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Abstract
For functions u ∈ H1(�) in a bounded polytope � ⊂ R

d d = 1, 2, 3 with plane sides
for d = 2, 3 which are Gevrey regular in�\S with point singularities concentrated at
a setS ⊂ � consisting of a finite number of points in �, we prove exponential rates
of convergence of hp-version continuous Galerkin finite element methods on affine
families of regular, simplicial meshes in �. The simplicial meshes are geometrically
refined towards S but are otherwise unstructured.

Mathematics Subject Classification 65N30

1 Introduction

Many nonlinear PDEs admit solutions which are smooth in a bounded, polytopal
domain � ⊂ R, but exhibit isolated point singularities at a set S ⊂ �. We mention
only nonlinear Schrödinger equations with self-focusing, density functional models
in electron structure calculations (eg. [3,6,7,17] and the references there), nonlinear
parabolic PDEswith critical growth (eg. [22,29] and the references there, or continuum
models of crystalline solids with isolated point defects (eg. [25] and the references
there).

We prove an exponential convergence result for C0-conforming hp-FEM on regu-
lar, simplicial mesh families with isotropic, geometric refinement towards the singular
point(s) c ∈ S . These meshes are in addition required to be shape-regular. This type
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324 M. Feischl, Ch. Schwab

of mesh arises for example in adaptive bisection-tree refinements. Specifically, for
singular solutions u ∈ H1(�) in the bounded domain � ⊂ R

d , d = 2, 3 which
belong, in addition, to a countably normed space with non-homogeneous, radial
weights as introduced, for example, in [4,13], and with Gevrey-regular growth of
derivatives in �\S , we construct a sequence {I hpN }N of continuous, piecewise poly-
nomial (quasi-)interpolation operators on sequences of regular, simplicial partitions
that are geometrically refined towards S with exponential convergence in H1(�):
for a bounded domain � ⊂ R

d and for functions u ∈ H1(�) ∩ Gδ(�), a class of
δ-Gevrey-regular functions in �\S (to be defined in (8) below), there exist constants
b,C > 0 which depend on � and on u, such that for all N

‖u − I hpN u‖H1(�) ≤ C

{
exp(−bN 1

1+δd ) δ ≥ 1,

�(N
1

1+δd )−b(1−δ) 0 < δ < 1.
(1)

Here, d = 2, 3 denotes the space dimension and N denotes the number of degrees
of freedom in the hp-FE approximation, �(·) denotes the Gamma function and δ > 0
denotes the Gevrey regularity parameter.

Since the pioneering work [4], Gevrey regularity of solutions has been verified in
a number of nonlinear partial differential equations; we mention only incompressible
Euler [9] and KdV equations [10].

Note also that δ = 1 corresponds to functions which are analytic in �\S which
case was considered in [2,12,15,16,19–21]. In the presently considered case δ > 1, i.e.
smooth but non-analytic functions u are admitted. This precludes the use of analytic
continuation intoBernsteinEllipses and of classical complex variablemethods of poly-
nomial approximation to establish exponential convergence rate bounds. We therefore
opt here for tensorized univariate hp-projectors with analytic error bounds (being
explicit in the polynomial degree and in the regularity parameter). Approximations on
tetrahedral elements T are obtained by restricting the resulting local hp-interpolants
from a corresponding parallelepiped KT containing T . Rendering the tensorized hp-
interpolant well-defined in KT requires KT ⊂ �. In Lemma 1, we show that this
requirement can be achieved in regular, geometric meshes of triangles resp. tetrahedra
with sufficient refinement, in any bounded polytope �.

The rate (1) coincides, in the cases d = 1, 2 and for analytic solutions, i.e. when
δ = 1, with the exponential convergence rate bounds obtained in [18,19] for corner
singularities on structured geometric meshes (consisting of axiparallel quadrilaterals
with inserted triangles to remove irregular nodes). In space dimension d = 3, (1)
generalizes the hp-approximations in [30, Sec. 5.2.2] in the case of vertex singularities,
formeshes of axiparallel hexahedra to unstructured, tetrahedralmesheswith geometric
refinement towards S . For 0 < δ < 1 we obtain super-exponential convergence rate
bounds, which benefit from the higher regularity of u.

The structure of the note is as follows: in Sect. 2, we introduce a model problem,
the geometric assumptions on the singularities, and precise the analytic regularity in
countably normed, weighted Sobolev spaces with radial weight functions. In Sect. 3,
we introduce the hp-version FEM; we specify in particular the assumptions on the
simplicial, geometric meshes, on the elemental polynomial degrees, and on the def-
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Exponential convergence in H1 of hp-FEM for… 325

inition of the hp FE spaces. Sect. 4 contains a proof of the exponential convergence
bound in H1(�) on regular, simplicial geometric mesh families.

2 Analytic regularity

Analytic regularity is characterized in countably normed weighted Sobolev spaces
whichhavebeen introduced andused in exponential convergence estimates in a number
of references; we only mention [2,13,18–21] and the references there. Here, we denote
by S ⊂ � the set of singular points c; we consider solutions u ∈ H1(�) which are
smooth in �\S so that the singular support of u coincides with S . We work under
the following separation assumption on S .

The singular set S consist of a finite number of isolated points c ∈ �. (2)

Assumption (2) implies ε(�,S ) := min{dist(c, c′) : c, c′ ∈ S , c 	= c′} > 0,
and allows to partition the set � into |S | many disjoint neighborhoods ωc of the
singularities c ∈ S . We set denote �0 := �\⋃c∈S ωc.

2.1 Weighted Sobolev spaces: Gevrey classes

We characterize analytic regularity of singular solutions by weighted Sobolev spaces.
To define these, we introduce distance functions:

rc(x) = dist(x, c), x ∈ �, c ∈ S . (3)

With c ∈ S we collect all singular exponents βc ∈ R in the “multi-exponent”

β = {βc : c ∈ S } ∈ R
|S | . (4)

We assume for d = 3 (β > s and β ± s being understood componentwise for
s ∈ R)

b := −1− β ∈ (0, 1/2), i.e. − 3/2 < β < −1. (5)

For d = 2, we assume for some ε > 0 that

b := −1− β ∈ (0, ε), i.e. − 1− ε < β < −1. (6)

We consider the inhomogeneous, weighted semi-norms |u|Nk
β(�) given by (cp. [13,

Definition 6.2 and Equation (6.9)], [2] and [20]),

|u|2
Nk

β(�)
= |u|2Hk (�0)

+
∑
c∈S

∑
α∈Nd0|α|=k

∥∥rmax{βc+|α|,0}
c Dαu

∥∥2
L2(ωc)

, k ∈ N0 . (7)
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326 M. Feischl, Ch. Schwab

We define the inhomogeneous weighted norm ‖u‖Nm
β (�) by ‖u‖2Nm

β (�)
=∑m

k=0 |u|2Nk
β(�)

.

Here, |u|Hm(�0) signifies the Hilbertian Sobolev semi-norm of integer order m on
�0, and Dα denotes the weak partial derivative of order α ∈ N

d
0 . The space Nm

β (�)

is the weighted Sobolev space obtained as the closure of C∞0 (�) with respect to the
norm ‖·‖Nm

β (�).

Remark 1 (i) Under (5), for � ⊂ R
3 holds N 2

β(�) ⊂ H1+θ (�) for some θ > 1/2

and hence N 2
β(�) ⊂ C0(�): choose θ(β) = 1 − βm − ε in [20, Thm. 3.5] with

βm := −1 − βc ∈ (0, 1/2), and 0 < ε < 1/2 − βm = 3/2 + βc. (ii) In dimension
d = 2, i.e. for � ⊂ R

2, we find under the assumption (5) that N 2
β(�) ⊂ H1+θ (�) for

some θ > 0, so that for d = 2 holds N 2
β(�) ⊂ C0(�) with continuous embedding.

