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Abstract

Machine learning (ML) models have been demonstrated to be beneficial in various
domains. However, their application remains severely limited due to concerns about (1)
using personal data for training ML models and (2) exchanging data between different
organizations, like hospitals and banks. Both cases might lead to privacy breaches and
disclosure of sensitive information.

In this work, we tackle both problems simultaneously by generating synthetic data in a
federated learning manner. Previous work in this field primarily addresses image data
generation, while we focus on tabular data, which is more relevant for sensitive data
domains. In particular, we proposed adapting two centralized tabular data generation
methods, Bayesian Networks and Variational Autoencoders, to the federated setting with
a novel aggregation approach applied specifically to Bayesian Networks. We perform an
exhaustive evaluation of the generated synthetic on three datasets in terms of fidelity,
utility, and privacy. Further, we demonstrate how the data performance changes de-
pending on data partition among clients participating in federated learning and how
the number of clients impacts the results. Our results suggest that, in many cases, the
proposed methods in federated settings perform similarly to those in centralized settings
and outperform local data generation. However, the imbalance among clients significantly
affects the synthetic data generated by Variational Autoencoders.
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CHAPTER 1
Introduction

1.1 Motivation
The vast increase in the amount of data generated and collected in today’s digital world
has been an important aspect of the development of innovative machine learning (ML)
applications in various domains. For example, ML-based solutions are leveraged in
healthcare to enable personalized treatments, aid drug discovery, and improve disease
diagnosis [BM20]. In other domains, such as finance, ML approaches help to improve
customer satisfaction and enhance operational efficiency [PRALP+23]. Many of these
approaches rely on having access to a sufficient amount of high-quality data. However,
researchers and organizations encounter several obstacles when accessing and sharing
data in practice.
A significant obstacle in this regard arises when working with data that may contain
sensitive information related to an individual. This not only raises privacy concerns but
is subject to strict data protection regulations like the EU’s General Data Protection
Regulation (GDPR). For example, health data used for ML applications may include
personal patient information such as medical conditions, treatments, or insurance data.
Unauthorized access to such sensitive information directly compromises individual privacy.
Therefore, organizations must guarantee adequate measures to comply with these regula-
tions [BDH18]. These measures often involve expensive and time-consuming processes,
such as establishing data processing agreements, obtaining ethical approvals, and conduct-
ing privacy risk assessments, which makes the research process more complex. Another
barrier for organizations and researchers is data silos. Data is sometimes spread across
numerous geographical locations or multiple institutions, and centralized data access can
be challenging or even impossible due to the legal barriers [FTPR+21]. Therefore, the
amount and quality of data available might be insufficient for ML applications.
To address these challenges, several privacy-preserving approaches have been proposed,
including anonymization methods (e.g., k-anonymity), synthetic data generation (SDG),
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1. Introduction

federated learning (FL), and differential privacy (DP). Among these, SDG is one approach
that has gained popularity over the last few years [MAK+23, FV22]. Synthetic data is
artificially generated data that mimics the properties of real-world data [FV22]. It can
be generated by manually developed rules or in an automated way using a statistical
model or algorithm [JSH+22]. Usually, the choice of the model depends on the data
type, the domain of interest, and the specific task [FB23]. Synthetic data is particularly
appealing for organizations and researchers because it offers a promising solution for
privacy-preserving data release, serves as an alternative for testing and evaluating ML
pipelines, and is also helpful for data augmentation when data is scarce [JSH+22].
However, synthetic data relies on real data, which is problematic with data silos because
it cannot be easily centralized. In this case, synthetic data would need to be generated for
each silo, and it may not fully capture the diversity and actual distribution of real-world
data.
Federated learning (FL) is an alternative privacy-preserving approach that specifically
addresses the problem of data silos [WZL+23]. The approach enables several clients,
such as hospitals or banks, to jointly train an ML model without sharing their private
data [KMA+21]. Instead, each client trains a model locally and shares the parameters
with a central server. The server then aggregates the clients’ parameters to obtain a
global model. This approach has become popular in many applications because it can
achieve results comparable to centralized ML [NSU+18, SVG18]. Nonetheless, compared
to synthetic data, one disadvantage of FL is that developing and evaluating different
ML models is more complex for data analysts [PA22]. In FL, an additional effort must
be carried out to adapt the ML pipeline. This can be particularly challenging for some
preprocessing steps and models, adding computational overhead to the training. However,
one potential solution that can alleviate both the problem of data sharing and data silos
is to use FL to generate synthetic data. The advantage of this approach is that the
synthetic data generator model needs to be adapted only once. Afterward, synthetic data
can be used to run multiple ML pipelines.

