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Abstract

The particle therapy patient scheduling problem (PTPSP) arises in modern cancer treatment facilities that
provide particle therapy. It consists of scheduling a set of therapies within a planning horizon of several
months. A particularity of PTSP compared with classical radiotherapy scheduling is that therapies need not
only be assigned to days but also scheduled within each day to account for the more complicated operational
scenario. In an earlier work, we introduced this novel problem setting and provided first algorithms including
an iterated greedy (IG) metaheuristic. In this work, we consider an important extension to the PTPSP
emerging from practice in which the therapies should be provided on treatment days roughly at the same time.
To be more specific, the variation between the starting times of the therapies’ individual treatments should
not exceed the given limits, and needs otherwise to be minimized. This additional constraint implies that the
sequencing parts within each day can no longer be treated independently. To tackle this variant of PTPSP, we
revise our previous IG and exchange its main components: the part of the applied construction heuristic for
scheduling within the days and the local search algorithm. The resulting metaheuristic provides promising
results for the proposed extension of the PTPSP and further enhances the existing approach for the original
problem.

Keywords: cancer treatment; particle therapy patient scheduling; iterated greedy metaheuristic; hybrid metaheuristic

1. Introduction

Particle therapy is a relatively novel and highly promising option to provide cancer treatments. A
proton or carbon beam is produced by either a cyclotron or a synchrotron and is directed into one of
up to five treatment rooms, where patients are irradiated. Since several tasks have to be completed in
a treatment room before and after an actual irradiation, the usually single available beam is switched
between the available treatment rooms to maximize the throughput of the facility. Consequently,
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the main challenge is to arrange the individual treatments in such a way that idle times on the
particle beam are minimized. We consider here specifically the particle therapy treatment center
MedAustron in Wiener Neustadt, Austria, which offers three treatment rooms.

The particle therapy patient scheduling problem (PTPSP) addresses the midterm planning part
of such a particle therapy treatment center and was first introduced in our recent work (Maschler
et al., 2016). In PTPSP an effective plan has to be found for performing numerous therapies, each
consisting of daily treatments (DTs) provided on 8–35 subsequent days. Therapies have to start on
Mondays or Tuesdays between an earliest and a latest allowed starting day. After a therapy is started,
the number of DTs that are provided each week has to stay between a lower and an upper bound.
Moreover, there is a minimal and a maximal number of days that are allowed to pass between two
subsequent DTs, and there has to be a break from the treatment of at least two consecutive days
each week. The DTs have resource requirements that vary with time, but each specific resource is
required at most once for a consecutive time period. These varying requirements originate from the
different tasks involved in providing the treatments. Each resource can only be used by one DT at
a time. Among others, the considered resources involve the particle beam, treatment rooms, radio
oncologists, and an anesthetist. In terms of the resource-constrained project scheduling literature
(see, e.g., Hartmann and Briskorn, 2010), DTs would be called activities with resource requests
varying with time. Typically, the facility is open from Mondays to Fridays, but after recurring
maintenance tasks DTs are also performed on Saturdays. Whenever the treatment center is open,
resources have a regular availability period followed by an extended availability period in which they
can be used, where the use of the latter induces (additional) costs. Furthermore, the availability of
resources can be interrupted by so-called unavailability periods. The aim of the PTPSP is to schedule
a given set of therapies by determining days and times for all corresponding DTs while considering
all operational constraints. The objective is to minimize the use of extended availability periods,
while the therapies have to be completed as early as possible. In addition, the DTs belonging to the
same therapy should be planned roughly at the same time, in order to provide a consistent schedule
for the patients. Ideally, the starting times of a therapy’s DTs should not differ more than a half an
hour within each week. Between two weeks, the starting times are allowed to differ by two hours.
However, consistent starting times for DTs are not of direct medical relevance and, consequently,
should not induce additional use of extended service periods or delay therapies. This consideration
of similar DT starting times is a practically highly relevant extension of the PTPSP as introduced
in Maschler et al. (2016).

The aim of this work is twofold. On the one hand, PTPSP is extended to cover the aspect
that the variation among the times at which therapies’ DTs are provided is minimized. On
the other hand, we study an improved variant of the iterated greedy (IG) metaheuristic from
Maschler et al. (2016). Preliminary results of this effort for the original problem formulation
have been published in Maschler et al. (2017). We propose a novel construction heuristic that
assigns DTs to days as the previous construction heuristic but replaces the part for determining
starting times with one that is more appropriate for the extended problem variant. This new
heuristic applied within the IG’s construction phase is able to keep relative timing characteristics
of untouched DTs to a larger extent. Furthermore, we replace the so far rather simple local
improvement operator by a local search method that alternately considers a DT exchange
neighborhood and solves a linear programming (LP) model for determining updated nominal
starting times. The IG is compared with our previous metaheuristic and shows significant
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improvements on all considered benchmark instances. Moreover, we assess the qualities of the
individual components of the metaheuristic by gradually transforming the previous approach into
the proposed one.

The remainder of this work is structured as follows. After giving an overview of related literature
in the next section, a formal problem definition is provided in Section 3. We present the enhanced
IG metaheuristic in Section 4. The conducted experiments are then discussed in Section 5. Finally,
Section 6 concludes this article with an outlook on future work.

2. Related work

Midterm planning for classical radiotherapy has attracted the focus of the scheduling community
starting with the works from Kapamara et al. (2006) and Petrovic et al. (2006). Several further
heuristic as well as exact approaches followed. Heuristic techniques range from a greedy randomized
adaptive search procedure (GRASP) (Petrovic and Leite-Rocha, 2008) and steepest hill climbing
methods (Kapamara and Petrovic, 2009; Riff et al., 2016) to more advanced techniques using
genetic algorithms (GAs) (Petrovic et al., 2009, 2011). Exact methods are based on mixed integer
linear programming (MILP) models and consider different levels of granularity (Conforti et al.,
2008; Burke et al., 2011). All these works have in common that they assign treatments only to days,
but do not sequence the treatments within each day. The reason is that in the considered scenarios
linear accelerators are used, which serve single treatment rooms exclusively. Hence, only a sequential
processing of treatments is possible. This stands in contrast to the PTPSP, where the particle beam
is shared between multiple treatment rooms and a finer grained scheduling is necessary to maximize
the throughput of the facility.

In Maschler et al. (2016), we formalized the PTPSP via an MILP model. However, even solving
a strongly simplified version of the model turned out to be practically intractable. Therefore, we
proposed the therapy-wise construction heuristic (TWCH), which acts in two phases by assigning
first all DTs to days (day assignment) and then scheduling the DTs on each day (time assignment).
Moreover, a GRASP and an IG metaheuristic, which are based on this construction heuristic,
were developed. Experiments indicated that the IG yields superior results in comparison to the
Greedy Randomized Adaptive Search Procedure (GRASP). This is mainly due to the fact that the
IG preserves substantial parts of the solution from one iteration to the next, and consequently,
poor decisions made especially in the first phase of TWCH can be corrected in the course of the
iterations. However, the IG proposed in Maschler et al. (2016) does not exhaust its full potential:
Moving DTs between days might require to reevaluate the start times of all DTs, and this is done
by simply dropping all start times of the considered days. In addition, we used a local improvement
operator within the IG that is based on applying a randomized version of the time assignment phase
of TWCH iteratively many times. Even though this local improvement operator is able to enhance
solutions rather quickly, this approach has the drawback that partly redundant work is repeatedly
done, still yielding relatively similar solutions for the time assignments.