(iii) The spaces Nm
β (�) are closely related to the nonhomogeneous,weighted spaces

of type Jmγ (�) which arise in connection with the Mellin transformation of elliptic
problems in conical domains. We refer to [12] for a definition and properties of the
spaces Jmγ (�).

(iv) The spaces Nm
β (�) are related to the weighted Sobolev spaces introduced by

Babuška and Guo [2,20] in space dimension d = 2 and d = 3, resp. For example,
in space dimension d = 3, the weighted seminorm of order k ≥ 2 in (7) coincides
with with the vertex-weighted seminorm Hk,l

βm
defined in [20, page 83, top] for l = 2,

if we note that for l = 2 and |α| = k ≥ 2 in [20], the vertex-weight function
�

α,l
βm

(x) = |x |βm+|α|−l = |x |βm+k−2. Comparing with the weighted seminorm in (7)
yields βc = −1− βm so that the condition βm ∈ (0, 1/2) in [20, Thm. 3.5] translates
into the condition βc ∈ (−1,−3/2) in item (i) above.

With Nk
β(�) as defined in (7), for δ > 0 we define the δ-Gevrey regular class of

solutions with point singularities at S by

Gδ
β(S ;�) =

{
u ∈

⋂
k≥0

Nk
β(�) : ∃Cu > 0 s.t. |u|Nk

β(�) ≤ Ck+1
u (k!)δ ∀ k ∈ N0

}
.

(8)

We mention that in the case δ = 1 and space dimension three, the norm in the
definition (8) of the Gevrey class Gδ

β(S ;�) coincides with the norm for the analytic

class Bβ(S ;�) introduced in [13, Definition 6.9–6.11] in three space dimensions,
and, by the observation in Remark 1, (iv), and the Definition of the countably normed
spaces Bl

βm
in [20, Page 83,top] with l = 2.

In two space dimensions, it equals the weighted analytic classes introduced in
[19,20]. All ensuing approximation results in particular apply for this analytic solution
class, as has been indicated in [31,32]. Naturally, the present construction parallels
earlier constructions in particular cases; for example, the polynomial trace lifting in
Sect. 4.2.6 is identical to the analytic case in [32].
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2.2 Examples of boundary value problems with Gevrey-regular solutions

Large classes of linear and nonlinear elliptic boundary value and eigenvalue problems
with analytic input data admit solutions in the analytic class Gδ

β(S ;�) with δ = 1.

We refer to, e.g., [4,13,21] and also [17] for electron structure models, [2,13,21] for
elliptic problems in polyhedral domains, and [27] and the references there for nonlinear
Schrödinger eigenvalue problems.

2.2.1 Linear elliptic boundary value problems in polygons

In space dimension d = 2, let � denote a polygon with straight sides. Consider the
model Dirichlet boundary value problem

−∇ · (A(x)∇u) = f in �, u|∂� = 0. (9)

In (9), we assume that A(x) = (ai j (x))1≤i, j≤2 and f (x) are analytic in � and that
the matrix function x �→ A(x) ∈ R

2×2
sym is uniformly positive definite: there exists

α > 0 such that for every ξ ∈ R
2 holds

ess inf
x∈�

ξ�A(x)ξ ≥ α|ξ |2.

The unique, weak solution u ∈ V = H1
0 (�) of (9) exists by the Lax–Milgram

Lemma, and satisfies the weak form of (9): find

u ∈ V a(u, v) = ( f , v) ∀v ∈ V . (10)

For a closed subspace VN ⊂ V , approximate solutions uN ∈ VN of (10) are
obtained by Galerkin projection: find

uN ∈ VN a(uN , v) = ( f , v) ∀v ∈ VN . (11)

The approximate solutions uN exist, are unique and quasioptimal:

‖u − uN‖V ≤ C inf
v∈VN

‖u − v‖V . (12)

Convergence rates of sequences {uN }N of approximate solutions thus depend on (a)
the choice of VN and (b) on the solution regularity.

For problem (10), it has been shown in [2] that the solution u ∈ G1
δ (�). For {VN }N

being a sequence of so-called hp-FE spaces (to be defined in the next section), we
recover from (12) and (1) (with δ = 1 and d = 2) the exponential convergence rate
exp(−b 3

√
N ) already obtained in [18,31]. Gevrey regularity in conical domains for

Gevrey-regular data A and f for solutions u of (10) was first obtained in [4].
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328 M. Feischl, Ch. Schwab

2.2.2 Three-dimensional problems

For the analog of (9) in polyhedral domains �, the regularity classes Gδ
β(�) are not

adequate, as even for analytic data A and f , the solutions are locally analytic in
�, but exhibit apart from corner singularities also so-called edge-singularities. Their
precise mathematical description mandates more sophisticated function spaces (see,
e.g., [13,20] and the references there and [30] for exponential convergence results for
hp-FEM.

However, in large classes of applications, solutions are Gevrey regular with point
singularities only. We mention only the source problem (10) in domains � which
exhibit isolated vertices, e.g. conical domains with a smooth (analytic) base, such as
circular cones with apex c (see, e.g., [23]).

Another important class of problems arises from mathematical models of quantum
chemistry (see, e.g., [6,7] and the references there). For instance, consider the nonlinear
Schrödinger EVP: find λ ∈ R and 0 	= u ∈ H1(R3) such that

Lu = −�u + Vu + |u|u = λu in R
3 . (13)

Here, for analytic potentialsV which become singular at a finite setS ⊂ R
3 of isolated

points, eigenfunctions u belong to G1
β(�) for compact sets � ⊂ R

3 containing S in

their interior, see [17,26] and [27, Thm. 7]. Quasioptimality in H1(�) of Galerkin-
FEM for the EVP (13) can be found, for example, in [6,7].

3 hp-Finite element spaces

The hierarchies of FE spaceswhich underlie the hp-FEMare based on two key ingredi-
ents: (i) geometric mesh familiesMκ,σ = {M (�)}�≥0 and (ii) simultaneous refinement
of meshes and polynomial degree distributions. They also exhibit (iii) a layer-structure
among the Finite Elements T ∈M (�) which we describe next.

3.1 Geometric mesh familiesM�,�

For two parameters 0 < κ, σ < 1, we consider in the bounded polyhedron � geo-
metric mesh families Mκ,σ = {M (�)}�≥1 of geometrically refined, regular simplicial
triangulations M (�) ∈ Mκ,σ . Here,the parameter � denotes roughly the number of
refinements towards the singularities. The meshes M ∈ Mκ,σ are regular partitions
of the polyhedron � into a finite number of open simplices (triangles in space dimen-
sion d = 2, tetrahedra in space dimension d = 3) T ∈M (�). Here, regular means that
for every M ∈ Mκ,σ , the intersections of closures of any two distinct T , T ′ ∈ M
are either empty, a vertex v, an entire edge e or an entire face f . We assume the
family Mκ,σ to be uniformly κ-shape regular: for a simplex T ∈ M (�), we denote
by hT = diam(T ) its diameter and by ρT = sup{ρ > 0|Bρ ⊂ T }, the radius of the
largest ball Bρ that can be inscribed into T . For a regular, simplicial mesh M , the
(nondimensional) shape parameter κ(M ) = max{hT /ρT |T ∈ M } is well defined.
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Exponential convergence in H1 of hp-FEM for… 329

A collection {M (�)}�≥1 of regular, simplicial meshes is called κ-shape regular, if
sup�≥1 κ(M (�)) ≤ κ <∞.

Each simplex T ∈ M (�) is the affine image of the reference simplex, i.e, it is
defined by T̂ := {x̂ ∈ R

d : x̂i > 0,
∑d

i=1 x̂i < 1}, under the affine element map FT ,
i.e.

T = FT (T̂ ), T � x = FT (x̂) = BT x̂ + bT , x̂ ∈ T̂ . (14)

For a regular, simplicial triangulation M of � with κ(M ) < ∞, the affine ele-
ment maps are nondegenerate: the jacobians BT = DFT in (14) are nonsingular, and
‖BT ‖F ≤ κ(M ), see, eg., [5, Sec. II]. The reference simplex T̂ is contained in the unit
cube K̂ = (0, 1)d ; with each T ∈M , we associate a parallelepiped via KT = FT (K̂ )

and assume that KT ⊂ �.