1.2 Problem Definition
Federated learning for generating synthetic data is an emerging research area in privacy-
preserving data publishing (PPDP) [LEA23]. This approach enables organizations to
generate more representative and diverse synthetic data without sharing their private
data [LEA23]. The synthetic data can later be used for different purposes (e.g., privacy-
preserving data release and data augmentation). The process works similarly to many
traditional FL approaches. The main characteristic is that in this case, the model is
a generative model. This means that the model is specifically trained to generate new
data that resembles the statistical properties of the clients’ data. Furthermore, instead of
evaluating the model in, e.g., a predictive task, the synthetic data generated by the model
is evaluated in three different dimensions (fidelity, utility, and privacy) to ensure that the
data is useful for further analysis and tasks while not disclosing sensitive information.
An overview of this approach is depicted in Figure 1.1.
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1.2. Problem Definition
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Figure 1.1: Overview of a synthetic data generation pipeline in a distributed setting:
clients are organizations or companies (e.g., hospitals), and they collaborate together to
learn a global generative model without sharing their private data but instead sharing
parameters of a local model. The global model is used to generate synthetic records,
which are then evaluated in terms of fidelity, utility, and privacy to ensure the reliability
of the data for further tasks while mitigating disclosure risks.

While most of the research in this area pays attention to image data [BUS+22, CQZ+20,
TF20], tabular data is the most common type of data in real-world applications [SZA22]
and has not been extensively investigated for several scenarios in the federated setting (e.g.,
data that is not independent and identically distributed (i.i.d.), multi-modal distributions,
mixed data types, multiple generative models). Unlike tabular data, image data is
homogeneous in several characteristics (size, value ranges, ...) and is characterized by
spatial relationships. These characteristics make images suitable for synthetic data
generation with deep neural networks [BLS+22], which can be easily adapted to the
federated setting. Furthermore, as the data is homogeneous, the preprocessing steps can
be performed locally, reducing the process’s complexity.

In contrast, tabular data typically contains a combination of discrete and continuous
attributes. Continuous attributes might have multiple modes, and discrete attributes
might be highly imbalanced [DLH+23]. Consequently, generating tabular data can be
more challenging, especially in the federated setting. Adapting traditional generative
models to the federated context may be necessary for certain scenarios, a process that
is not always straightforward for several types of models. Additionally, since tabular
data can contain sensitive information and FL can still be exposed to inference attacks
[LXW22], additional privacy-preserving technologies might be required in the process.

In this thesis, we adapt two commonly employed methods for generating synthetic tabular
data in centralized settings, Bayesian Networks (BNs) and Variational Autoencoders
(VAEs), to the federated setting. We thoroughly evaluate the quality of the synthetic
data generated across various data and client scenarios, including different numbers of
clients and different client partitions (i.i.d and non-i.i.d distributions). To benchmark
the performance of the generative models, we compare the results against two different
baselines: centralized learning and local learning, i.e. each client generating their
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1. Introduction

own synthetic from their own original data. Furthermore, we consider three different
dimensions for evaluating synthetic data (fidelity, utility, and privacy), analyze the trade-
offs between the dimensions, and investigate additional privacy-preserving techniques,
such as differential privacy. We also analyze the challenges in the adaptation from the
centralized setting to the federated setting of the synthetic data generation methods in
terms of preprocessing, training, hyperparameter tuning, and evaluation.

1.3 Research Questions
We address the following research questions in this thesis:

1. To what extent is federated synthetic tabular data useful?
We investigate the quality of the synthetic data generated using BNs and VAEs in
a federated setting in terms of fidelity and utility. Fidelity is evaluated with respect
to the univariate, bi-variate, and multivariate distributions using the following
metrics: Hellinger distance (HD), Pairwise correlation difference (PCD), Propensity
score (PS), and Log-Cluster (LC). On the other hand, utility is evaluated using
two well-known analyses: Train Real Test Real (TRTR) and Train Synthetic Test
Real (TSTR).

a) How does federated synthetic tabular data compare with centralized
synthetic data and local synthetic data from a single client?
This question aims to explore the quality of the synthetic data generated in
the federated setting with respect to two baselines: the centralized setting
and the local setting. The centralized setting refers to the scenario where real
data is centralized, and a generative model is trained directly from this data.
Meanwhile, the local setting refers to the scenario where each client generates
synthetic data with their own local data. For the local setting, we average the
results for all the clients for each of the metrics. The main goal is to observe
whether federated results achieve similar performance to centralized results
and outperform the average local results.

b) How do fidelity and utility of federated synthetic tabular data
compare for the different synthetic data techniques and datasets?
This question aims to investigate which technique (BNs or VAEs) provides
better performance in terms of fidelity and utility in the federated setting for
different datasets. We use the aforementioned metrics for fidelity and utility
for comparison, and additionally, we provide visual comparisons for the quality
of the synthetic data. The relationship between fidelity and utility is also
analyzed.