Our subsequent work (Maschler et al., 2018) focuses on the decomposition of the PTPSP into a
day assignment part and a sequencing part. This decomposition makes the problem computationally
more manageable as it allows us to separate the allocation of DTs to days with determining the
DTs’ starting times. However, both levels are dependent on a large degree. Especially, on the day
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assignment level we have to be aware of the behavior of the time assignment part. Hence, we provide
a surrogate model that predicts the use of extended service windows given a set of DTs and a specific
day. Experiments showed that the application within our IG metaheuristic allowed us to improve
our previous results significantly.

Another scheduling problem related to particle therapy is considered in Vogl et al. (2018). Al-
though their problem is from a setting similar to ours, it differs in many details. While our em-
phasis is mainly on the throughput of the facility, that is, on the scheduling of DTs under limited
resource availabilities, the authors shift the subject more to the aspect of planning therapies in-
cluding activities surrounding the core therapy. In particular, they have additional appointments
that need to be provided either before or after a DT once a week. These appointments distin-
guish themselves from DTs as they can be supplied by different resources. In comparison to the
PTPSP as described here, Vogl et al. (2018) assume that the resources are available on all days
without any further restrictions. Moreover, their objective function differs substantially from ours:
the aim is on minimizing the total idle time of the beam resource and the violations of time
windows. Vogl et al. (2018) propose a multiencoded GA and compare two solution decoding
approaches.

The works by Riedler et al. (2020) and Horn et al. (2017) deal with strongly simplified vari-
ants of the time assignment part for a single day. Motivated by the fact that irradiation times
are known exactly beforehand, Riedler et al. (2020) consider a resource-constrained project
scheduling problem for high time resolutions. Their solution approach is to relax the problem
by partitioning time into so-called time buckets, which are then iteratively refined until an op-
timal solution is found. The problem variant considered by Horn et al. (2017) is even closer
to our scenario. Each of their jobs requires one common resource during a part of its pro-
cessing time and one of several secondary resources for the entire processing time. Such jobs
model the essential aspect of our DTs, where the common resource corresponds to the beam
and the secondary resources correlate with the rooms. They consider the minimization of the
makespan as objective and provide an exact A∗ algorithm, a heuristic beam search, and a hybrid
thereof.

3. Problem definition

In the PTPSP a set of therapies T = {1, . . . , nT } has to be scheduled on consecutive days
D = {1, . . . , nD} considering a set of renewable resources R = {1, . . . , nR}.

Each therapy t ∈ T consists of a set of DTs Ut = {1, . . . , τt}. In the course of a therapy, the
number of DTs applied per week has to be in the range from ntwmin

t to ntwmax
t and DTs have

to be performed at most every δmin
t ≥ 1 and at least every δmax

t ≥ δmin
t days. Between two weeks,

there have to be at least two days where no DT is performed. In addition, the maximum intended
time difference of the starting times of the DTs within the same week and between two consecutive
weeks is denoted with δintraw and δinterw, respectively. The set of possible start days for each DT
u ∈ Ut is given by the subset {dmin

t,u , . . . , dmax
t,u } ⊆ D of days. For each DT u ∈ Ut we are given a

processing time pt,u ≥ 0 and a set of required resources Qt,u ⊆ R. In the execution of a DT, each
resource r ∈ Qt,u is in general required during a part of the whole processing time specified by the
time interval Pt,u,r = [Pstart

t,u,r , Pend
t,u,r) ⊆ [0, pt,u).
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The planning horizon is structured into a subset D′ ⊆ D of working days on which the treatment
center is actually open and DTs can be scheduled on. The weeks covered by D are denoted by
V = {1, . . . , nV }. Furthermore, let

⋃
v∈V D′

v be the partitioning of D′ into nV subsets corresponding
to the weeks. For each working day d ∈ D′, we have a fundamental opening timeW̃d = [W̃ start

d ,W̃ end
d )

that limits the availability of all resources on the considered day.
Each resource r ∈ R is available on a subset Dres

r ⊆ D′ of the working days. On such days, the avail-
ability of each resource is defined by a regular service time window Wr,d = [W start

r,d ,W end
r,d ) ⊆ W̃d that

is immediately followed by an extended service time window Ŵr,d = [W end
r,d ,W̃ end

d ) ⊆ W̃d . Moreover,
for each resource r ∈ R and each day d ∈ Dres

r , the availability of resource r may be interrupted by a set
of unavailability intervals W r,d = ⋃

w=1,...,ωr,d
W r,d,w with W r,d,w = [W

start
r,d,w,W

end
r,d,w] ⊂ Wr,d ∪ Ŵr,d .

We represent a solution for the PTPSP as a triple (Z, S, S̃), where Z = {Zt,u ∈ D′ | t ∈ T, u ∈ Ut}
denotes the days at which the DTs are planned, S = {St,u ≥ 0 | t ∈ T, u ∈ Ut} is the set of start
times for all the DTs on the respective days, and S̃ = {S̃t,v | ∀t ∈ T, v ∈ V } corresponds to the set of
nominal starting times of the therapies’ DTs within the weeks. A solution is feasible if all resource
availabilities, precedence relations, and the remaining operational constraints are respected. The
objective is to minimize primarily the use of extended time over all resources R while finishing each
therapy as early as possible. In addition, the goal is to minimize the deviation of the DTs’ starting
times from the corresponding nominal starting times and to minimize the difference of the nominal
starting times between weeks. More formally, we aim at minimizing

γ ext
∑
r∈R

∑
d∈Dres

r

ηr,d + γ finish
∑
t∈T

(
Zt,τt

− Zearliest
t,τt

)
+ γ intraw

∑
t∈T

∑
u∈Ut\{1}

σ intraw
t,u

+ γ interw
∑
t∈T

∑
v∈V \{1}

σ interw
t,v , (1)

where γ ext, γ finish, γ intraw, and γ interw are scalar weights. The first term of the objective function gives
the total time used of the extended service time windows, where ηr,d = max({St,u + Pend

t,u,r − W end
r,d |

t ∈ T, u ∈ Ut, r ∈ Qt,u, Zt,u = d} ∪ {0}) for resource r and day d . The second term computes for
each therapy t the deviation of the last treatment day from a lower bound Zearliest

t,τt
(see Maschler et al.,

2016). The third objective term gives the total excess of the allowed deviation of the DTs’ starting
times to their respective nominal starting times, where σ intraw

t,u = max(|St,u − S̃t,v| − δintraw, 0) and
Zt,u ∈ D′

v. Each therapy’s first DT is excluded from the above calculation since those are regarded
in the specific situation at MedAustron as special. Finally, the last term computes the excess of
the maximum intended time difference of the nominal starting times between two weeks and is
calculated by σ interw

t,v = max(|S̃t,v − S̃t,v−1| − δinterw, 0).
Note that the definition of DTs stated here differs from the one given in Maschler et al. (2016),

where DTs are composed of consecutively executed activities that are related with minimum and
maximum time lags. The simplification here is motivated by the fact that in practice the possibility
to have different minimum and maximum time lags between two activities is not expected to
be exploited in midterm planning. Consequently, time lags may either be replaced by “dummy”
activities of fixed length or, as we do here, the subdivision of DTs into activities can be replaced by
the time intervals Pt,u,r specifying at which times which resources are needed.
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4. Iterated greedy approach

Iterated greedy (IG) algorithms (Jacobs and Brusco, 1995) usually start with an initial solution and
then repeatedly apply a destruction phase annulling part of the solution, followed by a construc-
tion phase that completes the solution again, until a termination criterion is reached. The initial
solution is usually obtained by applying a construction heuristic. The destruction phase removes
randomly selected components from the incumbent solution, which are then reinserted by a greedy
reconstruction method in the construction phase. Afterward, an acceptance criterion is evaluated
to determine whether the newly generated solution replaces the incumbent solution. Frequently, a
local search algorithm is applied to the initial solution and after the construction phase to further
boost the performance. In the following sections, we discuss the components of the proposed IG.