Lemma 1 In a bounded polyhedron � ⊂ R
3 with plane sides, for any given regular

partitionM of� into simplices, there exists k ∈ N depending only on d ∈ {2, 3} such
that k fold uniform newest-vertex bisection refinement ofM guarantees that for each
T ∈M there exists KT as described above with KT ⊆ �.

Proof We refine each simplex T0 ∈M exactly k-times using newest-vertex-bisection
(NVB) from [34] resulting in the regular simplicial mesh Mk in �. Since NVB gen-
erates only a bounded number of different shapes in a bounded number of spatial
orientations per element T0 ∈ M (depending only on d [35, Section 5]), we may
choose k ∈ N such that for each T1 ∈Mk with T1 ⊂ T0 there exist T ′, T ∈⋃k−1

j=1M j

such that

1. T1 ⊂ T ′ ⊂ T ⊂ T0,
2. T and T ′ are similar in the sense T ′ = aT + b for a ∈ R and b ∈ R

d .
3. 0 < a < (1/

√
d − 1/2)/

√
d.

Obviously, we may construct KT1 ⊆ KT ′ and it suffices to show that KT ′ ⊆ T . We
define FT to map the origin to a vertex of T which is closest to a vertex of T ′. Thus,
application of F−1T simplifies the situation to T ′ = aT̂ + b̃ ⊂ T̂ for b̃ ∈ R

d with
|̃b| ≤ 1/2. Let K ′ denote a parallelepiped for which the set of vertices contains all
vertices of T ′. Denote b̃ a vertex closest to the origin. Then, the distance of every vertex
of K ′ to the origin is bounded by

√
da + 1/2. Since {x̂ ∈ R

d : x̂i > 0,
∑d

i=1 x̂2i <

1/
√
d} ⊂ T̂ , we obtain K ′ ⊂ T̂ . Reverting the transformation concludes the

proof. ��

3.2 Local polynomial spaces

For T ∈M the local polynomial approximation space Pp(T ) = span{xα : |α| ≤ p}
is the span of all multivariate polynomials on T ∈ M whose total degree does not
exceed p. The space Pp(T ) is invariant under the affine mapping FT , i.e. u ∈ P

p(T )

if and only if û := u ◦ FT ∈ P
p(T̂ ). On parallelepipeds K , Qp(K ) is an affine image

of Qp(K̂ ), K̂ = Î d with Î = (0, 1), i.e.,

Q
p(K̂ ) = span

{
x̂α : 0 ≤ αi ≤ p, 1 ≤ i ≤ d

}
. (15)
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For each parallelepiped KT associated with a d-simplex T ∈ M with associated
affine element mapping FT : K̂ → KT and polynomial degree p ≥ 0, we set

Q
p(KT ) =

{
v ∈ L2(KT ) : (v|KT ◦ FT

) ∈ Q
p(K̂ )

}
. (16)

For polynomial degree p ≥ 1, and for a family of regular, simplicial triangulations
M (�) ∈ Mκ,σ of �, we introduce finite element spaces of continuous, piecewise
polynomial functions of total degree at most p on each T ∈M (�), i.e.

S p(M (�)) =
{
u ∈ H1(�) : u|T ∈ P

p(T ), T ∈M (�)
}

. (17)

Typically, hp-FEMs are obtained when the level � of geometric mesh refinement
is tied to the polynomial degree p.

3.3 Mesh layers

A key ingredient in exponential convergence proofs of hp-FEM is geometric mesh
refinement towards the set S of singularities. For a parameter 0 < σ < 1, we call a
regular, simplicial mesh family Mκ,σ = {M (�)}�≥1 σ -geometrically refined towards
S ⊂ � if there exists 0 < σ < 1 such that for every T ∈ M (�) : T ∩ S = ∅,
� = 1, 2, . . . holds

0 < σ < ρ(T ;S ) := diam(T )

dist(T ,S )
<

1

σ
. (18)

We tag members of a σ -geometric family Mκ,σ by a subscript σ , i.e. we write
M (�)

σ . A simplicial mesh family Mκ,σ in a polytopal Lipschitz domain � which is
σ -geometrically refined towards the singular setS can be generated by the following
algorithm:

Algorithm 1 Input: Initial regular, simplicial mesh M (0) in polytope � ⊂ R
d , d =

2, 3. Singular set S ⊂ � such that each c ∈ S corresponds to a vertex of some
T ∈ M (0) and such that for each T ∈ M (0), T ∩ S is either empty or contains
exactly one element of S .
For � = 0, 1, . . . do:

1. Refine all elements T ∈M (�) with T ∩S 	= ∅ with NVB.
2. Perform the mesh completion step from [34] a conforming refinement M (�+1).
Output: Sequence M = {M (�) : � = 0, 1, 2, ...} of regular, simplicial partitions

of � with geometric refinement towards S .

We now show that the output of Algorithm 1 can, for each fixed 0 < σ < 1, be iden-
tified with sequences Mκ,σ of regular, simplicial meshes which are σ -geometrically
refined towards S in �.

We start by observing that the mesh completion step 2. in Algorithm 1 from [34]
guarantees that #(M (�)) � � · #S , where the hidden constant depends only onM (0)
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and S . We next observe that the sequence M produced by Algorithm 1 does not
depend on σ ∈ (0, 1). Therefore, choosing σ ∈ (0, 1) after executing Algorithm 1
we claim thatM can be identified with a σ -geometric familyMκ,σ in sense that (18)
holds.

Proposition 1 For every fixed 0 < σ < 1, the output M of Algorithm 1 can be
identified with a σ -geometric family Mκ,σ . In particular, for given 0 < σ < 1, for
every � > d all elements T ∈ M (�) can be grouped in mesh-layers: there exists a
partition

M (�)
σ = O(�)

σ

.∪ T(�)
σ , (19)

where #T(�)
σ ≤ cT(κ, σ ) and

O(�)
σ := O(�−1)

σ

.∪ Lk−1 = L1
.∪ L2

.∪ ...
.∪ Lk−1,

for k � � log(2)/| log(σ )| and there exists cT > 0 being independent of � such that
for all � holds

S ⊂
⋃

T∈T(�)
σ

T , dist(S ,O(�)
σ ) ≥ cTσ�. (20)

There exists a constant c(Mκ,σ ) ≥ 1 with

∀k ≥ 1 : #(Lk) ≤ c(Mκ,σ ) (21)

and such that, for every T ∈ Lk and every k ≥ 1,

0 <
1

c(Mκ,σ )
≤ diam(T )

σ k
≤ c(Mκ,σ ). (22)

Proof Let M (�),c := {T ∈ M (�) : c ∈ T } denote the set of all elements which
contain a singularity point c ∈ S . Note that by assumption, each T contains at most
one point c. By definition of newest-vertex-bisection (NVB) in [34, Section 2], each
simplex T ∈M (�), T = conv(x0, x1, . . . , xd) has an associated refinement edge ET

between x0 and xd as well as a tag γ ∈ {0, . . . , d − 1}. The children of T are defined
as

conv

(
x0,

x0 + xd
2

, x1, . . . , xd−1
)

and

conv

(
xd ,

x0 + xd
2

, x1, . . . , xγ , xd−1, xd−2, . . . , xγ+1
)
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with tag γ ′ = (γ +1)mod d. From this definition, we see that if c ∈ ET (i.e. c = x0 or
c = xd ), there is exactly one child T ′ which contains the singularity and also c ∈ ET ′ .
This shows that once the refinement edge includes the singularity, this remains the
case for all descendants of T which include the singularity. Moreover, it is evident
that any vertex of T is part of the refinement edge of one of its descendants T ′ after
at least d-bisections. Those two observations imply that for � > d, the refinement
edge of all T ∈ M (�),c satisfies c ∈ ET . Hence, any element T ′ ∈ M (�)\M (�),c

satisfies that ET ∩ T ′ is at most a single point. Thus, step 1 of Algorithm 1 refines
all elements in M (�),c by bisecting their refinement edge and no hanging nodes are
produced. Consequently, the mesh completion step 2 in Algorithm 1 does nothing and
all elements T ′ ∈M (�)\M (�),c are not refined after step �.

