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Kurzfassung 
Wälder bedecken rund 38% der europäischen Landfläche und sind von großer ökonomischer und 

ökologischer Bedeutung. Zur Aufrechterhaltung der Funktionsfähigkeit der Waldökosysteme sind 

zuverlässige und häufig aktualisierte Informationen über Waldressourcen erforderlich. Heutzutage 

werden terrestrische in-situ-Beobachtungen durch Fernerkundungsmethoden ergänzt. Die 

Fernerkundungsdaten liefern großräumiges überblick von vielen forstwirtschaftlichen Parametern wie 

Waldbedeckung, Typ und Struktur des Waldes, oder Biomasse. Flugzeuggestützte Kampagnen liefern 

einen hohen Detailgrad, können jedoch nur begrenzte räumliche Abdeckung und zeitliche Auflösung 

erreichen. Im Vergleich dazu bietet die satellitengestützte Fernerkundung regelmäßige Aufnahmen, 

die dazu beitragen die Lücke in der räumlichen und zeitlichen Abdeckung zu schließen. 

In den letzten Jahren sind satellitengestützte Waldprodukte für Länder, Kontinente oder die gesamte 

Landoberfläche verfügbar geworden. Zurzeit nutzt die Mehrheit dieser großräumiger Walddatensätze 

optische Daten als Input. Die zeitliche Abdeckung optischer Datensätze ist jedoch aufgrund häufiger 

Wolkenbedeckung oder eingeschränkter Sonneneinstrahlung in vielen Gebieten begrenzt. Aus diesem 

Grund rückt die Synergie von Synthetic Aperture Radar (SAR) und optischen Sensoren zunehmend in 

den Fokus der Forschung. 

Der Start der Sentinel-1-Satelliten in 2014 und 2016 (Sentinel-1A bzw. -1B) sicherte eine regelmäßige 

globale Abdeckung von hochauflösenden C-Band-SAR-Daten. Im Großteil des europäischen 

Kontinents werden 4 bis 8 Dual-Polarisation-Aufnahmen alle 12 Tage bereitgestellt, was zu sehr 

dichten Zeitreihen führt. Der hochqualitative multitemporale Datensatz kann dazu beitragen, einige 

der bekannten Einschränkungen von C-Band SAR in forstwirtschaftlichen Anwendungen zu 

überwinden. Dazu gehören zum Beispiel die fehlende Sensitivität von C-Band Backscatter für hohe 

Biomasswerte oder die Empfindlichkeit des Signals gegenüber Umweltbedingungen wie Feuchtigkeit 

oder Frost / Tauwetter.  

Die Verfügbarkeit konsistenter Zeitreihen aus den Sentinel-1-Daten motivierte die Entwicklung eines 

neuen Wald -kartierungs und -klassifizierungsalgorithmus, der die Unterschiede zwischen den 

zeitlichen Signaturen verschiedener Vegetationstypen ausnutzt. Die Eignung dieses Algorithmus für 

die kontinentale Waldklassifizierung wurde getestet, indem er für den gesamten europäischen 

Kontinent angewendet und evaluiert wurde. Diese Validierung ergab eine hohe Übereinstimmung, zu 

einem mit den europaweiten Copernicus High Resolution Layers Wald-Datensätzen 

(Gesamtgenauigkeiten von 86,1% bzw. 73,2% für die Wald-/Nichtwald- bzw. Waldtypkarten und 

Pearson-Korrelationskoeffizient von 0,83 für die Walddichtekarten), als auch mit nationalen 

Waldkarten (durchschnittliche Gesamtgenauigkeit von 88,2 % bzw. 82,7 % für Wald-/Nichtwald- 

bzw. Waldtypkarten). Diese Ergebnisse zeigen, dass die Sentinel-1 SAR-Sensoren für die 



Waldkartierung und Waldtypklassifizierung auf einem Großteil der Flächen in Europa gut geeignet 

sind. Die Ergebnisse sind besonders vielversprechend und relevant, da diese Karten mit einem hohen 

Automatisierungsgrad erstellt werden können und nur ein Jahr an Sentinel-1-Daten als Input 

benötigen. Als Ausblick können in Gebirgsregionen weitere Verbesserungen erzielt werden, indem ein 

zusätzlicher radiometrischer Terrain-Abflachungsschritt in die SAR-Datenverarbeitung einbezogen 

wird. 

  



Abstract 
Forests cover around 38% of the European land surface and are of great economic and ecological 

importance. Reliable and frequently updated information on forest resources is needed to maintain the 

functioning of forest ecosystems. Nowadays, terrestrial in-situ observations are complemented by 

remote sensing techniques that provide area-wide spatial data of many forestry parameters such as 

forest cover, forest type and composition or biomass. While airborne campaigns can provide high level 

of details with limited coverage and temporal resolution, the spaceborne remote sensing provides 

regular acquisitions that help to bridge the gap in the spatial and temporal coverage. 

In recent years, satellite-based forest maps became available for whole countries, continents, or the 

entire world. Currently, the majority of these global or continental forest datasets exploit optical data. 

However, the temporal coverage of optical datasets is limited due to frequent cloud coverage or 

limited sun illumination of the surface in some areas. For this reason, the synergy of Synthetic 

Aperture Radar (SAR) and optical sensors or SAR-only based products are also increasingly addressed 

by research. 

Launch of the Sentinel-1 constellation in 2014 and 2016 for Sentinel-1 A and B respectively secured a 

regular global coverage of high-resolution C-Band SAR data. Over the majority of the European 

continent, 4 to 8 dual polarisation acquisitions are provided every 12 days resulting in very dense time 

series. Such dense multi-temporal dataset can help to overcome some of the known limitations of C-

Band SAR in forestry applications, such as the backscatter saturation at moderate growing stocks or 

the sensitivity of the signal to the environmental conditions such as moisture or freeze/thaw events. 

The availability of dense time-series of Sentinel-1 data motivated the development of new forest 

mapping and classification algorithm that exploits the differences between the temporal signatures of 

various vegetation types. The suitability of this algorithm for continental-scale forest classification 

was tested by applying and validating it for the entire European continent. This validation revealed 

high correspondence with the European-wide Copernicus High Resolution Layers forest datasets 

(overall accuracies of 86.1% and 73.2% for the forest/non-forest and forest type maps respectively and 

Pearson correlation coefficient of 0.83 for tree cover density map) as well as with national forest maps 

(average overall accuracy of 88.2% and 82.7% for forest/non-forest and forest type maps 

respectively). These results show, that the Sentinel-1 SAR sensors are well suited for the forest 

mapping and forest type classification over majority of the European Continent. This is especially 

promising due to the fact, that these maps can be produced with a high degree of automation and that 

only a single year of Sentinel-1 data is required. Also, further improvements can be achieved in 

undulated regions by including an additional radiometric terrain flattening step in the SAR data pre-

processing.  
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1  Introduction  

1.1 Rationale 

Being vital to many of the Earth’s ecosystems, forests provide a variety of functions, such as providing 

habitat for animals and plants, protecting watersheds (Ernst, Gullick et al. 2004, Calder, Hofer et al. 

2008) and preventing soil erosion (Pimentel and Kounang 1998). Reliable information on forest 

resources and condition from the local to global scale is needed for analysis, sustainable forest 

management as well as for large number of other applications. This information can either be derived 

from in-situ observations or by remote sensing.  Terrestrial in-situ measurements offer high level of 

details and are still the standard in most of Europe (Barrett, McRoberts et al. 2016). However, in-situ 

measurements are costly, and the forest inventories based on the terrestrial measurements are 

commonly based on sample plots with limited spatial and temporal distribution. Such inventories 

provide a precise statistical estimation of the forest composition, however, certain forest parameters 

such as forest cover, forest type or composition etc. may be better described using area-wide spatial 

data (Barrett, McRoberts et al. 2016, Ginzler, Price et al. 2019). 

Remote sensing offers an alternative, allowing area-wise acquisition of a number of forest parameters 

(Vidal, Alberdi et al. 2016, White, Coops et al. 2016, Kangas, Astrup et al. 2018). Nowadays, airborne 

campaigns with multispectral cameras or Light Detection and Ranging (LiDAR) are carried out and 

the derived forest parameters complement the forest inventories. High cost of these campaigns cause, 

that the temporal resolution is still in range of 3-10 years or that the regular updates are not secured at 

all. Spaceborne remote sensing data help to bridge the gap in the temporal resolution and spatial 

coverage. In recent years, satellite-based forest maps became available for whole countries, continents 

or the entire world (Hansen, Potapov et al. 2013, Langanke, Büttner et al. 2013, Shimada, Itoh et al. 

2014, Lang, Kaha et al. 2018, Martone, Rizzoli et al. 2018, Waser, Rüetschi et al. 2021). Currently, the 

majority of these global or continental forest datasets exploit optical data, for instance the Landsat 

based Hansen Global Forest Change (Hansen, Potapov et al. 2013) or European-wide Copernicus High 

Resolution Layers (HRL) Forests (Langanke, Büttner et al. 2013) with Sentinel-2 and Landsat 8 as the 

primary input data source. Recently, the synergy of Synthetic Aperture Radar (SAR) and optical 

sensors or SAR-only based products are also increasingly addressed by research (Kangas, Astrup et al. 

2018, Rüetschi, Schaepman et al. 2018, Hansen, Mitchard et al. 2020, Dostálová, Lang et al. 2021, 

Udali, Lingua et al. 2021, Waser, Rüetschi et al. 2021). Among the SAR-only products, global forest 

maps based on ALOS PALSAR L-Band backscatter mosaics (Shimada, Itoh et al. 2014) and 

TanDEM-X X-Band interferometric data (Martone, Rizzoli et al. 2018) are available.  

The main advantages of the SAR sensors when compared to the optical imagery is their almost all-
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weather, day-and-night sensing capability providing regular measurements even in areas of frequent 

cloud coverage or short sun illumination periods. On the other hand, the wavelength dependent 

saturation of the microwave signal– in case of C-Band, the radar signal saturates at moderate growing 

stocks (Santoro, Beer et al. 2011) (Quegan, Le Toan et al. 2000) – together with the sensitivity of the 

signal to the environmental conditions such as moisture (Lucas, Armston et al. 2010) or freeze/thaw 

events (Ranson and Sun 2000) represent main limitations of SAR data for the forest monitoring. A 

number of studies suggest that these shortcomings may, to some extent, be overcome by using multi-

temporal SAR data (Santoro, Beer et al. 2011, Dostálová, Hollaus et al. 2016, Rüetschi, Schaepman et 

al. 2018, Hansen, Mitchard et al. 2020). 

Launch of the Sentinel-1 constellation in 2014 and 2016 for Sentinel-1 A and B respectively secured a 

regular global coverage of high-resolution C-Band SAR data over land according to a pre-

programmed acquisitions scenario (Torres, Snoeij et al. 2012). Over the majority of the European 

continent, 4 to 8 acquisitions in the Interferometric Wide swath (IW) mode are provided every 12 

days.  IW mode provides dual polarisation (vertical polarisation transmitted and received: VV and 

vertical polarisation transmitted, and horizontal polarization received: VH) data with spatial resolution 

of 20 m × 5 m. Apart from the high spatial and temporal resolution, VH polarisation is an important 

asset for the forestry applications as the cross-polarised backscatter shows high sensitivity to changes 

in vegetation density and structure (Patel, Srivastava et al. 2006, Soudani, Delpierre et al. 2021). The 

SAR temporal signal over forests is, in general, connected to the structural and phenological changes 

in forest (Dostalova, Milenkovic et al. 2016, Frison, Fruneau et al. 2018, Rüetschi, Schaepman et al. 

2018, Soudani, Delpierre et al. 2021) as well as to the environmental changes such as temperature 

changes and freeze-thaw events (Ranson and Sun 2000, Monteith and Ulander 2018) or changes in 

moisture of the vegetation and the underlying soil (Lucas, Armston et al. 2010, Srivastava, O'Neill et 

al. 2015). 

1.2 Objective and research questions 

The aim of this thesis is to assess the suitability of the Sentinel-1 IW dataset for the forest mapping 

over Europe. The objective is to derive a European-wide forest area and forest type (dominant leaf 

type) map based on the Sentinel-1 data. To do so, a new algorithm based on the multi-temporal 

Sentinel-1 data was developed and validated over the entire European continent. This introduces the 

following research questions: 

1) Can the multi-temporal dataset help to overcome some of the known limitations caused by the 

sensitivity of the SAR signal to the environmental conditions and signal saturation? 

2) Can Sentinel-1 data be used to distinguish dominant leaf type? 

3) Can a single algorithm be used to describe various types of forest across the European 
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continent? 

4) What are the strengths and limitations of the developed algorithm? 

1.3 Study outline 

This thesis consists of five chapters of which four are based on manuscripts that have been published 

in peer-reviewed scientific literature (Publications I to III) or are in preparation for submission 

(Publication IV). Chapter II assesses the suitability of the multi-temporal Sentinel-1 SAR data to map 

forest/non-forest areas using statistical parameters derived from the time-series and well-known 

classification methods. Chapter III describes the forest mapping and forest classification algorithm that 

was developed within the scope of this thesis. This algorithm is based on a temporally smoothed 

annual backscatter time series and was developed based on the findings presented in Chapter II. 

Chapter IV presents the European-wide forest map based on the introduced algorithm and validates it 

using a multitude of reference datasets, highlighting the strengths and weaknesses of the introduced 

forest mapping and classification method. Chapter V quantifies possible future improvements of the 

forest map results when including an additional radiometric terrain flattening step within the Sentinel-

1 data preprocessing. Finally, the Chapter VI presents the main conclusions and the scientific impact 

of this thesis.  

1.4 Publication summaries 

The research questions were addressed in three/four peer-reviewed scientific publications. This section 

summarises the articles and experiments. The articles are included in full length in chapters 2, 3 and 4.  

Publication I: Dostálová, Alena, Markus Hollaus, Milutin Milenković, and Wolfgang Wagner. 

"Forest area derivation from Sentinel-1 data." ISPRS Annals of the Photogrammetry, Remote Sensing 

and Spatial Information Sciences 3 (2016): 227. 

In this first study, the potential of the newly launched Sentinel-1 SAR backscatter data for forest area 

derivation was assessed. The case study focused on well-established classification algorithms (Otsu 

thresholding (Otsu 1979) and K-means clustering (Hartigan and Wong 1979)) over a study area in 

Lower Austria. For classification purposes, statistical parameters based on multi-temporal dual-

polarization Sentinel-1A backscatter data acquired during winter season 2014-2015 were used. The 

results were validated with a forest mask derived from full-waveform airborne laser scanning data.  

Both methods showed good correspondence to the reference data for the forest/non-forest 

classification with overall accuracies of 91% and 87% for the Otsu thresholding algorithm and K-

means clustering respectively. The results also identified the main deficiencies of the selected 

approach, namely the strong topographic effects in hilly areas, misclassification of urban areas as 
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forests and underestimation of mixed and coniferous forest stands. Improvements of these limitations 

of the simple approach motivated the development of the classification algorithm introduced in 

Publication II.  

Publication II: Dostálová, Alena, Wolfgang Wagner, Milutin Milenković, and Markus Hollaus. 

"Annual seasonality in Sentinel-1 signal for forest mapping and forest type 

classification." International Journal of Remote Sensing 39, no. 21 (2018): 7738-7760. 

Based on the findings summarized in Publication I, a new classification algorithm was developed for 

forest area mapping and dominant leaf type (forest type) classification. The main motives during the 

algorithm development were the following: 

• The algorithm should exploit the high temporal resolution of the Sentinel-1 data and use the 

distinct temporal signature of the forested areas to distinguish these from other land cover and 

vegetation types. 

• The algorithm should consider the differences between the temporal signatures of various 

forest types. The potential to use these differences for forest type classification should be 

assessed. 

The newly developed classification algorithm was based on the annual temporal signatures and two 

Sentinel-1 based forestry products were derived, namely forest type and tree cover density. The results 

were validated in three study areas covered by various forest types including broadleaf temperate, 

boreal and montane forests against the European-wide Copernicus High Resolution Layers (HRL) 

forest datasets (Langanke, Büttner et al. 2013). In case of forest area estimation and tree cover density, 

show high correspondence for all three test sites (overall accuracies of 86% to 91% and Pearson 

correlation coefficient (r) of 0.68 to 0.74 for forest area and tree cover density respectively). In case of 

the forest type classification, the overall accuracy decreases in the northern test site (85% in Austria 

compared to 65% in northern Sweden). When compared to the method introduced in Publication I, the 

newly developed algorithm provide better results in mountainous regions, does not underestimate the 

area of coniferous and mixed forests and, apart from the forest area, provides also the forest type 

information.  

Publication III: Dostálová, Alena, Mait Lang, Janis Ivanovs, Lars T. Waser, and Wolfgang Wagner. 

"European Wide Forest Classification Based on Sentinel-1 Data." Remote Sensing 13, no. 3 (2021): 

337. 

In the third publication, the forest classification algorithm developed within the scope of the two 

previous publications was applied over Europe. Continental scale forest maps were created and 

evaluated against the European-wide Copernicus HRL forest datasets (Langanke, Büttner et al. 2013) 

and national-scale forest maps from twelve countries. The comparison with the Copernicus HRL 
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datasets revealed high correspondence over the majority of the European continent with overall 

accuracies of 86.1% and 73.2% for the forest/non-forest and forest type maps, respectively, and a 

Pearson correlation coefficient of 0.83 for tree cover density map. Detailed analysis of the results 

revealed the strengths and weaknesses of the algorithm, showing that the approach is well suited for 

temperate and hemi-boreal forests. However, its ability to detect forested areas or classify forest type 

decreases in areas with lower forest density such as Mediterranean forests or areas in northern Sweden 

and Norway. Lower accuracy can also be observed in mountain forests where the approach is further 

limited by the topographic distortions in SAR signal. However, the evaluation of both datasets against 

the national forest maps showed that the obtained accuracies of Sentinel-1 forest maps are almost 

within range of the HRL datasets. Especially the results for Finland (overall accuracy of 88% for 

forest/non-forest mapping and 71% for forest type classification) or Switzerland (87% for forest/non 

forest mapping and 82% for forest type classification) show high potential of Sentinel-1 for forest 

mapping even in challenging environments. 

The introduced approach is especially promising due to the facts that these maps can be produced with 

a high degree of automation and that only a single year of Sentinel-1 data is required which enables 

frequent updates of the forest maps. 

Publication IV: Dostálová, Alena, Claudio Navacchi, Isabella Pfeil, David Small, and Wolfgang 

Wagner. "Influence of the Radiometric Terrain Flattening on the SAR-based Forest Mapping and 

Classification." 

Terrain induced variations of radar backscatter represent an important limiting factor in the introduced 

approach. Despite the effort to limit these effects by using backscatter normalisation and aggregation 

of all orbits acquired within the entire orbital cycle, decrease of accuracy in mountainous regions is 

still relatively strong. The last study quantifies the influence of the radiometric terrain flattening 

method (Small 2011) that minimizes the terrain induced variations in SAR imagery. This method 

requires considerably more processing time than the previously used radiometric correction to the 

sigma nought (ߪ଴) values which makes its use in case of methods based on large datasets challenging. 

In this study, the algorithm introduced in publication II was adapted for the radiometrically terrain 

flattened gamma (ߛ௥௧௙)backscatter and compared to the results based on the ߪ଴ backscatter.  

The validation over entire Austria revealed an improvement of overall accuracy by 2% and 3% 

respectively for the forest/non-forest and forest type classification respectively. Large differences can 

be observed in regions with rough topography, where the overall accuracies improved by 16% and 

17% respectively, while the results are comparable in flatlands. These results show, that using the ߛ௥௧௙  

instead of the ߪ଴ in mountainous regions has the potential to improve the forest classification 

significantly in mountainous regions and further improve the quality of the derived maps.  
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1.5 European-wide forest maps 

The forest maps (Dostalova, Cao et al. 2021) derived within the scope of this thesis are the first 

continental-scale forest layers based on Sentinel-1 C band SAR backscatter data. They consist of two 

layers, namely the forest type and tree cover density layers in 10 and 100m resolution respectively. 

