at least its height and at most 2 times its height.

Listing 4.28: Height Lemma 2 codefied
1 {−@
2 thm_height : : { t : Wavl | not ( empty t )}
3 −> { he ight t <= rk t && rk t <= 2 ∗ he ight t }
4 @−}
5 thm_height : : Tree v −> ( )
6 thm_height ( Tree _ _ Ni l Ni l ) = ( )
7 thm_height ( Tree _ 1 l l r r ) = case ( l l , r r ) o f
8 ( Nil , Tree _ _ _ _) −> ( )
9 ( Tree _ _ _ _, Ni l ) −> ( )

10 ( Tree _ 0 Ni l Nil , Tree _ 0 Ni l Ni l ) −> ( )
11 thm_height ( Tree _ r l l r r ) | he ight l l >= he ight r r = thm_height l l
12 | o the rw i s e = thm_height r r

The proof for Lemma 2 is trivially proven with LH, as can be gauged from the many
empty proof clauses () in code 4.28.

4.6.1 Logarithmic height
So now that we have the rank and the height connected via Lemma 2, we can go on to
show that both are bound logarithmically, i.e. O(log n).

Theorem 3. A WAVL Tree of size n is bounded in its rank r by the formula:

r ≤ 2 ∗ log2(n)

For the proof 4.6.1, we need to prove the Corollary 1 to show that Theorem 3 holds.

Corollary 1. For a WAVL tree of size n and rank r the following inequality holds:

n ≥ 2⌈ r
2 ⌉

In Haskell or LiquidHaskell, the mathematical symbols for ⌈ ⌉, the logarithmic function
with base 2 log2 and the exponential function are not defined. For them to work and
for the proof, we need definitions of their functional behaviour and, more importantly,
their monotonicity. Furthermore, the relationship between logarithmic and exponential
functions with the same base must be added to our code.
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Proof. The Theorem 3 is encoded with 4.29 and relies on PLE. The proof follows from
the LH check showing soundness.

Listing 4.29: Proof of Logarithmic Height with LH
1 {−@
2 thm_size : : { t : Wavl | not ( empty t )} −> { rk t <= 2 ∗ log2 ( s i z e t )}
3 @−}
4 thm_size : : Tree v −> ( )
5 thm_size t@( Tree _ _ _ _) = prove $
6 ( l og2 ( s i z e t ) >= log2 (pow2 ( c e i l D i v 2 ( rk t ) ) )
7 ? ( thm_size_help t
8 , log2_mon (pow2 ( c e i l D i v 2 ( rk t ) ) ) ( s i z e t ) ) )
9 && ( log2 ( s i z e t ) >= c e i l D i v 2 ( rk t )

10 ? log2_pow2 ( c e i l D i v 2 ( rk t ) ) )

and the corollary 1 is written thus as in listing 4.30.

Listing 4.30: Size to Rank relation proof of Corollary 1
1 {−@
2 co_size2rank : : { t : Wavl | not ( empty t )}
3 −> { s i z e t >= pow2 ( c e i l D i v 2 ( rk t ) )}
4 @−}
5 co_size2rank : : Tree v −> ( )
6 co_size2rank ( Tree _ 0 l l r r ) = ( )
7 co_size2rank ( Tree _ 1 l l r r ) = case ( l l , r r ) o f
8 ( Nil , Tree _ _ _ _) −> ( )
9 ( Tree _ _ _ _, Ni l ) −> ( )

10 ( Tree _ _ _ _, Tree _ _ _ _) −> ( )
11 co_size2rank t@( Tree _ r l l r r ) =
12 prove $
13 ( c e i l D i v 2 ( r − 2) == ( c e i l D i v 2 r ) − 1
14 ? thm_ceilDiv2_minus2 r )
15 && ( s i z e l l >= pow2 ( c e i l D i v 2 r − 1)
16 ? ( co_size2rank l l
17 , thm_ceilDiv2_mon ( rk l l ) ( r − 2)
18 , pow2_mon ( c e i l D i v 2 ( rk l l ) ) ( c e i l D i v 2 ( r − 2 ) ) ) )
19 && ( s i z e r r >= pow2 ( c e i l D i v 2 r − 1)
20 ? ( co_size2rank r r
21 , thm_ceilDiv2_mon ( rk r r ) ( r − 2)
22 , pow2_mon ( c e i l D i v 2 ( rk r r ) ) ( c e i l D i v 2 ( r − 2 ) ) ) )

Let’s break that apart:

• ceilDiv2 is the equivalent of f(a) = ⌈a
2 ⌉

• log2_mon, pow2_mon and thm_ceilDiv2_mon describe the monotonicity of the
functions and are needed to prove the inequalities between functions of the same
type (s. implementation at Listing 5.10)
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• log2_pow2 defines the relationship between logarithmic and exponential function,
i.e. log2(2a) = a

The proof for the corollary is longer since there are more jumps between the inequalities
to come to a conclusion, while the code proof 4.29 relies heavily on the Corollary 1.