4.1. Initial solution

We presented in Maschler et al. (2016) the therapy-wise construction heuristic (TWCH) for the
PTPSP without the extension that the starting times should be close to their weekly nominal
starting times and that the nominal starting times belonging to the same therapy should not differ
too much. Basically, this construction heuristic acts in two phases, first assigning all DTs to days
(day assignment) and afterward determining the actual starting times of the DTs (time assignment).
While the day assignment phase can be adopted unchanged, the time assignment phase has to be
altered such that also the two new objective terms regarding the variation of the starting times are
considered.

TWCH starts with the day assignment phase in which therapies are processed in the order of the
latest possible starting day of their first DT. For a selected therapy, the corresponding DTs are then
allocated sequentially to days, starting with the first DT. To this end, for the current DT all feasible
days between the earliest and latest starting day with respect to the constraints imposed by the DT’s
predecessors are evaluated. The DT is assigned to the candidate day that minimizes on the one hand,
the expected additional use of extended service windows by the current DT and all subsequent DTs
and on the other hand the day at which the therapy is completed. A crucial aspect for the overall
performance of TWCH is the estimation of the total time required from extended service windows.
While an underestimation yields in general overfull days with avoidable use of extended service
windows, an overestimation results in underused days and delayed ends of therapies. We studied
the impact of this estimation in Maschler et al. (2018) and provide a surrogate model that exploits
the structure of DTs and further problem knowledge. Experiments show that the surrogate model
predicts the use of extended service windows quite accurately and improves our IG approach from
Maschler et al. (2017) substantially. Consequently, we adopt this scheme here.

During the time assignment phase, the scheduling within the days has to be done. In other words,
we have to find for all DTs starting times with as little use of extended service windows as possible
that allow in addition nominal starting times that minimize the respective intraweek and interweek
objective terms. In contrast to our earlier work, the schedules for the individual days cannot be
regarded as independent but are coupled through the nominal starting times. A further changed
property resulting from the extension of the PTPSP is that scheduling DTs in close succession might
be suboptimal with respect to the two new objective terms. In fact, it might be necessary to have
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breaks between two consecutive DTs. In principle, our approach to consider the DTs in a certain
order and schedule each DT as early as possible has to change to the one where we have to decide in
addition the duration of an optional gap between each pair of successive DTs. However, in practice
the facility should be used at full capacity and, thus, it can be assumed that in general adding
significant gaps between DTs immediately yields additional use of extended service time windows,
which results in a worse objective value. Therefore, we restrict the construction heuristic and our
overall approach to solutions without gaps that are not induced by resource availabilities.

Our approach for the time assignment part consists of two components executed in an interleaved
way, one for scheduling the DTs on a considered day and one for setting and adapting the nominal
starting times. To this end, the working days are processed in chronological order, starting with
scheduling the DTs assigned to the first working day. After all starting times for a day have been
determined, the nominal starting times of every considered therapy t in the current week v are
updated as follows. Therapies’ first DTs are ignored as they are excluded in the intraweek objec-
tive term. For each therapy’s second DT, we set S̃t,v to St,2. For subsequent DTs u′ assigned to

the therapy’s first week, the nominal starting time is set to the value that minimizes
∑u′

u=2 σ intraw
t,u .

Determining this value corresponds to finding the minimal value of a continuous piecewise lin-
ear function where the slope of the segments are multiples of γ intraw. For DTs u′ belonging to a
therapy’s second week and onward, the nominal starting time S̃t,v of the current week v is set to
arg minS̃t,v

(
∑

u∈{D′
v|u≤u′} σ

intraw
t,u + σ interw

t,v ). To this end, the nominal starting time of the previous week
is considered as fixed. Note that for this reason the determined nominal starting times might not be
optimal.

TWCH’s component for scheduling DTs within a day as presented in Maschler et al. (2016)
repeatedly places a not yet scheduled DT, selected using a priority function, as early as possible in
the schedule until all DTs have been planned. The priority of the DTs is determined by a lexicographic
combination of three criteria that consider the idle time that emerges on the beam resource, the
earliest end of a regular service window from a required resource, and the ratio between the time the
beam is required and the total processing time of the respective DT. These greedy criteria provide in
practice reasonable performance with respect to minimizing the use of extended service windows,
while yielding short processing times. Extending this lexicographic combination of criteria to respect
also the intraweek and interweek objective terms is, however, not promising. The main difficulty is
to balance between generating a tight schedule and prioritizing DTs that are close to their nominal
starting time. While concentrating too much on the former aspect causes many deviations to the
respective nominal starting times, focusing too much on the latter results often in extensive use of
extended service windows.

To obtain a heuristic for scheduling DTs within a day that performs well on the extended problem
formulation we shift the focus from which DT to schedule next to inserting DTs within the order
of already scheduled DTs. A straightforward way to this would be to process the DTs assigned
to a day in a particular order and test for each DT all positions of the already scheduled DTs.
Finally, the DT is inserted in the position yielding the smallest objective value. This technique
is analogous to the classic NEH algorithm by Nawaz et al. (1983) for the permutation flow shop
problem (PFSP). However, preliminary experiments have shown that the performance of this simple
insertion heuristic is worse compared to our original approach. The main reason is that the insertion
of DTs postpones already inserted DTs, which might end up at a quite different time they have been
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originally inserted. Hence, it makes sense to reevaluate the positions of already inserted DTs. In the
PFSP literature, several heuristics have been proposed that extend NEH with reinsertions. We adapt
here the FRB3 heuristic from Rad et al. (2009), which reevaluates and possibly reinserts after each
insertion all already scheduled jobs.

Algorithm 1: FRB3 for the PTPSP

Algorithm 1 shows FRB3 adapted for scheduling DTs on a considered day d . It starts with an
empty sequence π and considers then the DTs assigned to day d in the order of the largest processing
times. We use here the same ordering as Rad et al. (2009) applied for FRB3 on the Permutation
Flow Shop Problem (PFSP) with the Cmax (makespan) objective. Although our objective is quite
different, preliminary experiments have shown that sorting according to the largest processing times
is indeed effective. At Line 4, we test scheduling the current DT before each already scheduled DT
and after the last one. The current DT is then inserted in the most promising position. In general,
inserting a DT at position l < i delays the starting times of the DTs πl+1, . . . , πi, while the starting
times of the DTs π1, . . . , πl−1 remain unchanged. Afterward, the position of all already scheduled
DTs within π are reevaluated and possibly reinserted to accommodate the newly inserted DT in a
better way.