The forest type map delineates the forest area and classifies the dominant leaf type (coniferous or 

broadleaf) while the tee cover density map shows the percentage of forest canopy cover within the 100 

m pixel. The maps were derived for the year 2017.  

1.6 Authors contributions 

Publication I: Alena Dostálová prepared the Sentinel-1 data, developed the forest area mapping 

algorithm, computed the Sentinel-1 based forest maps analyzed the validation results and wrote the 

manuscript. Markus Hollaus suggested the study design, computed reference ALS forest maps 

performed the forest maps validation and did the proof reading. Milutin Milenkovic prepared the ALS 

data and did the proof reading. Wolfgang Wagner was the supervisor and did the proofreading. 

Publication II: Alena Dostálová suggested the study design, prepared the Sentinel-1 data, developed 

the classification algorithm, computed the forest maps, performed the validation, analyzed the 

validation results and wrote the manuscript. Wolfgang Wagner was the supervisor and did the 

proofreading. Milutin Milenkovic helped with the development forest type classification algorithm and 

did the proof reading. Markus Hollaus was the project manager, helped with scientific discussions and 

did the proof reading. 

Publication III: Alena Dostálová suggested the study design, computed the forest maps, performed 

the validation, analyzed the results and wrote the manuscript. Mait Lang prepared the validation data 

over Estonia and did the proof reading. Janis Ivanovs prepared the validation data over Latvia and did 

the proof reading. Lars T. Waser prepared the validation data over Switzerland and did the proof 

reading. Wolfgang Wagner was the supervisor and did the proof reading. 

Publication IV: Alena Dostálová computed the forest maps, performed the validation, analysed the 

results and wrote the manuscript. Claudio Navacchi processed the sigma and gamma Sentinel-1 data 

and did the proof reading. Isabella Pfeil helped with scientific discussions and did the proof reading. 

David Small and Wolfgang Wagner were the supervisors, suggested the study design and did the proof 

reading. 
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2 Publication I: Forest Area Derivation from 

Sentinel-1 Data  
This section is reformatted from a paper published in the ISPRS Annals of the 

Photogrammetry: 

Dostálová, Alena, Markus Hollaus, Milutin Milenković, and Wolfgang Wagner. 

"Forest area derivation from Sentinel-1 data." ISPRS Annals of the 

Photogrammetry, Remote Sensing and Spatial Information Sciences 3 (2016): 227. 

https://doi.org/10.5194/isprs-annals-III-7-227-2016 

© Authors 2016. This section is distributed under the Creative Commons 

Attribution 3.0 License. 

Abstract 

The recently launched Sentinel-1A provides the high resolution Synthetic Aperture Radar 

(SAR) data with very high temporal coverage over large parts of European continent. 

Short revisit time and dual polarization availability supports its usability for forestry 

applications. The following study presents an analysis of the potential of the multi-

temporal dual-polarization Sentinel-1A data for the forest area derivation using the 

standard methods based on Otsu thresholding and K-means clustering. Sentinel-1 data 

collected in winter season 2014-2015 over a test area in eastern Austria were used to 

derive forest area mask with spatial resolution of 10m and minimum mapping unit of 

500m2. The validation with reference forest mask derived from airborne full-waveform 

laser scanning data revealed overall accuracy of 92% and kappa statistics of 0.81. Even 

better results can be achieved when using external mask for urban areas, which might be 

misclassified as forests when using the introduced approach based on SAR data only. The 

Sentinel-1 data and the described methods are well suited for forest change detection 

between consecutive years. 

2.1 Introduction 

Since 1991 radar data are available on a continuous basis from different sensors (e.g. 

ERS-1, ERS-2, JERS, SIR-C/X-SAR, RADARSAT, SRTM, EnviSAT-ASAR, 

RADARSAR-II, LIGHTSAR, ALOS-PALSAR, TerraSAR-X). The recently launched 

Sentinel-1A and the planned Sentinel-1B satellites continue this time series and will 

provide a Synthetic Aperture Radar (SAR) data base with much higher spatial and 
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temporal resolution than with previous radar missions. Sentinel-1A, C-Band (central 

frequency of 5.405 GHz) SAR was launched on 3rd April 2014. Starting in October 2014, 

regular coverage is available in both VV and VH polarizations for central Europe. The 

Interferometric Wide Swath mode (IW) offers regular, dual polarization coverage with 

20x5m spatial resolution.  

The high potential of radar data for forestry applications is known since several decades. 

The main advantages are the capability for mapping vegetation cover in regions 

characterized by frequent cloud cover as for example tropical and boreal forests and the 

provision of time series data with high calibration stability as e.g. achieved with ERS-1 

and ERS-2 data. In addition to being almost insensitive to weather conditions, SAR data 

is a useful data source providing information on the structure and moisture status that is 

complementary to the information provided by optical remote sensing (Le Toan and 

Floury 1998). 

These strengths were used in a multitude of studies e.g. on forest mapping ((Dontchenko, 

Johannessen et al. 1999); (Dwyer, Monaco et al. 2000, Quegan, Le Toan et al. 2000) 

(Sgrenzaroli, De Grandi et al. 2002); (Strozzi, Wegmueller et al. 1998); (Wagner, 

Luckman et al. 2003)), forest change detection ((Saatchi, Soares et al. 1997, Gimeno, 

San-Miguel et al. 2002, Hese and Schmullius 2005)) and biomass measurements 

((Dobson, Ulaby et al. 1992, Le Toan, Beaudoin et al. 1992, Le Toan and Floury 1998, 

Wagner, Luckman et al. 2003)). The delineation of forested areas from remote sensing 

data is a fundamental task in forestry. The area and location of forests is an essential input 

in studies on forest resources, forest contribution, global carbon cycle, forest ecosystems 

and on their productivity functions. Furthermore, the changes of the forest areas are in the 

focus of operational forest management and forest studies of forest change detection due 

to e.g. fire, storm, diseases or logging activities. Due to the relatively low spatial and 

temporal resolution of available SAR data their application for operational forest mapping 

is still limited. The availability of Sentinel-1 data will change this situation significantly. 

The data from Sentinel-1 satellite were already demonstrated to be useful for land cover 

classification as a possibility to complement the cloud-covered areas ((Balzter, Cole et al. 

2015)) or to be used for a forest change detection to identify clear-cuts ((Olesk, 

Voormansik et al. 2015)). Similarly, the dual-polarization data from Radarsat C-Band 

sensor were already used to complement forest cover maps from ALOS-PALSAR L-

Band SAR systems (Mitchell, Tapley et al. 2014). Due to the high temporal coverage of 

Sentinel-1 data with an acquisition up to every three days in central Europe, the 

advantage of multi- and hyper-temporal combination of images may be used for forest 
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classification. The short revisit time also strongly supports the change detection 

applications. 

The objective of this paper is to show first results of delineated forest areas from multi-

temporal Sentinel-1 data from an Austrian study site. The results are validated with a 

reference forest mask derived from airborne full-waveform laser scanning data. 

2.2 Study area and data 

2.2.1 Study area 

The northern part of the federal state Burgenland in Austria was selected as study area 

(Figure 1). In addition to the flat area around the Lake Neusiedl, this region contains two 

hilly areas with the highest elevation of 748 m and 484 m a.s.l., respectively. Both hilly 

regions are almost completely covered with mixed forest (deciduous and coniferous trees) 

with about 400 km2 each, while there are also several smaller forest areas up to 40 km2 

outside the closed forests. The rest of the study area is rather flat, open land or urban area, 

with elevations ranging from 110 m to 260 m a.s.l., while in the eastern part the lake 

Neusiedl is located. 
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Figure 1: Overview of the study area. The ArcGIS Online basemap orthophoto is overlaid with the 
normalized DSM, derived from ALS data. The cells where the normalized DSM is smaller than 1.5 m are 
plotted as transparent. 

2.2.2 Data 

Sentinel-1A IW Ground Range Detected (GRD) Level-1 product was used in this study. 

The IW data have spatial resolution of 20m with the pixel spacing of 10m. Over the study 

area, regular coverage in VV and VH polarization is available since October 2014 with a 

temporal resolution of 4 days on average. 

As the volume scattering at C-Band in forests (representing permanently vegetated areas) 

and dense agricultural crops (representing seasonally vegetated areas) may cause similar 

backscatter values over these two classes in summer time acquisitions and thus make the 

two classes less separable ((Balzter, Cole et al. 2015)), only the winter period (1st 

December 2014 to 31st March 2015) data were selected. All acquisitions from the 

specified time frame were used, regardless of the environmental conditions (snow, 

precipitation, temperature) or differences in orbit and thus in local incidence angles. On 

average, 30 acquisitions are available for each pixel within the study area. 
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In addition to Sentinel-1 data, full-waveform airborne laser scanning (ALS) data are 

available. The ALS data were collected in April 2010 with Riegl LMS-Q560 and LMS- 

Q680 sensors under the leaf-off and snow-free conditions. The ALS data cover the whole 

study area with an average point density in the nonoverlapping areas of 4 points/m2 , 

while recording up to 15 echoes per single laser shoot. The laser footprint of the recorded 

data was not larger than 60 cm in diameter. The ALS data are used for deriving a 

reference forest mask used for validating the Sentinel-1 derived forest area. 

2.2.3 Reference forest mask 

For the generation of the reference forest mask the approach from (Eysn, Hollaus et al. 

2012) is applied. This comprehensive approach is based on ALS data by considering the 

criterions tree height, crown coverage (CC) and the minimum area and width. The 

criterion of land use is not considered in this approach. Based on the slope adaptive echo 

ratio map, which describes the transparency for laser beams of the top most surface, it is 

possible to differentiate between buildings and trees. For the calculation of the CC the 

approach from (Eysn, Hollaus et al. 2011) is applied, which uses clear geometric 

definition of the CC and works on a similar way than it is the case for manual assessment 

of the CC based on aerial orthophotos. This approach uses the area of the convex hull of 

three neighbouring trees as reference unit and thus overcomes limitations from e.g. pure 

moving window approaches such as smoothing effects along the forest border or the 

dependency on the kernel size and shape of the moving window. The entire workflow is 

implemented in the software package Opals ((Pfeifer, Mandlburger et al. 2014)). 
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Figure 2: Subset of the derived forest mask with a minimum mapping unit of 500 m2, crown coverage ≥30%, 
minimum height 3m and minimum width of 10 m. In the background an ArcGIS Online basemap orthophoto 
is shown. 

2.3 Methods 

The presented SAR forest map is based on statistical parameters derived from Sentinel-1 

multi-temporal data-series over single winter period. The methodology is divided into the 

following steps: Sentinel-1 data pre-processing that includes processing of the level-1 

data into the stack of georeferenced and quality checked images; forest area derivation, 

which includes statistical parameters derivation, their analysis and forest classification 

and validation using the ALS reference forest map. 

2.3.1 Sentinel-1 data pre-processing 

The Sentinel-1 data were pre-processed using the Sentinel-1 Toolbox software (version 

1.1.1). The processing steps included radiometric calibration to the sigma nought (ߪ଴) 
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values, range-Doppler terrain correction using SRTM digital elevation model ((Jarvis, 

Reuter et al. 2008)) and conversion from linear to decibel scale. The data were checked 

for corrupt or shifted images and the precision of the georeferencing was tested. 

Extremely low backscatter values (below -30 dB) at the image edges caused by the 

thermal noise were masked. Since large number (~30) of measurements was used to 

retrieve the parameters for classification, no multilooking or spatial filtering to reduce 

speckle noise was applied. 

2.3.2 Forest area derivation 

The combination of two polarization bands (VV and VH in this case) offers the 

possibility to use the backscatter intensities from the C-Band SAR sensor for a 

classification of various land cover types ((Balzter, Cole et al. 2015)). This is illustrated 

on Figure 3-a, which presents an RGB composite of the two polarizations and their 

difference for a single Sentinel-1 acquisition from 25th December 2014 over a 10 by 10 

km subset of the region of interest. Forested areas (appearing green on the RGB 

composite) are typical for their relatively high backscatter intensities in both polarizations 

(especially in VH) and relatively low difference between the two polarizations when 

compared to the agricultural cropland. However, speckle noise and relatively strong 

topographic effects in the single SAR acquisition decreases the precision of a single 

image based classification. To reduce these limitations, acquisitions from entire winter 

period (1st December 2014 to 31st March 2015) were combined.  

Number of statistical parameters was computed from the backscatter time-series for each 

pixel (e.g. mean, median, quartiles or standard deviation). Those providing the highest 

separability of forested and non-forested areas quantified by Bhattacharyya distance 

(Fukunaga 2013) together with a low sensitivity to terrain variations were selected for the 

classification. The best results for both polarizations are achieved by the so-called dry 

parameter computed as the average of all values below first quartile of each pixel. The 

RGB composite of VH and VV polarization and their difference is presented in Figure 3-

b. When compared to Figure 3-a, the speckle noise is reduced and the contrast between 

forested and non-forested land is enhanced. 

For the classification, the dry parameter for VV and VH polarizations and the difference 

between the two polarizations is used. Two approaches are tested: a thresholding method 

based on the thresholds derived by the Otsu algorithm ((Otsu 1979)) (Fig. 4-a) and a k-

means clustering ((Hartigan and Wong 1979)) (Fig. 4-b). The thresholds and cluster 

centres for the forest and non-forest classes were specified over the 10 by 10 km training 

area presented at Figures 2, 3 and 4 and were used for the entire region of interest. 
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Minimal mapping unit of 500 m2 was applied. 

Both algorithms based on the above mentioned parameters tend to falsely classify urban 

areas as forests. For urban areas mapping, different parameters need to be selected. 

(Dekker 2003) showed that the measure with the best preformation for the urban areas 

delineation is the mean SAR intensity. This approach works well in flat areas, however it 

leads to over classification in hilly areas. Another possibility is to use external ancillary 

data such as Corine land cover dataset ((Bossard, Feranec et al. 2000)) to mask out the 

urban areas. Both approaches were evaluated in this study. 
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Figure 3: 10 by 10 km training area: a) RGB composite of VV polarization backscatter in red band, VH 
polarization backscatter in green band and their difference in blue band from 25th December 2014, b) RGB 
composite (VV, VH and their difference) of the dry parameter over the winter period. 
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Figure 4: 10 by 10 km raining area: a) result of the thresholding approach classification, b) result of the k-
means clustering approach classification 
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2.3.3 Validation 

For the validation of the derived forest masks from the ALS derived forest mask (cp. 

section 2.2) is used as a reference. The minimum mapping unit for all forests masks is set 

to 500m2 . The accuracy statistics are summarized in error matrixes, In addition to the 

overall accuracies, the producer and user accuracies as well as the kappa coefficients 

((Congalton and Green 2019)) are calculated for each derived forest mask. 

2.4 Results and discussion 

The ALS and Sentinel-1 (thresholding approach) forest masks for the entire test area are 

presented at Figure 5 and their differences are highlighted at Figure 6. The urban areas 

are masked with the mean SAR backscatter parameter. Spatial resolution of both datasets 

is 10m and minimal mapping unit is 500m2 . The accuracy statistics for both the 

thresholding and the k-means approach are summarized in Table 1. The results are listed 

separately also for the different urban area masks (based on Sentinel-1 data and Corine 

land cover). 

Both methods show overall good correspondence of the derived Sentinel-1 forest mask 

and the reference ALS forest mask. The kappa values range between 0.77 in case of k-

means clustering approach complemented with the urban mask based on mean Sentinel-1 

backscatter and 0.83 in case of thresholding approach with Corine land cover urban mask. 

The generally lower user’s accuracy (75 and 78%) and very high producer’s accuracy 

(96%) of forests in case of the k-means clustering approach show that the method tends to 

overestimate the forest area. The overall accuracy is also lower than in case of the 

thresholing method. The thresholding method shows overall accuracies over 90% with 

balanced user’s and producer’s accuracies for both classes.  

The urban mask based on external Corine land cover data performs better than the SAR 

based urban mask. The mask based on average SAR backscatter does not classify areas 

with lower building density as urban areas and these are then often falsely classified as 

forests (Figure 6). Strong topographic effects in some hilly areas might also lead to 

misclassifications as these are recognized as build up areas when using the simple 

approach based on average SAR intensity. Further research is needed to develop a better 

classification approach to distinguish forested and urban areas using Sentinel-1 data. 

As the training area included only deciduous forests, the SAR based forest masks tend to 

underestimate forest area in regions, dominated by mixed and coniferous forests (Figures 

5 and 6, South-Western part of the test area). Classification of multiple forest classes 



 Publication I. 

19 

 

might further improve the result. 

Table 1: Accuracy statistics for Sentinel-1 forest masks using ALS forest mask as reference. 

Classification method Thresholding approach K-means clustering 
approach 

Urban mask Sentinel-1 Corine 
land cover 

Sentinel-1 Corine 
land cover 

Produces’s accuracy: forest 89% 89% 97% 97% 
Producer’s accuracy: no 
forest 

92% 94% 81% 85% 

User’s accuracy: forest 85% 88% 72% 87% 
User’s accuracy: no forest 94% 94% 98% 98% 
Overall accuracy 91% 92% 87% 89% 
Kappa statistic 0.80 0.83 0.73 0.78 
 

It should also be noted, that the temporal difference between the ALS and Sentinel-1 

forest map is almost 5 years. No manual correction of the forest changes (clear-cuts, 

forest grow) was applied before the validation. This reduces the achieved accuracies, but 

also highlights the potential of the Sentinel-1 data to be used for change detection. Figure 

7 represents the area where the changes in forest area are visible between the ALS and 

Sentinel-1 acquisition time (April 2010 and December 2014 to March 2015 respectively). 

Generally, the accuracy of the Sentinel-1 forest mask exceeds 90% when compared to the 

reference ALS mask at the 10m spatial resolution. As the Sentinel-1 forest mask is based 

on data from a single winter season, yearly forest masks might be derived in future in 

case of a sufficient temporal coverage. Especially after the launch of Sentinel-1B, even 

interseasonal change detection might be possible with the presented accuracy. Further 

research is needed to assess the applicability of the approach for a larger scale and diverse 

forest types. 
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Figure 5The ALS and Sentinel-1 (thresholding approach) forest mask for the entire region of interest overlaid 
on the ArcGIS Online basemap orthophoto 
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Figure 6: Subset of the ALS and Sentinel-1 based forest mask showing the clear-cut and forest growth 
changes between April 2010 and winter 2014/2015. The masks are overlaid on the ArcGIS online basemap 
orthophoto. 

2.5 Conclusion 

Forest mask was derived over a study area in eastern Austria using a single winter season 
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Sentinel-1A acquisitions. The resulting 10m resolution mask was validated using the 

reference ALS forest mask of the same area. Despite the temporal gap of almost 5 years 

between the ALS and Sentinel-1 data acquisitions, the overall accuracy reached 93% with 

kappa statistics of 0.83 when using the threshold method and Corine land cover data to 

mask the problematic urban areas. Without external data for urban masking, the overall 

accuracy reached 92% with kappa value of 0.81. The forest mask from Sentinel-1 data 

has high potential for forest change detection mapping. Further research is needed to 

assess the applicability of the method on larger scale and for various forest types. 
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Abstract 

The Sentinel-1 satellites provide the formerly unprecedented combination of high spatial 

and temporal resolution of dual polarization synthetic aperture radar data. The availability 

of dense time series enables the derivation and analysis of temporally filtered annual 

backscatter signals. The study concentrates on the use of Sentinel-1 seasonal backscatter 

signatures for forest area estimation and forest type classification. A classification method 

based on time series similarity measures is introduced and tested in three test areas 

covered by various forest types including broadleaf temperate, boreal and montane 

forests. The results are compared with two European-wide Copernicus high resolution 

layers, namely forest type and tree cover density (TCD). The correspondence of 

forest/non-forest maps and TCD is high in all test areas, with overall accuracies for 

forest/non-forest classification between 86% and 91% and Pearson correlation 

coefficients for TCD between 0.68 and 0.74. The forest type classification (non-forest, 

coniferous and broadleaf forest classes) provides best results in temperate forests with an 

overall accuracy of 85%; in boreal forest, the accuracy decreases to only 65%. Generally, 

the method provides reliable results for forest area estimation, including regions where 

methods based on static parameters are often problematic (mountainous areas), and it 

enables forest type classification in temperate forests. 
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3.1 Introduction 

The high potential of microwave remote sensing instruments for providing information 

on the structure and moisture status of the vegetation has been recognized for several 

decades ((Ulaby, Moore et al. 1986)). One of the main motivations for using microwave 

sensors for the monitoring of vegetation is their low sensitivity to weather conditions, 

such as cloud cover or rainfall, as well as their independence from the solar illumination 

of the earth surface. These aspects are important as vegetation represents a dynamic target 

that changes in time. Many applications, such as agricultural monitoring, phenology 

measurements or deforestation mapping, require regular image acquisitions of the same 

region; in areas with frequent cloud coverage or short sun illumination periods, this can 

often be a limiting factor for optical sensors. Microwave approaches may therefore be a 

valuable complement to the well-established methods based on the optical remote 

sensing. 