On the part of the concrete implementation and details about the accompanying proofs
on monotonicity of log2, pow2, and ceilDiv2, refer to the appendix section 5.1.
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CHAPTER 5
Conclusio

We verified the amortised cost analysis on the rebalancing process of WAVL trees and
added additional proofs for the functional correctness and the logarithmic height of such
trees. Doing so gives developers more confidence in using these data structures in their
code. Comparing current real-life applications between AVL, Red-Black and B-trees, we
found a distinct mistrust against AVL trees because their worst-case rebalancing is not
provable in O(1) but in O(log n).

5.1 future work
Using the rank-based framework and our approach to verify and maybe even improve
upon the existing pen-and-paper proofs of the following tree structures:

1. Top-down rank-balanced trees according to [HST15]

2. general-balanced Trees, Scapegoat Trees and relaxed balanced trees [And99, IG93,
STK16]

3. formalizing different implementations of Red-Black-trees [HOSS97, Lar02]

1. and 2. improve upon current data structures by showing better concurrent access and
delete management. The 3. item in the list consists of work to prove different approaches
and constraints put on forms of the original Red-Black tree to get different performance
gains. The respective papers were often written way back in the 80’s and 90’s of the old
century. With current techniques, one could re-check these approaches and re-prove or
disprove some claims made back then.
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Appendix

merge function

The function merge in our first version suffered similar problems to the delete function
4.8, i.e., we could not constrain the case expansion need with stricter refinements:

1 {−@ merge : : x : a −> l : Wavl −> r : Wavl
2 −> {v : Rank | WavlRankN v l r && v >= 0 }
3 −> { t : Wavl | balLDel v t | | RkDiffN v t 1 } @−}
4 merge : : a −> Tree a −> Tree a −> Int −> Tree a
5 merge _ Ni l Ni l _ = n i l
6 merge _ Ni l r _ = r
7 merge _ l Ni l _ = l
8 merge x l r n = ( balRDel y n l r ’ )
9 where

10 ( r ’ , y ) = getMin r

Similarly, we had to define the getMin function, which finds the immediate successor of
a node’s value.

1 {−@ getMin : : v : NEWavl
2 −> ({ t : Wavl | ( r k D i f f t v 0) | | ( r k D i f f v t 1) } , a ) @−}
3 getMin : : Tree a −> ( Tree a , a )
4 getMin ( Tree x 0 Ni l N i l ) = ( n i l , x )
5 getMin ( Tree x 1 Ni l r@( Tree _ _ _ _) ) = ( r , x )
6 getMin ( Tree x n l@ ( Tree _ _ _ _) r@Nil ) =
7 ( ( balLDel x n l ’ r ) , x ’ )
8 where
9 ( l ’ , x ’ ) = getMin l

10 getMin ( Tree x n l@ ( Tree _ _ _ _) r ) = ( ( balLDel x n l ’ r ) , x ’ )
11 where
12 ( l ’ , x ’ ) = getMin l

The observant reader probably has already guessed that we can also use the immediate
predecessor to replace the to-be-deleted node. Functionally, this would only require the
implementation to go down the left branch once and then follow along the right-hand
side until a leaf is encountered. This implementation is symmetric to ours.
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rebalancing Delete with balDel
Listing 5.1: balLDel refinement: rebalance step for delete, version 1

1 balLDel : : a −> {n : Rank | n >= 0 }
2 −> { l : Wavl | Is3ChildN n l }
3 −> { r : MaybeWavlNode | Is2ChildN n r }
4 −> { t : NEWavl | ( rk t == n | | rk t + 1 == n) }

balLDel and its symmetric case are the rebalancing steps in this scenario. The function
output is the same as for the delete function in 4.9. To note is the additional hoops we
had to take, i.e. we needed to define a nearly WAVL Tree with MaybeWavlNode, which
defines a Tree which is either empty or follows the (in version 2 more centrally used)
Lemma of being a WAVL node structurally, i.e. either being one of the four allowed
structures like in listing 4.12. This is our first approach to the structLemma and it is not
used throughout the whole function refinement, only at places where the structLemma
is needed to constrain the input/output for like the 2,2-node clause, i.e. which are not
allowed at rank 1.
These experiments with structLemma, even though we did not call it like that at that
point in time, are crucial to our later simplified version 2.