DTs are inserted at the best position with respect to our objective function. However, as function
(1) assumes a complete solution, we evaluate an objective function tailored for the time assignment
part, which is

γ ext
∑
r∈R

max
(
{St,u + Pend

t,u,r − W end
r,d | i ∈ {1, . . . , n}, (t, u) = πi, r ∈ Qt,u, } ∪ {0}

)

+
∑

i∈{1,...,n},
(t,u)=πi , u>2

γ intraw · σ intraw
t,u . (2)

This function determines for the current sequence π the use of extended service windows and the
excess of the allowed deviation from the nominal starting times. While the former term is analogous
to (1), the latter term requires further considerations. As mentioned earlier, the nominal starting
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times are updated after all starting times have been determined for a considered day. Consequently,
for a therapy’s second DT (i.e., the first for which the time difference to the nominal starting time
is relevant) and every therapy’s subsequent first DT of a week, we have not yet determined the
corresponding nominal starting time. In the case where a DT is a therapy’s second we can set σ intraw

t,u
to 0, as the respective nominal starting time can be set to the same value as the starting time of the
current DT without inducing any cost. For a therapy’s first DT within a week, we suppose that the
nominal starting time will not differ more than δinterw compared with the nominal starting time of
the previous week. Hence, we regard in such cases starting times that differ more as δinterw + δintraw

to their respective nominal starting time of the previous week as excess. For all other cases, σ intraw
t,u

is computed as in the problem definition. To summarize, we calculate σ intraw
t,u by

σ intraw
t,u =

⎧⎪⎨
⎪⎩

0 if u = 2

max(|St,u − S̃t,v−1| − δinterw − δintraw, 0) if Zt,u ∈ D′
v ∧ Zt,u−1 ∈ D′

v−1

max(|St,u − S̃t,v| − δintraw, 0) otherwise.

(3)

In case more than one position evaluate to the same value by (2), we insert the DT that has the
smaller makespan. The rationale behind the latter criterion is that in particular at the beginning of
the algorithm many insertion points allow scheduling the sequence without use of extended service
windows. Preferring a smaller makespan typically results in a tighter packed schedule and hopefully
retains better options for the still to be inserted DTs.

4.2. Local search

The design of the neighborhood used within the IG’s local search component depends on several
factors. As real-world instances are expected to be quite large, the main challenge is to find neigh-
borhoods that can be searched rather fast, still allowing a reasonable number of iterations of the
IG to be completed, while improving the solution significantly in most cases. Due to typically small
flexibility within the therapy process, assigning one DT to another day usually entails that also the
therapy’s preceding and succeeding DTs have to be reassigned to new days. Consequently, changing
the day assignment of DTs affects the time assignment of several days, which results in a local
search operator that is computationally too expensive to be applied within an iterated approach.
Therefore, we restrict ourselves to a local search method that focuses on the time assignment part,
that is, the allocation of the therapies’ DTs on days is assumed to be fixed. In Maschler et al. (2017),
this restriction allowed us to apply the local search for each day independently. The much smaller
neighborhoods have shown to be crucial to receive adequate computation times for the local search
component to be integrated within the IG. The presence of the therapies’ nominal starting times and
the extended objective function, however, links the starting times of the therapies’ DTs: If we find
a better starting time for a DT on a certain day, then we might also find a better nominal starting
time, which again induces improvements on days that have been at a local optimum. To obtain a
fast local search component, we consider first the nominal starting times as fixed and optimize the
DTs’ starting times until a local optimum with respect to a neighborhood for each individual day is
reached. Afterward, we update the nominal starting times and repeat the first step until no further
improvements are achieved. In the following, we explain both components in more detail.
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In our scenario the DTs are heterogeneous regarding their time and resource requirements. Thus,
moving DTs or exchanging the starting times of two DTs in a tightly scheduled day will lead in
most cases to an infeasible solution. However, we can exploit the fact that each DT requires the
beam resource exactly once to define a unique sequence of the DTs scheduled on a particular day.
A solution is encoded by the sequence (π1, . . . , πn) resulting from sorting the DTs assigned to the
currently considered day d , given by the set {(t, u) | t ∈ T, u ∈ Ut, Zt,u = d}, in ascending order of
the times from which on they use the beam resource B, that is, according to St,u + Pstart

t,u,B. On the
encoded days we can then define classical neighborhoods for sequencing problems. To evaluate
neighbors we have to decode the corresponding sequences of DTs to obtain actual starting times.
Algorithm 2 shows this decoding for a given sequence (π1, . . . , πn) of DTs and a working day d ∈ D′.
The procedure starts by initializing each time marker Cr to the time the corresponding resource r
becomes available. In the main loop, each DT is assigned in the order of the given sequence to the
earliest possible start time at which all resources are available. First, at Line 3 the DT’s start time St,u
is set to the earliest possible time such that all required resources are used after their corresponding
time marker. At this time, the considered DT might still overlap with unavailability periods. If this
is the case, the DT is delayed in the inner while loop until all required resources become available.
At Line 7 the time markers Cr are set to the times when the corresponding resources become free
after the just scheduled DT.

Algorithm 2: Procedure for determining starting times for a given sequence of DTs

To obtain an effective neighborhood, we have to take the problem structure into account. A
fundamental property is that all DTs require the beam and one of the room resources. Moreover,
the beam resource is used only during a part of the time the respective room resources are required.
In a tight schedule, the beam usually cycles between the three treatment rooms as in this way the
emerging idle time on the beam resource is minimal and the throughput of the facility is maximized.
If we interrupt this interleaved execution of DTs by removing a single DT from the sequence, then
in general the resulting gap on beam resource cannot be fully closed by decoding the remaining
DTs. Consequently, classic insertion moves in which a single DTs is removed and reinserted in
another position of the encoded sequence will rarely improve already tight schedules. Exchanging
the position of two DTs, however, circumvents this situation. Therefore, we consider a neighborhood
structure based on such exchanges.
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The DT exchange neighborhood is defined for a day d on a sequence (π1, . . . , πn) of DTs
by considering all pairs of DTs πi and π j , where 1 ≤ i < j ≤ n. A move in this neighbor-
hood results in a new sequence (π1, . . . , πi−1, π j, πi+1, . . . , π j−1, πi, π j+1, . . . , πn) and is accepted
if the decoded time assignment has a better objective value. The size of the neighborhood is
n(n − 1)/2.

The examination of the neighborhood is computationally costly due to the fact that decoding
sequences of DTs as well as evaluating the objective function are both expensive operations. Hence,
we exploit several aspects in order to accelerate the search for improvements. The first speedup is
based on the observation that the starting times of the DTs (π1, . . . , πi−1) are not affected from
the move with respect to the original sequence. Consequently, Algorithm 2 is modified to consider
for each move only the DTs following πi−1. This requires, however, to store all possible states
of the time markers Cr for each position of the original sequence. The next acceleration aborts
the decoding of a neighbor within Algorithm 2 if the considered move yields no improvement
with a high probability. In particular, this is the case if a move worsens the interleaving of the
DTs or forces a DT to be placed after an unavailability period. The resulting delay produces as
a consequence usually an additional use of extended service periods and in general an increased
objective value. Therefore, we prematurely terminate the main loop at Line 2 after processing DT
π j+k if its newly determined starting time is larger than in the original sequence. To this end, offset
k is chosen such that the corresponding DT is the first that requires the same room resources as
πi, thus, k ∈ {1, 2, 3}. We use this offset to assess whether DT πi interleaves well with its successors.
As in the FRB3 algorithm for the initial solution, it suffices also here to consider an objective
function tailored to the considered day. Thus, we evaluate equation (2), where σ intraw

t,u can now
be calculated as described in Section 3. Computing equation (2) from scratch can be done in
O(nR + n · nQ + n) time, where nQ is the maximal number of required resources by a DT. However,
if we reuse the time markers Cr from Algorithm 2, the number of required steps decreases to
O(nR + n).