2. To what extent is the federated generation of synthetic tabular data
sensitive to hyperparameters and data distribution?
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1.3. Research Questions

This question analyzes how the quality of the synthetic data generated in the
federated setting is affected under different parameters and data distribution
scenarios. We use fidelity and utility metrics to quantify the impact.

a) To what degree do the training hyperparameters used in the feder-
ated synthetic data generator affect the fidelity and utility?
We consider hyperparameters affecting the aggregation or local models to
determine the federated synthetic data generator’s sensitivity. For the BN,
we focus on parameters in the genetic algorithm, such as the source genes,
the aggregation interval, and the gene pool size. Additionally, for the VAE,
we concentrate on hyperparameters affecting the model’s architecture and
training, including the number of epochs, the optimizer, batch size, and local
epochs.

b) To what extent do the number of clients and the data heterogeneity
affect the fidelity and utility of synthetic tabular data generated in
a federated setting?
To determine the impact of the data distribution among clients in the federated
setting, we simulate different client scenarios by changing the number of clients
and modeling i.i.d and non-i.i.d partitions. Then, we compare the fidelity and
utility scores across various scenarios.

3. To what extent does federated synthetic tabular data preserve privacy?
Synthetic data is widely used to mitigate privacy risks. In particular, it mitigates
re-identification risk because there is no direct mapping between a real and a
synthetic record. However, SDG models can overfit the training data and generate
records that closely resemble training data records, which, in the end, turns out
to produce high utility but at the cost of privacy [AVBSvdS22]. Furthermore,
some works have shown that synthetic data can still be vulnerable to inference
attacks [SOT20]. We aim to explore the risk of disclosure of synthetic tabular
data generated in a federated setting using distance-based metrics and attribute
disclosure attacks.

a) To what extent do records in federated synthetic tabular data
resemble those in real data?
This question investigates how closely the synthetic data generated in the
federated setting resembles the training records used by the clients. To
measure this, we compute the minimum distance from a synthetic record to
the samples in the training data from each client. We check whether there are
exact matches and then compare the distances to samples from a hold-out set
following the approach proposed by Platzer and Reutterer [PR21]. The idea
is to assess how well the SDG model generalizes insights from the real data
without learning the specific details. The expected result is that the distance
between real and synthetic records is similar regardless of whether the data
was used or not as input for synthetic data generation.

5



1. Introduction

b) To what extent does federated synthetic tabular data prevent at-
tribute disclosure?
This question explores attribute disclosure risks in the synthetic data that
is generated in a federated manner. For this purpose, we define a scenario
for each dataset following the approach in [HME20], which selects a set of
quasi-identifiers and a sensitive attribute as the target and formulates the
attribute disclosure problem as a classification task. Then, we compare the
results in terms of predicting the target attribute accuracy with the original
and synthetic data. In this case, the original data is used as an upper bound
to estimate the disclosure risk, and the dummy classifier is used as a lower
bound.

1.4 Methodology
This section outlines the methodology used to accomplish this thesis’s main objective
and to address the research questions proposed.

1.4.1 Literature Review
The literature review follows a restricted version of Kitchenham’s guidelines [KC07] and
covers related works in the privacy-preserving data publishing (PPDP) field, mainly
focusing on synthetic data and federated learning. This is relevant because it provides
the foundation for developing this thesis. In particular, we conduct the following steps as
part of the review:

1. Research the state-of-the-art methods for generating synthetic tabular data in a
centralized setting and select commonly used methods.

2. Analyze the evaluation metrics and experimental setup used to assess the quality
of synthetic tabular data generated with those methods.

3. Research state-of-the-art papers using federated learning to generate synthetic
data, along with relevant related papers on similar models for other applications to
investigate different aggregation techniques.

4. Review state-of-the-art papers using additional techniques to enhance federated
learning and synthetic data privacy.

1.4.2 Experiment design and implementation
For conducting the experiments and evaluating the results in this thesis, we use the
Cross-industry standard process for data mining (CRISP-DM) [WH00] as a guideline
and perform the following steps.
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1.5. Structure of the work

Data selection and SDG models selection

We identify datasets commonly used in the synthetic data literature and select those
containing individual-level information from various sensitive domains. On the other
hand, for the SDG model selection, we consider the following two criteria: (1) Select
models that operate on fundamentally different principles and (2) Select models that are
commonly used in the centralized setting for tabular data but have not been extensively
studied in the federated setting.

