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Abstract
We consider a second-order elliptic boundary value problem with strongly monotone
and Lipschitz-continuous nonlinearity. We design and study its adaptive numerical
approximation interconnecting a finite element discretization, the Banach–Picard lin-
earization, and a contractive linear algebraic solver. In particular, we identify stopping
criteria for the algebraic solver that on the one hand do not request an overly tight tol-
erance but on the other hand are sufficient for the inexact (perturbed) Banach–Picard
linearization to remain contractive. Similarly, we identify suitable stopping criteria
for the Banach–Picard iteration that leave an amount of linearization error that is not
harmful for the residual a posteriori error estimate to steer reliably the adaptive mesh-
refinement. For the resulting algorithm, we prove a contraction of the (doubly) inexact
iterates after some amount of steps of mesh-refinement/linearization/algebraic solver,
leading to its linear convergence. Moreover, for usual mesh-refinement rules, we also
prove that the overall error decays at the optimal rate with respect to the number of
elements (degrees of freedom) addedwith respect to the initial mesh. Finally, we prove
that our fully adaptive algorithm drives the overall error down with the same optimal
rate also with respect to the overall algorithmic cost expressed as the cumulated sum
of the number of mesh elements over all mesh-refinement, linearization, and algebraic
solver steps. Numerical experiments support these theoretical findings and illustrate
the optimal overall algorithmic cost of the fully adaptive algorithm on several test
cases.

Mathematics Subject Classification 65N12 · 65N15 · 65N30 · 65N50 · 68Q25
1 Introduction

Let � ⊂ R
d with d ≥ 1 be a bounded Lipschitz domain with polytopal boundary.

Given f ∈ L2(�) and a nonlinear operator A : R
d → R

d , we aim to numerically
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approximate the weak solution u� ∈ H1
0 (�) of the nonlinear boundary value problem

−div A(∇u�) = f in �,

u� = 0 on ∂�.
(1)

To this end, we propose an adaptive algorithm of the type

estimate total error and its components

↓
advance algebra/advance linearization/mark and refine mesh elements

(2)

whichmonitors and adequately stops the iterative linearization and the linear algebraic
solver as well as steers the local mesh-refinement. The goal of this contribution is to
performafirst rigorousmathematical analysis of this algorithm in termsof convergence
and quasi-optimal computational cost.

1.1 Finite element approximation and Banach–Picard iteration

Suppose that the nonlinearity A in (1) is Lipschitz-continuous (with constant L > 0)
and strongly monotone (with constant α > 0); see Sect. 2 for details. Then, the
main theorem on monotone operators yields the existence and uniqueness of the weak
solution u� ∈ H1

0 (�); see, e.g., [40, Theorem 25.B]. Given a triangulation TH of �,
the lowest-order finite element method (FEM) for problem (1) reads as follows: Find
u�
H ∈ XH := {

vH ∈ C(�) : vH |T is affine for all T ∈ TH and vH |∂� = 0
} ⊂

H1
0 (�) such that

(A(∇u�
H ), ∇vH )� = ( f , vH )� for all vH ∈ XH , (3)

where (·, ·)� denotes the L2(�)-scalar product.
The discrete solution u�

H ∈ XH again exists and is unique, but (3) corresponds to
a nonlinear discrete system which can typically only be solved inexactly.

The most straightforward algorithm for iterative linearization of (3) stems from
the proof of the main theorem on monotone operators which is constructive and relies
on the Banach fixed point theorem: Define the (nonlinear) operator �H : XH → XH

by

(∇�H (wH ), ∇vH )� = (∇wH , ∇vH )� − α

L2

[
(A(∇wH ), ∇vH )� − ( f , vH )�

]

(4)

for all wH , vH ∈ XH . Note that (4) corresponds to a discrete Poisson problem and
hence �H (wH ) ∈ XH is well-defined. Then, it holds that

‖∇(u�
H − �H (wH ))‖L2(�) ≤ qPic ‖∇(u�

H − wH )‖L2(�)

with qPic := (1 − α2/L2)1/2 < 1; (5)
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see, e.g., [40, Sect. 25.4]. Based on the contraction �H , the Banach–Picard iteration
starts from an arbitrary discrete initial guess and applies �H inductively to generate
a sequence of discrete functions which hence converge towards u�

H . Note that the
computation of �H (wH ) by means of the discrete variational formulation (4) corre-
sponds to the solution of a (generically large) linear discrete system with symmetric
and positive definite matrix that does not change during the iterations. In this work, we
suppose that also (4) is solved inexactly by means of a contractive iterative algebraic
solver (with contraction factor qalg < 1), e.g., PCG with optimal preconditioner; see,
e.g., [34].

1.2 Fully adaptive algorithm

In our approach, we compute a sequence of discrete approximations uk, j� of u� that
have an index � for themesh-refinement, an index k for theBanach–Picard linearization
iteration, and an index j for the algebraic solver iteration.

First, we design a stopping criterion for the algebraic solver such that, at lineariza-
tion step k − 1 ∈ N0 on the mesh T�, we stop for some index j ∈ N. At the next
linearization step k ∈ N, the arising linear system reads as follows:

Find uk,�� ∈ X� such that, for all v� ∈ X�,

(∇uk,�� , ∇v�)� = (∇u
k−1, j
� , ∇v�)� − α

L2

[
(A(∇u

k−1, j
� ), ∇v�)� − ( f , v�)�

]
,

(6)

with uniquely defined but not computed exact solution uk,�� = ��(u
k−1, j
� ) and com-

puted iterates uk, j� that approximate uk,�� . Note that (6) is a perturbed Banach–Picard

iteration since it starts from the available u
k−1, j
� , typically not equal to the unavailable

uk−1,�
� .
Second, we design a stopping criterion for the perturbed Banach–Picard iteration

at some index k, producing a discrete approximation u
k, j
� .

Finally, we locally refine the triangulation T� on the basis of the Dörfler marking

criterion for the local contributions of the residual error estimator η�(u
k, j
� ), and, to

lower the computational effort, employ nested iteration in that the continuation on the

new triangulation T�+1 is started with the initial guess u
0,0
�+1 := u

k, j
� .

1.3 Previous contributions

1.3.1 Inexact linearization

Performing an inexact solve of the linear system of form (6) gives rise to the “inex-
act Newton method”; see, e.g., [14,21] and the references therein. Under appropriate
conditions, these can asymptotically preserve the convergence speed of the “exact”
Newton method. Note, however, that these approaches only focus on the finite-
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dimensional system of nonlinear algebraic equations of the form (3) but do not see/take
into account the continuous problem (1), which is our central issue here.

1.3.2 Taking into account the discretization error

Solving the nonlinear algebraic systems (3) “exactly” (up to machine precision), only
the discretization error is left. Then, convergence and optimal decay rates of the error
‖∇(u� − u�

H )‖L2(�) with respect to the degrees of freedom of FEM adapting the
approximation space (mesh) were obtained in [3,16,26,39], following the seminal
contributions [2,10,17,33,36] for linear problems. We also refer to [8] for a general
framework of convergence of adaptive FEM with optimal convergence rates and an
overview of the state of the art.

1.3.3 Taking into account the discretization and linearization errors

Solving only the linear algebraic systems (6) “exactly” but (3) inexactly leaves the
discretization and linearization errors. Such a setting has been considered in, e.g.,
[12,19], where reliable (guaranteed) and efficient a posteriori error estimates were
derived. Adaptive algorithms aiming at a balance of the linearization and discretization
errors were proposed and their optimal performance was observed numerically; see,
e.g., [1,4,13,28]. Later, theoretical proofs of plain convergence (without rates) were
given in [25,30], where [30] builds on the unified framework of [29] encompassing also
the Kačanov and (damped) Newton linearizations in addition to the Banach–Picard
linearization (6).

The own works [23,24] considered that the linear systems (6) are solved exactly

at linear cost (so that u
k, j
� = uk,�� with j(�, k) = O(1) in the present notation), as

in the seminal work [36] for the Poisson model problem and in [9] for an adaptive
Laplace eigenvalue computation. Under this so-called realistic assumption on the
algebraic solver, we have proved in [23] that the overall strategy leads to optimal
convergence rates with respect to the number of degrees of freedom as well as to
almost optimal convergence rates with respect to the overall computational cost. The
latter means that, if the total error converges with rate s > 0 with respect to the degrees
of freedom, then, for all ε > 0, it also converges with rate s − ε > 0 with respect to
the overall computational cost. The proof of [23] was based on proving first that the
estimator η�(u

k,�
� ) for the final Picard iterates decays with optimal rate s and second

that the number of Picard iterates satisfies k(�) � 1 + log[1 + η�(u
k,�
�+1)/η�(u

k,�
� )].

This logarithmic bound then led to the bound s − ε for the convergence rate with
respect to the overall computational cost.

Recently in [24], we have improved the latter result and proved optimal compu-
tational cost (i.e., ε = 0), still relying on the assumption that the discrete Poisson
problem (6) is solved exactly at linear cost. The core idea of the new proof follows
ideas from adaptive Uzawa FEM for the Stokes model problem [15,32]. However,
besides the nonlinearity, the structural difference is that the adaptive Uzawa FEM
employs an outer iteration on the continuous level (i.e., we first linearize and then
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discretize), while the approach of [13,23,24,29,30] is first to discretize and then to
linearize.

1.3.4 Taking into account the discretization, linearization, and algebraic errors

As in the present setting, the “adaptive inexact Newton method” in [20] takes into
account all discretization, linearization, and algebraic error components; see also [11,
18,35] for regularizations on coarse meshes ensuring well-posedness of the discrete
systems in Newton-like linearizations. The goal of the present work is to perform a
first rigorous mathematical analysis of such algorithms in terms of convergence and
optimal decay rate of the error with respect to the computational cost.

We stress that such results have already been derived for adaptivewavelet discretiza-
tions [7,38] which provide inherent control of the residual error in terms of the wavelet
coefficients, while the present analysis for standard finite element discretizations has
to rely on the local information of appropriate a posteriori error estimators. Also, while
the present analysis is closely related to that of [24], we stress that both works [23,24]
focused only on linearization and discretization, while here, we also include the inner-
most algebraic loop into the adaptive algorithm. In particular, the technical challenges
in the present analysis are much more involved than in the preceding work [24] due
to the coupling of the two nested inexact solvers.

1.4 Main results: linear convergence, optimal decay rate, and quasi-optimal cost

The present contribution appears to be the first work that provides a thorough con-
vergence analysis of fully adaptive strategies for nonlinear equations. To describe
more precisely our results, we first note that the sequential nature of the fully adaptive
algorithm of Sect. 1.2 gives rise to an index set

Q := {
(�, k, j) ∈ N

3
0 : discrete approximation uk, j� is computed by the algorithm

}

together with an ordering

(�, k, j) < (�′, k′, j ′) def⇐⇒ uk, j� is computed earlier than uk
′, j ′

�′ .

Our firstmain result, formulated inTheorem3below, proves that the proposed adaptive
strategy is contractive after some amount of steps and linearly convergent in the sense
of



k′, j ′
�′ ≤ Clinq

|(�′,k′, j ′)|−|(�,k, j)|
lin 


k, j
� for all (�, k, j) ≤ (�′, k′, j ′), (7)

where Clin ≥ 1 and 0 < qlin < 1 are generic constants and 

k, j
� is an appropriate

quasi-error quantity involving the error ‖∇(u� − uk, j� )‖L2(�) as well as the error

estimator η�(u
k, j
� ). Second, we prove the optimal error decay rate with respect to the
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number of degrees of freedom added with respect to the initial mesh in the sense that

sup
(�,k, j)∈Q

(#T� − #T0 + 1)s
k, j
� < ∞ (8)

whenever u� is approximable at algebraic rate s > 0; see Theorem 4 below for
the details. Finally, estimate (7) appears to be also the key argument to prove our
most eminent result, namely the optimal error decay rate with respect to the overall
computational cost of the fully adaptive algorithm which steers the mesh-refinement,
the perturbed Banach–Picard linearization, and the algebraic solver. In short, this reads

sup
(�′,k′, j ′)∈Q

( ∑

(�,k, j)∈Q
(�,k, j)≤(�′,k′, j ′)

#T�

)s



k′, j ′
�′ < ∞ (9)

whenever u� is approximable at algebraic rate s > 0; see Theorem 5 below for the
details. We stress that under realistic assumptions the sum in (9) is indeed proportional
to the overall computational cost invested into the fully adaptive numerical approxima-
tion of (1), if the cost of all procedures like matrix and right-hand-side assembly, one
algebraic solver step, evaluation of the involved a posteriori error estimates, marking,
and local adaptive mesh refinement is proportional to the number of mesh elements in
T� (i.e., the number of degrees of freedom).