Synthetic aperture radars (SARs) are active microwave sensors with a relatively high 

spatial resolution of several metres to hundreds of metres. In forestry, a multitude of 

methods have been developed over the past decades that are based on the information 

provided by the SAR instruments. Their main applications include above ground biomass 

estimation ((Le Toan, Beaudoin et al. 1992); (Joshi, Mitchard et al. 2015);(Minh, Le Toan 

et al. 2016)), forest height retrieval ((Wallington and Woodhouse 2006); (Kugler, Schulze 

et al. 2014); (Yu, Hyyppä et al. 2015)), forest cover mapping ((Le Toan, Mermoz et al. 

2014); (Shimada, Itoh et al. 2014); (Dostálová, Hollaus et al. 2016)) and clear-cut 

detection ((Motohka, Shimada et al. 2014); (Reiche, Verbesselt et al. 2015); (Barreto, 

Rosa et al. 2016)). The limitations of these methods are already well described. Methods 

based on radar backscatter, especially the short wavelength sensors (X- or C-band) are 

limited by the wavelength dependent saturation ((Imhoff 1993)). Furthermore, the radar 

backscatter is sensitive to changes in environmental conditions, such as moisture 

variation in both vegetation and the underlying soil ((Lucas, Armston et al. 2010)) or 

freeze-thaw events ((Ranson and Sun 2000)). This might lead to the erroneous 

interpretation of the imagery or to a lower sensitivity to the observed phenomena 

((Sharma, Leckie et al. 2005); (Olesk, Voormansik et al. 2015)). A number of studies 

suggest that the use of multi-temporal measurements might partially overcome these 

limitations and provide more reliable results. For instance, multi-temporal combination of 

individual growing stock volume estimates have been demonstrated to improve the 

retrieval as compared to the single-image case ((Santoro, Beer et al. 2011)). Another 

possibility is to compute parameters from multiple SAR acquisitions such as averages of 
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selected images ((Dostálová, Hollaus et al. 2016); (Haarpaintner, Davids et al. 2016)) or 

measures of temporal change ((Quegan, Le Toan et al. 2000)). These can be used for 

forest area estimation instead of the single images. 

In case of the forest mapping, the main limitation of the multi-temporal approach is the 

similarity of the derived parameters over forests and some other land cover classes. For 

instance, non-forest land cover classes covered by woody vegetation, such as vineyards or 

residential urban areas, have the absolute value of backscatter close to that of forest and 

are therefore often misclassified ((Dostálová, Hollaus et al. 2016)). Furthermore, stable 

non-forest targets (e.g. urban areas) and forest regions exhibiting significant variability 

due to flooding or freeze – thaw effects represent the main error sources in case of the 

temporal stability approach. Especially montane and boreal forests require the proper 

selection of the datasets used, as the acquisitions taken under frozen conditions introduce 

large variations in backscatter values ((Quegan, Le Toan et al. 2000)). 

Multi-temporal SAR acquisitions of forested areas have also been studied to better 

understand the sources of backscatter variations ((Ahern, Leckie et al. 1993); (Pulliainen, 

Kurvonen et al. 1999); (Proisy, Mougin et al. 2000); (Magagi, Bernier et al. 2002); 

(Sharma, Leckie et al. 2005); (Santoro, Fransson et al. 2009)). In addition to the changing 

environmental conditions and noise, the vegetation growth cycle and seasonal changes in 

forest structure are also expected to influence the SAR response from forested regions. 

Until recently, however, studies looking at the annual signal variations caused by 

vegetation growth reported mostly pessimistic results. Backscatter time series over forest 

stands were reported to be chaotic or only very weak seasonal signals caused by tree 

phenology were found ((Proisy, Mougin et al. 2000)). These studies were often limited by 

the low temporal sampling of about 10–15 measurements per year. This is a problem as 

the long repeat period between the acquisitions does not allow a reliable separation of the 

short-term backscatter variations caused by changing environmental conditions and the 

noise from the annual changes caused by the vegetation growth cycle. Despite the limited 

temporal coverage, some differences between various forest types have been observed. 

For instance, (Sharma, Leckie et al. 2005)) reported slight increase of backscatter during 

wintertime in the case of hardwoods while (Ahern, Leckie et al. 1993) showed that there 

are observable differences between softwoods and deciduous forest types; the deciduous 

tree species, including tamarack, were reported to have higher backscatter relative to the 

coniferous species under leaf-off conditions. 

The so-far unprecedented temporal and spatial coverage of high resolution C-Band SAR 

data provided by the Sentinel-1 constellation motivates further analyses of the annual 
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seasonality in SAR signal. For instance, (Guccione, Lombardi et al. 2016) performed a 

statistical analysis of the seasonal effects of the Sentinel-1 radar backscattering 

coefficient for various vegetation classes including deciduous and boreal forests. 

Significant statistical differences between the seasonal periods (3 months) were reported 

for both forest types. Furthermore, (Dostalova, Milenkovic et al. 2016) focused on the 

single-year time series over forested areas and derived a temporally filtered seasonal 

signal. Differences in the annual backscatter variation were attributed to the forest type 

(coniferous, deciduous or mixed forest) and forest structure. The results of (Ahern, Leckie 

et al. 1993) or (Dostalova, Milenkovic et al. 2016) suggest that the differences in the 

seasonal behaviour of SAR backscatter might be used for forest type classification. 

The measurement of the forest area and location is a fundamental task in forestry. It 

represents an essential input to studies of forest resources, global carbon cycle, forest 

ecosystems and their productivity functions. Furthermore, changes in the forest area are a 

major focus of operational forest management and studies of forest change detection. The 

recent studies of (Dostálová, Hollaus et al. 2016) or (Haarpaintner, Davids et al. 2016) 

showed that the Sentinel-1 data can be used for forest area mapping in both temperate and 

boreal forests. The objective of this article is to exploit the potential of the multi-temporal 

Sentinel-1 dataset for forest area mapping and forest type classification. In contrast to the 

previous studies, the temporally smoothed backscatter time series (SAR seasonality) are 

used for the classification instead of the parameters describing the backscatter response or 

its temporal behaviour. We assume that the use of the time series might limit the error 

sources in the forest/non-forest classification as the forested regions are expected to have 

distinct seasonal signal that can be differentiated from other vegetation types and land 

cover classes. The differences in annual growth cycle between various tree species, 

especially between the coniferous and broadleaf tree types, may also enable forest 

classification. The approach for forest mapping and forest type classification based on a 

full year Sentinel-1A time series is developed and tested in three regions with different 

climatic conditions and various forest types ranging from temperate to boreal forest. The 

results are validated against Copernicus high resolution layers (HRL) forest type (FTY) 

and tree cover density (TCD; (Langanke, Büttner et al. 2013)) products. 

3.2 Data 

3.2.1 Sentinel-1 

The Sentinel-1 constellation comprises two satellites: Sentinel-1A and Sentinel-1B, 

launched on 3 April 2014 and 25 April 2016, respectively. Each of the satellites has a 
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repeat orbit cycle of 12 days. Both satellites carry a C-Band SAR sensor that is capable of 

providing dual polarization observations in several measuring modes. The main mode 

used for land applications is Interferometric Wide swath (IW) mode, which provides data 

with the spatial resolution of 20 m × 5 m and, in central Europe, delivers up to four 

measurements in dual polarization – vertical transmit and vertical receive (VV) and 

vertical transmit and horizontal receive (VH) – per orbit cycle of a single sensor. In 

winter, parts of northern Europe are acquired also in Extra Wide swath (EW) mode with a 

spatial resolution of 100 m × 25 m and horizontal transmit and horizontal receive (HH) 

and horizontal transmit and horizontal receive (HV) polarizations. 

Within this study, all available IW mode Level 1 Ground Range Detected (GRD) data in 

both polarizations from 2015 are used over the selected test areas. The maximal temporal 

resolution is four measurements within a single repeat orbit cycle, however, the actual 

number of measurements is considerably lower, especially in Swedish regions. Figure 7 

presents the number of the available IW mode acquisitions from 2015 over Europe. The 

locations of the test areas are highlighted with blue squares. Table 2 summarizes number 

of used acquisition for each region. 
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Figure 7: Data coverage of Sentinel-1 A IW dual polarization data in 2015. Blue squares highlight the test 
areas. 

 

 

 

Table 2: Summary of the Sentinel-1 A IW dual polarization data in 2015 over the test areas. 

Test area Size (km) Number of 
acquisitions 

Coverage per 
pixel 

Maximal 
temporal gap 

(days) 
Neusiedl Lake 200 × 200 336 56-132 12 
Remningstorp 100 × 100 146 44-78 24 
Krycklan 100 × 100 209 70-125 60 
 

3.2.2 Copernicus HRL datasets 

The main objective of the Copernicus HRLs is the high resolution, homogenous land 
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cover monitoring in European countries. The products cover 39 member states and 

affiliated countries to the European Environment Agency (EEA). As a reference, the 

freely available pan-European Copernicus HRL 20 m FTY and 100 m TCD products 

were used. These datasets are provided by the EEA Global Monitoring for Environment 

and Security/Copernicus Initial Operations Land and were derived using semi-automatic 

classification and computer aided visual refinement based on high resolution satellite 

imagery that included Indian Remote Sensing-ResourceSat 2 (IRS-RS2), Satellite Pour 

l’Observation de la Terre (SPOT) and RapidEye acquired in 2011 and 2012. 

The TCD dataset represents the degree of TCD of each pixel in percent. No minimum 

mapping unit (MMU) is applied, only a minimum mapping width (MMW) of 20 m. All 

detectable trees are included, independent of their use. The shrub land, dwarf pine and 

green alder in high or mountainous areas and Mediterranean bush land are excluded as 

well as open areas within forests such as roads or clear cuts in cases where no tree cover 

can be detected from the 20 m resolution imagery. The FTY product is closely aligned to 

the forest definition of Food and Agriculture Organization (FAO) meaning that the forests 

are defined as lands of more than 0.5 ha with a tree canopy cover of more than 10% 

which are not primarily under agricultural or urban use (FAO 1998). The 20 m × 20 m 

FTY product is produced from the 20 m TCD product by applying a threshold of TCD of 

at least 10%, MMU of 0.5 ha and MMW of 20 m. The dominant leaf type of the trees 

within each pixel is specified, using two classes – broadleaf and coniferous (EEA 2013). 

Validation of the Copernicus HRL forest layers was done using manual interpretation of 

high and very high resolution reference data for 17,297 sample units over Europe. Both 

layers were validated at a spatial resolution of 100 m using confusion matrix in case of 

the forest type and coefficient of determination (R2) of a linear regression in case of the 

TCD. The R2 is defined as:  ܴଶ = ∑ (௙೔ି௬ത)మ೙೔సభ∑ (௬೔ି௬ത)మ೙೔సభ     (1) 

In the equation, n represents number of samples, y the sample value, ȳ the average value 

and f the predicted value using the linear regression. Results for forest type, forest/non-

forest classification and TCD (Table 3) vary according to their biogeographical region. 

Therefore, overall results are listed as well as results for all biogeographical regions that 

cover at least part of the test areas of this study (Alpine, Boreal, Continental, Pannonian 

regions). Details about the validation procedure and results can be found in the 

Copernicus HRL forest validation report (SIRS 2016). 
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Table 3: Results of the Copernicus HRL 100m forest type and tree cover density validation (SIRS 2016). In 
the table, I. stands for broadleaf forest class and II. For coniferous forest class. 

 TCD Regrouped forest class Forest type 
Biogeographical 

region 
R2 Producers 

accuracy (%) 
Users 

accuracy (%) 
Producers 

accuracy (%) 
Users 

accuracy (%) 
I. II. I. II. 

Alpine 0.71 90 83 77 71 50 63 
Boreal 0.75 93 89 37 84 17 58 

Continental 0.75 92 87 86 67 65 80 
Pannonian 0.79 89 88 88 62 69 98 

Overall 0.67 89 83 73 75 57 58 

3.3 Test areas 

Three test areas representing different climatic conditions and biomes were chosen to test 

the methods as described in the next section. The regions were selected from the test 

areas of the European Community’s Seventh Framework Programme Advanced_SAR 

project using the overlapping Equi7 Grid ((Bauer-Marschallinger, Sabel et al. 2014)) 

100 km × 100 km large tiles. These test areas include areas around Neusiedl Lake in 

eastern Austria together with four overlapping Equi7 Grid tiles, Remningstorp forest 

holding in southern Sweden and Krycklan area in northern Sweden, both including single 

overlapping Equi7 Grid tile. 

3.3.1 Neusiedl Lake 

The largest test area is centred at 48° N and 17° E and covers four Austrian federal states 

(Burgenland, Niederösterreich, Steiermark and Wien) as well as part of western Slovakia 

and Hungary and south-east Czech Republic, covering a total area of 200 km × 200 km. 

The eastern part of the region is flat and characterized by temperate broadleaf forest while 

the western part is mountainous with altitudes ranging up to 2000 m asl. In the highest 

elevations, montane forests can be found. The lowlands are densely populated and 

dominated by agricultural fields, a large wetland area around the Neusiedl Lake and some 

vineyards regions around Vienna, Neusiedl Lake and Sopron. The study area includes 

large cities (e.g. Vienna and Bratislava) as well as numerous small villages. In the 

lowlands, the forest patches are typically broadleaved, rather small and are composed of 

oaks, beeches or hornbeams. In areas along the Danube River, poplar trees are also 

common. Coniferous species in the flat parts of the study area are mostly pine trees. In 

hilly and mountainous areas, larger mixed or coniferous forests can be found. Broadleaf 

species are represented by oaks, beeches, maple trees and birches while spruce and pine 

trees are the most common occurring conifers. 
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Generally, the Sentinel-1 IW data coverage is very dense in central Europe; the largest 

temporal gap in 2015 was 12 days within the Austrian test area, meaning that in each 

orbital cycle at least one acquisition was secured. Typically, two to four observations per 

orbital cycle were available in 2015. 

3.3.2 Remningstorp 

The test area in southern Sweden covers an area of 100 km × 100 km and is centred at 

58° N and 14° E around the forest holding of Remningstorp. The region is located in the 

Västra Götland County and is characterized by hemi-boreal forest and flat topography 

with elevations between 100 and 370 m asl. The area spans between lakes Vänern and 

Vättern and the dominant land cover types are forest and agricultural land. Moreover, 

numerous lakes and some wetlands can be found. The prevailing tree species are spruce, 

pine and birch and stem volumes range typically up to 400 m3ha−1 although in some areas 

volumes can reach up to 700 m3ha−1 ((Santoro, Fransson et al. 2009)). 

A large part of the Scandinavian Peninsula has low coverage of Sentinel-1 A IW mode 

data during wintertime. This concerns both of the Swedish test areas. In the case of the 

Remningstorp area, the number of acquisitions in January to March 2015 is strongly 

limited with longest gap between subsequent acquisitions being between 7 February 2015 

and 3 March 2015. From April onwards, regular coverage of at least one measurement 

per 12 day orbital cycle is available. 

3.3.3 Krycklan 

The Krycklan test area is located within boreal zone at around 64° N and 20° E in 

northern Sweden (Västerbotten County) and covers an area of 100 km × 100 km. The 

area is sparsely populated with only a single large city (Umea) located on the shores of 

the Gulf of Bothnia. Most of the area is covered by forests, together with some 

agricultural areas, lakes and wetlands. The topography is undulating with several gorges 

and elevations ranging between sea level and 400 m asl. The forests are relatively sparse 

with typical stem volumes around 150 m3ha−1 and maximum values of 400 m3ha−1 

((Santoro, Fransson et al. 2009)). The most common tree species are pine and spruce 

among conifers and birch among broadleaf trees. 

Similar to the Remningstorp region, the coverage of the Sentinel-1 IW mode acquisition 

during the winter season of 2015 is strongly limited to only a few images between 

January and May 2015. In the south-west part of the area, there is a gap of two months 

(11 January 2015 to 12 March 2015) between acquisitions. Due to the limited data 
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availability during winter, the short vegetation growth period and the relatively high 

influence of the forest understory layer when compared to the denser forests in the 

southern regions, the Krycklan area was expected to be the most challenging. 

3.4 Method 

The algorithm for forest/non-forest, FTY and TCD retrieval is outlined in Figure 8 and 

consists of the following major blocks:  

1) Sentinel-1 level 1 GRD data pre-processing using the SAR Geophysical Retrieval 

Toolbox (SGRT) software ((Elefante, Wagner et al. 2016)) 

2) Generation of temporally smoothed backscatter time series (SAR seasonality) 

3) Forest/non-forest and FTY classification and TCD derivation 

These steps are described in detail in the following sections. 
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3.4.1 Sentinel-1 data pre-processing 

The pre-processing block requires Sentinel-1 level 1 GRD data as an input and produces a 

stack of radiometrically calibrated (sigma nought – σ°) and terrain corrected geocoded 

images resampled to the Equi7 Grid 100 km × 100 km large tiles with 10 m pixel spacing 

in geotiff format. This is done using the pre-processing workflow within the SGRT 
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Input: Sentinel-1 IW GRD data 

Stack of backscatter and projected local incidence 
angle images 

30 SAR seasonality values for VV and VH 
polarization for each pixel  

Output: 20 m forest type map and 100 m tree cover fraction 
Figure 8: Overview of the algorithm used to classify forest type and compute tree cover density from Sentinel-1 
data 
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software. This software was developed at Technische Universität (TU) Wien and aims at 

the automated processing of large volumes of SAR-based products such as soil moisture, 

forests, wetlands, open water or flood mapping. It is written in Python and includes also 

some external software modules, in particular the Sentinel Application Platform (SNAP) 

software that is used for part of the SAR pre-processing. The SGRT software includes 

three major blocks – the so-called workflows: pre-processing, parameter estimation and 

product derivation. Within the pre-processing workflow, following steps are applied:  

1) Thermal noise removal 

2) Precise orbit correction 

3) Radiometric calibration to the σ° values 

4) Range-Doppler terrain correction using the Shuttle Radar Topography Mission 

(SRTM) digital elevation model (DEM) ((Farr, Rosen et al. 2007)) 

5) Conversion from linear to the logarithmic scale 

6) Resampling to the Equi7 Grid 

7) Quality check for corrupted or shifted images (semi-automated) 

All steps except (7) require no manual interaction. Within the last step, only the shifted 

images are found automatically, the check for corrupted images (i.e. areas of unnaturally 

high backscatter values as presented in (Dostálová, Naeimi et al. 2016)) is achieved by a 

manual check of the image quick looks. The steps (2) to (5) are performed in the SNAP 

software using the graph processing tool functionality. The output of the pre-processing 

workflow includes σ° and projected local incidence angle (θ) images. The mask of 

layover and shadows was created using the SNAP software for the area around Neusiedl 

Lake. 