Define L
(�)
k := {T ∈ M (�) : T ∩ S = ∅, σ k+1 ≤ diam(T ) < σ k}. Clearly,

the L(�)
k form a partition of M (�). Since L(�)

k ∩M (�),c = ∅ for all c ∈ S , the above

shows that L(�)
k 	= ∅ and � ≥ d imply L

(�′)
k = L

(�)
k for all �′ ≥ �. Hence, we define

Lk := L
(�)
k and write

M (�) = L1
.∪ L2

.∪ . . .
.∪ Lk

.∪ T(�),

where T(�) contains all the remaining elements which include a singularity and k is
bounded by k � � log(2)/| log(σ )|.

By shape-regularity, we know that each T ∈ M (�) which does not include a sin-
gularity has a similarly sized neighbor between itself and S . Hence, there holds
dist(T ,S ) � diam(T ) with a hidden constant which depends only on M (0). On the
other hand, if T ∈M (�)\M (�−1) for some � ∈ N, the unique ancestor T0 ∈M (�−1)
must satisfy S ∩ T0 	= ∅ and hence dist(T ,S ) ≤ diam(T0) ≤ 2diam(T ). This
verifies (18).

The remaining properties in the statement follow immediately from the definition.
This concludes the proof. �

Based on Proposition 1, we may assume that M (�)
σ consists of O(�) layers. The

terminal layers T(�)
σ ⊂M (�)

σ in (19) satisfy the following properties.

Proposition 2 There exists a constant cT(κ, σ ) > 0 such that for everyM (�)
σ ∈Mκ,σ ,

the set T(�)
σ has the following properties: for all � ≥ 1 holds

(i) #(T(�)
σ ) ≤ cT(κ, σ ),

(ii) ∀c ∈ S : |T(�)
σ ∩ ωc| ≤ cT(κ, σ )σ d�,

(iii) ∀T ∈ T
(�)
σ : hT ≤ cT(κ, σ )σ �.

Proof Assertion (i) is already stated in Proposition 1 and repeated just for reference.
Property (20) implies that for every T ∈ T

(�)
σ , dist(T ,S ) ≤ cT(κ, σ )σ �. This implies,

with the shape regularity of T , that for every T ∈ T
(�)
σ holds |T | ≤ cT(κ, σ )σ d�. This,

in turn, implies assertion (ii). With shape-regularity, we derive (iii) directly from (ii).��
Remark 2 (i) We do not use that fact that the singular supports c ∈ S comprise nodes
of some triangulation M (�) ∈ Mκ,σ . This implies, in particular, that the ensuing
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exponential convergence proofs remain valid for “nearly coalescing” singular sup-
ports c, c′ ∈ S : for c, c′ ∈ S such that dist(c, c′) < σ p, both c and c′ are contained
in the terminal layers T

(�)
σ . There, a low-order quasi interpolant of Clément (resp.

Scott–Zhang) type is used, see Sect. 4.2.8 ahead. The constants in the exponential
convergence bound are uniform in w.r. to dist(c, c′). (ii) Due to Prop. 2, item (iii), geo-
metric mesh refinement implies that dist(c, c′) is resolved with geometric refinements
with � ≥ O(| log(dist(c, c′))|) many mesh layers.

4 Exponential convergence

4.1 Statement of the exponential convergence result

Theorem 1 Suppose given a weight vector β as in (5) in a bounded polytope � ⊂ R
d ,

d = 2, 3, with plane sides resp. faces.
Then, for every sequenceMκ,σ (S ) of nested, regular simplicial meshes in�which

are σ -geometrically refined towards S and which are κ shape-regular, there exist
continuous projectors �

p
κ,σ : N 2−1−β(�) → S p(M (�)

σ ) with � � p1/δ and, for every

u ∈ Gδ
β(S ;�)) there exist constants b,C > 0 (depending on κ , Cu, du in (8) and on

σ ) such that there holds the error bound

∥∥u −�p
κ,σu

∥∥
H1(�)

≤ C

⎧⎨
⎩

exp(−bN 1
1+δd ) δ ≥ 1,(

�
(
N

1
1+δd

))−b(1−δ)

0 < δ < 1.
(23)

Here,

N = dim(S p(M (�)
σ )) = O(�pd) = O(pd+1/δ).

If, moreover, u|∂� = 0, then (�
p
κ,σu)|∂� = 0 and (23) holds.

4.2 Proof

The proof of the approximation result Theorem 1 is based on constructing the projec-
tors�

p
κ,σ ; our construction will proceed in several steps and we detail it for d = 3, the

case d = 2 being a (minor)modification. First, we review from [30, Section 5] a family
of univariate hp-projections with error bounds which are explicit in the polynomial
degree as well as in the regularity of the functions to be approximated. A correspond-
ing family of polynomial projectors on the unit cube K̂ = (0, 1)3 with analogous
consistency error bounds is then obtained as in [30, Section 5] by tensorization and
scaling. We shall use these bounds for a tetrahedron T ∈ O

(�)
σ ⊂ M (�)

σ ∈ Mκ,σ as
follows. By Proposition 1, T ∈ Lk for some 1 ≤ k ≤ � − 1. The (up to orientation)
unique parallelepiped KT = FT (K̂ ) associated with T ∈ Lk has the same scaling
properties as T , in particular (22) also holds for KT . For u belonging to the Gevrey
class (8) with weight vector satisfying (5), u ∈ C0(�) ∩ C∞(�\S ). For T ∈ O

(�)
σ ,
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the pullback ûT = u|KT ◦ FT satisfies on K̂ the same derivative bounds as u|T ◦ FT on
T̂ (with possibly larger constant Cu , depending on κ , but independent of � and of T ).
The tensorized hp interpolation operator from [30] on K̂ is therefore well-defined and
allows to construct a polynomial approximation û p

T ∈ Q
p(K̂ ) with analytic consis-

tency error bounds on K̂ ; since T̂ ⊂ K̂ , and sinceQp(T̂ ) ⊂ P
pd(T̂ ), the pushforwards

of the restrictions û p
T |T̂ under the affine mapping FT : T̂ → T will be local polyno-

mial approximations of degree pd with exponential convergence estimates in H1(T ).
Moreover, since the tensorized interpolant is nodally exact in the vertices of K̂ , and
since the set of vertices of T̂ is a subset of the set of vertices of K̂ , the pushforwards
of û p

T |T̂ under FT are nodally exact in the vertices of T .

For elements T ∈ T
(�)
σ , we only require a first order approximation property, as

the geometric refinement guarantees the necessary convergence rate. We can not use
nodal interpolation as functions u ∈ Gδ

β(S ;�)may not be bounded near a singularity

c ∈ S . Thus, we construct a quasi interpolation operator on elements in the terminal
layers T ∈ T

(�)
σ that interpolates at those vertices of T which are not inS .

By the continuity of u ∈ Gδ
β(S ;�) on �\S , the resulting global, piecewise

polynomial approximation is nodally exact in all vertices ofM (�)
σ except those which

coincide with singularities c ∈ S . Particularly, the resulting piecewise polynomial
hp-approximation is globally continuous at all vertices ofM (�)

σ . However, it still has
polynomial jump discontinuities across edges and (in space dimension d = 3) faces of
T ∈M (�)

σ which we remove by polynomial trace liftings, preserving the exponential
convergence estimates.

