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Kurzfassung

Die vorliegende Arbeit besteht aus drei Teilen, die Resultate der Large Deviations Theory be-
nutzen. In den letzten beiden Teilen spielen auch stochastische Volterra Integralgleichungen
eine wichtige Rolle. Diese sind essenziell, wenn man in klassischen stochastischen Volatilitäts-
modellen einen fraktionellen Kern in die Gleichung für die Instantaneous Variance einführen
möchte, um eine „rough“ Version dieses Modells zu erzeugen. Large deviations werden oft be-
nutzt, um in einer Vielzahl von Situation asymptotische Resultate herzuleiten. Diese Resultate
sind besonders in der Finanzmathematik gefragt, sei es um finanzmathematische Größen, wie
etwa Optionspreise, Implied Volatility, etc., qualitativ zu beurteilen oder auch z.B. für Fast
Calibration Schemes.

Kapitel 1, Preliminaries and some well-known results, präsentiert einige aus der Literatur
bekannte Resultate, die wir im weiteren auch verwenden werden. Auch die für diese Arbeit
relevanten Definitionen und Resultate aus der Large Deviations Theory werden hier überblicks-
mäßig gezeigt.

Kapitel 2, Large deviations related to the law of the iterated logarithm for Itô diffusions,
basiert auf einem Paper [GG20] zusammen mit Stefan Gerhold, das im Journal „Electronic
Communications in Probability“ publiziert wurde. In diesem Teil der Arbeit zeigen wir ein
Large Deviations Principle für das Supremum einer skalierten Itô Diffusion. Skaliert man eine
Brownsche Bewegung wie beim Gesetz des iterierten Logarithmus, dann konvergiert das Supre-
mum davon gegen Eins wenn die Zeit gegen Null geht. Upper Large Deviations dieses Prozesses
bekommt man, indem man das Problem via Trefferzeiten einer stetigen Kurve formuliert und
dann Resultate für Trefferzeiten von Strassen [Str67] anwendet. Wir erweitern das ganze zu
einem small-time Large Deviations Principle für das Supremum einer skalierten Itô Diffusion,
wobei die Hauptreferenz ein Resultat von Lerche [Ler86] ist, das auf Strassens Resultat aufbaut.

Kapitel 3, Large deviations for fractional volatility models with non-Gaussian volatility driver,
basiert auf einem Paper [GGG21] gemeinsam mit Stefan Gerhold und Archil Gulisashvili, das im
Journal „Stochastic Processes and their Applications“ publiziert wurde. In diesem Kapitel be-
trachten wir non-Gaussian fractional stochastic volatility models. Die Volatilität in solch einem
Modell besteht aus einer positiven Funktion mit einem stochastischen Prozess als Argument.
Dieser wird erzeugt durch eine fraktionelle Transformation der Lösung einer stochastischen Dif-
ferentialgleichung, wobei die Yamada-Watanabe-Bedingung erfüllt sein muss. Derartige Modelle
sind Verallgemeinerungen der fractional Version des Heston Modells aus Bäuerle und Desmettre
[BD20]. Wir zeigen pfadweise Large Deviations und small-noise Large Deviations für den Log-
Preis in einem solchen non-Gaussian Modell. Weiters zeigen wir in einem sehr vereinfachten
Beispiel, wie man die Taylor Entwicklung zweiter Ordnung für die Rate Function dieser Large
Deviations Principles berechnen könnte.

Kapitel 4, Rough 3/2 – A truncated ansatz, ist eine gemeinsame Arbeit mit Stefan Gerhold,
die noch nicht publiziert wurde. In diesem Teil der Arbeit wird eine „rough“ Variante des be-
kannten nicht-affinen 3/2-Modells vorgeschlagen. Die Koeffizienten(funktionen) der zugrunde-



liegenden stochastischen Volterra Gleichung (SVE) werden in geeigneter Weise abgeschnitten,
um die Existenz einer Lösung zu sichern. Es wird gezeigt, dass unser Modell die Vorausset-
zungen von Zhang [Zha10] erfüllt. Dennoch werden die notwendigen Abschätzungen für den
Existenzbeweis ausführlich gezeigt, um sie einfach nachvollziehbar zu machen. Mithilfe von
Jacquier und Pannier [JP20] bekommen wir, nachdem alle Voraussetzungen gezeigt wurden,
pfadweise small-noise und small-time Large Deviations für die Instantaneous Variance und den
Log-Preis Prozess. Für einen Teil davon bekommen wir dann auch Moderate Deviations Prin-
ciples. Am Ende dieses Teils der Arbeit werden noch ein paar Anwendungsbeispiele gebracht,
wie etwa Asymptotiken für Implied Volatility und Optionspreise auf Realized Variance. Wei-
ters wird ein Implementierungsvorschlag mittels eines naiven Euler Schemes zur Simulation der
Pfade präsentiert.

C



Abstract

This thesis consists of three parts, all of which are related to large deviations theory. In the
second and third part, stochastic Volterra integral equations play an important role. Stochastic
Volterra equations are essential when it comes to rough volatility models, because a natural
way of introducing roughness in a (classic) stochastic volatility model is to add a fractional
(weakly singular) kernel to the integrand coefficient functions of an ordinary Itô diffusion. Large
deviations results help, in a variety of situations, to establish asymptotic results. These can be
used to develop asymptotic results for all kind of objects in the area of Financial Mathematics.
These results can e.g. be used for investigating the qualitative behavior of these objects in a
special situation or to develop fast calibration schemes.

Chapter 1, Preliminaries and some well-known results, presents some results from the liter-
ature and introduces notions and results from large deviations theory.

Chapter 2, Large deviations related to the law of the iterated logarithm for Itô diffusions,
is based on the paper [GG20], a joint work with Stefan Gerhold, published in the journal
“Electronic Communications in Probability”. This work is a pure mathematics topic and does
not provide applications in Finance. In this chapter, we establish a large deviations principle
for the supremum of a scaled Itô diffusion. When a Brownian motion is scaled according to
the law of the iterated logarithm, its supremum converges to one as time tends to zero. Upper
large deviations of the supremum process can be quantified by writing the problem in terms
of hitting times and applying a result of Strassen [Str67] on hitting time densities. We extend
this to a small-time large deviations principle for the supremum of scaled Itô diffusions, using
as our main tool a refinement of Strassen’s result due to Lerche [Ler86].

Chapter 3, Large deviations for fractional volatility models with non-Gaussian volatility
driver, is based on the paper [GGG21], a joint work with Stefan Gerhold and Archil Gulisas-
hvili, published in the journal “Stochastic Processes and their Applications”. In this chapter,
we study non-Gaussian fractional stochastic volatility models. The volatility in such a model
is described by a positive function of a stochastic process that is a fractional transform of the
solution to an SDE satisfying the Yamada-Watanabe condition. Such models are generaliza-
tions of a fractional version of the Heston model considered in Bäuerle and Desmettre [BD20].
We establish sample path small-noise large deviation principles for the log-price process in a
non-Gaussian model. We also illustrate how to compute the second order Taylor expansion of
the rate function, in a simplified example.

Chapter 4, Rough 3/2 – A truncated ansatz, is based on a joint working paper with Stefan
Gerhold. In this chapter, we come up with a rough variant of the well-known 3/2 model. The
coefficient functions of the underlying stochastic Volterra integral equation (SVE) are truncated
in an appropriate manner to ensure existence of the solution. The computations for showing
existence according to Zhang [Zha10] are shown in detail such that they can easily be followed.
With the help of Jacquier and Pannier [JP20] we establish sample path small-noise and small-
time large deviations for the instantaneous variance and the log-price process. For some of



these we also get moderate deviation principles. Then, we present some applications of these
large deviations results. Also a simple implementation using a naive Euler approach for the
simulation of sample paths is given at the end of this chapter.
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1. Preliminaries and some well-known
results

In this chapter we will cite some results that will be used throughout the thesis. An exhaustive
introduction is omitted at this point, because separate introductory sections can be found in
each of the subsequent chapters.

1.1. Preliminaries

Theorem 1.1.1 (Khinchin’s law of the iterated logarithm). Let B be a real-valued Brownian
motion with continuous sample paths. Then

P lim sup
t ∞

Bt√
2t log log t

= 1 = 1, (1.1.1)

P

lim sup
t 0

Bt

2t log log 1
t

= 1

 = 1. (1.1.2)

Proof. See Theorem 9.23 in Chapter 2 of [KS91].

Theorem 1.1.2 (Reflection principle for Brownian motion). Let B be a standard Brownian
motion and a > 0. Then

P sup
0≤s≤t

Bs ≥ a = 2P(Bt ≥ a). (1.1.3)

Proof. See pp. 79–80 in [KS91].

Theorem 1.1.3 (Borell-TIS inequality). Let X = (Xt)t∈[0,1] be a centered and continuous
Gaussian process. Set σ2 = supt∈[0,1]Var(Xt). Then m := E[supu∈[0,1]Xu] is finite and we
have, for all x > m,

P sup
u∈[0,1]

Xu ≥ x ≤ e−
(x−m)2

2σ2 . (1.1.4)

.

Proof. See Theorem 4.2 in [Nou12]. The proof there uses the continuity of X. In fact, we also
get this inequality without continuity, but the proof gets harder.

1



1. Preliminaries and some well-known results

Theorem 1.1.4 (Theorem 3.4.6 in [KS91]). Let M = {Mt,Ft; 0 ≤ t < ∞} ∈ Mc,loc satisfy
lim
t→∞ M t = ∞ a.s. P . Define, for each 0 ≤ s < ∞, the stopping time

T (s) = inf{t ≥ 0; M t > s}. (1.1.5)

Then, the time-changed process

Bs := MT (s), Gs := FT (s); 0 ≤ s < ∞ (1.1.6)

is a standard one-dimensional Brownian motion. In particular, the filtration {Gs} satisfies the
usual conditions, and we have P -a.s.

Mt = B M t
; 0 ≤ t < ∞. (1.1.7)

Corollary 1.1.5 (Problem 3.4.7 in [DZ98]). Show that if P (S := M ∞ < ∞) > 0, it is still
possible to define a Brownian motion B wor which (1.1.7) holds.

Theorem 1.1.6 (Kolmogorov continuity criterion). Let {X(t), t ≥ 0} be an Rd-valued stochas-
tic process, and τ a bounded random time. Suppose that for some C0, p > 0 and δ > 1,

E |(X(t)−X(s)) · 1{s,t∈[0,τ ]}|p ≤ C0|t− s|δ. (1.1.8)

Then, there exist constants C1 > 0 and a ∈ (0, δ−1
p ) independent of C0 and a continuous version

X̃ of X such that

E sup
s=t∈[0,τ ]

|X̃(t)− X̃(s)|p
|t− s|ap ≤ C1 · C0. (1.1.9)

Proof. See Theorem 2.10 in [Zha10]. Note that the formulation of the Kolmogorov continuity
criterion in [Zha10] is for their generalized setting. Clearly, in our setting one can take R resp.
R2 instead of their Banach space X.

Theorem 1.1.7 (Burkholder-Davis-Gundy inequality). Let M , M0 = 0, be a continuous local
martingale with a.s. finite quadratic variation M and set M∗

t := sups≤t |Ms|. Then, for every
p > 0 there exist constants cp and Cp such that for all stopping times τ ,

cpE M p
T ≤ E (M∗

T )
2p ≤ CPE M p

T . (1.1.10)

Proof. See Theorem 3.28 in Chapter 3 of [KS91].

As a consequence, we can use the BDG inequality to estimate expectations of stochastic
integrals without a stochastic driver.

2



1. Preliminaries and some well-known results

Corollary 1.1.8. Let X be a progressively measurable process with E
T
0 X2

t dt < ∞. Then,
the stochastic integral with respect to Brownian motion is well-defined and its moments can be
estimated by

E
t

0
Xs dWs

p

≤ C · E
t

0
|Xs|2 ds

p
2

, (1.1.11)

for any p > 0 and some C > 0.

Theorem 1.1.9 (Gronwall’s inequality). Let I := [a, b] and continuous functions u, α : I → R
and β : I → [0,∞). If the integral inequality

u(t) ≤ α(t) +
t

a
β(s)u(s) ds (1.1.12)

holds for all t ∈ I then we have

u(t) ≤ α(t) +
t

a
α(s)β(s)e

t
s β(σ) dσ ds (1.1.13)

for all t ∈ I.

Proof. See Theorem 1.3.2 in [Pac98].

Theorem 1.1.10 (Minkovski inequality). Suppose that (S1, µ1) and (S2, µ2) are two σ-finite
measure spaces and F : S1 × S2 → R is measurable. The Minkovski’s integral inequality is

S2 S1

F (x, y)µ1(dx)
p

µ2(dy)

1
p

≤
S1 S2

|F (x, y)|pµ2(dy)

1
p

µ1(dx). (1.1.14)

with obvious modifications in the case p = ∞. If p > 1, and both sides are finite, then equality
holds only if |F (x, y)| = ϕ(x)ψ(y) a.e. for some non-negative measurable functions ϕ and ψ.

Proof. See Theorem 202 in [HLP88].

1.2. Large and moderate deviations

In the following we cite some definitions and results for large deviations from [DZ98]. The
large deviation principle (LDP) characterizes the limiting behavior, as → 0, of a family of
probability measures {µ } on (X ,B) in terms of a rate function. This characterization is via
asymptotic upper and lower exponential bounds on the values that {µ } assigns to measurable
subsets of X . Throughout, X is a topological space so that open and closed subsets of X are
well-defined, and the simplest situation is when elements of BX , the Borel σ-field on X , are of
interest. All probability spaces are assumed to have been completed, and, with some abuse of
notations, BX always denotes the thus completed Borel σ-field.

3



1. Preliminaries and some well-known results

Definition 1.2.1 (Rate function, p. 4 [DZ98]). A rate function I is a mapping I : X → [0,∞]
that is finite at least at one point and lower semicontinuous, i.e. for all α ∈ [0,∞), the level set
ψI(α) := {x : I(x) ≤ α} is a closed subset of X . A good rate function is a rate function for
which all the level sets ψI(α) are compact subsets of X . The effective domain of I, dented by
DI , is the set of points in X of finite rate, namely, DI := {x : I(x) < ∞}. When no confusion
occurs, we refer to DI as the domain of I.

Definition 1.2.2 (Large deviation principle, p. 5 [DZ98]). We say that µ satisfies the large
deviation principle with a rate function I if, for all Γ ∈ B,

− inf
x∈Γ◦ I(x) ≤ lim inf

→0
logµ (Γ) ≤ lim sup

→0
logµ (Γ) ≤ − inf

x∈Γ
I(x). (1.2.1)

Definition 1.2.3 (Cameron-Martin space, p. 261 in [GW16]). The Cameron-Martin space on
[0, T ] is given by

H := h ∈ C([0, T ],Rn); h(t) =
t

0
ḣ(s) ds, t ∈ [0, T ]; h 2

H :=
T

0
|ḣ(t)|2 dt < ∞ . (1.2.2)

Definition 1.2.4 (Hölder Norm, p. 260 in [GW16]). For 0 ≤ α < 1 given, for each function φ,
the Hölder norm . α is defined by

φ α = sup
s,t∈[0,T ], s=t

|φ(t)− φ(s)|
|t− s|α . (1.2.3)

We denote C0([0, T ],Rd) the space of continuous functions on [0, T ] with initial value 0, equipped
the supremum-norm and set

Cα
0 ([0, T ],Rd) = φ ∈ C0([0, T ],Rd); lim

δ→0
sup

|s−t|<δ, s=t

|φ(t)− φ(s)|
|t− s|α = 0, φ α < ∞ . (1.2.4)

An LDP is preserved under continuous mappings. We present the theorems of [DZ98] han-
dling that.

Theorem 1.2.5 (Contraction principle, Theorem 4.2.1 in [DZ98]). Let X and Y be Hausdorff
topological spaces and f : X → Y a continuous function. Consider a good rate function I :
X → [0,∞].

(a) For each y ∈ Y, define

I (y) := inf{I(x) : x ∈ X , y = f(x)}. (1.2.5)

Then I is a good rate function on Y, where, as usual, the infimum over the empty set is
taken as ∞.

4



1. Preliminaries and some well-known results

(b) If I controls the LDP associated with a family of probability measures µ on X , then I
controls the LDP associated with the family of probability measures {µ ◦ f−1} on Y.

In Section 4.2.2 of [DZ98], the authors present an extension of the contraction principle for
non-continuous functions, if there is a “suitable” approximation of the process available.

Definition 1.2.6 (Definition 4.2.10 in [DZ98]). Let (Y, d) be a metric space. The probability
measures {µ } and {µ̃ } on Y are called exponentially equivalent if there exist probability spaces
{(Ω,B , P )} and two families of Y-valued random variables {Z } and {Z̃ } with joint laws {P }
and marginals {µ } and {µ̃ }, respectively, such that the following condition is satisfied: For
each δ > 0, the set {ω : (Z̃ , Z ) ∈ Γδ} is B measurable, and

lim sup
→0

logP (Γv0δ) = −∞, (1.2.6)

where

Γδ := {(ỹ, y) : d(ỹ, y) > δ} ⊂ Y × Y. (1.2.7)

Theorem 1.2.7 (Theorem 4.2.13 in [DZ98]). If an LDP with a good rate function I(·) holds
for the probability measures {µ }, which are exponentially equivalent to {µ̃ }, then the same
LDP holds for {µ̃ }.
Definition 1.2.8 (Definition 4.2.14 in [DZ98]). Let Y and Γδ be as in Definition 1.2.6. For
each > 0 and all m ∈ Z+ , let (Ω,B , P ,m) be a probability space, and let the Y-valued
random variables Z̃ and Z ,m be distributed according to the joint law P ,m, with marginals
µ̃ and µ ,m, respectively. {Z ,m} are called exponentially good approximations of {Z̃ } if, for
every δ > 0, the set {ω : (Z̃ , Z ,m) ∈ Γδ} is B measurable and

lim
m→∞ lim sup

→0
logP ,m(Γδ) = −∞. (1.2.8)

Similarly, the measures {µ ,m} are exponentially good approximations of {µ̃ } if one can con-
struct probability spaces {(Ω,B , P ,m)} as above.

Theorem 1.2.9 (Theorem 4.2.16 in [DZ98]). Suppose that for every m, the family of mea-
sures {µ ,m} satisfies the LDP with rate function Im(·) and that {µ ,m} are exponentially good
approximations of {µ̃ }. Then

(a) {µ̃ } satisfies a weak LDP with the rate function

I(y) := sup
δ>0

lim inf
m→∞ inf

z∈By,δ

Im(z), (1.2.9)

where By,δ denotes the ball {z : d(y, z) < δ}.
(b) If I(·) is a good rate function and for every closed set F ,

inf
y∈F

I(y) ≤ lim sup
m→∞

inf
y∈F

Im(y), (1.2.10)

then the full LDP holds for {µ̃ } with rate function I.

5



1. Preliminaries and some well-known results

Corollary 1.2.10 (Corollary 4.2.21 in [DZ98]). Suppose f : X → Y is a continuous map from
a Hausdorff topological space X to the metric space (Y, d) and that {µ } satisfy the LDP with
the good rate function I : X → [0,∞]. Suppose further that for all > 0, f : X → Y are
measurable maps such that for all δ > 0, the set Γ ,δ := {x ∈ X : d(f(x), f (x)) > δ} is
measurable, and

lim sup
→0

logµ (Γ ,δ) = −∞. (1.2.11)

Then the LDP with the good rate function I (·) of (1.2.5) holds for the measures µ ◦ f−1 on
Y .

Theorem 1.2.11 (Theorem 4.2.23 in [DZ98]). Let µ be a family of probability measures that
satisfies the LDP with a good rate function I on a Hausdorff topological space X , and for
m = 1, 2, . . ., let fm : X → Y be continuous functions, with (Y, d) a metric space. Assume
there exists a measurable map f : X → Y such that for every α < ∞,

lim sup
m→∞

sup
{x:I(x)≤α}

d(fm(x), f(x)) = 0. (1.2.12)

Then any family of probability measures {µ̃ } for which {µ ◦ f−1
m } are exponentially good ap-

proximations satisfies the LDP in Y with the good rate function I (y) = inf{I(x) : y = f(x)}.
Definition 1.2.12 (Definition 3.4 in [Zha08], Definition 1.2.2 in [DE97]). Let I be a good rate
function on E. We say that {Zε, ε > 0} satisfies the Laplace principle on E with rate function
I if for all real bounded continuous functions g on E

lim
ε→0

ε logE exp −g(Zε)

ε
= − inf

f∈E
{g(f) + I(f)} (1.2.13)

Theorem 1.2.13 (Theorem 1.2.3 in [DE97]). The Laplace principle implies the large deviation
principle with the same rate function. More precisely, if I is a rate function on H and the limit

lim
ε→0

ε logE
h(Xε)

ε
= − inf

x∈H
{h(x) + I(x)} (1.2.14)

is valid for all bounded continuous functions h, then {Xε} satisfies the large deviation principle
on H with rate function I.

Theorem 1.2.14 (Schilder’s theorem, Theorem 5.2.3 in [DZ98]). Let Wt, t ∈ [0, 1] denote a
standard Brownian motion in Rd. Consider the process

W (t) =
√

Wt,

and let ν be the probability measure induced by W (·) on C0([0, 1]), the space of all continuous
functions φ : [0, 1] → Rd such that φ(0) = 0, equipped with the supremum norm topology. Then,
{ν } satisfies, in C0([0, 1]), an LDP with good rate function

IW (φ) =
1
2

1
0 |φ̇(t)|2 dt, φ ∈ H1,

∞, otherwise,

where H1 is the Cameron-Martin space.
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2. Large deviations related to the law of the
iterated logarithm for Itô diffusions

2.1. Introduction and main results

This part of the thesis presents a work published together with Stefan Gerhold in 2020 [GG20].
Here, we are looking for small-time large deviations of Itô diffusions that have been scaled ac-
cording to Khinchin’s law of the iterated logarithm, see Theorem 1.1.1. Its original formulation
is using large time. For our small-time considerations we need Brownian inversion and get for
a standard Brownian motion B that

lim sup
t ∞

Bt√
2t log log t

d
= lim sup

t ∞

t ·W1/t√
2t log log t

= lim sup
t ∞

W1/t

21
t log log t

= 1, a.s.

Substituting s = 1/t we get

lim sup
s 0

Ws

2s log log 1
s

= 1, a.s.

Defining the logarithmic function h : [0, e−1] → R+

h(u) := 2u log log
1

u
,

we have

lim sup
t 0

Wt

h(t)
= lim

t 0
sup

0<u<t

Wu

h(u)
= 1 a.s.,

which can be extended to the diffusion case including a drift; see the proof of Proposition 2.1.2
below for some references. Note, that for small arguments of h the boundary function is in-
creasing. The bounded domain is no problem here, because we consider small-time asymptotics.
Here, we are interested in small-time large deviations of the supremum process

sup
0<u<t

Xu

h(u)

for an Itô diffusion X, i.e. the solution X of a stochastic differential equation

Xt = X0 +
t

0
b(s,Xs) ds+

t

0
σ(s,Xs) ds, t ≥ 0, (2.1.1)

7



2. Large deviations related to the law of the iterated logarithm for Itô diffusions

with coefficient functions b, σ : [0,∞)× R → R.
For Brownian motion, a large deviations estimate follows from a result of Strassen [Str67],

which gives precise tail asymptotics for the last (or, by time inversion, first) time at which a
Brownian motion hits a smooth curve. Using this result we get for fixed ε > 0 that

P sup
0<u<t

Wu

h(u)
≥ √

1 + ε = e−ε(log log 1
t
)(1+o(1)), t 0. (2.1.2)

See Section 2.2 for details. For the readers not familiar with asymptotic notations, we refer
to Appendix A. In Theorem 2.2.3 below, we cite an extension of Strassen’s result due to
Lerche [Ler86], which we will use when extending the estimate (2.1.2) to Itô diffusions. We
make the following assumptions on our diffusion process. Simple sufficient conditions, just
concerning smoothness and growth of b and σ, are given in Proposition 2.1.2.

Assumption 2.1.1. We assume that the following properties hold:

(i) The continuous one-dimensional stochastic process X = (Xt)t≥0 satisfies the SDE

Xt =
t

0
b(Xu, u) du+

t

0
σ(Xu, u) dWu, t > 0,

X0 = 0.

(2.1.3)

(ii) The coefficients b and σ are continuous functions from R× [0,∞) to R with

σ0 := σ(X0, 0) = σ(0, 0) > 0.

(iii) The process X satisfies a small-time sample path moderate deviations principle in Hölder
space. More explicitly, for 1 ≤ λ(ε) = o(ε−1/2) and α ∈ [0, 12), the family of processes
(
√
ελ(ε))−1(Xεt)t∈[0,1] satisfies the LDP (large deviations principle) in Cα

0 ([0, 1],R) as
ε 0 with speed λ2(ε) and good rate function (see Definition 1.2.1)

ψ → ψ 2
H/(2σ

2
0) ψ ∈ H,

∞ ψ /∈ H,

where H is the one-dimensional Cameron-Martin space (see Definition 1.2.3 and 1.2.4).

(iv) The process X satisfies the small-time law of the iterated logarithm, i.e.,

lim sup
t 0

Xt

h(t)
= lim

t 0
sup

0<u<t

Xu

h(u)
= σ0, a.s.

By inspecting our proofs (see Lemma 2.3.2 and (2.3.9)), it is not hard to see that the continu-
ity assumption (ii) can be slightly weakened. We do not make this explicit, since the available
sufficient conditions implying the moderate deviations principle (iii) require much smoother co-
efficients. In part (iv), the second equality could be replaced by ≥. The following proposition
gives sufficient conditions for Assumption 2.1.1.

8



2. Large deviations related to the law of the iterated logarithm for Itô diffusions

Proposition 2.1.2. Suppose that the coefficients of the SDE (2.1.3) satisfy

(i) b : R× [0,∞) → R is continuous, continuously differentiable on the interior of its domain,
and has at most linear growth, i.e. there is some M > 0 such that

b2(x, t) ≤ M(1 + x2 + t2), for all (x, t) ∈ R× [0,∞),

(ii) σ : R× [0,∞) → R is locally Lipschitz continuous and of at most linear growth. Further-
more, σ0 := σ(0, 0) > 0.

Then, the diffusion equation (2.1.3) admits a unique strong solution, and all parts of Assump-
tion 2.1.1 are satisfied.

Proof. It is well-known that Lipschitz and linear growth conditions (w.r.t. the space variable)
imply strong existence and uniqueness, see e.g. Section 5.2 in [KS91]. The coefficients b and σ
satisfy (A.1)–(A.3) from [GW16], and so (iii) follows from Corollary 4.1 in [GW16]. Part (iv)
is a special case of the functional law of the iterated logarithm in Theorem 4.3 in [GW16]. See
also p. 57 in [McK69] and p. 11 in [Car98].

Theorem 2.1.3. Under Assumption 2.1.1, the process sup0<u<tXu/h(u) satisfies a small-time
large deviations principle with speed log log(1/t) and rate function

J(x) :=
(x/σ0)

2 − 1 x ≥ σ0,

∞ x < σ0.

This means that

lim inf
t 0

1

log log 1
t

logP sup
0<u<t

Xu

h(u)
∈ O ≥ −J(O) (2.1.4)

for any open set O and

lim sup
t 0

1

log log 1
t

logP sup
0<u<t

Xu

h(u)
∈ C ≤ −J(C) (2.1.5)

for any closed set C, where J(M) := infx∈M J(x).

