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Abstract
An implicit Euler discontinuous Galerkin scheme for the Fisher–Kolmogorov–
Petrovsky–Piscounov (Fisher–KPP) equation for population densities with no-flux
boundary conditions is suggested and analyzed. Using an exponential variable trans-
formation, the numerical scheme automatically preserves the positivity of the discrete
solution. A discrete entropy inequality is derived, and the exponential time decay of
the discrete density to the stable steady state in the L1 norm is proved if the initial
entropy is smaller than the measure of the domain. The discrete solution is proved to
converge in the L2 norm to the unique strong solution to the time-discrete Fisher–KPP
equation as themesh size tends to zero. Numerical experiments in one space dimension
illustrate the theoretical results.
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1 Introduction

The preservation of the structure of nonlinear diffusion equations on the discrete
level is of paramount importance in applications. While there has been an enormous
progress on structure-preserving schemes for ordinary differential equations (see, e.g.,
[16]), the development of structure-preserving numerical techniques for nonlinear
diffusion equations is still an ongoing quest, in particular for higher-order methods. In
this paper, we analyze a toy problem, the Fisher–Kolmogorov–Petrovsky–Piscounov
(Fisher–KPP) equation with no-flux boundary conditions, to devise an implicit Euler
discontinuous Galerkin scheme which preserves the positivity of the solution, the
entropy structure, and the exponential equilibration on the discrete level. In a future
work, we aim to extend the scheme to diffusion systems.

The Fisher–KPP equation [12] is the reaction–diffusion equation

∂t u = D�u + u(1 − u) in �, t > 0, (1)

∇u · n = 0 on ∂�, u(0) = u0 in �, (2)

where D > 0 is the diffusion coefficient,� ⊂ R
d a bounded domain, and n the exterior

unit normal vector on the boundary ∂�. The variable u(x, t) models a population
density or chemical concentration, influenced by diffusion and logistic growth. The
Fisher–KPP equation admits traveling-wave solutions u(x, t) = φ(x − ct), which
switch between the unstable steady state u∗ = 0 and the stable steady state u∗ = 1.
By the maxiumum principle, the density stays nonnegative if it does so initially, and
it satisfies the entropy inequality

d

dt

∫
�

u(log u − 1)dx + D
∫

�

|∇u|2
u

dx = −
∫

�

u(u − 1) log udx ≤ 0. (3)

If there are no reaction terms, we have conservation of the total mass, and the
logarithmic Sobolev inequality implies the exponential decay of the (mathematical)
entropy S(t) = ∫

�
(u(t)(log u(t) − 1) + 1)dx (see, e.g., [20, Chapter 2]). When

reaction terms are present, the situation is more delicate, since there are two steady
states, u∗ = 0 and u∗ = 1. If the initial entropy S(0) is smaller than the measure of
�, then u(t) converges exponentially fast to u∗ = 1 in the L1(�) norm. Our objective
is to preserve the aforementioned properties on the discrete level.

It is well known that the preservation of the positivity or nonnegativity of discrete
solutions for (1) may fail in standard (finite element) schemes, in particular when
the solution vanishes in some region; see Sect. 5 for an example. Our key idea to
preserve the positivity is to employ the exponential transformation u = eλ. Such
a transformation or a variant is used, for instance, in the Il’in scheme [19] and in
the existence analysis of drift-diffusion equations [13]. Moreover, it allows for the
preservation of L∞(�) bounds in volume-filling cross-diffusion systems [8,20]. The
implicit Euler scheme for (1)–(2) in the exponential variable then reads as
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1

�t

(
eλk − eλk−1

)
= div

(
eλk∇λk

)
+ eλk

(
1 − eλk

)
in �, (4)

∇λk · n = 0 on ∂�, (5)

where here and in the following, we set D = 1 for simplicity and we choose 0 <

�t < 1. Note that the condition ∇λk · n = 0 is equivalent to ∇eλk · n = 0, since
∇eλk = eλk∇λk and eλk �= 0. At first glance, one may think that this formulation
unnecessarily complicates the problem, but we will show that it enjoys some useful
properties.

We propose a discontinuous Galerkin (DG) discretization for problem (4)–(5) with
variable λkh , where h > 0 is the maximal diameter of themesh elements. The nonlinear
diffusion term is discretized by an interior penalty DG method. By construction, the
discrete densities exp(λkh) are positive, and the scheme also preserves the entropy
structure and large-time asymptotics. Our main results can be sketched as follows:

• Existence of a solution λkh to the implicit Euler DG scheme (8), given a func-
tion λk−1

h (Proposition 6). This result is based on the Leray–Schauder fixed-point
theorem and a coercivity estimate.

• Discrete entropy inequality (Lemma 7). The inequality follows from scheme (8)
using the test function λkh and the convexity of u 	→ u(log u − 1) + 1.

• Exponential decay of the discrete entropy

Skh :=
∫

�

(
eλkh

(
eλkh − 1

)
+ 1

)
dx ≤ S0he

−κk�t

(Proposition 9) and of the L1 norm of eλkh − 1 (Theorem 11). The result holds
if S0h < |�|. This condition implies a positive lower bound for the total mass∫
�
eλkh dx , which is needed to guarantee that the discrete solution converges to the

stable steady state u∗ = 1 and not to the steady state u∗ = 0. The case S0h ≥ |�|
is discussed in Remark 12.

• Convergence of the scheme (Theorem 14): There exists a unique strong solution
uk ∈ H2

n (�) to the implicit Euler discretization associated to (1)–(2) such that

eλkh → uk strongly in L2(�) as h → 0.

The result is based on a compactness property, which is a consequence of the
gradient estimate from the entropy inequality and a coercivity estimate. This yields
a very weak semi-discrete solution, which turns out to be a strong solution thanks
to a duality argument.

Compared to conforming finite-element methods, DG methods allow for a more
flexible mesh design and polynomial degree distribution, are easier to parallelize,
allow to better cope with data discontinuities (e.g. of the material coefficients or initial
conditions), and are able to locally reproduce conservation properties. Moreover, they
directly produce block-diagonal (or even diagonal) mass matrices, which is an advan-
tage in time-dependent problems. Finally, as observed in Sect. 5, DG discretizations
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of problem (4)–(5) seem to result in more stable Newton iterations for the solution of
the nonlinearity, as compared to continuous finite elements.

Let us put our results into context and review the state of the art of structure preserva-
tion in DG methods. The DG scheme was introduced in the early 1970s for first-order
hyperbolic problems in [22,31]. The development of discontinuous finite element
schemes for second-order elliptic problems can be traced back to [27] with similar
approaches in, for instance, [2,5,29,34]; see also [3].

The design of structure-preserving DG methods is a rather recent topic. Positivity-
preserving DG schemes for parabolic equations were developed in, e.g., [9,15,23,
33,36]. The positivity preservation is ensured by using a special slope limiter (as in
[9,15]), together with a strong stability preserving Runge–Kutta time discretization (as
in [33,36]), while in [23], the positivity of the discrete solution is enforced through a
reconstruction algorithm, based on positive cell averages. As far as we know, the use of
an exponential transformation to ensure the positivity of the discrete solutions within
a DG scheme is new. Positivity-preserving schemes for the Fisher–KPP equation were
already studied in the literature, but only for finite-difference approximations [17,24],
without a convergence analysis, and for continuous finite element discretizations [35].

Other important properties are entropy stability (the entropy is bounded for all times)
and entropy monotonicity (the entropy is nonincreasing). Entropy-stable DG schemes
for the compressible Euler and Navier–Stokes equation were studied in [14,28], while
a discrete version of the entropy inequality (and hence entropy monotonicity) was
proved in [33] for Fokker–Planck-type equations and aggregation models. We are not
aware of results in the literature regarding the preservation of the entropy structure of
the Fisher–KPP equation on the discrete level.

The paper is organized as follows. We state our notation and some auxiliary results
related to the DG method in Sect. 2. The DG scheme is introduced and studied in
Sect. 3: The existence of a solution to the DG scheme, the discrete entropy inequality,
and the exponential decay of the entropy are proved. The convergence of the numerical
scheme is proved in Sect. 4. Finally, Sect. 5 is devoted to some numerical experiments
in one space dimension.

2 Notation and auxiliary results

We start with some notation. Let Th = {Ki : i = 1, . . . , Nh} be a family of simplicial
partitions of the bounded domain � ⊂ R

d for d = 1, 2, 3. The mesh parameter
h is defined by h = maxK∈Th hK , where hK = diam(K ). The elements may be
tetrahedra in three space dimensions, triangles in two dimensions, and intervals in one
dimension. In two and three dimensions, we suppose that Th is shape regular (see, e.g.,
[30, Section 2.1]) and, for simplicity, without hanging nodes. Our analysis actually
extends also to k-irregular meshes [18]. We denote by Eh the set of interior faces or
edges of the elements in Th .

On the partition Th , we define the broken Sobolev space

Hs(�, Th) = {
ξ ∈ L2(�) : ξ |K ∈ Hs(K ) for all K ∈ Th

}
, s > 0.
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The traces of functions in H1(�, Th) belong to the space T (	h) = ∏
K∈Th L

2(∂K ),
where 	h is the union of all boundaries ∂K for all K ∈ Th . The functions in T (	h)

are single-valued on ∂� and double-valued on 	h\∂�.
Let q be a piecewise smooth function and q be a piecewise smooth vector field on

Th .Wewrite K− and K+ for the two elements sharing the face f , i.e. f = ∂K−∩∂K+,
and n± for the unit normal vector pointing to the exterior of K±. Furthermore, we set
q± = q|K± and φ± = φ|K± . Then we define

averages: {q} = 1

2
(q− + q+), {φ} = 1

2
(φ− + φ+),

jumps: �q� = q−n− + q+n+, �φ� = φ− · n− + φ+ · n+.

Note that the jump of a scalar function is a vector which is normal to f , and the jump
of a vector-valued function is a scalar.

The mesh size function h ∈ L∞(	h) is defined by

h(x) = min{hK− , hK+} for x ∈ ∂K− ∩ ∂K+.

Furthermore, we introduce the finite element space of degree p ∈ N associated to the
partition Th :

Vh = {
v ∈ L2(�) : v|K ∈ Pp(K ) for all K ∈ Th

}
,

where Pp(K ) is the set of polynomials on K with degree at most p, and the space of
test functions

H2
n (�) = {φ ∈ H2(�) : ∇φ · n = 0 on ∂�}.

Next, we recall some auxiliary results.