4.2.1 Univariate hp-projectors and hp error bounds

Let I = (−1, 1) be the unit interval. For any k ≥ 1, we write Hk(I ) for the usual
Sobolev space endowedwith norm ‖u‖Hk (I ). For q ≥ 0, we denote by π̂q,0 : L2(I ) →
P
q(I ) the L2(I )-projection. The following Ck−1-conforming and univariate projector

has been constructed in [14, Section 8].

Lemma 2 For any p, k ∈ N with p ≥ 2k − 1, there is a projector π̂p,k : Hk(I ) →
P
p(I ) that satisfies (π̂p,ku)(k) = π̂p−k,0(u(k)), and (π̂p,k)

( j)u(±1) := u( j)(±1), for
any j = 0, . . . , k − 1.

Moreover, there holds:

(i) For every k ∈ N, there exists a constant Ck > 0 such that

∀u ∈ Hk(I ),∀p ≥ 2k − 1 : ‖π̂p,ku‖Hk (I ) ≤ Ck‖u‖Hk (I ). (24)

(ii) For integers p, k ∈ N with p ≥ 2k− 1, κ = p− k+ 1 and for u ∈ Hk+s(I ) with
any k ≤ s ≤ κ there holds the error bound

‖(u − π̂p,ku)( j)‖2L2(I ) ≤
(κ − s)!
(κ + s)! ‖u

(k+s)‖2L2(I ), j = 0, 1, . . . , k. (25)
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We refer to [14, Proposition 8.4] and [14, Theorem 8.3], respectively, for proofs,
and further references.

4.2.2 Tensor projector on the unit cube

Based on the univariate projectors π̂p,k , we constructed in [30] polynomial projection
operators on I d = (0, 1)d by (a) translation and scaling of the projectors π̂p,k to (0, 1)
and (b) by tensorization, as follows: for integers k ≥ 0 and d > 1, we define

Hk
mix (I

d) = Hk(I )⊗ · · ·⊗︸ ︷︷ ︸
d−times

Hk(I ), (26)

where ⊗ denotes the tensor-product of separable Hilbert spaces. These spaces
are isomorphic to Bochner spaces, i.e. Hk

mix (I
d) � Hk(I ; Hk

mix (I
d−1)) �

Hk
mix (I

d−1; Hk(I )). In I d of dimension d > 1 and for p ≥ 2k − 1, we define
the projector

�̂d
p,k =

d⊗
i=1

π̂
(i)
p,k : Hk

mix (I
d)→ Q

p(I d) (27)

where π̂
(i)
p,k denotes the univariate projector in Lemma 2, applied in coordinate 1 ≤

i ≤ d. For d, k ≥ 1 there exists a constant Ck,d > 0 such that for all p ≥ 2k− 1 there
holds the stability bound

‖�̂d
p,kv‖Hk

mix (I
d ) ≤ Ck,d‖v‖Hk

mix (I
d ) (28)

and

∥∥∥v − �̂d
p,kv

∥∥∥
Hk
mix (I

d )
≤ Ck,d

d∑
i=1
‖v − π̂

(i)
p,kv‖Hk (I ;Hk

mix (I
d−1)). (29)

We choose throughout what follows k = 2 as in [30], and obtain from (29), (25)

Proposition 3 [30] Assume that the polynomial degree p ≥ 5. Then, for any integers
3 ≤ s ≤ p, and for v ∈ Hs+5(K̂ ), there holds

‖v − �̂3
p,2v‖2H2

mix (K̂ )
� �p−1,s−1

s+5∑
m=s

|v|2
m,K̂

(30)

where the constant implied in � is independent of s and of p, and where

�q,r = 22(r+3) �(q + 1− r)

�(q + 1+ r)
, 0 ≤ r ≤ q. (31)
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Moreover, �̂3
p,2v is nodally exact in the vertices of K̂ = (0, 1)3:

(�̂3
p,2v)(x1, x2, x3) = v(x1, x2, x3) ∀xi ∈ {0, 1}. (32)

4.2.3 Transformation formula

For u ∈ Hk(�), and for a simplex T ∈ O
(�)
σ , consider the transformation ûT =

u|T ◦ FT ∈ Hk(T̂ ) for every k ≥ 0. Quantitative bounds on derivatives under affine
transformations FT in (14) are provided by the transformation formula (eg. [5, Section
II.6.6]).

Lemma 3 Let G ⊂ R
d , d ≥ 2, denote a bounded polyhedronwhich is affine equivalent

to Ĝ via (14), i.e. G = FT (Ĝ). For v ∈ Hk(G) and for any k ∈ N, the pullback v̂T :=
v|G ◦ FT satisfies with |v|2m,T =

∑
|α|=m ‖Dαv‖2

L2(G)
and with the Frobeniusnorm

‖BT ‖F of the matrix BT in (14) the bound

|v̂|m,Ĝ ≤ dm‖BT ‖mF |det(BT )|−1/2|v|m,G . (33)

4.2.4 Element interpolants

For any simplex T ∈ O
(�)
σ , the function u ∈ Gδ

β(S ;�) the polynomial approximation

of u|T , u ∈ Gδ
β(S ;�) is obtained by applying Proposition 3 to ûT := u|KT ◦ FT :

∀T ∈ O(�)
σ : u p

T :=
(
�̂3

p,2(u|KT ◦ FT )
)
|T̂ ◦F (−1)

T . (34)

With u p
T as in (34) we define the hp-base interpolant Ĩ p in O(�)

σ by

∀T ∈ O(�)
σ ⊂M (�)

σ : ( Ĩ pu)|T := u p
T . (35)

The bound (20) with cT > 0 sufficiently large, independent of � ensures that there
exists c(κ, σ ) > 0 such that the associated KT satisfies

∀� ∈ N ∀T ∈ O(�)
σ : dist(KT ,S )/diam(KT ) ≥ 1/c. (36)

4.2.5 Exponential convergence in broken Sobolev norms

Proposition 4 For u ∈ Gδ
β(S ;�) with (5), there are b,C > 0 (depending on u) such

that for every p ≥ 1 and for Ĩ p from (35) holds with � ≥ 1

‖u − Ĩ pu‖
H1(O

(�)
σ )
≤ C

{
exp(−bp1/δ) δ ≥ 1,

(p!)b(δ−1) δ < 1.
(37)

Here C > 0 depends on u and σ , but is independent of p, and H1(O
(�)
σ ) denotes

the broken H1 space over O(�), with corresponding norm.
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Proof SinceS consists of finitely many singular points c, by localization and super-
position, we may assume wlog. S = {c} and denote by β = βc > −2. For
1 ≤ k ≤ � < p, consider a simplex T ∈ Lk ∩ ωc ⊂ M (�)

σ and the associated
parallelepiped KT = FT (K̂ ) ⊃ T . It satisfies

0 < σ/c(Mκ,σ ) < rc(x)|KT /σ k < c(Mκ,σ )/σ, x ∈ KT .

By assumption, KT ⊂ � and, by (20), dist(KT ,S ) ≥ cTσ k . Then, for u ∈
Gδ

β(S ;�) and for this T ∈ Lk , ûT := u|KT ◦ FT is smooth in K̂ and satisfies, by (33)

with G = KT and Ĝ = K̂ ,

∀m ∈ N : |ûT |m,K̂ ≤ dm‖BT ‖mF |det(BT )|−1/2|u|m,KT .

We obtain for |u|m,KT using (18) and (22)

|u|2m,KT
= ‖Dmu‖2

L2(KT )
� ‖rβ+m

c σ−k(β+m)Dmu‖2
L2(KT )

≤ σ−2k(β+m)‖rβ+m
c Dmu‖2

L2(KT )
≤ σ−2k(β+m)C2(m+1)

u (m!)2δ.

We define u p
T ∈ Q

p(T ) ⊂ P
pd(T ) as in (34). From (30), for every integer 3 ≤ s ≤

p and with �q,r as in (31) and for j = 0, 1, 2,

‖D j (û − û p
T )‖2

L2(T̂ )
≤ ‖D j (û − û p

T )‖2
L2(K̂ )

≤ �p−1,s−1
s+5∑
m=s

|̂uT |2m,K̂
.