After we reached a local optimum with respect to the considered neighborhood on each day,
it might be that better suiting nominal starting times exist. Therefore, we assume now the set of
all starting times S to be fixed and solve the following LP model to obtain new optimal nominal
starting times. In the model, we use S̃t,v variables for the nominal starting times in S̃ and nonnegative
variables σ intraw

t,u and σ interw
t,v to state the intraweek and interweek objective terms.

min γ intraw
∑
t∈T

∑
u∈Ut\{1}

σ intraw
t,u + γ interw

∑
t∈T

∑
v∈V \{1}

σ interw
t,v (4)

|St,u − S̃t,v| − δintraw ≤ σ intraw
t,u ∀t ∈ T, ∀u ∈ Ut \ {1}, ∀v ∈ V : Zt,u ∈ D′

v (5)

|S̃t,v − S̃t,v−1| − δinterw ≤ σ interw
t,v ∀t ∈ T, ∀v ∈ V \ {1} : ∃u ∈ Ut(Zt,u ∈ D′

v) (6)

σ intraw
t,u ≥ 0 ∀t ∈ T, ∀u ∈ Ut (7)

σ interw
t,v ≥ 0 ∀t ∈ T, ∀v ∈ V (8)

S̃t,v ∈ R ∀t ∈ T, ∀v ∈ V. (9)
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The model’s objective function (4) corresponds to the objective function of the overall problem (1)
restricted to the terms directly affected by the nominal starting times. Inequalities (5) enforce that the
σ intraw

t,u variables are set to the excess of the maximum intended difference of the DTs’ starting times
to their respective nominal starting times. Finally, constraints (6) ensure that the σ interw

t,v variables
attain the time difference that exceed the maximum intended time difference of the nominal starting
times between consecutive weeks.

4.3. Destruction and construction

In the destruction phase, the DTs of randomly selected therapies are removed from the schedule.
In the subsequent construction phase, the DTs of the removed therapies are first assigned to days
and afterward suitable starting times are determined. To this end, we used in Maschler et al.
(2016) the proposed TWCH, which involved the time assignment part to be applied from scratch,
completely ignoring the existing starting times of the kept DTs. In particular, with respect to the
local search algorithm from Section 4.2, discarding the whole time assignment during destruction
and construction is disadvantageous since much previous effort is wasted. Instead, we should try
to transfer meaningful starting times as far as possible. To overcome this drawback, we adopt
in Maschler et al. (2017) the NEH insertion heuristic of Nawaz et al. (1983) which preserves
the sequence of unchanged DTs and inserts the removed ones greedily. Here we incorporate the
extensions for NEH presented by Rad et al. (2009).

In principle there are many options for the destruction phase. Since we keep the assignment of
DTs to days fixed within the local search, it is especially important to allow such modifications
during the destruction and construction phase. Due to the in general tight constraints on the
day assignment level, it can be expected that the therapies’ DTs are planned in close succession.
Consequently, removing the assignments of single DTs within a therapy will have in general only
limited effect as their assignments are usually determined by the remaining ones. In contrast,
removing all assignments of some therapy allows much more flexibility like moving the therapy’s
start to another week. A further aspect is the greedy behavior of the TWCH’s day assignment phase
that acts like the first fit heuristic until it detects that another first fit assignment will induce use
of extended service windows. At this point, TWCH starts to actively delay and stretch the day
assignments of the whole therapy as long it is beneficial with respect to the objective function.
Thus, the destruction of the assignments of entire therapies allows TWCH revising poor decisions.
Although one could think of different goal-driven selection strategies for therapies to remove, we
choose to select random ones, since the destruction phase is our main source of diversification. To
summarize, the deconstruction phase invalidates the day and time assignments of nig-dest randomly
selected therapies. To increase the robustness of the algorithm we do not keep nig-dest fixed for all
iterations, but sample a new value for nig-dest from a discrete uniform distribution β ig-dest at the
beginning of every destruction phase.

The construction phase starts with an application of TWCH’s day assignment on the destroyed
therapies. Afterward, the respective DTs are inserted in a randomized order into the schedule. In
the time assignment phase for the initial solution, we use FRB3 for scheduling the DTs. After each
insertion, all already scheduled DTs are reevaluated and possibly reinserted. In contrast to the
initial solution, the construction phase is executed for many times. Hence, the IG’s construction
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phase is much more time critical and compared to FRB3 a less exhaustive approach is needed.
Rad et al. (2009) proposed, among others, the FRB4k algorithm, which is conceptually between
NEH and FRB3 in that it reconsiders only the k DTs around each inserted DT. FRB4k is based
on the assumption that reevaluating the immediate neighbors has the largest effect. To be precise,
we receive FRB4k if we modify the inner loop of Algorithm 1 such that it reevaluates the DTs at
the positions max(1, l − k) to min(n, l + k), where l is the position of the previously inserted DT
at Line 4. Moreover, unlike Algorithm 1 we start FRB4k within the construction phase not with an
empty sequence π , but with the sequence resulting from sorting the not removed DTs according
to the first time they use the beam resource (see Section 4.2). The nominal starting times are set
as described in Section 4.1, followed by solving models (4)–(9) after all starting times have been
determined.

5. Computational study

In this section, we perform an experimental evaluation of the proposed enhanced IG approach,
which we call from here on EIG. As a reference method, we use a variant of the IG from Maschler
et al. (2016), denoted as IG-LI, for the extended problem formulation. In the experiments, we start
with IG-LI and replace its components step by step with the ones from EIG. The aim is to investigate
the properties and impacts of the individual proposed enhancements and to demonstrate that their
combination yields indeed an improved metaheuristic.

The used artificial benchmark instances are related to the expected situation at MedAustron and
are available at http://www.ac.tuwien.ac.at/research/problem-instances. We consider instances
with 50, 70, 100, 150, 200, and 300 therapies. The used naming schema encodes first the number of
therapies followed by a consecutive number. The length of the planning horizon is derived from the
number of therapies considered in the instance by roughly estimating the number days required to
perform all DTs. Afterward, windows of 14 days are sampled from the planning horizon in which
the therapies have to start. A characteristic of the instances is that there is a ramp-up phase of a
few weeks after which the facility is used at full capacity followed by a wind-down phase near the
end of the planning horizon. Our central resources are the beam and the rooms as they are required
by each DT. They have regular service time windows on each weekday of 14 hours starting from
W̃ start

d followed by extended service time windows of another 10 hours. There are further resources,
like the personnel, that are regularly available only for a part of these 14 hours. All those further
resources are sufficiently dimensioned to be not the primary source of substantial use of extended
service time. At full capacity, the facility is able to perform around 60 DTs on each working day.
To keep the instances with 50 and 70 therapies challenging, we halve the working days, that is, the
extended service time windows starts for the resources at latest seven hours after W̃ start

d . For more
details on the instance generation, see Maschler et al. (2016). We use here the benchmark instances
generated for Maschler et al. (2017), which we created for two reasons. On the one hand, Maschler
et al. (2016) considered DTs composed of activities associated with minimum and maximum time
lags. However, as already mentioned, this feature is not considered as relevant in our real-world
midterm planning application. On the other hand, many of the instances from Maschler et al. (2016)
had rather unrealistically strict constraints concerning the starting days of therapies, which made
an extensive use of extended service time windows unavoidable.
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All algorithms have been implemented in C++14 and compiled with G++ 6.3.0, and all experi-
ments were carried out using a single core of an Intel Xeon E5-2640 v4 CPU with 2.40 GHz. The
LP models for determining the nominal starting times have been solved with Gurobi 7.5. We adopt
the acceptance criterion and the termination condition from Maschler et al. (2016): The incumbent
solution is replaced by a current new solution iff the latter has a smaller objective value, and the
total CPU time is limited to 20 minutes, respectively. In the objective function, we use the weights
γ ext = 1/60, γ finish = 1/100, γ intraw = 1/600, and γ interw = 1/600. The intuition behind these values
is as follows. The time resolution of the instances is in minutes. Weight γ ext is set such that the
use of one hour from an extended service time window corresponds to one unit in the objective
function (1). The weight for the second objective term γ finish reflects the fact that the completion
of a therapy should usually be delayed if performing a DT entirely within extended time can be
avoided. As already mentioned, providing the therapies’ DTs within the allowed variance is not of
medical relevance and is consequently a subordinate goal. Therefore, we set both γ intraw and γ interw

to a 10th of γ ext. A used hour of extended service windows is defined to be equally bad as 10 hours
of excess from the allowed variance between the starting times of the therapies.