Lemma 1 (Inverse trace inequality; Lemma 2.1 in [32]) Let K ∈ R
d (d = 2, 3) be an

element with diameter hK , let f be an edge or face of K , and let n f be a unit normal
vector normal to f . Then for all polynomials ξ ∈ Pp(K ) of degree p, there exists a
constant Cinv > 0, independent of hK and p, such that

‖ξ‖L2(∂K ) ≤ Cinv
p√
hK

‖ξ‖L2(K ),

‖∇ξ · n f ‖L2(∂K ) ≤ Cinv
p√
hK

‖∇ξ‖L2(K ). (6)

Lemma 2 (Multiplicative trace inequality; Lemma A.2 in [30]) Let K be a shape-
regular element. Then there exists a constant C > 0 such that for all ξ ∈ H1(K ),

‖ξ‖2L2(∂K )
≤ C‖ξ‖L2(K )

(
1

hK
‖ξ‖L2(K ) + ‖∇ξ‖L2(K )

)
.
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Lemma 3 (Discrete Poincaré–Wirtinger inequality; Theorem 4.1 in [7]) There exists
a constant CPW > 0 such that for all ξ ∈ H1(�, Th),

∥∥∥∥ξ − 1

|�|
∫

�

ξdx

∥∥∥∥
L2(�)

≤ CPW

⎛
⎝ ∑

K∈Th
‖∇ξ‖2L2(K )

+
∑
f ∈Eh

∫
f

p2

h
|�ξ�|2dx

⎞
⎠

1/2

.

We also need a compactness result for functions ξ ∈ H1(�, Th). For this, we define
the DG norm

‖ξ‖DG =
⎛
⎝‖ξ‖2L2(�)

+
∑
K∈Th

‖∇ξ‖2L2(K )
+

∑
f ∈Eh

∫
f

p2

h
|�ξ�|2dx

⎞
⎠

1/2

. (7)

Lemma 4 (DG compact embedding; Lemma 8 in [7]) Let (ξh) ⊂ H1(�, Th) be a
sequence such that ‖ξh‖DG ≤ C for all h ∈ (0, 1) and some C > 0. Then there exists
a subsequence (hi ) with hi → 0 as i → ∞ and a function ξ ∈ H1(�) such that

ξhi → ξ strongly in Lq(�) as hi → 0,

where 1 ≤ q < q∗ and q∗ = 4 for d = 3, q∗ = ∞ for d = 1, 2.

3 Analysis of the DG scheme: existence and structure preservation

We assume the bounded domain � ∈ R
d to be Lipschitz and, in view of the duality

method used in the proof of Theorem 14 below, convex. Recall that we suppose that
d ≤ 3.

The weak formulation of (4)–(5) reads as follows: find λk ∈ H1(�)∩ L∞(�) such
that

∫
�

(
eλk − eλk−1

)
φdx + �t

∫
�

eλk∇λk · ∇φdx = �t
∫

�

eλk
(
1 − eλk

)
φdx

for all φ ∈ H1(�).
Our DG discretization of the above formulation reads as follows. Let ε ≥ 0 and

λ0h ∈ Vh . Given λk−1
h ∈ Vh , we wish to find λkh ∈ Vh such that for all φh ∈ Vh ,

∫
�

(
eλ

k
h − eλ

k−1
h

)
φhdx + �t B

(
λkh; λkh , φh

)
+ ε

∫
�

λkhφhdx = �t
∫
�
eλ

k
h

(
1 − eλ

k
h

)
φhdx .

(8)
The form B : V 3

h → R represents the interior penalty DG discretization of the
nonlinear diffusion term. It is linear in the second and third argument and is defined
by
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B(u; v,w) =
∑
K∈Th

∫
K
eu∇v · ∇wdx −

∑
f ∈Eh

∫
f

({eu∇v} · �w� + {eu∇w} · �v�
)
ds

+
∑
f ∈Eh

∫
f

p2

h
α(u)�v� · �w�ds, (9)

where α(u) is a stabilization function, given by

α(u) = 3

2
C2
inv

(
max{(eu)−, (eu)+})2 max

{
exp(‖u‖L∞(K−)), exp(‖u‖L∞(K+))

}
.

(10)
We recall that the constant Cinv is defined in Lemma 1. The third term on the left-hand
side of (8) is a regularization term (only) needed for the existence analysis to derive
a uniform (but ε-depending) bound for the fixed-point argument. For linear elements
p = 1, we may allow for ε = 0; see “Appendix A”.

3.1 Existence of a discrete solution

We show that problem (8) possesses a solution. First, we prove a coercivity property
for the form B.

Lemma 5 (Coercivity of B) The form B, defined in (9), satisfies for all v ∈ V 3
h ,

B(v; v, v) ≥ 2
∑
K∈Th

∫
K

|∇ev/2|2dx + 2C2
inv

∑
f ∈Eh

∫
f

p2

h

∣∣∣�ev/2�
∣∣∣2 ds.

Proof Definition (9) gives for v ∈ V 3
h :

B(v; v, v)=
∑
K∈Th

∫
K
ev|∇v|2dx−2

∑
f ∈Eh

∫
f
{ev∇v}·�v�ds+

∑
f ∈Eh

∫
f

p2

h
α(v)|�v�|2ds.

(11)
We estimate the second integral by using Young’s inequality:

2
∑
f ∈Eh

∫
f
{ev∇v} · �v�ds ≤

∑
f ∈Eh

( ∫
f
β2
f {ev∇v}2ds +

∫
f

1

β2
f

|�v�|2ds
)

,

where β f > 0 is a parameter which will be defined below. The first integral on the
right-hand side is estimated according to
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∑
f ∈Eh

∫
f
β2
f {ev∇v}2ds = 1

4

∑
f ∈Eh

∫
f
β2
f

∣∣(ev∇v)− + (ev∇v)+
∣∣2ds

≤ 1

2

∑
f ∈Eh

∫
f
β2
f
(|(ev∇v)−|2 + |(ev∇v)+|2)ds

= 1

2

∑
f ∈Eh

∫
f
β2
f
(
max{(ev)−, (ev)+})2(|(∇v)−|2 + |(∇v)+|2)ds.

To proceed, we set

β f := min{γK− , γK+}
max{(ev)−, (ev)+} , where γ 2

K := hK
C2
inv p

2
exp(−‖v‖L∞(K )).

Taking into account the inverse trace inequality (6), we infer that

∑
f ∈Eh

∫
f
β2
f {ev∇v}2ds ≤ 1

2

∑
K∈Th

∫
∂K

γ 2
K |∇v|2ds ≤ 1

2
C2
inv

∑
K∈Th

γ 2
K
p2

hK

∫
K

|∇v|2dx

≤ 1

2
C2
inv p

2
∑
K∈Th

γ 2
K

hK
exp(‖v‖L∞(K ))

∫
K
ev|∇v|2dx

= 1

2

∑
K∈Th

∫
K
ev|∇v|2dx .

Consequently, we obtain

2
∑
f ∈Eh

∫
f
{ev∇v} · �v�ds ≤

∑
f ∈Eh

∫
f

1

β2
f

|�v�|2ds + 1

2

∑
K∈Th

∫
K
ev|∇v|2dx .

Inserting this estimate into (11), it follows that

B(v; v, v) ≥ 1

2

∑
K∈Th

∫
K
ev|∇v|2dx +

∑
f ∈Eh

∫
f

(
p2

h
α(v) − 1

β2
f

)
|�v�|2ds.

With the definitions of α(v) (see (10)) and β f as well as the property h ≤ hK± , the
difference in the bracket can be computed as

p2

h
α(v) − 1

β2
f

≥ 3

2

p2

h
C2
inv

(
max{(ev)−, (ev)+})2 max

{
exp(‖v‖L∞(K−)), exp(‖v‖L∞(K+))

}

− C2
inv p

2(max{(ev)−, (ev)+})2
min{hK− exp(−‖v‖L∞(K−)), hK+ exp(−‖v‖L∞(K+))}

123



A structure-preserving discontinuous Galerkin scheme for… 127

≥ p2

2h
C2
inv(max{(ev)−, (ev)+})2 max

{
exp(‖v‖L∞(K−)), exp(‖v‖L∞(K+))

}

= 1

3

p2

h
α(v).

This shows that

B(v; v, v) ≥ 2
∑
K∈Th

∫
K

|∇ev/2|2dx + 1

3

∑
f ∈Eh

∫
f

p2

h
α(v)|�v�|2ds. (12)

By the definition of the jumps and the mean-value theorem for x ∈ f ,

∣∣∣�ev/2�
∣∣∣2 = ∣∣ev−/2 − ev+/2

∣∣2 ≤ 1

4
max{ev− , ev+}|�v�|2.

We use Definition (10) and insert the previous estimate into (12):

B(v; v, v) ≥ 2
∑
K∈Th

∫
K

|∇ev/2|2dx + 2C2
inv

∑
f ∈Eh

∫
f

p2

h
max{(ev)−, (ev)+}

× max
{
exp(‖v‖L∞(K−)), exp(‖v‖L∞(K+))

} ∣∣∣�ev/2�
∣∣∣2 ds.

Since (ev)± ≥ exp(−‖v‖L∞(K±)), we have

max{(ev)−, (ev)+}max
{
exp(‖v‖L∞(K−)), exp(‖v‖L∞(K+))

} ≥ 1.

This finishes the proof. ��
Proposition 6 (Existence) Let ε > 0. Given λk−1

h ∈ Vh, the DG scheme (8) admits a
solution λkh ∈ Vh.