Using the κ-shape regularity of T ∈ Lk ⊂M (k)
σ ∈Mκ,σ , we find hT � ‖BT ‖F ≤

κhT (eg. [5, (Chap. II, (6.9)]) and, by (22) and (33), that hT � κσ k so that for every
m ∈ N

|̂uT |2m,K̂
≤ (κdσ k)2m

|det(BT )| |u|
2
m,KT

≤ (κdσ k)2m

|det(BT )| σ
−2k(β+m)C2(m+1)

u (m!)2δ.

We obtain for j = 0, 1, 2 the bound

‖D̂ j (û − û p
T )‖2

L2(T̂ )
≤ �p−1,s−1

s+5∑
m=s

(κdσ k)2m

|det(BT )| σ
−2k(β+m)C2(m+1)

u (m!)2δ.

Transporting to T = FT (T̂ ) ∈ Lk , we find for βc = −1− bc and j = 0, 1, 2.

‖D j (u − u p
T )‖2L2(T )

� �p−1,s−1
s+5∑
m=s

(κdσ k)2(m− j)σ−2k(β+m)C2(m+1)
u (m!)2δ

� �p−1,s−1(κdCu)
2sσ 2k(1+bc− j)�(s + 6)2δ . (38)
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For T ∈ O(�), we define the piecewise polynomial interpolant Ĩ pu|T by (34). Then
Ĩ pu coincides with u in the vertices of all T ∈ O(�) and is in particular continuous in
these vertices; it is, however, in general discontinuous across edges and faces.

Using the finite cardinality (21), and summing the bound (38) with j = 0, 1 over
layers L1, ...,L�−1, we obtain with C̄ := Cuκd and βc = −1− bc, 0 < bc < 1

‖u − Ĩ pu‖H1(O(�)) ≤ C(κ, σ )�p−1,s−1C̄2s�(s + 6)2δ
�−1∑
k=1

σ 2kbc

= C(κ, σ )�p−1,s−1C̄2s�(s + 6)2δ
σ 2bc

1− σ 2bc
. (39)

We have for s < p with the recursion formula �(z + 1) = z�(z) that

�(p − s + 1)�(s + 6)2δ

�(p + s − 1)
� (p − s)−2ss2δs (40)

In the case δ ≥ 1, for all p ∈ N choosing s = s(p) > 0 such that there holds with
a constant c > 1 independent of p (to be selected below) p = csδ (this ensures s < p
in the upper bounds (40)), we obtain

�(p − s + 1)�(s + 6)2δ

�(p + s − 1)
�

( sδ

csδ − s

)2s
.

Choosing c = 2C̄ + 1 > 1 this implies for s � 1 sufficiently large the bound

�p−1,s−1C̄2s�(s + 6)2δ �
( 2C̄sδ

csδ − s

)2s
�

( 2C̄

2C̄ + 1

)2c−1/δ p1/δ
(41)

where the constant hidden in � is independent of the polynomial degree p.
In the case 0 < δ < 1, we choose s = p/2 in (40) and obtain

�(p − s + 1)�(s + 6)2δ

�(p + s − 1)
� s−(1−δ)2s � (p!)−b(1−δ)

for some 0 < b < 1. Inserting this bound into (39) completes the proof. ��

4.2.6 Polynomial trace lifting inO(p)
�

By the nodal exactness (32), the hp base interpolant Ĩ p constructed in (35) of Propo-
sition 4 is exact, and hence continuous in vertices of simplices T ∈ O

(�)
σ , but has in

general discontinuities across interelement edges E ∈ ET of simplices T ∈ O
(�)
σ (in

dimensions d = 2, 3) and across interelement faces F ∈ FT of simplices T ∈ O
(�)
σ (in

dimension d = 3). The jumps of interpolant across edges and faces are polynomial,
i.e. [[ Ĩ p]]E and [[ Ĩ p]]F .
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For each T ∈ O
(�)
σ , the nodal exactness (32) of the base hp-interpolant Ĩ pu implies

for each E ∈ ET that [[ Ĩ pu]]E ∈ P
pd
0 (E) := (Ppd ∩ H1

0 )(E), d = 2, 3, and, for d = 3
and each F ∈ FT , [[ Ĩ pu]]F ∈ P

pd(F). We build a continuous, piecewise polynomial
interpolant by successively lifting these polynomial trace jumps of Ĩ p while retaining
its consistency, in particular the analytic estimates (30).

First, we lift jumps on interelement edges E ∈ ET and, second, in dimension d = 3
also for all interelement faces F ∈ FT , for every T ∈ O

(�)
σ . Since T ∈ O

(�)
σ ⊂M (�)

σ ∈
Mκ,σ is κ shape-regular, so are all F ∈ FT . For E ∈ ET , let FE ∈ FT denote any
face in FT with E ⊂ ∂F .

We recapitulate from [28, Lemma 15, Thm. 1] the required lifting and the stability
estimates. Consider the reference simplex T̂ ⊂ R

d , d = 2, 3. Given a piecewise
polynomial function ĝp of degree p on each F̂ ∈ FT̂ that is continuous on ∂ T̂ , in
[28, Lemma 15, Thm. 1], a polynomial trace lifting v̂p = LT̂ ,̂∂T (ĝp) ∈ P

p(T̂ ) is
constructed which satisfies on the reference simplex T̂ in space dimension d = 2, 3
the bound ‖v̂p‖H1(T̂ ) ≤ Ĉ‖ĝp‖H1/2(∂ T̂ ) (with Ĉ > 0 independent of p).

As H1/2(T̂ ) = (L2(T̂ ), H1(T̂ ))1/2, we have the interpolation inequality

‖ĝp‖H1/2(∂ T̂ ) ≤ Ĉ‖ĝp‖1/2L2(∂ T̂ )
‖ĝp‖1/2H1(∂ T̂ )

. With the polynomial inverse inequality

(see, e.g., [36]) on each face F̂ ⊂ ∂ T̂ we get (with a possibly different constant Ĉ > 0
which is independent of p)

‖v̂p‖H1(T̂ )
≤ Ĉ p‖ĝp‖L2(∂ T̂ )

. (42)

Squaring this and scaling T̂ to T = FT (T̂ ) ∈ O
(p)
σ we find

‖LT ,∂T (gp)‖2L2(T )
+ h2T ‖D1LT ,∂T (gp)‖2L2(T )

≤ C(κ)p2hT ‖gp‖2L2(∂T )
. (43)

Iterating (42) twice, from Ê ⊂ ∂ F̂ to F̂ ⊂ ∂ T̂ to T̂ , we obtain for ĝp ∈ P
p
0 (Ê) a

polynomial edge lifting L̂T̂ ,Ê (ĝp) ∈ P
p(T̂ ) on the reference simplex T̂ ⊂ R

3 with

‖L̂T̂ ,Ê (ĝp)‖H1(T̂ )
≤ Ĉ p2‖ĝp‖L2(Ê)

. (44)

Squaring (44) and scaling to T = FT (T̂ ) ∈ O
(p)
σ yields for gp ∈ P

p
0 (E) on E ∈ ET

h−2T ‖LT ,E (gp)‖2L2(T )
+ ‖D1LT ,E (gp)‖2L2(T )

≤ C(κ)p4‖gp‖2L2(E)
. (45)

Let now d = 3 and let F, F ′ ∈ FT be two distinct faces which share edge E = F∩F ′.
Using (42) in dimension d = 2 and scaled to T , we lift gp = [[ Ĩ pu]]E ∈ P

pd
0 (E) twice,

once into F and once into F ′, resulting in a vp ∈ C0(F ∪ F ′), vp ∈ P
pd(F)∪Ppd(F ′),

and vp |∂F∪F ′= 0 which satisfies (43) with F in place of T . We may therefore extend
this continuous, piecewise polynomial function vp from F ∪ F ′ by zero to a function
ṽp ∈ C0(∂T ) which is, on each F ∈ FT , a polynomial of total degree at most
pd. There exists a lifting LT ,F (ṽp) ∈ P

pd(T ) such that for each F ∈ FT we have
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LT ,F (ṽp) |F= vp |F on F ∈ FE , (LT ,F (ṽp) |F ) |E≡ gp on E and such that (45)
holds.