3.4.2 SAR seasonality 

The pre-processed Sentinel-1 σ° time series show variations of up to 10 dB over forests 

and even higher over agricultural land. This is mainly caused by the varying imaging 

geometry, changing environmental conditions as well as speckle noise. To quantify the 

considerably weaker seasonal variation, these short-term influences need to be removed. 

To do so, (Nguyen, Clauss et al. 2015) introduced a method to derive SAR-based 

phenology information over rice fields using temporal filtering of Envisat Advanced SAR 

(ASAR) data. This approach was modified for Sentinel-1 and introduced in (Dostalova, 

Milenkovic et al. 2016). The method includes the following steps:  
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8) Multi-looking of 2 by 2 pixels to limit the speckle noise. 

9) Backscatter normalization to the reference θ of 40° using the slope (β) parameter 

and the following equation: ߪ଴(40°) = (ߠ)଴ߪ − ߠ)ߚ − 40°)   (2) 

The β parameter is computed from the linear regression between the σ° and θ values for 

each pixel. This approach is based on the assumption of linear relationship between 

backscatter and projected local incidence angle within the limited range of available 

incidence angles of a SAR sensor (29.1° to 46.0° in case of Sentinel-1 and flat terrain) 

and enables the combination of measurements from different relative orbits and thus 

acquired with different viewing directions. The approach is, however, limited by the low 

number of various incidence angles in some areas, where no reliable slope value from 

Sentinel-1 can be derived. In these areas, slope from the full archive of Envisat ASAR 

Wide Swath mode data was used instead. Furthermore, the β parameter varies with 

vegetation growth ((Peters, Lievens et al. 2012)), yet it was assumed to be temporally 

stable, as the data coverage in 2015 is not sufficient to compute its seasonal variation.  

10) Computation of 12 day averages (duration of single orbit cycle) to limit the 

impact of short-term variations caused by environmental conditions (i.e. 

precipitation and differences in soil and vegetation moisture content) and noise 

and to ensure regular temporal steps. 

11) Application of a Gaussian temporal filter to further limit the impact of the 

remaining short-term variations, noise and smooth potential outliers. 

As a result, 30 SAR seasonality values were derived at 12 day temporal steps for each 

20 m × 20 m pixel and both polarizations (VV and VH). Figure 9 presents an example of 

the pre-processed σ°, 12 day averages and SAR seasonality time series over several 

vegetation types within the Austrian test area. While the pre-processed σ° values are 

dominated by short-term variations and differences between various vegetation types are 

hard to define, the SAR seasonality time series enables better distinction between 

vegetation types. The annual variation is very strong over most of the agricultural crops 

and much more stable over forests or vineyards. Generally, the range between minimal 

and maximal value is typically between 1.5 and 3.0 dB in case of woody vegetation while 

in case of agricultural crops, seasonal effects cause as much as 8.0 dB difference between 

summer and winter conditions. However, the differences are observable not only between 

woody and herbaceous plants, but also between various types of woody vegetation – in 

this case between coniferous and broadleaf forest and vineyards. While broadleaf forest 
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can easily be distinguished from the other two vegetation types due to the backscatter 

drop in spring and summer, coniferous forest and vineyards show similar seasonal 

behaviour as well as the same absolute values of backscatter. Minor difference can be 

observed in autumn. In case of conifers, the backscatter decreases steadily from its 

maxima in late summer while in case of vineyards, enhanced backscatter can be observed 

both in summer and in autumn. These differences enable the use of the seasonal signal 

both for forest/non-forest classification and for distinguishing between the two forest 

types. 

 

Figure 9: Examples of Sentinel-1 A VH polarization time series in 2015 over various vegetation types: (a) 
agricultural field, (b) vineyards, (c) broadleaf forest and (d) coniferous forest. Each plot shows pre-processed 
data, 12 day averages and computed annual signal (SAR seasonality). 

3.4.3 Forest classification and TCD computation 

The forest/non-forest and forest type classification algorithm is based on the similarity 

measures – root mean square difference (RMSD) and Pearson correlation coefficient (r) – 

between the so-called reference time series for different forest types that are selected 

manually for each test area and respective SAR seasonality time series of each pixel. The 

FTY and TCD maps are derived using the following main steps:  

12) Selection of the reference sites (300 m × 300 m large forested sites that represent 

the most common forest types within each test area) and the derivation of the 

reference SAR seasonality time series computed from the average backscatter 

values over the 300 m × 300 m large sites. For each test area, four reference sites 

are selected. Alternatively, a reference time series might also be used for any 
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other vegetation or land cover class that causes classification errors due to its 

similarity to some of the forest classes (within this study, vineyards class was 

added in case of the Neusiedl Lake test area). 

13) Computation of r and RMSD values for each pixel within the test area between 

the respective SAR seasonality and each reference time series for both 

polarizations. 

14) Image classification based on thresholds for RMSD and r values. Each pixel that 

falls within the thresholds with any of the reference time series is assigned the 

value 1. 

15) Forest type classification based on the lowest value of RMSD in VH polarization. 

Subsequently, TCD is computed as the fraction of 20 m × 20 m pixels classified 

as coniferous or broadleaf forests within each 100 m × 100 m area. 

16) MMU of 0.5 ha is applied for the forest type map. 

Here, we describe the methodology for the Neusiedl Lake area in detail. For this area, the 

following reference sites (forest classes) are selected: coniferous forest in lowland 

(managed, row planted, pine forest), coniferous forest in hilly and mountainous regions 

(mixed forest, dominated by spruce and pine trees, often mixed with some broadleaf 

trees), broadleaf forest in lowland (dense, high forest, typically dominated by oak trees) 

and broadleaf forest in mountainous regions (sparse, low trees, often mixed with some 

conifers). The locations of the selected reference sites are presented in Figure 10 and 

listed in Table 4 while Figure 11 (a-d) shows the structure of the respective forest classes 

as recorded in January 2017 under leaf-off conditions. The derived reference SAR 

seasonality time series are presented in Figure 11 (e and f). 

Table 4: Locations of the sites used for computation of the reference SAR seasonality time series. 

Point ID Longitude Latitude Forest type Note 
P1 16°17’14.73’’ 47°46’35.45’’ Coniferous Mountainous terrain 
P2 16°08’18.04’’ 47°46’01.73’’ Coniferous Lowland 
P3 16°29’37.45’’ 47°43’42.93’’ Broadleaf Lowland 
P4 15°40’25.65’’ 47°44’30.94’’ Broadleaf Mountainous terrain 
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Figure 10: Overview of the Austrian test area and the locations of the sites used for computation of the 
reference seasonality time series 
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Figure 11: (a)-(d) photographs of the selected forest sites for reference SAR seasonality time series in case of 
the Austrian area. (a) Reference site P1 (coniferous forest in mountains), (b) reference site P2 (coniferous 
forest in lowlands), (c) reference site P3 (broadleaf forest in lowlands) and (d) reference site P4 (broadleaf 
forest in mountains). The images were taken in January 2017 under leaf-off conditions. (e) VV polarization 
reference seasonality time series for the Austrian test area. (f) VH polarization reference seasonality time 
series for the Austrian test area. 

In the case of both coniferous classes, the minimal values occur in wintertime, after that 

the backscatter gradually increases towards its maximum between May and August and 

then decreases again. This behaviour is visible in both VV and VH polarization, and the 

range between summer and winter values is typically 1.5–3.0 dB. This variation can be 

caused by many sources, such as the changes in dielectric constant ((Ahern, Leckie et al. 

1993)), seasonal needle drop or changes in herbaceous ground vegetation. The two 

reference areas of the coniferous forests differ in the absolute value of the signal with a 
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bias of approximately 1.5 dB where the lower values are typical for the planted pine 

forests in lowland. 

The broadleaf woodland shows different temporal behaviour, especially in VH 

polarization. While in the case of VV polarization, the annual signal is relatively stable 

with slightly increased values in spring time, the VH polarization shows a significant 

drop of backscatter in spring and increase in autumn with the magnitudes between 0.5 

and 2.0 dB. The higher differences are typically observed in lowlands where the forests 

are dense. The drop and increase of backscatter is expected to be connected to the 

seasonal change of the tree foliage, suggesting that the leaves absorb or forward scatter 

the signal rather than scattering it back ((Ahern, Leckie et al. 1993)). The drop of 

backscatter signal in summer time aligns with previous findings ((Ahern, Leckie et al. 

1993); (Sharma, Leckie et al. 2005); (Dostalova, Milenkovic et al. 2016)), however, 

evidence also exists for the increase of backscatter during leaf-on conditions ((Ulaby, 

Moore et al. 1986); (Zoughi, Bredow et al. 1989)). This might be dependent on the tree 

species, forest structure and density or imaging geometry ((Ahern, Leckie et al. 1993)). 

The differences between forests and other vegetation types as well as between forests 

dominated by coniferous and broadleaf tree species described above enable the forest 

classification using the similarity measures. These are computed for each pixel within the 

study area. First, distinction between woody and herbaceous vegetation is made, where 

each point is assigned the value 1 in cases where the RMSD between any of the reference 

time series (including vineyards) and the classified pixel is below 1.5 and 2.0 dB for VH 

and VV polarization, respectively, and the r in VH polarization exceeds 0.4. Otherwise, 

the pixel is assigned the value 0. These thresholds were specified manually and are the 

same for all vegetation classes and all study regions. Subsequently, the vegetation type 

(coniferous forest, broadleaf forest, vineyards) is specified according to the lowest RMSD 

value in VH polarization. While coniferous and broadleaf forest classes are further 

handled as forests, the pixels classified as vineyards are added to the non-forest class. 

Finally, clean-up procedures and product derivation are carried out. For the FTY map, the 

MMU of 0.5 ha is applied, while the 100 m TCD product is computed from the classified 

image before the MMU application as a fraction of the 20 m × 20 m large pixels within 

each 100 m × 100 m area that were classified as forests. The FTY product represents an 

image with pixel spacing of 20 m and separated classes for non-forests, broadleaf and 

coniferous forests. The 100 m TCD map gives a portion of each 100 m large pixel that is 

covered by forests with steps of 4%. 

The described methodology applies also for both Swedish test areas with the exception, 
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that no extra reference time series – such as vineyards class – were used. Furthermore, 

due to the high topography in Austrian region, the layover and shadow mask derived by 

SNAP software was used to mask the pixels, where the SAR sensor cannot provide 

reliable results. This mask was not required in the Swedish test areas. 

3.4.4 Validation 

The Sentinel-1-based FTY and TCD maps were validated against the reference products 

from Copernicus HRL using all available pixels. In the case of FTY, confusion matrices 

and kappa coefficients (κ) ((Congalton and Green 2019)) were computed both for 

forest/non-forest classification and for FTY classes while for TCD, r, bias and normalized 

RMSD (NRMSD, the RMSD value was normalized using the range of TCD values and 

expressed in percent) were derived for each of the test areas. 

3.5 Results and discussion 

3.5.1 Forest area and forest type classification 

The Sentinel-1 and Copernicus HRL FTY maps for all three test areas are presented in 

Figure 12. Both datasets have a spatial resolution of 20 m and MMU of 0.5 ha. The 

confusion matrix and κ results for the forest/non-forest and forest type classification are 

summarized in Table 5. These represent the agreement between the Sentinel-1 and 

Copernicus HRL FTY maps where the correctness of the forest and non-forest area, as 

well as the classification into all three classes (non-forest, coniferous and broadleaf 

forest), is assessed separately. 

Table 5: Results of the comparison of the Sentinel-1 and Copernicus HRL forest type maps. In the table, I. 
stands for non-forest forest class, II. for broadleaf forest class and III. for coniferous forest class. 

 Forest/non-
forest 

Broadleaf forest/coniferous/non-forest 

Test area κ Overall 
accuracy 
(%) 

κ Overall 
accuracy 
(%) 

Producers 
accuracy (%) 

Users 
accuracy (%) 

I. II. III. I. II. III. 
Neusiedl 
Lake 

0.79 91 0.69 85 92 69 73 95 77 46 

Remningstorp 0.78 89 0.60 77 91 42 67 90 38 72 
Krycklan 0.69 86 0.42 65 87 21 69 80 19 69 
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Figure 12: Forest types classification maps. (a) Sentinel-1, Lake Neusiedl, overview, (b) Sentinel-1, Lake 
Neusiedl, detail, (c) Copernicus HRL, Lake Neusiedl, detail, (d) Copernicus HRL, Lake Neusiedl, overview, 
(e) Sentinel-1, Remningstorp, overview, (f) Sentinel-1, Remningstorp, detail, (g) Copernicus HRL, 
Remningstorp, detail, (h) Copernicus HRL, Remningstorp, overview, (i) Sentinel-1, Krycklan, overview, (j) 
Sentinel-1, Krycklan, detail, (k) Copernicus HRL, Krycklan, detail, (l) Copernicus HRL, Krycklan, overview. 

For the forest/non-forest classification, reliable results were achieved in all test areas with 

overall agreements between 86% and 91% and κ of 0.69–0.79 with the best agreement in 

the Austrian test area and the worst in Northern Sweden. In case of the Copernicus HRL, 
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the forest/non-forest classification accuracy increases in Boreal biogeographical region 

when compared to Alpine, Continental or Pannonian region (Table 3). For this reason, the 

lower correspondence between the Sentinel-1 and Copernicus HRL forest/non-forest 

classification is probably due to the decreasing accuracy of the Sentinel-1 based forest 

map in the hemi-boreal and boreal forests. We assume that the lower accuracy in the 

northern test areas is due to the decreasing stem volume of the forests and the increasing 

influence of long freezing periods on the annual backscatter signal as well as due to the 

lower temporal resolution of Sentinel-1 IW data over the Scandinavian Peninsula. The 

forest/non-forest classification results are comparable to those presented in previous 

studies on Sentinel-1 forest area mapping where the overall accuracies ranged between 

83% and 92% when compared to forest maps based on optical remote sensing or airborne 

laser scanning measurements ((Dostálová, Hollaus et al. 2016); (Haarpaintner, Davids et 

al. 2016)). These studies were carried out in similar regions (temperate forest in Austria 

and boreal forests in Finland and Iceland). The method introduced in this study has the 

advantage that the same approach was tested in different forest types from temperate to 

boreal forest and also proved to be reliable in undulating terrain that was shown to be 

problematic ((Dostálová, Hollaus et al. 2016)). This was tested in the Austrian test area, 

where the overall accuracy of 92% and 88% was reached in regions with altitudes below 

400 and above 800 m asl, respectively. Furthermore, in the densely populated Austrian 

region, the need for a separate method for urban area masking was demonstrated in 

(Dostálová, Hollaus et al. 2016)). The use of the seasonal signal minimizes the 

misclassification of other land cover classes with the specified forest classes and no 

additional masks, except the layover and shadow mask in undulating terrain were needed. 

The main advantage of this method is, however, its potential to classify forest into 

predefined classes based on the differences between its seasonal signal – in the case of 

this study into coniferous and broadleaf forests. The results (Table 5) show high accuracy 

of the forest type classification (overall accuracy of 85% and κ of 0.69) in the Austrian 

test area where the best results were achieved in lowlands; the overall accuracy reached 

89% for regions with altitudes below 400 m, but decreased to 76% for those between 400 

and 800 m and only 67% accuracy is achieved for regions above 800 m. Lower 

accuracies in higher elevations are most likely due to the following two reasons. First, the 

SAR signal is generally less reliable in mountainous regions (foreshortening, layover and 

shadows) and the accuracy of the terrain correction is always dependent on the accuracy 

of the used DEM. As the 90 m SRTM DEM was used for the terrain correction of 10 m 

Sentinel-1 IW data, some inaccuracies are to be expected, especially when acquisitions 

from various imaging geometries are combined. The inaccuracies and the lower spatial 
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resolution of the used DEM, leading to the fact that the terrain is not described with 

sufficient detail, result in shifts that might, in sloping terrain, exceed 100 m between 

various relative orbits, especially when combining acquisitions from the ascending and 

descending orbit direction ((Dostálová, Naeimi et al. 2016)). The terrain correction 

accuracy of the Sentinel-1 IW data over mountains was not checked within this study as 

the quality check aimed to remove only images with systematic shifts and unnatural 

artefacts in backscatter values. However, the same type of data and processing settings 

were used as in (Dostálová, Naeimi et al. 2016)), where the accuracy of Sentinel-1 

geocoding was assessed over part of the Austrian and Krycklan test areas. Therefore, 

lower geocoding accuracies in higher elevations are to be expected. Second, the contrast 

between the annual signal from coniferous and broadleaf forest decreases in higher 

elevations, when compared to the lowlands. This is due to the fact that the forests in 

mountainous regions are typically sparser and, often, some conifers might also be found 

in stands dominated by broadleaf tree species. For these reasons, the typical drop of 

backscatter in VH polarization during the leaf-on period of the broadleaf tree species 

(Figure 11) weakens or might not be observable at all. 

However, the reliability of the forest type classification decreases strongly in both 

Swedish test areas. While in southern Sweden, a relatively good correspondence of 

κ = 0.60 and an overall accuracy of 77% are observed, in northern Sweden, the FTY 

classification provides considerably less reliable results (κ = 0.42 and overall accuracy of 

65%). The average stem volumes in this region are below the expected saturation level of 

C-Band SAR signal (300 m3ha−1 according to (Santoro, Cartus et al. 2013)) and almost no 

differences between the seasonal signals of coniferous and broadleaf forests can be 

observed. Furthermore, the validation of the Copernicus HRL FTY dataset (SIRS 2016) 

shows low accuracies of the forest type dataset in the Boreal region with user and 

producer accuracy of the broadleaf forest of only 17% and 37%, respectively (Table 3). 

Low correspondence in the Krycklan test area (Sentinel-1 FTY user and producer 

accuracy of the broadleaf forest of only 19% and 21%, respectively) can thus be 

attributed to the low accuracy of the Copernicus HRL dataset as well. For this reason, the 

validation in this test area requires better reference forest type data that were not available 

at the time of this study. 

3.5.2 Tree cover density 

Figure 13 shows the Sentinel-1 based TCD maps together with the Copernicus HRL TCD 

dataset for all of the test areas while Figure 14 shows the scatterplots of the TCD values. 

The scatterplots were plotted for 5000 randomly selected pixels per test area and darker 
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colour represents a higher density of points. Furthermore, r, NRMSD and bias values are 

listed in Table 6 where the statistics are presented in two ways – they are computed for all 

pixels as well as for the forested areas only, meaning that the points where TCD equals 0 

are excluded. This was done to eliminate the influence of the agreement between the 

forest/non-forest maps and assess the accuracy of the TCD for the forested land only. 

Nevertheless, for completeness, also the statistics including all available pixels are listed. 

The agreement between the Sentinel-1 and Copernicus HRL TCD maps is relatively 

strong (r of 0.68–0.74 and NRMSD between 28% and 30% for the forest pixels only), 

however, the Sentinel-1-based product tends to overestimate the TCD when compared to 

the Copernicus dataset. The bias is almost constant for all test areas (17–18%). The 

overestimation is also evident at the scatterplots in Figure 14, where the highest TCD 

values in case of Copernicus HRL dataset only rarely exceed 90%, whereas in case of the 

Sentinel-1 TCD, they often reach 100%. As for the FTY product, the best results are 

achieved for the Austrian test area, the accuracy decreases slightly in case of southern 

Sweden and weakest agreement can be found in boreal forest in northern Sweden. 

Similarly, the accuracy decreases with higher altitudes; in the case of the Austrian area, 

the numbers listed in Table 6 are representative for areas up to 700 m asl. However, even 

for elevations between 1500 and 2000 m asl, the r and NRMSD equals 0.59 and 31%, 

respectively. The accuracy of the reference Copernicus HRL FTY is high in all 

biogeographical regions that are represented within the test areas with R2 ranging from 

0.71 for Alpine region to 0.79 for Pannonian region (Table 3). Decreasing 

correspondence in northern regions is thus not influenced by the lower quality of 

Copernicus HRL TCD in these areas as in the case of the FTY product. 

Table 6: Results of the comparison of the Sentinel-1 and Copernicus HRL tree cover density maps. 