Proof The idea is to apply the Leray–Schauder fixed-point theorem. We define the
fixed-point operator � : Vh × [0, 1] → Vh by �(w, σ) = v, where v ∈ Vh is the
unique solution to the linear problem

ε

∫
�

vφdx = σ

∫
�

(
eλk−1

h − ew + �tew(1 − ew)
)

φdx − σ�t B(w;w,φ) (13)

for φ ∈ Vh . The left-hand side defines the bilinear form a(w, φ), which is coercive,
a(w,w) = ε‖w‖2

L2(�)
. The right-hand side defines a linear form which is continuous

on L2(�) (using the fact that in finite dimensions, all norms are equivalent). Thus, �
is well defined by the Lax–Milgram lemma. As the right-hand side of (13) is contin-
uous with respect to w, standard arguments show that � is continuous. Furthermore,
�(w, 0) = 0. It remains to prove that there exists a uniform bound for all fixed points
of �. To this end, let v ∈ Vh and σ ∈ [0, 1] such that �(v, σ ) = v.
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Let s(x) := x(log x − 1) + 1 ≥ 0. The convexity of s implies that

(
eλk−1

h − ev
)

v =
(
eλk−1

h − ev
)
s′(ev) ≤ s

(
eλk−1

h

)
− s(ev). (14)

Then, using the test functionφ = v in (13) gives, because of the properties B(v; v, v) ≥
0 (Lemma 5) and ev(1 − ev)v ≤ 0,

ε‖v‖2L2(�)
= σ

∫
�

(
eλk−1

h − ev
)

vdx + σ�t
∫

�

ev(1 − ev)vdx − σ�t B(v; v, v)

≤ σ

∫
�

(
s
(
eλk−1

h

)
− s(ev)

)
dx ≤ σ

∫
�

s
(
eλk−1

h

)
dx . (15)

This is the desired uniform bound. We infer the existence of a solution to (8) by the
Leray–Schauder fixed-point theorem. ��

3.2 Discrete entropy inequality and exponential decay

Let λkh ∈ Vh be a solution to (8). We show that the entropy

Skh :=
∫

�

s
(
eλkh

)
dx, where s(u) = u(log u − 1) + 1,

is nonincreasing with respect to k ∈ N.

Lemma 7 (Discrete entropy inequality) Let ε ≥ 0 and let λkh ∈ Vh be a solution to
(8). Then

Skh + C0�t
∫

�

∣∣∣∣eλkh/2 − 1

|�|
∫

�

eλkh/2dy

∣∣∣∣
2

dx + �t
∫

�

eλkh

(
eλkh − 1

)
λkhdx ≤ Sk−1

h ,

(16)
where the constant C0 > 0 only depends on Cinv and CPW from Lemmas 1 and 3.

Proof We take φh = λkh as a test function in (8) and use inequality (14) to find that

Skh − Sk−1
h =

∫
�

(
s
(
eλkh

)
− s

(
eλk−1

h

))
dx

= −�t B
(
λkh; λkh, λ

k
h

)
− ε

∫
�

(
λkh

)2
dx − �t

∫
�

eλkh

(
eλkh − 1

)
dx

≤ −�t B
(
λkh; λkh, λ

k
h

)
− �t

∫
�

eλkh

(
eλkh − 1

)
λkhλ

k
hdx . (17)
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It remains to estimate thefirst termon the right-hand side. For this,weuse the coercivity
estimate of Lemma 5 and the discrete Poincaré–Wirtinger inequality from Lemma 3:

B
(
λkh; λkh , λkh

)
≥ 2min

{
1,C2

inv

} ⎛
⎝ ∑

K∈Th

∫
K

∣∣∣∇eλ
k
h/2

∣∣∣2 dx +
∑
f ∈Eh

∫
f

p2

h

∣∣∣�eλkh/2�
∣∣∣2 ds

⎞
⎠

≥ 2min
{
1,C2

inv

}
C−2
PW

∫
�

∣∣∣∣eλkh/2 − 1

|�|
∫
�
eλ

k
h/2dx

∣∣∣∣
2
dx .

Setting C0 = 2min{1,C2
inv}C−2

PW finishes the proof. ��
Wewish to bound the total mass

∫
�
exp(λkh)dx from below and above. Since s(u) =

u(log u − 1) + 1 is invertible only on [0, 1] and on [1,∞) but not globally on [0,∞),
we introduce the following functions:

σ− : [0,∞) → [0, 1], σ−(v)=(s|[0,1])−1(v) for v ∈ [0, 1], σ−(v)=0 for v ∈ [1, ∞),

σ+ : [0,∞) → [1,∞), σ+(v) = (s|[1,∞))
−1(v) for v ∈ [0, ∞).

In particular, σ− ◦ s = id on [0, 1] and σ+ ◦ s = id on [1,∞).

Lemma 8 (Bounds for the total mass) Let ε ≥ 0 and let λkh be a solution to (8). Then

σ−
(

S0h
|�|

)
≤ 1

|�|
∫

�

eλkh dx ≤ σ+
(

S0h
|�|

)
.

Observe that if S0h < |�|, the lower bound σ−(S0h/|�|) is positive. Thus, the total
mass can never vanish, which excludes the case of solutions converging for k → ∞ to
the zero solution. The reason for the difference between S0h < |�| and S0h ≥ |�| lies in
the fact that (4)–(5) admits two steady states, λkh = 0 (corresponding to uk = eλkh = 1)
and λkh = −∞ (corresponding to uk = 0). The assumption S0h < |�| will be crucial
to prove the decay estimate for the entropy; see Proposition 9. We discuss the case
S0h ≥ |�| in Remark 12.

Proof of Lemma 8 First, we show the lower bound. If S0h ≥ |�|, we haveσ−(S0h/|�|) =
0, and there is nothing to prove. Thus, let S0h < |�|. Set βk = min{1, exp(λkh)} ≤ 1.
As s is convex, we infer from Jensen’s inequality and s(βk) = 0 for λkh > 0 that

s

(
1

|�|
∫

�

βkdx

)
≤ 1

|�|
∫

�

s(βk)dx = 1

|�|
∫

{
λkh≤0

} s
(
eλkh

)
dx ≤ Skh

|�| ≤ S0h
|�| ,

where in the last step we have used themonotonicity of k 	→ Skh .With this preparation,
we are able to verify the lower bound. As σ− is decreasing, we find that

1

|�|
∫

�

eλkh dx ≥ 1

|�|
∫

�

βkdx = (σ− ◦ s)

(
1

|�|
∫

�

βkdx

)
≥ σ−

(
S0h
|�|

)
.
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For the upper bound, we can assume that
∫
�
exp(λkh)dx ≥ |�|, since otherwise,

the inequality is trivially satisfied in view of σ+(v) ≥ 1. By the concavity of σ+, we
can again apply the Jensen inequality:

σ+
(

S0h
|�|

)
≥ σ+

(
1

|�|
∫

�

s
(
eλkh

)
dx

)
≥ 1

|�|
∫

�

(σ+ ◦ s)
(
eλkh

)
dx = 1

|�|
∫

�

eλkh dx,

proving the claim. ��
Proposition 9 (Discrete entropy decay) Let ε ≥ 0 and let λkh be a solution to (8). We
assume that S0h < |�|. Then there exists a constant C1 > 0, only depending on S0h ,
such that for all k ∈ N,

Skh ≤ (1 + C1�t)−k S0h . (18)

In particular, with η = log(1 + C1�t)/(C1�t) < 1, we have the exponential decay

Skh ≤ S0he
−ηC1k�t , k ∈ N.

The proof is based on two properties: The diffusion drives the solution towards a
constant, while the reaction term guarantees that there is only one (positive) steady
state. In order to cope with the interplay of diffusion and reaction, we prove first the
following lemma.

Lemma 10 Introduce for θ > 0 the functions

M1(θ) = s(θ)

θ(θ − 1) log θ
, M2(θ) = max{1, s(θ)}.

Then

s(ev) ≤
{
M1(θ)ev(ev − 1)v if v ≥ log θ,

M2(θ) if v < log θ.

Proof The function

g(v) = s(ev)

ev(ev − 1)v
= ev(v − 1) + 1

ev(ev − 1)v
, v �= 0,

can be continuously extended to v = 0 (with value g(0) = 1/2) and it is decreas-
ing with limits limv→∞ g(v) = 0 and limv→−∞ g(v) = +∞. Therefore, g(v) ≤
g(log θ) = M1(θ) for all v ≥ log θ , showing the first inequality. For the second one,
let v ≤ log θ . Then s(ev) < 1 for v ≤ 0 and the monotonicity of v 	→ s(ev) for v ≥ 0
implies that s(ev) ≤ s(θ). Thus, for any v ∈ R, s(ev) ≤ max{1, s(θ)} = M2(θ),
completing the proof. ��
Proof of Proposition 9 The idea of the proof is to split Skh into two integrals,

Skh =
∫

{
λkh≤logα

} s
(
eλkh

)
dx +

∫
{
λkh>logα

} s
(
eλkh

)
dx, (19)
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for some suitably chosen α > 0 and to estimate these integrals by the second and third
terms on the left-hand side of the discrete entropy inequality (16).

Since S0h/|�| < 1, there exists θ ∈ (0, 1) such that s(θ) > S0h/|�|. Let 0 < ε0 <

[1 − S0h/(|�|s(θ))]2 and set α = ε0θ ∈ (0, 1).
We turn to the first integral on the right-hand side of (19). We claim that there exists

a constant Cε0θ > 0 such that

∫
{
λkh≤logα

} s
(
eλkh

)
dx ≤ Cε0θ

∫
�

∫
�

∣∣∣∣eλkh/2 − 1

|�|
∫

�

eλkh/2dy

∣∣∣∣
2

dx . (20)

To prove this inequality, we begin by showing that
∫
�
exp(λkh/2)dx is bounded from

below. Indeed, using the monotonicity of s ◦ exp in [0, 1] and of k 	→ Sk ,

∣∣∣
{
λkh ≤ log θ

}∣∣∣ =
∣∣∣
{
s
(
eλkh

)
≥ s(θ)

}∣∣∣ = 1

s(θ)

∫
{
s
(
exp

(
λkh

))≥s(θ)
} s(θ)dx

≤ 1

s(θ)

∫
{
s
(
exp

(
λkh

))≥s(θ)
} s

(
eλkh

)
dx ≤ 1

s(θ)

∫
�

s
(
eλkh

)
dx = Skh

s(θ)
≤ S0h

s(θ)
.

This yields the lower bound

∫
�

eλkh/2dx ≥
∫

{
λkh>log θ

} eλkh/2dx >
√

θ

∣∣∣
{
λkh > log θ

}∣∣∣

= √
θ

(
|�| −

∣∣∣
{
λkh ≤ log θ

}∣∣∣
)

≥ √
θ

(
|�| − S0h

s(θ)

)
.

Therefore, as long as λkh ≤ log(ε0θ), the difference

1

|�|
∫

�

eλkh/2dx − eλkh/2≥ 1

|�|
∫

�

eλkh/2dx − √
ε0θ ≥√

θ

(
1 − S0h

|�|s(θ)
− √

ε0

)
> 0

is positive. Squaring this expression and integrating over {λkh ≤ log(ε0θ)} thus does
not change the inequality sign:

∫
{
λkh≤log(ε0θ)

}
∣∣∣∣eλkh/2 − 1

|�|
∫
�
eλ

k
h/2dx

∣∣∣∣
2
dx ≥

∫
{
λkh≤log(ε0θ)

} θ

(
1 − S0h

|�|s(θ)
− √

ε0

)2
dx

=
∣∣∣
{
λkh ≤ log(ε0θ)

}∣∣∣ θ
(
1 − S0h

|�|s(θ)
− √

ε0

)2
.