Obviously, J is a good rate function in the sense of Definition 1.2.1, i.e. the level sets {J ≤ c},
c ∈ R, are compact. The main estimate needed to prove Theorem 2.1.3 is contained in the
following result, which is the generalization of (2.1.2) for Itô processes.

Theorem 2.1.4. Under parts (i)–(iii) of Assumption 2.1.1, for ε > 0 we have

P sup
0<u<t

Xu

h(u)
≥ σ0

√
1 + ε = e−ε(log log 1

t
)(1+o(1))

= log
1

t

−ε+o(1)
, t 0.

9



2. Large deviations related to the law of the iterated logarithm for Itô diffusions

After some preparations, the proofs of Theorems 2.1.3 and 2.1.4 are given at the end of
Section 2.3. We note that part (iv) of Assumption 2.1.1 is not needed to prove the lower
bound (2.1.4). Moreover, note that our approach does not easily extend to the case of a multi-
dimensional diffusion, and so we left this for future research. Even the case of two correlated
Brownian motions is not trivial. Let B, W be independent standard Brownian motions and
ρ ∈ (0, 1). While a joint LDP for the independent processes supB/h and supW/h clearly
holds, it is not obvious how to treat the joint process

sup
u≤t

Bu

h(u)
, sup

u≤t

ρBu + 1− ρ2Wu

h(u)
.

2.2. Brownian motion

For the sake of simplicity we start with the Brownian motion case to show the fundamental
ideas. Then, this can be extended to the general diffusion case including a drift. We want to
show that the asymptotics given in (2.1.2) hold.

We can quickly see that there are positive constants γ1, γ2 (depending on ε) such that

e−γ1(log log
1
t
)(1+o(1)) ≤ P sup

0<u<t

Wu

h(u)
≥ √

1 + ε ≤ e−γ2(log log
1
t
)(1+o(1)), t 0. (2.2.1)

As for the lower estimate, note that h(u) increases for small u > 0, and thus

P sup
0<u<t

|Wu|
h(u)

≥ √
1 + ε = P sup

0<u<t
|Wu| ≥

√
1 + ε h(t) , t small.

From this and the reflection principle (see Theorem 1.1.2), it is very easy to see that we can
take γ1 = ε + 1 in (2.2.1). The upper estimate in (2.2.1) follows from applying the Borell
inequality (Theorem 1.1.3) to the centered Gaussian process (Wu/h(u))0<u<t, but neither of
these estimates is sharp. To get the optimal constants γ1 = γ2 = ε, we use a result of
Strassen [Str67] on boundary crossings (which is not directly related to Strassen’s well-known
functional law of the iterated logarithm).

Definition 2.2.1. Let B be a Brownian motion and ϕ a positive function on R+ such that
t−1/2ϕ(t) increases with t. Then, we call

Tϕ := sup{t : Bt ≥ ϕ(t)}

the last passage time of the smooth curve ϕ. According to p. 316 in [Str67] a well-known
zero-one law assures that Tϕ is either a random variable or Tϕ = ∞ a.s.

Theorem 2.2.2 (Theorem 1.2 [Str67]). Let ϕ be a positive function on R+ with a continuous
derivative and such that t−δϕ(t) increases in t for some δ > 0. Assume that

ϕ (s)

ϕ (t)
→ 1, as t ∞ and

s

t
→ 1

10



2. Large deviations related to the law of the iterated logarithm for Itô diffusions

and that Tϕ < ∞ a.s. Then, the stopping time Tϕ has a continuous density Dϕ (except possibly
for some mass at 0) and

Dϕ(t) ∼ ϕ (t)(2πt)−1/2e−ϕ(t)2/2t, as t ∞.

By time inversion, we have

P sup
0<u<t

Wu

h(u)
≥ √

1 + ε = P inf{u : Wu ≥ √
1 + ε h(u)} ≤ t

= P sup{v : Wv ≥ √
1 + ε vh(1/v)} ≥ 1

t
.

Define ϕ(v) =
√
1 + ε vh(1/v). Now, by Theorem 2.2.2, the random variable sup{v : Wv ≥

ϕ(v)} has a density Dϕ(s) (except possibly for some mass at zero, which is irrelevant for our
asymptotic estimates), which satisfies

Dϕ(s) ∼ ϕ (s)(2πs)−1/2 exp −ϕ(s)2/2s , s ∞.

From this, the estimate (2.1.2) easily follows, very similarly as in the proof of Theorem 2.2.5
below. That theorem strengthens (2.1.2), replacing ε by some quantity that converges to ε. To
prove it, we apply the following theorem due to Lerche.

Theorem 2.2.3 (Theorem 4.1 in [Ler86], p. 60). Let Ta := inf{u > 0 : Wu ≥ ψa(u)} for
some positive, increasing, continuously differentiable function u → ψa(u), which depends on a
positive parameter a. Assume that there are 0 < t1 ≤ ∞ and 0 < α < 1 such that

(i) P (Ta < t1) → 0 as a ∞,

(ii) ψa(u)/u
α is monotone decreasing in u for each a,

(iii) for every ε > 0 there exists a δ > 0 such that for all a

ψa(s)

ψa(u)
− 1 < ε if

s

u
− 1 < δ,

for s, u ∈ (0, t1).

Then the density of Ta satisfies

pa(u) =
Λa(u)

u3/2
n

ψa(u)√
u

(1 + o(1)) (2.2.2)

uniformly on (0, t1) as a ∞. Here, n is the Gaussian density

n(x) =
1√
2π

e−x2/2,

and Λa is defined by

Λa(u) := ψa(u)− uψa(u).

11



2. Large deviations related to the law of the iterated logarithm for Itô diffusions

Remark 2.2.4. Note that in [Ler86] we have a different situation than in Definition 2.2.1,
because here Ta is the first passage time of smooth curve and not the last. This needs to be
taken into account.

We can now prove the following variant of Theorem 2.1.4, where X is specialized to Brownian
motion, but ε is generalized to ε+ o(1).

Theorem 2.2.5. Let d(t) be a deterministic function with d(t) = o(1) as t 0. Then, for
ε > 0,

P sup
0<u<t

Wu

h(u)
≥ 1 + ε+ d(t) = e−ε(log log 1

t
)(1+o(1)), t 0. (2.2.3)

Proof. We put
q(t) := 1 + ε+ d(t) (2.2.4)

and a = 1/t, to make the notation similar to [Ler86]. We can write the probability in (2.2.3)
as a boundary crossing probability,

P sup
0<u<t

Wu

h(u)
≥ q(t) = P inf {u > 0 : Wu ≥ q(1/a)h(u)} <

1

a

= P (inf {au > 0 : Wu ≥ q(1/a)h(u)} < 1)

= P inf s > 0 : Ws/a ≥ q(1/a)h(s/a) < 1

= P inf s > 0 :
√
aWs/a ≥ q(1/a)

√
ah(s/a) < 1

= P inf s > 0 : Ws ≥ q(1/a)
√
ah(s/a) < 1 , (2.2.5)

where W is again a Brownian motion, using the scaling property. We will verify in Lemma 2.2.6
below that the function

ψa(u) := q(1/a)
√
ah(u/a) (2.2.6)

satisfies the assumptions of Theorem 2.2.3. By (2.2.5) and the uniform estimate (2.2.2), we
thus obtain

P sup
0<u<t

Wu

h(u)
≥ q(t) ∼

1

0

Λa(u)

u3/2
n

ψa(u)√
u

du, a =
1

t
∞.

Note, that the asymptotics is given uniformly on (0, t1) which is essential to get the asymptotics
for the integral. An easy calculation shows that

Λa(u) ∼ const · u log log
a

u
, a ∞

uniformly in u ∈ (0, 1), and so
1

0

Λa(u)

u3/2
n

ψa(u)√
u

du ∼ const ·
1

0

1

u
log log

a

u
log

a

u

−(1+ε+d(t))
du

= const ·
∞

a

1

x
log log x (log x)−(1+ε+d(t))dx

= const ·
∞

a

1

x
(log x)−(1+ε+o(1))dx

= const · (log a)−ε+o(1) = e−ε(log log 1
t
)(1+o(1)).

12



2. Large deviations related to the law of the iterated logarithm for Itô diffusions

As for the third line, note that

log log x = (log x)
log log log x
log log x ,

and that the exponent is o(1) for x ≥ a and a ∞.

Lemma 2.2.6. The function ψa defined in (2.2.6), with q defined in (2.2.4), satisfies the
assumptions of Theorem 2.2.3.

Proof. To verify condition (ii) of Theorem 2.2.3, it suffices to note that h(u)/uα decreases for
small u and α ∈ (12 , 1). The continuity condition (iii) easily follows from

log(t) ∼ log(T ), t/T 1, t, T ∞.

It remains to show condition (i), i.e., that

P (Ta < 1) = P inf s > 0 : Ws ≥ q(1/a)
√
ah(s/a) < 1

= P sup
0<s≤1

Ws

2s log log a
s

≥ q(1/a) (2.2.7)

converges to zero as a ∞. Choose a0 > 0 such that

q(1/a) ≥ 1 +
2

3
ε, a ≥ a0. (2.2.8)

By the law of the iterated logarithm for Brownian motion, we have

lim
s0 0

sup
0<s≤s0

|Ws|
2s log log a0

s

= 1 a.s.

From this we get that there exists an s0 > 0 such that

sup
0<s≤s0

|Ws|
2s log log a0

s

≤ 1 +
1

2
ε a.s.

By monotonicity w.r.t. a, we obtain

|Ws|
2s log log a

s

≤ |Ws|
2s log log a0

s

≤ 1 +
1

2
ε, a ≥ a0, s ∈ (0, s0] a.s. (2.2.9)

For s ∈ [s0, 1], note that the first factor of

Ws√
2s

· 1

log log a
s

is bounded pathwise, and that the second factor satisfies
1

log log a
s

=
1

log log a+ o(1)
→ 0, a ∞,

uniformly on [s0, 1]. From this and (2.2.9), we get

lim sup
a ∞

sup
0<s≤1

Ws

2s log log a
s

≤ 1 +
1

2
ε,

and together with (2.2.8) this implies that (2.2.7) converges to zero.

13



2. Large deviations related to the law of the iterated logarithm for Itô diffusions

2.3. Itô diffusions

We now show that our results about Itô diffusions can be reduced to the case of Brownian
motion, which was handled in the preceding section. The following easy consequence of the
sample path moderate deviations principle will be used repeatedly.

Lemma 2.3.1. Suppose that parts (i) and (iii) of Assumption 2.1.1 hold. Define

At := {|Xu| ≤ u1/4, u ≤ t}.
Then there is c > 0 such that for t > 0 sufficiently small

P (Ac
t) ≤ exp(−c/

√
t).

Proof. For 1
4 < α < 1

2 , it is easy to see that the map Φ : Cα
0 → [0,∞) defined by

Φ(f) := sup
0<u≤1

|f(u)|u−1/4

is continuous. Using part (iii) of Assumption 2.1.1 with λ(ε) = ε−1/4 and the contraction
principle (see Theorem 1.2.5), we get that the family of random variables

sup
0<u≤1

|Xεu|
(εu)1/4

, ε > 0,

satisfies an LDP with speed ε−1/2. The assertion now follows from

P (Ac
t) ≤ P sup

u≤t

|Xu|
u1/4

≥ 1 = P sup
u≤1

|Xεu|
(εu)1/4

≥ 1
ε=t

≤ e
− I (1,∞)

2
√
t , t small,

where I (·) is the rate function (1.2.5) coming from the contraction principle using continuous
map Φ from above.

The drift of X can be easily controlled by continuity and the preceding lemma. Define

Dt := sup
0<u<t

| u
0 b(Xv, v) dv|

h(u)
. (2.3.1)

Lemma 2.3.2. Under parts (i)–(iii) of Assumption 2.1.1, there is c > 0 such that for t > 0
sufficiently small

P Dt >
√
t ≤ exp(−c/

√
t). (2.3.2)

Proof. By the continuity of b,

c1 := sup |b(x, v)| : |x| ≤ 1, v ≤ 1 < ∞.

Therefore, for small t we have
u

0
b(Xv, v) dv ≤ c1u, u ≤ t, on At.
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2. Large deviations related to the law of the iterated logarithm for Itô diffusions

Using that u → u

h(u)
is increasing for its domain [0, e−1] this implies

Dt ≤ sup
0<u<t

c1u

h(u)
= c1

t

2 log log 1
t

on At,

and thus
P Dt >

√
t, At = 0, t small.

Then Lemma 2.3.1 implies the result.

Note that the decay rate in (2.3.2) is clearly negligible in comparison to (2.1.2). The next
step in the proof of Theorem 2.1.4 is contained in Lemma 2.3.4, which allows us to deal with the
local martingale part, after expressing it as a time-changed Brownian motion. We will require
the following well-known result.

Theorem 2.3.3 (Lévy modulus of continuity, Theorem 2.9.25 in [KS91]). Defining the function
f(δ) := 2δ log(1/δ), we have

lim sup
δ 0

1

f(δ)
max

0≤s<t≤1
|t−s|≤δ

|Wt −Ws| = 1 a.s.

Lemma 2.3.4. Suppose that parts (i)–(iii) of Assumption 2.1.1 hold. Let W be a standard
Brownian motion, and d(t) a deterministic function satisfying d(t) = o(1) as t 0. Then

P sup
0<u<t

W X u

h(u)
≥ σ0

√
1 + ε+ d(t) = e−ε(log log 1

t
)(1+o(1)), (2.3.3)

P sup
0<u<t

W X u

h(u)
≥ σ0

√
1 + ε+ d(t) = e−ε(log log 1

t
)(1+o(1)), t 0. (2.3.4)

Proof. Define

g(u) := sup
|x|≤u1/4

s<u

σ2(x, s)− σ2
0 = o(1), u 0,

where convergence is attained using the local Lipschitz condition for σ. Since

X u =
u

0
σ2(Xv, v) dv,

we conclude from the mean value theorem that

| X u − σ2
0u| = u|σ2(Xû, û)− σ2

0| ≤ ug(u), u ≤ t, (2.3.5)

on the event At from Lemma 2.3.1. The mean value theorem also implies

X u = uσ2(Xũ, ũ) ≤ 2uσ2
0. (2.3.6)
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2. Large deviations related to the law of the iterated logarithm for Itô diffusions

Note at this point that we have a typo in (3.5) and (3.6) in our paper [GG20], where we have
once written û instead of u when applying the mean value theorem. However, this does not
change anything for the estimates that follow. This estimate and (2.3.7)–(2.3.9) below hold for
t sufficiently small and u ≤ t on the event At. Putting (s, t) = (x, y)/(2σ2

0u) in Theorem 2.3.3,
and using Brownian scaling, we obtain

max
0≤x<y≤2σ2

0u

|y−x|≤2σ2
0uδ

|Wy −Wx| ≤ σ0
√
2u 3δ log

1

δ
(2.3.7)

for δ > 0 sufficiently small. In particular, with δ := g(u)
2σ2

0
we get

max
0≤x<y≤2σ2

0u
|y−x|≤ug(u)

|Wy −Wx| ≤ 3ug(u) log
1

g(u)
+ log(2σ2

0) . (2.3.8)

Together with (2.3.5) and (2.3.6), this estimate implies

sup
0<u<t

W X u
−Wσ2

0u

h(u)

≤ sup
0<u<t

3ug(u) log 1
g(u) + log(2σ2

0)

h(u)
=: r(t) = o(1), t 0, (2.3.9)

on the event At. We conclude that, for small t,

P sup
0<u<t

W X u

h(u)
≥ σ0

√
1 + ε+ d(t), At

≤ P sup
0<u<t

Wσ2
0u

h(u)
≥ σ0

√
1 + ε+ d(t)− r(t)

= P sup
0<u<t

Wu

h(u)
≥ √

1 + ε+
d(t)− r(t)

σ0

≤ 2P sup
0<u<t

Wu

h(u)
≥ √

1 + ε+
d(t)− r(t)

σ0
.

where W is again a Brownian motion. Now the upper estimate in (2.3.3) follows from The-
orem 2.2.5 and Lemma 2.3.1. To complete the proof of the lemma, a lower estimate for the
left-hand side of (2.3.4) is needed. We have

sup
0<u<t

W X u

h(u)
≥ sup

0<u<t

Wσ2
0u

h(u)
− sup

0<u<t

W X u
−Wσ2

0u

h(u)
,
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2. Large deviations related to the law of the iterated logarithm for Itô diffusions

and thus, by (2.3.9),

P sup
0<u<t

W X u

h(u)
≥ σ0

√
1 + ε+ d(t), At

≥ P sup
0<u<t

Wσ2
0u

h(u)
≥ σ0

√
1 + ε+ d(t) + r(t), At

≥ P sup
0<u<t

Wu

h(u)
≥ √

1 + ε+
d(t) + r(t)

σ0
− P (Ac

t) , (2.3.10)

using P (A ∩ B) ≥ P (A)− P (Bc). The first probability in (2.3.10) can be estimated by Theo-
rem 2.2.5, and the second probability in (2.3.10) is asymptotically smaller by Lemma 2.3.1.

We now conclude this chapter by proving our main results, Theorem 2.1.4 and its conse-
quence, Theorem 2.1.3.

Proof of Theorem 2.1.4. Recalling the definition of Dt in (2.3.1), we have

P sup
0<u<t

Xu

h(u)
≥ σ0

√
1 + ε ≤ P sup

0<u<t

u
0 σ(Xv, v) dWv

h(u)
+Dt ≥ σ0

√
1 + ε . (2.3.11)

By the Dambis-Dubins-Schwarz theorem (Theorem 1.1.4 and Corollary 1.1.5), the local mar-
tingale can be written as

u

0
σ(Xv, v) dWv = W X u

(2.3.12)

with a Brownian motion W . The upper estimate thus follows from applying Lemma 2.3.2
and (2.3.3) to (2.3.11). We proceed with the lower estimate in Theorem 2.1.4. From

sup
0<u<t

Xu

h(u)
≥ sup

0<u<t

u
0 σ(Xv, v) dWv

h(u)
− sup

0<u<t

u
0 b(Xv, v) dv

h(u)

and (2.3.12), we get

P sup
0<u<t

Xu

h(u)
≥ σ0

√
1 + ε ≥ P sup

0<u<t

W X u

h(u)
≥ σ0

√
1 + ε+Dt .

Since we need a lower bound, we can intersect with the event Dt ≤ √
t. Using P (A ∩ B) ≥

P (A)− P (Bc), we obtain

P sup
0<u<t

W X u

h(u)
≥ σ0

√
1 + ε+Dt ≥ P sup

0<u<t

W X u

h(u)
≥ σ0

√
1 + ε+

√
t, Dt ≤

√
t

≥ P sup
0<u<t

W X u

h(u)
≥ σ0

√
1 + ε+

√
t − P (Dt >

√
t).

The lower estimate now follows from Lemma 2.3.2 and (2.3.4).
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2. Large deviations related to the law of the iterated logarithm for Itô diffusions

Proof of Theorem 2.1.3. First, let C ⊆ R be a closed set. Then, the increasing process
sup0<u<tXu/h(u) converges to σ0 as t 0 by part (iv) of Assumption 2.1.1, and hence its
values are ≥ σ0 a.s.; note that this is the only place where part (iv) is used. Moreover, the
rate function satisfies J(C) = J(C ∩ [σ0,∞)). We may thus assume C ⊆ [σ0,∞). If inf C = σ0,
then J(C) = 0, and it suffices to estimate the probability in (2.1.5) by 1. Otherwise, let
σ0

√
1 + κ := inf C with κ > 0. Then, by Theorem 2.1.4,

lim sup
t 0

1

log log 1
t

logP sup
0<u<t

Xu

h(u)
∈ C

≤ lim sup
t 0

1

log log 1
t

logP sup
0<u<t

Xu

h(u)
≥ σ0

√
1 + κ

= −κ = −J(C).

Now, consider an open set O = ∅, and define Õ := O ∩ [σ0,∞). It is clear that J(O) = J(Õ).
If Õ = ∅, then J(O) = J(Õ) = ∞, and so the lower bound is trivial. Hence we may suppose
that Õ = ∅. For arbitrary λ > 0, we can pick x > 1 and δ > 0 such that

inf Õ < σ0
√
x− δ < σ0

√
x+ δ < inf Õ + λ

and
σ0

√
x− δ, σ0

√
x+ δ ⊆ Õ.

Then,

P sup
0<u<t

Xu

h(u)
∈ O ≥ P sup

0<u<t

Xu

h(u)
∈ σ0

√
x− δ, σ0

√
x+ δ

= P sup
0<u<t

Xu

h(u)
≥ σ0

√
x− δ) − P sup

0<u<t

Xu

h(u)
≥ σ0

√
x+ δ

= e−(x−δ−1)(log log 1
t
)(1+o(1)), t 0,

by Theorem 2.1.4. Therefore,

lim inf
t 0

1

log log 1
t

logP sup
0<u<t

Xu

h(u)
∈ O ≥ −(x− δ − 1)

≥ − inf Õ + λ

σ0

2
+ 1 = −J(Õ) + O(λ), λ 0.

As J(O) = J(Õ), this yields (2.1.4).
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3. Large deviations for fractional volatility
models with non-Gaussian volatility
driver

3.1. Introduction

This part of the thesis presents a work published together with Stefan Gerhold and Archil
Gulisashvili in 2021 [GGG21]. Here, we introduce and study a general class of non-Gaussian
stochastic volatility models. The main building block of the volatility in such a model is a
Volterra type integral transform of the solution to a stochastic differential equation satisfying
the Yamada-Watanabe condition, while the volatility is described by a positive function of such
an integral transform. Interesting special cases of non-Gaussian models are the models in which
the kernels appearing in the integral transforms possess certain fractional features. Examples
of such kernels are the kernels of fractional Brownian motion, the Riemann-Liouville fractional
Brownian motion, or the fractional Ornstein-Uhlenbeck process. We call the corresponding
models non-Gaussian fractional stochastic volatility models. Our class of models is related to
the fractional Heston model (see [BD20, GJRS18]), as explained in Section 3.4.

In a Gaussian model, the stochastic volatility is described by a positive function of a Volterra
Gaussian process. Such models have recently become popular objects of study. Numerous
examples of Gaussian models are given in [GS17, Gul18, Gul20]. The non-Gaussian stochastic
volatility models are less studied. To our knowledge, the general class of models introduced in
this work has never been considered before the publication of [GGG21].

The main results obtained in in this part of the thesis are Theorems 3.1.6 and 3.1.7. In these
theorems, small-noise and sample path large deviation principles are established for the log-price
process in a non-Gaussian stochastic volatility model. In the proofs of Theorems 3.1.6 and 3.1.7,
we use on the one hand known techniques form the general theory of large deviations, and on
the other hand also employ new techniques. For example, a part of our proof of Theorem 3.1.7 is
based on the results of Chiarini and Fischer (see [CF14]) concerning small-noise large deviations
for Itô processes. Although we cannot use heavy machinery of the theory of Gaussian processes
in the non-Gaussian case, we still borrow some techniques employed in [FZ17, Gul18, Gul20]
in the proofs of large deviation theorems for Gaussian models. In Section 3.5, we show how to
obtain a Taylor expansion of the rate function in a simplified example.

Recently, there has been a surge of interest in using stochastic Volterra equations for financial
modeling. While small-noise large deviations for such equations are well studied in the case
of Lipschitz coefficients (see [LWYZ17, NR00, Zha08, Zha10]), similar LDPs for equations in
which non-Lipschitz functions are used in the description of the dynamics are scarce. In the
papers [FGS21] and [GJRS18], concrete models with finite-dimensional parameter spaces are
considered, whereas [CP21, FZ17, Gul18, Gul20, Gul21] deal with large deviation principles for
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3. Large deviations for fractional volatility models with non-Gaussian volatility driver

Gaussian models. Here, we assume that the volatility process is a positive function σ of the
following process:

V̂t =
t

0
K(t, s)U(Vs) ds, (3.1.1)

where U is a continuous non-negative function, assumptions on the kernel K will be specified
below, and V solves a one-dimensional SDE, driven by a Brownian motion B and satisfying
the Yamada-Watanabe condition. A (semi-)explicit generating function, as is available in the
rough resp. fractional Heston models considered in [FGS21, GJRS18], is not required. Also,
our process V̂ is clearly non-Gaussian in general, which sets our results apart from the related
papers with Gaussian drivers mentioned above. While our setup allows a lot of freedom in
choosing the diffusion V and the other ingredients, we note that truly rough models are not
covered, because (3.1.1) is a Lebesgue integral and not an integral w.r.t. Brownian motion.
However, the models that we are considering may be rough at t = 0 (see Remark 4.2). The
asset price is given by

dSt = Stσ(V̂t)(ρ̄ dWt + ρ dBt), 0 ≤ t ≤ T,

S0 = 1.
(3.1.2)

Here, B,W are independent standard Brownian motions, ρ ∈ (−1, 1) and ρ̄ = 1− ρ2. The
extension to arbitrary S0 > 0 is straightforward. We now specify the conditions under which
our main results, Theorems 3.1.6 and 3.1.7 below, are valid. Assumptions 3.1.1, 3.1.3 and 3.1.4
formulated below are in force throughout this chapter.

Assumption 3.1.1. Throughout this chapter, K is a kernel on [0, T ]2 satisfying the following
conditions:

(a)

sup
t∈[0,T ]

T

0
K(t, s)2 ds < ∞. (3.1.3)

(b) The modulus of continuity of the kernel K in the space L2[0, T ] is defined as follows:

M(h) = sup
{t1,t2∈[0,T ]:|t1−t2|≤h}

T

0
|K(t1, s)−K(t2, s)|2 ds, 0 ≤ h ≤ T. (3.1.4)

It is assumed that there exist constants c > 0 and r > 0 such that

M(h) ≤ chr (3.1.5)

for all h ∈ [0, T ].

(c) K(t, s) = 0 for all 0 ≤ t < s ≤ T .

The function K is a Volterra kernel in the sense of [Gul18] and [Gul20]. The conditions
in Assumption 3.1.1 have been used earlier; e.g., (b) and (c) are parts of the definition of a
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3. Large deviations for fractional volatility models with non-Gaussian volatility driver

Volterra type Gaussian process in [Hul03a, Hul03b]. It is a standard fact that the associated
integral operator

K(h)(t) =
T

0
K(t, s)h(s) ds (3.1.6)

is compact from L2[0, T ] into C[0, T ] if the kernel’s modulus of continuity tends to zero; see e.g.
Lemma 2 of [Gul18] for a proof. A standard example of a kernel satisfying Assumption 3.1.1
is the fractional kernel Γ(H + 1

2)
−1(t − s)H−1/2, 0 ≤ s ≤ t, with Hurst parameter H ∈ (0, 1).

We note that Γ denotes the gamma function here, whereas later we will use the letter Γ for the
solution map of the ODE (3.1.16) below.

Definition 3.1.2. Let ω be an increasing modulus of continuity on [0,∞), that is ω : R+ → R+

is an increasing function such that ω(0) = 0 and lim
s→0

ω(s) = 0. A function h defined on R is

called locally ω-continuous, if for every δ > 0 there exists a number L(δ) > 0 such that for all
x, y ∈ [−δ, δ]

|h(x)− h(y)| ≤ L(δ)ω(|x− y|). (3.1.7)

Assumption 3.1.3. The function U : R+ → R+ is continuous, and σ is a positive function on
R+ that is locally ω-continuous for some modulus of continuity ω as in Definition 3.1.2.

The process V in (3.1.1) is assumed to solve the SDE

dVt = b̄(Vt) dt+ σ̄(Vt) dBt, 0 ≤ t ≤ T,

V0 = v0 > 0,
(3.1.8)

where σ̄ and b̄ satisfy the Yamada-Watanabe condition in Assumption 3.1.4 below. A well-
known example is the CIR process, where σ̄ is the square root function.