For each edge E inO(p)
σ , we lift the polynomial jump in this way into all T ∈ O

(p)
σ

for which E ∈ ET by the edge-lifting operator

LE (gp) :=
∑

T :E∈ET
LT ,E (gp). (46)

By κ shape regularity, #{T ∈ O
(p)
σ : E ∈ ET } is bounded independently of p and

of the particular edge E by an absolute constant depending only on κ . With Ĩ p in (35),
we define

Ĭ pu := Ĩ pu −
∑
E

LE ([[ Ĩ pu]]E ). (47)

Then, Ĭ pu is continuous across edges E ∈ ET for every T ∈ O
(p)
σ , and [[ Ĭ pu]]F ∈

P
pd
0 (F) := (Ppd ∩ H1

0 )(F) for all F ∈ FT .

We next lift, for each face F ∈ FT , the face jump [[ Ĭ pu]]F ∈ P
pd
0 (F) by extending

first by zero to all other faces F ′ ∈ FT \{F}, then lift polynomially by referring to
[28, Theorem 1]. By construction, this lifting LT ,F ([[ Ĭ pu]]F ) ∈ P

p(T ) will vanish
on all F ′ ∈ FT : F ′ 	= F . For each face F , we repeat this lifting at most twice for
T , T ′ ∈ O

(p)
σ such that F ∈ FT ∩ FT ′ . We define the continuous interpolant

I pu := Ĭ pu −
∑

F∈FT :T∈O(p)
σ

LT ,F ([[ Ĭ pu]]F )

= Ĩ pu −
∑

E∈ET :T∈O(p)
σ

LE ([[ Ĩ pu]]E )−
∑

F∈FT :T∈O(p)
σ

LT ,F ([[ Ĭ pu]]F ). (48)

To verify exponential convergence in submesh O
(�)
σ , we estimate in (48)

‖u − I pu‖
H1(O

(�)
σ )
≤ ‖u − Ĩ pu‖

H1(O
(�)
σ )
+

∥∥∥∥∥∥∥
∑

E∈ET :T∈O(�)
σ

LE ([[ Ĩ pu]]E )

∥∥∥∥∥∥∥
H1(O

(�)
σ )

+

∥∥∥∥∥∥∥
∑

F∈FT :T∈O(�)
σ

LT ,F ([[ Ĭ pu]]F )

∥∥∥∥∥∥∥
H1(O

(�)
σ )

. (49)

The first term was bound in Propostion 4. We bound the second term.
For T ∈ O

(p)
σ , we write, using [[u]]E = 0 for E ∈ ET

h−2T ‖LT ,E ([[ Ĩ pu]]E )‖2L2(T )
+ ‖D1LT ,E ([[ Ĩ pu]]E )‖2L2(T )

≤ C(κ)p4‖[[ Ĩ pu]]E‖2L2(E)
= C(κ)p4‖[[u − Ĩ pu]]E‖2L2(E)

. (50)

123



Exponential convergence in H1 of hp-FEM for… 341

The multiplicative trace inequality implies for a κ-shape regular simplex T ⊂ R
d

with diameter hT that for every F ∈ FT and for every ϕ ∈ H1(T ) reads

‖ϕ|F‖2L2(F)
≤ C(κ)

(
h−1T ‖ϕ‖2L2(T )

+ hT ‖D1ϕ‖2L2(T )

)
. (51)

Iterating this for T ∈ O
(�)
σ from E ∈ ET to F ∈ FT gives, for ϕ ∈ H2(T ),

‖ϕ|E‖2L2(E)
� h−2T ‖ϕ‖2L2(T )

+ ‖D1ϕ‖2L2(T )
+ h2T ‖D2ϕ‖2L2(T )

(52)

where the implied constant depends only on κ .
Using (52) with ϕ = (u − Ĩ pu)|T = u|T − u p

T ∈ H2(T ) for T ∈ O
(�)
σ in (50)

gives

h−2T ‖LT ,E ([[ Ĩ pu]]E )‖2L2(T )
+ ‖D1LT ,E ([[ Ĩ pu]]E )‖2L2(T )

� p4
2∑
j=0

h2( j−1)T ‖D j (u − u p
T )‖2L2(T )

.

Using (38) and that hT ∼ σ k for T ∈ Lk we obtain

‖LT ,E ([[ Ĩ pu]]E )‖2
H1(T )

� p4�p−1,s−1(κdCu)
2s�(s + 6)2δσ 2kbc . (53)

Finally, we bound the third term in (49), i.e. ‖LT ,F ([[ Ĭ pu]]F )‖H1(T ) for F ∈ FT .

Since LT ,F ([[ Ĭ pu]]F ) = 0 on ∂T \F , by the Poincaré inequality in {v ∈ H1(T ) :
v|∂T \F = 0} it suffices to bound ‖D1LT ,F ([[ Ĭ pu]]F )‖L2(T ). Since [[u]]F = 0, using
(47) we obtain

h−1T ‖LT ,F ([[ Ĭ pu]]F )‖L2(T ) � ‖D1LT ,F ([[ Ĭ pu]]F )‖L2(T )

= ‖D1LT ,F ([[u − Ĭ pu]]F )‖L2(T ).

We estimate further, using the stability of the lifting LT ,F and (51),

‖D1LT ,F ([[u − Ĭ pu]]F )‖2L2(T )
� p2‖u − Ĭ pu‖2L2(F)

� p2(h−1T ‖u− Ĭ pu‖2L2(T )
+hT ‖D1(u− Ĭ pu)‖2L2(T )

).

(54)

Recalling (47), we bound for j = 0, 1

‖D j (u − Ĭ pu)‖2L2(T )
= ‖D j (u − Ĩ pu +

∑
E

LT ,E ([[ Ĩ pu]]E ))‖2L2(T )

� ‖D j (u − Ĩ pu)‖2L2(T )
+

∑
E

‖D j (LT ,E ([[ Ĩ pu]]E ))‖2L2(T )
.
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We use (38) for the first term, and (53) for the second term to conclude for j = 0, 1

‖D j (u − Ĭ pu)‖2L2(T )
� p4�p−1,s−1(κdCu)

2s�(s + 6)2δσ 2k(1+bc− j).

Using again that T ∈ Lk satisfies hT ∼ σ k , we insert into (54) and arrive at

‖D1LT ,F ([[u − Ĭ pu]]F )‖2L2(T )
� p6�p−1,s−1(κdCu)

2s�(s + 6)2δσ 2kbc .

Inserting this and the bound (53) into (49), we obtain for ‖u − I pu‖
H1(O

(�)
σ )

exactly
once more the bound (39) (with a slightly higher power of p). Absorbing the poly-
nomial factor into the exponential, we conclude the exponential error bounds from
Proposition 4, i.e.,

‖u − I pu‖
H1(O

(�)
σ )
≤ C

{
exp(−bp1/δ) δ ≥ 1,

(p!)b(δ−1) δ < 1.
(55)

also for the resulting continuous hp-interpolant I pu defined in (48) in O
(p)
σ using

again (41).