123



132 F. Bonizzoni et al.

Combining the estimate of Lemma 10 and the previous estimate, we arrive at

∫
{
λkh≤log(ε0θ)

} s
(
eλkh

)
dx ≤ M2(ε0θ)

∣∣∣
{
λkh ≤ log(ε0θ)

}∣∣∣

≤ M2(ε0θ)(
1 − S0h/(|�|s(θ)) − √

ε0
)
θ

∫
�

∣∣∣∣eλkh/2 − 1

|�|
∫

�

eλkh/2dx

∣∣∣∣
2

dx .

This proves claim (20) with

Cε0θ = M2(ε0θ)(
1 − S0h/(|�|s(θ)) − √

ε0
)
θ
,

recalling that α = ε0θ .
Next, we estimate the second integral on the right-hand side of (19). It follows from

Lemma 10 that
∫

{
λkh>log(ε0θ)

} s
(
eλkh

)
dx ≤ M1(ε0θ)

∫
�

eλkh

(
eλkh − 1

)
λkhdx .

Therefore, (19) gives

Skh ≤ Cε0θ

∫
�

∣∣∣∣eλkh/2 − 1

|�|
∫

�

eλkh/2dx

∣∣∣∣
2

dx + M1(ε0θ)

∫
�

eλkh

(
eλkh − 1

)
λkhdx

≤ 1

C1

(
C0

∫
�

∣∣∣∣eλkh/2 − 1

|�|
∫

�

eλkh/2dx

∣∣∣∣
2

dx +
∫

�

eλkh

(
eλkh − 1

)
λkhdx

)

for C1 = 1/max{Cε0θ /C0, M1(ε0θ)}. Finally, by Lemma 7,

Skh ≤ 1

C1�t

(
Sk−1
h − Skh

)
,

and solving this recursion shows the proposition. ��
Theorem 11 (Decay in the L1(�) norm) Let the assumptions of Proposition 9 hold.
Then there exists a constant C2 > 0, only depending on S0h and |�|, such that

∥∥∥eλkh − 1
∥∥∥
L1(�)

≤ C2e
−ηC1k�t/2, k ∈ N,

where η ∈ (0, 1) and C1 > 0 are as in Proposition 9.

Proof To simplify the notation, we set u = eλkh and ū = |�|−1
∫
�
eλkh dx . Then the

Csiszár–Kullback inequality (see, e.g., [4, (2.8)]) gives

‖u − ū‖2L1(�)
≤ 2

|�|
∫

�

s

(
u

ū

)
ūdx = 2ū

|�|
∫

�

(
s(u) − s(ū)

)
dx ≤ 2ū

|�|
∫

�

s(u)dx,
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using the property s(u) ≥ 0 for all u ≥ 0. We know from Lemma 8 that ū is bounded
from above by σ+(S0h/|�|). Hence,

‖u − ū‖2L1(�)
≤ 2

|�|σ+
(

S0h
|�|

)
Skh . (21)

It remains to show that a similar estimate holds for |ū−1|. Since the entropy density
s is convex, Jensen’s inequality shows that

s(ū) = s

(
1

|�|
∫

�

eλkh dx

)
≤ 1

|�|
∫

�

s
(
eλkh

)
dx = Skh

|�| ≤ S0h
|�| < 1. (22)

It holds s(v) < 1 if and only if v < e. Consequently, we have ū < e. Applying the
elementary inequality

s(u) ≥ (u − 1)2

(e − 1)2
for all 0 ≤ u ≤ e

to u = ū and using (22) gives

|ū − 1|2 ≤ (e − 1)2s(ū) ≤ (e − 1)2

|�| Skh .

Thus, combining (21) and the previous inequality, we conclude that

∥∥∥eλkh − 1
∥∥∥
L1(�)

≤ ‖u − ū‖L1(�) + ‖ū − 1‖L1(�)

≤
{(

2

|�|σ+
(

S0h
|�|

))1/2

+ (e − 1)|�|1/2
}(

Skh

)1/2
,

and the proof follows after applying Proposition 9. ��

Remark 12 We discuss the case S0h ≥ |�|. Fix �t ∈ (0, 1) and L ∈ N with L > 1.
Define λkh = (L − k)+ log(1 − �t), where z+ = max{0, z} denotes the positive part
of z ∈ R. Then eλkh = (1 − �t)L−k < 1 for k < L and eλkh = 1 for k ≥ L . Consider
the case L > k = 1. Then, setting δ := (1 − �t)L−k , we estimate

1

�t
S1h + C0

∫
�

∣∣∣∣eλ1h/2 − 1

|�|
∫

�

eλ1h/2dx

∣∣∣∣
2

dx +
∫

�

eλ1
(
eλ1 − 1

)
λ1hdx

=
(
s(δ)

�t
+ δ(δ − 1) log δ

)
|�| ≤ (1 + (1 − �t)δ log δ)

|�|
�t

≤ |�|
�t

≤ S0h
�t

.
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If 1 < k ≤ L , we deduce from eλkh ≤ 1 that

1

�t

(
eλkh − eλk−1

h

)
= 1

�t

(
(1 − �t)L−k − (1 − �t)L−k+1) = (1 − �t)L−k

= eλkh ≥ −eλkh

(
eλkh − 1

)
. (23)

By the convexity of s, it follows that s(u) − s(v) ≤ (u − v)s′(u) = (u − v) log u for
all u, v > 0. Since λkh ≤ 0 for k ≤ L , (23) yields

s
(
eλkh

)
≤

(
eλkh − eλk−1

h

)
λkh + s

(
eλk−1

h

)
≤ −�teλkh

(
eλkh − 1

)
λkh + s

(
eλk−1

h

)
,

which directly implies the entropy inequality (16). This inequality is trivially satisfied
for k ≥ L . However, it holds for L = 2k that

eλkh = (1 − �t)k → 0, Skh =
∫

�

s
(
eλkh

)
dx → |�| as k → ∞.

This means that if S0h ≥ |�|, there exists no constant C > 0 depending only on S0h
such that (18) holds for all (λkh) ⊂ L2(�) satisfying the entropy inequality (16). Note

that the constructed function eλkh does not possess a uniform positive lower bound. ��

4 Analysis of the DG scheme: numerical convergence

We show first that the solutions to (8) are uniformly bounded in the DG norm (7) if
the initial entropy S0h is bounded uniformly in h.

Lemma 13 (Uniform bound in DG norm) Let ε ≥ 0 and let λkh be a solution to (8).
Then there exists a constant C > 0 such that

�t
∥∥∥eλkh/2

∥∥∥2
DG

≤ 2�t |�| + max

{
1

2min
{
1,C2

inv

} ,�t

}
S0h .

Proof We have shown in the proof of Lemma 7 that

Skh+2�t min
{
1,C2

inv

} ⎛
⎝ ∑

K∈Th

∫
K

∣∣∣∇eλkh/2
∣∣∣2 dx+

∑
f ∈Eh

∫
f

p2

h

∣∣∣�eλkh/2�
∣∣∣2 ds

⎞
⎠≤ Sk−1

h .

Then, by definition of the DG norm,

�t
∥∥∥eλkh/2

∥∥∥2
DG

≤ �t
∫

�

eλkh dx + 1

2min
{
1,C2

inv

}
∫

�

(
s
(
eλk−1

h

)
− s

(
eλkh

))
dx .
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Using the inequality u ≤ 2+s(u) for u ≥ 0, applied to u = eλkh , and the monotonicity
of k 	→ Skh , we find that

�t
∥∥∥eλkh/2

∥∥∥2
DG

≤ �t
∫

�

(
2 + s

(
eλkh

))
dx

+ 1

2min
{
1,C2

inv

}
∫

�

(
s
(
eλk−1

h

)
− s

(
eλkh

))
dx

= 2�t |�| +
(

�t − 1

2min
{
1,C2

inv

}
)
Skh + Sk−1

h

2min
{
1,C2

inv

}

≤ 2�t |�| +
(

�t − 1

2min
{
1,C2

inv

}
)
Skh + S0h

2min
{
1,C2

inv

} .

If 2min{1,C2
inv}�t ≤ 1 then

�t
∥∥∥eλkh/2

∥∥∥2
DG

≤ 2�t |�| + S0h
2min

{
1,C2

inv

} .

On the other hand, if 2min{1,C2
inv}�t > 1, we have, again by the monotonicity of

k 	→ Skh ,

(
�t − 1

2min
{
1,C2

inv

}
)
Skh ≤

(
�t − 1

2min
{
1,C2

inv

}
)
S0h ,

such that in either case,

�t
∥∥∥eλkh/2

∥∥∥2
DG

≤ 2�t |�| + max

{
1

2min
{
1,C2

inv

} ,�t

}
Sh0 ,

proving the lemma. ��
Theorem 14 (Convergence) Let ε ≥ 0, �t ∈ (0, 1), and let λkh be a solution to (8).

Assume that λk−1
h ∈ Vh such that eλk−1

h → uk−1 strongly in L2(�) as (ε, h) → 0.
Then there exists a unique strong solution uk ∈ H2

n (�) to

1

�t
(uk − uk−1) = �uk + uk(1 − uk) in �, ∇uk · n = 0 on ∂� (24)

such that

eλkh → uk strongly in L2(�) as (ε, h) → 0.

Proof Let λkh ∈ Vh be a solution to (8).
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Step 1 We claim that there exists a subsequence (εi , hi ) → 0 such that

e
λkhi → uk strongly in L2(�) as i → ∞.

Indeed, by assumption, the initial entropy (S0hi )i∈N is bounded.ThenLemma13 implies

that eλkh/2 is bounded in the DG norm uniformly in ε and h. By the compactness
Lemma 4, there exists a subsequence (εi , hi ) → 0 and a function vk ∈ H1(�)

satisfying

e
λkhi

/2 → vk strongly in L2(�) as i → ∞.