Assumption 3.1.4.

(R1) The dispersion coefficient σ̄ : R → [0,∞) is locally Lipschitz continuous on R\{0}, has
sub-linear growth at ∞, and σ̄(0) = 0, while σ̄(x) > 0 for all x = 0. Moreover, there
exists a continuous increasing function γ : (0,∞) → (0,∞) such that

∞

0+

du

γ(u)2
= ∞ (3.1.9)

and

|σ̄(x)− σ̄(y)| ≤ γ(|x− y|) for all x, y ∈ R, x = y.

Here, the sub-linear growth at ∞ is understood in the sense that for every x0 there exists
a µ such that for all x > x0 we have

|σ̄(x)|2 ≤ µ(1 + |x|2).
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(R2) The drift coefficient b̄ : R → R is locally Lipschitz continuous, has sub-linear growth at
∞, and b̄(0) > 0.

The process V is non-negative (see the remark after Theorem 3.2.2). Next, introducing a
small-noise parameter ε > 0, we define the scaled version V ε of the process V by

dV ε
t = b̄(V ε

t ) dt+
√
εσ̄(V ε

t ) dBt,

V ε
0 = v0 > 0,

(3.1.10)

and the scaled asset price process by

dSε
t =

√
εSε

t σ(V̂
ε
t )(ρ̄ dWt + ρ dBt). (3.1.11)

Here, we write V̂ ε for the process

V̂ ε
t =

t

0
K(t, s)U(V ε

s ) ds. (3.1.12)

The scaled log-price process Xε = logSε, which is the process of interest for our large deviations
analysis, is now given by

Xε
t = −1

2
ε

t

0
σ(V̂ ε

s )
2 ds+

√
ε

t

0
σ(V̂ ε

s ) d(ρ̄Ws + ρBs), 0 ≤ t ≤ T. (3.1.13)

Definition 3.1.5. In addition to K from (3.1.6), we define the integral operators

·̂ : C[0, T ] → C[0, T ],

·̌ : H1
0 [0, T ] → C[0, T ]

by

f̂(t) =
t

0
K(t, s)U(f(s)) ds, t ∈ [0, T ], (3.1.14)

ǧ(t) =
t

0
K(t, s)U(v(s)) ds, t ∈ [0, T ], (3.1.15)

where v is the solution of the ODE

v̇ = b̄(v) + σ̄(v)ġ, v(0) = v0, (3.1.16)

and H1
0 [0, T ] is the Cameron-Martin space on [0, T ], see Definition 1.2.3.

Clearly, we have ǧ = v̂, where v solves the ODE (3.1.16). Moreover, f̂ = K(U ◦ f) and
ǧ = K(U ◦ Γ(g)), where Γ maps g to the solution of (3.1.16). By Assumption 3.1.1 the
integral operators of Definition 3.1.5 are well-defined. In fact, for our kernel K, we get that
K : L2[0, T ] → C[0, T ]. Note that for h ∈ H1

0 [0, T ], we have h ∈ C[0, T ]. Further, for
f ∈ H1

0 [0, T ] we have U ◦ f ∈ L2[0, T ] and for g ∈ H1
0 [0, T ] we have U ◦ v ∈ L2[0, T ]. This can

be easily seen using the fact that U is continuous and the input functions are continuous on a
bounded interval and hence bounded themselves.

We can now state our main results.
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Theorem 3.1.6. The family Xε
T satisfies the small-noise large deviation principle (LDP) with

speed ε−1 and good rate function IT given by

IT (x) = inf
f∈H1

0

T

2

x− ρ σ(K(U ◦ Γ(f))), ḟ 2

ρ̄2 σ(K(U ◦ Γ(f)))2, 1 +
1

2
ḟ , ḟ (3.1.17)

for all x ∈ R, wherever this expression is finite. The validity of the LDP means that for every
Borel subset A of R, the following estimate holds, where A◦ and Ā denote the interior resp. the
closure of A:

− inf
x∈A◦ IT (x) ≤ lim inf

ε 0
ε logP (Xε

T ∈ A) ≤ lim sup
ε 0

ε logP (Xε
T ∈ A) ≤ − inf

x∈Ā
IT (x). (3.1.18)

Theorem 3.1.7. The family of processes Xε satisfies the sample path LDP with speed ε−1 and
good rate function Q given by

Q(g) = inf
f∈H1

0

1

2

T

0

ġ(t)− ρσ(K(U ◦ Γ(f))(t))ḟ(t)
ρ̄σ(K(U ◦ Γ(f))(t))

2
dt+

1

2

T

0
|ḟ(t)|2 dt

for all g ∈ H1
0 [0, T ], and by Q(g) = ∞, for all g ∈ C[0, T ]\H1

0 [0, T ]. The validity of the LDP
means that for every Borel subset A of C[0, T ], the following estimate holds:

− inf
g∈A◦ Q(g) ≤ lim inf

ε 0
ε logP (Xε ∈ A) ≤ lim sup

ε 0
ε logP (Xε ∈ A) ≤ − inf

g∈Ā
Q(g). (3.1.19)

Using the definition of K, the rate functions in Theorems 3.1.6 and 3.1.7 can be equivalently
written as

IT (x) = inf
f∈H1

0

T

2

x− ρ
T
0 σ(

t
0 K(t, s)U(Γ(f)(s)) ds)ḟ(t) dt

2

ρ̄2
T
0 σ(

t
0 K(t, s)U(Γ(f)(s)) ds)2 dt

+
1

2

T

0
ḟ(t)2 dt

and

Q(g) = inf
f∈H1

0

1

2

T

0

ġ(t)− ρσ(
t
0 K(t, s)U(Γ(f)(s)) ds)ḟ(t)

ρ̄σ(
t
0 K(t, s)U(Γ(f)(s)) ds)

2

dt+
1

2

T

0
ḟ(t)2 dt ,

respectively.
The structure of this chapter is as follows. In Section 3.2, we recall small-noise large deviations

for SDEs satisfying the Yamada-Watanabe condition. In Section 3.3, we prove the main results,
i.e. the small-noise LDP for the log-price. In Section 3.4 we clarify the relation of a special case
of our setup to fractional Heston models considered in the literature. In Section 3.5 we compute
the coefficients in the second-order Taylor expansion of the rate function in Theorem 3.1.6 for
a special, simplified example. As was mentioned above, Assumptions 3.1.1, 3.1.3 and 3.1.4 are
supposed to be satisfied throughout the rest of this chapter.
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3.2. LDPs for the driving processes

3.2.1. Sample path LDP for the diffusion

We apply a result of [CF14], which is based on a representation formula for functionals of Brown-
ian motion obtained in [BD98], to obtain an LDP for (

√
εB, V ε). While the Yamada-Watanabe

condition from Assumption 3.1.4 covers virtually all one-dimensional diffusions that have been
suggested in financial modelling, we note that Assumption 3.1.4 could still be weakened, if
desired, e.g. by inspecting the proof of Theorem 4.3 in [BD98].

If assumptions (H1)–(H6) of [CF14] hold, then the family of processes (
√
εB, V ε). which

satisfy the two-dimensional SDE
√
εdBt

dV ε
t

=
0

b̄(V ε
t )

dt+
√
ε

1
σ̄(V ε

t )
dBt, (3.2.1)

admits an LDP due to Theorem 1 in [CF14]. For the one-dimensional process V ε, (H1)–
(H6) have been checked in [CF14, pp. 1143–1144]. For (

√
εB, V ε), the proofs are similar.

The assumptions (H1)–(H3) are clearly satisfied. Let us check condition (H4), namely unique
solvability of the control equation (7) in [CF14]. Here, it is

ϕ1(t)
ϕ2(t)

=
0
v0

+
t

0

0
b̄(ϕ2(s))

ds+
t

0

1
σ̄(ϕ2(s))

f(s) ds, (3.2.2)

where f ∈ L2[0, T ] is the control function. We also have ϕ1, ϕ2 ∈ C[0, T ]. It follows that

the unique solution of (3.2.2) is given by Γv0(f) =
·
0 f(s) ds

ϕ2
, where the function ϕ2 is the

unique solution of the equation

ϕ2(t) = v0 +
t

0
b̄(ϕ2(s)) ds+

t

0
σ̄(ϕ2(s))f(s) ds, t ∈ [0, T ], (3.2.3)

which exists, and is positive, by [CF14, Proposition 1]. This establishes condition (H4) in our
setting. Note at this point, that the ODE (3.2.3) above is formulated for f ∈ L2[0, T ] to match
the notation of [CF14]. Alternatively it can also be written, with a g ∈ H1

0 , and ġ instead of f ,
see (3.1.16). Condition (H5) for the second component of Γ̄v0 was checked in [CF14, p. 1144].
For the first component, (H5) is true by the following simple fact.

Lemma 3.2.1. The map f → ·
0 f(s) ds is continuous from Br into C[0, T ], where Br is the

closed ball of radius r > 0 in L2[0, T ] endowed with the weak topology.

Proof. If fn ∈ Br converges weakly to f , then the convergence is uniform on compact subsets
of L2[0, T ]. Since {1[0,t] : 0 ≤ t ≤ T} is compact, we have

sup
t∈[0,T ]

t

0
f(u) du−

t

0
fn(u) du → 0, n → ∞. (3.2.4)
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The tightness assumption (H6) can be established as in [CF14]. The verification, which is
based on the sub-linear growth of b̄ and σ̄ and the uniform moment estimate in Lemma A.2
of [CF14], is found on pp. 1137–1138 of [CF14]. See also Section 4.2 of [CF14]. Now, Theorem 1
of [CF14] implies the following assertion, in fact a Laplace principle (see Definition 1.2.12). But
since the rate function is a good rate function in the sense of Definition 1.2.1 (which is shown
in [CF14]), we also get an LDP with the same rate function. See Theorems 1.2.1 and 1.2.3 of
[DE97] resp. Definition 1.2.12 and Theorem 1.2.13.

Theorem 3.2.2. The family of processes (
√
εB, V ε) satisfies an LDP in the space C[0, T ]2

with speed ε−1 and good rate function I : C[0, T ]2 → [0,∞] given by

I(ϕ1, ϕ2) = inf

f∈L2[0,T ]: Γ̄v0 (f)=

ϕ1

ϕ2


1

2

T

0
f(t)2 dt, (3.2.5)

whenever f ∈ L2[0, T ] : Γ̄v0(f) =
ϕ1

ϕ2
= ∅, and I(ϕ1, ϕ2) = ∞ otherwise. Here, Γ̄v0(f)

maps f to the solution of (3.2.2).

Note that the positivity of the solution of (3.2.3) shows that I(ϕ1, ϕ2) = ∞ whenever ϕ2

is negative at some point. Thus, Theorem 3.2.2 implies that V is a non-negative process, as
noted after Assumption 3.1.4.

The condition Γ̄v0(f) =
ϕ1

ϕ2
implies that t

0 f(s) ds = ϕ1(t), or f(t) = ϕ̇1(t). Therefore,

ϕ̇2(t) = b̄(ϕ2(t)) + σ̄(ϕ2(t))ϕ̇1(t),

and hence (recall that ϕ2 is positive by [CF14, Proposition 1])

ϕ̇1(t) =
ϕ̇2(t)− b̄(ϕ2(t))

σ̄(ϕ2(t))
. (3.2.6)

Therefore, the following statement holds:

Corollary 3.2.3. For every ϕ2 that is absolutely continuous on [0, T ] with ϕ2(0) = v0

I
·

0

ϕ̇2(t)− b̄(ϕ2(t))

σ̄(ϕ2(t))
dt, ϕ2 =

1

2

T

0

ϕ̇2(t)− b̄(ϕ2(t))

σ̄(ϕ2(t))

2
dt, (3.2.7)

if the integral is finite, and I(ϕ1, ϕ2) = ∞ in all the remaining cases.

3.2.2. Sample path LDP for (
√
εB, V̂ ε)

In this subsection we lift the sample path LDP in Theorem 3.2.2 to one for the family of
processes we get when applying the “hat" operator defined in (3.1.12) to V ε.

Lemma 3.2.4. The mapping f → f̂ is continuous from the space C[0, T ] into itself.
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Proof. For f ∈ C[0, T ] and all t1, t2 ∈ [0, T ],

|f̂(t1)− f̂(t2)| ≤ M(|t1 − t2|) 1
2

T

0
U(f(s))2 ds

1
2 ≤ Cf |t1 − t2| r2 .

The number r > 0 in the exponent of the last term comes from an estimate for the modulus of
continuity of the kernel given by (3.1.5). Here we used the local boundedness of the continuous
function U , and also (3.1.4). Now, it is clear that the function f̂ is continuous on [0, T ]. It
remains to prove the continuity of the mapping f → f̂ on C[0, T ]. Suppose fk → f in C[0, T ].
Then we have

f̂ − f̂k C[0,T ] ≤
T

0
|U(f(s))− U(fk(s))|2 ds

1
2

sup
t∈[0,T ]

T

0
K(t, s)2 ds

1
2
. (3.2.8)

Moreover,

C0 = max f C[0,T ], sup
k

fk C[0,T ] < ∞.

It follows from Assumption 3.1.1 and (3.2.8) that there exists a constant C1 for which

f̂ − f̂k C[0,T ] ≤ C1 sup
s∈[0,T ]

U(f(s))− U(fk(s)) , (3.2.9)

and the previous expression converges to zero by the uniform continuity of U on [−C0, C0].
This completes the proof.

The next assertion establishes the LDP for (
√
εB, V̂ ε).

Theorem 3.2.5. The family of processes (
√
εB, V̂ ε) satisfies an LDP in the space C[0, T ]2

with speed ε−1 and good rate function given by

Ĩ ψ1,K(U ◦ Γ(ψ1)) =
1

2

T

0
ψ̇1(t)

2 dt, (3.2.10)

if the expression in (3.2.6) exists, and Ĩ(ψ1, ψ2) = ∞ otherwise. As above, Γ is the solution
map of the one-dimensional ODE (3.1.16), which means that ϕ = Γ(ψ1) solves the ODE ϕ̇ =
b̄(ϕ) + σ̄(ϕ)ψ̇1.

Proof. We know that (
√
εB, V ε) satisfies the LDP in Theorem 3.2.2. The mapping (ϕ1, ϕ2) →

(ϕ1, ϕ̂2) of C[0, T ]2 into itself is continuous due to Lemma 3.2.4. Hence, we can use the
contraction principle, which gives

Ĩ(ψ1, ψ2) = inf
{(ϕ1,ϕ2)∈C[0,T ]2: (ψ1,ψ2)=(ϕ1,ϕ̂2)}

I(ϕ1, ϕ2) = inf
ϕ̂2=ψ2

I(ψ1, ϕ2).

The necessary condition under which we have I(ψ1, ϕ2) < ∞ is ψ̇1 = ϕ̇2−b̄(ϕ2)
σ̄(ϕ2)

(see Corol-
lary 3.2.3).

Since B and W are independent, the following result is an immediate consequence of Theo-
rem 3.2.5 and Schilder’s theorem.
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Corollary 3.2.6. (i) The family (
√
εWT ,

√
εB, V̂ ε) satisfies an LDP with speed ε−1 and

rate function

Î y, ψ1,K(U ◦ Γ(ψ1)) =
T

2
y2 +

1

2

T

0
ψ̇2
1(t)dt, (3.2.11)

for y ∈ R and ψ1 ∈ H1
0 [0, T ], if all the expressions are finite, and Î(y, ψ1, ψ2) = ∞

otherwise.

(ii) The family of processes (
√
εW,

√
εB, V̂ ε) satisfies an LDP with speed ε−1 and rate function

Î ψ0, ψ1,K(U ◦ Γ(ψ1)) =
1

2

T

0
ψ̇0(t)

2 dt+
1

2

T

0
ψ̇2
1(t)dt, (3.2.12)

for ψ0, ψ1 ∈ H1
0 [0, T ], if all the expressions are finite, and Î(ψ0, ψ1, ψ2) = ∞ otherwise.

3.3. Proof of the LDP for the log-price

3.3.1. Proof of Theorem 3.1.6 (one-dimensional LDP)

It is clear that the one-dimensional LDP in Theorem 3.1.6 is a special case of the sample path
LDP in Theorem 3.1.7. For the reader’s convenience, though, it seemed better to us to first
prove Theorem 3.1.6, and then refer to some parts of this proof in the proof of Theorem 3.1.7
below. We build on some ideas of [Gul18]. To match the notation there, we note that εHB̂
from [Gul18] corresponds to our process V̂ ε as defined in (3.1.12). In the original proof of
[Gul18] the author first supposes T = 1. Here, for convenience, we immediately allow a general
T > 0. By the following lemma, it suffices to prove an LDP for the drift-less process

dX̂ε
t =

√
εσ(V̂ ε

t )(ρ̄ dWt + ρ dBt), 0 ≤ t ≤ T. (3.3.1)

Lemma 3.3.1. The families (Xε
T )ε>0 and (X̂ε

T )ε>0 are exponentially equivalent, i.e. for every
δ > 0, the following equality holds:

lim sup
ε 0

ε logP (|Xε
T − X̂ε

T | > δ) = −∞. (3.3.2)

Proof. By the same reasoning as in Section 5 of [Gul18], there is a strictly increasing continuous
function η : [0,∞) → [0,∞) with lim

u ∞
η(u) = ∞ and σ̄(u)2 ≤ η(u) for all u ∈ R. Let

η−1 : [0,∞) → [0,∞) be the inverse function. Replacing
√
εB̂ in [Gul18] by V̂ ε, we get the

estimate

P (|Xε
T − X̂ε

T | > δ) = P
1

2
ε

T

0
σ(V̂ ε

s )
2 ds > δ ≤ P

1

2
ε

T

0
η(V̂ ε

s ) ds > δ

≤ P
1

2
ε

T

0
η( sup

0≤t≤T
|V̂ ε

t |) ds > δ = P
1

2
εTη( sup

0≤t≤T
|V̂ ε

t |) > δ

= P η( sup
0≤t≤T

|V̂ ε
t |) >

2δ

εT
= P sup

0≤t≤T
|V̂ ε

t | > η−1 2δ

εT

≤ exp −ε−1

2
J(A) ,

(3.3.3)
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where J is the rate function of sup0≤t≤T |V̂ ε
t |, and A = (η−1( 2δεT ),∞). Since J is a good rate

function, we know that J(x,∞) ∞ as x ∞, so we get (3.3.2).

We will next reason as in [Gul18], p. 1121, using the LDP for (
√
εWT ,

√
εB, V̂ ε) in Corol-

lary 3.2.6. Analogously to [Gul18], we define the functional Φ on the space M = R× C[0, T ]2

by

Φ(y, f, g) = ρ̄
T

0
σ(g(s))2 ds

1/2
y + ρ

T

0
σ(g(s))ḟ(s) ds, (3.3.4)

if (f, g) = (f, f̌) with f ∈ H1
0 [0, T ], and Φ(y, f, g) = 0 otherwise (recall the definition (3.1.15)).

Further, for any integer m ≥ 1, define a functional on M by

Φm(y, h, l) = ρ̄
T

0
σ(l(s))2 ds

1/2
y + ρ

m−1

k=0

σ(l(tk)) h(tk+1)− h(tk) , (3.3.5)

where tk := kT
m for k ∈ {0, . . . ,m}. The following approximation property is the key to applying

the extended contraction principle (see (1.2.12)).

Lemma 3.3.2. For every α > 0,

lim sup
m→∞

sup
{f∈H1

0 [0,T ]:T
2
y2+ 1

2
T
0 ḟ(s)2 ds≤α}

|Φ(y, f, f̌)− Φm(y, f, f̌)| = 0. (3.3.6)

Proof. The proof is similar to that of Lemma 21 in [Gul18]. We need to change the range of
the integrals and suprema to [0, T ] instead of [0, 1]. Hence, the grid points for hm are tk := Tk

m
for k ∈ {0, . . . ,m}, like in (3.3.5). We use a different integral operator than [Gul18], and so we
have to show that the set Eβ = {f̌ : f ∈ Dβ} is precompact in C[0, T ] for Dβ = {f ∈ H1

0 [0, T ] :
T
0 ḟ(s)2 ds < β}. For f ∈ Dβ , we have ḟ ∈ L2[0, T ] and therefore can use Eq. (16) of [CF14]

to estimate the solution of the ODE

v = v0 +
·

0
b̄(v(s)) ds+

·

0
σ̄(v(s))ḟ(s) ds

as follows:

sup
0≤s≤T

|v(s)|2 ≤ 3|v0|2 + 6µ2T 2 + 6µ2T ḟ 2
2 e6µ

2T (T+ ḟ 2
2) =: C2

β .

Here, µ comes from the sub-linear growth condition for the coefficient functions of the diffusion
equation for V in Assumption 3.1.4. Since the continuous function U is bounded on the interval
[−Cβ , Cβ ],

{U ◦ v : f ∈ Dβ , v̇ = b̄(v) + σ̄(v)ḟ} (3.3.7)

is a bounded subset of C[0, T ]. The compact operator K, as defined in (3.1.6), maps the set
in (3.3.7) to a precompact set in C[0, T ]. So we can conclude that Eβ is precompact. After
that, the proof continues like in [Gul18].
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Definition 3.3.3. Let t ∈ [0, T ] be fixed. Consider the grid tk := T k
m for k ∈ {0, . . . ,m}.

There is a k such that t ∈ [tk, tk+1). Denote by Ξ(t) the left end tk of the previous interval.
Explicitly, we put

Ξ(t) :=
T

m

mt

T
, (3.3.8)

where [a] stands for the integer part of the number a ∈ R. For T = 1, this reduces to Ξ(t) = [mt]
m .

We will next prove that Φm(
√
εWT ,

√
εB, V̂ ε) is an exponentially good approximation as

m ∞ to (
√
εWT ,

√
εB, V̂ ε). We start with an auxiliary result.

Lemma 3.3.4. For every y > 0,

lim sup
m→∞

lim sup
ε 0

ε logP sup
t∈[0,T ]

|V̂ ε
t − V̂ ε

Ξ(t)| > y = −∞. (3.3.9)

Proof. This corresponds to Lemma 23 in [Gul18], but we need to adjust some estimates in the
proof, since we do not have Gaussianity in our setting. As in [Gul18] we use

P sup
t∈[0,T ]

|V̂ ε
t − V̂ ε

Ξ(t)| > y ≤ P sup
t1,t2∈[0,T ]

|t2−t1|≤T/m

|V̂ ε
t2 − V̂ ε

t1 | > y . (3.3.10)

Then, for |s− t| ≤ T/m, we have

|V̂ ε
t − V̂ ε

s | =
T

0
K(t, v)−K(s, v) U(V ε

v ) dv

≤ M
T

m
sup

v∈[0,T ]
|U(V ε

v )|

≤ cT

m

r/2
sup

v∈[0,T ]
|U(V ε

v )|,

where M is the modulus of continuity of the kernel function in Assumption 3.1.1. We know
that V ε satisfies an LDP, by Theorem 3.2.2. Using this, we can estimate

P sup
t∈[0,T ]

|V̂ ε
t − V̂ ε

Ξ(t)| > y ≤ P sup
s∈[0,T ]

|U(V ε
s )| > yc−r/2T−r/2mr/2

≤ exp −ε−1

2
· J̃ (y

m

cT

r
2
,∞) ,

for ε small enough. Here, J̃ is the good rate function corresponding to sups∈[0,T ] |U(V ε
s )|,

which satisfies an LDP, as seen from applying the contraction principle Theorem 1.2.5 to the
continuous mapping f → sups∈[0,T ] |U(f(s))|. From this, we can write

lim sup
ε 0

ε logP sup
t∈[0,T ]

|V̂ ε
t − V̂ ε

Ξ(t)| > y ≤ −1

2
J̃ y

m

cT

r
2
,∞ . (3.3.11)

Since J̃ has compact level sets, the term on the right-hand side explodes for m ∞.
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Next, we show that the discretization functionals Φm yield an exponentially good approxi-
mation.

Lemma 3.3.5. For every δ > 0,

lim
m→∞ lim sup

ε 0
ε logP Φ(

√
εWT ,

√
εB, V̂ ε)− Φm(

√
εWT ,

√
εB, V̂ ε) > δ = −∞. (3.3.12)

Proof. This lemma corresponds to Lemma 22 in [Gul18]. As in the proof of that lemma, it
suffices to show

lim
m→∞ lim sup

ε 0
ε logP

√
ε|ρ| sup

t∈[0,T ]

t

0
σ(m)
s dBs > δ = −∞, (3.3.13)

where σ
(m)
t = σ(V̂ ε

t )− σ(V̂ ε
Ξ(t)). We have to redefine ξ

(m)
η in order to take a general T > 0 into

account:

ξ(m)
η = inf t ∈ [0, T ] :

η

q(η)
|V̂ ε|+ |V̂ ε

t − V̂ ε
Ξ(t)| > η ∧ T.

Note that we use the convention inf ∅ = ∞ here. The equations (55)–(65) in [Gul18] remain
the same, except that we replace εHB̂ by V̂ ε and use our redefined versions of σ(m) and ξ

(m)
η .

Thus, formula (65) in [Gul18] can be applied. The estimates (66) and (67) have to be replaced
by

P
√
ε|ρ| sup

t∈[0,T ]

t

0
σ(m)
s dBs > δ ≤ P (ξ(m)

η < T ) + P
√
ε|ρ| sup

t∈[0,ξ(m)
η ]

t

0
σ(m)
s dBs > δ

and

P (ξ(m)
η < T ) ≤ P sup

t∈[0,T ]

η

q(η)
|V̂ ε

t |+ |V̂ ε
t − V̂ ε

Ξ(t)| > η

≤ P sup
t∈[0,T ]

|V̂ ε
t | >

q(η)

2
+ P sup

t∈[0,T ]
|V̂ ε

t − V̂ ε
Ξ(t)| >

η

2
.

(3.3.14)

Using Lemma 3.3.4, we can handle the second term, and so it remains to find an appropriate
estimate for the first term. Here we need to adapt the reasoning in [Gul18] because of the lack
of Gaussianity. By the LDP for V̂ ε and the contraction principle applied to the continuous
mapping f → supt∈[0,T ] |f(t)|, we get

P sup
t∈[0,T ]

|V̂ ε
t | >

q(η)

2
≤ exp −ε−1

2
· Isup (12q(η),∞) , (3.3.15)

for ε > 0 small enough, where Isup is the rate function of supt∈[0,T ] |V̂ ε
t |. Note that q(η) ∞

for η 0. So, we get

lim sup
η 0

lim sup
ε 0

ε logP sup
t∈[0,T ]

|V̂ ε
t | >

q(η)

2
= −∞. (3.3.16)

Using (3.3.9) and (3.3.16), we get (73) and (74) of [Gul18]. Finally, we can complete the proof
as in [Gul18].
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Let us continue the proof of Theorem 3.1.6. Lemma 3.3.2 states that condition (1.2.12)
is satisfied. Furthermore, due to Lemma 3.3.5, we know that Φm(

√
εWT ,

√
εB, V̂ ε) is an ex-

ponentially good approximation of Φ(
√
εWT ,

√
εB, V̂ ε) as m ∞. Hence, we can use the

extended contraction principle ( Theorem 1.2.11), and get that X̂ε
T satisfies an LDP with good

rate function I and speed ε−1. We know from Lemma 3.3.1 that X̂ε
T and Xε

T are exponentially
equivalent, and so we finally arrive at Theorem 3.1.6.