1.5 Outline

The remainder of the paper is organised as follows. In Sect. 2, we introduce an abstract
setting in which all our results will be formulated, define the exact weak and finite
elements solutions (noneofwhich is available in our setting), and introduceour require-
ments on mesh-refinement and error estimator.We also give here precise requirements
on the algebraic solver, state our adaptive algorithm and stopping criteria in all details,
and present ourmain results, including some discussions. The proofs of some auxiliary
results and of Proposition 2 (reliability in Algorithm 1), Theorem 3 (linear conver-
gence), Theorem 4 (optimal decay rate with respect to the degrees of freedom), and
Theorem 5 (optimal decay rate with respect to the overall computational cost) are
respectively given in Sects. 3, 4, 5, and 6. Finally, numerical experiments in Sect. 7
underline the theoretical findings.

Throughout our work, we apply the following convention: In statements of theo-
rems, lemmas, etc., we explicitly state all constants together with their dependencies.
In proofs, however, we abbreviate A ≤ cB with a generic constant c > 0 by writing
A � B. Moreover, A � B abbreviates A � B � A.

2 Adaptive algorithm andmain results

In this section, we introduce an abstract setting, in which all our results will be formu-
lated, define the exact weak and finite elements solutions, introduce our requirements
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onmesh-refinement, error estimator, and algebraic solver, state our adaptive algorithm,
and present our main results, including some discussions.

2.1 Abstract setting

Let X be a Hilbert space over K ∈ {R, C} with scalar product (·, ·), corresponding
norm ||| · |||, and dual space X ′ (with canonical operator norm ||| · |||′). Let P : X → K

be Gâteaux-differentiable with derivative A := dP : X → X ′, i.e.,

〈Aw, v〉X ′×X = lim
t→0
t∈R

P(w + tv) − P(w)

t
for all v,w ∈ X .

We suppose that the operator A is strongly monotone and Lipschitz-continuous, i.e.,

α |||w − v|||2 ≤ Re 〈Aw − Av, w − v〉X ′×X and |||Aw − Av|||′ ≤ L |||w − v|||
(10)

for all v,w ∈ X , where 0 < α ≤ L are generic real constants.
Given a linear and continuous functional F ∈ X ′, the main theorem on monotone

operators [40, Sect. 25.4] yields existence and uniqueness of the solution u� ∈ X of

〈Au�, v〉X ′×X = 〈F, v〉X ′×X for all v ∈ X . (11)

The result actually holds true for any closed subspace XH ⊆ X , which also gives rise
to a unique u�

H ∈ XH such that

〈Au�
H , vH 〉X ′×X = 〈F, vH 〉X ′×X for all vH ∈ XH . (12)

Finally, with the energy functional E := Re (P − F), it holds that

α

2
|||vH − u�

H |||2 ≤ E(vH ) − E(u�
H ) ≤ L

2
|||vH − u�

H |||2 for all vH ∈ XH ; (13)

see, e.g., [23, Lemma 5.1]. In particular, u� ∈ X (resp. u�
H ∈ X �

H ) is the unique
minimizer of the minimization problem

E(u�) = min
v∈X

E(v)
(
resp. E(u�

H ) = min
vH∈XH

E(vH )
)
. (14)

As for linear elliptic problems, it follows from (10)–(12) that the present setting guar-
antees the Céa lemma (see, e.g., [40, Sect. 25.4])

|||u� − u�
H ||| ≤ CCéa |||u� − vH ||| for all vH ∈ XH with CCéa := L/α. (15)
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2.2 Mesh-refinement

Let TH be a conforming simplicial mesh of �, i.e., a partition of � into compact
simplices T such that

⋃
T∈TH

T = � and such that the intersection of two different
simplices is either empty or their common vertex or their common d ′-dimensional face
(for some 1 ≤ d ′ ≤ d − 1). We assume that refine(·) is a fixed mesh-refinement
strategy, e.g., newest vertex bisection [37]. We write Th = refine(TH ,MH ) for
the coarsest one-level refinement of TH , where all marked elementsMH ⊆ TH have
been refined, i.e.,MH ⊆ TH\Th . We write Th ∈ refine(TH ), if Th can be obtained
by finitely many steps of one-level refinement (with appropriate, yet arbitrary marked
elements in each step).We defineT := refine(T0) as the set of all mesheswhich can
be generated from the initial simplicial mesh T0 of � by use of refine(·). Finally,
we associate to each TH ∈ T a corresponding finite-dimensional subspace XH � X ,
where we suppose that XH ⊆ Xh whenever TH , Th ∈ T with Th ∈ refine(TH ).

For our analysis, we only employ that the shape-regularity of all meshes TH ∈ T is
uniformly bounded by that ofT0 togetherwith the following structural properties (R1)–
(R3), where Cson ≥ 2 and Cmesh > 0 are generic constants:

(R1) splitting property: Each refined element is split into finitely many sons, i.e., for
all TH ∈ T and all MH ⊆ TH , the mesh Th = refine(TH ,MH ) satisfies
that

#(TH\Th) + #TH ≤ #Th ≤ Cson #(TH\Th) + #(TH ∩ Th);

(R2) overlay estimate: For all meshes T ∈ T and Th, Th′ ∈ refine(T ), there exists
a common refinement Th ⊕Th′ ∈ refine(Th)∩refine(Th′) ⊆ refine(T )

such that

#(Th ⊕ Th′) ≤ #Th + #Th′ − #T ;

(R3) mesh-closure estimate: For each sequence (T�)�∈N0 of successively refined
meshes, i.e., T�+1 := refine(T�,M�) with M� ⊆ T� for all � ∈ N0, it
holds that

#T� − #T0 ≤ Cmesh

�−1∑

j=0

#M j for all � ∈ N0.

For newest vertex bisection, we refer to [2,10,27,31,36,37] for the validity of (R1–
R3). For red-refinement with first-order hanging nodes, details are found in [6].

2.3 Error estimator

For each mesh TH ∈ T, suppose that we can compute refinement indicators

ηH (T , vH ) ≥ 0 for all T ∈ TH and all vH ∈ XH . (16)
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We denote

ηH (VH , vH ) :=
( ∑

T∈VH

ηH (T , vH )2
)1/2

for all VH ⊆ TH (17)

and abbreviate ηH (vH ) := ηH (TH , vH ). As far as the estimator is concerned, we
assume the following axioms of adaptivity from [8] for all TH ∈ T and all Th ∈
refine(TH ), where Cstab,Crel > 0 and 0 < qred < 1 are generic constants:

(A1) stability: |ηh(VH , vh) − ηH (VH , vH )| ≤ Cstab|||vh − vH ||| for all vh ∈ Xh ,
vH ∈ XH and all VH ⊆ TH ∩ Th ;

(A2) reduction: XH ⊆ Xh and ηh(Th\TH , vH ) ≤ qred ηH (TH\Th, vH ) for all vH ∈
XH ;

(A3) reliability: |||u� − u�
H ||| ≤ Crel ηH (u�

H );
(A4) discrete reliability: |||u�

h − u�
H ||| ≤ Crel ηH (TH\Th, u�

H ).

We stress that the exact discrete solutions u�
H (resp. u�

h) in (A3–A4) will never be
computed but are only auxiliary quantities for the analysis.

We refer to Sect. 7.1 below for precise assumptions on the nonlinearity A(·) of
problem (1) such that the standard residual error estimator satisfies (A1–A4) for lowest-
order Courant finite elements; see also Sects. 7.2–7.3.

2.4 Algebraic solver

For given linear and continuous functionals G ∈ X ′, we consider linear systems of
algebraic equations of the type

(u�
H , vH ) = G(vH ) for all vH ∈ XH (18)

with unique (but not computed) exact solution u�
H ∈ XH . We suppose here that we

have at hand a contractive iterative algebraic solver for problems of the form (18).
More precisely, let u0H ∈ XH be an initial guess and let the solver produce a sequence

u j
H ∈ XH , j ≥ 1. Then, we suppose that there exists a generic constant 0 < qalg < 1

such that

|||u�
H − u j

H ||| ≤ qalg |||u�
H − u j−1

H ||| for all j ≥ 1. (19)

Examples for such solvers are suitably preconditioned conjugate gradients or multi-
grid; see, e.g., Olshanskii and Tyrtyshnikov [34] and the references therein.

2.5 Adaptive algorithm

For the numerical approximation of problem (11), the present work considers an adap-
tive algorithm which steers mesh-refinement with index �, a (perturbed) contractive
Banach–Picard iteration with index k, and a contractive algebraic solver with index
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Table 1 Counters and discrete solutions in Algorithm 1

Counter Discrete solution
Available Unavailable

Running Stopping Running Stopping exact

Mesh � � u
k, j
�

u
k, j
�

u�
�
from (20)

Linearization k k u
k, j
�

u
k, j
�

uk,�
�

from (21)

Algebraic solver j j uk, j
�

u
k, j
�

j . On each step (�, k, j), it yields an approximation uk, j� ∈ X� to the unique but
unavailable u�

� ∈ X� on the mesh T� defined by

〈Au�
�, v�〉X ′×X = 〈F, vH 〉X ′×X for all v� ∈ X�. (20)

Reporting for the summary of notation to Table 1, the algorithm reads as follows:

Algorithm 1 Input: Initial mesh T0 and initial guess u0,00 = u
0, j
0 ∈ X0, parameters

0 < θ ≤ 1, 0 < λalg < 1, 0 < λPic, 1 ≤ Cmark , counters � = k = j = 0, tolerance
τ ≥ 0.
Repeat the following steps (i–vi) (adaptive mesh refinement loop):

(i) Repeat the following steps (a–c) (linearization loop):

(a) Define uk+1,0
� := uk, j� and update counters k := k + 1 as well as j := 0.

(b) Repeat the following steps (I–IV) (algebraic solver loop):
(I) Update counter j := j + 1.
(II) Consider the problem of finding

uk,�� ∈ X� such that, for all v� ∈ X�,

(uk,�� , v�) = (u
k−1, j
� , v�) − α

L2 〈Au
k−1, j
� − F, v�〉X ′×X

(21)

and do one step of the algebraic solver applied to (21) starting from
uk, j−1

� , which yields uk, j� (an approximation to uk,�� ).

(III) Compute the local indicators η�(T , uk, j� ) for all T ∈ T�.

(IV) If η�(u
k, j
� ) + |||uk, j� − u

k−1, j
� ||| + |||uk, j� − uk, j−1

� ||| ≤ τ , then set � := �,
k(�) := k, and j(�, k) := j and terminate Algorithm 1.

Until |||uk, j� − uk, j−1
� ||| ≤ λalg

[
η�(u

k, j
� ) + |||uk, j� − u

k−1, j
� ||| ]. (22)

(c) Define j := j(�, k) := j .
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Until |||uk, j� − u
k−1, j
� ||| ≤ λPicη�(u

k, j
� ). (23)

(ii) Define k := k(�) := k.

(iii) If η�(u
k, j
� ) = 0, then set � := � and terminate Algorithm 1.

(iv) Determine a set M� ⊆ T� with up to the multiplicative constant Cmark minimal
cardinality such that

θ η�(u
k, j
� ) ≤ η�(M�, u

k, j
� ). (24)

(v) Generate T�+1 := refine(T�,M�) and define u0,0�+1 := u
0, j
�+1 := u

k, j
� .

(vi) Update counters � := � + 1, k := 0, and j := 0 and continue with (i).

Output: Sequence of discrete solutions uk, j� and corresponding error estimators

η�(u
k, j
� ).

Some remarks are in order to explain the nature of Algorithm 1. The innermost
loop (Algorithm 1(ib)) steers the algebraic solver. Note here that the exact solution
uk,�� of (21) is not computed but only approximated by the computed iterates uk, j� . For
the linear system (21), the contraction assumption (19) reads as

|||uk,�� − uk, j� ||| ≤ qalg |||uk,�� − uk, j−1
� ||| for all j ≥ 1. (25)

Then, the triangle inequality implies that

1 − qalg
qalg

|||uk,�� − uk, j� ||| ≤ |||uk, j� − uk, j−1
� ||| ≤ (1 + qalg) |||uk,�� − uk, j−1

� |||. (26)

Hence, the term |||uk, j� − uk, j−1
� ||| provides a means to estimate the algebraic error

|||uk,�� −uk, j� |||. In particular, the approximation uk, j� is accepted and the algebraic solver

is stopped if the algebraic error estimate |||uk, j� − uk, j−1
� ||| is, up to the threshold λalg,

below the estimate η�(u
k, j
� ) + |||uk, j� − u

k−1, j
� ||| of the discretization and linearization

error; see (22). Since |||uk,1� − uk,0� ||| = |||uk,1� − u
k−1, j
� |||, the stopping criterion (22)

would always terminate the algebraic solver at the first step j = 1 if λalg was chosen
greater or equal to 1; this motivates the restriction λalg < 1.

The middle loop (Algorithm 1(i)) steers the linearization by means of the (per-

turbed) Banach–Picard iteration. Lemma 6 below shows that the term |||uk, j� −u
k−1, j
� |||

estimates the linearization error |||u�
� − u

k, j
� |||. Note here that, a priori, only the non-

perturbed Banach–Picard iteration corresponding to the (unavailable) exact solve
of (21) yielding uk,�� would lead to the contraction

|||u�
� − uk,�� ||| ≤ qPic |||u�

� − u
k−1, j
� ||| for all (�, k, 0) ∈ Q with k ≥ 1, (27)

where

0 < qPic := (1 − α2/L2)1/2 < 1. (28)
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The approximation u
k, j
� is accepted and the linearization is stopped if the linearization

error estimate |||uk, j� − u
k−1, j
� ||| is, up to the threshold λPic, below the discretization

error estimate η�(u
k, j
� ); see (23) (here λPic < 1 is not necessary).