Leaf nodes
1 {−@ s i n g l e t o n : : a −> {v : NEWavl | ht v == 0 && rk v == 0 } @−}
2 s i n g l e t o n a = Tree a 0 Ni l Ni l

Wavl tree, version 2
The updated version of delete made the explicit merge definition obsolete since enough
constraint information is available at the time of calling it in the second version at 4.16.
Further, from the fact that we do not have to check the inputs

1 {−@ getMin : : t : NEWavl
2 −> ({ v : Wavl | ( r k D i f f t v 0) | | ( r k D i f f t v 1) } , a ) @−}
3 getMin : : Tree a −> ( Tree a , a )
4 getMin ( Tree x _ Ni l r ) = ( r , x )
5 getMin t@( Tree x n l r ) = ( delL t l ’ , x ’ )
6 where
7 ( l ’ , x ’ ) = getMin l

Amortised cost analysis, version 2
We were unable to prove the amortised cost analysis with our first approach with version
1. After redoing the whole data type definition and finding solutions for insert and delete
we found that the cost analysis could also be stated in a relatively concise manner.
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In this section, we enumerate some additional parts of our cost analysis to give a better
overview of what the single parts are responsible for.

The code snippets can all be found at our Github Repo [Gen24].

insert parts analyzed
1 {−@ inTreeL : : t : NEWavl
2 −> { l : Tick (NEWavl) |
3 ( ( r k D i f f ( t v a l l ) ( l e f t t ) 0 | |
4 r k D i f f ( t v a l l ) ( l e f t t ) 1 ) )
5 && rk ( t v a l l ) < rk t
6 && amortizedStmt ( l e f t t ) l }
7 −> {v : Tick ({v ’ : NEWavl | r k D i f f t v ’ 0}) |
8 r k D i f f t ( t v a l v ) 0 && amortized3 t v } @−}
9 inTreeL : : Tree a −> Tick ( Tree a ) −> Tick ( Tree a )

10 inTreeL t@( Tree x n _ r ) l =
11 Tick ( t c o s t l ) ( Tree x n ( t v a l l ) r )

The inTreeL function is used in the insert for one, limiting the input of the recursion
so that we can return Tick (tcost l) (Tree x n (tval l) r). Furthermore,
we want to state that the amortisedStmt holds. This function call is essentially used to
prove that after a rotation case was executed on the tree, no more potential is changed
and no costs are added. This can be seen if you compare the input l tree, which is the
same refinement as the output of insert, i.e. 4.21.

1 {−@ rotateRight : : { t : NEWavl | isNode1_2 t }
2 −> { l : Tick (NEWavl) | rk ( t v a l l ) == rk t
3 && isNode1_2 ( t v a l l ) && amortized1 ( l e f t t ) l }
4 −> {v : Tick ({v ’ : NEWavl | r k D i f f t v ’ 0 }) |
5 r k D i f f t ( t v a l v ) 0 && amortized3 t v} @−}
6 ro ta teRight : : Tree a −> Tick ( Tree a ) −> Tick ( Tree a )
7 ro ta teRight t@( Tree x n _ c ) ( Tick t l ( Tree y m a b ) ) =
8 Tick t l ( Tree y m a ( Tree x (n−1) b c ) )

1 {−@ rotateDoubleRight : : { t : NEWavl | isNode1_2 t }
2 −> { l : Tick (NEWavl) | rk ( t v a l l ) == rk t
3 && isNode2_1 ( t v a l l ) && amortized1 ( l e f t t ) l }
4 −> {v : Tick ({v ’ : NEWavl | r k D i f f t v ’ 0 }) |
5 r k D i f f t ( t v a l v ) 0 && amortized3 t v}
6 @−}
7 rotateDoubleRight : : Tree a −> Tick ( Tree a ) −> Tick ( Tree a )
8 rotateDoubleRight ( Tree z n _ d)
9 ( Tick t l ( Tree x m a ( Tree y o b c ) ) ) =

10 Tick t l ( Tree y ( o+1) ( Tree x (m−1) a b) ( Tree z (n−1) c d ) )

The rotation cases for insert take in only 2,1-nodes (mirror cases apply). As can be seen
in the insert refinement 4.21, we need the concrete node structure as an input child tree
to exchange.
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Remark. Note the pattern matching in the rotation cases. Because of LH’s way of only
proving a function refinement and then only reusing the refinement logic all parts in
the dependent parts, we found that we had to pattern match the Tick monad as in 5.1
and 5.1. In our opinion, this is also the more Haskell way of doing it and using pattern
matching instead of using logical predicates on types helps to keep proofs shorter since
LH does a lot of the proving for us, i.e. data constructors are instantiated as measure in
the logic automatically and proved as such.