According to the extended contraction principle, we have

IT (x) = inf Î(y, f, g) : x = Φ(y, f, g) .

The rate function Î is only finite for

Î y, f,K(U ◦ Γ(f)) =
T

2
y2 +

1

2
ḟ , ḟ .

Recall that Γ is the one-dimensional solution map that takes f to the solution of the ODE
v̇ = b̄(v) + σ̄(v)ḟ , v(0) = v0, and that the function Φ can be written as

Φ(y, f, g) = ρ̄ σ(g)2, 1 y + ρ σ(g), ḟ .

Hence, if x = Φ(y, f, g), then

y =
x− ρ σ(g), ḟ

ρ̄ σ(g)2, 1
.

Inserting this into the rate function obtained through the contraction principle, we get

IT (x) = inf Î(y, f, g) : x = Φ(y, f, g), f ∈ H1
0 , g = K(U ◦ Γ(f))

= inf
T

2
y2 +

1

2
ḟ , ḟ : y =

x− ρ σ(K(U ◦ Γ(f))), ḟ
ρ̄ σ(K(U ◦ Γ(f)))2, 1 , f ∈ H1

0

= inf
f∈H1

0

T

2

x− ρ σ(K(U ◦ Γ(f))), ḟ
ρ̄ σ(K(U ◦ Γ(f)))2, 1

2
+

1

2
ḟ , ḟ .

(3.3.17)

3.3.2. Proof of Theorem 3.1.7 (a sample path LDP)

We adapt the arguments on pp. 3655–3658 in [Gul20]. As in the preceding section, our starting
point is that we already have an LDP for (

√
εW,

√
εB, V̂ ε), see Corollary 3.2.6. We redefine the

functions Φ and Φm so that they map C[0, T ]3 to C[0, T ]. For l ∈ H1
0 [0, T ] and (f, g) ∈ C[0, T ]2

such that f ∈ H1
0 [0, T ] and g = f̌ ,

Φ(l, f, g)(t) = ρ̄
t

0
σ(f̌(s))l̇(s) ds+ ρ

t

0
σ(f̌(s))ḟ(s) ds, 0 ≤ t ≤ T. (3.3.18)

In addition, for all the remaining triples (l, f, g), we set Φ(l, f, g)(t) = 0 for all t ∈ [0, T ]. By
the following lemma, we can remove the drift term.
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Lemma 3.3.6. The families of processes Xε and X̂ε are exponentially equivalent, i.e. for every
δ > 0, the following equality holds:

lim sup
ε 0

ε logP ( Xε − X̂ε
C[0,T ] > δ) = −∞. (3.3.19)

Here, X̂ε is defined in (3.3.1).

Proof. By taking into account the proof of Lemma 3.3.1, we see that just one additional estimate
is needed, namely

Xε − X̂ε
C[0,T ] = sup

0≤t≤T
|Xε

t − X̂ε
t | ≤

1

2
εTη sup

0≤t≤T
|V̂ ε

t | .

Then we directly get

P ( Xε − X̂ε > δ) ≤ P
1

2
εTη sup

0≤t≤T
|V̂ ε

t | > δ = P sup
0≤t≤T

|V̂ ε
t | > η−1 2δ

εT
,

which is exactly the same expression as in the proof of (3.3.2).

The sequence of functionals (Φm)m≥1 from C[0, T ]3 to C[0, T ] is given for (r, h, l) ∈ C[0, T ]3

and t ∈ [0, T ] by

Φm(r, h, l)(t) = ρ̄

[mt
T

−1]

k=0

σ(l(tk)) r(tk+1)− r(tk) + σ l(Ξ(t)) r(t)− r(Ξ(t))

+ρ

[mt
T

−1]

k=0

σ(l(tk)) h(tk+1)− h(tk) + σ l(Ξ(t)) h(t)− h(Ξ(t)) .

(3.3.20)

It is not hard to see that for every m ≥ 1, the mapping Φm is continuous.

Lemma 3.3.7. For every ζ > 0 and y > 0,

lim sup
m ∞

sup
{(r,f)∈H1

0 [0,T ]2: 1
2

T
0 ṙ(s) ds+ 1

2
T
0 ḟ(s) ds≤ζ}

Φ(r, f, f̌)− Φm(r, f, f̌) C[0,T ]2 = 0. (3.3.21)

Proof. Lemma 3.3.7 can be obtained from the proofs of Lemma 3.3.2, Lemma 21 in [Gul18]
and Lemma 2.13 in [Gul20]. The only difference here is that the supremum is taken over two
functions from Dη = {w ∈ H1

0 [0, T ] :
T
0 ẇ2 ds ≤ η}. By the uniform bound in the proof of

Lemma 21 of [Gul18], this is actually irrelevant.

Next, we will show that the family Φm(
√
εW,

√
εB, V̂ ε) is an exponentially good approxima-

tion for Φ(
√
εW,

√
εB, V̂ ε), as m ∞.

Lemma 3.3.8. For every δ > 0

lim
m→∞ lim sup

ε 0
ε logP ( Φ(

√
εW,

√
εB, V̂ ε)− Φm(

√
εW,

√
εB, V̂ ε) C[0,T ] > δ) = −∞. (3.3.22)
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Proof. In the proof of Lemma 3.3.5, the estimate (3.3.13) was formulated stronger than needed.
We can directly use this to show (2.13) of [Gul20]. We can also get (2.14) of [Gul20] this way.
The ingredients of (55)–(65) in [Gul18] do in fact depend on the Brownian motion B via the
process V̂ ε. However, the reasoning for the estimate

P sup
t∈[0,ξ(m)

η ]

εH
t

0
σ(m)
s dBs > δ ≤ exp − δ2

2ε2HL(q(η))2ω(η)2
(3.3.23)

in [Gul18] stays the same if we replace the driving Brownian motion B by W . The rest of the
proof from here on is essentially the same as in the proof of Theorem 2.9 in [Gul20].

Just as in the preceding section, we combine Lemmas 3.3.6–3.3.8 to see that Theorem 3.1.7
follows from the extended contraction principle (Theorem 1.2.11). We have

Q(g) = inf{Î(ψ0, ψ1, ψ1) : g = Φ(ψ0, ψ1, ψ2)}.

The rate function Î is only finite for

Î(ψ0, ψ1, ψ2) =
1

2
ψ̇0, ψ̇0 +

1

2
ḟ , ḟ ,

where ψ1 = f and ψ2 = K(U ◦Γ(f)) for some f ∈ H1
0 [0, T ]. Recall that the function Φ is given

by

Φ(l, f, g)(t) = ρ̄
t

0
σ(g(s))l̇(s) ds+ ρ

t

0
σ(g(s))ḟ(s) ds,

hence we can write

l̇ =
∂t(Φ(l, f, g))− ρσ(g)ḟ

ρ̄σ(g)
.

Finally, we get the rate function as follows:

Q(g) = inf{Î(ψ0, ψ1, ψ2) : g = Φ(ψ0, ψ1, ψ2)}
= inf

1

2
ψ̇0, ψ̇0 +

1

2
ḟ , ḟ : f ∈ H1

0 , ψ1 = f, ψ2 = K(U ◦ Γ(f)),

ψ̇0 =
∂t(Φ(ψ0, ψ1, ψ2))− ρσ(ψ2)ψ̇1

ρ̄σ(ψ2)
, g = Φ(ψ0, ψ1, ψ2)

= inf
1

2
ψ̇0, ψ̇0 +

1

2
ḟ , ḟ : f ∈ H1

0 , ψ̇0 =
ġ − ρσ(K(U ◦ Γ(f)))ḟ

ρ̄σ(K(U ◦ Γ(f)))

= inf
f∈H1

0

1

2

T

0

ġ(t)− ρσ(K(U ◦ Γ(f))(t))ḟ(t)
ρ̄σ(K(U ◦ Γ(f))(t))

2
dt+

1

2

T

0
|ḟ(t)|2 dt .

(3.3.24)
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3.4. An example – Fractional CIR stochastic volatility

We describe an example of a model that fits our assumptions, and has already been studied in
the literature on fractional volatility modelling [BD20]. Let V be a CIR process with positive
parameters κ, θ and σCIR, satisfying 2κθ > σ2

CIR. In this case,

b̄(x) = κ(θ − x) and σ̄(x) = σCIR

√
x,

and the dynamics of V are

dVt = κ(θ − Vt)dt+ σCIR VtdBt.

We choose the fractional kernel K(t, s) = Γ(α)−1(t− s)α−1, 0 ≤ s ≤ t, and U = id, so that the
process V̂ defined in (3.1.1) is the Riemann-Liouville integral of order α of the process V . We
assume α ∈ (12 ,

3
2), which overlaps with the parameter range α ∈ (0, 1) considered in Section 2

of [BD20], and implies our assumption (3.1.3). The definition of the model is completed by
putting

σ(x) = σ2
0 + x, x ≥ 0,

where σ0 > 0 is the initial value of the stochastic volatility process σ(V̂t). Note a small difference
in notation compared to [BD20]: We write v0 = V0 for the initial value of V , and not for the
initial value of the variance process σ(V̂t)

2 of the stock, which we denote by σ2
0. Unlike [BD20],

which is a paper on portfolio optimization, we set the drift of the stock to zero, because the
application we have in mind is approximate option pricing in the small-noise regime.

The advantages of using a fractional CIR process instead of the classical CIR process are
described in [BD20], Section 2, and the references given there. The model captures volatility
persistence, in particular, steep implied volatility smiles for long maturity options and the
comovement between implied and realized volatility. The paper [BD20] also gives a formula
that makes the long-range dependence of the variance process explicit.

The model we just described is also closely related to the fractional Heston model used
in [GJRS18]. The main difference, besides the zero correlation assumption imposed in [GJRS18],
is the range of α. They assume α ∈ (−1

2 ,
1
2), whereas we have α ∈ (12 ,

3
2). Thus, the models

we consider in this chapter could be seen as a complement to the fractional Heston model
of [GJRS18], with positive correlation and rather general functions b̄(·), σ̄(·) and σ(·), but at
the price of losing roughness of the volatility paths.

Remark 3.4.1. The paths of the CIR process V are (12−δ)-Hölder continuous for any δ ∈ (0, 12)

(see Lemma 7.1 in [BD20]). If we choose the fractional kernel K(t, s) = Γ(H+ 1
2)

−1(t−s)H−1/2,
H ∈ (0, 1), in the model considered in the present section, then the paths of V̂ are in the Hölder
space HH+1−δ. See Definition 1.1.6 (p. 6) and Corollary 1.3.1 (p. 56) in [SKM93]. In particular,
since H+1−δ > 1 for small δ, the paths of V̂ are C1 on (0, T ). By modifying the model, using
U(x) = |x− V0|κ with κ ∈ (0, 1] instead of U = id, the paths of V̂ become less smooth, namely
(12κ + H + 1

2 − δ)-Hölder continuous. In addition, if σ(x) = σ0(1 + xβ), β ∈ (0, 1), then the
volatility paths t → σ0(1+(V̂t)

β) are (12κβ+(H+ 1
2)β− δ)-Hölder continuous on [0, T ], for any

small enough δ > 0. While this Hölder exponent can be smaller than 1
2 , the volatility process

is not rough, because σ(·) is smooth away from zero, and so “roughness” occurs only at time
zero. Note that in truly rough models, the volatility process is constructed using stochastic
integrals t

0 K(t, s)dWs or related processes, which is not the case in our setup.
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3. Large deviations for fractional volatility models with non-Gaussian volatility driver

3.5. Second order Taylor expansion of the rate function

In order to compute the rate function, a certain variational problem needs to be solved nu-
merically. It might be preferable to use the Taylor expansion of the rate function instead, if
it can be computed in closed form. In principle, this can be done using the approach used
in [BFG+19], but would involve rather cumbersome calculations. We therefore illustrate the
method by the example V = B (a Brownian motion; thus b̄ ≡ 0 and σ̄ ≡ 1), U(x) = x2, v0 = 0.
It is very easy to see that our main results hold for this example. Indeed, the required results
from [CF14], for which we made our assumptions on the SDE for V , trivially hold here. The
control ODE is degenerate, and its solution mapping Γ is just the identity map. The statement
of Theorem 3.2.5 follows from Schilder’s theorem and the contraction principle, and the transfer
to the log-price is a simplified version of the arguments in Section 3.3.

Proposition 3.5.1. Let U(x) = x2 and V = B. Furthermore, assume that σ is smooth (at
least locally around 0). Suppose that the rate function I is also smooth locally around 0. Then,
with σ0 = σ(0), its Taylor expansion is

I(x) = I(0) + I (0)x+ I (0)x2 +O(x3)

= I (0)x2 +O(x3)

=
1

2σ2
0

x2 +O(x3). (3.5.1)

Remark 3.5.2. Formula (3.5.1) gives the second order Taylor expansion. However, the ideas
in the proof of Proposition 3.5.1 can be used for higher orders. Clearly, the computations for
the expansions get even more cumbersome in the latter case.

3.5.1. Proof of Proposition 3.5.1

The proof is very similar to the one of Theorem 3.1 in [BFG+19]. In the following, we will
outline at which points adjustments are needed. Note that for the special we are treating we
have U(x) = x2 and Γ ≡ id. To simplify computations in the proof, we put T = 1 and write
I = I1 for the rate function. In Proposition 5.1 of [BFG+19], there is a representation of the
rate function that coincides with ours, except that different integral transforms are used. For
our special case, we have

I(x) = inf
f∈H1

0

(x− ρG̃(f))2

2ρ̄2F̃ (f)
+

1

2
Ẽ(f) = inf

f∈H1
0

Ix(f), (3.5.2)

where

G̃(f) :=
1

0
σ((K(f2))(s))ḟ(s) ds = σ(K(f2)), ḟ , (3.5.3)

F̃ (f) :=
1

0
σ((K(f2))(s))2 ds = σ2(K(f2)), 1 , (3.5.4)

Ẽ(f) :=
1

0
|ḟ(s)|2 ds = ḟ , ḟ . (3.5.5)
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3. Large deviations for fractional volatility models with non-Gaussian volatility driver

Recall that Kf =
·
0 K(·, s)f(s) ds. In [BFG+19] the authors use the same integral transform

as used in [Gul18, Gul20], i.e. Kḟ . We have to adjust this to our case of K(f2). Here, Ix
denotes the functional that needs to be minimized to get the value of the rate function at x.

First, we need to get a representation for the minimizing configuration fx of the functional
Ix. This is done like in Proposition 5.2 in [BFG+19]. The corresponding expansions of the
ingredients of the rate function for our setting for δ > 0 are

Ẽ(f + δg) ≈ Ẽ(f) + 2δ ḟ , ġ , (3.5.6)

F̃ (f + δg) ≈ F̃ (f) + 2δ (σ2) (K(f2)),K(fg) , (3.5.7)

G̃(f + δg) ≈ G̃(f) + δ( σ(K(f2)), ġ + 2 σ (K(f2)), ḟK(fg) ) (3.5.8)

Note, that “ ≈ ” is defined in [BFG+19] as

A ≈ B :⇔ A = B + o(δ), δ 0. (3.5.9)

If f = fx is a minimizer then δ → Ix(f+δg) has a minimum at δ = 0 for all g. Using (3.5.6),
(3.5.7) and (3.5.8) we expand

Ix(f + δg) =
(x− ρG̃(f + δg))2

2ρ̄2F̃ (f + δg)
+

1

2
Ẽ(f + δg)

≈ (x− ρG̃(f))2 − 2δρ(x− ρG̃(f)) σ(K(f2)), ġ + 2 σ (K(f2)), ḟK(fg)

2ρ̄2F̃ (f) 1 + 2δ
F̃ (f)

(σ2) (K(f2)),K(fg)

+
1

2
Ẽ(f) + δ ḟ , ġ

≈ (x− ρG̃(f))2 − 2δρ(x− ρG̃(f)) σ(K(f2)), ġ + 2 σ (K(f2)), ḟK(fg)

2ρ̄2F̃ (f)

− (x− ρG̃(f))2

2ρ̄2F̃ (f)

2δ

F̃ (f)
(σ2) (K(f2)),K(fg) +

1

2
Ẽ(f) + δ ḟ , ġ .

(3.5.10)

Now, as a consequence, for f = fx and every g ∈ H1
0 [0, 1],

0 = ∂δ(Ix(f + δg))δ=0 = −2ρ(x− ρG̃(f)) σ(K(f2)), ġ + 2 σ (K(f2)), ḟK(fg)

2ρ̄2F̃ (f)

− (x− ρG̃(f))2

2ρ̄2F̃ 2(f)
2 (σ2) (K(f2),K(fg) + ḟ , ġ .

(3.5.11)

We have fx
0 = 0, for any x. We now test with ġ = 1[0,t] for a fixed t ∈ [0, 1] and obtain

fx
t =

ρ(x− ρG̃(fx)) σ(K((fx)2)),1[0,t] + 2 σ (K((fx)2)), ḟxK(fx id≤t)

ρ̄2F̃ (fx)

+
(x− ρG̃(fx))2

2ρ̄2F̃ 2(fx)
2 (σ2) (K((fx)2)),K(fx id≤t) ,

(3.5.12)
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3. Large deviations for fractional volatility models with non-Gaussian volatility driver

where we write

id≤t(s) = g(s) =
s

0
ġ(u) du =

s

0
1[0,t](u) du =

s∧t

0
1 du = s ∧ t. (3.5.13)

Let us recall the ansatz in [BFG+19]. The authors of [BFG+19] choose for fixed x the
optimizing function fx for Ix, i.e. fx = argminf∈H1

0
Ix(f). Therefore, the first order condition

is Ix(fx) = 0. The authors of [BFG+19] use the implicit function theorem to show that the
minimizing configuration fx is a smooth function in x (locally around x = 0). As Ix is a smooth
function, too, this implies the smoothness of x → Ix(fx) = I(x), at least in a neighborhood
of 0. Note that for (26) and Lemma 5.3 in [BFG+19], the embedding K : H1

0 → C works,
because we have already established that K(U ◦ f) is continuous (see Lemma 3.2.4).

In order to apply the implicit function theorem, the authors of [BFG+19] show that the
ingredients of the rate function are Fréchet differentiable by computing their Gateaux deriva-
tive. This is more complicated in our case, because of the different integral transform we use.
Therefore, we assume that the rate function is locally smooth around 0 in Proposition 3.5.1,
and, consequently, that Lemma 5.6 in [BFG+19] holds. After establishing that the implicit
function theorem can be used, we can proceed as in [BFG+19] up to Theorem 5.12 there.

Next, we will imitate the computations in Theorem 5.12 of [BFG+19] in order to get the
expansion of the minimizing configuration in our setting. In fact, if we just want to obtain
the second order expansion of the rate function in our setting for Brownian motion squared, it
suffices to find the first order expansion of fx. Assuming the ansatz

fx
t = αtx+O(x2), (3.5.14)

we get

fx
t = αtx+O(x2),

ḟx
t = α̇tx+O(x2),

σ(K((fx)2)) = σ0 +O(x2),

σ (K((fx)2)) = σ0 +O(x2),

F̃ (fx) = σ2
0 +O(x2),

G̃(fx) = σ0, α̇ x+O(x2).

Therefore,

σ(K((fx)2)),1[0,t] = σ0t+O(x),

2 σ (K((fx)2)), ḟxK(fx id≤t) = O(x),

2 (σ2) (K((fx)2)),K(fx id≤t) = O(x),

x− ρG̃(fx) = (1− ρσ0α1)x+O(x2),

(x− ρG̃(fx))2 = O(x2).
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3. Large deviations for fractional volatility models with non-Gaussian volatility driver

We use the previous formulas in (3.5.12) to obtain

fx
t =

ρ((1− ρσ0α1)x+O(x2))(σ0t+O(x))

ρ̄2(σ2
0 +O(x2))

+
O(x2)

2ρ̄2(σ4
0 +O(x2))

O(x)

=
ρ(1− ρσ0α1)xσ0t

ρ̄2σ2
0

+O(x2).

(3.5.15)

Comparing the coefficients, we get the same result as the authors of [BFG+19] for the first
order expansion, i.e.

αt =
ρ(1− ρσ0α1)

ρ̄2σ0
t. (3.5.16)

Setting t = 1 and then computing α1 leads to the formula

αt =
ρ

σ0
t. (3.5.17)

Note that the first order expansion of the minimizing configuration fx is exactly the same as
in [BFG+19]. The reason is that the expansions of the ingredients of (3.5.12) are relevant here,
and these expansions coincide. For the second order expansion of the rate function, we need
second order expansions of its ingredients. These are given in the following formulas, where id2

denotes the quadractic function s → s2:

1

2
Ẽ(fx) =

1

2

ρ2

σ2
0

x2 +O(x3),

(x− ρG̃(fx))2 = ρ̄4x2 +O(x3)

F̃ (fx) = σ2
0 + (σ2

0) K(α2), 1 x2 +O(x3)

= σ2
0 + (σ2

0)
ρ2

σ2
0

K(id2), 1 x2 +O(x3).

Finally, we get the Taylor expansion of the rate function by taking into account the reasoning
above. We insert the expansion

fx
t = αtx+O(x2) =

ρ

σ0
tx+O(x2) (3.5.18)

and the expansions above into Eq. (3.5.12) for the minimizing configuration. Then, we get

Ix(fx) =
(x− ρG̃(fx))2

2ρ̄2F̃ (fx)
+

1

2
Ẽ(fx)

=
ρ̄4x2 +O(x3)

2ρ̄2 σ2
0 + (σ2

0)
ρ2

σ2
0
K(id2), 1 x2 +O(x3)

+
1

2

ρ2

σ2
0

x2 +O(x3)

=
ρ̄2

2σ2
0

x2 +O(x3) +
1

2

ρ2

σ2
0

x2 +O(x3)

=
1

2σ2
0

(ρ̄2 + ρ2)x2 +O(x3)

=
1

2σ2
0

x2 +O(x3), (3.5.19)
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3. Large deviations for fractional volatility models with non-Gaussian volatility driver

and hence the following expansion holds:

I(x) = Ix(fx) =
1

2σ2
0

x2 +O(x3). (3.5.20)
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4. Rough 3/2 – A truncated ansatz

4.1. Introduction – A perspective on 3/2 model(s)

First, as a disclaimer, the ideas presented here are not yet published. Hence, this part of the
thesis might contain some open questions and the results obtained up to now have not competed
in a peer review process up to now.

In classic stochastic volatility models, several studies [BJO06], [CV03], [Jon03] propose that
the so-called 3/2-model is preferable to the Heston model, to avoid the downward sloping
volatility of variance smiles there that contradicts empirical findings. Its dynamics is given by

dSt = St Vt dBt, S0 ≥ 1, (4.1.1)

dVt = κVt(θ − Vt) dt+ ξV
3/2
t dWt, V0 = v0 > 0, (4.1.2)

d B,W t = ρ dt. (4.1.3)

Here, contrary to the Heston model, the mean reversion speed of the variance is stochastic in
the model. Therefore, the variance process reverts more quickly when it is at a high level, thus
admitting extreme paths with spikes in instantaneous variance. This means that in periods of
market stress with increasing volatility, the vol-of-variance skew steepens, while the opposite
would happen in the Heston model. In a classic setting, there are several results about the 3/2-
model which include a representation of the cumulant generating function using the confluent
hypergeometric function. In this model, the coefficient functions of the integral equation are
not affine and not globally Lipschitz continuous.

Now, in the perspective of rough volatility models, note that there has been an extensive
discussion of affine volatility models, e.g. [ER19, ALP19]. In some papers, results for the
classic models are transmitted to their rough versions. Considering non-affine models, to our
knowledge, there are no papers about a rough variant of the 3/2-model given above. For getting
a rough version, we add a fractional kernel to the model in (4.1.1)–(4.1.3) and arrive at

dSt = St |Vt| dBt, S0 ≥ 1, (4.1.4)

Vt = V0 +
t

0
K(t, s)κVs(θ − Vs) ds+

t

0
K(t, s)ξ|Vs|3/2 dWs, V0 = v0 > 0, (4.1.5)

d B,W t = ρ dt. (4.1.6)

For the kernel take e.g. a Riemann-Liouville kernel Kα(t, s) = Kα(t − s) ∝ (t − s)α−1 with
α ∈ (12 , 1) or a suitable kernel for the Fredholm representation of a fractional Brownian motion,
i.e. KH such that

BH(t) =
t

0
KH(t, s) dBs =

T

0
KH(t, s) dBs,
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4. Rough 3/2 – A truncated ansatz

using the usual convention K(t, s) = 0 for s > t. Introducing the kernel and hence establishing a
stochastic Volterra integral equation (SVE) brings several problems along considering existence.
In the classic 3/2-model (4.1.1)–(4.1.3) existence of a positive solution to the equation (4.1.2)
for the instantaneous variance that does not explode is ensured by the Feller condition. For
our analysis, we need to introduce an indicator function to truncate the coefficient functions.
Doing this, the coefficient functions will be bounded. As a consequence, this will also be the
case for the volatility process itself which makes the SVE tractable. We mention at this point
that our process V , unlike in the classic 3/2-model, can also become negative. Therefore, we
will refer to the process |V | as the instantaneous variance, but the process V will be without
any name. As usual, for all our considerations we will use the log-price process X instead of S,
i.e. Xt := log(St). Summing up, we introduce the following model.

Definition 4.1.1 (Truncated rough 3/2 model). Let M > 0 be fixed and very large. The
model, given by the SVE

dXt = |Vt| (ρ̄ dWt + ρ dBt)− 1

2
|Vt| dt, X0 = log(S0) ≥ 0, (4.1.7)

Vt = V0 +
t

0
b(t, s, Vs) ds+

t

0
σ(t, s, Vs) dWs, V0 = v0 > 0, (4.1.8)

is called the truncated rough 3/2 model with truncation size M and parameters θ ∈ R, κ > 0
and ξ > 0. The two Brownian motions B and W are independent. Here, we use ρ ∈ [−1, 1] and
ρ̄ = 1− ρ2 to model the correlation between the two equations resp. their driving Brownian
motions. The coefficient functions of the one-dimensional SVE (4.1.8) are given by

b(t, s, x) = K(t, s) · b̄(x), (4.1.9)
σ(t, s, x) = K(t, s) · σ̄(x), (4.1.10)

with

b̄(x) =



κ(−M)(θ +M), x < −M,

κx(θ − x), |x| ≤ M,

κM(θ −M), x > M,

(4.1.11)

and

σ̄(x) =
ξ|x|3/2, |x| ≤ M,

ξM3/2, |x| > M.
(4.1.12)

Note, that the only stochastic integral equation in Definition 4.1.1 is (4.1.8) for the process
V , because the “equation” (4.1.7) is in fact just an Itô integral, i.e.

Xt = X0 −
t

0

1

2
|Vs| ds+

t

0
|Vs|(ρ̄ dWs + ρ dBs), (4.1.13)
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which is well-defined in our case. Now, we formulate (4.1.7)–(4.1.8) as a two-dimensional
system in order to apply large deviation results presented in [JP20]. We can write the model
as a two-dimensional process Yt = (Y 1

t , Y
2
t ) satisfying

Yt = Y0 +
t

0
B(t, s, Ys) ds+

t

0
Σ(t, s, Ys) dGs, Y0 = (X0, v0), (4.1.14)

where G is a two-dimensional standard Brownian motion, i.e.