Finally, the outermost loop steers the local adaptive mesh-refinement. To this end,
the Dörfler marking criterion (24) from [17] is employed to mark elements T ∈ M�

for refinement, unless η�(u
k, j
� ) = 0, in which case Proposition 2 below ensures that

the approximation u
k, j
� coincides with the exact solution u� of (11). In practice, the

computation is stopped as soon as the computed iterate uk, j� is sufficiently accurate
with respect to a nonzero tolerance τ . Based on the a posteriori error estimate from
Proposition 2 below, this motivates the termination in Algorithm 1(IV).

2.6 Index setQ for the triple loop

To analyze the asymptotic convergence behavior of Algorithm 1 for tolerance τ = 0,
we define the index set

Q := {
(�, k, j) ∈ N

3
0 : index triple (�, k, j) is used in Algorithm 1

}
. (29)

Since Algorithm 1 is sequential, the index set Q is naturally ordered. For indices
(�, k, j), (�′, k′, j ′) ∈ Q, we write

(�, k, j) < (�′, k′, j ′) def⇐⇒ (�, k, j) appears earlier in Algorithm 1 than (�′, k′, j ′).
(30)

With this order, we can define

|(�, k, j)| := #
{
(�′, k′, j ′) ∈ Q : (�′, k′, j ′) < (�, k, j)

}
,

which is the total step number of Algorithm 1. We make the following definitions,
which are consistent with that of Algorithm 1, and additionally define j(�, 0) := 0:

� := sup
{
� ∈ N0 : (�, 0, 0) ∈ Q

} ∈ N0 ∪ {∞},
k(�) := sup

{
k ∈ N0 : (�, k, 0) ∈ Q

} ∈ N0 ∪ {∞} if (�, 0, 0) ∈ Q,

j(�, k) := sup
{
j ∈ N0 : (�, k, j) ∈ Q

} ∈ N0 ∪ {∞} if (�, k, 0) ∈ Q.

Generically, it holds that � = ∞, i.e., infinitely many steps of mesh-refinement take
place when τ = 0. However, our analysis also covers the cases that either the k-loop
(linearization) or the j-loop (algebraic solver) does not terminate, i.e.,

k(�) = ∞ if � < ∞ resp. j(�, k) = ∞ if � < ∞ and k(�) < ∞,
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or that the exact solution u� is hit at step (iii) of Algorithm 1 (note that η�(u
k, j
� ) = 0

implies u� = u
k, j
� by virtue of Proposition 2 below).

To abbreviate notation,wemake the following convention: If themesh index � ∈ N0

is clear from the context, we simply write k := k(�), e.g., uk, j� := u
k(�), j
� . Similarly,

we simply write j := j(�, k), e.g., u
k, j
� := u

k, j(�,k)
� .

Note that there in particular holds u
k, j
�−1 = u0,0� = u1,0� for all (�, 0, 0) ∈ Q

with � ≥ 1. Hence, these approximate solutions are indexed three times. This is our
notational choice that will not be harmful for what follows; alternatively, one could
only index the approximate solutions that appear on step (i.b.II) of Algorithm 1.

2.7 Main results

Our first proposition provides computable upper bounds for the energy error |||u� −
uk, j� ||| of the iterates uk, j� of Algorithm 1 at any step (�, k, j) ∈ Q. In particular, we

note that the stopping criteria (22) and (23) ensure reliability of η�(u
k, j
� ) for the final

perturbed Banach–Picard iterates u
k, j
� . The proof ist postponed to Sect. 3.3.

Proposition 2 (Reliability at various stages of Algorithm 1) Suppose (A1) and (A3).
Then, for all (�, k, j) ∈ Q, it holds that

|||u� − uk, j
�

||| ≤ C ′
rel

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η�(u
k, j
�

) + |||uk, j
�

− u
k−1, j
�

||| + |||uk, j
�

− uk, j−1
�

|||
if 0<k ≤ k(�) and 0 < j ≤ j(�, k),

η�(u
k, j
�

) + |||uk, j
�

− u
k−1, j
�

||| if 0 < k ≤ k(�) and j = j(�, k),

η�(u
k, j
�

) if k = k(�) and j = j(�, k),

η�−1(u
k, j
�−1) if k = 0 and � > 0.

(31)

The constant C ′
rel > 0 depends only on Crel, Cstab, qalg, λalg, qPic, and λPic.

The first main theorem states linear convergence in each step of the adaptive algo-
rithm, i.e., algebraic solver or linearization ormesh-refinement. The proof is given in
Sect. 4.

Theorem 3 (linear convergence) Suppose (A1)–(A3). Then, there exist λ�
alg, λ

�
Pic > 0

such that for arbitrary 0 < θ ≤ 1 as well as for all 0 < λalg < 1 and 0 < λPic with
0 < λalg + λalg/λPic < λ�

alg and 0 < λPic/θ < λ�
Pic, there exist constants 1 ≤ Clin

and 0 < qlin < 1 such that the quasi-error



k, j
� := |||u� − uk, j� ||| + |||uk,�� − uk, j� ||| + η�(u

k, j
� ), (32)
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composed of the overall error, the algebraic error, and the error estimator, is linearly
convergent in the sense of



k′, j ′
�′ ≤ Clin q

|(�′,k′, j ′)|−|(�,k, j)|
lin 


k, j
� (33)

for all (�, k, j), (�′, k′, j ′) ∈ Q with (�′, k′, j ′) ≥ (�, k, j). The constants Clin and
qlin depend only on Crel, Cstab, qred, θ , qalg, λalg, qPic, λPic, α, and L.

Note that
k′, j ′
�′ = 


k, j
� when (�′, k′, j ′) = (�, k, j), and then (33) holdswith equal-

ity for Clin = 1. There are other cases where uk
′, j ′

�′ = uk, j� and where uk
′, j ′

�′ = uk, j�

together with T�′ = T�, and consequently η�′(uk
′, j ′

�′ ) = η�(u
k, j
� ), related to our nota-

tional choice for Q in (29) that also indexes nested iterates. The case with �′ = �

arises for instance when j = j , j ′ = 0, and k′ = k + 1; see step (ia) of Algorithm 1.

Note, however, that in such a situation, typically uk
′,�

�′ �= uk,�� , and consequently



k′, j ′
�′ �= 


k, j
� . A situation where 


k′, j ′
�′ = 


k, j
� for (�′, k′, j ′) �= (�, k, j) can never-

theless also appear and is covered in (33). For instance, in the above example, when
j = j , j ′ = 0, k′ = k + 1, and �′ = �, and where moreover uk, j� = uk,�� = u�

� (so

that uk, j� = uk,�� = uk
′,�

�′ = uk
′, j ′

�′ = u�
�), Algorithm 1 performs only one step of the

algebraic solver on the linearization step k′, so that Clin = 1/qlin leads to equality
in (33) where now |(�′, k′, j ′)| − |(�, k, j)| = 1.

The second main result states optimal decay rate of the quasi-error 

k, j
� of (32)

(and consequently of the total error |||u� − uk, j� |||) in terms of the number of degrees
of freedom added in the space X� with respect to X0. More precisely, the result states
that if the unknown weak solution u of (11) can be approximated at algebraic decay
rate s with respect to the number of mesh elements added in the refinement of T0 (plus
one) for a best-possible mesh, then Algorithm 1 achieves the same decay rate s with
respect to the number of elements actually added in Algorithm 1, (#T� − #T0 + 1), up
to a generic multiplicative constant. The proof of the following Theorem 4 is given in
Sect. 5.

Theorem 4 (optimal decay rate wrt. degrees of freedom) Suppose (A1–A4) and (R1–
R3). Recall λ�

alg, λ
�
Pic > 0 from Theorem 3. Let CPic := qPic/(1 − qPic) > 0, Calg :=

qalg/(1−qalg) > 0, and θopt := (1+C2
stabC

2
rel)

−1. Then, there exists θ� such that for all
0 < λalg, λPic, θ with 0 < θ < min{1, θ�} as well as λalg < 1, 0 < λalg +λalg/λPic <

λ�
alg, and 0 < λPic/θ < λ�

Pic, it holds that

0 < θ ′ :=
θ + Cstab

(
(1 + CPic)Calgλalg + [

CPic + (1 + CPic)Calgλalg
]
λPic

)

1 − λPic /λ�
Pic

< θopt,

(34)

where the constant θ� > 0 depends only on Cstab, qPic, and qalg. Let s > 0 and define
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‖u�‖As := sup
N∈N0

(
(N + 1)s inf

Topt∈T(N )
ηopt(u

�
opt)

)
∈ R≥0 ∪ {∞}, (35)

where ηopt(u�
opt) is the error estimator corresponding to the exact solution of (12)

with respect to the mesh Topt and

T(N ) := {
T ∈ T : #T − #T0 ≤ N

}
.

Then, for tolerance τ = 0, there exist copt,Copt > 0 such that

c−1
opt ‖u�‖As ≤ sup

(�,k, j)∈Q
(#T� − #T0 + 1)s
k, j

� ≤ Copt max{‖u�‖As ,

0,0
0 }. (36)

The constant copt > 0 depends only on CCéa = L/α, Cstab, Crel, Cson, #T0, s, and, if
� < ∞, additionally on �. The constant Copt > 0 depends only on Cstab, Crel, Cmark ,
1 − λPic/λ

�
Pic, CCéa = L/α, C ′

rel, Cmesh, Clin, qlin, #T0, and s. The maximum in the

right inequality is only needed if � = 0. If � ≥ 1, the maximum max{‖u�‖As ,

0,0
0 }

can be replaced by ‖u�‖As .

Note that
0,0
0 can be arbitrarily bad due to a bad initial guess u0,00 . However, ‖u�‖As

as well as the constantCopt are independent of the initial guess, so that the upper bound
in (36) cannot avoid max{‖u�‖As ,


0,0
0 } for the case � = 0. Such a phenomenon does

not appear at later stages, since the stopping criteria (22) and (23) ensure that, though

u
k, j
� does not in general coincide with u�

�, it is sufficiently accurate. If one restricts the

indices to (�, k, j) ∈ Q with � ≥ 1, then the upper bound in (36) may omit 
0,0
0 .

Our last main result states that Algorithm 1 drives the quasi-error down at each
possible rate s not only with respect to the number of degrees of freedom added
in the space X� in comparison with X0, but actually also with respect to the overall
computational cost expressed as a cumulated sumof the number of degrees of freedom.
This is an important improvement of Theorem 4. More precisely, under the same
conditions as above, i.e., if the unknown weak solution u of (11) can be approximated
at algebraic decay rate s with respect to the number of mesh elements added in the
refinement of T0 (plus one), Algorithm 1 generates a sequence of triple-(�, k, j)-
indexed approximations (mesh, linearization, algebraic solver) such that the quasi-
error decays at rate s with respect to the overall algorithmic cost expressed as the sum
of the number of simplices #T� over all steps (�, k, j) ∈ Q effectuated byAlgorithm 1.
The proof of the following Theorem 5 is given in Sect. 6.

Theorem 5 (optimal decay rate wrt. overall computational cost) Let the assumptions
of Theorem 4 be verified. Then

c−1
opt ‖u�‖As ≤ sup

(�′,k′, j ′)∈Q

( ∑

(�,k, j)∈Q
(�,k, j)≤(�′,k′, j ′)

#T�

)s



k′, j ′
�′ ≤ C ′

opt max{‖u�‖As ,

0,0
0 }.

(37)
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The maximum in the right inequality is only needed if � = 0. If � ≥ 1, the maximum
max{‖u�‖As ,


0,0
0 } can be replaced by ‖u�‖As . While copt > 0 is the constant of

Theorem 4, the constant C ′
opt > 0 reads C ′

opt := (#T0)s Copt Clin
(
1 − q1/slin

)−s
.

Analogously to the comments after Theorem 4, the upper estimate in (37) cannot
avoid max{‖u�‖As ,


0,0
0 } for the case �′ = � = 0. As above, if one restricts the indices

to (�′, k′, j ′), (�, k, j) ∈ Q with �′, � ≥ 1, then the upper bound in (37) may omit



0,0
0 .
Note that for any reasonable algebraic solver on mesh T�, the cost of its one step

is proportional to #T�. This also holds true for matrix and right-hand-side assembly
in (21), evaluation of the residual estimators η�(u

k, j
� ), Dörflermarking, and local adap-

tive mesh refinement by, e.g., newest vertex bisection, while the cost of evaluation of
the stopping criteria (22) and (23) is of O(1). Thus, the sum in (37) is indeed pro-
portional to the overall computational cost invested into the numerical approximation
of (1) by Algorithm 1.