Consequently, e
λkhi → (vk)2 =: uk strongly in L1(�). The discrete entropy inequality

(16) shows that

∫
�

g
(
e2λ

k
h

)
dx =

∫
�

eλkh/2
(
eλkh/2 − 1

)
λkhdx

is bounded uniformly in (ε, h), where g(u) = √
u(

√
u − 1) log u for u ≥ 0. As

the function g : [0,∞) → [0,∞) is continuous and satisfies g(u)/u → ∞ as
u → ∞, we can apply the Theorem of de la Vallée-Poussin [11, Theorem 1.3, p. 239]

(for a proof, see [26, Section II.2]) to conclude that there exists a subsequence e
2λkhi

such that e
2λkhi → wk weakly in L1(�) as i → ∞, for some function wk . We

deduce from the strong L1 convergence of e
λkhi , possibly for another subsequence,

that e
2λkhi → (uk)2 = wk a.e. in �. This implies that

e
2λkhi → (uk)2 strongly in L1(�), (25)

thus proving the desired L2 convergence.
Step 2 We claim that for any φ ∈ H2

n (�) ∩ C1(�), it holds that

1

�t

∫
�

e
λkhi φdx +

∑
K∈Thi

∫
K
e
λkhi ∇λkhi · ∇φdx −

∑
f ∈Ehi

∫
f
�λkhi � ·

{
e
λkhi ∇φ

}
ds

+
∫

�

e
λkhi

(
e
λkhi − 1

)
φdx → 1

�t

∫
�

e
λk−1
hi φdx as i → ∞. (26)

Since φ does not necessarily belong to Vh , we cannot use it as a test function in the
weak formulation (8). Therefore, let Ph : C0(�) → C0(�) ∩ Vh be the interpolation
operator, defined, e.g., in [10, Section 2.3]. It possesses the following property [10,
Section3.1.6]: There exists a constantCI > 0 such that for all K ∈ Th andφ ∈ H2(K ),

‖φ − Phφ‖Wm,q (K ) ≤ CI h
2−d/2−(m−d/q)
K ‖φ‖H2(K ) (27)
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form ≤ 2 ≤ q such thatm−d/q ≤ 2−d/2. In particular, for φ ∈ H2(�) and d ≤ 3,

‖φ − Phφ‖L∞(�) ≤ CI h
2−d/2
i ‖φ‖H2(�) → 0 as hi → 0. (28)

For given φ ∈ H2
n (�) ∩ C1(�), we choose the test function φhi := Phi φ in (8):

1

�t

∫
�
e
λk−1
hi φhi dx = 1

�t

∫
�
e
λkhi φhi dx + εi

∫
�

λkhi
φhi dx +

∑
K∈Thi

∫
K
e
λkhi ∇λkhi

· ∇φhi dx

−
∑
f ∈Ehi

∫
f
�λkhi � ·

{
e
λkhi ∇φhi

}
ds +

∫
�
e
λkhi

(
e
λkhi − 1

)
φhi dx .

(29)

Here, we have used the fact that �φhi � = 0 since φhi is continuous. Note that (28)

implies that φhi → φ strongly in L∞(�) as i → ∞. As e
λk−1
hi → uk−1 strongly in

L2(�), by assumption, we have for the left-hand side of (29):

∫
�

e
λk−1
hi (φhi − φ)dx → 0 as hi → 0.

Similarly, as e
λkhi → uk strongly in L2(�), we infer for the first and last integrals on

the right-hand side of (29) that

∫
�

e
λkhi (φhi − φ)dx → 0,

∫
�

e
λkhi

(
e
λkhi − 1

)
(φhi − φ)dx → 0.

Inequality (15) shows that

εi

∥∥∥λkhi

∥∥∥2
L2(�)

≤
∫

�

s

(
e
λk−1
hi

)
dx .

Thus, (ε
1/2
i λkhi

) is bounded in L2(�) from which we have εiλ
k
hi

→ 0 strongly in

L2(�) as (εi , hi ) → 0. This implies that the second integral on the right-hand side of
(29) converges to zero.

Next, we prove for the third integral on the right-hand side of (29) that

∑
K∈Thi

∫
K
e
λkhi ∇λkhi · ∇(φhi − φ)dx → 0 as hi → 0.
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Indeed, by the Hölder inequality, the interpolation property (27), and the discrete
entropy inequality (16), we obtain

∣∣∣∣∣∣
∑
K∈Thi

∫
K
e
λkhi ∇λkhi · ∇(φhi − φ)dx

∣∣∣∣∣∣
≤ 2

∑
K∈Thi

∥∥∥∥eλkhi
/2

∥∥∥∥
L4(K )

∥∥∥∥∇e
λkhi

/2
∥∥∥∥
L2(K )

‖φhi − φ‖W 1,4(K )

≤ 2CI

∑
K∈Thi

∥∥∥∥eλkhi
/2

∥∥∥∥
L4(K )

∥∥∥∥∇e
λkhi

/2
∥∥∥∥
L2(K )

h1−d/4
K ‖φ‖H2(K )

≤ 2CI

∥∥∥∥eλkhi

∥∥∥∥
1/2

L2(�)

⎛
⎝ ∑

K∈Thi

∥∥∥∥∇e
λkhi

/2
∥∥∥∥
2

L2(K )

⎞
⎠

1/2 ⎛
⎝ ∑

K∈Thi
h2−d/2
K ‖φ‖2H2(K )

⎞
⎠

1/2

≤ Ch1−d/4
i ‖φ‖H2(�) → 0.

It remains to prove for the fourth integral on the right-hand side of (29) that

∑
f ∈Ehi

∫
f
�λkhi � ·

{
e
λkhi ∇(φhi − φ)

}
ds → 0 as hi → 0.

To this end, we use the elementary inequality |{u∇v}| ≤ 2{u}{|∇v|} for functions u,
v with nonnegative u and the Cauchy–Schwarz inequality:

∣∣∣∣∣∣
∑
f ∈Ehi

∫
f
�λkhi � ·

{
e
λkhi ∇(φhi − φ)

}
ds

∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣

∑
f ∈Ehi

∫
f

∣∣∣�λkhi �
∣∣∣
∣∣∣∣
{
e
λkhi ∇(φhi − φ)

}∣∣∣∣ ds
∣∣∣∣∣∣
2

≤ 4

∣∣∣∣∣∣
∑
f ∈Ehi

∣∣∣�λkhi �
∣∣∣
{
e
λkhi

} {|∇(φhi − φ)|} ds
∣∣∣∣∣∣
2

≤ 4
∑
f ∈Ehi

∫
f

{
e
λkhi

}2 ∣∣∣�λkhi �
∣∣∣2 ds ∑

f ∈Ehi

∫
f
{|∇(φhi − φ)|}2ds. (30)

We estimate both integrals separately. First, the multiplicative trace inequality in
Lemma2 shows that, for some constantC > 0 and for faces or edges f = ∂K+∩∂K−,

∫
f
{|∇(φhi − φ)|}2ds ≤ C

∑
K=K±

‖φhi

−φ‖H1(K )

(
1

hK
‖φhi − φ‖H1(K ) + ‖φhi − φ‖H2(K )

)
.
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We deduce from (27), i.e.

‖φhi − φ‖H1(K ) ≤ CI hK ‖φ‖H2(K ), ‖φhi − φ‖H2(K ) ≤ CI‖φ‖H2(K ),

that

∑
f ∈Ehi

∫
f
{|∇(φhi − φ)|}2ds ≤ Chi .

Therefore, also using h(x) ≤ hi , we deduce from (30) that

∣∣∣∣∣∣
∑
f ∈Ehi

∫
f
�λkhi � ·

{
e
λkhi ∇(φhi − φ)

}
ds

∣∣∣∣∣∣
2

≤ C
h2i
p2

∑
f ∈Ehi

∫
f

p2

hi

{
e
λkhi

}2 ∣∣∣�λkhi �
∣∣∣2 ds,

where hi (x) = min{hi,K+ , hi,K−} for x ∈ ∂K+ ∩ ∂K−. We claim that the sum on the
right-hand side is bounded uniformly in hi . By Definition (10),

{
e
λkhi

}2

≤ 2

3C2
inv

α
(
λkhi

)
,

such that we can estimate

∑
f ∈Ehi

∫
f

p2

hi

{
e
λkhi

}2 ∣∣∣�λkhi �
∣∣∣2 ds ≤ 2

3C2
inv

∑
f ∈Ehi

∫
f

p2

hi
α

(
λkhi

) ∣∣∣�λkhi �
∣∣∣2 ds

≤ 2

C2
inv

B
(
λkhi ; λkhi , λ

k
hi

)
,

whereweused (12) in the last step.Theproof ofLemma7 shows that B(λkhi
; λkhi

, λkhi
) ≥

C/�t since e
λkhi is uniformly bounded in L2(�). We conclude that

∣∣∣∣∣∣
∑
f ∈Ehi

∫
f
�λkhi � ·

{
e
λkhi ∇(φhi − φ)

}
ds

∣∣∣∣∣∣ ≤ Chi
(�t)1/2

→ 0 as hi → 0.
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We put together all the previous convergence results to infer that

1

�
∫

�

e
λkhi (φhi − φ)dx + εi

∫
�

λkhiφhi dx +
∑
K∈Thi

∫
K
e
λkhi ∇λkhi · ∇(φhi − φ)dx

−
∑
f ∈Ehi

∫
f
�λkhi � ·

{
e
λkhi ∇(φhi − φ)

}
ds +

∫
�

e
λkhi

(
e
λkhi − 1

)
(φhi − φ)dx

− 1

�
∫

�

e
λk−1
hi (φhi − φ)dx → 0 as i → ∞. (31)

Thus, inserting (29), all integrals involving φhi cancel, and we end up with (26).
Step 3 We prove that the limit uk , derived in Step 1, is a solution to the very weak

formulation

1

�t

∫
�

(uk − uk−1)φdx =
∫

�

uk�φdx +
∫

�

uk(1 − uk)φdx (32)

for all φ ∈ H2
n (�) ∩ C1(�). For the proof, we pass to the limit hi → 0 in each term

of (26). Because of (25), we have

∫
�

e
λkhi φdx →

∫
�

ukφdx,
∫

�

e
λkhi

(
e
λkhi − 1

)
φdx →

∫
�

uk(uk − 1)φdx .