Gt =
Wt

Bt
,

and the coefficient functions B and Σ are given by

B(t, s, (y1, y2)) =
−1

2 |y2|
b(t, s, y2)

, (4.1.15)

Σ(t, s, (y1, y2)) =
ρ̄ |y2| ρ |y2|

σ(t, s, y2) 0
. (4.1.16)

Despite the fact that it is not yet clear how to attain appropriate representations on the
objects of interest, as characteristic function, pricing formulas, etc., we think it is worth to
discuss the problems we are faced with introducing rough volatility to that model. This chapter
is organized as follows. In Section 4.2 we will prove that our model equation(s) (4.1.7)–(4.1.8)
admit a pathwise unique strong solution on a deterministic interval [0, T ] using the ideas of
[Zha10]. In Section 4.3, we will show that our specific model meets the requirements needed
in [JP20] with convolutional kernels so that we get large and moderate deviation principles.
These results will be used in Section 4.3.5 to apply some asymptotic results about the implied
volatility and options on realized variance. In Section 4.4, there will be an implementation of
our model using a naive Euler approach.

4.2. Existence

In this part, we show that global pathwise unique solutions of our model (4.1.7)–(4.1.8) exist.
We use the ideas of [Zha10] and as they do we reduce our analysis to the time range [0, 1]. In
the following, let C be some arbitrary positive constant that may vary from line to line. First,
we formulate three very common regularity requirements for the coefficient functions that are
needed in [Zha10].

(H1) Lipschitz: For all x, y ∈ Rd and s, t ∈ [0, 1]

|b(t, s, x)− b(t, s, y)| ≤ K1(t, s)|x− y|, (4.2.1)

σ(t, s, x)− σ(t, s, y) 2 ≤ K2(t, s)|x− y|2, (4.2.2)

and
t

0
(|b(t, s, 0)|β + σ(t, s, 0) 2β) ds ≤ C, (4.2.3)
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where β > 1, and Ki(t, s), i = 1, 2, are two positive functions on [0, 1]× [0, 1], and satisfy
for some α > 1

t

0
(Kα

1 (t, s) +Kα
2 (t, s)) ds ≤ C, t ∈ [0, 1]. (4.2.4)

(H2) Linear growth: For all t, s ∈ [0, 1] and x ∈ Rd

|b(t, s, x)| ≤ K1(t, s) · (1 + |x|), (4.2.5)

σ(t, s, x) 2 ≤ K2(t, s) · (1 + |x|2), (4.2.6)

where K1 and K2 satisfy the same integrability condition as K1 and K2 above. Further-
more, for all t, t , s ∈ [0, 1] and x ∈ Rd

|b(t , s, x)− b(t, s, x)| ≤ F1(t , t, s)(1 + |x|), (4.2.7)

σ(t , s, x)− σ(t, s, x) 2 ≤ F2(t , t, s)(1 + |x|2), (4.2.8)

where Fi(t , t, s), i = 1, 2, are positive functions on [0, 1] × [0, 1] × [0, 1], and satisfy for
some γ > 0

t∧t

0
(F1(t , t, s) + F2(t , t, s)) ds ≤ C|t− t |γ . (4.2.9)

(H3) Continuity: For each x ∈ Rm and t ∈ [0, 1], the mappings (0, t) s → b(t, s, x) ∈ Rd

and (0, t) s → σ(t, s, x) ∈ Rd × Rm are continuous.

Note, that for our analysis we can use the fact that we can factorize our coefficient functions
into a kernel part and a coefficient part that is only dependent on the state of the process,
see (4.1.9) and (4.1.10). Hence, the conditions above can be simplified by formulating assump-
tions for the kernel part.

Assumption 4.2.1. The Kernel K(t, s) in the coefficient functions (4.1.9) and (4.1.10) of our
model (4.1.7)–(4.1.8) satisfies the following conditions:

(i) The kernel is positive K(t, s) ≥ 0 for all 0 ≤ s < t ≤ 1. Furthermore, we use the
convention K(t, s) = 0 for s > t.

(ii) For fixed t, the kernel K : (0, t) → (0,∞) is a continuous function, i.e. the function

s → K(t, s) (4.2.10)

is continuous.

(iii) The kernel is integrable in the sense that there is an α̃ > 2 such that

t

0
K(t, s)α̃ ds ≤ C (4.2.11)

for all t ∈ [0, 1].
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(iv) The kernel is L2-Hölder continuous, i.e. for the modulus of continuity

MK(h) := sup
{t1,t2∈[0,T ]: |t1−t2|≤h}

T

0
|K(t1, s)−K(t2, s)|2 ds, 0 ≤ h ≤ T, (4.2.12)

there exists a constant C > 0 and r > 0 such that

MK(h) ≤ Chr. (4.2.13)

Remark 4.2.2. An example of a convolutional kernel that satisfies Assumption 4.2.1 is the
Riemann-Liouville fractional kernel defined by

Kν(t, s) = Kν(t− s) :=
(t− s)ν−1

Γ(ν)
, (4.2.14)

where ν ∈ 1
2 , 1 . Another example is the fractional Brownian motion kernel KH given by

KH(t, s) := (cH(t− s)H− 1
2 + sH− 1

2F (t/s))1{s<t}, s, t ∈ [0, 1],

where

cH :=
2HΓ(3/2−H)

Γ(H + 1/2)Γ(2− 2H)

1/2

and

F (u) := cH
1

2
−H

u

1
(r − 1)H− 3

2 (1− rH− 1
2 ) dr.

Note that the fractional Brownian motion with Hurst parameter H ∈ (0, 1) may be defined by

Bt :=
t

0
KH(t, s) dWs.

In [Zha08] the author argues why the fractional Brownian motion kernel satisfies the require-
ments to apply his results (which are essentially a version of those in [Zha10]). For the Riemann-
Liouville kernel as defined in (4.2.14), we show in Appendix C that it satisfies Assumption 4.2.1.

In the following we will show that Conditions (H1)–(H3) are satisfied by the process V (4.1.8)
given that the Kernel K(t, s) in (4.1.9) and (4.1.10) satisfies Assumption 4.2.1.

Lemma 4.2.3. Under Assumption 4.2.1 the process V solving (4.1.8) satisfies (H1).

Proof. Note that 0 < s ≤ t ≤ 1 for the whole proof.

Coefficient b. We have for x, y ∈ R

|b(t, s, x)− b(t, s, y)| = K(t, s) · |b̄(x)− b̄(y)|,
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where K(·, ·) is the kernel function of V and

b̄(x) =



−κM(θ +M), x < −M,

κx(θ − x), |x| ≤ M,

κM(θ −M), x > M.

Note that on the compact interval |x| ≤ M the function b̄ is smooth and Lipschitz continuous,
since

|∂xb̄(x)| = |κθ − 2κx| ≤ C1 + C2|x| ≤ C1 + C2M ≤ C

on |x| ≤ M . On x > M (x < −M) the function b̄ is constant b̄(M) (b̄(−M)), and it is
continuous on R. Therefore, we have a situation as described in Appendix D.1 resp. (D.1.3).
Hence, we can borrow a constant Lb > 0 from there and write

K(t, s) · |b̄(x)− b̄(y)| ≤ K(t, s) · Lb · |x− y|.

For Condition (H1) we get

K1(t, s) := Lb ·K(t, s).

For the origin, we have

t

0
|b(t, s, 0)|β ds =

t

0
K(t, s)β |b̄(0)|β ds = 0

for every arbitrary β > 1. For the integrability of the kernel we have

t

0
Kα

1 (t, s) ds =
t

0
Lα
bK(t, s)α ds = Lα

b

t

0
K(t, s)α ds ≤ C,

due to (4.2.11), using α := α̃ > 2.

Coefficient σ. We have

σ(t, s, x) = K(t, s)σ̄(x) = K(t, s)ξ|x|3/2

on |x| ≤ M . Since

∂xσ̄(x) = ξ
3

2
|x| ≤ ξ

3

2

√
M ≤ C

we have the same situation as in (D.1.3). Since the kernel K(t, s) is the same as for b and
σ̄(0) = 0, we have the same reasoning as for b above. However, a difference is that here we get
an additional power in the exact formulation of the condition, i.e.

K2(t, s) := L2
σ ·K(t, s)2.
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For the kernel integral, we have

t

0
K2(t, s)

α ds =
t

0
L2α
σ K(t, s)2α ds = L2α

σ

t

0
K(t, s)2α ds.

Note, that we need some α > 1 and hence we set α = α̃
2 > 1 and get

t

0
K(t, s)2α ds =

t

0
K(t, s)α̃ ds < C

due to (4.2.11).

Lemma 4.2.4. Under Assumption 4.2.1 the process V solving (4.1.8) satisfies (H2).

Proof. Note that 0 < s ≤ t ≤ 1 for the whole proof.

Coefficient b. We have

|b(t , s, x)− b(t, s, x)| = |K(t , s)b̄(x)−K(t, s)b̄(x)|
= |K(t , s)−K(t, s)| · |b̄(x)|.

Note that b̄ is a continuous function that is bounded on x ∈ [−M,M ] and constant on
R\[−M,M ], hence it is bounded by some constant Bb > 0. We can therefore write for any
x ∈ R

|b̄(x)| ≤ Bb ≤ Bb · (1 + |x|).
Then, let us define

F1(t , t, s) := Bb · |K(t , s)−K(t, s)|.
This is obviously a positive function on [0, 1] × [0, 1] × [0, 1]. Taking W.L.O.G. t < t , we get
the necessary estimate for the integral, i.e.

t

0
F1(t , t, s) ds =

t

0
Bb · |K(t , s)−K(t, s)| ds

= Bb ·
t

0
|K(t , s)−K(t, s)| ds

≤ Bb ·
t

0
|K(t , s)−K(t, s)|2 ds

≤ C Mk(|t − t|)
≤ C|t − t| r2 ,

where we used the kernel assumption (4.2.13) for the last inequality. Hence, we get the necessary
estimate, i.e.

|b(t , s, x)− b(t, s, x)| ≤ F1(t , t, s) · 1 + |x| ,
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where F1 satisfies the requirements. Clearly, we have

|b(t, s, x)| = K(t, s) · |b̄(x)| ≤ K(t, s)Bb 1 + |x| ,

hence

K1(t, s) := K(t, s)Bb

and integrability directly follows from the kernel assumptions as in the proof of Lemma 4.2.3.

Coefficient σ. Here, we have a similar situation as for b. The coefficient factor σ̄ is bounded
by Bσ, so can write

σ(t, s, x) 2 ≤ K(t, s)2B2
σ(1 + |x|2),

hence we set

K2(t, s) := K(t, s)2B2
σ.

Integrability directly follows again from the kernel assumptions as in the proof of Lemma 4.2.3.
Now, defining

F2(t , t, s) := B2
σ · |K(t , s)−K(t, s)|2

and using (4.2.13) again, we get the two estimates

t∧t

0
F1(t , t, s) ds ≤ C · |t − t| r2 ,

t∧t

0
F2(t , t, s) ds ≤ C · |t − t|r.

So, we have

t∧t

0
(F1(t , t, s) + F2(t , t, s)) ds ≤ C1 · |t − t| r2 + C2 · |t − t|r

≤ C|t − t| r2∧r
≤ C|t − t| r2 .

Setting γ = r
2 we have shown the requirement.

Clearly, if the kernel satisfies Assumption 4.2.1, it is a continuous function in the second
argument. Hence, we can also formulate the following.

Lemma 4.2.5. Under Assumption 4.2.1 the process V solving (4.1.8) satisfies (H3).

Proof. The statement directly follows from (4.2.10).

Now, we have everything we need to formulate an existence result.
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Theorem 4.2.6. Under Assumption 4.2.1, there exists a pathwise unique continuous adapted
solution Vt(v0) on a deterministic interval [0, T ] to (4.1.8). Furthermore, we have the moment
estimate

E [|Vt|p] ≤ C1e
C2t, (4.2.15)

for all t ∈ [0, T ] and some constants C1, C2 > 0 that are only dependent on T and p.

Proof. First, note that due Assumption 4.2.1 together with Lemma 4.2.3, 4.2.4 and 4.2.5 we
can use conditions (H1)–(H3) for the coefficient functions of (4.1.8). The existence result then
directly follows from Theorem 3.1 in [Zha10]. However, for those who are interested in the
detailed proof, the ideas and estimates of [Zha10] have been used to show the existence result
in detail. Note, that the proof is a little different from [Zha10], because it is simplified to our
state space, i.e. to R. Also the Volterra type Gronwall inequality in [Zha10] has been replaced
by Hölder type estimates. For ease of notation we will write a ∝ b for a ≤ C · b and some
constant C > 0 that may vary from line to line.

Moment estimate. Rebuilding the proof of [Zha10] for our situation, we use Picard’s iteration.
Let V1(t) := v0 and define recursively for n ∈ N,

Vn+1(t) = v0 +
t

0
b(t, s, Vn(s)) ds+

t

0
σ(t, s, Vn(s)) dWs. (4.2.16)

To start, let p ≥ 2α∗ where α∗ = α
α−1 . Note, that α and α∗ are conjugated Hölder exponents

and as a consequence, p ≥ 2. The α > 1 used here comes from the regularity conditions (H1)–
(H2). Now, by the linear growth condition (H2), BDG’s inequality (see (1.1.8)) and Hölder’s
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inequality we have

E [|Vn+1(t)|p]
(B.0.3)

∝ vp0 + E
t

0
|b(t, , s, Vn(s))| ds

p

+ E
t

0
σ(t, s, Vn(s)) dWs

p

BDG
∝ vp0 + E

t

0
|b(t, , s, Vn(s))| ds

p

+ E
t

0
|σ(t, s, Vn(s))|2 ds

p
2

(H2)
∝ vp0 + E

t

0
K1(t, s) 1 + |Vn(s)| ds

p

+ E
t

0
K2(t, s) 1 + |Vn(s)|2 ds

p
2

Hölder
∝ vp0 + E

t

0
K1(t, s)

α

p
α t

0
1 + |Vn(s)| α∗

ds

p
α∗

+ E
t

0
K2(t, s)

α ds

p
2α t

0
1 + |Vn(s)|2 α∗

ds

p
2α∗

(H2)
∝ vp0 + C1

T,p · E
t

0
1 + |Vn(s)| α∗

ds

p
α∗

+ C2
T,p · E

t

0
1 + |Vn(s)|2 α∗

ds

p
2α∗

Jensen
∝ vp0 + C1

T,p · E
t

0
1 + |Vn(s)| p

ds + C2
T,p · E

t

0
1 + |Vn(s)|2

p
2 ds

(B.0.3)
∝ vp0 + C1

T,p · E
t

0
1 + |Vn(s)|p ds + C2

T,p · E
t

0
1 + |Vn(s)|p ds

Fubini
∝ vp0 + C1

T,p ·
t

0
1 + E [|Vn(s)|p] ds+ C2

T,p ·
t

0
1 + E [|Vn(s)|p] ds

= vp0 + C1
T,p + C2

T,p ·
t

0
1 + E [|Vn(s)|p] ds

∝ vp0 + C1
T,p + C2

T,p + C1
T,p + C2

T,p ·
t

0
E [|Vn(s)|p] ds

∝ vp0 + CT,p + CT,p ·
t

0
E [|Vn(s)|p] ds.

Now, set

fm(t) := sup
n=1,...,m

E [|Vn(t)|p] . (4.2.17)

Then, we have

fm(t) ≤ (vp0 + CT,p) + CT,p ·
t

0
fm(s) ds,

where the constants CT,p are independent of m. Now, using Gronwall’s inequality given in
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Theorem 1.1.9, we can estimate

fm(t) ≤ vp0 + CT,p +
t

0
(vp0 + CT,p) · CT,p · e

t
s CT,p dσ ds

= vp0 + CT,p + (vp0 + CT,p) · CT,p ·
t

0
e(t−s)CT,p ds

= vp0 + CT,p + (vp0 + CT,p) · CT,p · e
t·CT,p − 1

CT,p

= vp0 + CT,p + (vp0 + CT,p)(e
tCT,p − 1)

= etCT,p(vp0 + CT,p).

The right-hand side is independent of m, hence we can write

sup
n∈N

E [|Vn(t)|p] ≤ etCT,p(vp0 + CT,p), (4.2.18)

which gives the moment estimate (4.2.15).

Existence. For the existence result we define

Zn,m(t) := Vn(t)− Vm(t)

and

f(t) := lim sup
n,m→∞

E |Zn,m(t)|2 . (4.2.19)
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We can write

E [|Zn+1,m+1(t)|p] = E [|Vn+1(t)− Vm+1(t)|p]

= E
t

0
(b(t, s, Vn(s))− b(t, s, Vm(s))) ds+

t

0
(σ(t, s, Vn(s))− σ(t, s, Vm(s))) dWs

p

(B.0.3)
∝ E

t

0
|b(t, s, Vn(s))− b(t, s, Vm(s))| ds

p

+ E
t

0
(σ(t, s, Vn(s))− σ(t, s, Vm(s))) dWs

p

BDG
∝ E

t

0
|b(t, s, Vn(s))− b(t, s, Vm(s))| ds

p

+ E
t

0
|σ(t, s, Vn(s))− σ(t, s, Vm(s))|2 ds

p
2

(H1)
∝ E

t

0
K1(t, s)|Vn(s)− Vm(s)| ds

p

+ E
t

0
K2(t, s)|Vn(s)− Vm(s)|2 ds

p
2

Hölder
∝

t

0
K1(t, s)

α ds

p
α

E
t

0
|Vn(s)− Vm(s)|α∗

ds

p
α∗

+
t

0
K2(t, s)

α ds

p
2α

E
t

0
|Vn(s)− Vm(s)|2α∗

ds

p
2α∗

Jensen, (H1)
∝ C1

T,pE
t

0
|Vn(s)− Vm(s)|p ds + C2

T,pE
t

0
|Vn(s)− Vm(s)|p ds

Fubini
∝ (C1

T,p + C2
T,p)

t

0
E [|Vn(s)− Vm(s)|p] ds

= CT,p

t

0
E [|Zm,n(s)|p] ds.

Now, for

g(t) := lim sup
n,m→∞

E [|Zn,m(t)|p]

we can write

g(t) ≤ CT,p

t

0
g(s) ds,

which leads to

lim sup
n,m→∞

E [|Zn,m(t)|p] = 0.
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Note, that p ≥ 2, hence we can write

0 = lim sup
n,m→∞

E [|Zn,m(t)|p] = lim sup
n,m→∞

E |Zn,m(t)|2 p
2

≥ lim sup
n,m→∞

E |Zn,m(t)|2
p
2 = lim sup

n,m→∞
E |Zn,m(t)|2

p
2

≥ 0.

Having done this, we finally arive at

f(t) = lim sup
n,m→∞

E |Zn,m(t)|2 = 0. (4.2.20)

The convergence of the Cauchy sequence tells us that there exist an (Ft)-adapted process V (t)
such that for almost all t ∈ [0, T ],

lim
n→∞E |Vn(t)− V (t)|2 = 0. (4.2.21)

Taking limits in the Picard iteration, we get the stochastic Volterra equation for the limiting
process.

Uniqueness. Assume that we have two solutions U and V . Then, the difference can be
estimated by

E [|Ut − Vt|p] = E
t

0
(b(t, s, Us)− b(t, s, Vs)) ds+

t

0
(σ(t, s, Us)− σ(t, s, Vs)) dWs

p

(B.0.3)
∝ E

t

0
|b(t, s, Us)− b(t, s, Vs)| ds

p

+ E
t

0
(σ(t, s, Us)− σ(t, s, Vs)) dWs

p

BDG
∝ E

t

0
|b(t, s, Us)− b(t, s, Vs)| ds

p

+ E
t

0
|σ(t, s, Us)− σ(t, s, Vs)|2 ds

p
2

(H1)
∝ E

t

0
K1(t, s)|Us − Vs| ds

p

+ E
t

0
K2(t, s)|Us − Vs|2 ds

p
2

Hölder
∝

t

0
K1(t, s)

α ds

p
α

E
t

0
|Us − Vs|α∗

ds

p
α∗

+
t

0
K2(t, s)

α ds

p
2α

E
t

0
|Us − Vs|2α∗

ds

p
2α∗

Jensen, (H1)
∝ C1

T,p + C1
T,p E

t

0
|Us − Vs|p ds

Fubini
∝ CT,p

t

0
E [|Us − Vs|p] ds.

From Gronwall’s inequality we get that

E [|Ut − Vt|p] = 0 (4.2.22)
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for all t ∈ [0, 1]. Hence, we have a unique solution for the instantaneous variance V . We even
have a unique pathwise solution, because no part of this proof takes advantage of the special
form of the filtration for a strong solution, compare to Remark 3.3 in [KS91].

Continuity. The Hölder continuity of the paths can easily be seen in the proof Theorem 3.3
in [Zha10]. For the reader’s convenience we show the slightly modified computations for our
setup. Using the moment estimate (4.2.18) which was proven above, we get that

sup
t∈[0,T ]

E [|Vt|p] < ∞. (4.2.23)

Now, set

J(t) :=
t

0
σ(t, s, Vs) dWs (4.2.24)

and write for 0 ≤ t < t ≤ T ,

J(t )− J(t) =
t

0
σ(t , s, Vs)− σ(t, s, Vs) dWs +

t

t
σ(t , s, Vs) dWs =: J1(t , t) + J2(t , t).

Here, we want to show that the requirements of the Kolmogorov continuity criterion (see The-
orem 1.1.6) are met. Therefore, we cannot just use the bound for the kernel integral, but have
to subtly apply Hölder twice. For doing this take some γ, β > 1 such that 1 < γβ < α. Again,
the star superscript indicates the conjugated Hölder exponents and p has to be large enough
to apply Jensen, i.e. p ≥ 2β∗ with β∗ = β

β−1 .
We can write

E |J2(t , t)|p = E
t

t
σ(t , s, Vs) dWs

p

BDG
∝ E

 t

t
σ(t , s, Vs)

2 ds

p
2


(H2)

∝ E

 t

t
K2(t , s) 1 + |Vs|2 ds

p
2


Hölder

∝
t

t
K2(t , s)

β ds

p
2β

E

 t

t
1 + |Vs|2 β∗

ds

p
2β∗


(B.0.3)

∝
t

t
K2(t , s)

β ds

p
2β

E

 t

t
1 + |Vs|2β∗

ds

p
2β∗

 .
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Now, for the second term we get an estimate of order 1, i.e.

E

 t

t
1 + |Vs|2β∗

ds

p
2β∗

 Jensen, (B.0.3)
∝ E

t

t
1 + |Vs|p ds

Fubini
∝

t

t
1 + E[|Vs|p] ds

(4.2.23)
∝ CT,p

t

t
1 ds

= CT,p|t − t|.

For the kernel part we can use Hölder on the kernel and the indicator function, i.e.

t

t
K2(t , s)

β ds

p
2β

∝
t

t
K2(t , s)

βγ ds

p
2βγ t

t
1 ds

p
2βγ∗

(H2)

∝ CT,p|t − t| p
2βγ∗ .

Note, that βγ < α ensures integrability, i.e. using Jensen we get

t

t
K2(t , s)

βγ ds =
t

t
K2(t , s)

αβγ
α ds ≤

t

t
K(t , s)α

βγ
α

≤ C.

Putting together the computations above, we arrive at

E |J2(t , t)|p ∝ |t − t|1+ p
2βγ∗ . (4.2.25)
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For J1 we have

E |J1(t , t)|p = E
t

0
σ(t , s, Vs)− σ(t, s, Vs) dWs

p

BDG
∝ E

t

0
|σ(t , s, Vs)− σ(t, s, Vs)|2 ds

p
2

(H2)
∝ E

t

0
F2(t , t, s) 1 + |Vs|2 ds

p
2

= E
t

0
F2(t , t, s) + F2(t , t, s) · |Vs|2 ds

p
2

= E
t

0
F2(t , t, s) ds+

t

0
F2(t , t, s) · |Vs|2 ds

p
2

(B.0.3)
∝ E

t

0
F2(t , t, s) ds

p
2

+
t

0
F2(t , t, s) · |Vs|2 ds

p
2

=
t

0
F2(t , t, s) ds

p
2

+ E
t

0
F2(t , t, s) · |Vs|2 ds

p
2

=: I1

For the second term we need the Minkovski inequality in the version given in Theorem 1.1.10.
In (1.1.14) we take the power q on both sides and get

S2 S1

F (x, y)µ1(dx)
q

µ2(dy) ≤
S1 S2

|F (x, y)|qµ2(dy)

1
q

µ1(dx)

q

. (4.2.26)

Then, we apply this inequality using

q =
p

2
,

µ1(ds) = ds,

µ2(dω) = P (dω),

S1 = (0, t),

S2 = Ω,

F (s, ω) = F2(t , t, s)|Vs(ω)|2.
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Now, for the second term of I1, we can write

E
t

0
F2(t , t, s) · |Vs|2 ds

p
2

=
Ω

t

0
F2(t , t, s) · |Vs(ω)|2 ds

p
2

P (dω)

Minkovski
∝

t

0 Ω
F2(t , t, s)

p
2 · |Vs(ω)|2

p
2 P (dω)

2
p

ds

p
2

=
t

0
E F2(t , t, s)

p
2 · |Vs|p

2
p
ds

p
2

=
t

0
F2(t , t, s)

p
2E [|Vs|p]

2
p
ds

p
2

=
t

0
F2(t , t, s) · E [|Vs|p]

2
p ds

p
2

.

Using this we can continue

I1 ∝
t

0
F2(t , t, s) ds

p
2

+
t

0
F2(t , t, s)E[|Vs|p]

2
p ds

p
2

∝
t

0
F2(t , t, s) ds+

t

0
F2(t , t, s)E[|Vs|p]

2
p ds

p
2

=
t

0
F2(t , t, s)(1 + E[|Vs|p]

2
p ) ds

p
2

(4.2.23)
∝

t

0
F2(t , t, s) ds

p
2

(H2)
∝ |t − t| γ̃p2 ,

with γ̃ > 0 coming from (H2). For any γ̃ > 0 we can chose p large enough such that the
exponent is greater one. Hence, a requirement for the exponent is p ≥ 2

γ̃ .
Summing up, the exponent for the Kolmogorov continuity criterion Theorem 1.1.6 is

δ := 1 +
p

2βγ∗
∧ γ̃p

2
, (4.2.27)

where we used p ≥ 2
γ̃ ∨ 2β∗. We have for all 0 ≤ t < t ≤ T that

E |J(t )− J(t)|p ∝ |t − t|δ. (4.2.28)

Similarly, we can prove for all 0 ≤ t < t ≤ T that

E
t

0
b(t , s, Vs) ds−

t

0
b(t, s, Vs) ds

p

∝ |t− t |δ̃. (4.2.29)
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Using

J̃(t) :=
t

0
b(t, s, Vs) ds,

we can write

J̃(t )− J̃(t) =
t

0
b(t , s, Vs)− b(t, s, Vs) ds+

t

t
b(t , s, Vs) ds =: J̃1(t , t) + J̃2(t , t).

As above, we have have for p ≥ β∗

E[|J̃2(t , t)|p] = E
t

t
b(t , s, Vs) ds

p

≤ E
t

t
b(t , s, Vs) ds

p

(H2)
∝ E

t

t
K1(t , s) 1 + |Vs| ds

p

Hölder
∝

t

t
K1(t , s)

β ds

p
β

E

 t

t
1 + |Vs| β∗

ds

p
β∗


(B.0.3)
∝

t

t
K1(t , s)

β ds

p
β

E

 t

t
1 + |Vs|β∗

ds

p
β∗


Again, using Hölder, we get

t

t
K1(t , s)

β ds

p
β

∝
t

t
K1(t , s)

βγ ds

p
βγ t

t
1 ds

p
βγ∗

(H2)
∝ CT,p|t − t| p

βγ∗ .