 Using all values Excluding TCD = 0% (non-forest 
points) 

Test area r Bias (%) NRMSD 
(%) 

r Bias (%) NRMSD 
(%) 

Neusiedl Lake 0.87 11 22 0.74 17 28 
Remningstorp 0.85 12 24 0.73 17 29 
Krycklan 0.74 17 29 0.68 18 30 
 



 Publication II. 

46 

 

 

Figure 13: Tree cover density maps. (a) Sentinel-1, Lake Neusiedl, overview, (b) Sentinel-1, Lake Neusiedl, 
detail, (c) Copernicus HRL, Lake Neusiedl, detail, (d) Copernicus HRL, Lake Neusiedl, overview, (e) 
Sentinel-1, Remningstorp, overview, (f) Sentinel-1, Remningstorp, detail, (g) Copernicus HRL, Remningstorp, 
detail, (h) Copernicus HRL, Remningstorp, overview, (i) Sentinel-1, Krycklan, overview, (j) Sentinel-1, 
Krycklan, detail, (k) Copernicus HRL, Krycklan, detail, (l) Copernicus HRL, Krycklan, overview. 
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Figure 14: Scatterplots for the randomly selected 5000 points per test area of the Sentinel-1 and Copernicus 
HRL TCD dataset. Darker colour represents higher point density. (a) Neusiedl Lake test area, (b) 
Remningstorp test area and (c) Krycklan test area. 

3.5.3 Limitations 

The main disadvantage of the introduced time series-based approach is the need for 

storage and processing capabilities to handle big data volumes, especially in case of large 

regions of interest. Also, the method cannot be automated, as it is dependent on the 

selection of the reference regions for the forest type classification. Even though the exact 

location of the reference areas does not influence the results significantly, some 

knowledge of the area or reliable reference data is required to be able to select the 

reference time series for each of the forest types represented in the region of interest. 

Nevertheless, with the appropriate selection of reference time series, the method has 

significant potential for fine resolution forest mapping and classification over a large 

variety of regions with no further manual interaction. 

3.6 Conclusions 

A novel approach using the full year time series of SAR data for forest mapping and 

classification was introduced in this study. The method takes the advantage of high 

spatial and temporal resolution of the new Sentinel-1 SAR sensor. The method was tested 

and validated against Copernicus HRL products in three European test areas. The areas 

were selected to represent various climatic regions and biomes ranging from broadleaf 

temperate to boreal forest. The presented results imply that the seasonal signal in 

Sentinel-1 backscatter provides reliable results for forest/non-forest classification and 

TCD computation in regions characterized by various climatic conditions, land cover 

characteristics as well as different forest types. Some areas were found to be more 

challenging for the method, for example, vineyards that can be confused with specific 

forest classes. Adding a reference time series for the problematic vegetation types or land 

cover classes improves the classification results. The agreement between Sentinel-1 and 
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Copernicus HRL forest/non-forest classification and TCD decreases at higher elevations, 

however, it still shows relatively high correspondence even in mountainous regions. 

Generally, the TCD derived from Sentinel-1 tends to overestimate forest density (bias of 

around 17%) when compared to the Copernicus HRL dataset. 

The approach for FTY classification shows promising results in temperate forests but 

becomes less reliable or even not usable in hemi-boreal or boreal forests, respectively. 

The applicability of this method is dependent on a sufficient forest density and thus the 

influence of the leaf growth and fall on the annual backscatter signal, as well as on a 

sufficient density of the SAR acquisitions. Large parts of the European continent comply 

with these preconditions and this makes the approach promising also for use over 

extensive areas. The possibility to classify more detailed forest classes remains an area 

for further research. 

Generally, the results show that the Sentinel-1 C-Band data can be used for forest area 

mapping in temperate, montane, hemi-boreal and boreal forests as well as for the forest 

type classification in temperate to hemi-boreal forests. This represents a complementary 

data source to the maps based on optical remote sensing. Once the reference time series 

are estimated for the region of interest, the method can be fully automated and yearly 

maps can be derived and used for forest cover change monitoring. 
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Abstract 

The constellation of two Sentinel-1 satellites provides an unprecedented coverage of 

Synthetic Aperture Radar (SAR) data at high spatial (20 m) and temporal (2 to 6 days 

over Europe) resolution. The availability of dense time series enables the analysis of the 

SAR temporal signatures and exploitation of these signatures for classification purposes. 

Frequent backscatter observations allow derivation of temporally filtered time series that 

reinforce the effect of changes in vegetation phenology by limiting the influence of short-

term changes related to environmental conditions. Recent studies have already shown the 

potential of multitemporal Sentinel-1 data for forest mapping, forest type classification 

(coniferous or broadleaved forest) as well as for derivation of phenological variables at 

local to national scales. In the present study, we tested the viability of a recently 

published multi-temporal SAR classification method for continental scale forest mapping 

by applying it over Europe and evaluating the derived forest type and tree cover density 

maps against the European-wide Copernicus High Resolution Layers (HRL) forest 

datasets and national-scale forest maps from twelve countries. The comparison with the 

Copernicus HRL datasets revealed high correspondence over the majority of the 

European continent with overall accuracies of 86.1% and 73.2% for the forest/non-forest 

and forest type maps, respectively, and a Pearson correlation coefficient of 0.83 for tree 

cover density map. Moreover, the evaluation of both datasets against the national forest 

maps showed that the obtained accuracies of Sentinel-1 forest maps are almost within 

range of the HRL datasets. The Sentinel-1 forest/non-forest and forest type maps obtained 

average overall accuracies of 88.2% and 82.7%, respectively, as compared to 90.0% and 

87.2% obtained by the Copernicus HRL datasets. This result is especially promising due 
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to the facts that these maps can be produced with a high degree of automation and that 

only a single year of Sentinel-1 data is required as opposed to the Copernicus HRL forest 

datasets that are updated every three years. 

4.1 Introduction 

Being vital to many of the Earth’s ecosystems, forests play a significant role in the global 

carbon cycle (Nabuurs, Päivinen et al. 1997, Grace 2004), prevent soil erosion (Pimentel 

and Kounang 1998) or protect watersheds (Ernst, Gullick et al. 2004, Calder, Hofer et al. 

2008). Forests provide a large number of goods including timber, energy or non-wood 

products. Monitoring of forest resources is an important task from the local to the global 

scale. Depending on the location, terrestrial based measurements can be costly and are, 

therefore, not regularly updated or not suitable (e.g., inaccessible areas) (Borre, Paelinckx 

et al. 2011). Airborne campaigns (e.g., aerial images or Light Detection and Ranging 

(LiDAR)) based measurements are costly as well, particularly if they are not carried out 

in the framework of countrywide flying campaigns, and are often not acquired in a 

repetitive mode. These restrictions often lower the chances of having a frequent 

monitoring of entire countries. In contrast, besides aerial imagery and LiDAR data, only 

recently spaceborne remote sensing has been increasingly used for forest monitoring and 

maintaining forest inventories (Barrett, McRoberts et al. 2016). Nowadays, satellite data 

combined with field measurements are used in a large number of National Forest 

Inventories (NFIs) (White, Coops et al. 2016, Kangas, Astrup et al. 2018) and satellite-

based forest maps are now available for countries, continents, or the whole world 

(Hansen, Potapov et al. 2013, Langanke, Büttner et al. 2013, Shimada, Itoh et al. 2014, 

Lang, Kaha et al. 2018). Currently, these predominantly exploit optical data (Hansen, 

Potapov et al. 2013, Langanke, Büttner et al. 2013, Lang, Kaha et al. 2018), but research 

has increasingly addressed the synergetic use of Synthetic Aperture Radar (SAR) and 

optical sensors or SAR-only products (Dostálová, Wagner et al. 2018, Kangas, Astrup et 

al. 2018, Rüetschi, Schaepman et al. 2018, Hansen, Mitchard et al. 2020). The main 

advantage of microwave sensors is their almost all-weather, day-and-night sensing 

capability providing regular measurements even in areas with frequent cloud coverage or 

short sun illumination periods. On the other hand, the accuracy of microwave-based 

products is often limited due to the wavelength dependent saturation of the microwave 

signal (Imhoff 1993), as well as its sensitivity to the environmental conditions (Ranson 

and Sun 2000, Lucas, Armston et al. 2010). A number of studies suggest that these 

shortcomings may, to some extent, be overcome by using multi-temporal SAR data 

(Santoro, Beer et al. 2011, Dostálová, Wagner et al. 2018, Rüetschi, Schaepman et al. 
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2018, Hansen, Mitchard et al. 2020). 

Dense SAR time series have become available with the launch of Sentinel-1 SAR 

satellites that acquire dual-polarisation backscatter data in Interferometric Wide Swath 

mode (IW) over land according to a pre-programmed acquisition scenario (Torres, Snoeij 

et al. 2012). Over Europe, a new SAR image becomes available every three days on 

average (but note distinct coverage patterns as, e.g., shown in (Bauer-Marschallinger, 

Freeman et al. 2019)), which opens up new possibilities in the use of multi-temporal or 

time-series based methods. The availability of two polarizations, namely the vertical–

vertical (VV) and vertical–horizontal (VH) polarisations, is a further asset. In particular, 

the cross-polarised VH backscatter shows high sensitivity to changes in vegetation 

density and structure (Patel, Srivastava et al. 2006), and the polarisation ratio VH/VV was 

found to be sensitive to the vegetation phenology (Frison, Fruneau et al. 2018) or water 

content (Srivastava, O'Neill et al. 2015). Generally, the temporal signal was shown to be 

connected to structural and phenological changes in forests (Ahern, Leckie et al. 1993, 

Dostálová, Wagner et al. 2018, Frison, Fruneau et al. 2018, Rüetschi, Schaepman et al. 

2018) as well as to the environmental conditions such as underlying soil and vegetation 

moisture changes (Lucas, Armston et al. 2010, Srivastava, O'Neill et al. 2015) or 

temperature changes and freeze–thaw events (Ranson and Sun 2000, Monteith and 

Ulander 2018). 

Recently, a number of studies exploited the short revisit time of Sentinel-1 data and 

analysed the annual seasonality of backscatter time series over forests (Dostálová, 

Wagner et al. 2018, Frison, Fruneau et al. 2018, Rodionova 2018, Rüetschi, Schaepman 

et al. 2018, Dubois, Mueller et al. 2020). For instance, (Dubois, Mueller et al. 2020) 

described different annual seasonality for coniferous, broadleaf and mixed forest types; 

while the VH backscatter of the broadleaf forest decreases in spring and summer, 

coniferous forest showed the highest values during summer months. The same patterns 

were also described in (Dostálová, Wagner et al. 2018, Rüetschi, Schaepman et al. 2018). 

All studies connected the decrease in VH backscatter over broadleaf tree species in spring 

and summer months to the development of foliage; the denser the vegetation canopy, the 

less signal penetrates the vegetation causing the decrease in the volume scattering and 

thus lower VH backscatter values. In the case of the coniferous forests, the increase in 

backscattering coefficient in summer is explained twofold, depending on the canopy 

cover, i.e., open forest and dense forest. First, the higher water content in needles during 

the summer months might explain the stronger backscatter observed in this period, and 

second, the more developed understory layer might increase the vegetation volume 

scattering component (Dubois, Mueller et al. 2020). The observed differences in 
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backscatter behaviour were used for forest type mapping, showing overall accuracies of 

86% in test areas in Switzerland (Rüetschi, Schaepman et al. 2018), 85% in Austria and 

65% to 77% in Sweden (Dostálová, Wagner et al. 2018). Moreover, high temporal 

resolution of Sentinel-1 data enables also a better forest/non-forest discrimination. For 

example, a study covering five areas from Alaska to Indonesia (Hansen, Mitchard et al. 

2020) revealed that the mean accuracy increases from 77% when using single Sentinel-1 

scene to 87% when using mean and standard deviation of VV and VH backscatter 

computed over one year of acquisitions. Similarly, overall accuracies of 92% were 

achieved over Austria when using parameters derived from the entire leaf-off season 

(Dostálová, Hollaus et al. 2016). A different approach was introduced in (Yu, Ni et al. 

2020), where only three Sentinel-1 acquisitions were used for forest mapping; these were, 

however, chosen to capture the conditions before, during and after the freezing period. 

The method showed an overall accuracy of 93.8% in the test area in North-East China. 

So far, all studies on forest area estimation and forest type mapping were limited to 

relatively small test areas. Of course, one of the most important assets of the Sentinel-1 

mission is its favourable coverage, particularly over the European continent. In this study, 

we tested the applicability over Europe of the method originally proposed in (Dostálová, 

Wagner et al. 2018) and assessed at a smaller scale up to now. We produced a Europe-

wide map of forest type (coniferous or broadleaved) with 10 m spatial resolution and tree 

cover density with 100 m spatial resolution for 2017. The quality of the maps was 

assessed by means of comparison with the Copernicus Forest Type and Tree Cover 

Density (TCD) datasets as well as a variety of NFI datasets and data from universities. 

This is important for two reasons: firstly, comprehensive validation helps us to better 

understand the limitations of the proposed algorithm, and secondly, the Europe-wide 

forest map can be seen as a first test case for prospective worldwide forest mapping 

efforts using the Seninel-1 SAR data. 

4.2 Materials and Methods 

4.2.1 Data 

4.2.1.1. Sentinel-1 SAR 

The Sentinel-1 constellation comprises two satellites: Sentinel-1A and Sentinel-1B. Each 

satellite carries a SAR C-Band sensor capable of providing dual-polarisation 

observations. The satellites operate in several acquisition modes. The default mode used 

for land applications is IW mode with a spatial resolution of 20 m × 5 m and a swath 
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width of 250 km. The repeat orbit cycle of each satellite is 12 days and over the majority 

of the European continent; 2 to 4 measurements are acquired per sensor in each orbital 

cycle. Within this study, all available VV and VH polarisation IW ground range detected 

(GRD) data from 2017 were used (both ascending and descending orbits), in total almost 

46,000 images. The temporal coverage ranges between 110 and 460 acquisitions per 

pixel. 

4.2.1.2. Validation data 

Several datasets were used for the accuracy assessment of the Sentinel-1 forest maps. 

These include the freely available pan-European Copernicus High Resolution Layers 

(HRL) 20 m Forest Type and 100 m Tree Cover Density (TCD) products (Langanke, 

Büttner et al. 2013) as well as twelve datasets from national forest inventories or 

universities. 

The Copernicus HRL forest datasets are provided by the European Environment Agency 

(EEA) Global Monitoring for Environment and Security/Copernicus Initial Operations 

Land Service and were derived from high resolution satellite imagery from the Indian 

Remote Sensing-Resource SAT2 (IRS-RS2), Satellite Pour l’Observation de la Terre 

(SPOT) and RapidEye satellites acquired between 2011 and 2012. 

The Copernicus HRL TCD dataset is defined as the vertical projection of tree crowns to a 

horizontal earth’s surface and represents the proportional crown coverage per pixel in 

percent. Minimum mapping width (MMW) of 20 m is applied, and all detectable trees are 

included. The forest type product specifies the dominant leaf type for each pixel 

(broadleaf or coniferous) and is derived from 20 m TCD product by applying a threshold 

of 10%, minimal mapping unit (MMU) of 0.5 ha and MMW of 20 m (Langanke, Büttner 

et al. 2013). 

The overview of the available national datasets is given in Figure 15 and details are listed 

in Table 7. Generally, the pre-processing of these datasets included resampling to the 

Equi7 grid (10 m resolution) (Bauer-Marschallinger, Sabel et al. 2014) in the case of 

raster datasets and rasterization for the vector dataset. Due to the limited accessibility of 

the data in some countries, validation over Germany, Latvia and Estonia was performed 

point-wise using randomly selected points from respective NFIs or forest management 

inventories data. In cases where the dataset contained more detailed classes such as 

dominant tree species, the classes were adapted to coniferous (at least 65% of the 

coniferous tree species), broadleaved (at least 65% of broadleaf tree species) or mixed 

forest. The mixed forest class was used for forest/non-forest validation only. Details 
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specific to the national datasets including the source of the data (e.g., in-situ, satellite or 

aerial imagery) can be found in the Appendix A. 

 
Figure 15: Overview of the national datasets that were used as reference. In the case of Austria, only a forest 
map of the federal state of Lower Austria was available. 
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Table 7: Overview of the national datasets that were used as reference. 

Country Dataset 
provider 

Data 
type 

Information 
content 

Spatial 
resolution 

Reference 
year 

Austria Austrian 
Research Centre 

for Forests 

Raster Forest mask 1 m  

Czech 
Republic 

Forest 
Management 

Institute 

Raster Dominant 
tree species 
within pixel 

10 m 2017 

England, 
Scotland, 

Wales 

Forestry 
Commission 

Vector Forest type MMU 0.5 
ha 

2017 

Estonia University of 
Tartu 

Random 
points 

Share of 
conifers 

within forest 
stand 

10277 
points 

2017 

France Institut National 
de 

L’Information 
Geographique 
et Forestriere 

Vector Forest type MMU 0.5 
ha 

2014-2019 

Finland Finnish 
Environment 

Institute 

Raster Forest type 20 m 2018 

Germany National Forest 
Inventory 

Points Forest type 195630 
points 

2012-2017 

Hungary Nemzeti 
Földügyi 
Központ 

Raster Forest type 10 m 2020 

Latvia Latvian State 
Forest Research 
Institute Silava 

Random 
points 

Forest type 10000 
points 

2019 

Slovakia Slovakian 
National Forest 

Centre 

Vector Dominant 
tree species 

within forest 
stand 

 2017 

Sweden Swedish 
University of 
Agricultural 

Sciences 

Raster Standing 
volumes of 

most 
common tree 

species 

25 m 2010 

Switzerland National Forest 
Inventory 

Raster Per-pixel 
probability of 

conifers 

25 m 2018 
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4.2.2 Method 

The details of the Sentinel-1 forest mapping method are described in (Dostálová, Wagner 

et al. 2018) and summarized in the following subsection. The process consists of three 

major blocks: pre-processing, generation of SAR seasonality time series and, finally, the 

forest type and TCD products construction. 

4.2.2.1. Sentinel-1 pre-processing 

The pre-processing is done using the SGRT software developed by the Technische 

Universität (TU) Wien (Elefante, Wagner et al. 2016). The software aims at the 

automated processing of large volumes of SAR-based products and combines python 

with some external software modules. In the case of SAR pre-processing, the Sentinel 

Application Platform (SNAP) is used (SNAP). 

The pre-processing steps include thermal noise removal, precise orbit correction, 

radiometric calibration to the σ0 values, orthorectification using the range doppler terrain 

correction method (Small and Schubert 2008), conversion from linear to logarithmic scale 

and resampling to the Equi7 Grid. The output comprises a stack of georeferenced σ0 and 

projected local incidence angle (θ) images. In (Dostálová, Wagner et al. 2018), pre-

processed images were further multi-looked to 20 m. In this study, this step was omitted, 

and the SAR seasonality time series and forest type products were derived at a 10 m grid 

which corresponds to the pixel spacing of the Sentinel-1 GRD IW dataset. In (Dostálová, 

Wagner et al. 2018), forest maps were created using Sentinel-1 A data from 2015 

(Sentinel-1 B was launched in April 2016), while, in the current study, both Sentinel-1 A 

and B data are used. As a result, approximately twice as many acquisitions are available 

for each pixel. Moreover, in [16] the maps were validated using Copernicus HRL forest 

datasets with 20 m and 100 m resolution for forest type and TCD, respectively. In this 

study, additional higher resolution national datasets are used for quality assessment. 

Therefore, we decided to omit the additional multi-looking step and derive the forest 

maps at the highest possible spatial resolution. 