The limit i → ∞ in the remaining expression

Ii :=
∑
K∈Thi

∫
K
e
λkhi ∇λkhi · ∇φdx −

∑
f ∈Ehi

∫
f
�λkhi � ·

{
e
λkhi ∇φ

}
ds

is more delicate. Consider the first term in the definition of Ii . Integrating by parts
elementwise gives

∑
K∈Thi

∫
K
e
λkhi ∇λkhi · ∇φdx =

∑
K∈Thi

∫
K

∇e
λkhi · ∇φdx

= −
∑
K∈Thi

∫
K
e
λkhi �φdx +

∑
K∈Thi

∫
∂K

e
λkhi ∇φ · nds

= −
∫

�

e
λkhi �φdx +

∑
f ∈Ehi

∫
f
�e

λkhi � · ∇φds,

where we have used the fact that ∇φ has a continuous normal component across

interelement boundaries. From the previous identity and the L2 convergence of e
λkhi ,
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we obtain

∑
K∈Thi

∫
K
e
λkhi ∇λkhi · ∇φdx −

∑
f ∈Ehi

∫
f
�e

λkhi � · ∇φds

= −
∫

�

e
λkhi �φdx → −

∫
�

uk�φdx .

We claim that

∑
f ∈Ehi

∫
f
�e

λkhi � · ∇φds −
∑
f ∈Ehi

∫
f
�λkhi � ·

{
e
λkhi ∇φ

}
ds → 0, (33)

since this implies that

Ii → −
∫

�

uk�φdx,

and thus shows (32).
For the proof of (33), let x ∈ ∂K+ ∩ ∂K− for two neighboring elements K+,

K− ∈ Thi and set λ± := λkhi
|K± . We assume without loss of generality that λ+ ≥ λ−

since otherwise, we may exchange K+ and K−. The definitions of the jump �·� and
average {·} imply that

∣∣∣∣�eλkhi � · ∇φ − �λkhi � ·
{
e
λkhi ∇φ

}∣∣∣∣
=

∣∣∣∣
(

(eλ+n+ + eλ−n−) − (λ+n+ + λ−n−)
1

2
(eλ+ + eλ−)

)
· ∇φ

∣∣∣∣
= eλ−

∣∣∣∣
(

(eλ+−λ− − 1)n+ − (λ+ − λ−)n+
1

2
(eλ+−λ− + 1)

)
· ∇φ

∣∣∣∣
≤ eλ−

∣∣∣∣(eλ+−λ− − 1) − (λ+ − λ−)
1

2
(eλ+−λ− + 1)

∣∣∣∣|∇φ|
=: eλ−|g(λ+ − λ−)||∇φ|, (34)

where g(s) = (es − 1) + s(es + 1)/2 for s ≥ 0. A Taylor expansion shows that
g(s) = g′′(ξ)s2/2 = −ξeξ s2/4 for some 0 ≤ ξ ≤ s. Therefore |g(s)| ≤ s2e2s/4 for
s ≥ 0, and we obtain

eλ−|g(λ+ − λ−)| ≤ eλ−

4
(λ+ − λ−)2e2(λ+−λ−) = 1

4
(λ+ − λ−)2e2λ+−λ−

≤ 1

2
(λ+ − λ−)2

e2λ+ + e2λ−

2
e|λ−|.
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The difference can be identified with the jump of λkhi
across f = ∂K+ ∩ ∂K−, while

the sum corresponds to the average of e
2λkhi in f . Thus, it follows from (34) that

∣∣∣∣∣∣∣
∑
f ∈Ehi

∫
f
�e

λkhi � · ∇φds −
∑
f ∈Ehi

∫
f
�λkhi � ·

{
e
λkhi ∇φ

}
ds

∣∣∣∣∣∣∣
≤ 1

2

∑
f ∈Ehi , f =∂K+∩∂K−

‖∇φ‖L∞( f ) max

{
exp

(∥∥∥λkhi

∥∥∥
L∞(K+)

)
, exp

(∥∥∥λkhi

∥∥∥
L∞(K−)

)}

×
∫
f
�λkhi �

2
{
e
2λkhi

}
ds.

By Definition (10) of the stabilization factor, it holds that

max

{
exp

(∥∥∥λkhi

∥∥∥
L∞(K+)

)
, exp

(∥∥∥λkhi

∥∥∥
L∞(K−)

)} {
e
2λkhi

}
≤

2α
(
λkhi

)

3C2
inv

.

Using this estimate and the coercivity estimate (12) for the form B, we can write

∣∣∣∣∣∣
∑
f ∈Ehi

∫
f
�e

λkhi � · ∇φds −
∑
f ∈Ehi

∫
f
�λkhi � ·

{
e
λkhi ∇φ

}
ds

∣∣∣∣∣∣
≤ 1

3C2
inv

‖∇φ‖L∞(�)

∑
f ∈Ehi

∫
f
α

(
λkhi

) ∣∣∣�λkhi �
∣∣∣2 ds

≤ 1

3C2
inv

‖∇φ‖L∞(�)

hi
p2

∑
f ∈Ehi

∫
f

p2

hi
α

(
λkhi

) ∣∣∣�λkhi �
∣∣∣2 ds

≤ hi
p2C2

inv

‖∇φ‖L∞(�)B
(
λkhi ; λkhi , λ

k
hi

)
.

We know from the proof of Lemma 7 that B(λkhi
; λkhi

, λkhi
) ≤ C/�t is uniformly

bounded. This proves our claim (33).
Now, we can pass to the limit i → ∞ in (26), which yields (32).
Step 4 We claim that the solution uk ∈ L2(�) to (26) satisfies the regularity uk ∈

H1(�) and hence is a weak solution to (4)–(5). To this end, we use the duality method
as in [6, p. 318]. Let T : L2(�) → H2

n (�) be defined by T v = u, where u solves the
elliptic problem u − �t�u = v in �, ∇u · n = 0 on ∂�. By [25, Theorem 8.3.10],
for v ∈ C∞

0 (�), it holds that T v ∈ H2
n (�) ∩ C1(�). Then, introducing g := uk−1 +

�tuk(1 − uk), the very weak formulation (32) can be equivalently written as

∫
�

uk(φ − �t�φ)dx =
∫

�

gφdx
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for all φ ∈ H2
n (�) ∩ C1(�). Given v ∈ C∞

0 (�), we set φ = T v, and the previous
equation becomes ∫

�

ukvdx =
∫

�

gT vdx . (35)

AsC∞
0 (�) is dense in L2(�) andT is continuous, (35) remains valid for allv ∈ L2(�).

Next, we denote by T ′ : H2
n (�)′ → L2(�) the dual operator of T . According to

[25, Theorem 8.3.10], the operator T can be extended to an operator T : L p(�) ∩
H1(�)′ → W 2,p(�) for 1 < p ≤ 2. (This is basically a regularity statement for the
elliptic problem.) We deduce from the Sobolev embedding theorem thatW 2,p(�) ↪→
C0(�) for p > 3/2 since d ≤ 3. Therefore, there exists an extension T ∗ : C0(�)′ →
L p′

(�) of T ′, where p′ = p/(p − 1) < 3.
Now, g ∈ L1(�) ⊂ C0(�)′. Then (35) implies that uk = T ∗(g) ∈ L p′

(�) for
p′ < 3 and consequently, g ∈ Lq(�) for q < 3/2.

It remains to show that uk ∈ H1(�). Since uk ∈ L2(�), the elliptic problem

vm − 1

m
�vm = uk in �, ∇vm · n = 0 on ∂�,

possesses a unique solution vm ∈ H2
n (�) [25, Theorem 8.3.10]. Multiplying the

elliptic equation by vm and applying the Cauchy–Schwarz inequality, we have

1

2

∫
�

v2mdx + 1

m

∫
�

|∇vm |2dx ≤ 1

2

∫
�

(uk)2dx .

Thus, (vm) is bounded in L2(�) and it follows the existence of a subsequence which
is not relabeled that vm⇀uk weakly in L2(�) as m → ∞. Using v = vm − �t�vm
in (35), it follows that

∫
�

gT vdx =
∫

�

ukvdx =
∫

�

(
vm − 1

m
�vm

)
(vm − �t�vm)dx

=
∫

�

v2mdx +
(

�t + 1

m

) ∫
�

|∇vm |2dx + �t

m

∫
�

(�vm)2dx

≥
∫

�

v2mdx + �t
∫

�

|∇vm |2dx ≥ �t‖vm‖2H1(�)
. (36)

We apply the Hölder inequality and use the Sobolev embedding H1(�) ↪→ Lq ′
(�)

for q ′ ≤ 6, knowing that g ∈ Lq(�) for q < 3/2:

∫
�

gT vdx ≤ ‖g‖Lq (�)‖T v‖Lq′
(�)

≤ C‖g‖Lq (�)‖T v‖H1(�)

≤ C(�t)‖g‖2Lq (�) + �t

2
‖vm‖2H1(�)

,
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where 3 < q ′ ≤ 6 and 1/q + 1/q ′ = 1. The H1(�) norm can be absorbed by the
corresponding term on the right-hand side of (36), and we end up with

�t

2
‖vm‖2H1(�)

≤ C(�t)‖g‖2Lq (�).

This shows that (vm) is bounded in H1(�). Thus, there exists a subsequence (not
relabeled) which converges weakly in H1(�) to some function w ∈ H1(�). Since
vm⇀uk weakly in L2(�), we conclude that w = uk ∈ H1(�).

Knowing that uk ∈ H1(�) solves (32), we can integrate by parts in the first term
of the right-hand side of (32), leading to

1

�t

∫
�

(uk − uk−1)φdx = −
∫

�

∇uk · ∇φdx +
∫

�

uk(1 − uk)φdx

for all φ ∈ H2
n (�) and, by density, for all φ ∈ H1(�).

Moreover, since uk ∈ L4(�) and consequently, uk(1 − uk) ∈ L2(�), elliptic
regularity implies that uk ∈ H2(�) and ∇uk · n = 0 on ∂�, i.e. uk ∈ H2

n (�). We
conclude that uk solves (24).

Step 5 We prove the uniqueness of weak solutions to (4)–(5) to conclude the con-
vergence of the whole sequence eλkh to uk . Let uk , vk ∈ H1(�) be two weak solutions
to (4)–(5). Taking the difference of the corresponding weak formulations with the test
function uk − vk , we obtain

0 = 1

�t

∫
�

(uk − vk)2dx +
∫

�

|∇(uk − vk)|2dx

+
∫

�

(
uk(uk − 1) − vk(vk − 1)

)
(uk − vk)dx

=
(

1

�t
− 1

) ∫
�

(uk − vk)2dx+
∫

�

|∇(uk − vk)|2dx+
∫

�

(uk + vk)(uk − vk)2dx .