For the second term, we have

E

 t

t
1 + |Vs|β∗

ds

p
β∗
 Jensen, (B.0.3)

∝ E
t

t
1 + |Vs|p ds

Fubini
∝

t

t
1 + E[|Vs|p] ds

(4.2.23)
∝ CT,p

t

t
1 ds

= CT,p|t − t|.
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For J1 we can write

E |J1(t , t)|p = E
t

0
b(t , s, Vs)− b(t, s, Vs) ds

p

∝ E
t

0
|b(t , s, Vs)− b(t, s, Vs)| ds

p

(H2)
∝ E

t

0
F1(t , t, s) 1 + |Vs| ds

p

Now, using Minkovski’s inequality, Theorem 1.1.10, with F (s, ω) = F1(t , t, s)(1 + |Vs(ω)|), we
can write

E
t

0
F1(t , t, s) 1 + |Vs| ds

p

=
Ω

t

0
F1(t , t, s) · 1 + |Vs(ω)| ds

p

P (dω)

Minkovski
∝

t

0 Ω
F1(t , t, s)

p · 1 + |Vs(ω)| p
P (dω)

1
p

ds

p

=
t

0
E F1(t , t, s)

p · 1 + |Vs| p 1
p ds

p

=
t

0
F1(t , t, s) · E 1 + |Vs| p 1

p ds
p

(B.0.3)
∝

t

0
F1(t , t, s) · E 1 + |Vs|p

1
p ds

p

=
t

0
F1(t , t, s) · 1 + E [|Vs|p]

1
p ds

p

(4.2.23)
∝

t

0
F1(t , t, s) ds

p

(H2)
∝ |t − t|γ̃p.

As above, we need the exponent to be greater than 1, hence we require p ≥ 1
γ̃ . Summing up,

we arrive at

E[|J̃(t )− J̃(t)|p] ∝ |t − t|δ̃, (4.2.30)

where

δ̃ := 1 +
p

βγ∗
∧ γ̃p (4.2.31)

and p ≥ β∗ ∨ 1
γ̃ .

Now, taking δ ∧ δ̃ as exponent and p large enough continuity follows from the Kolmogorov
continuity criterion, see Theorem 1.1.6.

QED. Having shown the moment estimate, existence uniqueness and continuity concludes the
proof.
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For the log-price, recall that it is given by

Xt = X0 +
t

0
|V M

s | (ρ̄ dWs + ρ dBs)− 1

2

t

0
|V M

s | ds.

This equation is not a Volterra equation, but X is given explicitly by an Itô integral. Hence,
it also admits a pathwise unique solution X taking advantage of the fact that V is pathwise
unique.

Summing up, we get a pathwise unique solution for the two-dimensional formulation of our
model as a stochastic Volterra system.

Corollary 4.2.7. Under Assumption 4.2.1, there exists a pathwise unique continuous adapted
solution Yt(y0) in a deterministic interval [0, T ] to the stochastic Volterra system (4.1.14).

4.3. Large deviations

In this section we establish large deviations results for the model (4.1.7)–(4.1.8). The main
reference for this section will be the results of Jacquier and Pannier [JP20]. In the following,
we will argue that the two-dimensional formulation (4.1.14) of (4.1.7)–(4.1.8) satisfies the re-
quirements needed to apply their results. In order to do this we rewrite the system (4.1.14)
as

Yt =
X0

V0
+

t

0

−1
2 |Vs|

b(t, s, Vs)
ds+

t

0

ρ̄ |Vs| ρ |Vs|
σ(t, s, Vs) 0

dWs

dBs

=
X0

V0
+

t

0

−1
2 |Vs|

K(t, s)b̄(Vs)
ds+

t

0

ρ̄ |Vs| ρ |Vs|
K(t, s)σ̄(Vs) 0

dWs

dBs

=
X0

V0
+

t

0

1 · − 1
2 |Vs|

K(t, s) · b̄(Vs)
ds+

t

0

1 · ρ̄ |Vs| 1 · ρ |Vs|
K(t, s) · σ̄(Vs) 0 ·K(t, s)

dWs

dBs

=
X0

V0
+

t

0

1 0
0 K(t, s)

−1
2 |Vs|

b̄(Vs)
ds+

t

0

1 0
0 K(t, s)

ρ̄ |Vs| ρ |Vs|
σ̄(Vs) 0

dWs

dBs
.

Hence, we can set

KJP(t, s) :=
1 0
0 K(t, s)

, (4.3.1)

bJP(s, x) :=
−1

2 |x|
b̄(x)

, (4.3.2)

σJP(s, x) :=
ρ̄ |x| ρ |x|
σ̄(x) 0

, (4.3.3)

which corresponds to the kernel and coefficient functions of (1.1) in [JP20]. Note, that existence
and uniqueness is clear from the results in Section 4.2. In [JP20], the authors perform all the
proofs for convolutional kernels. In Section 3.5 [JP20] they discuss the extension of their results
to non-convolution kernels. However, we will consider the convolutional case to circumvent
possible problems with the additional assumptions for the non-convolutional case.
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Assumption 4.3.1. Let K in the model equation (4.1.14) be a convolutional Kernel, i.e. it
can be written as function K : (0, t) → (0,∞) with

K(t, s) := K(t− s). (4.3.4)

Remark 4.3.2. Note that we can also use the large deviations result from [Zha10] for the
process V . For the log-price, we would have to apply the extended contraction principle, because
the two-dimensional formulation (4.1.14) of our problem does not satisfy the requirements in
[Zha10] in both components. The problem here would be that that the coefficient functions of
the log-price do not satisfy the Lipschitz condition that is required in [Zha10], because of the
square root in the diffusion part.

4.3.1. Sample path large deviations

For establishing pathwise small-noise large deviations, we consider the scaled equation

Y ε
t =

Xε
t

V ε
t

=
X0

V0
+

t

0

1 0
0 K(t, s)

−1
2 |V ε

s |
b̄(V ε

s )
ds+ ϑε

t

0

1 0
0 K(t, s)

ρ̄ |V ε
s | ρ |V ε

s |
σ̄(V ε

s ) 0

dWs

dBs
,

(4.3.5)

where ϑε 0 for ε 0. We can e.g. take ϑε =
√
ε.

In the following we show that an essential regularity requirement of [JP20] is satisfied by our
model.

Assumption 4.3.3 (Assumption 2.3 in [JP20]). Under Assumptions 4.2.1 and 4.3.1 the kernel
KJP : [0, T ] → Rd×d is an upper triangular matrix satisfying the following conditions: KJP ∈
L2([0, T ] : Rd×d) and there exists γ ∈ (0, 2] such that, for h small enough,

h

0
|KJP(t)|2 dt+

T

0
|KJP(t+ h)−KJP(t)|2 dt = O(hγ). (4.3.6)

Lemma 4.3.4. Under Assumptions 4.2.1 and 4.3.1 Assumption 4.3.3 holds.

Proof. Note that due to Assumption 4.3.1 we have

KJP(t, s) =
1 0
0 K(t, s)

=
1 0
0 K(t− s)

= KJP(t− s). (4.3.7)
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The integrability can be shown by

T

0
|KJP(t)|2 dt =

T

0
1 + |K(t)|2 dt

= T +
T

0
|K(t)|2 dt

= T +
T

0
|K(t)|2 α̃

α̃ dt

= T +
T

0
(|K(t)|α̃) 2

α̃ dt

Jensen≤ T +
t

0
|K(t)|α̃ dt

2
α̃

(4.2.11)
≤ C.

Next, we write

h

0
|KJP(t)|2 dt =

h

0
1 + |K(t)|2 dt

= h+
h

0
|K(t)|2 dt.

For the second term choose β := ã
2 > 1 and β∗ = β

β−1 . Then, using Hölder inequality on the
indicator function we can write

h

0
|K(t)|2 dt ≤

h

0
|K(t)|2β dt

1
β h

0
1 dt

1
β∗

=
h

0
|K(t)|α̃ dt

1
β

h
1
β∗

(4.2.11)
≤ Ch

1
β∗ ,

where β∗ > 1. Summing up, we have

h

0
|KJP(t)|2 dt ≤ h+ Ch

1
β∗ ≤ Ch

1
β∗ ,

for h small.
For the kernel differences we can write

T

0
|KJP(t+ h)−KJP(t)|2 dt =

T

0
|K(t+ h)−K(t)|2 dt

≤ MK(h)

(3.1.5)
≤ Chr,
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for some r > 0. Since h is small, we can put everything together to

h

0
|KJP(t)|2 dt+

T

0
|KJP(t+ h)−KJP(t)|2 dt ≤ C1h

1
β∗ + C2h

r ≤ Chγ , (4.3.8)

with γ := r ∧ 1
β∗ . In case γ > 2 note that for small h we have

hγ = hγ
2
2 = h2

γ
2 = h2

γ
2 ≤ h2. (4.3.9)

We are only considering an asymptotic result for h 0, hence γ > 0 is just fine.

Remark 4.3.5. Note that the Riemann Liouville kernel satisfies this assumption too, because
it satisfies Assumption 4.2.1 and is a convolutional kernel.

The authors of [JP20] formulate four conditions that a stochastic Volterra system needs to
meet in order to apply their results. They use

(JP1) Xε
0 converges to x0 ∈ Rd as ε tends to zero.

(JP2) For all ε > 0 small enough, the coefficients bε and σε are measurable maps on T×Rd and
converge pointwise to b and σ as ε goes to zero. Moreover, b(t, ·) and σ(t, ·) are continuous
on Rd, uniformly in t ∈ T.

(JP3) Either a) or b) holds:

a) For all ε > 0 small enough, bε and σε have linear growth unifromly in ε and in t ∈ T.

b) The process Xε admits an autonomous SΓ
Υ-subsystem.

(JP4) The small-noise SVE is exact for small enough ε > 0.

Note that these correspond to H1–H4 of [JP20] and we name them differently to avoid
confusions with our conditions (H1)–(H3). It can easily be seen, that our model satisfies these
requirements.

Lemma 4.3.6. Under Assumption 4.2.1 the two-dimensional formulation (4.1.14) of our model
satisfies (JP1)–(JP4) which correspond to H1–H4 of [JP20].

Proof. (JP1) Note that our model starts deterministic with (x0, v0).

(JP2) In our small-noise equation (4.3.5), the coefficient functions are still independent of ε.
Continuity of the coefficients as defined in (4.1.11) and (4.1.12) can be seen directly. Note that
these functions are independent of time, hence continuity holds uniformly in t ∈ [0, T ].

(JP3) We do not need the notion of SΓ
Υ-subsystems here, because we have linear growth for

all dimensions.

(JP4) Existence of pathwise unique Hölder continuous solution of the small-noise equation
directly follows from Corollary 4.2.7, because the small-noise equation satisfies the needed
requirements.
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Having shown everything above, there is only one detail left to discuss before we can use the
large deviations results of [JP20]. The authors of [JP20] address the problem that under weak
regularity conditions there may not be a unique solution to the (limiting) control equation, i.e.

ϕt = x0 +
t

0
KJP(t, s) (bJP(s, ϕs) + σJP(s, ϕs)vs) ds, (4.3.10)

with vs ∈ L2[0, T ] resp. h(t) := t
0 vs ds is in the Cameron-Martin space, see Definition 1.2.3.

To solve this problem, they build up a framework where they need Assumption 3.1 in [JP20].
However, we can ignore this framework and the assumption, because we have a unique solution
to the control equation, see Remark 3.9 in [JP20]. In fact, we can use Lipschitz continuity to
show uniqueness of the second component and again, as in Section 4.2, we take advantage of
the fact that the first component is just an integral and not and actual equation. Despite being
redundant, for the convenience of the reader we show the computations below.

Lemma 4.3.7. Under Assumption 4.2.1 there is a unique solution to the limiting control equa-
tion (4.3.10).

Proof.
Existence. For the second component of (4.3.10) let

fn,m(t) := ϕn
2 (t)− ϕm

2 (t)

and

f(t) := lim sup
n,m→∞

|ϕn
2 (t)− ϕm

2 (t)|, (4.3.11)

where ϕn
2 is the Picard iteration for the second component of (4.3.10) given by

ϕn+1
2 (t) = v0 +

t

0
K(t, s) · b̄(ϕn

2 (s)) + σ̄(ϕ2(s)
n)v2(s) ds. (4.3.12)
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We can write for p ≥ α̃∗ with α̃∗ = α̃
α̃−1

|ϕn
2 (t)− ϕm

2 (t)|p =
t

0
K(t, s) · b̄(ϕn

2 (s)) + σ̄(ϕn
2 (s))v2(s) ds−

t

0
K(t, s) · b̄(ϕm

2 (s)) + σ̄(ϕm
2 (s))v2(s) ds

p

=
t

0
K(t, s) b̄(ϕn

2 (s)) + σ̄(ϕn
2 (s))v2(s) − b̄(ϕm

2 (s)) + σ̄(ϕm
2 (s))v2(s) ds

p

=
t

0
K(t, s) b̄(ϕn

2 (s))− b̄(ϕm
2 (s)) + v2(s) [σ̄(ϕ

n
2 (s))− σ̄(ϕm

2 (s))] ds
p

≤
t

0
K(t, s) |b̄(ϕn

2 (s))− b̄(ϕm
2 (s))|+ |v2(s)| · |σ̄(ϕn

2 (s))− σ̄(ϕm
2 (s))| ds

p

(H1)
∝

t

0
K(t, s) {|ϕn

2 (s)− ϕm
2 (s)|+ |v2(s)| · |ϕn

2 (s)− ϕm
2 (s)|} ds

p

=
t

0
K(t, s)(1 + |v2(s)|)|ϕn

2 (s)− ϕm
2 (s)| ds

p

Hölder
∝

t

0
K(t, s)α̃ ds

p
α̃ t

0
(1 + |v2(s)|)α̃∗ |ϕn

2 (s)− ϕm
2 (s)|α̃∗

ds

p
α̃∗

(4.2.11)
∝

t

0
(1 + |v2(s)|)α̃∗ |ϕn

2 (s)− ϕm
2 (s)|α̃∗

ds

p
α̃∗

Jensen
∝

t

0
1 + |vs(s)| p · |ϕn

2 (s)− ϕm
2 (s)|p ds.

Using Gronwall’s inequality, we get that

sup
t∈[0,T ]

|f(t)| = 0. (4.3.13)

Hence, we have a Cauchy sequence that converges to the second component of the solution of
the control equation (4.3.10). The first component trivially exists, because it is given by the
integral

ϕ1(t) := x0 +
t

0
−1

2
|ϕ2(s)| ds+

t

0
|ϕ2(s)| (ρv1(s) + ρ̄v2(s)) ds. (4.3.14)

Uniqueness. Let ϕ and ψ be two solutions to (4.3.10). Then, for p ≥ 2α∗ with α∗ = α
α−1 , we
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can write for the second components

|ϕ2(t)− ψ2(t)|p =
t

0
K(t, s) b̄(ϕ2(s))− b̄(ψ2(s)) ds+

t

0
K(t, s) (σ̄(ϕ2(s))− σ̄(ψ2(s))) v2(s) ds

p

∝
t

0
K(t, s) b̄(ϕ2(s))− b̄(ψ2(s)) ds

p

+
t

0
K(t, s) |σ̄(ϕ2(s))− σ̄(ψ2(s))| · |v2(s)| ds

p

(H1)
∝

t

0
K(t, s)|ϕ2(s)− ψ2(s)| ds

p

+
t

0
K(t, s)|ϕ2(s)− ψ2(s)| · |v2(s)| ds

p

Hölder
∝

t

0
K(t, s)α ds

p
α t

0
|ϕ2(s)− ψ2(s)|α∗

ds

p
α∗

+
t

0
K(t, s)α ds

p
α t

0
|ϕ2(s)− ψ2(s)|α∗ |v2(s)|α∗

ds

p
α∗

(4.2.11)
∝ CT,p

t

0
|ϕ2(s)− ψ2(s)|α∗

ds

p
α∗

+ CT,p

t

0
|ϕ2(s)− ψ2(s)|α∗ |v2(s)|α∗

ds

p
α∗

Jensen
∝ CT,p

t

0
|ϕ2(s)− ψ2(s)|p ds+ CT,p

t

0
|ϕ2(s)− ψ2(s)|p|v2(s)|p ds

∝ CT,p

t

0
(1 + |v2(s)|p) |ϕ2(s)− ψ2(s)|p ds.

Now, using Gronwall’s inequality we get

sup
t∈[0,T ]

|ϕ2(t)− ψ2(t)|p = 0. (4.3.15)

For getting uniqueness of the first component recall that we have an integral that uses ϕ2 as
input, i.e.

ϕ1(t) = x0 +
t

0
−1

2
|ϕ2(s)| ds+

t

0
|ϕ2(s)| (ρv1(s) + ρ̄v2(s)) ds. (4.3.16)

For two different solutions ϕ and ψ, we have already shown that ϕ2(t) = ψ2(t) for all t ∈ [0, T ].
Using that, we directly get

ϕ1(t)− ψ1(t) = 0. (4.3.17)

This concludes the proof.

Finally, we have everything that we need for our large deviations principle.

Theorem 4.3.8. Under Assumptions 4.2.1 and 4.3.1 the family {Y ε}ε>0, unique solution of
(4.3.5), satisfies a large deviations principle with rate function I and speed ϑ−2

ε , i.e.

− inf
f∈A◦ I(f) ≤ lim inf

ε 0
ϑ2
ε logP (Y ε ∈ A) ≤ lim sup

ε 0
ϑ2
ε logP (Y ε ∈ A) ≤ − inf

f∈Ā
IT (f), (4.3.18)
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for every Borel subset A of C[0, T ]. The rate function I is given by

I(ϕ) := inf
1

2

T

0
|vs|2 ds : v ∈ L2, ϕ(t) = x0 +

t

0
KJP(t, s) (bJP(s, ϕs) + σJP(s, ϕs)vs) ds

= inf
{f∈L2, S(f)=ϕ}

1

2

T

0
|fs|2 ds, (4.3.19)

whenever f ∈ L2, S(f) =
ϕ1

ϕ2
= ∅, and I(ϕ1, ϕ2) = ∞ otherwise. Here, S maps f =

(f1, f2) to the solution of (4.3.10).

Proof. We have proven above that all requirements in Theorem 3.8 in [JP20] hold. The
conditions H1–H4 [JP20] hold due to Lemma 4.3.6. Assumption 2.3 [JP20] holds due to
Lemma 4.3.4. Assumption 3.1 [JP20] holds due to Lemma 4.3.7. Assumption 3.6 [JP20] holds
automatically, because our two-dimensional formulation satisfies the linear growth condition.
For the detailed proof we refer to [JP20] and the computations in their appendix.

As a consequence, we can formulate large deviation principles for the scaled log-price and
the scaled instantaneous variance by using the contraction principle (see Theorem 1.2.5) with
the projection to coordinates as continuous function.

For an efficient notation we introduce the convention to write

Y ε ∼ LDP(I, ϑ−2
ε ) (4.3.20)

if the process (Y ε)ε>0 satisfies an LDP with speed ϑ−2
ε and rate function I.

Corollary 4.3.9. Under Assumptions 4.2.1 and 4.3.1 the following large deviations principles
hold:

(L1) The joint process Y ε = (Xε, V ε) satisfies an LDP, i.e. Y ε ∼ LDP(I, ϑ−2
ε ), where the rate

function I is given by (4.3.19) resp.

I(ϕ1, ϕ2) := inf
1

2

T

0
f2
1 (s) + f2

2 (s) ds : f1, f2 ∈ L2[0, T ], S
f1
f2

=
ϕ1

ϕ2
,

(4.3.21)

as long as the set is non-empty and I(ϕ1, ϕ2) = ∞ else.

(L2) The process V satisfies an LDP, i.e. V ε ∼ LDP(IV , ϑ−2
ε ), where the rate function IV is

given by

IV (ψ2) := inf
1

2

T

0
f2
1 (s) + f2

2 (s) : f1, f2 ∈ L2[0, T ], S
f1
f2

=
ϕ1

ψ2
, (4.3.22)

if this set is non-empty and IV (ψ2) = ∞ else.
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(L3) The instantaneous variance satisfies an LPD, i.e. |V ε| ∼ LDP(I |V |, ϑ−2
ε ), where the rate

function I |V | is given by

I |V |(χ2) := inf
1

2

T

0
(f2

1 (s) + f2
2 (s)) ds : f1, f2 ∈ L2[0, T ], S

f1
f2

=
ϕ1

ψ2
, χ2 = |ψ2| ,

(4.3.23)

if this set is non-empty and I |V |(χ2) = ∞ else.

(L4) The log-price satisfies an LDP, i.e. Xε ∼ LDP(IX , ϑ−2
ε ), where the rate function IX is

given by

IX(ψ1) := inf
1

2

T

0
(f2

1 (s) + f2
2 (s)) : f1, f2 ∈ L2[0, T ], S

f1
f2

=
ψ1

ϕ2
, (4.3.24)

if this set is non-empty and IX(ψ1) = ∞ else.

Proof. We can directly apply the contraction principle in Theorem 1.2.5.

(L2) For V ε, using f(x1, x2) = x2, we can write

IV (ψ2) = inf {I(ϕ1, ϕ2) : ψ2 = f(ϕ1, ϕ2)}
= inf {I(ϕ1, ϕ2) : ψ2 = ϕ2}
= inf{I(ϕ1, ψ2)}

= inf
1

2

T

0
f2
1 (s) + f2

2 (s) : f1, f2 ∈ L2[0, T ], S
f1
f2

=
ϕ1

ψ2
.

(L3) For |V ε|, using f(x) = |x|, we can write

I |V |(χ2) = inf{IV (ψ2) : χ2 = f(ψ2)}
= inf{IV (ψ2) : χ2 = |ψ2|}

= inf
1

2

T

0
f2
1 (s) + f2

2 (s) : f1, f2 ∈ L2[0, T ], S̃
f1
f2

=
ϕ1

ψ2
, χ2 = |ψ2| .

(L4) Then, for Xε we project the first component using f(x1, x2) = x1 and get

IX(ψ1) = inf{I(ϕ1, ϕ2) : ψ1 = f(ϕ1, ϕ2)}
= inf{I(ϕ1, ϕ2) : ψ1 = ϕ1}
= inf{I(ψ1, ϕ2)}

= inf
1

2

T

0
(f2

1 (s) + f2
2 (s)) : f1, f2 ∈ L2[0, T ], S

f1
f2

=
ψ1

ϕ2
,

which concludes the proof.
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4.3.2. Sample path moderate deviations

For applying the moderate deviations results of [JP20], let hε → ∞ such that ϑεhε → 0 as
ε → 0. Define Y to be the limit in law of Y ε as given in (4.3.5), which is in fact the solution
of the Volterra equation

Y t = y0 +
t

0
KJP(t, s)bJP(s, Y s) ds. (4.3.25)

Then, according to [JP20], the moderate deviations principle for {Y ε}ε>0 is equivalent to the
LDP for the family {ηε}ε>0 defined as

ηε :=
Y ε − Y

ϑεhε
. (4.3.26)

Therefore, ηε satisfies the SVE

ηεt =
t

0
KJP(t, s)

bJP(s, Y s + ϑεhεη
ε
s)− bJP(s, Y s)

ϑε
ds+

t

0
KJP(t, s)

σJP(s, Y s + ϑεhεη
ε
s)

hε
dWs.

(4.3.27)

for all ε > 0 and is its unique solution if H4 of [JP20] holds. In the new situation the limiting
control equation is given by

ψt =
t

0
KJP(t, s) ∇bJP(s, Y s)ψs + σJP(s, Y s)vs ds, (4.3.28)

which is way simpler than the control equation for the LDP, because the solution ψ only occurs
linearly under the integral. Here, we get an additional requirement on the coefficient functions,
i.e. that the function bJP is Lipschitz continuous and differentiable. Recall that in (4.3.2) we
do not meet this requirement at all. However, for the second component, the equation for
the the process V , we can replace b̄ by a smooth version b̃ such that we get at least sample
path moderate deviations for the process V . How we can attain a smooth version b̃ is shortly
discussed in Appendix D.2. In the following, let ηV,ε be the second component of ηε. The
second component of the control equation can be written as

V t = y0 +
t

0
K(t, s)b̃(V s) ds (4.3.29)

ψ2(t) =
t

0
K(t, s) ∂xb̃(V s)ψ2(s) + σ̄(V s)vs ds. (4.3.30)

Theorem 4.3.10. Under Assumptions 4.2.1 and 4.3.1 the family ηV,ε
ε>0

satisfies a large
deviations principle (equivalently {V ε}ε>0 satisfies a moderate deviations principle) with speed
h2ε and rate function

Λ(ψ) := inf
f∈L2[0,T ], ψ=S(f)

1

2

T

0
|fs|2 ds, (4.3.31)

where S is the solution map of the limiting control equation (4.3.30).
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Proof. We need to show that H2–H8, Assumptions 2.3 and 3.6 of [JP20] are satisfied.

H2–H4. This was already shown in the proof of the large deviations result, Theorem 4.3.8.

H5. The Lipschitz condition for b̃ can be argued in the same way as for b̄ in the proof of
Lemma 4.2.3. The modified version b̃ is differentiable, see Appendix D.2.

H6. The coefficient function σ̄ is locally Hölder continuous, since it is Lipschitz continuous
according to the computations in the proof of Lemma 4.2.3.

H7. This is an initial condition that holds trivially, because we start deterministic.

H8. Trivially holds, because we have b = bε.

Assumption 2.3 of [JP20]. Holds due to Lemma 4.3.4.

Assumption 3.6 of [JP20]. Is satisfied automatically, because our equation satisfies the linear
growth condition.

4.3.3. Small-time large deviations

In this part, we want to establish a small-time large deviation principle. Therefore, we need an
additional kernel assumption for being able to use the small-noise LDP for proving a small-time
LDP.

Assumption 4.3.11. The kernel of our model (4.1.7)–(4.1.8) is homogeneous of degree ζ ∈ R
in the sense that there is a ζ ∈ R such that

K(tε, sε) = εζK(t, s) (4.3.32)

for all t, s ∈ [0, T ] and ε > 0. Furthermore, let ζ be such that ζ + 1 > 0 and ζ + 1
2 > 0, i.e.

ζ > −1

2
.

Remark 4.3.12. Note that we will stick to Assumption 4.3.1 to use convolutional kernels.
However, our notation uses general kernels to let space for further adaptions later.

Now, define

Xε
t := εζXtε, (4.3.33)

V ε
t := Vtε (4.3.34)
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Using the homogeneity property from Assumption 4.3.11, we can write

V ε
t = Vtε = V0 +

tε

0
b(tε, s, Vs) ds+

tε

0
σ(tε, s, Vs) dWs

= V0 +
tε

0
K(tε, s)b̄(Vs) ds+

tε

0
K(tε, s)σ̄(Vs) dWs

= V0 + ε
t

0
K(tε, uε)b̄(Vuε) du+

t

0
K(tε, uε)σ̄(Vuε) dWuε

(4.3.32)
= V0 + ε · εζ

t

0
K(t, u)b̄(Vuε) du+ εζ

t

0
K(t, u)σ̄(Vuε) dWuε

d
= V0 + εζ+1

t

0
K(t, u)b̄(Vuε) du+ εζ+

1
2

t

0
K(t, u)σ̄(Vuε) dWu,

where we used the Brownian scaling property

1√
ε
Wuε

d
= Wu

for the last equation. For the scaled log-price we have

Xε
t = εζXtε = εζX0 − εζ

tε

0

1

2
|Vs| ds+ εζ

tε

0
|Vs| (ρ̄ dWs + ρ dBs)

= εζX0 − εζ+1
t

0

1

2
|Vuε| du+ εζ

t

0
|Vuε| (ρ̄ dWuε + ρ dBuε)

d
= εζX0 − εζ+1

t

0

1

2
|Vuε| du+ εζ+

1
2

t

0
|Vuε| (ρ̄ dWu + ρ dBu) .