1 {−@ i n l i n e amortized3 @−}
2 {−@ amortized3 : : Wavl −> Tick (Wavl) −> Bool @−}
3 amortized3 : : Tree a −> Tick ( Tree a ) −> Bool
4 amortized3 t v = potT t + 3 >= t c o s t v + pot v

1 {−@ i n l i n e amortized @−}
2 {−@ amortized : : Wavl −> Tick (Wavl) −> Bool @−}
3 amortized : : Tree a −> Tick ( Tree a ) −> Bool
4 amortized t v = potT t >= t c o s t v + pot v

The amortised statement is implemented as an inline in the LH logic so it can be reused
in the refinements of insert, promote and so on. By proving this sound via LH, we get
our proof of the rebalancing process in 4.4.

1 {−@ measure potT @−}
2 {−@ potT : : t : Wavl −> Nat @−}
3 potT : : Tree a −> Int
4 potT Ni l = 0
5 potT t@( Tree _ n l r )
6 | isNode1_1 t && n > 0 = 1 + potT l + potT r
7 | c h i l d 2 t l && c h i l d 2 t r = 2 + potT l + potT r
8 | o the rw i se = potT l + potT r
9

10 {−@ i n l i n e pot @−}
11 {−@ pot : : Tick (Wavl) −> Nat @−}
12 pot : : Tick ( Tree a ) −> Int
13 pot t = potT ( t v a l t )

The potential function is the coded implementation of proof 4.4, and we only really use
it comparatively, i.e. compare the potential difference in amortised functions between
input and output trees, s. 5.1, 5.1.

proof of amortised cost for delete
Similar to the insert in this section we will explain the code parts for the proof of the
amortised cost analysis for the delete function.

As stated in proof 4.4, we define the updated delete function as in listing 5.2. The
algorithm follows the same line as the original one without the monad. In the refinement,
we find the amortised statement for the delete function at work, i.e. compare listing 5.3.
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The amortised statement follows the same thought line for insert, i.e. as long as the
rebalancing process is ongoing, represented by a changed rank difference (rkDiff). At the
same time, as soon as this condition doesn’t hold, we know that with a worst case, a
rotation will change the potential by 3, ending the rebalancing process.

Listing 5.2: delete with Tick monad and amortised Statement
1 {−@ d e l e t e : : (Ord a ) => a −> t : Wavl
2 −> {v : Tick ({v ’ : Wavl | ( ( r k D i f f t v ’ 0) | | ( r k D i f f t v ’ 1 ) ) } ) |
3 amortDelStmt t v}
4 @−}
5 d e l e t e : : (Ord a ) => a −> Tree a −> Tick ( Tree a )
6 d e l e t e _ Ni l = pure Ni l
7 d e l e t e y t@( Tree x n l r ) = case compare x y o f
8 LT −> delL t l ’
9 GT −> delR t r ’

10 EQ −> merge
11 where
12 l ’ = d e l e t e x l
13 r ’ = d e l e t e x r
14 merge
15 | empty r = pure l
16 | o the rw i se = l e t ( r ’ ’ , z ) = getMin r
17 in delR ( Tree z n l r ) r ’ ’

Listing 5.3: Amortised Statement for delete, compare it to code 4.23
1 amortDelStmt : : Tree a −> Tick ( Tree a ) −> Bool
2 amortDelStmt t v = ( ( r k D i f f t ( t v a l v ) 0) | | ( amort ized t v ) )
3 && ( r k D i f f t ( t v a l v ) 1 | | ( amort ized3 t v ) )

Proof of the logarithmic Height
In the following, we describe some parts of the proof in LiquidHaskell concerning the
respective code parts.