4.2.2.2. SAR seasonality time series computation  

The SAR seasonality time series are computed from the stack of georeferenced images as 

temporally smoothed backscatter time series. This is done in order to reinforce the effect 

of the slowly varying phenological changes of vegetation and limit the noise and short-

term variations caused by changing environmental conditions. To enable the combination 

of images acquired from different relative orbits, the backscatter images are normalized to 
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common reference angle of 40° using the slope (β) parameter computed separately for 

each pixel using the linear regression between σ0 and θ values. The normalisation 

equation reads as follows: ߪ଴(40°) = (ߠ)଴ߪ − ߠ)ߚ − 40°)   (1) 

Next, the mean of the normalized backscatter is computed for every 12 days (repeat orbit 

cycle of Sentinel-1 satellites) and the resulting time-series is again smoothed using a 

Gaussian temporal filter with standard deviation of 1 (corresponding to 12 days). As a 

result, 30 SAR seasonality values with 12-day temporal step are derived for each pixel 

and both polarisations. These temporal signatures show distinct behaviour over various 

vegetation types. Figure 16 shows an example of the temporal signatures from cross-

polarised backscatter for agricultural areas (without separation of crop type, hence the 

large standard deviation of the signal), coniferous and broadleaf forests. 

 

Figure 16: Cross-polarized (VH) backscatter temporal signatures of various vegetation types: agricultural 
areas (all crop types), broadleaf (dominant tree type—oak) and coniferous (dominant tree type—spruce) 
forests. The average values (solid line) are computed as averages of 1000 randomly selected pixels for each 
class in area in central Europe, the error bars represent the standard variation of the backscatter value for 
each time stamp. 

The backscatter normalisation (Equation (1)) is based on the assumption of an indirect 

linear relationship between backscatter (in decibel scale) and projected local incidence 

angle within the limited range of available incidence angles of a SAR sensor (29.1° to 

46.0° in the case of Sentinel-1 and flat terrain) (Pathe, Wagner et al. 2009, Bauer-

Marschallinger, Freeman et al. 2019). In the case of Sentinel-1, this method is, however, 
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limited by the low number of various incidence angles in some areas, where no reliable 

slope value from Sentinel-1 can be derived (Bauer-Marschallinger, Freeman et al. 2019). 

In these areas, fixed value of β = −0.12 is used instead, which corresponds to the average 

value computed over the regions, where the Sentinel-1 coverage is sufficient. (Bauer-

Marschallinger, Freeman et al. 2019) introduced an alternative approach for 

the β parameter estimation over the areas of reduced Sentinel-1 coverage. This was, 

however, developed for lower resolution data (resampled to 500 m) and is not suitable for 

high resolution (10 m) data. In our study, the effect of varying local incidence angle is 

further reduced by temporally averaging the data within a single repeat orbit cycle—i.e., 

combining the measurements from all possible incidence angles into a single value—

which is why we consider the simplified slope computation sufficient for this application. 

Furthermore, the β parameter varies with vegetation growth (Peters, Lievens et al. 2012), 

yet it was assumed to be temporally stable, as a single year of Sentinel-1 data is not 

sufficient to compute its seasonal variation. 

4.2.2.3. Construction of forest maps 

The forest classification algorithm exploits the differences between the temporal 

signatures of various vegetation types (Figure 16). Signature prototypes are defined for 

coniferous and broadleaf forest classes. Due to the large variability of forests and their 

temporal signatures across Europe, the continent was stratified into smaller regions, and, 

for each region, four signature prototypes were selected and computed. The prototypes 

are computed as described in the previous chapter using averaged backscatter values over 

300 m × 300 m large forested areas (30 × 30 pixels) and are selected to represent both 

coniferous and broadleaved forest types in each region—typically two prototypes for each 

class. The regions were selected manually so that they contain areas with similar biomes, 

forest types and terrain variations using the digital terrain model and the map of habitat 

suitability of European forest categories (Casalegno, Amatulli et al. 2011). The borders of 

the regions correspond to the borders of the Equi7 grid tiles. The selection of the 

signature prototypes location was supported by reference datasets that included 

Copernicus HRL maps, national forest datasets or orthophotos (if available) as well as 

average Sentinel-1 backscatter for 2017 to exclude areas with apparent terrain effects or 

clear cuts. The regions (bold black lines) and reference points (grey dots) are presented 

in Figure 17. Figure 18 shows an example prototype time series in an area covering 

central Europe. Note that the difference between the pure stands of a particular tree 

species might be larger than that between the coniferous and broadleaf forest type, which 

is why it is essential to select the reference points accordingly in order to be 
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representative for the most common tree species in each area. 

 

Figure 17: Overview of the regions used for the Sentinel-1 forest maps computation (black lines) and the 
locations of their respective signature prototypes (grey points) across Europe. Red lines indicate the Equi7 
grid tiling. 

 

Figure 18: Temporal signature prototypes for the most common tree species in an area in central Europe 
(located in Czech Republic). 

The similarity measures—Root Mean Square Difference (RMSD) and Pearson 

correlation coefficient (r)—between the prototype signatures and the respective temporal 
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signature of each image pixel are used for the classification. In the first step, forest/non-

forest classification is performed using thresholds that are fixed for entire Europe. 

Threshold values are 1.5 dB and 2.0 dB for VH and VV polarisation RMSD, respectively, 

and 0.4 for VH polarisation r. These values were empirically set in (Dostálová, Wagner et 

al. 2018) as the best fitting for three test sites from Austria to northern Sweden. Each 

pixel that falls within the thresholds with similarity measures computed for any of the 

prototype time series is classified as forest; the rest is classified as non-forest. With 

method, no signature prototypes need to be defined for land cover types other than 

forests. The forest type (coniferous, broadleaved) is then assigned to each forested pixel 

according to the lowest RMSD value in VH polarisation. The VH polarisation was 

selected for the forest type classification due to higher sensitivity of the cross-polarised 

backscatter to the forest structure (Patel, Srivastava et al. 2006, Dostalova, Milenkovic et 

al. 2016). For the final forest type product, the MMU of 0.5 ha is applied and the 100 m 

TCD product is computed as the fraction of the 10 m pixels within each 100 m × 100 m 

target area that were classified as forests (prior to MMU application). 

4.2.2.4. Validation 

The accuracy assessment of the Sentinel-1 forest maps was performed in two steps. First, 

validation metrics between Copernicus HRL datasets and Sentinel-1 forest maps were 

computed on pan-European level as well as for each 100 km × 100 km Equi7 tile. 

Second, both Sentinel-1 and Copernicus HRL forest maps were compared to the national 

forest datasets. The computed validation metrics included overall accuracy (OA, Equation 

(2)), producer’s (PA), and user’s (UA) accuracies (Equations (3) and (4), respectively). ܱܣ =  ே்     (2) 

௖௟ܣܲ =  ்ோ೎೗ேோ೎೗     (3) 

௖௟ܣܷ =  ்஼೎೗ே஼೎೗     (4) 

In these equations, T stands for number of correctly classified pixels, N for number of all 

pixels used for validation, TRcl for number of correctly classified reference pixels of 

respective class cl, NRcl for number of all reference pixels of respective class cl, TCcl for 

number of all correctly classified pixels within respective class cl and NCcl for number of 

all pixels classified into respective class cl. The accuracies were computed for forest/non-

forest classification as well as for forest type classification (broadleaved or coniferous 

forest type computed for all pixels classified as forests in both datasets). Furthermore, 

Pearson correlation coefficient and bias were computed between the TCD products. 
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The national datasets varied in format and provided information. In the case of raster and 

rasterised datasets, the statistics were computed for all pixels, while in the case of 

pointwise comparison, the point information was compared to the corresponding pixel. In 

the case of national datasets over Estonia and Latvia, only forest type accuracy was 

computed, as the respective forest inventories do not contain all forested land. Moreover, 

the forest map of Lower Austria allowed only forest/non-forest validation due to the lack 

of forest type information. 

4.2.2.5. Sensitivity analysis 

One of the main challenges of the introduced approach is the susceptibility of the results 

to the selection of the signature prototypes used for the forest classification. To quantify 

this effect, we performed a sensitivity test over a single Equi7 grid tile (100 km × 100 

km) located in the Czech Republic. A total of 80 sets of reference points were selected for 

the forest classes with dominant tree types spruce, pine, oak and other deciduous forest. 

The points were selected using the Czech Forest Management Institute forest map. Forest 

type and TCD maps were computed for each set of reference points and the results were 

validated against the Copernicus HRL forest maps. The overview of the test site and the 

locations of the selected reference points are shown in Figure 19. 

 

Figure 19: Overview of the performed sensitivity test: red polygon outlines the test site and dots indicate the 
locations of signature prototypes. The base map is the forest map from the Czech Forest Management 
Institute (FMI) that was used for the selection of the signature prototypes’ location. 

4.3 Results 

4.3.1 Forest area and forest type 

The accuracy of the Sentinel-1 forest type map was assessed both on the European level 

using the Copernicus HRL forest type products as well as on the national level using the 
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various national datasets. The forest type maps from Sentinel-1 and Copernicus HRL 

over the European Continent are shown in Figure 20, while Figure 21 and Figure 

22 present the forest type map for Czech Republic and Sicily, respectively. The Figure 

20, Figure 21 and Figure 22 also include a difference image highlighting the 

discrepancies between the two products in red (pixels classified as forest in the 

Copernicus HRL forest type dataset and as non-forest in the Sentinel-1 forest type 

dataset), blue (pixels classified as non-forest in the Copernicus HRL forest type dataset 

and as non-forest in the Sentinel-1 forest type map) and light green (pixels classified as 

forests in both datasets but assigned different forest types). 

 

Figure 20: Overview of the forest type maps from (a) Sentinel-1, (b) Copernicus High Resolution Layers and 
(c) the difference map between the two datasets. 
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Figure 21: Detailed forest type map of the Czech Republic from (a) Sentinel-1, (b) Copernicus High 
Resolution Layers and (c) the difference map between the two datasets. 

 

Figure 22: Detailed forest type map over Sicily from (a) Sentinel-1, (b) Copernicus High Resolution Layers 
and (c) the difference map between the two datasets. 

4.3.1.1. Copernicus HRL Dataset 
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Table 8 shows the accuracies for forest/non-forest and forest type classification computed 

for the entire study area. The overall accuracy is 86.1% for forest area and 73.2% for 

forest type, respectively. Since these accuracies strongly vary across the continent, spatial 

maps showing the overall accuracies for both forest/non-forest classification and forest 

types are presented in Figure 23. The numbers were specified for each 100 km × 100 km 

area which represents one Equi7 tile. 

 

Figure 23: Overall accuracy of the Sentinel-1 (a) forest/non-forest and (b) forest type map computed for each 
Equi-1 tile. The Copernicus High Resolution Layers forest type dataset was used as a reference, showing the 
limitations of the presented maps for high latitudes and Mediterranean forests. Lower accuracies can also be 
observed in mountainous areas. 

 
Table 8: Accuracy of the Sentinel-1 forest/non-forest and forest type map when compared to the Copernicus 
HRL forest type dataset. The accuracies are summarized for entire Europe.   

 Forest/non-forest Forest type 
Overall accuracy 0.86 0.73 

Producers accuracy forest/broadleaf 0.83 0.81 
Users accuracy forest/broadleaf 0.81 0.68 

Producers accuracy non-
forest/coniferous 

0.88 0.66 

Users accuracy non-forest/coniferous 0.89 0.79 
 

Typical results over flatland and hilly areas with the main differences between the 

Sentinel-1 map and the reference datasets are highlighted in Figure 24. The Sentinel-1 

forest type product generally overestimates the forest area in flatlands. In the case of 

small villages or agricultural areas, some parts are often classified as forests. This is due 

to large number of trees in gardens or hedgerows between fields or among roads. In 

addition, vineyards or orchards are common areas of disagreement between the Sentinel-1 

forest type map and reference datasets. Vineyards are commonly falsely classified as 

coniferous forests in Sentinel-1 forest type product while apple orchards are assigned to 

non-forests class in Sentinel-1 forest type map, but they are often classified as 
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broadleaved forests in the Copernicus forest type product. Lastly, in areas with large 

terrain variations, false gaps in forests caused by terrain distortions in SAR data can be 

observed. 

 

Figure 24: Common reasons of disagreement between the Sentinel-1 and reference Copernicus High 
Resolution Layers forest maps (Indicated by ellipses). (a) Difference map between the Sentinel-1 and 
Copernicus forest type map over Czech Republic, (b) detail of the difference map over area in flatland and (c) 
detail of the difference map over area in mountains. 

4.3.1.2. National Datasets 

The Copernicus HRL dataset is based on optical satellite imagery, and, according to the 

validation report, the users’ and producers’ accuracies vary between 83% and 93% for 

forest/non forest classification, and between 17% and 98% for forest type, with the lowest 

accuracies in the boreal and alpine regions. As the highest disagreement between our 

product and the Copernicus HRL forest type map can be found in these regions, 

alternative sources of data are needed to better assess the accuracy of both products. For 

this reason, we compared both maps to different national datasets. Table 9 shows the 

respective accuracies for forest/non-forest classification and Table 10 for the forest type, 

respectively. The mountainous regions are well represented in Switzerland and Slovakia, 

while the boreal regions are covered by datasets from Finland and Sweden. 
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Table 9: Results of the accuracy assessment using the national datasets for the forest/non-forest 
classification. The following statistics are listed: overall accuracy (OA), producers’ accuracy (PA) and users’ 
accuracy (UA). 

 Sentinel 1 vs reference Copernicus vs reference 
  Forest Non-

forest 
 Forest Non-

forest 
 OA PA UA PA UA OA PA UA PA UA 

Austria 0.91 0.92 0.87 0.90 0.95 0.93 0.93 0.90 0.93 0.95 
Czech Republic 0.90 0.94 0.79 0.87 0.97 0.95 0.93 0.91 0.95 0.96 

England, Scotland, 
Wales 

0.91 0.74 0.50 0.93 0.97 0.93 0.80 0.56 0.94 0.97 

France 0.90 0.83 0.84 0.93 0.92 0.92 0.89 0.87 0.94 0.95 
Finland 0.88 0.92 0.88 0.82 0.88 0.87 0.94 0.86 0.77 0.89 

Germany 0.93 0.95 0.83 0.92 0.98      
Hungary 0.88 0.88 0.66 0.88 0.97 0.92 0.85 0.79 0.94 0.96 
Slovakia 0.82 0.93 0.72 0.75 0.94 0.88 0.93 0.81 0.85 0.95 
Sweden 0.82 0.88 0.83 0.73 0.81 0.82 0.88 0.83 0.73 0.81 

Switzerland 0.87 0.78 0.76 0.91 0.91 0.88 0.94 0.72 0.86 0.97 

 

Table 10: Results of the accuracy assessment using the national datasets for the forest type classification. The 
following statistics are listed: overall accuracy (OA), producers’ accuracy (PA) and users’ accuracy (UA). 

 Sentinel 1 vs reference Copernicus vs reference 
  Broadleaf Coniferous  Broadleaf Coniferous 
 OA PA UA PA UA OA PA UA PA UA 

Czech Republic 0.84 0.72 0.88 0.93 0.81 0.89 0.95 0.81 0.84 0.96 
England, Scotland, 

Wales 
0.74 0.95 0.64 0.56 0.93 0.80 0.95 0.68 0.69 0.95 

Estonia 0.87 0.77 0.97 0.97 0.79      
France 0.84 0.87 0.92 0.75 0.62 0.91 0.96 0.93 0.77 0.86 

Finland 0.71 0.75 0.14 0.71 0.98 0.88 0.93 0.31 0.88 0.99 
Germany 0.91 0.94 0.89 0.87 0.93      
Hungary 0.80 0.81 0.98 0.69 0.15 0.97 0.98 0.99 0.76 0.71 

Latvia 0.85 0.68 0.90 0.70 0.90      
Slovakia 0.90 0.93 0.92 0.83 0.86 0.88 0.97 0.87 0.72 0.93 
Sweden 0.82 0.45 0.16 0.84 0.96 0.79 0.87 0.21 0.79 0.99 

Switzerland 0.82 0.78 0.83 0.85 0.80 0.86 0.83 0.87 0.89 0.86 
 

For forest/non-forest classification, the comparison with most of the national datasets 

reveals overall accuracies of around 90%. The highest correspondence was obtained for 

Germany with an accuracy of 93%, and the lowest overall accuracies of 82% were 

obtained for Slovakia and Sweden. For Switzerland, the most mountainous country in 

Europe, a high overall accuracy of 87% was obtained. For Finland, that is also 

predominantly covered by boreal forests, an accuracy of 88% was obtained. 
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Generally, the correspondence between the Sentinel-1 forest type map and national 

datasets is slightly lower than between the Copernicus HRL forest type product and 

national datasets. The highest difference can be observed in the case of the Czech 

Republic, where the overall accuracies of 95% and 90% were obtained in the case of 

Copernicus and our product, respectively. On the other hand, in Finland, the Sentinel-1 

dataset shows slightly higher overall accuracy than the Copernicus HRL dataset (88% 

when compared to 87%). In most of the other cases, the difference is around 2%. Except 

Sweden, the Copernicus HRL dataset shows high accuracies for forest/non-forest 

mapping, which confirms that it may be used as a reliable reference dataset. 

For the forest type classification, the variability between the results for various national 

datasets is much higher than in the case of the forest/non-forest mapping. For the 

Sentinel-1 forest type product, remarkably high accuracies can be observed over 

Germany (91%), Slovakia (90%) or Estonia (87%). On the other hand, problems can be 

observed in Sweden and Finland, where the overall accuracies are 82% and 71%, 

respectively, and the users’ accuracies for broadleaf forests are very low (16% and 14%, 

respectively). The same effect can be observed for the Copernicus HRL dataset, where 

the users’ accuracies of broadleaf forests are 21% and 31% for Sweden and Finland, 

respectively. In addition, England, Scotland and Wales show lower accuracies for both 

datasets—74% in the case of Sentinel-1 and 80% in the case of the Copernicus forest type 

product. In both cases, the lower users’ accuracies of broadleaf forests and producers’ 

accuracies of coniferous forests indicate that the broadleaf forests tend to be 

overestimated, while the coniferous tend to be underestimated in both Sentinel-1 and 

Copernicus HRL forest type maps. 

Moreover, the differences between the accuracies of the Copernicus HRL and Sentinel-1 

forest type datasets are much higher, reaching up to 17% in the case of Finland and 

Hungary. In the case of Hungary, this is caused by strong overestimation of coniferous 

forests in the case of the Sentinel-1 forest type map (users’ accuracy of only 15% for 

coniferous forests and overall accuracy of 80%). On the other hand, in the case of 

Slovakia and Sweden, Sentinel-1 shows slightly higher overall accuracies than the 

Copernicus HRL dataset. Generally, overall accuracies in the case of the Sentinel-1 forest 

type map vary between 71% for Finland and 91% for Germany, while, for Copernicus, 

they vary between 79% for Sweden and 97% in Hungary. 

4.3.2 Tree cover density 

The TCD map was validated using the Copernicus TCD dataset only. Both maps, 

including the difference map as well as the spatial distribution of the r value between the 
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two, are presented at Figure 25 and Figure 26, respectively. The r value computed for 

entire Europe is 0.83 and the bias corresponds to 9.8%, showing that the Sentinel-1 based 

map overestimates the tree cover density values when compared to the Copernicus 

product. This is especially visible in the northern part of Europe. While the TCD values 

in Sweden and Finland often reach 100% for the Sentinel-1 map, they range between 60% 

and 80% in the case of the Copernicus HRL dataset. Over central Europe, the TCD 

patterns correspond well and the differences increase towards the south of Europe again. 

 

Figure 25: Overview of the tree cover density (TCD) maps from (a) Sentinel-1, (b) Copernicus High 
Resolution Layers (HRL) and (c) the difference map between the two datasets (Copernicus HRL map was 
subtracted from Sentinel-1 TCD map). 
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Figure 26: Pearson correlation coefficient between the Copernicus High Resolution Layers and Sentinel-1 
tree cover density maps computed separately for each Equi7 tile. 

To get a spatial overview, r was also computed for each Equi7 tile (100 km × 100 km 

area) separately. The spatial distribution (Figure 26) shows strong correspondence with 

values between 0.85 and 0.95 over large parts of central, eastern, and northern Europe. 