3 Auxiliary results

3.1 Some observations on Algorithm 1

This section collects some elementary observations on Algorithm 1 in what concerns
nested iteration and stopping criteria. The given initial value of Algorithm 1 reads

u0,00 = u
0, j
0 = u0,�0 ∈ X0. (38)

If (�, 0, 0) ∈ Q with � ≥ 1, then

u0,�� := u0,0� := u
0, j
� := u

k, j
�−1 ∈ X�−1 ⊆ X�. (39)

If (�, k, 0) ∈ Q, then the initial guess for the algebraic solver reads

uk,0� =

⎧
⎪⎪⎨

⎪⎪⎩

u0,00 for � = 0,

u
k, j
�−1 if k = 0 and � ≥ 1,

u
k−1, j
� if k > 0,

(40)

i.e., the algebraic solver employs nested iteration. The stopping criterion (22) of Algo-
rithm 1 guarantees that j(�, k) ≥ 1 if k > 0 and, for all (�, k, j) ∈ Q, it holds that

|||uk, j� − u
k, j−1
� ||| ≤ λalg

[
η�(u

k, j
� ) + |||uk, j� − u

k−1, j
� ||| ] for j = j(�, k), (41)

|||uk, j� − uk, j−1
� ||| > λalg

[
η�(u

k, j
� ) + |||uk, j� − u

k−1, j
� ||| ] for j < j(�, k), (42)

i.e., the algebraic error estimate |||uk, j� − uk, j−1
� ||| only drops below the discretization

plus linearization error estimate at the stopping iteration j = j(�, k).
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The final iterates u
k, j
� of the algebraic solver are used to obtain the perturbed

Banach–Picard iterates u
k+1, j
� for k > 0; see (21). The stopping criterion (23) of

Algorithm 1 guarantees that k(�) ≥ 1 and, for all (�, k, j) ∈ Q, it holds that

|||uk, j� − u
k−1, j
� ||| ≤ λPic η�(u

k, j
� ) for k = k(�), (43)

|||uk, j� − u
k−1, j
� ||| > λPic η�(u

k, j
� ) for k < k(�), (44)

i.e., the linearization error estimate |||uk, j� −u
k−1, j
� ||| only drops below the discretization

error estimate at the stopping iteration k = k(�).

3.2 Contraction of the perturbed Banach–Picard iteration

Assumption (19) immediately implies the algebraic solver contraction (25) and reli-
ability (26) of the algebraic error estimate |||uk, j� − uk, j−1

� |||. Similarly, one step of
the non-perturbed Banach–Picard iteration (21) (i.e., with an exact algebraic solve of

problem (21) with the datum u
k−1, j
� ) leads to contraction (27) and consequently to the

reliability

1 − qPic
qPic

|||u�
� − uk,�� ||| ≤ |||uk,�� − u

k−1, j
� ||| ≤ (1 + qPic) |||u�

� − u
k−1, j
� ||| (45)

of the unavailable linearization error estimate |||uk,�� − u
k−1, j
� |||. As our first result, we

now show that, for sufficiently small stopping parameters 0 < λalg in (22), we also get
that the perturbed Banach–Picard iteration is a contraction. Recall that u�

� ∈ X� is the

(unavailable) exact discrete solution given by (20), that uk,�� ∈ X� is the (unavailable)

exact linearization solution given by (21), and that u
k, j
� ∈ X� is the computed solution

for which the algebraic solver is stopped; see (22) (resp. (41) and (42)) for the stopping
criterion.

Lemma 6 There exists λ�
alg > 0 depending only on qalg and qPic such that

0 < q ′
Pic :=

qPic + qalg
1−qalg

λ�
alg

1 − qalg
1−qalg

λ�
alg

< 1. (46)

Moreover, for all stopping parameters 0 < λalg < 1 and 0 < λPic from (22) and (23)
such that 0 < λalg + λalg/λPic < λ�

alg, it holds that

|||u�
� − u

k, j
� ||| ≤ q ′

Pic |||u�
� − u

k−1, j
� ||| for all 1 ≤ k < k(�). (47)
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This also implies that

1 − q ′
Pic

q ′
Pic

|||u�
� − u

k, j
� ||| ≤ |||uk, j� − u

k−1, j
� ||| ≤ (1 + q ′

Pic) |||u�
� − u

k−1, j
� |||. (48)

Proof Clearly, (48) follows from (47) by the triangle inequality as in (26) and (45).
Moreover, (46) is obvious for sufficiently small λ�

alg, since qPic = (1−α2/L2)1/2 < 1
from (28) and 0 < qalg < 1 is fixed from (19). To see (47), first note that

|||u�
� − u

k, j
� ||| ≤ |||u�

� − uk,�� ||| + |||uk,�� − u
k, j
� ||| (27)≤ qPic|||u�

� − u
k−1, j
� ||| + |||uk,�� − u

k, j
� |||,

where the first term corresponds to the unperturbed Banach–Picard iteration (21) and
the second to the algebraic error. Second, note that, since 1 ≤ k < k(�),

|||uk,�� − u
k, j
� ||| (26)≤ qalg

1 − qalg
|||uk, j� − u

k, j−1
� |||

(41)≤ qalg
1 − qalg

λalg
[
η�(u

k, j
� ) + |||uk, j� − u

k−1, j
� ||| ]

(44)
<

qalg
1 − qalg

(λalg + λalg/λPic) |||uk, j� − u
k−1, j
� |||

≤ qalg
1 − qalg

(λalg + λalg/λPic)
[ |||u�

� − u
k, j
� ||| + |||u�

� − u
k−1, j
� ||| ].

Combining the latter estimates with the assumption λalg + λalg/λPic < λ�
alg, we see

that

|||u�
� − u

k, j
� ||| ≤ (qPic + qalg

1 − qalg
λ�
alg) |||u�

� − u
k−1, j
� ||| + qalg

1 − qalg
λ�
alg |||u�

� − u
k, j
� |||.

If 0 < λ�
alg is sufficiently small, this shows (46)and(47) and concludes the proof. ��

3.3 Proof of Proposition 2 (reliable error control in Algorithm 1)

We are now ready to prove the estimates (31).

Proof of Proposition 2 First, let (�, k, j) ∈ Q with 0 < k ≤ k(�) and 0 < j ≤ j(�, k).
Due to stability (A1), reliability (A3), and the contraction properties (26) resp. (45),
it holds that
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|||u� − uk, j� ||| ≤ |||u� − u�
�||| + |||u�

� − uk, j� |||
(A3)
� η�(u

�
�) + |||u�

� − uk, j� |||
(A1)
� η�(u

k, j
� ) + |||u�

� − uk, j� ||| ≤ η�(u
k, j
� ) + |||u�

� − uk,�� ||| + |||uk,�� − uk, j� |||
(45)
� η�(u

k, j
� ) + |||uk,�� − u

k−1, j
� ||| + |||uk,�� − uk, j� |||

≤ η�(u
k, j
� ) + |||uk, j� − u

k−1, j
� ||| + 2|||uk,�� − uk, j� |||

(26)
� η�(u

k, j
� ) + |||uk, j� − u

k−1, j
� ||| + |||uk, j� − uk, j−1

� |||. (49)

This proves (31) for the case 0 < k ≤ k(�) and 0 < j ≤ j(�, k).
If j = j(�, k), we can improve estimate (49) using the stopping criterion (41).

Similarly, if k = k(�) and j = j(�, k), we can improve estimate (49) using the
stopping criteria (41) and (43). Finally, for k = 0, � > 0 and hence j = j = 0, it
directly follows from nested iteration (39) and the previous case k = k(� − 1) resp.
j = j(� − 1, k) that

|||u� − u0,0� ||| (40)= |||u� − u
k, j
�−1|||

(31)
� η�−1(u

k, j
�−1). (50)

This concludes the proof. ��

3.4 An auxiliary adaptive algorithm

Due to Lemma 6, the iterates u
k, j
� are contractive in the index k. Consequently, Algo-

rithm 1 fits into the framework of [23] upon defining u� from [23] as u� := u
k, j
� for

the case where k(�) < ∞ and j(�, k) < ∞, i.e., both the algebraic and the lineariza-
tion solvers are stopped by (22) and (23) on the mesh T�. Note that the assumption
(� + n + 1, 0, 0) ∈ Q below ensures this for all meshes T�′ with 0 ≤ �′ ≤ � + n.
Then, we can rewrite [23, Lemma 4.9, eq. (4.10)] and [23, Theorem 5.3, eq. (5.5)] in

the current setting to conclude two important properties: First, the estimators η�(u
k, j
� )

available at step (iv) of Algorithm 1 are, up to a constant, equivalent to the estimators
η�(u�

�) corresponding to the unavailable exact linearization u�
� of (20). And second,

the estimators η�(u
k, j
� ) are linearly convergent.

Lemma 7 [23, Lemma 4.9, Theorem 5.3] Recall λ�
alg > 0 and 0 < q ′

Pic < 1 from

Lemma 6. Define λ�
Pic := 1−q ′

Pic
q ′
PicCstab

> 0 and note that it depends only on qPic, qalg,

and Cstab. Then, for all 0 < θ ≤ 1, all 0 < λalg < 1 and 0 < λPic with 0 <

λalg + λalg/λPic < λ�
alg and 0 < λPic/θ < λ�

Pic, and all (�, k, j) ∈ Q with k < ∞ and
j < ∞, it holds that

(1 − λPic/λ
�
Pic) η�(u

k, j
� ) ≤ η�(u

�
�) ≤ (1 + λPic/λ

�
Pic) η�(u

k, j
� ). (51)
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Moreover, there exist CGHPS > 0 and 0 < qGHPS < 1 such that

η�+n(u
k, j
�+n) ≤ CGHPS q

n
GHPS η�(u

k, j
� ) for all (� + n + 1, 0, 0) ∈ Q. (52)

The constants CGHPS and qGHPS depend only on L, α, Crel, Cstab, qred, qalg, and qPic,
as well as on the adaptivity parameters θ , λalg, and λPic. ��

As a result of Lemma 7 and Proposition 2, we get the following lemma for the
quasi-error of (32) on stopping indices k(�), j(�, k). Please note that when � < ∞,
the summation below only goes to � − 1, as the arguments rely on (52) which needs
finite stopping indices k(�) and j(�, k) on each mesh T�.

Lemma 8 Suppose that 0 < λalg + λalg/λPic < λ�
alg (from Lemma 6) as well as

0 < θ ≤ 1 and 0 < λPic/θ < λ�
Pic (from Lemma 7). With the convention � − 1 = ∞

if � = ∞, there holds summability

�−1∑

�=�′+1



k, j
� ≤ C 


k, j

�′ for all (�′, k, j) ∈ Q, (53)

where C > 0 depends only on L, α, Crel, Cstab, qred, θ , qalg, qPic, λalg, and λPic.

Proof Define 
̃k
� := |||u� − u

k, j
� ||| + η�(u

k, j
� ) as the sum of overall error plus error

estimator. In comparison with (32), 
̃k
� omits the algebraic error term but is only

defined for the algebraic stopping indices j(�, k). With Proposition 2 and the linear
convergence (52), we get that

�−1∑

�=�′+1


̃
k
�

(31)
�

�−1∑

�=�′+1

η�(u
k, j
� )

(52)
� η�′(u

k, j

�′ )

�−1∑

�=�′+1

q�−�′
GHPS � 
̃

k
�′ .

Let (�′, k, j) ∈ Q. By definition (32), it holds that



k, j

�′ = |||u� − u
k, j

�′ ||| + |||uk,�
�′ − u

k, j

�′ ||| + η�′(u
k, j

�′ ) = 
̃
k
�′ + |||uk,�

�′ − u
k, j

�′ |||.

Moreover, note that

|||uk,�
�′ − u

k, j

�′ |||
(26)
� |||uk, j

�′ − u
k, j−1
�′ |||

(41)
� η�′(u

k, j

�′ )

+ |||uk, j
�′ − u

k−1, j
�′ |||

(43)
� η�′(u

k, j

�′ ) ≤ 
̃
k
�′ .

This proves the equivalence

k, j

�′ � 
̃
k
�′ for all (�′, k, j) ∈ Q and concludes the proof.

��
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4 Proof of Theorem 3 (linear convergence)

This section is dedicated to the proof of Theorem 3. The core is the following lemma
that extends Lemma 8 to our setting with the triple indices.

Lemma 9 Suppose that 0 < λalg + λalg/λPic < λ�
alg (from Lemma 6) as well as

0 < θ ≤ 1 and 0 < λPic/θ < λ�
Pic (from Lemma 7). Then, there exists Csum > 0 such

that

∑

(�,k, j)∈Q
(�,k, j)>(�′,k′, j ′)



k, j
� ≤ Csum 


k′, j ′
�′ for all (�′, k′, j ′) ∈ Q. (54)

The constant Csum depends only on Crel, Cstab, qred, θ , qalg, λalg, qPic, λPic, α, and L.