Thus, choosing �t < 1, we infer that uk − vk = 0 in �. ��

5 Numerical results

We present some numerical results for the Fisher–KPP equation in one space dimen-
sion,

∂t u = Duxx + u(1 − u) in � = (0, 1), t > 0, (37)

ux · n = 0 at x = 0, 1, t > 0, u(0) = u0 in (0, 1). (38)
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Fig. 1 Continuous P1 finite element discretization of problem (37)–(38) in the variable u, using Nel = 20
elements (left) and Nel = 40 elements (right). The time step size is in both cases �t = 1/6, the end time
is T = 10, and the solutions move from left to right

Fig. 2 Continuous P1 finite element discretization of problem (4)–(5) in the variable λk , using Nel = 20
elements (left) and Nel = 40 elements (right). The time step size is in both cases �t = 1/3 and the end
time is T = 20

5.1 One group of species

Let D = 10−4 and u0(x) = 0.8 for 0 < x < 1/2, u0(x) = 0 elsewhere. Problem
(37)–(38) models the evolution of one species initially concentrated in the domain
(0, 1/2). We solve this problem by using an implicit Euler scheme in time and a
continuous P1 finite element discretization, both on a uniformmesh. The reaction term
is treated implicitly. The Newton method with relaxation is used at each time step,
up to convergence. The integrals are computed by using a Gauß–Legendre quadrature
formula of order 8. Figure 1 shows the density u(x, t) at various time instances. We
observe that the finite element solution ukh becomes negative even on the finer mesh,
and it is pushed towards −∞ in some region since u∗ = 0 is a repulsive steady state.

These results motivate the introduction of the exponential transformation u =
exp(λ). We are choosing the same initial datum as before but choosing u0(x) = 10−16

instead of u0(x) = 0 to allow for the exponential transformation. The regularization
term seems not to be necessary in practice, and we set ε = 0 in (8) in all our sim-
ulations (see also Sect. 5.3 below; for linear elements, we prove in the “Appendix”
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Table 1 Comparison between the continuous FE method and the DG method with Nel = 40 elements in
the space grid, Nt = 80 time steps, and final time T = 20, with polynomial degrees p = 1, 2, 3

FEM DG

p = 1 40 (ω = 0.2) 18 (ω = 0.5)

p = 2 � 18 (ω = 0.5)

p = 3 641 (ω = 0.95) 23 (ω = 0.6)

Each cell contains themaximal number ofNewton iterations over the timemesh and, in brackets, theNewton
relaxation parameter (ω = 0 corresponds to the Newton method without relaxation). The continuous FE
method with p = 2 did not converge, even with ω = 0.95

that the regularization term is actually not needed). In all the numerical experiments,
the constant 3

2C
2
inv in the stabilization function α(u) defined in (10) is replaced by

1. Figure 2 shows the solutions to the continuous P1 finite element approximation
associated to problem (4)–(5) in the variable λkh . The implicit nonlinear scheme is
solved again by Newton’s method with relaxation at each time step. The integrals are
solved again by a Gauß–Legendre quadrature formula of order 8. Note that if p = 1,
the integrals are of the type

∫
K eax+b(cx + d)dx and thus can be integrated exactly.

The discrete densities exp(λkh) are positive by construction.
For a spatial mesh with Nel = 40 elements, Nt = 80 time steps, and final time

T = 20, we have compared the number of Newton iterations from the continuous FE
method with those from the DG method, with polynomial degrees p = 1, 2, 3. In this
example, the continuous FE method requires much more Newton iterations than the
DG method (see Table 1). Therefore, we choose the discontinuous Galerkin method
with polynomial order p ≥ 1 for problem (4)–(5) in the variable λkh ; see scheme (8).

Figure 3 illustrates the discrete solutions for polynomial orders p = 1, 2, 3, indi-
cating that the method is stable with respect to the order. The jumps are due to the
discontinuous Galerkin method.

Figure 4 represents the discrete solutions with the same numerical parameters as in
Fig. 3 but with the initial datum u0(x) = 1 for 0 < x < 1/2 and u0(x) = 0 else. Also
in this example, the lower and upper bounds 0 ≤ exp(λkh) ≤ 1 are always satisfied.

5.2 Entropy decay

Proposition 9 shows that the discrete entropy Skh decays exponentially fast if S0h <

|�| = 1. To illustrate this behavior numerically, we consider the one-group model
with initial condition u0(x) = 1 for 0 < x < 1/2 and u0(x) = 10−16 else. Figure 5
(left) shows that there are two different slopes. For small times, the entropy decay is
rather slow. When the time step k is sufficiently large such that exp(λkh) > ε for some
ε > 0, the reaction dominates, and the entropy decay becomes faster. This behavior
becomes even more apparent in the case of pure diffusion (i.e. without reaction terms),
illustrated in Fig. 5 (right). We remark that in this situation, the total mass is conserved
numerically.
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Fig. 3 Reference solution computed from the P1 finite element scheme (formulation in u) with Nel = 400
elements in the space grid and Nt = 80 elements in the time grid, with final time T = 20 (left top), and
solutions computed from the DG scheme (formulation in λ) with Nel = 40, Nt = 80, and polynomial order
p = 1 (right top), p = 2 (left bottom), and p = 3 (right bottom). The initial datum is u0(x) = 0.8 for
0 < x < 1/2 and u0(x) = 10−16 else

Figure 6 shows the entropy decay in semi-log scale for the initial data u0(x) = n
for 0 < x < 1/n and u0(x) = 10−16 else for n = 3, 6, 12. Then

S0h =
∫ 1

n

0
(n log(n) − n + 1)dx +

∫ 1

1
n

1dx = log n

is larger than |�| = 1 if n > e. We observe a region in which the decay rate is
very small and it becomes smaller when n (and S0h ) increases. This indicates that the
assumption Sh0 < |�| is not just technical to derive exponential time decay.

5.3 Traveling waves

We are looking for traveling-wave solutions to (37) with D = 10−4. Setting u(x, t) =
ψ(s) with s = x − ct , the Fisher–KPP equation can be rewritten as a system of
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Fig. 4 Reference solution computed from the P1 finite element scheme (formulation in u) with Nel = 400
elements in the space grid, and Nt = 80 elements in the time grid, with final time T = 20 (left top), and
solutions computed from the DG scheme (formulation in λ) with Nel = 40, Nt = 80, and polynomial
order p = 1 (right top), p = 2 (left bottom), and p = 3 (right bottom). The initial datum is u0(x) = 1 for
0 < x < 1/2 and u0(x) = 10−16 elsewhere

Fig. 5 Left: entropy decay for the one-group model (see Fig. 4) with final time T = 40, Nel = 80 elements
in the space grid and Nt = 160 in the time grid. The two reference lines correspond to the exponential
functions t 	→ 0.95t (indicated as “slope 1”) and t 	→ 0.2t (indicated as “slope 2”). Right: entropy decay
for the pure diffusion equation. The computation is done with Nel = 80, Nt = 160 and T = 40. Both
figures are in semi-log scale
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Fig. 6 Entropy decay for the one-group model with the initial datum u0(x) = n for 0 < x < 1/n and
u0(x) = 10−16 else. The computation is done for final time T = 40, with Nel = 80 elements in the space
grid and Nt = 160 elements in the time grid

Fig. 7 Left: comparison of the traveling-wave solution ψ(s), the DG solution exp(λkh), and the FE solution
uh . Both theDGand the FE approximations are computed using the polynomial degree p = 1, Nel = 40 and
�t = T /80 (T = 20). Right: comparison of the traveling-wave solution ψ and the DG solutions exp(λkh)

obtained by varying the polynomial degree. All the DG approximations are computed using Nel = 40 and
�t = T /80 (T = 20)

first-order differential equations:

φ′ = − c

D
φ + 1

D
ψ(ψ − 1), ψ ′ = φ, s > 0. (39)

We choose the initial data ψ(0) = 1 and φ(0) = −10−10, speed c = 2.5, and
space domain � = [0, 150]. As in the one-species model, the constant 3

2C
2
inv in the

stabilization function α(u) in (10) is replaced by 1 in all the computations.
The (reference) traveling-wave solutionψ(s), computed from (39) using theMatlab

commandode45, is compared in Fig. 7 (left) with theDG solution exp(λkh), computed
from the DG scheme (8), and with the continuous finite element solution uh , both with
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Fig. 8 Comparison of the traveling-wave solution ψ and the DG solution exp(λkh) computed on different

space and time meshes (with �t = T
Nel

), with polynomial degree p = 1 (top left), p = 2 (top right), and

p = 3 (bottom left). All functions are shown at the time instances t = 0 and t = T = 5. Bottom right: H1

seminorm of the error of the DG scheme at time t = 5 computed for p = 1, 2, 3

polynomials of degree p = 1.Both approximations are equally diffusive, the traveling-
wave speed being overestimated. In Fig. 7 (right), the reference solution is compared
with the DG solution computed for different values of the polynomial degree. It turns
out that t he polynomial order does not affect the diffusivity of the method. All the
solutions in Fig. 7 are shown at the time instances t = 0, t = T /4, t = T /2, t = 3T /4,
and t = T with T = 20 and are computed on a space grid with Nel = 40 elements
and on a time grid with �t = T /80.

In Fig. 8, the reference solution ψ is compared with the DG solution computed by
simultaneously varying the space and the time mesh sizes, with polynomial degrees
p = 1, 2, 3, respectively. The H1 seminorm of the errors at final time t = 5, namely
|ψ(· − cT ) − eλh(·,T )|H1(�), for p = 1, 2, 3 are shown in Fig. 8 (bottom right). In
all cases, the observed convergence of the scheme is linear, as expected, since we
are employing a first-order method (Euler) in time. Higher polynomial degrees result
in a smaller multiplicative constant. Higher convergence rates for higher polynomial
degrees in space would be expected by using a higher-order time discretization. Struc-
ture preservation of higher-order temporal approximations is a delicate topic (see, e.g.,
[21]) and will be studied in a future work. Also an error analysis is postponed to a
future work.
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Fig. 9 Comparison of the traveling-wave solution ψ and the DG solution exp(λkh) (with Nel = 50 and
p = 1) for various choices of ε (see (8))

All the numerical solutions that we have shown so far are computed with the choice
ε = 0 (see (8)). We conclude the section by studying the dependence of the method on
ε. In Fig. 9, we compare the reference traveling-wave solutionψ with the DG solution
computed on a uniform spatial mesh with Nel = 40, time mesh size �t = T /80 (with
T = 20), and polynomial degree p = 1, for the values ε = 10−9, 10−12, 10−13 (the
choice ε = 10−14 has given the same results as ε = 0). The term ε

∫
�

λkhφh dx , which
was introduced in the DG formulation (8) in order to prove the existence of the DG
solution (see Proposition 6), produces a deterioration of the numerical solution that
increases with time.
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Appendix A: Linear elements: existence of solutions for ε = 0

We show that the regularization term ε
∫
�

λkhφhdx in the DG scheme (8) is not needed
if we consider linear elements.