To use IG-LI as a reference algorithm, we have to provide an extension that determines in addition
the nominal starting times. This can be done by solving the LP model presented in Section 4.2 for
the initial solution provided by TWCH and at the end of each construction phase. Moreover, like
in the local search procedure presented in Section 4.2, we repeatedly apply the local improvement
method followed by a recalculation of the nominal starting times until no improvements can be
found. As already stated in Section 4.1, it is not straightforward how to extend the time assignment
part of TWCH such that it explicitly respects the additional objective terms. However, due to the
behavior of the time assignment to prioritize DTs with certain properties, we can observe quite
frequently that DTs belonging to the same therapy are scheduled roughly at the same time anyway.

To show that the IG approach presented in this work indeed enhances IG-LI, we will gradually
exchange components of IG-LI with the ones presented here. In this way, we assess the properties of
the individual components and their interplay. We start by exchanging in IG-LI the local improve-
ment component with the local search procedure from Section 4.2. We call the resulting algorithm
IG-LS. Afterward, we interchange in addition the destruction and construction phase, which is
named IG-DRLS. Finally, we swap in IG-DRLS the construction heuristic for the initial solution
and obtain the final EIG. Note that we receive all meaningful variants between IG-LI and EIG by
exchanging the metaheuristic’s components in this order. Starting with applying the proposed local
search method instead of the local improvement makes sense since it is performed last within each
iteration. In contrast, starting with replacing the destruction and construction component with the
one from Section 4.3 yields a conceptually flawed variant. While the construction phase aims at
keeping relative timing characteristics of not removed DTs, the local improvement operator ignores
the time assignment provided by the construction phase. Hence, either the construction phase or
the local improvement becomes dominant and ignores the influence of the other. Exchanging the
construction heuristic for the initial solution after the construction phase is also reasonable for the
same argument: In an IG variant using the newly assembled construction heuristic combined with
the construction phase of IG-LI, the first successful iteration would completely revoke the time
assignment for the initial solution.

In a preliminary study, we experimented with several neighborhoods in place of the exchange
neighborhood within the EIG. We considered two variants of insertion neighborhoods. The moves

C© 2018 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies



472 J. Maschler and G. R. Raidl / Intl. Trans. in Op. Res. 27 (2020) 458–479

of the first consist of removing and reinserting a DT in another position in the sequence obtained
by decoding a considered day. Besides being larger than the exchange neighborhood, insertion
moves are less likely to improve the solution due to the interleaving of DTs with respect to the used
rooms in good solutions. The second considered insertion neighborhood removes and reinserts
DTs, but changes only the positions of the DTs requiring the same room resource. The exchange
neighborhood performs better for two reasons. On the one hand, DTs have in general different
timing characteristics and resource requirements. Thus, keeping the positions of the DTs requiring
other room resources fixed can cause disruptions in the schedule as well. On the other hand, if we
only modify the positions of the DTs requiring the same room, then the starting times of the affected
DTs change typically to larger degree. This may cause frequently an increase in the objective terms
regarding the nominal starting times. Moreover, we also tried a neighborhood based on inversions
of parts of the DT sequence on a considered day. Clearly, inversions of sequences of two or three
subsequent DTs are already covered by exchanges. Inversion of very long sequences of DTs are
very likely to accumulate large costs from the deviations of nominal starting times. Therefore,
we considered inverting sequences up to a given maximal length. Although being smaller than the
exchange neighborhood and, hence, allowing more iterations of the IG, it turned out that the overall
performance is weaker compared to the presented approach. Most likely many improving exchanges
of more distant DTs with respect to the job sequence cannot be replicated by inversions. Finally,
we observed for the presented local search method that the next improvement strategy converges,
in general, significantly faster than the best improvement strategy, while yielding similarly good
solutions.

The preliminary results of this work presented in Maschler et al. (2017) focused on the first two
steps. The experiments indicate that exchanging just the local improvement operator of the IG-LI
with the local search component does not yield a substantial improvement. If, however, both local
search and new construction phase are used together, then the resulting approach clearly dominates
IG-LI. The main reason for this performance improvement is the interplay between the construction
phase and the local search procedure. On the one hand, the local search operator is, in general, able to
provide better results than IG-LI’s local improvement operator. However, encoding, decoding, and
evaluating the solution is computationally demanding and, hence, converging to a local optimum
is time-consuming, especially on strongly perturbed solutions. On the other hand, the construction
phase is designed in such a way that large parts of the sequence of the DTs are preserved while
introducing the removed DTs in a sensible but randomized way. Starting with a solution close to
a local optimum with respect to the DT exchange neighborhood allows to reduce the time spent
in the local search procedure and, consequently, increases the total number of iterations. Although
these experiments have been conducted on the original version of the PTPSP and with a slightly
simplified algorithm, these results can be replicated also for the problem at hand. Therefore, we
consider here only IG-DRLS further.

The metaheuristics’ strategy parameters were tuned using the automatic parameter configuration
tool irace (López-Ibáñez et al., 2016) in version 2.4. In detail, irace was applied in two rounds for
each instance size separately. To this end, we used an independent set of instances designated for
tuning and a computational budget of 2000 experiments for each application of irace. In the first
round, we used irace with a larger amount of parameters for determining an effective design of
the algorithm. During this configuration phase, we employed FRB4k instead of FRB3 within the
construction heuristic for the initial solution. The values obtained for parameter k for the initial
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Table 1
Parameter settings for IG-LI, IG-DRLS, and EIG determined by irace

Instance size IG-LI IG-DRLS EIG

nT β ig-dest nrta-noimp krta-rand β ig-dest kfrb4 β ig-dest kfrb4

50 U{2, 18} 1.881 2 U{2, 2} 67 U{2, 4} 24
70 U{6, 7} 2.300 2 U{2, 3} 46 U{2, 9} 16

100 U{6, 10} 0.513 7 U{3, 3} 2 U{3, 3} 1
150 U{3, 8} 0.660 9 U{2, 2} 12 U{2, 2} 12
200 U{6, 9} 0.598 6 U{2, 3} 17 U{2, 2} 14
300 U{29, 45} 2.420 2 U{2, 5} 25 U{2, 2} 44

solution corresponded with the number of DTs assigned to a fully utilized day, that is, k ≈ n,
and thus FRB4k degenerates to FRB3. This suggests that the comprehensiveness and the implied
computational costs of FRB3 are justified and beneficial for the overall approach. For the local
search method, we tested randomizing the order in which the local search examines the neighboring
solutions. It turned out that this randomization is favorable over considering moves in the order
of the starting times of respective DTs. From a theoretical point of view, the randomization of the
order of the considered moves removes a bias toward exchanges at the beginning of days. Moreover,
we raced whether to activate the accelerations in the local search that prematurely terminate the
evaluation of a neighbor. While the technique described in Section 4.2 has been activated on all
instance sizes, a complementary method considering increased variations to the nominal starting
times has been rejected. In the second round of the algorithm configuration, we kept the assessed
design choices fixed to focus on the central parameters: β ig-dest, nrta-noimp, krta-rand for IG-LI and
β ig-dest, kfrb4 for IG-DRLS and EIG. As described in Section 4.3, β ig-dest specifies a discrete uniform
distribution U (a, a + b) from which in each iteration a random number of therapies to destroy
is sampled. The parameter configuration determined values for a and b, where a ∈ {1, . . . , 40}
and b ∈ {0, . . . , 40}. For nrta-noimp and krta-rand we used the value ranges [0.5,2.5] and {1, . . . , 10},
respectively. We denote with kfrb4 the parameter k of the FRB4k algorithm used in the construction
phase and consider values from {0, . . . , 70}. The resulting parameter configurations are shown in
Table 1.