Proof Step 1. We prove that

Ak, j
� := |||u�

� − uk, j� ||| + |||uk,�� − uk, j� ||| + η�(u
k, j
� ) � 


k, j
� for all (�, k, j) ∈ Q.

(55)

Note that Ak, j
� and


k, j
� only differ in the first term, where the overall error is replaced

by the (inexact) linearization error. According to the Céa lemma (15), it holds that

|||u�
� − uk, j� ||| ≤ |||u� − uk, j� ||| + |||u� − u�

�|||
(15)
� |||u� − uk, j� ||| ≤ 


k, j
� .

This implies that Ak, j
� � 


k, j
� . To see the converse inequality, note that

|||u� − uk, j� ||| ≤ |||u� − u�
�||| + |||u�

� − uk, j� |||
(A3)
� η�(u

�
�) + |||u�

� − uk, j� |||
(A1)
� η�(u

k, j
� ) + |||u�

� − uk, j� ||| ≤ Ak, j
� .

This proves 

k, j
� � Ak, j

� and concludes this step.

Step 2 We prove some auxiliary estimates. First, we prove that the algebraic error
|||uk,�� −uk, j−1

� ||| dominates the modified total error Ak, j
� , before the algebraic stopping

criterion (22) is reached, i.e.,

Ak, j
� � |||uk,�� − uk, j−1

� ||| for all (�, k, j) ∈ Q with k ≥ 1 and 1 ≤ j < j(�, k).

(56)

To this end, note that

|||u�
� − uk, j� ||| ≤ |||u�

� − uk,�� ||| + |||uk,�� − uk, j� |||
(45)
� |||uk,�� − u

k−1, j
� ||| + |||uk,�� − uk, j� |||
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≤ 2 |||uk,�� − uk, j� ||| + |||uk, j� − u
k−1, j
� |||

(26)
� |||uk, j� − uk, j−1

� ||| + |||uk, j� − u
k−1, j
� |||.

Since 1 ≤ j < j(�, k), we conclude (56) from

Ak, j
� = |||u�

� − uk, j� ||| + |||uk,�� − uk, j� ||| + η�(u
k, j
� )

� |||uk, j� − uk, j−1
� ||| + |||uk, j� − u

k−1, j
� ||| + η�(u

k, j
� )

(42)
� |||uk, j� − uk, j−1

� |||
(26)
� |||uk,�� − uk, j−1

� |||.

Second, we consider the use of nested iteration when passing to the next perturbed
Banach–Picard step. We prove that

|||uk,�� − uk,0� ||| � A
k−1, j
� for all (�, k, 0) ∈ Q with k ≥ 1. (57)

To this end, simply note that

|||uk,�� − uk,0� ||| (40)= |||uk,�� − u
k−1, j
� |||

(45)
� |||u�

� − u
k−1, j
� ||| ≤ A

k−1, j
� .

Third, we prove that

A
k, j
� � Ak, j

� for all (�, k, j) ∈ Q, (58)

related to the algebraic error contraction. Note that k = 0 implies j = 0, so that (58)
trivially holds for k = 0 with equality. Let now k ≥ 1. We first consider the last but
one algebraic iteration step j = j(�, k) − 1 ≥ 0. There holds that

A
k, j
� = |||u�

� − u
k, j
� ||| + |||uk,�� − u

k, j
� ||| + η�(u

k, j
� )

≤ |||u�
� − u

k, j−1
� ||| + |||uk,�� − u

k, j−1
� ||| + η�(u

k, j
� ) + 2 |||uk, j� − u

k, j−1
� |||

(A1)
� A

k, j−1
� + |||uk, j� − u

k, j−1
� |||

(26)
� A

k, j−1
� + |||uk,�� − u

k, j−1
� ||| � A

k, j−1
� .

This proves (58) for j = j(�, k) − 1 ≥ 0. Note that this argument also applies when
j = 1. If 0 ≤ j ≤ j(�, k) − 2, we employ the last estimate and (56) to conclude (58)
from

A
k, j
� � A

k, j−1
�

(56)
� |||uk,�� − u

k, j−2
� ||| (25)≤ |||uk,�� − uk, j� ||| ≤ Ak, j

� .
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Fourth, we prove that the linearization error |||u�
� −u

k−1, j
� ||| dominates the modified

total error A
k, j
� , before the linearization stopping criterion (23) is reached, i.e.,

A
k, j
� � |||u�

� − u
k−1, j
� ||| for all (�, k, j) ∈ Q with 1 ≤ k < k(�). (59)

To see this, note that 1 ≤ k < k(�) yields that

A
k, j
� = |||u�

� − u
k, j
� ||| + |||uk,�� − u

k, j
� ||| + η�(u

k, j
� )

(26)
� |||u�

� − u
k, j
� ||| + |||uk, j� − u

k, j−1
� ||| + η�(u

k, j
� )

(41)
� |||u�

� − u
k, j
� ||| + |||uk, j� − u

k−1, j
� ||| + η�(u

k, j
� )

(48)
� |||uk, j� − u

k−1, j
� ||| + η�(u

k, j
� )

(44)
� |||uk, j� − u

k−1, j
� |||

(48)
� |||u�

� − u
k−1, j
� |||,

where we employ Lemma 6 and hence require 0 < λalg + λalg/λPic to be sufficiently
small.

Fifth, we consider the use of nested iteration when refining the mesh. We prove that

A
0, j
� � η�−1(u

k, j
�−1) ≤ A

k, j
�−1 for all (�, k, j) ∈ Q. (60)

To this end, note that

|||u�
� − u

k, j
�−1||| ≤ |||u� − u�

�||| + |||u� − u
k, j
�−1|||

(15)
� |||u� − u

k, j
�−1|||

(31)
� η�−1(u

k, j
�−1). (61)

Next, recall from (39) that u0,�� = u
0, j
� = u

k, j
�−1. From (A1) used on non-refined mesh

elements and (A2) used on refined mesh elements, we hence conclude that

A
0, j
�

(39)= |||u�
� − u

k, j
�−1||| + η�(u

k, j
�−1)

(61)
� η�−1(u

k, j
�−1) + η�(u

k, j
�−1) ≤ 2 η�−1(u

k, j
�−1).

Sixth, we prove that

A
k, j
� � A

k, j
� for all (�, k, j) ∈ Q. (62)

We first consider k = k(�) − 1 ≥ 0. Note that

|||uk,�� − u
k−1, j
� ||| ≤ |||u�

� − u
k,�
� ||| + |||u�

� − u
k−1, j
� |||

(27)
� |||u�

� − u
k−1, j
� ||| ≤ A

k−1, j
� .

(63)
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Hence, the triangle inequality leads to

A
k, j
� = |||u�

� − u
k, j
� ||| + |||uk,�� − u

k, j
� ||| + η�(u

k, j
� )

(A1)
� |||u�

� − u
k−1, j
� ||| + |||uk,�� − u

k−1, j
� ||| + |||uk, j� − u

k−1, j
� ||| + η�(u

k−1, j
� )

� A
k−1, j
� + |||uk, j� − u

k−1, j
� |||

(48)
� A

k−1, j
� + |||u�

� − u
k−1, j
� ||| ≤ 2A

k−1, j
� .

This proves (62) for k = k(�) − 1. Note that the same argument also applies when
k = 1. If 0 ≤ k ≤ k(�) − 2, then

A
k, j
� � A

k−1, j
�

(59)
� |||u�

� − u
k−2, j
� ||| (47)≤ |||u�

� − u
k, j
� ||| ≤ A

k, j
� ,

also using that q ′
Pic ≤ 1. This concludes the proof of (62).

Seventh, we consider the use of nested iteration when passing to the next perturbed
Banach–Picard step. We prove that

Ak,0
� � A

k−1, j
� for all (�, k, 0) ∈ Q with k ≥ 1. (64)

Using (57) and recalling the definition uk,0� = u
k−1, j
� , it holds that

Ak,0
� = |||u�

� − u
k−1, j
� ||| + |||uk,�� − uk,0� ||| + η�(u

k−1, j
� ) � A

k−1, j
� ,

which is the claim (64).

Step 3 This step collects auxiliary estimates following from the geometric series
and the contraction properties of the linearization and the algebraic solver. First, with
the convention j(�, k) − 1 = ∞ when j(�, k) = ∞, it holds that

j(�,k)−1∑

j=i+1

Ak, j
� � |||uk,�� − uk,i� ||| ≤ Ak,i

� for all (�, k, i) ∈ Q with k ≥ 1. (65)

This follows immediately from

j(�,k)−1∑

j=i+1

Ak, j
�

(56)
�

j(�,k)−1∑

j=i+1

|||uk,�� − uk, j−1
� ||| (25)≤ |||uk,�� − uk,i� |||

∞∑

j=i

q j−i
alg � |||uk,�� − uk,i� |||.
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Analogously, with the convention that k(�)−1 = ∞ when k(�) = ∞, the contrac-
tion (47) of the perturbed Banach–Picard iteration leads to

k(�)−1∑

k=i+1

A
k, j
� � |||u�

� − u
i, j
� ||| ≤ A

i, j
� for all (�, i, j) ∈ Q. (66)

This follows immediately from

k(�)−1∑

k=i+1

A
k, j
�

(59)
�

k(�)−1∑

k=i+1

|||u�
� − u

k−1, j
� |||

(47)
� |||u�

� − u
i, j
� |||

∞∑

k=i

(q ′
Pic)

k−i � |||u�
� − u

i, j
� |||.

With the analogous convention � − 1 = ∞ when � = ∞, we finally prove that

�−1∑

�=i+1

A
k, j
� � A

k, j
i for all (i, k, j) ∈ Q. (67)

This follows from Step 1 and

�−1∑

�=i+1

A
k, j
�

(55)�
�−1∑

�=i+1



k, j
�

(53)
� 


k, j
i

(55)� A
k, j
i .

Step 4 From now on, let (�′, k′, j ′) ∈ Q be arbitrary. Suppose first that � = ∞,
i.e., both algebraic and linearization solvers terminate at some finite values k(�) for
all � ≥ 0 and j(�, k) for all � ≥ 0 and all k ≤ k(�), whereas infinitely many steps
of mesh-refinement take place. By the definition of our index set Q in (29) (which in
particular features nested iterates), it holds that

∑

(�,k, j)∈Q
(�,k, j)>(�′,k′, j ′)

Ak, j
� =

∞∑

�=�′+1

(
A0,0

� +
k(�)∑

k=1

(
Ak,0

� +
j(�,k)∑

j=1

Ak, j
�

))

+
k(�′)∑

k=k′+1

(
Ak,0

�′ +
j(�′,k)∑

j=1

Ak, j
�′

)
+

j(�′,k′)∑

j= j ′+1

Ak′, j
�′

�
∞∑

�=�′+1

k(�)∑

k=1

j(�,k)∑

j=1

Ak, j
� +

k(�′)∑

k=k′+1

j(�′,k)∑

j=1

Ak, j
�′ +

j(�′,k′)∑

j= j ′+1

Ak′, j
�′ ,

(68)

where we have employed estimates (60) and (64) in order to start all the summations
from k = 1 and j = 1.
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We consider the three summands in (68) separately. For the first sum, we infer that

∞∑

�=�′+1

k(�)∑

k=1

j(�,k)∑

j=1

Ak, j
�

(65)
�

∞∑

�=�′+1

k(�)∑

k=1

(A
k, j
� + |||uk,�� − uk,0� |||)

(57)
�

∞∑

�=�′+1

k(�)∑

k=1

(A
k, j
� + A

k−1, j
� ) �

∞∑

�=�′+1

(
A
0, j
� +

k(�)∑

k=1

A
k, j
�

)

(66)
�

∞∑

�=�′+1

(
A
0, j
� + A

k, j
�

) (60)
�

∞∑

�=�′+1

(
A
k, j
�−1 + A

k, j
�

)

� A
k, j

�′ +
∞∑

�=�′+1

A
k, j
�

(67)
� A

k, j

�′
(62)
� A

k′, j
�′

(58)
� Ak′, j ′

�′ . (69)

If k′ = k(�′), the second sum in the bound (68) disappears. If k′ < k(�′), we infer that

k(�′)∑

k=k′+1

j(�′,k)∑

j=1

Ak, j
�′

(65)
�

k(�′)∑

k=k′+1

(A
k, j

�′ + |||uk,�
�′ − uk,0

�′ |||)
(57)
�

k(�′)∑

k=k′+1

(A
k, j

�′ + A
k−1, j
�′ )

� A
k′, j
�′ +

k(�′)∑

k=k′+1

A
k, j

�′
(66)
� A

k′, j
�′ + A

k, j

�′
(62)≤ A

k′, j
�′

(58)
� Ak′, j ′

�′ .