Lower accuracies (r between 0.65 and 0.85) can be observed over Alpine areas, southern 

Europe, the United Kingdom, Norway, and part of Sweden. Values below 0.65 are 

located mainly in southern Italy, southern Spain, Portugal, the islands of Corsica and 

Sardinia, and coastal areas of Greece, Albania, Croatia, and Norway. These areas 

typically have uneven topography and steep slopes. 

An example of results for the Czech Republic (r = 0.90) and Sicily (r = 0.53) are 

presented in Figure 27 and Figure 28, respectively. Figure 29 shows boxplot distribution 

of TCD values for these two regions. 
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Figure 27: Detailed tree cover density (TCD) maps of the Czech Republic from (a) Sentinel-1, (b) Copernicus 
High Resolution Layers (HRL) and (c) the difference map between the two datasets (Copernicus HRL map 
was subtracted from Sentinel-1 TCD map). 

 

Figure 28: Detailed tree cover density (TCD) maps over Sicily from (a) Sentinel-1, (b) Copernicus High 
Resolution Layers (HRL) and (c) the difference map between the two datasets (Copernicus HRL map was 
subtracted from Sentinel-1 TCD map). 
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Figure 29: Plots showing the distribution of the tree cover density (TCD) values over (a) Czech Republic and 
(b) Sicily. Red lines indicate the average TCD value, blue boxes indicate the interquartile range of the TCD 
values (25th to 75th percentiles), dashed lines indicate the 10th and 90th percentile of the TCD values. 

4.3.3 Sensitivity Analysis 

Within the sensitivity analysis, 80 forest type and TCD maps were derived for a single 

Equi7 tile and compared to the Copernicus HRL datasets. The results are presented 

in Figure 30 with the red line indicating the value of the original set of signature 

prototypes. In the case of the forest type map, overall accuracies range between 87.4% 

and 92.0% for forest/non forest, and between 60.3% and 80.6% for forest type 

classification. The values of the original set of signature prototypes are 90.1% and 77.6% 

for the forest/non-forest and forest type classification, respectively. In the case of the 

TCD map, r ranges between 0.84 and 0.91, with 0.88 for the original set of signature 

prototypes. 

 

Figure 30: Validation results distribution of the model sensitivity test. Sensitivity of the method to the 
selection of the location of the signature prototypes was tested using 80 sets of reference points. Validation 
metrics were computed between the respective Sentinel-1 forest maps and Copernicus High Resolution 
Layers forest maps. Histograms show (a) Pearson correlation coefficient of the tree cover density maps, (b) 
overall accuracy of the forest/non-forest classification and (c) overall accuracy of the coniferous/broadleaf 
forest type classification. Red lines indicate the values computed using the original set of signature 
prototypes. 
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4.4 Discussion 

4.4.1 Performance of the Sentinel-1 based forest maps 

The accuracy assessment revealed that the approach is well suited for temperate and 

hemi-boreal forests; however, its ability to detect forested areas or classify forest type 

decreases in areas with lower forest density such as Mediterranean forests or areas in 

northern Sweden and Norway. Sparser tree coverage in these areas causes lower 

differences between the temporal signatures of different vegetation types (Figure 31). The 

high density of temperate forests enables the separation between forest/non-forest as well 

as forest type classification, while in Mediterranean forests, differentiation between the 

three classes is often not possible. High omission errors are to be expected, especially in 

areas with very sparse tree coverage. While in boreal forests, separation between forest 

and non-forest is feasible, the seasonal drop in temporal signature of broadleaf tree 

species is no longer visible and it is, therefore, difficult to distinguish between the two 

forest types (Figure 31). The same applies in high altitudes in montane forests where the 

approach is further limited by the topographic distortions in SAR signal. A more 

appropriate approach for terrain correction, such as using the terrain flattened gamma 

(Small 2011) might improve the results over mountainous areas. Nevertheless, results for 

Finland (overall accuracy of 88% for forest/non-forest mapping and 71% for forest type 

classification) or Switzerland (87% for forest/non forest mapping and 82% for forest type 

classification) show high potential of Sentinel-1 for forest mapping even in these 

challenging environments. 
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Figure 31: Examples of the forest type maps and cross-polarized backscatter temporal signatures from areas 
in northern Finland (boreal forest), Czech Republic (temperate forest) and Sicily (Mediterranean forest). The 
Bing aerial imagery is used as a base map. Temporal signatures are computed from sample of 1000 
randomly selected points within a single Equi7 tile for classes coniferous forest, broadleaf forest and other 
vegetated areas. The solid line indicates the average backscatter value while the error bars indicate its 
standard deviation for each time stamp. (a) to (d) show subset in northern Finland where (a) shows Bing 
aerial image (b) Copernicus High Resolution Layers (HRL) forest type map, (c) Sentinel-1 forest type map 
and (d) temporal signature of the three vegetation classes. (e) to (h) show subset in Czech Republic where (e) 
shows Bing aerial image (f) Copernicus HRL forest type map, (g) Sentinel-1 forest type map and (h) temporal 
signature of the three vegetation classes. (i) to (l) show subset in Sicily where (i) shows Bing aerial image, (j) 
Copernicus HRL forest type map, (k) Sentinel-1 forest type map and (l) temporal signature of the three 
vegetation classes. 

Forest area mapping for relatively small areas based on Sentinel-1 data was recently 

addressed in several studies. Overall accuracies of 94% were found over study area in 

North-East China (Yu, Ni et al. 2020), 92% over study area in Lower Austria (Dostálová, 

Hollaus et al. 2016), and balanced accuracies between 80% and 93% were reported for 

six sites distributed worldwide (Hansen, Mitchard et al. 2020). Forest type 

(coniferous/broadleaf) classification using Sentinel-1 was tested in two test sites in 

Switzerland (Rüetschi, Schaepman et al. 2018) with overall accuracy of 86%. Due to the 

limited size of the study sites located in Europe, no direct comparison can be made with 

the presented results. To the best of our knowledge, the only continental or global scale 

forest/non-forest map based on the SAR backscatter data is derived yearly by the Japan 

Aerospace Exploration Agency (JAXA) from Advanced Land Observing Satellite 

(ALOS) Phased Arrayed L-band SAR (PALSAR) data (Shimada, Itoh et al. 2014). 

Overall accuracy of the global ALOS PALSAR map was estimated at between 85% and 
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95% depending on the reference data used (Shimada, Itoh et al. 2014). The overall 

accuracy of the presented Sentinel-1 based map ranges from 86% when compared to 

Copernicus HRL data to 90% when compared to the national datasets. 

4.4.2 Selection of the reference time series 

One of the main challenges of the introduced approach is the susceptibility of the results 

to the choice of the temporal signature prototypes used for the forest classification. The 

selection of their location represents the only part that cannot be automated and requires 

not only manual interaction, but also local knowledge of the area or reliable reference 

data. We aimed to quantify the effect of the reference points selection by running the 

model repeatedly using different sets of signature prototypes. Our results show that, while 

the forest/non-forest and TCD accuracy is rather stable (overall accuracy between 87.4% 

and 92.0%), the forest type accuracy shows higher variation among the different sets of 

reference points (overall accuracy between 61.3% and 80.6%). Inspection of the Sentinel-

1 data revealed that lowest accuracies for the forest type map are related to the selection 

of the spruce forest reference point located in areas with visible terrain effects. However, 

within the sensitivity test, the main tree species were known, and a reliable reference 

dataset was available to support the signature prototypes selection. Accuracy might vary 

even more strongly in cases where the most common tree species are not captured by the 

signature prototypes. In the case of the full-European study, it was not feasible to select 

all reference points accordingly, so that they would represent the most common forest 

species in the area. In some areas, better selection supported with the knowledge of local 

conditions might improve the result substantially. However, once the reference points are 

selected, the approach can rather easily be applied automatically, creating yearly forest 

maps with no further need of manual interaction, which enables change detection and 

regular updates of forestry data. As such, it might complement the well-established 

methods using optical remote sensing data.  

4.4.3 Variability of national reference datasets 

Relatively high variability of results between the national datasets and both the Sentinel-1 

and Copernicus HRL datasets is caused by the large variability of the data sources, 

formats, resolutions as well as different definitions used for the coniferous and broadleaf 

classes for the validation. The reference data itself are often, at least partially, based on 

the remote sensing data and include errors as well. Furthermore, their accuracies were 

mostly unknown. Temporal gaps between the datasets also add to the uncertainties, 

especially in the case of the Swedish map, which was created in 2010. Lastly, also the 
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differences in forest definitions play an important role in the validation results. The 

Sentinel-1 map applies the MMU of 0.5 ha, but apart from the definition of the minimal 

area, no further rules are applied to identify the pixel as forest. For this reason, areas with 

high density of woodland, such as hedgerows or gardening areas, are commonly 

misclassified as forest. On the other hand, some of the national datasets include the 

unstocked forest land in the forest class, which leads to further discrepancies between the 

datasets. 

4.4.4 Areas of further research 

The radiometric terrain flattening (Small 2011) is expected to increase the applicability of 

Sentinel-1 in mountainous areas and can, therefore, improve the results over complex 

terrain. In the present study, this approach was not used due to large demand on 

processing resources due to the extensive test area. Testing and validating the approach 

using the terrain flattened gamma backscatter is one of the foreseen further steps. In 

addition, many areas were still validated using the Copernicus HRL data only, so 

including more national datasets—also for the tree cover density map—would provide a 

better overview of the quality of the Sentinel-1 forest products. 

4.5 Conclusions 

In this study, the first Europe-wide forest maps were introduced based on Sentinel-1 data 

only. These include a 10 m forest type map and a 100 m tree cover density map. The 

comprehensive validation included comparison with Copernicus HRL forest datasets and 

a variety of national datasets. The validation using national datasets showed that the 

Sentinel-1 forest maps have comparable accuracy with Copernicus HRL forest datasets, 

with average overall accuracies of 88.2% and 82.7% for Sentinel-1 and 90% and 87.2% 

for Copernicus HRL for forest/non-forest and forest type maps, respectively. The main 

advantage of the Sentinel-1 maps is that once the model, including reference points 

estimation, is established, yearly maps can be derived in a fully automated way. The 

spatial comparison with the Copernicus HRL dataset showed that the method works best 

in temperate broadleaf forest biomes, while the accuracy decreases in Mediterranean, 

boreal and montane forests. 
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4.6 Appendix 

Details concerning the national reference datasets are listed below. 

Austria 

The 1 m forest/non-forest mask was provided by Austrian Research Centre for Forests 

(BFW) for the land of Lower Austria. The mask was resampled to 10 m spatial resolution 

and to the EQUI7 grid, assigning forest class in cases where 25% of 1 m pixels within the 

10 m pixel were classified as forests. 

Czech Republic 

The forest map was provided by the forest management institute (FMI) that is established 

by the Ministry of Agriculture of the Czech Republic. The 10 m forest type map was 

derived from satellite imagery (Sentinel-2), aerial imagery and normalized digital surface 

model (nDSM). The map classes were adapted as follows: 

• Broadleaf type: oak, beech, other broadleaf species; 

• Coniferous type: spruce, pine; 

• Non-forest: other; 

• Masked: uncertain pixels, young trees, wood plantations areas, mountain pine; 

England, Scotland, and Wales. 

Freely available National Inventory of Woodland and Trees dataset provided by Forestry 

Commission was used. The map is provided in vector format and covers all forests and 

woodlands of area over 0.5 ha, minimum width of 20 m and minimum canopy cover of 

20%. The map is updated annually using more recent aerial photography, satellite 

imagery and administrative records of newly planted areas. The revised data for 2017 

were used. The classes were specified as follows: 

• Broadleaf type: Broadleaved; 

• Coniferous type: Coniferous; 

• Mixed: mixed, mixed predominantly conifer, mixed predominantly broadleaf; 
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• Non-forest: Shrub; 

• Masked: Coppice, Coppice with standards, young trees, felled, ground prepared 

for new planting, windblow, failed, assumed woodland, cloud or shadow, 

uncertain, low density. 

Estonia 

The share of conifers in the upper layer in percent was provided for 10,277 randomly 

selected points by University of Tartu. The source of the data is Estonian forest register, 

reference year 2017. Forests with over 65% of coniferous or broadleaf forest type were 

attributed to the corresponding class; the rest of the pixels were assigned to the mixed 

forest class. 

France 

The forest database data (BD Fôret v2) in vector format was provided by Institut National 

de L’Information Geographique et Forestiere (IGN). The forest map is derived through 

interpreting of aerial photographs and contains forest areas of at least 0.5 ha and contains 

information about the forest type, its density and dominant tree type. The last update of 

the dataset is dependent on the county and ranges between 2014 and 2019. Forest types 

were specified as follows: 

• Coniferous forest: open coniferous forest, closed coniferous forest; 

• Broadleaf forest: open broadleaf forest, closed broadleaf forest, poplar trees; 

• Mixed forest: open mixed forest, closed mixed forest; 

• Non forest: herbal vegetation; 

• Masked: forest without tree cover. 

Finland 

The freely available Corine Land Cover (CLC) map from the Finnish Environment 

Institute (SYKE) was used. It provides land cover and land use information, including 

broadleaf, coniferous and mixed forest classes for the entire country on 20 m × 20 m 

resolution for the year 2018. It was created by automated interpretation of satellite images 

from 2016 and 2017 and data integration with existing digital map data. 

Germany 

The National Forest Inventory (NFI) collects data for cluster plots that are composed of 

four subplots each. The cluster plots are spread along a base sampling grid of 4 km × 4 

km. For some federal states, the sampling is densified. Together, forest relevant 
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information is collected for 195630 subplots including subplot type information (non-

forest, productive or unproductive forest, unstocked forest, short rotation coppice etc.) 

and forest type information (pure deciduous forest, deciduous forest with admixture of 

coniferous trees, mixed forest, coniferous forest with admixture of deciduous trees, pure 

coniferous forest). The full inventory is updated every 10 years with a reduced grid being 

updated 5 years in between. The last full inventory was conducted in 2012 and that of the 

reduced grid in 2017. The inventory is updated partially by on-site visits and partially by 

analysing aerial photography. The NFI subplots were collocated with Sentinel-1 forest 

type map and the resulting table was provided by the Institute of Forest Ecosystems 

within the Thünen Institute. For the validation purposes, the classes were defined as 

follows: 

• Non-forest: non-forest; 

• Forest: productive forest, unproductive forest, stocked timberland; 

• Masked: temporarily unstocked forest, unstocked forest land. 

The forest type was validated using the pure deciduous forest and pure coniferous forest 

classes only. 

Hungary 

The forest type map of Hungary was rasterized from the National Forest stand Database 

of Hungary (state of 26th May 2020) and provided by Nemzeti Földügyi Központ (NFK) 

as a 10 m × 10 m raster containing broadleaved, coniferous, and mixed forest type. The 

map contains only official planned forest and omits free provision forests. 

Latvia 

Data from Latvian State Forest Research Institute Silava contain forest inventory data for 

the Latvian state-owned forests which cover about half of the forest area. A total of 

10,000 points were randomly selected from stands with coverage of dominant tree species 

of at least 80%. These were then compared to the Sentinel-1 based forest type map. 

Slovakia 

The Slovakian National Forest Centre provides freely available dataset Register jednotiek 

priestoroveho rozdelenia lesa (JPRL). All forest units are stored in vector format and 

referenced to a database containing large number of forest description parameters. The 

database information is updated yearly, version from 2017 was used in this study. The 

relevant parameters for this study were main tree species, secondary tree species and their 

proportional representation in percent. All polygons with over 65% of broadleaf species 
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were classified as broadleaf and those with over 65% of conifers as coniferous. The 

polygons with lower portion of prevailing tree type were classified as mixed forest. In 

addition, part of the forest units lacked the tree species information and thus were also 

classified as mixed forest. 

Sweden 

The Department of Forest Resource Management of the Swedish University of 

Agricultural Sciences (SLU) provides freely available SLU Forest Map (Reese, 

Granqvist-Pahlén et al. 2005). It contains spatial information over most of Sweden’s 

forestland. It combines data from Swedish National Forest Inventory and satellite data 

from Landsat and SPOT satellites. The map contains information on age, height, species 

and standing volumes of woodlands and the spatial resolution is 25 m. The last update 

was published in 2010. For the validation purposes, pixels containing more than 65% of 

coniferous or broadleaf tree species are assigned as coniferous or broadleaf type, 

respectively. 

Switzerland 

The 25 m resolution map was developed in (Waser, Ginzler et al. 2017) provided by the 

Swiss National Forest Inventory hosted by the Swiss Federal Institute for Forest, Snow 

and Landscape Research (WSL) and the Federal Office of the Environment (FOEN). The 

map is based on aerial images from 2012 to 2017 and gives the probability in percent of 

broadleaf trees. The comparison of the tree type map with independent NFI data revealed 

high overall accuracies (95% to 99%) and a slight underestimation of broadleaved trees 

(median of −3.17%) [41]. Pixels with probability above 65% were classified as broadleaf 

forest, below 35% as coniferous forest and those between the two thresholds as mixed 

forest. 
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5 Publication IV: Influence of the Radiometric 

Terrain Flattening on the SAR-based Forest 

Mapping and Classification 

This section is in review for submission to the Remote Sensing Letters jounal: 

Dostálová, Alena, Claudio Navacchi, Isabella Pfeil, David Small, and Wolfgang 

Wagner. "Influence of the Radiometric Terrain Flattening on the SAR-based Forest 

Mapping and Classification."  

Abstract 

Terrain induced variations of radar backscatter represent an important limiting factor of 

many Synthetic Aperture Radar (SAR) based applications. Radiometric terrain flattening 

(RTF) is a well established method that minimizes these variations in SAR imagery. To 

fully understand the implications of SAR RTF, validation of its impact on the derived 

products is needed. In this study, we quantified the influence of the RTF on a forest 

mapping and classification algorithm over Austria and compared the classification results 

for the conventional sigma naught and radiometrically terrain corrected gamma 

backscatter. The overall accuracy for forest/non-forest mapping and forest type 

classification improved by 2% and 3% respectively over the whole of Austria with 

improvements of up to 16% and 17% respectively in regions with strong topography. 

5.1 Introduction 

Synthetic aperture radar (SAR) is an active microwave imaging system that allows us to 

remotely map the reflectivity of objects or environments at microwave frequencies with 

high spatial resolution. Advantages of this remote sensing technique include its 

penetrability through clouds and independence from the solar illumination of the surface. 

As such, SAR provides almost all-weather, day and night measuring capability. 

Currently, SAR imagery is used in a wide spread of applications that make use of the 

SAR normalized radar cross section (NRSC), which is represented in terms of a 

backscatter coefficient - an estimate of the backscatter per given reference area. 

Depending on which reference area convention is chosen for normalisation, one can 

distinguish between three representations of the backscatter coefficient known as: i) beta 

naught ߚ଴, ii) sigma naught (ߪ଴), or iii) gamma naught (ߛ଴) (Small 2011). The ߪ଴ and ߛ଴ 
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coefficients use an ellipsoid for the reference area computation and thus have an 

important limitation, namely the fact that their radiometric properties are heavily distorted 

by topographic variations, even in only slightly undulating terrain. The topography-

induced variations in SAR backscatter images are typically much larger than changes in 

backscatter coefficients due to the observed geophysical parameter (Atwood, Small et al. 

2012, Villard and Le Toan 2014). As a result, SAR data are often discarded over hilly and 

mountainous areas. 

To overcome this limitation, several methods of the radiometric normalisation of the 

backscatter coefficient were introduced in the literature. These include methods based on 

the local incidence angle (LIA) (Ulander 1996, Kellndorfer, Pierce et al. 1998) or the 

actual ground area visible to the radar which is known as radiometric terrain flattening 

(RTF) (Small 2011). In recent years, the RTF became widely used, especially in snow or 

ice melt mapping ((Scharien, Segal et al. 2017, Lund, Forster et al. 2020)) or forest 

monitoring ((Rüetschi, Schaepman et al. 2018, Akbari and Solberg 2020)). The advantage 

of the RTF is evident mainly in areas with complex topography (Frey, Santoro et al. 