Logarithmic Axioms
In the Proof 4.6.1 on the logarithmic Height we use some axioms on the monotonicity of
the logarithmic function and the relation between the exponential and the logarithmic
function. The definition of log2 is recursively defined at 5.4 and the basis. We only use the
logarithm of 2 in our code base since we don’t need any other. Similarly, the exponential
function for base 2 pow2 is defined in 5.6. A full proof without the simplifications as we
use it with the PLE is done in [Hoc24]. The same is done for the monotonicity axiom in
5.5. To note is that we use the Haskell default implementation of div, 1.

1URL: https://hackage.haskell.org/package/ghc-internal-9.1001.0/docs/src/
GHC.Internal.Real.html#div
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Listing 5.4: logarithmic function for base 2
1 {−@
2 r e f l e c t log2
3 l og2 : : { i : Int | i >= 1} −> { r : Nat | r < i }
4 @−}
5 l og2 : : Int −> Int
6 l og2 1 = 0
7 l og2 n = 1 + log2 ( div n 2)

Listing 5.5: proof for logarithmic monontonicity
1 {−@
2 log2_mon : : {a : Int | a >= 1}
3 −> {b : Int | a <= b}
4 −> { log2 a <= log2 b}
5 @−}
6 log2_mon : : Int −> Int −> ( )
7 log2_mon 1 x = const ( ) ( log2 x >= 0)
8 log2_mon _ 1 = ( )
9 log2_mon x y = log2_mon ( div x 2) ( div y 2)

Listing 5.6: exponential function 2a

1 {−@ r e f l e c t pow2 @−}
2 {−@ pow2 : : Nat −> Pos @−}
3 pow2 : : Int −> Int
4 pow2 0 = 1
5 pow2 n = 2 ∗ (pow2 (n − 1) )

Listing 5.7: proof for relation between log2(a) and 2a

1 {−@ log2_pow2 : : n : Nat −> { log2 (pow2 n) = n} @−}
2 log2_pow2 : : Int −> ( )
3 log2_pow2 0 = ( )
4 log2_pow2 n = log2_pow2 (n−1)

Listing 5.8: proof to exponential monontonicity
1 {−@ pow2_mon : : a : Nat −> {b : Nat | a >= b} −> { pow2 a >= pow2 b } @−}
2 pow2_mon : : Int −> Int −> ( )
3 pow2_mon 0 _ = ( )
4 pow2_mon n 0 = pow2_mon (n−1) 0
5 pow2_mon n k = pow2_mon (n−1) (k−1)

Listing 5.9: Ceil operation for division by 2
1 {−@
2 r e f l e c t c e i l D i v 2
3 c e i l D i v 2 : : n : Nat −> {v : Nat | 2 ∗ v >= n}
4 @−}
5 c e i l D i v 2 : : Int −> Int
6 c e i l D i v 2 n | mod n 2 == 0 = div n 2
7 | o the rw i se = check (mod n 2 == 1) (1 + div n 2)
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Listing 5.10: monotonicity Theorem for the ceil and div function combo
1 {−@
2 thm_ceilDiv2_mon : : a : Nat −> {b : Nat | a >= b}
3 −> { c e i l D i v 2 a >= c e i l D i v 2 b}
4 @−}
5 thm_ceilDiv2_mon : : Int −> Int −> ( )
6 thm_ceilDiv2_mon a b | a == b = ( )
7 | mod a 2 == 0 && mod b 2 == 0 = ( )
8 | mod a 2 == 0 && mod b 2 == 1 = ( )
9 | mod a 2 == 1 && mod b 2 == 0 = ( )

10 | mod a 2 == 1 && mod b 2 == 1 = ( )

reproducibility of the proofs
The code was compiled with GHC 9.4.7 and LiquidHaskell 0.9.4.7. The original project
was done under Ubuntu 20.04 LTS but should be reproducible with other versions.

The project uses stack for package management and was based on the demo project by
the LiquidHaskell team.

at https://github.com/ucsd-progsys/lh-plugin-demo.

As an IDE, we used Visual Studio code with a plugin for GHCi integration to show
LH errors directly on our IDE. A complete installation guide for it can be found at
https://github.com/Genlight/wAVL-trees/blob/main/install_env.md.

Overview of Tools used
In this work i used only two generative tools for assistance:

• ChatGPT v4

• Grammarly

I used ChatGPT for getting a rough outline on my acknowledgements and chapters 1
and 2 but heavily redacted the texts. Grammarly is a tool for spell-checking and giving
alternative text phrases. I used it on the whole text mostly for grammar and spelling
checks but also some re-phrasing of some passages.
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