(70)

If j ′ = j(�′, k′), the third sum in the bound (68) disappears. If j ′ < j(�′, k′), we infer
that

j(�′,k′)∑

j= j ′+1

Ak′, j
�′

(65)≤ A
k′, j
�′ + Ak′, j ′

�′
(58)
� Ak′, j ′

�′ . (71)

Summing up (68)–(71), we see that, provided that � = ∞,

∑

(�,k, j)∈Q
(�,k, j)>(�′,k′, j ′)

Ak, j
� � Ak′, j ′

�′ . (72)

Step 5 Suppose that � < ∞ and k(�) = ∞, i.e., for the mesh T�, the linearization
loop does not terminate. Moreover, let �′ < �. Then, it holds as in (68) that

∑

(�,k, j)∈Q
(�,k, j)>(�′,k′, j ′)

Ak, j
� �

∞∑

k=1

j(�,k)∑

j=1

Ak, j
� +

�−1∑

�=�′+1

k(�)∑

k=1

j(�,k)∑

j=1

Ak, j
�
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+
k(�′)∑

k=k′+1

j(�′,k)∑

j=1

Ak, j
�′ +

j(�′,k′)∑

j= j ′+1

Ak′, j
�′ . (73)

We argue as before to see that

�−1∑

�=�′+1

k(�)∑

k=1

j(�,k)∑

j=1

Ak, j
�

(69)
� Ak′, j ′

�′ ,

k(�′)∑

k=k′+1

j(�′,k)∑

j=1

Ak, j
�′

(70)
� Ak′, j ′

�′ , and

j(�′,k′)∑

j= j ′+1

Ak′, j
�′

(71)
� Ak′, j ′

�′ . (74)

It only remains to estimate

∞∑

k=1

j(�,k)∑

j=1

Ak, j
�

(65)
�

∞∑

k=1

(
A
k, j
� + |||uk,�� − uk,0� |||)

(57)
� A

0, j
� +

∞∑

k=1

A
k, j
�

(66)
� A

0, j
�

(60)
� A

k, j
�−1 ≤ A

k, j

�′ +
�−1∑

�=�′+1

A
k, j
�

(67)
� A

k, j

�′
(62)
� A

k′, j
�′

(58)
� Ak′, j ′

�′ .

(75)

Altogether, provided that �′ < � < ∞ and k(�) = ∞, we again obtain (72).

Step 6 Suppose that � < ∞ and k(�) = ∞, i.e., for the mesh T�, the linearization
loop does not terminate, and moreover, �′ = �. Arguing as in (75) and (71), it holds
that

∑

(�,k, j)∈Q
(�,k, j)>(�′,k′, j ′)

Ak, j
� �

∞∑

k=k′+1

j(�′,k)∑

j=1

Ak, j
�′ +

j(�′,k′)∑

j= j ′+1

Ak′, j
�′ � Ak′, j ′

�′ . (76)

Step 7 Suppose that � < ∞, where k(�) < ∞ and hence j(�, k) = ∞, i.e., the
linear solver does not terminate for the linearization step k(�). Suppose moreover
�′ < �. Then, it holds that

∑

(�,k, j)∈Q
(�,k, j)>(�′,k′, j ′)

Ak, j
� �

∞∑

j=1

Ak, j
� +

k(�)−1∑

k=1

j(�,k)∑

j=1

Ak, j
� +

�−1∑

�=�′+1

k(�)∑

k=1

j(�,k)∑

j=1

Ak, j
�

+
k(�′)∑

k=k′+1

j(�′,k)∑

j=1

Ak, j
�′ +

j(�′,k′)∑

j= j ′+1

Ak′, j
�′ .

(77)
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We argue as before to see that

�−1∑

�=�′+1

k(�)∑

k=1

j(�,k)∑

j=1

Ak, j
�

(69)
� Ak′, j ′

�′ ,

k(�′)∑

k=k′+1

j(�′,k)∑

j=1

Ak, j
�′

(70)
� Ak′, j ′

�′ , and

j(�′,k′)∑

j= j ′+1

Ak′, j
�′

(71)
� Ak′, j ′

�′ .

For the first sum in (77), we get that

∞∑

j=1

Ak, j
�

(65)
� |||uk,�� − u

k,0
� |||

(57)
� A

k−1, j
�

(69)
� Ak′, j ′

�′ . (78)

Finally, the second sum in (77) can be bounded analogously to (75) in Step 5 by Ak′, j ′
�′ .

Altogether, we obtain (72) provided that �′ < � < ∞, k(�) < ∞, and j(�, k) = ∞.
Step 8. Suppose that � < ∞, where k(�) < ∞ and hence j(�, k) = ∞, i.e.,

the linear solver does not terminate for the linearization step k(�). Suppose moreover
�′ = � but k′ < k(�′). Then, it holds that

∑

(�,k, j)∈Q
(�,k, j)>(�′,k′, j ′)

Ak, j
� �

∞∑

j=1

Ak, j
�′ +

k(�′)−1∑

k=k′+1

j(�′,k)∑

j=1

Ak, j
�′ +

j(�′,k′)∑

j= j ′+1

Ak′, j
�′ . (79)

We argue as before to see that

∞∑

j=1

Ak, j
�′

(78)
� Ak′, j ′

�′ ,

k(�′)−1∑

k=k′+1

j(�′,k)∑

j=1

Ak, j
�′

(70)
� Ak′, j ′

�′ , and

j(�′,k′)∑

j= j ′+1

Ak′, j
�′

(71)
� Ak′, j ′

�′ .

Hence, we obtain (72) provided that �′ = � < ∞, k′ < k(�′) < ∞, and j(�′, k) = ∞.

Step 9 Suppose that � < ∞, where k(�) < ∞ and hence j(�, k) = ∞, i.e.,
the linear solver does not terminate for the linearization step k(�). Suppose �′ = �

and k′ = k(�′). Then, the sum in (72) reduces to
∑∞

j= j ′+1 A
k′, j
�′ and (65) yields the

inequality (72).

Step 10 Suppose that �, k(�), j(�, k(�)) < ∞ and that Algorithm 1 finished on

step (iii) when η�(u
k, j
� ) = 0 for tolerance τ = 0. From (31), we see that η�(u

k, j
� ) = 0

implies u� = u
k, j
� , i.e., the exact solution was found. Moreover, through the stopping

criteria (23) and (22),we see that u
k−1, j
� = u

k, j−1
� = u

k, j
� , so that (48) gives u�

� = u
k, j
� ,

and finally (26) gives uk,�� = u
k, j
� . Thus A

k, j
� = 0.
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Let �′ < �. Then, as in (73),

∑

(�,k, j)∈Q
(�,k, j)>(�′,k′, j ′)

Ak, j
� �

k(�)∑

k=1

j(�,k)∑

j=1

Ak, j
� +

�−1∑

�=�′+1

k(�)∑

k=1

j(�,k)∑

j=1

Ak, j
�

+
k(�′)∑

k=k′+1

j(�′,k)∑

j=1

Ak, j
�′ +

j(�′,k′)∑

j= j ′+1

Ak′, j
�′ .

Here, the last three terms are estimated as in (74), whereas for the first one, we can

proceed as in (75), crucially noting that the last summand A
k, j
� is zero.

If �′ = �, three cases are possible. The first case is k′ < k. Then

∑

(�,k, j)∈Q
(�,k, j)>(�′,k′, j ′)

Ak, j
� �

k(�′)∑

k=k′+1

j(�′,k)∑

j=1

Ak, j
�′ +

j(�′,k′)∑

j= j ′+1

Ak′, j
�′ ,

which is controlled as in (74). The second case is k′ = k but j ′ < j , where directly

∑

(�,k, j)∈Q
(�,k, j)>(�′,k′, j ′)

Ak, j
� =

j(�′,k′)∑

j= j ′+1

Ak′, j
�′

(65)
� Ak′, j ′

�′ ,

since A
k′, j
�′ = 0. In the third case, k′ = k and j ′ = j , the sum is void, and (72) follows.

Step 11 Finally, if �, k(�), j(�, k(�)) < ∞ and Algorithm 1 finished on step (IV)
for tolerance τ > 0, (72) follows immediately simplifying Step 4.

Step 12 Combining Steps 4–11 that cover all possible runs of Algorithm 1 with
Step 1, we finally see that

∑

(�,k, j)∈Q
(�,k, j)>(�′,k′, j ′)



k, j
�

(55)�
∑

(�,k, j)∈Q
(�,k, j)>(�′,k′, j ′)

Ak, j
� � Ak′, j ′

�′
(55)� 


k′, j ′
�′ for all (�′, k′, j ′) ∈ Q.

This concludes the proof of (54). ��
Proof of Theorem 3 The proof is split into two steps.

Step 1 For the convenience of the reader, we recall an argument from the proof
of [8, Lemma 4.9]: For M ∈ N ∪ {∞}, let C > 0 and αn ≥ 0 satisfy that

M∑

n=N+1

αn ≤ C αN for all N ∈ N0 with N < min{M,∞}.
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Then,

(1 + C−1)

M∑

n=N+1

αn ≤
M∑

n=N+1

αn + αN =
M∑

n=N

αn for all N ∈ N0.

Inductively, it follows for all N ,m ∈ N0 with N + m < min{M + 1,∞} that

(1 + C−1)m
M∑

n=N+m

αn ≤
M∑

n=N+1

αn + αN =
M∑

n=N

αn .

We thus conclude for all N ,m ∈ N0 with N + m < min{M + 1,∞} that

αN+m ≤
M∑

n=N+m

αn ≤ (1 + C−1)−m
M∑

n=N

αn ≤ (1 + C) (1 + C−1)−mαN .

Step 2 Since the index setQ is linearly ordered with respect to the total step counter
|(·, ·, ·)|, Lemma 9 and Step 1 imply that



k′, j ′
�′ ≤ Clin q

|(�′,k′, j ′)|−|(�,k, j)|
lin 


k, j
� for all (�, k, j), (�′, k′, j ′)

∈ Q with (�′, k′, j ′) ≥ (�, k, j),

where Clin = 1 + Csum and qlin = Csum/(Csum + 1). This concludes the proof. ��

5 Proof of Theorem 4 (optimal decay rate wrt. degrees of freedom)

The first result of this section proves the left inequality in (36):

Lemma 10 Suppose (R1) as well as (A1), (A2), and (A4). Let s > 0 and assume
‖u�‖As > 0. For tolerance τ = 0, it then holds that

‖u�‖As ≤ copt sup
(�′,k′, j ′)∈Q

(#T�′ − #T0 + 1)s
k′, j ′
�′ , (80)

where the constant copt > 0 depends only on CCéa = L/α, Cstab, Crel, Cson, #T0, s,
and, if � < ∞, additionally on �.

Proof The proof is split into three steps. First, we recall from [5, Lemma 22] that

#Th/#TH ≤ #Th − #TH + 1 ≤ #Th for all TH ∈ T and all Th ∈ refine(TH ).

(81)
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Step 1 We consider the three non-generic cases with � < ∞. First, let k(�) < ∞,

and j(�, k) < ∞. Then, Algorithm 1 was terminated in Step (iii) with η�(u
k, j
� ) = 0.

Due to the Céa lemma (15) and Proposition 2, it follows that

|||u� − u�
�|||

(15)
� |||u� − u

k, j
� |||

(31)
� η�(u

k, j
� ) = 0

and hence u� = u�
� = u

k,�
� = u

k, j
� and η�(u�

�) = 0.
Second, let k(�) < ∞ but j(�, k) = ∞, i.e., the algebraic solver does not stop.

According to Theorem 3, it holds that



k, j
� = |||u� − u

k, j
� ||| + |||uk,�� − u

k, j
� ||| + η�(u

k, j
� ) → 0 as j → ∞.

Hence, we obtain that u� = u�
� = u

k,�
� . From stability (A1), it follows that

0 ≤ η�(u
�
�)

(A1)
� η�(u

k, j
� ) + |||u�

� − u
k, j
� ||| → 0 as j → ∞.

Hence, we see that η�(u�
�) = 0.

Finally, let k(�) = ∞, i.e., the linearization solver does not stop. Analogously to
the previous case, we obtain that



k, j
� = |||u� − u

k, j
� ||| + |||uk,�� − u

k, j
� ||| + η�(u

k, j
� ) → 0 as k → ∞.

Hence, we get that u� = u�
�. Again, stability (A1) yields that η�(u�

�) = 0.
In any case, � < ∞ implies that η�(u�

�) = 0 and hence

‖u�‖As = sup
0≤N<#T�−#T0

(
(N + 1)s inf

Topt∈T(N )
ηopt(u

�
opt)

)
.

The term N + 1 within the supremum can be estimated by

N + 1 ≤ #T� − #T0
(R1)≤ (C

�
son − 1) #T0.