Proposition 15 (Existence for p = 1) Let p = 1, λk−1
h ∈ Vh, and Sh0 < |�|. Then

there exists a solution λkh ∈ Vh to (8) with ε = 0.
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Proof The proof is based on the idea of the proof of [1, Lemma 3.10]. Let ε > 0
and let λkh ∈ Vh be a solution to (8) given by Proposition 6. In order to emphasize
the dependency on ε, we write λε := λkh . Our goal is to derive an ε-uniform L∞(�)

bound for λε.
Step 1 We derive first some estimates for eλε . Lemma 8 shows that

δ ≤
∫

�

eλεdx ≤ M, (40)

where δ = σ−(S0h/|�|) and M = σ+(S0h/|�|). Since we assumed that S0h < |�|, we
have δ > 0. Using the coercivity estimate (12), the inequality (17), and eλε (eλε −
1)λε ≥ 0, we find that

Skh + �t

2

∑
K∈Th

∫
K
eλε |∇λε|2dx + �t

3

∑
f ∈Eh

∫
f

p2

h
α(λε)|�λε�|2ds ≤ Sk−1

h ≤ S0h ,

where we used in the last step the monotonicity of k 	→ Skh , guaranteed by Lemma 7.
Consequently,

∑
K∈Th

∫
K
eλε |∇λε|2dx +

∑
f ∈Eh

∫
f

p2

h
α(λε)|�λε�|2ds ≤ M ′ := 3S0h

�t
. (41)

Step 2We claim that for any ε > 0, there exists an element Kε ∈ Th and a constant
μ > 0, independent of ε, such that

‖λε‖L∞(Kε) ≤ μ. (42)

For the proof, let N ∈ N be the number of elements in Th . The lower and upper bounds
(40) imply the existence of an element Kε ∈ Th such that

δ

N
≤

∫
Kε

eλεdx ≤ M . (43)

By the mean-value theorem, there exists xε ∈ Kε such that

eλε(xε) = 1

|Kε|
∫
Kε

eλε(x)dx .

Then (43) gives

|λε(xε)| =
∣∣∣∣ log

(
1

|Kε|
∫
Kε

eλε(x)dx

)∣∣∣∣ ≤ max

{∣∣∣∣ log M

|Kε|
∣∣∣∣, log δ

N |Kε|
∣∣∣∣
}
.
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Since λε is a polynomial of degree one on Kε, by assumption, its gradient is constant
on Kε, and we deduce from (41) and (43) that

|∇λε|2 =
∫
Kε

eλε |∇λε|2dx∫
Kε

eλεdx
≤ M ′N

δ
on Kε.

Combining the last two estimates, it follows for x ∈ Kε that

|λε(x)| ≤ |λε(xε)| + |x − xε|
∫ 1

0
|∇λε(xε + θ(x − xε)|dθ

≤ max

{∣∣∣∣ log M

|Kε|
∣∣∣∣, log δ

N |Kε|
∣∣∣∣
}

+ M ′N
δ

=: μ,

which shows the claim.
Step 3 We wish to prove a uniform L∞ bound for λε on the faces or edges of Kε.

Let μ > 0 and Kε ∈ Th such that ‖λε‖L∞(Kε) ≤ μ. Set K− := Kε and consider
neighboring elements K+ ∈ Th satisfying f ∈ ∂K− ∩ ∂K+ �= ∅. Furthermore, let
λ± = λε|K± . We claim that there exists Cμ > 0, independent of ε, such that

‖λ+‖L∞( f ) ≤ Cμ. (44)

The idea is to prove an L2( f ) estimate for λε, as the equivalence of all norms in the
finite-dimensional setting then implies the desired L∞( f ) bound.

Observe that

max
{
(eλε )−, (eλε )+

}≥(eλε )− ≥ exp(−‖λ−‖L∞( f ))≥exp(−‖λ−‖L∞(K−))≥exp(−μ).

Then we can estimate the stabilization function α according to

α(λε) ≥ 3

2
C2
inv exp(−‖λ−‖L∞(K−))

2 exp(‖λ−‖L∞(K−) ≥ 3

2
C2
inve

−μ.

To estimate the L2( f ) norm of λ−| f , we use the inequality |λ+| ≤ |λ+−λ−|+|λ−| =
|�λε�| + |λε| on f . Then (42) yields

∫
f
|λ+|2ds ≤ 2

∫
f

(|λε|2 + |�λε�|2
)
ds ≤ 2| f |μ2 + 4eμ

3C2
inv

∫
f
α(λε)|�λε�|2ds =: βμ,

and βμ is uniform in ε (but not in h) in view of (41). We conclude that

‖λε‖L∞( f ) ≤ C‖λε‖L2( f ) ≤ Cβ1/2
μ .

Step 4 Denote by (φ0, . . . , φd) the basis of P1(K+) such that φi (e j ) = δi j for i ,
j = 0, . . . , d, where the vertices ei of K+ are ordered in such a way that e0 /∈ f .
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Then we can formulate λ+ on K+ as

λ+(x) =
d∑

i=0

aε
i φi (x), x ∈ K+,

where aε
i = λ+(ei ). Estimate (44) shows that λ+(ei ) is uniformly bounded at the

vertices a1, . . . , ad of K+, i.e. |aε
i | ≤ Cμ for all i = 1, . . . , d.

Step 5We wish to estimate the remaining vertex eε
0 that is not an element of K− =

Kε. We claim that there exist constants Lμ ≤ Uμ, being independent of ε, such that

Lμ ≤ aε
0 ≤ Uμ.

We first prove the upper bound. Using the bound for aε
i for i = 1, . . . , d, we have

λ+ ≥ aε
0φ0 −

d∑
i=1

|aε
i ||φi | ≥ aε

0φ0 − Cμ

d∑
i=1

|φi | ≥ aε
0φ0 − Cμd.

If aε
0 ≤ 0, there is nothing to show. Otherwise, it follows from (43) that

M ≥
∫
K+

exp(λ+)dx ≥
∫
K+

exp(aε
0φ0 − Cμd)dx ≥ e−Cμd

∫
K+

aε
0φ0dx .

Then, setting c0 = ∫
K+ φ0dx , we infer that aε

0 ≤ MeCμd/c0 =: Uμ.
The proof of the lower bound is more involved. Let f0 be the face or edge that is

opposite of the vertex e0, and let f1, . . . , fd be the remaining faces or edges. For later
use, we note that the integrals

I (b) :=
∫
K+

(
|b∇φ| + Cμ

d∑
i=1

|∇φi |
)2

ebφ0+Cμddx,

J (b) :=
d∑
j=1

∫
f j

(
|b∇φ| + Cμ

d∑
i=1

|∇φi |
)2

ebφ0+Cμddx

converge to zero as b → −∞, so there exists L ′
μ ∈ R such that

I (b) + J (b) ≤ 1 for all b ≤ L ′
μ. (45)

We estimate

|∇λ+ · n| ≥ |aε
0||∇φ0 · n| −

d∑
i=1

|aε
i ||∇φ0 · n| ≥ |aε

0||∇φ0 · n| − Cμd max
i=1,...,d

|∇φi |.
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Asweassumed that p = 1, the expression |∇λε·n| is constant. Thus, since |∇φ0·n| > 0
and λε ≥ −Cμ on f0, by (44), the previous inequality gives

|aε
0| ≤ 1

|∇φ0 · n|
(|∇λε · n| + Cμd max

i=1,...,d
|∇φi |

)

≤ 1

|∇φ0 · n|
(
eCμ

| f0|
∣∣∣∣
∫
f0
eλε∇λε · nds

∣∣∣∣ + Cμd max
i=1,...,d

|∇φi |
)

. (46)

An integration by parts leads to

∫
f0
eλε∇λε · nds +

d∑
i=1

∫
fi
eλε∇λε · nds =

∫
K+

eλε�λεdx +
∫
K+

eλε |∇λε|2dx

=
∫
K+

eλε |∇λε|2dx,

since λε is linear on K+, so the Laplacian vanishes. Hence, using

λ+ ≤ aε
0φ0 +

d∑
i=1

|aε
i ||φi | ≤ aε

0φ0 + Cμd.

and (45), we have

∣∣∣∣
∫
f0
eλε∇λε · nds

∣∣∣∣ ≤ I (aε
0) + J (aε

0) ≤ 1

if we choose aε
0 ≤ L ′

μ. Inserting this information into (46), it follows for all aε
0 ≤ L ′

μ

that

|aε
0| ≤ 1

|∇φ0 · n|
(
eCμ

| f0| + Cμd max
i=1,...,d

|∇φi |
)

=: −L ′′
μ.

Thus, setting Lμ = min{L ′
μ, L ′′

μ}, we conclude that aε
0 ≥ Lμ.

Step 6 Combining the previous steps, we infer that there exists a constant g(μ) > 0
such that

‖λε‖L∞(K+) ≤ g(μ).

This estimate means that if λε is bounded in some element with constant μ, then λε

is bounded in the neighboring elements with constant g(μ). Now, take an arbitrary
element K ∈ Th . Then there exists a finite sequence K 0, K 1, . . . , Km of elements
with K 0 = Kε and Km = K such that K j−1 and K j are neighboring elements.
Repeating the arguments of Steps 3–5, the bound ‖λε‖L∞(K 1) ≤ μ′ := g(μ) implies
that ‖λε‖L∞(K 2) ≤ g(μ′) = g(g(μ)). Thus, by iteration,
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‖λε‖L∞(K ) ≤ (g ◦ · · · ◦ g)︸ ︷︷ ︸
m times

(μ).

The upper bound is independent of ε and holds for all elements K ∈ Th . Consequently,
(λε) is bounded in L∞(�).

We deduce that there exists a subsequence (not relabeled) such thatλε → λ strongly
in L∞(�), recalling that Vh is finite-dimensional. In fact, the convergence holds in
any norm. Thus, we can pass to the limit ε → 0 in (8), and the limit equation is the
same as (8) with ε = 0. ��
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