2012, Small, Miranda et al. 2013, Rüetschi, Schaepman et al. 2018, Small, Rohner et al. 

2021), yet, to fully understand the benefit of this additional processing step, a validation 

of derived products with and without this step needs to be performed.  

So far, only limited number of studies quantified the influence of the RTF on the end 

product. Markert et al. (Markert, Markert et al. 2020) evaluated the differences between 

two automated surface water mapping algorithms using the conventionally calibrated and 

radiometrically terrain flattened Sentinel-1 data as input for their algorithms. The authors 

found, that the algorithms using radiometrically terrain flattened data as input yielded 

higher overall accuracies, these differences were, however, not significant. It should be 

noted that this analysis was limited to areas below 30 m in height relative to the nearest 

drainage as represented by the Height Above Nearest Drainage (HAND) index. This 

means that especially over scenes containing mountainous riverine, the HAND index 

mask might have masked considerable portions of terrain induced differences between the 

analysed datasets in case that they lie in high elevations relative to the drainage network.  

Different approaches of topographic normalisation including no correction (conventional 

approach), correction based on LIA, correction based on pixel area correction (RTF) and 

combination of the RTF correction with empirical slope normalisation were analysed in 

(Atwood, Andersen et al. 2014). The biomass estimations were improved from no 

correction to LIA based corrections and further to the RTF and combined RTF and 

empirical slope corrections. This influence was shown to be smaller for estimates based 

solely on cross-polarisation backscatter than for those based on co-polarized or dual-
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polarized data. After adaptation for polarimetric SAR data, the influence of the RTF for 

the land cover classification was assessed in (Atwood, Small et al. 2012). The largest 

improvements were observed for the deciduous forest class, and the impact of the RTF 

step was highlighted by comparing the classification performed separately for regions 

facing towards and away from the satellite.  

Having recognized the high potential of RTF, European Space Agency (ESA) 

implemented this method in the widely used open-source Sentinel Application Platform 

(SNAP, (SNAP)) toolbox. Unfortunately, calculating radiometrically terrain corrected 

(RTC) gamma (ߛ௥௧௙) backscatter with SNAP requires three to five times more time than 

calculating ߪ଴. For this reason, it is essential to assess the potential of this additional 

processing step on the end product. In this study, we evaluated results of a forest mapping 

and forest type classification algorithm (Dostálová, Lang et al. 2021) using ߪ଴ and ߛ௥௧௙  

backscatter as an input over Austria. The improvements were quantified in respect to 

terrain slope and aspect to identify the regions, where this additional step can provide 

highest improvements. 

5.2 SAR Data Pre-processing 

For the purpose of this study, Sentinel-1 1 Ground Range Detected (GRD) 

Interferometric Wide (IW) swath mode acquisitions from year 2017 for the whole of 

Austria were used. The pre-processing steps for the ߪ଴ images include precise orbit 

correction, border noise removal, radiometric correction to the ߪ଴ values and Range-

Doppler terrain correction(Small and Schubert 2008). For ߛ௥௧௙  precise orbit correction, 

border noise removal, radiometric correction to the ߚ଴ values, radiometric terrain 

flattening and Range-Doppler terrain correction were applied. A terrain model based on 

airborne laser scanning (Geoland 2020) with 10 m spatial resolution was used for the 

radiometric terrain flattening and the Range-Doppler terrain correction steps. The pre-

processing was done using the SAR Geophysical Retrieval Toolbox (SGRT, (Naeimi, 

Elefante et al. 2016)) which invokes several modules from the SNAP toolbox. 

5.3 Retrieval Algorithm and Validation 

The forest mapping and classification algorithm (Dostálová, Lang et al. 2021) uses either ߪ଴ or ߛ௥௧௙  backscatter as input, while the rest of the processing steps steps (i.e. SAR 

seasonality time series computation and construction of the forest maps) remain the same. 

A brief description of the main steps is provided in the following subsections, details can 
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be found in (Dostálová, Wagner et al. 2018, Dostálová, Lang et al. 2021).  

5.3.1 SAR seasonality time series computation 

The forest mapping and classification algorithm(Dostálová, Lang et al. 2021) uses as 

input one year of Sentinel-1 measurements. Due to the irregular temporal resolution, 

varying acquisition geometry and changing environmental conditions of the individual 

acquisitions, SAR seasonality time series with regular time step is derived. First, a 

normalisation to a common reference angle was applied using the slope (ߚ) parameter. 

This correction is applied to minimise the effect of the varying sensor-target geometry 

and the associated changes in incidence angle and enable the combination of the 

acquisitions taken from various relative orbits (Peters, Lievens et al. 2012). The slope 

parameter is computed using a linear regression between the backscatter coefficient (in 

dB) and projected local incidence angle (ߠ) values. It is computed separately for each 

image pixel and uses the full time-series of all available Sentinel-1 acquisitions from 

2017. The resulting ߚ parameter is stable in time and varies with land cover. The 

normalisation equation for ߪ଴ and ߛ௥௧௙ backscatter reads as follows: ߪ଴(40°) = (ߠ)଴ߪ − ߠ)ߚ − ௥௧௙(40°)ߛ (1)   (40° = (ߠ)௥௧௙ߛ − ߠ)ߚ − 40°)   (2) 

Next, the mean of the normalized backscatter was computed using all available 

acquisitions covering each 12 day interval, and smoothed using a Gaussian temporal filter 

with standard deviation of 1 to smooth the signal variation caused by the quickly varying 

environmental conditions (such as changes in surface and vegetation moisture content or 

freeze/thaw effects). The resulting time series captures the annual variability of the signal 

and reflects the seasonal changes of various vegetation types (Dostálová, Wagner et al. 

2018, Rüetschi, Schaepman et al. 2018).  

5.3.2 Construction of the forest map 

The forest classification algorithm(Dostalova, Cao et al. 2021) exploits the differences 

between the seasonality time series - temporal signatures - of various vegetation types. 

Signature prototypes are defined for coniferous and broadleaf forest classes as a temporal 

signature of 300 m × 300 m large region of the given forest class. The model sensitivity 

to the location of the prototypes is relatively low (Dostálová, Lang et al. 2021). The 

locations of the signature prototypes over Austria are shown at Figure 32 overlaid on the 

used DEM. The classification algorithm uses the similarity measures - Root Mean Square 

Difference (RMSD) and Pearson correlation coefficient r - between the prototype 
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signatures and the respective temporal signature of each individual pixel. In the first step, 

forest/non-forest classes are assigned using thresholds (1.5 dB and 2.0 dB for VH and VV 

polarisation RMSD and 0.4 for VH polarisation r). Consequently, the forest type 

(coniferous, broadleaf) is assigned to each forested pixel according to the lowest RMSD 

value in VH polarisation. For the final forest type map, minimal mapping units (MMU) of 

0.5 ha are applied. The forest type map has 10 m sample interval and three classes: non-

forest, coniferous forest and broadleaf forest.   

 

Figure 32: Overview of the study area (Austria) with the locations of the signature prototypes for the forest 
type classification overlaid on the terrain model of Austria based on airborne laser scanning. 

5.3.3 Validation ߪ଴ and ߛ௥௧௙  based forest maps were computed for the whole of Austria and compared to 

reference maps. For the validation of the forest/non forest classification, a 1 m forest/non-

forest map based on aerial imagery and ALS data was provided by the Austrian Research 

Centre for Forests (BFW). For validating the forest type (broadleaf/coniferous class), the 

Copernicus High Resolution Layers (HRL) Forest Type dataset (year 2015) (Langanke, 

Büttner et al. 2013) was used. Both reference maps were resampled to the 10 m sample 

interval, in case of the BFW forest map, 10 m pixel was assigned to forest class in cases 

where 25% of 1 m pixels within the 10 m pixel were classified as forests. The forest/non-

forest accuracies were computed using all pixels. In case of the forest type dataset, pixels 

that were classified as non-forest in ߪ଴, ߛ௥௧௙ or HRL forest type dataset were discarded 

from the classification to ensure, that the errors caused by the forest/non-forest miss-

classification would not be transferred to the forest type classification results. 

The focus of the validation was put on two aspects. First, the spatial distribution of 

differences between the ߪ଴ and ߛ௥௧௙  forest maps was highlighted by computing and 

plotting the validation statistics for 10 km large tiles as well as for entire Austria. 

Secondly, the influence of the local terrain aspect and slope on the map's accuracy was 

assessed by computing the validation statistics separately for various terrain slope and 

aspect intervals. It should be noted that the accuracy of both reference datasets is 
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unknown and the differences in forest definitions, temporal gaps as well as differences in 

spatial resolution between the datasets also add to the uncertainties. 

 

5.4 Impact of the Terrain Flattening 

5.4.1 Spatial overview 

Spatial overviews of the forest mapping and classification results for ߛ௥௧௙  and ߪ଴ are 

shown in Figure 33 and Figure 34 respectively. Each figure shows the reference map 

(BFW forest mask and Copernicus HRL Forest Type map for forest/non-forest and forest 

type map respectively) together with the difference images between the reference map the  ߛ௥௧௙- and ߪ଴-based classification results and the spatial distribution of the difference 

between the overall accuracy of the ߛ௥௧௙  and ߪ଴ results.  

For forest/non-forest mapping, distinct patterns are apparent in the maps showing the 

differences in classification and especially the classification accuracy improvements. It is 

apparent that the largest differences between the Sentinel-1 and reference forest maps are 

located in mountainous regions (see Figure 32). This is to be expected and was already 

postulated in previous works ((Dostálová, Wagner et al. 2018, Dostálová, Lang et al. 

2021)). Also, the mountainous areas show the largest improvement in quality when 

substituting ߛ௥௧௙ instead of ߪ଴ as an input for the classification algorithm - the 

improvements locally reached as high as 16% in case of the forest/non-forest map. This is 

mainly due to underclassification of the forest area in mountainous regions, where 

insufficient correction of the terrain effects hinder the classification algorithm. In the 

flatland, the overall accuracies of the ߛ௥௧௙ and ߪ଴ forest/non-forest maps are comparable 

except few areas located mainly in Southern Austria where the ߛ௥௧௙  based forest map 

slightly overclassifies forest area and overall accuracy locally decreases causing maximal 

differences of up to 3%. 
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Figure 33: Overview of the results of the forest mapping algorithm. Top, left: Reference forest map from the 
Austrian Centre for Forests (BFW). Top, right: Difference between the overall accuracy of the 0ߪ- and ݂ݐݎߛ- 

forest/non-forest map computed for 10 km large tiles. Bottom, left: Difference map between the 0ߪ Sentinel-1 
and reference forest/non-forest map. Bottom, right: Difference map between the 0ߪ Sentinel-1 and reference 
forest/non-forest map. 

 

Figure 34: Overview of the results of the forest classification algorithm. Top, left: Reference forest map from 
Copernicus high resolution layers. Top, right: Difference between the overall accuracy of the 0ߪ- and ݂ݐݎߛ- 

forest type map computed for 10 km large tiles. Bottom, left: Difference map between the 0ߪ Sentinel-1 and 
reference forest type map. Bottom, right: Difference map between the 0ߪ Sentinel-1 and reference forest type 
map. 

In case of forest type classification, the improvements are also mainly located in 

mountainous regions, however the pattern followed that of the terrain model less strictly. 

The greatest improvements of up to 17% were observed in central and Southern Austria 

where the topography is milder than in Western Austria. However, these are also the 

areas with largest forest area and a lot of forest type variability. In the flatlands, the 

differecnes in the overall accuracies of the ߛ௥௧௙  and ߪ଴ forest type map varied by ±5%.  

The overall accuracy as well as user’s and producer’s accuracies for each class over the 

whole of Austria are summarised in Table 11. When computed over the entire range of 

the local terrain slopes, the overall accuracy for forest/non-forest and forest type 

classification improved 2% and 3% respectively. In case of forest, non-forest and the 

coniferous forest class, also the user's and producer's accuracies stayed the same or were 

improved. The only exception was the producer’s accuracy of the broadleaf forest class 
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that decreased by 2%.  



 

 

 

 

Table 11: User’s, Producer’s and Overall accuracies of the 0ߪ- and ݂ݐݎߛ-forest/non-forest and forest type maps when compared to the BFW forest mask and Copernicus HRL forest type maps 
respectively for various local terrain slope ranges. 

Slope range [°] 0-90 0-10 10-20 20-30 30-40 40-50 50-70 

Metric Class ࣌૙ ࢌ࢚࢘ࢽ ࣌૙ ࢌ࢚࢘ࢽ ࣌૙ ࢌ࢚࢘ࢽ ࣌૙ ࢌ࢚࢘ࢽ ࣌૙ ࢌ࢚࢘ࢽ ࣌૙ ࢌ࢚࢘ࢽ ࣌૙ ࢌ࢚࢘ࢽ 

Overall accuracy Forest/non-forest 0.87 0.89 0.92 0.92 0.89 0.89 0.86 0.88 0.78 0.85 0.73 0.81 0.73 0.78 

Overall accuracy Forest type 0.73 0.77 0.76 0.77 0.76 0.78 0.72 0.77 0.68 0.75 0.66 0.71 0.64 0.68 

Producer’s accuracy Forest 0.84 0.87 0.92 0.92 0.90 0.90 0.86 0.88 0.74 0.83 0.63 0.75 0.51 0.61 

User’s accuracy Forest 0.89 0.90 0.80 0.80 0.90 0.90 0.94 0.95 0.93 0.96 0.90 0.94 0.78 0.84 

Producer’s accuracy Non-forest 0.90 0.91 0.92 0.92 0.86 0.86 0.86 0.88 0.88 0.91 0.89 0.92 0.89 0.91 

User’s accuracy Non-forest 0.86 0.88 0.97 0.97 0.86 0.86 0.72 0.76 0.59 0.69 0.60 0.69 0.71 0.76 

Producer’s accuracy Broadleaf forest 0.58 0.56 0.62 0.62 0.57 0.57 0.54 0.50 0.59 0.50 0.60 0.51 0.56 0.45 

User’s accuracy Broadleaf forest 0.64 0.73 0.84 0.88 0.72 0.78 0.54 0.65 0.46 0.58 0.43 0.49 0.34 0.35 

Producer’s accuracy Coniferous forest 0.82 0.88 0.89 0.92 0.88 0.91 0.80 0.88 0.71 0.85 0.69 0.79 0.67 0.75 

User’s accuracy Coniferous forest 0.78 0.78 0.72 0.72 0.78 0.79 0.80 0.80 0.81 0.80 0.82 0.81 0.84 0.82 
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5.4.2 Influence of terrain slope and aspect 

Even though the increasing elevation is known to influence the classification accuracy 

independently of the input data (Dostálová, Lang et al. 2021), left uncompensated, 

terrain-induced variations in the SAR backscatter deteriorate the classification result in 

mountainous areas. The influence of the local terrain slope on the overall accuracy of the 

forest/non-forest and forest type maps is demonstrated in Table 11. In case of the forest 

type classification, the accuracies based on ߪ଴ and ߛ௥௧௙  are comparable for slopes up to 

20°. With increasing terrain slope, the accuracies of the forest/non-forest map rapidly 

decrease in case of ߪ଴, which is mainly caused by the increasing omission error of the 

forest class. Decrease in accuracies is slower for the ߛ௥௧௙-based forest/non-forest map. 

For instance, difference between the overall accuracy of ߪ଴ and ߛ௥௧௙ forest/non-forest 

classification for slopes between 40° and 50° reaches 8%. In case of the forest type 

classification, overall accuracy is higher for all terrain slope ranges, however, in case of 

the slopes below 20°, this difference is only 1%. Slopes above 70° are not shown due to a 

small number of available samples. 

Due to the changing sensor-target illumination conditions, the algorithm is sensitive to 

the local terrain aspect. The accuracy remains relatively stable in case of low slopes up to 

20° (see Figure 35: left) and is not improved by including the RTF correction. In case of 

steep slopes between 40° and 50° (see Figure 35: right), the overall accuracy of the ߪ଴ 

based forest/non-forest classification varies between 62% and 85% with lowest values for 

slopes facing the sensor for either ascending or descending orbit pass. This dependency 

on local terrain aspect is reduced by including the RTF step (the overall accuracies range 

between 72% and 87%). We conclude that, apart from the effect of applying the proper 

way of radiometric calibration, also the improved handling of the radar shadows in SNAP 

toolbox in case of the RTF workflow contributed to the increased accuracy. 
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Figure 35: Dependency of overall accuracy of the forest/non-forest classification on the local terrain aspect. 
Left: local terrain slope range between 10° and 20°, Right: local terrain slope range between 40° and 50°. 

5.5 Conclusion 

Terrain induced variations in the SAR backscatter have long been a limiting factor to 

many SAR applications. By replacing conventional ellipsoid-based radiometrically 

calibrated backscatter coefficients with radiometrically terrain flattened and corrected ߛ௥௧௙  we showed improvements in the data quality over undulated terrain. We quantified 

the effect of the RTF on the end product accuracy for forest mapping and classification 

algorithms over Austria. Significant improvements (16% and 17% for forest/non-forest 

mapping and forest type classification) were observed in highly undulated areas when ߛ௥௧௙  backscatter was used instead of ߪ଴. In flatlands, the results remained comparable for 

both backscatter coefficient conventions. These results show, that despite the significantly 

higher processing demands, including the RTF correction is needed at least for areas with 

local terrain slopes over 20°. 
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6 Conclusions and outlook 

6.1 Conclusions and scientific impact 

The primary objective of this thesis was to derive a continental-wide forest map using the 

Sentinel-1 SAR backscatter data over Europe. Despite great advances in remote sensing, 

large-scale forest maps derived in semi-automatic or automatic fashion remain rare and 

were mainly conducted in individual case studies. In case of microwave remote sensing, 

many studies showed the high potential of the SAR backscatter for forest mapping or 

dominant leaf type classification but were mostly limited to specific study areas and 

rarely validated on larger scale. Up to our best knowledge, the introduced forest maps are 

the first continental-wide forest area maps from Sentinel-1 and first large-scale forest type 

maps based on SAR data.  

However, as important as the algorithm itself, is also the understanding of its limitations. 

For this reason, the evaluation of the newly derived maps was an equally important task 

as the algorithm development itself. Collection of the appropriate reference datasets was 

one of the crucial tasks within this thesis. Due to the lack of global- or Europe-wide forest 

type maps with the exception of the Copernicus HRL forest type dataset, multitude of 

nationally available forest datasets were used as reference data. The communication with 

the respective national forest inventories or universities also showed me the high interest 

in the spaceborne remote sensing data as a source of information that can complement the 

more precise but also much more costly airborne remote sensing or terrestrial and in-situ 

data collection.  

In this regard, the main scientific outcome of this thesis is the knowledge of the potential 

of the Sentinel-1 to contribute to the forest mapping and classification also on large scale. 

The evaluation of both the Sentinel-1 and Copernicus HRL datasets against the national 

forest maps showed that the obtained accuracies of Sentinel-1 forest maps are almost 

within range of the HRL datasets in temperate and hemi-boreal forests. However, as 

mountain and boreal forests are both challenging environments for optical remote sensing 

as well, it might be especially these areas, where the combination of the optical and 

microwave remote sensing will lead to the highest improvements.  

6.2 Outlook and future research 

The evaluation of the forest maps presented in Publication III highlighted the areas of 

future research questions. One of the most important limitations remain to be the 
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topographic distortions. Nowadays, techniques such as radiometric terrain flattening 

exist, that improve the quality of the derived SAR products significantly in sloped terrains 

as it was presented in Publication IV. Similarly, the classification algorithm might be 

improved in sparse forests in boreal or Mediterranean regions.  

Recently, the combination of Sentinel-1 and Sentnel-2 data for tree species classification 

has also been increasingly addressed by research. Publication II and III showed height 

potential for the dominant leaf type classification, however, the identification of the 

optimal features from Sentinel-1 that might help to distinguish tree species is still among 

the future challenges. Least but not least, the best combination of the forest information 

derived from the Sentinel-1 data with the other data sources is one of the most important 

future topics.   
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