Moreover, (A1), (A2), and (A4) yield quasi-monotonicity ηopt(u�
opt) � η0(u�

0) (see,
e.g., [8, Lemma 3.5]). Altogether, we thus arrive at

‖u�‖As � η0(u
�
0) ≤ sup

�′∈N0

(#T�′ − #T0 + 1)s η�′(u�
�′). (82)

Step 2 We consider the generic case that � = ∞ and η�(u
k, j
� ) > 0 for all � ∈

N0. Algorithm 1 then guarantees that #T� → ∞ as � → ∞. Thus, we can argue
analogously to the proof of [8, Theorem 4.1]: Let N ∈ N. Choose the maximal
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�′ ∈ N0 such that #T�′ −#T0 +1 ≤ N . Then, T�′ ∈ T(N ). The choice of N guarantees
that

N + 1 ≤ #T�′+1 − #T0 + 1
(81)≤ #T�′+1 ≤ Cson#T�′

(81)≤ Cson#T0 (#T�′ − #T0 + 1).
(83)

This leads to

(N + 1)s inf
Topt∈T(N )

ηopt(u
�
opt) � (#T�′ − #T0 + 1)s η�′(u�

�′),

and we immediately see that this also holds for N = 0 with �′ = 0. Taking the
supremum over all N ∈ N0, we conclude that

‖u�‖As � sup
�′∈N0

(#T�′ − #T0 + 1)s η�′(u�
�′). (84)

Step 3 With stability (A1) and the Céa lemma (15), we see for all (�′, 0, 0) ∈ Q
that

η�′(u�
�′)

(A1)
� |||u� − u�

�′ ||| + |||u� − u0,0
�′ ||| + η�′(u0,0

�′ )
(15)
� |||u� − u0,0

�′ ||| + η�′(u0,0
�′ ) ≤ 


0,0
�′ .

With (82) and (84), we thus obtain that

‖u�‖As � sup
(�′,0,0)∈Q

(#T�′ − #T0 + 1)s η�′(u�
�′) ≤ sup

(�′,k′, j ′)∈Q
(#T�′ − #T0 + 1)s 


k′, j ′
�′ .

This concludes the proof. ��

To prove the upper estimate in (36), we need the comparison lemma from [8,
Lemma 4.14] for the error estimator of the exact discrete solution u�

� ∈ X�.

Lemma 11 Suppose (R1–R2) as well as (A1), (A2), and (A4). Let 0 < θ ′ < θopt :=
(1+C2

stabC
2
rel)

−1. Then, there exist constants C1,C2 > 0 such that for all s > 0 with
0 < ‖u�‖As < ∞ and all TH ∈ T, there existsRH ⊆ TH which satisfies

#RH ≤ C1C
−1/s
2 ‖u�‖1/s

As
ηH (u�

H )−1/s, (85)

as well as the Dörfler marking criterion

θ ′ηH (u�
H ) ≤ ηH (RH , u�

H ). (86)

The constants C1,C2 depend only on Cstab and Crel. ��
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Proof of Theorem 4 The proof is split into four steps. Without loss of generality, we
may assume that ‖u�‖As < ∞.

Step 1Due to the assumptions λalg+λalg/λPic ≤ λ�
alg (fromLemma 6) and λPic/θ <

λ�
Pic (from Lemma 7), we get that λalg ≤ λ�

alg λPic ≤ λ�
alg λ�

Pic θ . Hence, it holds that

θ ′ =
θ + Cstab

(
(1 + CPic)Calgλalg + [

CPic + (1 + CPic)Calgλalg
]
λPic

)

1 − λPic /λ�
Pic

≤
θ + Cstab

(
(1 + CPic)Calgλ

�
algλ

�
Picθ + [

CPic + (1 + CPic)Calgλ
�
algλ

�
Picθ

]
λ�
Picθ

)

1 − θ

which converges to 0 as θ → 0. As a consequence, (34) holds for sufficiently small θ .
Clearly, the parameters λalg, λPic, θ > 0 can be chosen such that all assumptions

are fulfilled. First, choose θ > 0 such that 0 < θ < min{1, θ�}. Then, choose
λPic > 0 such that 0 < λPic/θ < λ�

Pic. Finally, choose 0 < λalg < 1 such that
λalg + λalg/λPic < λ�

alg.

Step 2 Recall that CPic = qPic/(1− qPic) and Calg = qalg/(1− qalg). Provided that
(� + 1, 0, 0) ∈ Q, it follows from the contraction properties (26) resp. (45), and the
stopping criteria (41) resp. (43) that

|||u�
� − u

k, j
� ||| ≤ |||u�

� − u
k,�
� ||| + |||uk,�� − u

k, j
� |||

(45)≤ CPic |||uk,�� − u
k−1, j
� ||| + |||uk,�� − u

k, j
� |||

≤ (1 + CPic)|||uk,�� − u
k, j
� ||| + CPic |||uk, j� − u

k−1, j
� |||

(26)≤ (1 + CPic)Calg|||uk, j� − u
k, j−1
� ||| + CPic |||uk, j� − u

k−1, j
� |||

(41)≤ (1 + CPic)Calgλalg η�(u
k, j
� ) + [

CPic + (1 + CPic)Calgλalg
]|||uk, j� − u

k−1, j
� |||

(43)≤
(
(1 + CPic)Calgλalg + [

CPic + (1 + CPic)Calgλalg
]
λPic

)
η�(u

k, j
� )

(34)= C−1
stab

(
θ ′(1 − λPic/λ

�
Pic

) − θ
)
η�(u

k, j
� ).

Step 3 LetR� ⊆ T� be the subset from Lemma 11 with θ ′ from (34). From Step 2,
we obtain that

η�(R�, u
�
�)

(A1)≤ η�(R�, u
k, j
� ) + Cstab|||u�

� − u
k, j
� |||

≤ η�(R�, u
k, j
� ) +

(
θ ′(1 − λPic/λ

�
Pic

) − θ
)
η�(u

k, j
� ).

(87)

With the equivalence (51), Lemma 11, and estimate (87), we see that

θ ′(1 − λPic/λ
�
Pic

)
η�(u

k, j
� )

(51)≤ θ ′η�(u
�
�)

(86)≤ η�(R�, u
�
�)
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(87)≤ η�(R�, u
k, j
� ) +

(
θ ′(1 − λPic/λ

�
Pic

) − θ
)
η�(u

k, j
� ).

Thus, we are led to

θ η�(u
k, j
� ) ≤ η�(R�, u

k, j
� ).

Hence, R� satisfies the Dörfler marking criterion (24) used in Algorithm 1. By the
(quasi-) minimality of M� in (24), we infer that

#M� � #R�

(85)
� ‖u�‖1/s

As
η�(u

�
�)

−1/s (51)� ‖u�‖1/s
As

η�(u
k, j
� )−1/s .

Recall from (40) that u
0, j
�+1 = u

k, j
� . Thus, (60) and the equivalence (55) lead to

η�(u
k, j
� )−1/s

(60)
� (A

0, j
�+1)

−1/s (55)� (

0, j
�+1)

−1/s .

Overall, we end up with

#M� � ‖u�‖1/s
As

(

0, j
�+1)

−1/s for all (� + 1, 0, 0) ∈ Q. (88)

The hidden constant depends only on Cstab, Crel, Cmark, 1 − λPic/λ
�
Pic, CCéa = L/α,

C ′
rel, and s.

Step 4 With linear convergence (33) and the geometric series, we see that

∑

(�̃,̃k, j̃)∈Q
(�̃,̃k, j̃)≤(�,k, j)

(

k̃, j̃
�̃

)−1/s
(33)
� (


k, j
� )−1/s

∑

(�̃,̃k, j̃)∈Q
(�̃,̃k, j̃)≤(�,k, j)

(q1/slin )|(�,k, j)|−|(�̃,̃k, j̃)| � (

k, j
� )−1/s

(89)

with hidden constants depending only on Clin, qlin, and s. For (�, k, j) ∈ Q such that
(� + 1, 0, 0) ∈ Q and such that T� �= T0, Step 3 and the closure estimate (R3) lead to

#T� − #T0 + 1 � #T� − #T0
(R3)
�

�−1∑

�̃=0

#M�̃

(88)
� ‖u�‖1/s

As

�∑

�̃=0

(

0, j

�̃
)−1/s

≤ ‖u�‖1/s
As

∑

(�̃,̃k, j̃)∈Q
(�̃,̃k, j̃)≤(�,k, j)

(

k̃, j̃
�̃

)−1/s
(89)
� ‖u�‖1/s

As
(


k, j
� )−1/s .
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Replacing ‖u�‖As with max{‖u�‖As ,

0,0
0 }, the overall estimate trivially holds for

T� = T0. This proves that

(#T� − #T0 + 1)s
k, j
� �

{
max{‖u�‖As ,


0,0
0 }, if (� + 1, 0, 0) ∈ Q and � ≥ 0,

‖u�‖As , if (� + 1, 0, 0) ∈ Q and � ≥ 1.

(90)

It remains to consider the cases where (�, k, j) ∈ Q but (� + 1, 0, 0) /∈ Q, as well
as the case T� = T0. In the first case, in holds that 1 ≤ � = � < ∞, and one of the
cases discussed in detail in Step 1 of Lemma 10 arises.

First, let 2 ≤ � = � < ∞. Since � − 1 ≥ 1 and (�, 0, 0) ∈ Q, (90) shows that

(#T�−1 − #T0 + 1)s

k, j
�−1 � ‖u�‖As .

Moreover, Lemma 9 leads to 

k, j
� � 


k, j
�−1. Therefore, we obtain from (83) that

#T� − #T0 + 1 ≤ Cson#T0(#T�−1 − #T0 + 1). (91)

Altogether, (90) holds for this case as well.
Second, let � = � = 1. Then, we can rely on the inequality

(#T1 − #T0 + 1)s
k, j
1

(91)≤ Cson(#T0)

k, j
1

(54)
� 


k, j
0

(32)= |||u� − u
k, j
0 ||| + |||uk,�0 − u

k, j
0 ||| + η0(u

k, j
0 )

(26)
� |||u� − u�

0||| + |||u�
0 − u

k, j
0 ||| + |||uk, j0 − u

k, j−1
0 ||| + η0(u

k, j
0 )

(43)
� |||u� − u�

0||| + |||u�
0 − u

k, j
0 ||| + |||uk, j0 − u

k−1, j
0 ||| + η0(u

k, j
0 )

(48)
� |||u� − u�

0||| + |||uk, j0 − u
k−1, j
0 ||| + η0(u

k, j
0 )

(43)
� |||u� − u�

0||| + η0(u
k, j
0 )

(51)
� |||u� − u�

0||| + η0(u
�
0)

(A3)
� η0(u

�
0) ≤ ‖u�‖As .

(92)

Thus, (90) holds for this case as well.
Finally, let � = � = 0. Then, linear convergence (33) proves that



k, j
0

(33)
� 


0,0
0 . (93)

Hence, (90) also holds for this case, and we conclude the proof of (36). ��
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6 Proof of Theorem 5 (optimal decay rate wrt. computational cost)

Proof of Theorem 5 Note that #T�′ −#T0+1 = 1 ≤ #T0 for �′ = 0 and #T�′ −#T0+1 ≤
#T ′

� for �′ > 0, so that the left inequality in (37) immediately follows from the left
inequality in (36). In order to prove the right inequality in (37), let (�′, k′, j ′) ∈ Q.
Employing the right inequality in (36) (cf. (90)), the geometric series proves that

∑

(�,k, j)∈Q
(�,k, j)≤(�′,k′, j ′)

#T�

(81)≤ #T0
∑

(�,k, j)∈Q
(�,k, j)≤(�′,k′, j ′)

(#T� − #T0 + 1)

(36)≤ #T0 C1/s
opt max{‖u�‖As ,


0,0
0 }1/s

∑

(�,k, j)∈Q
(�,k, j)≤(�′,k′, j ′)

(

k, j
� )−1/s

(33)≤ #T0 C1/s
opt C

1/s
lin

1

1 − q1/slin

max{‖u�‖As ,

0,0
0 }1/s(
k′, j ′

�′ )−1/s .

Rearranging this estimate, we end up with

sup
(�′,k′, j ′)∈Q

( ∑

(�,k, j)∈Q
(�,k, j)≤(�′,k′, j ′)

#T�

)s



k′, j ′
�′ � max{‖u�‖As ,


0,0
0 },

where the hidden constant depends only on Cstab, Crel, Cmark, 1 − λPic/λ
�
Pic, CCéa =

L/α, C ′
rel, Cmesh, Clin, qlin, #T0, and s. This proves the right inequality in (37). ��

7 Numerical experiments

In this section, we present numerical experiments to underpin our theoretical findings.
We compare the performance of Algorithm 1 for

• different values of λalg ∈ {10−1, 10−2, 10−3, 10−4},
• different values of λPic ∈ {1, 10−1, 10−2, 10−3, 10−4},
• different values of θ ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1}.

As model problems serve nonlinear boundary value problems which arise, e.g., from
nonlinear material laws in magnetostatic computations, where the mesh-refinement is
steered by newest vertex bisection.