Now, using ϑε := εζ+
1
2 , we can write

Xε
t

V ε
t

=
εζX0

V0
+

t

0

1 0
0 K(t, u)

−εζ+1 1
2 |V ε

u |
εζ+1b(V ε

u )

 ds+ ϑε ·
t

0

1 0
0 K(t, u)

ρ̄ |V ε
u | ρ |V ε

u |
σ̄(V ε

u ) 0

dBs

dWs

(4.3.35)

Here, we have a framework as in [JP20], this time with ε-dependent drift coefficient

bε(s, (x, y)) =
−εζ+1 1

2 |y|
εζ+1b̄(y)

. (4.3.36)

This drift coefficient satisfies all the regularity requirements needed in [JP20] and we have
bε → b = 0 for ε → 0. Additionally, the differentiability and Lipschitz condition of the limiting
control equation in the large deviations section of [JP20] are trivially met. Therefore, we can
also apply moderate deviations in the small-time case. The volatility coefficient is the same as
in the previous setting. Now, consider the controlled equation to V ε, i.e.

V ε,v
t = v0 + εζ+1

t

0
K(t, u)b̄(V ε,v

u ) du+ εζ+
1
2

t

0
K(t, u)σ̄(V ε,v

u ) dWu +
t

0
K(t, u)σ̄(V ε,v

u )vu du,

(4.3.37)
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and the limiting control equation

ϕ(t) = v0 +
t

0
K(t, s)σ̄(ϕ(s))vs ds. (4.3.38)

The control of the log-price is given by

Xε,w
t = εζX0 − εζ+1

t

0

1

2
|V ε,v

u | du+ εζ+
1
2

t

0
|V ε,v

u | (ρ̄ dWu + ρ dBu) +
t

0
|V ε,v

u |(ρ̄vu + ρwu) du,

(4.3.39)

with limiting equation

ψ(t) =
t

0
|ψ(s)|(vs + ws) ds. (4.3.40)

Now, we have again everything we need to formulate a large deviations result. In the follow-
ing, we will use the shorthand from (4.3.20) to formulate a large deviations result.

Corollary 4.3.13. Under Assumptions 4.2.1, 4.3.1 and 4.3.11 the following hold:

(L1) The joint scaled process (Xε, V ε) satisfies an LDP, i.e. (Xε, V ε) ∼ LDP(I, ε−(2ζ+1)),
where the rate function I is given by

I(ϕ1, ϕ2) := inf
1

2

T

0
(f2

1 (s) + f2
2 (s)) ds : f1, f2 ∈ L2[0, T ], S

f1
f2

=
ϕ1

ϕ2
,

(4.3.41)

where S is the solution map of the control equation, i.e. for f1, f2 ∈ L2[0, T ] the first and

second components of S f1
f2

solve the control equations (4.3.40) and (4.3.38).

(L2) The scaled log-price Xε satisfies an LDP, i.e. Xε ∼ LDP(IX , ε−(2ζ+1)), where the rate
function IX is given by

IX(ψ) = inf
1

2

T

0
(f2

1 (s) + f2
2 (s)) ds : f1, f2 ∈ L2[0, T ], S

f1
f2

=
ψ
ϕ2

, (4.3.42)

whenever this set is non-empty and I(ϕ1, ϕ2) = ∞ else.

(L3) The log-price satisfies a small-time LDP, i.e. εζXε ∼ LDP(IX1 , ε−(2ζ+1)), where the rate
function IX1 is given by

IX1 (x) := inf IX(ψ) : x = ψ(1) , (4.3.43)

whenever this set is non-empty and IX1 (x) = ∞ else.

(L4) The scaled process V ε satisfies an LDP, i.e. V ε ∼ LDP(IV , ε−(2ζ+1)), where the rate
function IV is given by

IV (ψ) := inf
1

2

T

0
(f2

1 (s) + f2
2 (s)) ds : f1, f2 ∈ L2[0, T ], S

f1
f2

=
ϕ1

ψ
, (4.3.44)

whenever this set is non-empty and IV (ψ) = ∞ else.
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(L5) The process V satisfies a small-time LDP, i.e. Vε ∼ LDP(IV1 , ε−(2ζ+1)), where the rate
function IV1 is given by

IV1 (y) := inf IV (ψ) : y = ψ(1) , (4.3.45)

whenever this set is non-empty and IV1 (y) = ∞ else.

(L6) The instantaneous variance satisfies a small-time LDP, i.e. |Vε| ∼ LDP(I
|V |
1 , ε−(2ζ+1)),

where the rate function I
|V |
1 is given by

I
|V |
1 := inf IV1 (y) : z = |y| , (4.3.46)

whenever this set is non-empty and IV1 (y) = ∞ else.

Proof. This is actually Proposition 4.3 in [JP20]. For (L1) the reasoning is essentially the same
as in the proof of Theorem 4.3.8. The only difference here is that we have a drift coefficient
that is dependent of ε and tends to zero as ε tends to zero. For the others we can directly apply
the contraction principle Theorem 1.2.5.

(L2)

IX(ψ) = inf{I(ϕ1, ϕ2) : ψ = f(ϕ1, ϕ2) = ϕ1}

= inf
1

2

T

0
(f2

1 (s) + f2
2 (s)) ds : f1, f2 ∈ L2[0, T ], S

f1
f2

=
ϕ1

ϕ2
, ψ = ϕ1

= inf
1

2

T

0
(f2

1 (s) + f2
2 (s)) ds : f1, f2 ∈ L2[0, T ], S

f1
f2

=
ψ
ϕ2

.

(L3)

IX1 (x) := inf IX(ψ) : x = f(ψ),

= inf IX(ψ) : x = ψ(1) .

(L4)

IV (ψ) = inf{I(ϕ1, ϕ2) : ψ = f(ϕ1, ϕ2) = ϕ2}

= inf
1

2

T

0
(f2

1 (s) + f2
2 (s)) ds : f1, f2 ∈ L2[0, T ], S

f1
f2

=
ϕ1

ϕ2
, ψ = ϕ2

= inf
1

2

T

0
(f2

1 (s) + f2
2 (s)) ds : f1, f2 ∈ L2[0, T ], S

f1
f2

=
ϕ1

ψ
.

(L5)

IV1 (y) := inf IV (ψ) : y = f(ψ),

= inf IV (ψ) : y = ψ(1) .
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(L6)

I
|V |
1 (z) := inf IV1 (y) : z = f(y)

= inf IV1 (y) : z = |y| .

4.3.4. Small-time moderate deviations

For small-time moderate deviations let hε = ε−β for any β ∈ (0, ζ + 1
2), and define the two-

dimensional process

ηε =
1

ϑεhε
(Xε, V ε − v0) =

1

εζ+
1
2
−β

(Xε, V ε − v0). (4.3.47)

According to [JP20], the case β = 0 corresponds to the Central Limit Theorem, whereas
β = ζ+ 1

2 is the LDP regime, so that MDP precisely corresponds to some interpolation between
the two. The authors of [JP20] show that all requirements that are needed are satisfied given
the additional Assumption 4.5 in [JP20]. This assumption is about the homogeneity and local
Hölder continuity of the coefficient functions. It is met for our model, hence we can cite their
result.

Corollary 4.3.14 (Proposition 4.6 [JP20]). Under Assumptions 4.2.1, 4.3.1 and 4.3.11 the
following hold:

(M1) The joint process (Xε, V ε) satisfies an MDP, i.e. (Xε, V ε) ∼ MDP(Λ, ε−2β), where the
rate function Λ is given by

Λ(ϕ1, ϕ2) := inf
1

2

t

0
f2
1 (s) + f2

2 (s) ds : f1, f2 ∈ L2[0, T ],Γ
f1
f2

=
ϕ1

ϕ2
,

(4.3.48)

if this set is non-empty and Λ(ϕ1, ϕ2) = ∞ otherwise. Here, Γ maps (f1, f2) to the
solution to the control equation of the process ηε.

(M2) The scaled log-price satisfies an MDP, i.e. Xε ∼ MDP(ΛX , ε−2β), where the rate function
Λx is given by

ΛX(ψ) := inf{Λ(ϕ1, ϕ2) : ψ = ϕ1}

= inf
1

2

t

0
f2
1 (s) + f2

2 (s) ds : f1, f2 ∈ L2[0, T ],Γ
f1
f2

=
ψ
ϕ2

, (4.3.49)

wherever this set is non-empty and Λ(ψ) = ∞ otherwise.

(M3) The log-price satisfies a small-time MDP, i.e. εζXε ∼ MDP(ΛX
1 , ε−2β), where the rate

function ΛX
1 is given by

ΛX
1 (x) := inf{ΛX(ψ) : x = ψ(1)}, (4.3.50)

whenever this set is non-empty and ΛX
1 (x) = ∞ otherwise.
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(M4) The scaled process V ε satisfies an MDP, i.e. V ε ∼ MDP(ΛV , ε−2β), where the rate func-
tion ΛV is given by

ΛV (ψ) := inf{Λ(ϕ1, ϕ2) : ψ = ϕ2}

= inf
1

2

t

0
f2
1 (s) + f2

2 (s) ds : f1, f2 ∈ L2[0, T ],Γ
f1
f2

=
ϕ2

ψ
, (4.3.51)

whenever this set is non-empty and ΛV (ψ) = ∞ otherwise.

(M5) The process V satisfies a small-time MDP, i.e. V ε ∼ MDP(ΛV
1 , ε

−2β), where the rate
function ΛV

1 is given by

ΛV
1 (y) := inf{ΛV (ψ) : y = ψ(1)}, (4.3.52)

whenever this set is non-empty and ΛV
1 (y) = ∞ otherwise.

4.3.5. Applications

In this section, we cite some results to motivate why we want to have large (and moderate)
deviations for asymptotic results.

Implied volatility asymptotics

The results on small-time large and moderate deviations in Sections 4.3.3 and 4.3.4 can be used
to obtain asymptotics for the implied volatility, see Section 4.1.3 in [JP20]. In the following,
we cite their results.

Following [JP20] we say that for each maturity t ≥ 0 and log-moneyness k ∈ R, the implied
volatility σ̂(t, k) is the unique non-negative solution to CBS(t, k, σ̂(t, k)) = C(t, k), where CBS

corresponds to the price of a European call option under the Black-Scholes model, and C a
given Call option price. According to [JP20], this notion is only well-defined if the underlying
stock price is a true martingale, which has not been assumed so far. Therefore, the authors of
[JP20] add this requirement as an assumption.

Assumption 4.3.15 (Assumption 4.7 [JP20]). The process exp(Xε) in (4.3.35) is a true mar-
tingale for small enough ε > 0.

Corollary 4.3.16 (Corollary 4.8 [JP20]). Let Assumption 4.3.15 hold.

(LDP) Under the same assumptions as in Corollary 4.3.13,

lim
t 0

σ t, kt−ζ 2
=


k2

2 infx≥k IX1 (x)
, if k > 0,

k2

2 infx≤k IX1 (x)
, if k < 0.

(4.3.53)

(MDP) Under the same assumptions as in Corollary 4.3.14 and for any β ∈ (0, ζ + 1
2), k = 0,

we have

lim
t 0

σ t, kt
1
2
−β 2

=


k2

2 infx≥k ΛX
1 (x)

, if k > 0,

k2

2 infx≤k ΛX
1 (x)

, if k < 0.
(4.3.54)
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Realized variance

Motivated by [LMS21], a transformation of the instantaneous variance that might be interesting
is the integrated variance, also known as realized variance (RV), which is given by

1

T

T

0
d X t =

1

T

T

0
|Vt|2 dt = 1

T

T

0
|Vt| dt. (4.3.55)

Note that we need to take the absolute value of the process V , because in fact only the process
|V | is the instantaneous variance. Now, define the C[0, T ]-operator

RV(f)(·) : f → 1

·
·

0
f(s) ds, RV(f)(0) := f(0). (4.3.56)

Lemma 4.3.17. The operator RV given in (4.3.56) is continuous with respect to the sup norm
on C[0, T ].

Proof. As in the proof of Corollary 3.4 [LMS21] let δ ∈ C[0, T ] be a small perturbation which
allows us to write

RV(f + δ)− RV(f) ∞ = sup
t∈[0,T ]

|RV(f + δ)(t)− RV(f)(t)|

= sup
t∈[0,T ]

1

t

t

0
(f(s) + δ(s)) ds− 1

t

t

0
f(s) ds

= sup
t∈[0,T ]

1

t

t

0
δ(s) ds

≤ sup
t∈[0,T ]

1

t

t

0
|δ(s)| ds

≤ 1

t

t

0
Mδ ds

= Mδ,

where Mδ := supt∈[0,T ] |δ(t)|, which is finite as δ ∈ C[0, T ]. Clearly, Mδ tends to zero as δ tends
to zero, and hence the operator RV is continuous with respect to the sup norm on C[0, T ].

Recall that from Corollary 4.3.13 we know that (Vt)t>0 satisfies a large deviations principle
as t tends to zero with speed t−(2ζ+1) and rate function IV1 given by (4.3.45). Then, using the
continuity of the realized variance operator RV we get a large deviations result for the realized
variance.

Corollary 4.3.18. The integrated variance process (RV(|V |)(t))t∈[0,T ] satisfies a large devi-
ations principle on R∗

+ as t tends to zero, with speed t−(2ζ+1) and rate function Λ̂ defined
as

Λ̂(y) := inf{IV1 (ψ) : y = RV(|ψ|)(1)}, (4.3.57)

where Λ̂(v0) = 0.
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Remark 4.3.19. The rate function (4.3.57) can be written as

Λ̂(y) = inf{IV1 (ψ) : y = RV(|ψ|)(1)}

= inf
1

2

T

0
(f2

1 (s) + f2
2 (s) ds : f1, f2 ∈ L2[0, T ], S

f1
f2

=
ϕ1

ϕ2
, ϕ2 = ψ, ψ(1) = x, y = RV(x)(1)

= inf
1

2

T

0
(f2

1 (s) + f2
2 (s) ds : f1, f2 ∈ L2[0, T ], S

f1
f2

=
ϕ1

ψ
, y = RV(|ψ|)(1) .

Proof of Corollary 4.3.18. Recall that we have an LDP on C[0, T ] for the process (Vε·)ε due to
Corollary 4.3.13. Using the contraction principle, Theorem 1.2.5, for the continuous function
f(x) = |x| we get the same for (|Vε·|)ε. Then, we use that RV is a continuous operator, hence
we again apply the contraction principle and get an LPD on C[0, T ] for (RV(|Vε·|))ε. Then, for
all t ∈ [0, T ], we can write

RV(|Vε·|)(t) = RV(|V·|)(εt). (4.3.58)

Hence, we have this LDP on C[0, T ] for the process (RV(|V |)(ε·))ε. Evaluating at t = 1 we use
the contraction principle to finally arrive at an LDP in R for (RV(|V |)(ε))ε and speed ε−(2ζ+1).
Mapping ε to t yields the result.

The authors of [LMS21] argue that if the rate function of the input process V to the realized
variance operator RV is continuous, so is the rate function of RV(|v|). Since we have not yet
discussed the continuity of the rate function, we will make a continuity assumption for citing
their result.

Assumption 4.3.20. The rate function IV1 given by (4.3.45) is continuous.

Corollary 4.3.21 (Corollary 3.6 [LMS21]). Under Assumption 4.3.20 the rate function Λ̂ given
by (4.3.57) is continuous.

Corollary 4.3.22 (Corollary 3.7 [LMS21]). Let Assumption 4.3.20 hold, β := 2ζ + 1 and
assume that the rate function can be represented as Λ̂(e·). Then, for log moneyness k :=

log K
RV(v)(0)

= 0, the following equality holds true for Call options on integrated variance:

lim
t 0

tβ logE RV(|V |)(t)− ek
+

= −I(k), (4.3.59)

where I is defined as

I(x) :=
infy>x Λ̂(e

y), x > 0,

y<x Λ̂(e
y), y < 0.

(4.3.60)

Similarly, for log moneyness k := log K√
RV(v)(0)

= 0,

lim
t 0

tβ logE RV(v)(t)− ek
+

= −Ī(k), (4.3.61)
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where Ī is defined analogously as

Ī(x) :=
infy>x Λ̂(e

2y), x > 0

infy<x Λ̂(e
2y), x < 0.

(4.3.62)

Proof. The proof can be found in Appendix B.2 [LMS21].

In [LMS21], the authors also consider implied volatility asymptotics. Note, that for the Call
price of the realized variance the implied volatility σ̂(T, k) to be the solution to

E RV(v)(T )− ek
+

= CBS(RV(v)(0), k, T, σ̂(T, k)), (4.3.63)

where CBS denotes the Call price in the Black-Scholes model. Using Corollary 4.3.22, we can,
according to [LMS21], deduce the small-time behavior of the implied volatility σ̂, as defined in
(4.3.63).

Corollary 4.3.23 (Corollary 3.8 [LMS21]). Let Assumption 4.3.20 hold and β := 2ζ+1. Then,
the small-time asymptotic behavior of the implied volatility is given by the following limit, for
a log moneyness k = 0:

lim
t 0

t1−βσ̂2(t, k) =: σ̂2(k) =
k2

2I(k)
. (4.3.64)

4.4. Simulation

In this section, we want to implement the model (4.1.7)–(4.1.8). As a disclaimer we note that
the naive Euler scheme used here is just an easy-to-understand proposal for simulating the
paths of our model without any error analysis, etc. For sure, there are more sophisticated and
efficient implementations possible and extensive error analysis would be interesting.

4.4.1. The Algorithm

Recall our model equation

Xt = X0 −
t

0

1

2
|Vs| ds+

t

0
|Vs|(ρ̄ dWs + ρ dBs), X0 = x0 > 0,

Vt = V0 +
t

0
K(t, s)b̄(Vs) ds+

t

0
K(t, s)σ̄(Vs) dWs, V0 = v0 > 0.

Remark 4.4.1. Note that the process V can also have negative values. Therefore, if we want
to analyze the properties of the instantaneous variance, we have to take

Vt := |Vt|.
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For the simulation of the paths we used a naive Euler scheme for the process V and computed
the Itô integral for the log-price X the same way. A difference to Itô diffusions we have to take
into account for the equation of V is that the kernel forces us to use all the previous values
of Vt instead of just one time-step before. However, we do not mind, because we use matrix
arithmetics to avoid a further loop handling this as can be seen below. We define a grid

T := {t0, t1, . . . , tN},

where

h := tj+1 − tj =
T

N
.

Then, we can write

Vtj+1 = V0 +
tj+1

0
K(tj+1, s)b̄(Vs) ds+

tj+1

0
K(tj+1, s)σ̄(Vs) dWs

= V0 +

j

k=0

tk+1

tk

K(tj+1, s)b̄(Vs) ds+
tk+1

tk

K(tj+1, s)σ̄(Vs) dWs

≈ V0 +

j

k=0

K(tj+1, tk)b̄(Vtk)(tk+1 − tk) +K(tj+1, tk)σ̄(Vtk)(Wtk+1
−Wtk)

= V0 +

j

k=0

K(tj+1, tk) b̄(Vtk)(tk+1 − tk) + σ̄(Vtk)(Wtk+1
−Wtk)

= V0 +

j

k=0

K(tj+1, tk) b̄(Vtk) · h+ σ̄(Vtk) ·
√
h ·Gk ,

where Gk ∼ N (0, 1) i.i.d. For an efficient implementation we will do some linear algebra.
Therefore, we define

Dk := b̄(Vtk) · h+ σ̄(Vtk) ·
√
h ·Gk, (4.4.1)

which allows us to write

Vtj+1 = V0 +

j

k=0

K(tj+1, tk) b̄(Vtk) · h+ σ̄(Vtk) ·
√
h ·Gk

= V0 +

j

k=0

K(tj+1, tk) ·Dk

= V0 +K(tj+1, t0) ·D0 +K(tj+1, t1) ·D1 + · · ·+K(tj+1, tj) ·Dj

= V0 + K(tj+1, t0) K(tj+1, t1) · · · K(tj+1, tj) ·



D0

D1
...
Dj


 .
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For handling different paths denote by D
(
ki) the Dk coming from a simulation W (i) of Brownian

motion for i = 1, . . . ,m. In fact, we have the factor
√
h extra, so we draw a Gaussian G(i).

Using the superscript for the path, we can write

V
(i)
tj+1

= V0 + K(tj+1, t0) K(tj+1, t1) . . . K(tj+1, tj) ·



D

(i)
0

D
(i)
1
...

D
(i)
j


 . (4.4.2)

Using a matrix, we can write all paths at once, i.e.

V
(i)
tj+1 i=1,...,m

= V0 + K(tj+1, t0) K(tj+1, t1) . . . K(tj+1, tj) ·



D

(1)
0 D

(2)
0 · · · D

(m)
0

D
(1)
1 D

(2)
1 · · · D

(m)
1

...
...

. . .
...

D
(1)
j D

(2)
j · · · D

(m)
j


 ,

and including all time steps we arrive at

V
(i)
tj

i=1,...,m

j=0,...,N
= V0 +




0 0 · · · 0

K(t1, t0) 0 · · · 0
K(t2, t0) K(t2, t1) · · · 0

...
...

. . .
...

K(tN , t0) K(tN , t1) . . . K(tN , tN−1)



 ·




D
(1)
0 D

(2)
0 · · · D

(m)
0

D
(1)
1 D

(2)
1 · · · D

(m)
1

...
...

. . .
...

D
(1)
N−1 D

(2)
N−1 · · · D

(m)
N−1


 .

Despite having a nice representation here, we emphasize, that for each row, we need to know
the entries of all rows before. Hence, our implementation cannot compute everything at once,
but will need an appropriate updating algorithm. We can do this the following way. For the
Dk we have

D
(i)
k = b̄ V

(i)
tk

· h+ σ̄ V
(i)
tk

·
√
h ·G(i)

k , (4.4.3)

for k = 0, . . . N − 1 and i = 1, . . . ,m. If we want to compute this simultaneously for all paths
let G be a Gaussian sample matrix of size N ×m. For ease of notation, we use (a : b) in the
matrix indices as a shorthand for i = a, . . . , b. Using pointwise multiplication we get

D
(i)
k

i=1,...,m
= D

(1)
k , D

(2)
k , · · · , D

(m)
k

= D
(1:m)
k

= b̄(V
(1)
tk

) · h+ σ̄(V
(1)
tk

) · √h ·G(1)
k , · · · , b̄(V

(m)
tk

) · h+ σ̄(V
(m)
tk

) · √h ·G(m)
k

= b(V
(1:m)
tk

) · h + σ̄(V
(1:m)
tk

)
√
h · G

(1)
k G

(2)
k · · · G

(m)
k

= b̄(V
(1:m)
tk

) · h+ σ̄(V
(1:m)
tk

) ·
√
h ·G(1:m)

k ,

where, with a slightly abuse of notation, the coefficient functions b̄ and σ̄ are evaluated point-
wise. Now, we can formulate an algorithm that only adds a row to the matrix containing the
Dk values.
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Algorithm 4.4.2. We can perform the following updating algorithm:

• Set a starting value

V
(1:m)
t0

= V0 V0 · · · V0 , (4.4.4)

which is an 1×m-matrix containing the initial value.

• For the iteration computing Vtj+1 , we need the matrix D
(1:m)
0:j . For the previous iteration

for Vtj , we had the matrix D
(1:m)
0:(j−1), hence we compute just the row

D
(1:m)
j = b̄ V

(1:m)
tj

· h+ σ̄ V
(1:m)
tj

√
h ·G(1:m)

j . (4.4.5)

Then, we stack this to the already computed matrix from the previous time iteration, i.e.

D
(1:m)
0:j =

D
(1:m)
0:(j−1)

D
(1:m)
j

=



D

(1)
0 D

(2)
0 · · · D

(m)
0

D
(1)
1 D

(2)
1 · · · D

(m)
1

...
...

. . .
...

D
(1)
j D

(2)
j · · · D

(m)
j


 . (4.4.6)

• Now, we can perform the vector-matrix multiplication from (4.4.2) simultaneously for all
paths, i.e.

V
(1:m)
tj+1

= K(tj+1, t0) K(tj+1, t1) . . . K(tj+1, tj) ·



D1

0 D2
0 · · · Dm

0

D1
1 D2

1 · · · Dm
1

...
...

. . .
...

D1
j D2

j · · · Dm
j


 . (4.4.7)

Note that a 1× (j+1) matrix is multiplied with a (j+1)×m matrix. The resulting 1×m

matrix resp. vector V
(1:m)
tj+1

contains the value of all paths at a certain time point.

For computing the log-price take the same grid as above. Note that the log-price is, in fact,
not given as the solution to an equation, but just an Itô integral. We can write

Xtj = X0 −
tj

0

1

2
|Vs| ds+

tj

0
|Vs|(ρ̄ dWs + ρ dBs)

= X0 +

j−1

k=0

tk+1

tk

−1

2
|Vs| ds+

tk+1

tk

|Vs|(ρ̄ dWs + ρ dBs)

≈ X0 +

j−1

k=0

−1

2
|Vtk |(tk+1 − tk) + |Vtk | ρ̄(Wtk+1

−Wtk) + ρ(Btk+1
−Btk)

= X0 +

j−1

k=0

−1

2
|Vtk |h+ |Vtk | (ρ̄ΔhW + ρΔhB)

= X0 +

j−1

k=0

−1

2
|Vtk |h+ |Vtk |

√
h ρ̄Gk + ρGk ,
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where Gk, Gk ∼ N (0, 1) i.i.d. for k = 0, . . . , j−1. Performing everything columnwise to resolve
the different parts, we write for j ≥ 1

X
(i)
tj

= X0 +

j−1

k=0

−1

2
|V (i)

tk
|h+ |V (i)

tk
|
√
h ρ̄G

(i)
k + ρG

(i)
k , (4.4.8)

where the Gaussian matrix G was used to simulate the driving Brownian motion of the process
V . The log-price does not have an integral kernel and it is not an actual equation. Therefore,
it is possible to compute (4.4.8) directly with matrix arithmetics without any loop. In the
following, we derive the exact computation. To get a proper representation of the sum as
matrix multiplication define for j ≥ 1 the N ×N matrix

Ãj,k := δ(k ≤ j) :=
1, k ≤ j,

0, else.
(4.4.9)

Hence, we can write

X
(i)
tj

= X0 +

j−1

k=0

−1

2
|V (i)

tk
|h+ |V (i)

tk
|
√
h ρ̄G(i)k + ρG

(i)
k

= X0 − 1

2
· h · (|V (i)

t0
|+ |V (i)

t1
|+ . . .+ |V (i)

tj−1
|)

+
√
h · |V (i)

t0
| ρ̄G

(i)
0 + ρG

(i)
0 + . . .+ |V (i)

tj−1
| ρ̄G

(i)
j−1 + ρG

(i)
j−1

= X0 − 1

2
· h · Ãj,(1:N) ·




|V (i)
t0

|
|V (i)

t1
|

...
|V (i)

tN−1
|


+

√
h · Ãj,(1:N) ·




|V (i)

t0
| ρ̄G

(i)
0 + ρG

(i)
0

|V (i)
t1

| ρ̄G
(i)
1 + ρG

(i)
1

...

|V (i)
tN−1

| ρ̄G
(i)
N−1 + ρG

(i)
N−1




.

For all time steps simultaneously we then get



X

(i)
t1

X
(i)
t2
...