Table 2 depicts for IG-LI, IG-DRLS, and EIG averages of the final objective values obj and
the corresponding standard deviation σ (obj) over 30 runs for each of the 30 benchmark instances.
Moreover, Table 2 gives the probability values obtained by an application of an one-tailed Wilcoxon
rank sum test on the objective values of two methods at a time. We start by comparing IG-LI
with IG-DRLS. The average objective values of IG-DRLS are on 29 of 30 benchmark instances
smaller than those obtained by IG-LI. The Wilcoxon rank sum test indicated with a confidence
level of 95% that IG-DRLS yields significantly better solutions than IG-LI on 29 benchmark
instances, the only exception is instance 050-05. In fact, on 21 instances, the average objective
values are halved compared with the ones from IG-LI, and on eight instances the average objective
values of IG-DRLS are even 75% smaller compared with those of IG-LI. These results confirm
the outcome of the experiments conducted for the original variant of the PTPSP in Maschler et al.
(2017), which showed the advantage of applying the new construction and local search components.

C© 2018 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies



474 J. Maschler and G. R. Raidl / Intl. Trans. in Op. Res. 27 (2020) 458–479

Table 2
Comparison of IG-LI, IG-DRLS, and EIG

IG-LI (1) IG-DRLS (2) EIG (3) Wilcoxon rank sum test

Instance obj σ (obj) obj σ (obj) obj σ (obj) p1≤2 p1≤3 p2≤3

050-01 8.570 1.323 2.784 0.562 2.608 0.215 0.000 0.000 0.027
050-02 52.830 2.228 40.005 3.006 39.812 2.398 0.000 0.000 0.339
050-03 47.600 2.022 37.281 3.821 37.660 3.252 0.000 0.000 0.733
050-04 29.561 1.564 26.419 3.743 25.795 3.152 0.000 0.000 0.261
050-05 53.363 1.996 54.089 2.761 49.848 2.725 0.893 0.000 0.000
070-01 28.600 2.826 13.242 1.742 14.015 1.787 0.000 0.000 0.945
070-02 48.346 2.861 44.871 5.588 41.540 4.556 0.003 0.000 0.007
070-03 74.141 3.957 70.376 4.897 70.227 5.833 0.000 0.001 0.524
070-04 13.826 1.794 7.710 1.907 7.313 1.556 0.000 0.000 0.282
070-05 56.838 4.016 49.328 4.593 49.316 3.518 0.000 0.000 0.371
100-01 81.405 5.025 18.383 2.296 17.840 2.524 0.000 0.000 0.075
100-02 108.194 5.006 24.366 2.041 23.552 2.179 0.000 0.000 0.099
100-03 53.978 3.251 15.564 1.592 15.306 1.457 0.000 0.000 0.275
100-04 88.931 5.892 19.703 1.478 20.865 1.694 0.000 0.000 0.992
100-05 77.063 3.895 14.762 1.256 16.089 1.235 0.000 0.000 1.000
150-01 128.564 7.308 40.590 5.421 35.605 5.399 0.000 0.000 0.001
150-02 273.450 10.896 80.328 4.877 72.008 5.785 0.000 0.000 0.000
150-03 127.236 5.736 72.212 6.622 62.368 5.999 0.000 0.000 0.000
150-04 116.294 5.290 32.255 2.126 27.787 1.744 0.000 0.000 0.000
150-05 96.049 6.785 22.889 2.019 20.093 1.619 0.000 0.000 0.000
200-01 194.440 9.204 76.943 5.658 61.244 5.783 0.000 0.000 0.000
200-02 223.821 7.241 88.747 5.988 78.073 6.780 0.000 0.000 0.000
200-03 165.977 8.092 57.843 4.214 49.197 3.277 0.000 0.000 0.000
200-04 212.980 9.355 63.085 7.408 51.859 6.435 0.000 0.000 0.000
200-05 188.749 7.701 44.143 3.253 33.294 2.572 0.000 0.000 0.000
300-01 239.586 5.072 52.349 4.503 35.082 3.149 0.000 0.000 0.000
300-02 344.637 9.689 133.092 7.858 128.118 10.560 0.000 0.000 0.028
300-03 249.621 10.444 64.612 5.839 48.084 3.599 0.000 0.000 0.000
300-04 370.461 9.514 162.315 8.896 115.586 8.354 0.000 0.000 0.000
300-05 251.234 7.381 48.194 2.936 35.885 2.312 0.000 0.000 0.000

We consider for each instance and every approach average objective values obj of 30 runs and corresponding standard deviations
σ (obj). Moreover, the p-values originating from an application of the Wilcoxon rank sum test on pairs of algorithms are given.
To this end, we denote with pA≤B the p-values under the null hypothesis that approach A performs better than or equal to method
B. We mark for each instance the best average objective value and p-values smaller than 0.05 in bold.

In fact, the superiority of IG-DRLS over IG-LS is here even more predominant. This can be
explained by the fact that we use here in contrast to Maschler et al. (2017) FRB4k instead of
NEH (i.e., FRB40). Moreover, the new construction operator as well as the local search operator
are able to handle the more complicated objective much better than their counterparts within
IG-LI.

We continue by taking our main approach into consideration. Table 2 clearly shows that EIG
outperforms the two other metaheuristics, and provides the best average objective values on 26 of
30 benchmark instances. As before, we applied a Wilcoxon rank sum test on the objective values
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Table 3
The breakdown of the average objective values of 30 runs for IG-LI, IG-DRLS, and EIG presented in Table 2 into the
first two and the last two terms of our objective function (1) denoted as ext + fin and iaw + iew, respectively. Best values
for each objective term are marked in bold

IG-LI IG-DRLS EIG

Instance ext + fin iaw + iew ext + fin iaw + iew ext + fin iaw + iew

050-01 2.834 5.735 2.770 0.014 2.602 0.006
050-02 37.729 15.100 37.613 2.392 36.908 2.903
050-03 33.642 13.958 34.373 2.908 34.533 3.127
050-04 20.834 8.726 24.393 2.026 23.694 2.100
050-05 40.899 12.464 50.447 3.642 46.279 3.569
070-01 16.812 11.788 12.934 0.308 13.615 0.400
070-02 32.592 15.754 42.868 2.003 38.572 2.968
070-03 55.566 18.574 67.096 3.280 65.863 4.364
070-04 6.325 7.501 7.461 0.249 6.769 0.544
070-05 41.663 15.175 47.482 1.846 46.451 2.866
100-01 23.018 58.387 13.869 4.514 13.422 4.418
100-02 31.548 76.646 17.166 7.199 16.142 7.410
100-03 10.263 43.715 10.894 4.670 10.413 4.893
100-04 26.416 62.514 13.340 6.364 14.018 6.847
100-05 24.704 52.359 9.398 5.364 11.085 5.004
150-01 34.650 93.914 28.387 12.203 26.102 9.504
150-02 134.003 139.447 59.588 20.740 52.431 19.577
150-03 51.618 75.619 59.815 12.396 48.742 13.626
150-04 24.568 91.727 20.950 11.305 17.758 10.028
150-05 24.652 71.396 14.471 8.417 13.901 6.192
200-01 66.198 128.243 52.634 24.309 39.416 21.828
200-02 86.416 137.405 67.024 21.723 56.513 21.561
200-03 36.428 129.549 35.604 22.239 29.719 19.478
200-04 67.216 145.764 45.907 17.178 34.686 17.174
200-05 46.356 142.393 28.765 15.378 20.421 12.873
300-01 34.580 205.006 29.479 22.870 20.496 14.586
300-02 131.749 212.888 96.046 37.046 90.977 37.141
300-03 42.013 207.609 39.849 24.764 30.603 17.481
300-04 120.678 249.783 115.095 47.220 76.253 39.334
300-05 32.446 218.789 24.558 23.636 21.373 14.512