As an algebraic solver for the linear problems arising from the Banach–Picard
iteration, we use PCG with multilevel additive Schwarz preconditioner from [22,
Sect. 7.4.1] which is an optimal preconditioner, i.e., the condition number of the
preconditioned system is uniformly bounded; cf. also [24, Sect. 2.9].
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7.1 Model problem

Let� ⊂ R
d , d ≥ 2, be a bounded Lipschitz domain with polytopal boundary� = ∂�

split into relatively open and disjoint Dirichlet and Neumann boundaries �D, �N with
|�D| > 0, i.e., � = �D ∪�N. While the numerical experiments in Sects. 7.4–7.5 only
consider d = 2, we stress that the following model problem is covered by the abstract
theory for any d ≥ 2. For f ∈ L2(�) and g ∈ L2(�), find u� such that:

−div (μ(x, |∇u�(x)|2)∇u�(x)) = f (x) in �,

u�(x) = 0 on �D,

μ(x, |∇u�(x)|2) ∂nu
�(x) = g(x) on �N,

(94)

where the scalar nonlinearityμ : �×R≥0 → R satisfies the following properties (M1–
M4), similarly considered in [23,26]:

(M1) There exist constants 0 < γ1 < γ2 < ∞ such that

γ1 ≤ μ(x, t) ≤ γ2 for all x ∈ � and all t ≥ 0. (95)

(M2) There holds μ(x, ·) ∈ C1(R≥0, R) for all x ∈ �, and there exist constants
0 < γ̃1 < γ̃2 < ∞ such that

γ̃1 ≤ μ(x, t) + 2t
d

dt
μ(x, t) ≤ γ̃2 for all x ∈ � and all t ≥ 0. (96)

(M3) Lipschitz continuity of μ(x, t) in x , i.e., there exists a constant Lμ > 0 such
that

|μ(x, t) − μ(y, t)| ≤ Lμ|x − y| for all x, y ∈ � and all t ≥ 0. (97)

(M4) Lipschitz continuity of t d
dt μ(x, t) in x , i.e., there exists a constant L̃μ > 0 such

that

|t d

dt
μ(x, t) − t

d

dt
μ(y, t)| ≤ L̃μ|x − y| for all x, y ∈ � and all t ≥ 0. (98)

7.2 Weak formulation

The weak formulation of (94) reads as follows: Find u ∈ H1
D(�) := {w ∈ H1(�) :

w = 0 on �D} such that

∫

�

μ(x, |∇u�(x)|2)∇u� · ∇v dx =
∫

�

f v dx +
∫

�N

gv ds for all v ∈ H1
D(�).

(99)
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Fig. 1 Z -shaped domain � ⊂ R
2 with initial mesh T0 and �D marked by a thick blue line (left) and

L-shaped domain � ⊂ R
2 with initial mesh T0 (right)

With respect to the abstract framework of Sect. 2.1, we take X = H1
D(�), K = R,

and (·, ·) = (∇·, ∇ · ) with |||v||| = ‖∇v‖L2(�). We obtain (11) with operators

〈Aw, v〉X ′×X =
∫

�

μ(x, |∇w(x)|2)∇w(x) · ∇v(x) dx, (100a)

〈F, v〉X ′×X =
∫

�

f v dx +
∫

�N

gv ds (100b)

for all v,w ∈ X . We recall from [23, Proposition 8.2] that (M1–M2) implies that
A is strongly monotone (with α := γ̃1) and Lipschitz continuous (with L := γ̃2), so
that (94) fits into the setting of Sect. 2.1. Moreover, (M3–M4) are required to prove
the well-posedness and the properties (A1)–(A4) of the residual a posteriori error
estimator.

7.3 Discretization and a posteriori error estimator

Let T0 be a conforming initial triangulation of � into simplices T ∈ T0. For each
TH ∈ T, consider the lowest-order FEM space

XH := {
v ∈ C(�) : v|� = 0 and v|T ∈ P1(T ) for all T ∈ TH

}
. (101)

As in [26, Sect. 3.2], we define for all T ∈ TH and all vH ∈ XH , the corresponding
weighted residual error indicators

ηH (T , vH )2 := |T |2/d‖ f + div (μ(·, |∇vH |2)∇vH )‖2L2(T )

+ |T |1/d‖[(μ(·, |∇vH |2)∇vH ) · n]‖2L2(∂T∩�)
,

(102)
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Fig. 2 Optimal decay rate wrt. degrees of freedom, example from Sect. 7.4. Error estimator η�(u
k, j
�

) on
mesh T�, perturbed Banach–Picard iteration k, and PCG step j of Algorithm 1 with respect to the number
of elements N of the mesh T� for various parameters θ , λPic, and λalg

where [·] denotes the usual jump of discrete functions across element interfaces, and
n is the outer normal vector of the considered element.

Due to (M3), the error estimator is well-posed, since the nonlinearity μ(x, t) is
Lipschitz continuous in x . Then, reliability (A3) and discrete reliability (A4) are proved
as in the linear case; see, e.g., [10] for the linear case or [26, Theorem 3.3] and [26,
Theorem 3.4], respectively, for strongly monotone nonlinearities.

The verification of stability (A1) and reduction (A2) requires the validity of a certain
inverse estimate. For scalar nonlinearities and under the assumptions (M1–M4), the
latter is proved in [26, Lemma 3.7]. Using this inverse estimate, the proof of (A1)
and (A2) follows as for the linear case; see, e.g., [10] for the linear case or [26,
Sect. 3.3] for scalar nonlinearities. We note that the necessary inverse estimate is, in
particular, open for non-scalar nonlinearities. In any case, the arising constants in (A1–
A4) depend also on the uniform shape regularity of the triangulations generated by
newest vertex bisection.
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Fig. 3 Optimal decay rate wrt. overall computational cost, example from Sect. 7.4. Error estimator

η�′ (u
k′, j ′
�′ ) on mesh T�′ , perturbed Banach–Picard iteration k′, and PCG step j ′ of Algorithm 1 with

respect to the overall cost expressed as the cumulative sum
∑

(�,k, j)≤(�′,k′, j ′) #T� for various parameters

θ , λPic, and λalg.

7.4 Experiment with known solution

We consider the Z -shaped domain � ⊂ R
2 from Fig. 1 (left) with mixed boundary

conditions and the nonlinear problem (94) withμ(x, |∇u�(x)|2) := 2+ 1√
1+|∇u�(x)|2 .

This leads to the bounds α = 2 and L = 3 in (10). We prescribe the solution u� in
polar coordinates (x, y) = r(cosφ, sin φ) with φ ∈ (−π, π)

u�(x, y) := rβ cos(β φ) with β = 4/7 (103)

and compute f and g in (94) accordingly. We note that u� has a generic singularity at
the re-entrant corner (x, y) = (0, 0).
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Fig. 4 Number of PCG iterations wrt. the number of elements N := #T�, example from Sect. 7.4, for
θ = 0.5, λPic = 10−2 (top), for θ = 0.5, λalg = 10−2 (middle), and for λalg = λPic = 10−2 (bottom)

In Fig. 2, we compare uniform mesh-refinement (θ = 1) to adaptive mesh-
refinement (0 < θ < 1) for different values of λalg and λPic. We plot the error

estimator η�(u
k, j
� ) over the number of elements N := #T�. First (top), we fix θ = 0.5,

λPic = 10−2, and choose λalg ∈ {10−1, 10−2, 10−3, 10−4}. We see that uniform
mesh-refinement leads to the suboptimal rate of convergence O(N−2/7), whereas
Algorithm 1 with adaptive mesh-refinement regains the optimal rate of convergence
O(N−1/2), independently of the actual choice of λalg. We observe the very same if we
fix θ = 0.5, λalg = 10−2, and choose λPic ∈ {1, 10−1, 10−2, 10−3, 10−4} (middle),
or if we fix λalg = λPic = 10−2 and vary θ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} (bottom). Since
we know from Proposition 2 and the estimate

|||uk,�� − u
k, j
� |||

(26)
� |||uk, j� − u

k, j−1
� |||

(41)
� η�(u

k, j
� ) + |||uk, j� − u

k−1, j
� |||

(43)
� η�(u

k, j
� )

that η�(u
k, j
� ) � 


k, j
� , this empirically underpins Theorem 4.
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Fig. 5 Optimal decay rate wrt. degrees of freedom, example from Sect. 7.5. Error estimator η�(u
k, j
�

) on
mesh T�, perturbed Banach–Picard iteration k, and PCG step j of Algorithm 1 with respect to the number
of elements N of the mesh T� for various parameters θ , λPic, and λalg

In Fig. 3, we analogously choose different combinations of θ , λalg, and λPic. We

plot the error estimator η�′(u
k′, j ′
�′ ) over the cumulative sum

∑
(�,k, j)≤(�′,k′, j ′) #T�.

Independently of θ , λalg, and λPic, we observe optimal order of convergence

O
(( ∑

(�,k, j)≤(�′,k′, j ′) #T�

)−1/2) with respect to the overall computational cost, in

accordance with Theorem 5.
In Fig. 4, we also consider the total number of PCG iterations cumulated over all

Picard steps on the given mesh for different combinations of θ , λalg, and λPic. We
observe that independently of the choice of these parameters, the total number of PCG
iterations stays uniformly bounded. Additionally, we see that for larger values of λalg
and λPic, as well as for smaller values of θ , the total number of PCG iterations is
smaller.

123



Convergence and quasi-optimal cost of adaptive algorithms... 721

102 103 104 105 106 107 108

10−2

10−1

100

O
∑

(�,k,j)≤(�′,k′,j′) #T�

)−1/2)

overall computational cost
∑

(�,k,j)≤(�′,k′,j′) #T�

er
ro
r
es
ti
m
at
or

η �
′ (
u

k
′ ,j

′

�′
)

L-shaped domain

θ = 0.5, λalg = 10−1, λPic = 10−2

θ = 0.5, λalg = 10−2, λPic = 10−2

θ = 0.5, λalg = 10−3, λPic = 10−2

θ = 0.5, λalg = 10−4, λPic = 10−2

101 102 103 104 105 106 107 108

10−2

10−1

100

O
∑

(�,k,j)≤(�′,k′,j′) #T�

)−1/2)

overall computational cost
∑

(�,k,j)≤(�′,k′,j′) #T�

er
ro
r
es
ti
m
at
or

η �
′ (
u

k
′ ,j

′

�′
)

θ = 0.5, λalg = 10−2, λPic = 1
θ = 0.5, λalg = 10−2, λPic = 10−1

θ = 0.5, λalg = 10−2, λPic = 10−2

θ = 0.5, λalg = 10−2, λPic = 10−3

θ = 0.5, λalg = 10−2, λPic = 10−4

102 103 104 105 106 107 108

10−2

10−1

100

O
∑

(�,k,j)≤(�′,k′,j′) #T�

)−1/2)

overall computational cost
∑

(�,k,j)≤(�′,k′,j′) #T�

er
ro
r
es
ti
m
at
or

η �
′ (
u

k
′ ,j

′

�′
)

θ = 0.1, λalg = 10−2, λPic = 10−2

θ = 0.3, λalg = 10−2, λPic = 10−2

θ = 0.5, λalg = 10−2, λPic = 10−2

θ = 0.7, λalg = 10−2, λPic = 10−2

θ = 0.9, λalg = 10−2, λPic = 10−2

Fig. 6 Optimal decay rate wrt. overall computational cost, example from Sect. 7.5. Error estimator

η�′ (u
k′, j ′
�′ ) on mesh T�′ , perturbed Banach–Picard iteration k′, and PCG step j ′ of Algorithm 1 with

respect to the overall cost expressed as the cumulative sum
∑

(�,k, j)≤(�′,k′, j ′) #T� for various parameters

θ , λPic, and λalg

7.5 Experiment with unknown solution

We consider the L-shaped domain � ⊂ R
2 from Fig. 1 (right) and the nonlinear

problem (94) with f (x) = 1 and μ(x, |∇u�(x)|2) := 1 + ln(1+|∇u�|2)
1+|∇u�|2 . Then, (M1–

M4) hold with α ≈ 0.9582898 and L ≈ 1.5423438.
In Fig. 5, we again test Algorithm 1 with varying θ , λalg, and λPic. We plot the error

estimator η�(u
k, j
� ) over the number of elements N := #T�. Uniform mesh-refinement

leads to the suboptimal rate of convergence O(N−1/3), whereas Algorithm 1 regains
the optimal rate of convergence O(N−1/2). Again, this empirically confirms Theo-
rem 4. The latter rate of convergence even appears to be robust with respect to θ , λalg,
and λPic.
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Fig. 7 Number of PCG iterations wrt. number of elements N := #T�, example from Sect. 7.5, for θ = 0.5,
λPic = 10−2 (top), for θ = 0.5, λalg = 10−2 (middle), and for λalg = λPic = 10−2 (bottom)

In Fig. 6, we plot the estimator η�′(u
k′, j ′
�′ ) over the cumulative sum∑

(�,k, j)≤(�′,k′, j ′) #T�. Independently of the choice of the parameters θ , λalg, and λPic,

we observe the optimal order of convergence O
((∑

(�,k, j)≤(�′,k′, j ′) #T�

)−1/2) with

respect to the overall computational cost, which empirically underpins Theorem 5.
In Fig. 7, we finally consider the total number of PCG iterations cumulated over all

Picard steps on the given mesh.We observe that independently of the choice of θ , λalg,
and λPic, the total number of PCG iterations stays uniformly bounded. Additionally,
we see that for larger values of λalg and λPic, as well as for smaller values of θ , the
total number of PCG iterations is smaller.
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