4.2.7 Enforcement of homogeneous Dirichlet boundary conditions

The preceding polynomial trace liftings allow to obtain interpolation operators {I hpN }N
which preserve homogeneousDirichlet boundary conditions on ∂�. For simplicity, we
discuss this only for the case of global homogeneous Dirichlet boundary conditions,
i.e., for u|∂� = 0 (the argument being local, i.e., element-by-element, allows to treat
homogeneous Dirichlet boundary conditions also on a proper subset �D ⊂ ∂�, as
long as �D coincides with the closure of a set of boundary faces). In space dimension
d = 3, for T ∈ O

(�)
σ with F ∈ FT satisfying F ⊂ ∂�, it holds u|F = 0. Hence, on T

we may adjust the (nodally exact) hp (quasi-)interpolant ( Ĩ pu)|T by lifting its trace
( Ĩ pu)|F = −(u − Ĭ pu)|F on the boundary face F ∈ FT ∩ ∂� exactly as in (48),
in particular preserving the exponential convergence bound (55). In space dimension
d = 2, a corresponding polynomial edge-lifting can like wise be applied. In space
dimension d = 1, � is a bounded interval onR. The nodal exactness of the hp (quasi-
)interpolant ( Ĩ pu) implies that is satisfies the zero Dirichlet boundary conditions, so
that trace lifting is not necessary in space dimension d = 1.

4.2.8 Approximation inT(�)

�

Exponential consistency errors for error contributions of the hp-interpolant from
the terminal layer will be obtained essentially by a Bramble–Hilbert style scaling
(“h-version FEM”) argument combined with the exponentially small meshwidth of
elements T ∈ T

(�)
σ [see Proposition 2, items (ii), (iii)].

Under (5), for � ⊂ R
d holds N 2

β(�) ⊂ H1+θ (�) for some θ > (d − 2)/2,

d = 2, 3, by [20, Thm. 3.5]. Specifically, θ(β) = 1 − βm − ε (cp. [20, Thm. 3.5]
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with βm := −1− βc ∈ (0, 1/2), and 0 < ε < 1/2 − βm = 3/2 + βc). For � ⊂ R
2,

N 2
β(�) ⊂ H1+θ (�) for some θ > 0 (cp. [19]), which implies θ = 2+βc− ε > 1/2).

From Proposition 2 items (i)–(iii), the collections Tc := {T ∈ T
(�)
σ : T ∈ ωc}, c ∈

S have uniformly bounded (w.r. to �) cardinality and shape regularity. We construct
the approximation by use of a Scott–Zhang quasi-interpolating projection operator
Jc : H1(

⋃
Tc) → S1(Tc). This operator is constructed by choosing faces (edges) Fz

for each vertex of Tc via

Jc(v) :=
∑

z vertex of Tc

φz

∫
Fz

φ�
z v dx,

where φz ∈ S1(Tc) denotes the hat function associated with the vertex z and φ�
z ∈

S1(Fz) denotes the unique dual basis function associated with φz (in the sense that∫
Fz

φz′φ�
z dx = δzz′ for all nodes z′, see e.g. [33]). We define �c := ∂(

⋃
Tc)∩� (the

interface of Tc and O
(�)
σ ) and choose Fz ⊆ �c whenever z ∈ �c. The definition of Jc

implies that Jc(·)|�c : L2(�c)→ S1(Tc|�C ) is well-defined. The result [1, Lemma 3]
shows that Jc(·)|�c is a H1/2-stable projection (with constants depending only on
shape regularity of Tc) and hence is quasi-optimal in the sense

‖u − Jcu‖H1/2(�c)
� min

vp∈S1(Tc)
‖u − vp‖H1/2(�c)

≤ ‖u − I pu‖H1/2(�c)
. (56)

We construct the approximation uc ∈ S1(T(�)
c ) by setting uc = Jcu on vertices in⋃

Tc\�c and uc = I pu on the remaining vertices in �c. The estimate (56) allows us
to bound the difference

‖D1(uc − Jcu)‖
L2(

⋃
T

(�)
c )

� ‖I pu − Jcu‖H1/2(�c)
� ‖u − I pu‖H1/2(�c)

� ‖u − I pu‖
H1O

(�)
σ

.

This leads to

‖D1(u − uc)‖L2(
⋃

T
(�)
c )

� ‖D1(u − Jcu)‖
L2(

⋃
T

(�)
c )
+ ‖u − I pu‖

H1O
(�)
σ

� diam(
⋃

Tc)
θ‖u‖

H1+θ (
⋃

T
(�)
c )
+ ‖u − I pu‖

H1O
(�)
σ

.

ByProposition 2, items (ii) and (iii) it holds that diam(
⋃

Tc) � σ�,we obtainwith (55)
and uS :=∑

c∈S uc

‖u − uS ‖H1(
⋃

T
(�)
σ )
≤ c(κ, σ )σ θ� + C exp(−bp1/δ). (57)

Combining this and (55) and applying a bounded (uniformly w.r. to p by Prop. 2, item
(1)) number of further polynomial edge- and face liftings at the interface of O(�)

σ and
T

(�)
σ (note that the combination of I pu and uS is continuous at the vertices ofM (�)

σ )
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completes the construction of I hp in (1). Choosing p � �δ concludes the proof for
δ ≥ 1.

For 0 < δ < 1, we additionally use the fact that σθ p1/δ � (p!)b(δ−1) with some
b(θ) > 0 that is indepedent of p by Stirling’s approximation. �

5 Concluding remarks

We have proved the exponential convergence rate (23) for continuous hp-FE approx-
imations of κ shape-regular, simplicial meshes with geometric refinement to analytic
functions with isolated point singularities at a finite set S in a bounded domain
D ⊂ R

d , d = 1, 2, 3. Apart from κ-shape regularity and σ -geometric mesh refine-
ment the proof did not assume further structural assumptions on the triangulations.
In particular, simplicial partitions which are obtained by successive bisection tree
refinement in the course of adaptive subdivisions are admissible. The approximation
results imply the exponential convergence rate exp(−b 3

√
N ) for second order, ellip-

tic PDEs in polygons D ⊂ R
2 (where S denotes the set of corners of D) where

solutions belong to the analytic class (i.e., where δ = 1) which are considered, for
example, in [2,14,21,31,32]. Theorem 1 also implies the exponential convergence rate
exp(−b 4

√
N ) for hp-approximations of electron densities in DFT, due to their analyt-

icity [17] and due to quasioptimality of Galerkin approximations shown, for example,
in [3,6] and the references there. In this application,S denotes the set of nuclei, whose
centers c ∈ S are assumed known. The extension of [31,32] to Gevrey-regular solu-
tions is essential in this case, as analyticity of electron densities can not be expected,
generally, in the presence of empirical (pseudo-)potential functions constructed, for
example, from smooth partitions of unity.

Also, unlike other approaches such as plane waves, hp-approximations do not, a
priori, impose any specific functional form of the electron densities. Due to the locality
of approximation and the separation (2) of the points c ∈ S , we may apply Theorem
1 in each neighborhood ωc, c ∈ S , implying that the total number of degrees of
freedom to achieve accuracy ε > 0 in the norm H1(D) scales as O(#(S )| log ε|4),
i.e. linear scaling in the number #(S ) of nuclei and polylogarithmic scaling in the
target accuracy ε. This is analogous to what is reported recently for discontinuous
Galerkin discretizations in [24], where Proposition 4 can be used a starting point
of proof of an exponential convergence result on tetrahedral meshes; for geometric
meshes of hexahedra, analogous results can be found in [30, Sec. 5.2.2]. Exponentially
convergent quadrature algorithms for the (singular) electron-pair integrals are available
in [11]. The results in the present note are confined to space dimension d ≤ 3. The
approach generalizes, however, directly to hp-approximations of point singularities
in any dimension d with exponential rate; we remark that I hpN in the terminal layers

T
(�)
σ of the geometric meshes Mσ introduced in Sect. 4.2.8 were built from low-

order quasi-interpolants of Scott–Zhang type, which do not require continuity of u
near S . Likewise, the exponential convergence rate bound (1) will remain true for
linear polynomial degree vectors and, more generally, for degree vectors of bounded
variation as introduced in [30]. Also, our construction of I hpN was based on a-priori
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knowledge of the singular support S . In case S is not known a-priori, adaptive
hp-approximations as those in [8] are a method of choice. For these algorithms, the
present results establish convergence rate benchmarks.
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