with a confidence level of 95% for each instance to compare EIG with IG-LI and EIG with IG-
DRLS. The former tests showed that EIG performs significantly better on all benchmark instances.
The latter series of statistical tests evinced that the EIG outperforms IG-DRLS on 18 benchmark
instances significantly, while the observed better average objective values of IG-DRLS have been
two times significant. Furthermore, there is clear tendency that EIG significantly performs better
than IG-DRLS on larger benchmark instances. This indicates that exchanging the construction
heuristic for the initial solution with the one described in Section 4.1 becomes of greater importance
with the increasing size of the instances. The reason for this is that with larger instance sizes also the
computational cost for each iteration of the IG increases and, consequently, the number of executed
iterations decreases. Hence, quality of the initial solution becomes with larger instance sizes more
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and more important. This argument is further supported by the fact that the construction heuristic
presented here requires substantially more of the total time budget of 20 CPU minutes than the
application of TWCH: The average computation time for the construction heuristic based on FRB3
is on the largest instances 29.8 seconds, while the computation of the initial solution for IG-LI and
IG-DRLS takes on average only 0.25 seconds. On this account, it becomes more evident that the
combination of TWCH with FRB3 is indeed advantageous and that the large processing time is
well spent.

Table 3 gives a more detailed breakdown of the average objective values presented in Table 2.
To this end, we denote with ext + fin the part of the average objective values originating from the
use of extended service time windows and from the delayed completion of therapies. The sum of
these two objective terms correspond to the objective function used in the original variant of the
PTPSP. Moreover, iaw + iew stands for the part of the average objective values that arise from the
intraweek and interweek objective terms. For a well-performing method, it is clearly not sufficient to
focus on only one part of the objective function while neglecting the other aspects of the problem.
This is especially visible for the smaller benchmark instances. On the instances with 50 and 70
therapies, IG-LI frequently provides solutions with the smallest costs with respect to the first two
terms of objective function (1). This comes, however, with a much higher cost on the intraweek and
interweek objective terms compared with the other two approaches. Furthermore, IG-DRLS is on
several occasions able to provide solutions with less excess on the allowed variations of the DTs’
starting times. Nevertheless, EIG outperforms the other two approaches on almost all cases due to
the better balance between the objective parts. On the larger benchmark instances, the superiority
of EIG over IG-LI and IG-DRLS becomes more evident. For most benchmark instances with more
than 100 therapies, the EIG metaheuristic is able to provide the best results on both parts of the
objective function.

6. Conclusions

In this paper, we presented an extended version of the PTPSP in which the starting time variations
of DTs belonging to the same therapy should not exceed specified thresholds. To this end, we
introduced nominal starting times that serve as a reference point for computing the variation within
and between weeks. From a practical viewpoint, this extension increases the difficulty of the problem
substantially since on the one hand the calculation of the nominal starting times requires the DTs’
starting times, while on the other hand finding good starting times involves knowing the nominal
starting times. Moreover, minimizing the variation of starting times is frequently contrary to our
main objective, which is to minimize the use of extended service time windows. Consequently, also
the design of an effective metaheuristic is more involved as it requires to balance the different aspects
of the objective function.

To tackle the problem at hand, we provide an IG metaheuristic for the PTPSP that enhances the
IG from our previous work (Maschler et al., 2016). The approach features a construction heuristic
that combines parts of the TWCHs from Maschler et al. (2016) and the FRB heuristics from Rad
et al. (2009). Moreover, a local search technique is applied that alternately examines an exchange
neighborhood to improve the DTs starting times and solves an LP model that computes nominal
starting times. In contrast to our previous IG, the presented approach is able to preserve the order of
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the not removed DTs on the individual days. The resulting advantage is that far more information
from the incumbent solution is retrieved.

To evaluate the performance of the proposed IG, we started by extending the IG from our pre-
vious work to cover the new PTPSP variant. Afterward, we replaced components of this reference
algorithm step by step with the newly described ones to assess their properties. The enhance-
ments are twofold. First, the interplay between its construction phase and the applied local search
method: The local search procedure yields, in general, better results than applying TWCH’s ran-
domized time assignment iterated for many times. However, due to the required encoding and
decoding steps, evaluating neighbors is time-consuming. Hence, to ensure that the metaheuris-
tic is able to perform sufficiently many iterations, it is required that the neighborhood requires
on average only a few steps until it reaches a local optimum. To this end, we apply in the con-
struction phase an insertion heuristic based on FRB4k that iteratively places the removed DTs
into the permutation resulting from sorting the DTs according to the times at which they use
the beam. Second, although being computationally expensive, the newly presented construction
heuristic for the initial solution based on TWCH and FRB3 gives the IG a superior starting
point. The resulting approach outperforms our reference method on all benchmark instances
significantly.

A remaining challenge is to determine suitable parameter configurations for real-world in-
stances. Although the considered benchmark instances aim at modeling the expected situation
at MedAustron, they contain assumptions and simplifications which might differ in the future
practice. The main characteristic of the used benchmark instances is the number of therapies
that have to be scheduled. Our experiments showed that the values of some parameters are
highly dependent on the instance size. For real-world instances, it is likely that there are also
other aspects that have to be considered for obtaining good parameter configurations. Hence, the
next step to improve the applicability of the presented approach is to define a parameter model
that determines values for the IG’s strategy parameters on the basis of the observed instance
characteristics.

PTPSP, as defined here, still simplifies the midterm planning part arising in practice. In particular,
therapies are restricted here to consist only of DTs. In the general case, however, there is a treatment
planning phase preceding all DTs in which the DTs are prepared. Since other constraints have to be
enforced for these tasks, they cannot be modeled as DTs. There are further activities (e.g., control
examinations) complementing the core therapies that have to be provided once a week before or
after one of the DTs. However, from a practical viewpoint these additional activities should never
influence the throughput of the facility and can be sufficiently well handled in a postprocessing
step.

We use in this work an acceptance criterion that accepts a current solution if it has a better objective
value. An obvious next step is to also consider acceptance criteria that allow selecting suboptimal
solutions, for example, in a simulated annealing like fashion (see Ruiz and Stützle, 2007). Moreover,
the proposed local search procedure exchanges the DTs only within days. Neighborhoods that can
alter the days on which a therapy is applied seem promising. The main challenge here is to design and
restrict the neighborhoods such that the resulting local search method is still fast enough to allow a
sufficiently large number of IG iterations. We formulated PTPSPs as a single-objective optimization
problem using a linear combination of the objective goals. A further natural next step would be to
consider PTPSP as a multiobjective optimization problem.
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