X
(i)
tN


 = X0 − 1

2
· h · Ã(1:N),(1:N) ·




|V (i)
t0

|
|V (i)

t1
|

...
|V (i)

tN−1
|


+

√
h · Ã(1:N),(1:N) ·




|V (i)

t0
| ρ̄G

(i)
0 + ρG

(i)
0

|V (i)
t1

| ρ̄G
(i)
1 + ρG

(i)
1

...

|V (i)
tN−1

| ρ̄G
(i)
N−1 + ρG

(i)
N−1




.
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For all time steps and paths simultaneously we get

X

(1)
t1

· · · X
(m)
t1

X
(1)
t2

· · · X
(m)
t2

...
. . .

...
X

(1)
tN

· · · X
(m)
tN


 = X0 − 1

2
· h · Ã(1:N),(1:N) ·




|V (1)
t0

| · · · |V (m)
t0

|
|V (1)

t1
| · · · |V (m)

t1
|

...
. . .

...
|V (1)

tN−1
| · · · |V (m)

tN−1
|




+
√
h · Ã(1:N),(1:N) ·




|V (1)

t0
| ρ̄G

(1)
0 + ρG

(1)
0 · · · |V (m)

t0
| ρ̄G

(m)
0 + ρG

(m)
0

|V (1)
t1

| ρ̄G
(1)
1 + ρG

(1)
1 · · · |V (m)

t1
| ρ̄G

(m)
1 + ρG

(m)
1

...
. . .

...

|V (1)
tN−1

| ρ̄G
(1)
N−1 + ρG

(1)
N−1 · · · |V (m)

tN−1
| ρ̄G

(m)
N−1 + ρG

(m)
N−1




.

Using these computations, we see that a simple matrix multiplication computes all values of
the log-price at once.

Algorithm 4.4.3. Having already computed the process V resp. the values V (i)
tj

for j = 0, . . . , N
and i = 1, . . .m, we can compute the log-price as follows:

• Take the Gaussian matrix G which was used to simulate the driving Brownian motion of
the process V . Compute another Gaussian matrix G of the same dimension (N +1)×m.

• Create an (N + 1)×N matrix A, where

A1,(1:N) = 0 0 · · · 0 (4.4.10)

and the quadratic submatrix A(2:(N+1)),1:N is a lower triangular matrix with ones, i.e. the
whole matrix is given by

A =




0 0 0 · · · 0
1 0 0 · · · 0
1 1 0 · · · 0
...

...
...

. . .
...

1 1 1 · · · 1



 ∈ R(N+1)×N . (4.4.11)

• Resolving the sum in (4.4.8), the matrix multiplication, we have to perform is given by

X
(i)
tj

i=1,...,m

j=0,...,N
= X0 − 1

2
· h ·A · |V (i)

tj
| i=1,...,m

j=0,...,N
+
√
h ·A · |V (i)

tj
| · (ρ̄ ·G(i)

j + ρG
(i)
j )

i=1,...,m

j=0,...,N
.

(4.4.12)

Here, the indices indicate that the absolute value, the square root as well as the multipli-
cation with the Gaussian paths are performed pointwise. The actual matrix multiplication
is performed with A.
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Remark 4.4.4. Using a programming language that has a good syntax for pointwise oper-
ations, e.g. R, is convenient here. Using the dot for pointwise operations and ∗ for matrix
multiplication the computation in (4.4.12) would look like

X[0:N] = X0 − 1

2
· h ·A[0:N,1:N] ∗ |V [1:N,1:m]|

+
√
h ·A[0:N,1:N] ∗ |V [1:N,1:m]| · ρ̄ ·G[1:N,1:m]+ ρ ·G[1:N,1:m] ,

where again the absolute value and the square root are taken as pointwise operations.

4.4.2. The source code

To conclude this part, we show an implementation example in R and some plots of the paths
of the log-price and the process V resp. the instantaneous variance |V |. For those who want to
reproduce the implementation, the source code is provided. For nice plots, we need the ggplot
package, and we load the tidyverse package to have a convenient syntax for preparing the
plots.

1 # libraries ########################################################
2
3 library(tidyverse)

Listing 4.1: Load libraries

We, for now arbitrarily, choose the model parameters.
1 # model parameters ########################################################
2
3 t0 = 0
4 T = 1.3
5 V0 = 1.1
6 X0 = 1.3
7 rho = 0.3
8 rho_bar = sqrt(1 - rho^2)
9

10 kappa = 2.3
11 theta = 0.3
12 xi = 1.35
13 truncation_size = M = 10^13

Listing 4.2: Set model parameters

We initialize the grid for the simulation. Note that using m_max precomputes a Gaussian matrix
that may be bigger than the number of paths we want. For a lower number of paths we just
take a sub-matrix.

1 # simulation parameters ###################################################
2
3 m_max = 20000
4 h = 0.001
5 N = T/h
6 t_grid = seq(t0, T, by = h)
7
8 # check grid
9 length(t_grid) == N + 1

Listing 4.3: Set simulation parameters
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Next, we draw the two Gaussian sample matrices G and G.
1 # draw Gaussian sample as a matrix ###################################
2
3 G_1 = rnorm(m_max * N)
4 G_1 = matrix(G_1, nrow = N)
5
6 G_2 = rnorm(m_max * N)
7 G_2 = matrix(G_2, nrow = N)

Listing 4.4: Draw Gaussian sample

Next we implemented a vector valued version of the Riemann-Liouville fractional kernel given
by (4.2.14).

1 # Riemann -Liouville kernel function definition
#########################################

2
3 alpha = 1 # can be changed before function call
4
5 K_scal = function(t, s){
6 if(min(s, t) < 0){
7 stop("s and t must be >= 0!")
8 }
9

10 if(s >= t){
11 res = 0
12 }else{
13 res = (t - s)^(alpha - 1) / gamma(alpha)
14 }
15
16 return(res)
17 }
18
19
20
21 K_vec = function(t, s){
22
23 n_t = length(t)
24
25 if(n_t != length(s)){
26 stop("t and s must be of same length!")
27 }
28
29 res = rep(0, n_t)
30 for(j in (1:n_t)){
31 res[j] = K_scal(t[j], s[j])
32 }
33
34 return(res)
35 }
36
37 K = K_vec

Listing 4.5: Function definition Riemann-Liouville kernel
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Next, we defined the coefficient functions b̄ and σ̄, again implemented as a vector-valued version.
1 # integrand coefficient functions ############################################
2
3 # REMARK: The trunacation size can be changed before the function call
4
5 sigma_bar = function(x) {
6 res = rep(0, length(x))
7
8 index_ok = which(abs(x) <= truncation_size)
9 index_modified = which(abs(x) > truncation_size)

10
11 res[index_ok] = xi * abs(x[index_ok])^(3/2)
12 res[index_modified] = xi * rep(truncation_size , length(index_modified))^(3/2)
13
14 return(res)
15 }
16
17 b_bar = function(x) {
18 res = rep(0, length(x))
19
20 index_ok = which(abs(x) <= truncation_size)
21 index_modified_plus = which(x > truncation_size)
22 index_modified_minus = which(x < -truncation_size)
23
24 res[index_ok] = kappa * x[index_ok] * (theta - x[index_ok])
25 res[index_modified_plus] = kappa * rep(truncation_size , length(index_modified_plus))

* (theta - rep(truncation_size , length(index_modified_plus)))
26 res[index_modified_minus] = kappa * (-1) * rep(truncation_size , length(index_modified

_minus)) * (theta + rep(truncation_size , length(index_modified_minus)))
27
28 return(res)
29 }
30
31
32 # Check truncation
33 plot(sigma_bar , xlim = c(-truncation_size * 10, truncation_size * 10))
34 plot(b_bar , xlim = c(-truncation_size * 10, truncation_size * 10))

Listing 4.6: Coefficient functions b̄ and σ̄

Now, we are able to simulate the paths of V using Algorithm 4.4.2.
1 # Simulation process V ############################################
2
3 alpha = 0.6
4
5 n_sim = 2000
6 n_sim <= m_max
7
8 V = matrix(NA, nrow = N+1, ncol = n_sim)
9 V[1, ] = rep(V0, n_sim)

10
11 D = NULL
12 for(j in 0:(N-1)){
13
14 j_tilde = j + 1
15
16 # kernel
17 kernel_vec = K(rep(t_grid[(j_tilde + 1)], times = j_tilde), t_grid [1:j_tilde])
18 vec_1 = kernel_vec
19
20 # D
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21 D = rbind(D, b_bar(V[j_tilde , ]) * h + sigma_bar(V[j_tilde , ]) * sqrt(h) * G_1[j_
tilde , (1:n_sim)])

22 vec_2 = D
23
24 # Matrix multiplication for V_{t_{j + 1}} = V[j_tilde + 1, ]
25 V[(j_tilde + 1), ] = V[1, ] + vec_1 %*% vec_2
26
27 }

Listing 4.7: Simulation of the process V

Next, we use a small script using ggplot() to sample some paths of the instantaneous variance
|V |. Note that it is just an example, and we will give plots for different α ∈ (12 , 1) below.

1 # Plot sample paths of the instantaneous variance |V|
############################################

2
3 choice = sample (1:n_sim , size = 3)
4
5 df = NULL
6 for(j in (1: length(choice))){
7
8 df = rbind(df , tibble(t = t_grid , V = abs(V[, choice[j]]), path = as.factor(choice[j

])))
9

10 }
11
12 ggplot(df, aes(x = t, y = V, col = path)) +
13 geom_line() +
14 geom_hline(yintercept = 0, col = "blue") +
15 geom_hline(yintercept = 5, col = "red")

Listing 4.8: Plot random choice of paths of the instantaneous variance |V |
For the simulation of X we use Algorithm 4.4.3.

1 # Simulation log -price X ############################################
2
3 # The process V is assumed to be already simulated
4 # The driving Brownian motion of V has been drawn using G_1
5 # --> G_1 is multiplied by rho_bar and G_2 by rho
6
7 m = n_sim
8
9 tmp_mat = matrix(1, N, N)

10 ones_triangular = lower.tri(tmp_mat , diag = TRUE) * tmp_mat
11 A = rbind(rep(0, times = N), ones_triangular)
12
13 X = X0 - 1/2 * h * A %*% abs(V[1:N, ]) + sqrt(h) * A %*% ( sqrt(abs(V[1:N, ])) * (rho_

bar * G_1[1:N, 1:m] + rho * G_2[1:N, 1:m]) )
14
15 # Check result
16 all.equal(dim(X), c(N+1, m))

Listing 4.9: Simulation of the log-price X

An example of plotting the log-price works the same way as in Listing 4.8.
1 # Plot sample paths of the log -price X ############################################
2
3 choice = sample (1:n_sim , size = 3)
4
5 df = NULL
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6 for(j in (1: length(choice))){
7
8 df = rbind(df , tibble(t = t_grid , X= X[, choice[j]], path = as.factor(choice[j])))
9

10 }
11
12 ggplot(df, aes(x = t, y = X, col = path)) +
13 geom_line() +
14 geom_hline(yintercept = 0, col = "blue") +
15 geom_hline(yintercept = 5, col = "red")

Listing 4.10: Plot random choice of paths of the log-price X

4.4.3. The plots

In this section, we shortly discuss the numeric results. The model parameters are chosen as in
Listings 4.2 and 4.3, i.e.

t ∈ [0, 1.3],

v0 = 1.1,

x0 = 1.3,

ρ = 0.3,

ρ̄ = 1− ρ2,

κ = 2.3,

θ = 0.3,

ξ = 1.35,

M = 1013

and

h = 0.001,

N =
T

h
.

First, in Figure 4.1–4.5 we plot paths for different values of α. Here, α denotes the parameter
of the Riemann-Liouville kernel, i.e. ν = α in the definition of (4.2.14). We see that the paths
get smoother as α tends to one which corresponds to the case of the classic 3/2-model. In
fact, the solution to our equation (4.1.8) cannot explode, because we truncated the coefficient
functions in the definition of b̄ and σ̄, see (4.1.11) and (4.1.12). Despite this truncation, which
allows us to mathematically handle the model, there are also paths that tend to the boundary
created by the truncation. This suggests that if there was no truncation the solution would
explode. Paths like this can bee seen in Figure 4.1 and 4.6. The latter one uses α = 0.6,
where we have already seen “good” paths in Figure 4.2. Note that in the classic 3/2-model
there are no explosions due to the Feller condition. We observe, that for one simulation of the
Gaussian matrices G,G resp. G1 and G2 we get a threshold α0, such that there seem to be no
(pseudo-)explosions for α > 0 in the truncated model and hence in the non-truncated one, see
Figure 4.7–4.8. Interesting would be if it is possible to find a threshold that is independent of
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the Gaussian sample matrices and is somehow connected to the choice of the model parameters.
This is postponed for future work.
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Figure 4.1.: Simulation of |V | and X with Riemann Liouville parameter α = 0.55.
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Figure 4.7.: Simulation of |V | and X with Riemann Liouville parameter α = 0.77 with a large
number of paths plotted.
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Figure 4.8.: Simulation of |V | and X with Riemann Liouville parameter α = 0.78 with a large
number of paths plotted.
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A. Asymptotics

In this part we recall some notation for asymptotic results. The formulations are directly taken
from [Ger18].

Definition A.0.1 ([FS09]). Let S be a set and s0 ∈ S. We assume a notion of neighbourhood
to exist on S, such that s0 ∈ S is possible, e.g. S = R and s0 = +∞. Two functions f, g :
S\{s0} → R (C) are given.

(i) Write

f(s) = o(g(s)), s → s0, (A.0.1)

if

lim
s→s0

f(s)

g(s)
= 0. (A.0.2)

In other words, for any (arbitrary small) ε > 0, there exists a neighbourhood Vε of s0
(depending on ε), such that

|f(s)| ≤ ε|g(s)|, s ∈ Vε, s = s0.

We say “f is of order smaller than g”, or “f is little-oh of g”, or “f is asymptotically
dominated by g” (as s tends to s0).

(ii) Write

f(s) = O(g(s)), s → s0, (A.0.3)

if

lim sup
s→s0

f(s)

g(s)
< ∞. (A.0.4)

In other words, there exists a neighborhood V of s0 and a constant C > 0 such that

|f(s)| ≤ C|g(s)|, s ∈ V, s = s0.

One also says that “f is of order at most g”, or “f is big–Oh of g”, or “f is bounded from
above by g (up to a constant factor) asymptotically” (as s tends to s0).

(iii) Write

f(s) ∼ g(s), s → s0, (A.0.5)

if

lim
s→s0

f(s)

g(s)
= 1. (A.0.6)

One also says that “f and g are asymptotically equivalent” (as s tends to s0 ).
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A. Asymptotics

Remark A.0.2. Note that very often the term s → s0 is omitted, since it can mostly be
identified by the context.

Remark A.0.3. Note that f(s) = O(1) resp. f ∈ O(1) (for s → s0) means that f is bounded
for s → s0, since this is equivalent to

lim sup
s→s0

|f(s)|
1

< ∞.

Lemma A.0.4. Some properties of the Landau-Notation are the following:

(i) Product: For f1 = O(g1) and f2 = O(g2) we have f1f2 = O(g1g2). Especially we have
fO(g) = O(fg).

(ii) Sum: For f1 = O(g1) and f2 = O(g2) we have f1 + f2 = O(|g1| + |g2|). This implies
that for f1, f2 ∈ O(g) we get f1 + f2 ∈ O(g) which means that O(g) is a convex cone. If
f and g are positive functions, we get O(f) +O(g) = O(f + g).

(iii) Constant multiplication: Let k be a constant. Then we have O(kg) = O(g) if k is
nonzero. From f = O(g) we get kf = O(g).

Proof. The properties above can be computed straight forward using the definition of the big-
O-notation.

Ad (i). Here we get with suppression of the argument for ease of notation

lim sup
s→s0

f1f2
g1g2

≤ lim sup
s→s0

f1
g1

f1
g1

≤ lim sup
s→s0

f1
g1

lim sup
s→s0

f2
g2

< ∞.

Ad (ii). We have for |f1/g1|, |f2/g2| < C that

|f1 + f2|
|g1|+ |g2| ≤

|f1|
|g1|+ |g2| +

|f2|
|g1|+ |g2| ≤

|f1|
|g1| +

|f2|
|g2| < 2C

which leads to f1 + f2 = O(|g1|+ |g2|).
Ad (iii). For |f/g| < C we get

kf

g
< |k|C.

Remark A.0.5. Note that the notation can be combined with other arithmetic operators, e.g.
g(s) = h(s) +O(f(s)) expresses the same as g(s)− h(s) = O(f(s)).
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B. Inequalities

Proposition B.0.1. The square root function is sub-additive on R+ in the sense that
√
x+ y ≤ √

x+
√
y (B.0.1)

for every x, y ≥ 0. Actually this holds for fractional powers, i.e.

(a+ b)δ ≤ aδ + bδ (B.0.2)

for a, b > 0 and δ ∈ (0, 1).

Proposition B.0.2. For p ≥ 1 and a, b ∈ R, we have

(a+ b)p ≤ 2p−1(|a|p + |b|p). (B.0.3)

Proposition B.0.3. The power function with fractional power, i.e. exponent in (0, 1), is Hölder
continuous with constant 1 and the Hölder exponent is the same as the given fractional exponent.
Hence, for x, y > 0 and α ∈ (0, 1) we have

|xα − yα| ≤ |x− y|α. (B.0.4)

Corollary B.0.4. Taking α = 1
2 in Proposition B.0.3, we get for any x, y > 0 that

|√x−√
y| ≤ |x− y|. (B.0.5)

Lemma B.0.5 (Lemma A.1 [Zha08]). For any α ∈ (0, 1), we have

t

0

(t − t)α

(t− s)α(t − s)α
ds ≤ C(t − t)α∧(

1−α
2

), (B.0.6)

for all 0 < t < t ≤ 1.

Proof. The proof can be found on p. 2244 [Zha08]. By substitution, we have

t

0

(t − t)α

(t− s)α(t − s)α
ds = (t − t)1−α

t
t −t

0

1

uα(1 + u)α
du. (B.0.7)
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If α ∈ (0, 12), the right-hand side of (B.0.7) is less than

(t − t)1−α

t
t −t

0

1

u2α
≤ C(t − t)α.

If α ∈ [12 , 1), by Young’s inequality, the right-hand side of (B.0.7) is less than

(t − t)1−α

t
t −t

0

2α

(α+ 1)u
α+1
2

+
1− α

(1 + α)(1 + u)
α(1+α)
1−α

du

=
4αt

1−α
2 (t − t)

1−α
2

1− α2
+

(t − t)1−α

(1 + α)(α2 + 2α− 1)

1− t

t − t

1−2α−α2

1−α


≤ C(t − t)

1−α
2 + C(t − t)1−α

≤ C(t − t)
1−α
2 .
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C. Computations for the Riemann-Liouville
kernel

Proposition C.0.1. The Riemann-Liouville fractional kernel given by (4.2.14) satisfies As-
sumption 4.2.1.

Proof. Let ν ∈ (12 , 1). For the sake of simplicity, we omit the normalizing constant Γ(ν) and
write

Kν(t, s) = Kν(t− s) := (t− s)ν−1. (C.0.1)

In the following, we have to prove (4.2.10), (4.2.11) and (4.2.13).

Assumption (4.2.10) The function f given by

f :
(0, t) → R,
s → Kν(t, s) =

1
(t−s)1−ν ,

(C.0.2)

is continuous clearly continuous.

Assumption (4.2.11) We have

t

0
Kν(t, s)

α̃ ds =
t

0
(t− s)(ν−1)α̃ ds, (C.0.3)

which is integrable if and only if

(ν − 1)α̃ > −1.

This is equivalent to α̃ < 1
1−ν , because ν − 1 is negative for ν ∈ 1

2 , 1 . Hence, we need

α̃ ∈ 1,
1

1− ν
.

For ν ∈ 1
2 , 1 we get that

1

1− ν
∈ (2,∞).

Hence, we can find an α̃ such that

α̃ ∈ 2,
1

1− ν
, (C.0.4)
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so α̃ > 2. Using κ := (ν − 1)α̃ ∈ (−1, 0) we get

t

0
Kν(t, s)

α̃ ds =
t

0
(t− s)κ ds =

t

0
uκ ds =

tκ+1

κ+ 1
≤ T κ+1

κ+ 1
.

Hence, we get a uniform bound for the integral.

Assumption (4.2.13) We have

MKν (h) := sup
{t1,t2∈[0,T ]: |t1−t2|≤h}

T

0
|Kν(t1, s)−Kν(t2, s)|2 ds. (C.0.5)

Using t1 < t2, we can write

t1

0
|Kν(t1, s)−Kν(t2, s)|2 ds =

t1

0
|Kν(t1 − s)−Kν(t2 − s)|2 ds

=
t1

0
|(t1 − s)ν−1 − (t2 − s)ν−1|2 ds

=
t1

0

1

(t1 − s)1−ν
− 1

(t2 − s)1−ν

2

ds

=
t1

0

1

t1 − s

1−ν

− 1

t2 − s

1−ν 2

ds

(B.0.4)
≤

t1

0

1

t1 − s
− 1

t2 − s

2(1−ν)

ds

=
t1

0

(t2 − s)− (t1 − s)

(t1 − s)(t2 − s)

2(1−ν)

ds

=
t1

0

t2 − t1
(t1 − s)(t2 − s)

2(1−ν)

ds

=
t

0

(t2 − t1)
2(1−ν)

(t1 − s)2(1−ν)(t2 − s)2(1−ν)
ds.

Now, using γ := 2(1− ν) ∈ (0, 1) in Lemma B.0.5 we can write

t

0

(t2 − t1)
2(1−ν)

(t1 − s)2(1−ν)(t2 − s)2(1−ν)
ds ≤ C(t2 − t1)

γ∧ 1−γ
2 = C(t2 − t1)

2(1−ν)∧(ν− 1
2
).

Next, we need to estimate

t2

t1

Kν(t2, s)
2 ds ≤

t2

t1

Kν(t2, s)
2β ds

1
β t2

t1

1 ds

1
β∗

≤ C(t2 − t1)
1
β∗

using Hölder inequality. The Hölder exponent β > 1 is chosen such that 1 < 2β < α̃, which
is possible, because of (C.0.4). The conjugated Hölder exponent then is β∗ := β

β−1 . Putting
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C. Computations for the Riemann-Liouville kernel

everything together we arrive at

T

0
|Kν(t1, s)−Kν(t2, s)|2 ds =

t1

0
|Kν(t1, s)−Kν(t2, s)|2 ds+

t2

t1

|Kν(t2, s)|2 ds+
T

t2

0 ds

≤ C1(t2 − t1)
2(1−ν)∧(ν− 1

2
) + C2(t2 − t1)

1
β∗

≤ C(t2 − t1)
r,

where

r := 2(1− ν) ∧ ν − 1

2
∧ 1

β∗ . (C.0.6)

Finally, we arrive at

MKν (h) ≤ Chr, (C.0.7)

for some r > 0 resp. r given in (C.0.6).
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D.1. A short note on Lipschitz continuity

For this section, we use for a continuous function f : D ⊂ R → R the convention

f ∞ := sup
x∈D

|f(x)|. (D.1.1)

Definition D.1.1. A function f : D → R with D ⊂ R is called Lipschitz continuous if for all
x, y ∈ D

|f(x)− f(y)| ≤ L · |x− y|. (D.1.2)

Remark D.1.2. The following (rather obvious) observations should be mentioned, because we
want to properly get the Lipschitz constant in our application.

(i) If a function f : D ⊂ R → R is smooth, it is Lipschitz continuous if and only if the first
derivative is bounded on D.

(ii) If a continuous function f : D ⊂ R → R is piecewise smooth, it is Lipschitz continuous
if and only if the first derivative is bounded on any compact interval containing only
points of smoothness. In this case, the Lipschitz constant is the maximum of all Lipschitz
constants of compact intervals containing only points of smoothness.

To see this, let f : R → R be a continuous function, that is smooth on |x| ≤ M and constant
on |x| > M , i.e.

f(x) =



f̃(−M), x < −M

f̃(x), x ∈ [−M,M ],

f̃(M), x > M.

(D.1.3)

Here, f̃ : [−M,M ] → R is a smooth Lipschitz-continuous function with Lipschitz constant Lf̃ .
Note that the function f is bounded. In the following, we want to get a Lipschitz constant that
works uniformly for the whole domain of f .

Case |x− y| > 1. We can write

|f(x)− f(y)| ≤ |f(x)|+ |f(y)| ≤ 2 · f ∞ ≤ 2 · f ∞ · |x− y|.
Hence, we have

L1 := 2 · f ∞.

Case |x−y| ≤ 1. We let M ≥ 1, because we use it as a very large boundary for the instantaneous
variance in our model. Using W.L.O.G. x < y, we can distinguish between the following cases:
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• x < y < −M : We have |f(x)− f(y)| = |f̃(−M)− f̃(−M)| = 0.

• x < −M < y: We have

|f(x)− f(y)| = |f̃(−M)− f̃(y)| ≤ Lf̃ · |(−M)− y| ≤ Lf̃ · |x− y|.

• −M < x < y < M : We have Lipschitz continuity on [−M,M ], hence

|f(x)− f(y)| = |f̃(x)− f̃(y)| ≤ Lf̃ · |x− y|.

• x < M < y: We have

|f(x)− f(y)| = |f̃(x)− f̃(M)| ≤ Lf̃ · |x−M | ≤ Lf̃ · |x− y|.

• M < x < y: We have |f(x)− f(y)| = |f̃(M)− f̃(M)| = 0.

Summing up, we can keep the original Lipschitz constant Lf̃ for the case |x− y| ≤ 1.
Putting the cases together, we get that f is Lipschitz continuous on (−∞,∞) with Lipschitz

constant Lf := max{Lf̃ , 2 · f ∞}.

D.2. A smooth version of b̄

In this section, we want to sketch how the coefficients function b̄ of (4.1.8) can be W.L.O.G.
replaced by a smooth version. Recall that we have

b̄(x) =



κ(−M)(θ +M), x ∈ (−∞,−M),

κx(θ − x), x ∈ [−M,M ],

κM(θ −M), x ∈ (M,∞).

(D.2.1)

A smooth version of b̄ needs to be of the form

b̃(x) =





u(−M − ), x ∈ (−∞,−M − )

u(x), x ∈ [−M − ,−M ]

b̄(x), x ∈ [−M,M ],

g(x), x ∈ [M,M + ],

g(M + ), x ∈ (M + ,∞).

(D.2.2)

Here, the corresponding functions need to match the function values and the derivatives for
meeting the smooth pasting condition. We sketch the interpolation around M . First note that

b̄(x) = −κx2 + κθx, (D.2.3)
∂xb̄(x) = −2κx+ κθ. (D.2.4)

For g we need the conditions

g(M) = b̄(M),

g (M) = b̄ (M),

g (M + ) = 0.
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Hence, we have three conditions to match and can choose g to be a polynom, i.e.

g(x) = ax2 + bx+ c,

g (x) = 2ax+ b.

The matching conditions lead to the equations

M2·a+M · b+ c = κM(θ −M),

2M ·a+ b = κ(θ − 2M),

2(M + )·a+ b = 0,

which can be written as linear system, i.e. M2 M 1
2M 1 0

2(M + ) 1 0

 ·
a
b
c

 =

κM(θ −M)
κ(θ − 2M)

0

 . (D.2.5)

The rank on the left-hand side is full and hence our interpolation function has a unique solution
given by a

b
c

 =

 M2 M 1
2M 1 0

2(M + ) 1 0

−1

·
κM(θ −M)

κ(θ − 2M)
0

 . (D.2.6)

The same can be done around −M .
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