Design and implementation of the synthetic data models in FL

The design of the synthetic data models in FL involves considering what the clients will
share with the server, identifying whether this can generate a potential privacy issue, and
determining a strategy to aggregate the clients’ shared information. To decide on these
aspects, we inspired our solution of the BN in two previous works [HME22, DFDCK+23]
and for the VAE model, we follow the traditional approach in federated learning (FL) of
aggregating neural network models using FedAvg [MMRyA16]. The implementation is
then carried out using the framework Flower.

Evaluation and comparison of the results

For the two models adapted to the federated setting (BN and VAE), the quality of the
generated synthetic data is evaluated in terms of fidelity, utility, and privacy, considering
multiple scenarios (different numbers of clients, data partitions, and hyperparameters) as
described in the research questions. The results are then compared against centralized and
local baselines and between the models to determine if they meet the desired performance.

1.5 Structure of the work
The remainder of this thesis is structured as follows: Chapter 2 provides background
knowledge on approaches for privacy-preserving data sharing that are relevant to the
thesis and includes related work on privacy-preserving data synthesis in distributed
settings. Chapter 3 and Chapter 4 cover the two synthetic data generation methods
investigated in this work, namely Bayesian Networks and Variational Autoencoders,
and present the approach proposed to adapt these methods to the distributed setting.
Chapter 5 describes the methodology used for the experimental setup. Chapter 6 presents
the experiments’ results and analysis. Chapter 7 summarizes the main contributions of
the thesis and presents possible future work options.

7





CHAPTER 2
Background and Related Work

This chapter covers background knowledge and related work relevant to this thesis.
First, we provide an extensive overview of synthetic data, including different generation
methods and evaluation metrics used in this work. Furthermore, we review additional
privacy-preserving approaches, specifically federated learning, differential privacy, and
secure-multiparty computation, which can enhance privacy for synthetic data generation
in distributed settings. Finally, we discuss related work on privacy-preserving data
synthesis of tabular data in distributed settings.

2.1 Synthetic Data
Synthetic data is artificial data that mimics the structure and properties of real-world
data [EEMH20]. Synthetic data generation consists of training a model on real (also
called original) data and then sampling from the model to generate new (artificial) data.
Different models can be used in the generation, including statistical, probabilistic, and
deep learning models. However, depending on the data type, the domain of interest, and
the specific task, some models might be preferred over others [JSH+22]. Synthetic data
mitigates privacy risks, which is key in applications where privacy or data protection
regulations are a major concern.

Synthetic data can also be used for data augmentation. In the industry, for example,
multiple applications have benefited from augmented synthetic data. Jain et al. [JSP+22]
showed that synthetic augmented data improves the performance of deep learning
models in classifying surface defects. Khan et al. [KHK21] demonstrated that synthetic
data augmentation through virtual sensors provides a better generalization of original
data and improves the performance of deep learning-based models for fault diagnosis
of rotating machines. Other applications using synthetic data augmentation include
sensory anomaly detection in industrial robots [LDQ+22], fiber layup inspection in the
aerospace industry [MMSG21], and automated quality inspections of structural adhesive

9



2. Background and Related Work

applications for automotive parts [PGMB21]. Another interesting application of synthetic
data is balancing target classes in imbalanced datasets. This reduces the bias in the ML
models and improves their fairness and trustworthiness [JSH+22].

In this thesis, we focus on synthetic data as a replacement for real data, specifically
for applications with sensitive tabular data. Therefore, the use of synthetic data for
augmentation will not be explored as it is outside the scope of this work.

2.1.1 Types of Synthetic Data
Synthetic data can be classified into three main categories: fully synthetic, partially
synthetic, and hybrid [SM17].

• Fully Synthetic Data is completely generated, meaning it does not include any
original records. This concept was introduced in 1993 by Rubin [Rub93], who
leveraged multiple imputation theory to generate fully synthetic data. Subsequent
work proposed in this regard uses parametric statistical models and, more recently,
leverage techniques from ML [Rei23].

• Partially Synthetic Data is generated by replacing sensitive attributes in a real
dataset with synthetic values. This approach was introduced by Little [Lit93] as an
imputation mechanism to protect the confidentiality of respondents in census and
surveys, and was further developed by Reiter [Rei03]. The risk of re-identification in
partially synthetic data is higher than in fully synthetic data because it contains real
data. However, in terms of utility, partially synthetic data is, in most cases, superior
to fully synthetic data since less information is lost from the real data [DBR07].

• Hybrid Synthetic Data is generated by combining real and synthetic records,
similar to partially synthetic data. The difference in this case is that fully synthetic
data is generated first, and then random records from the real data are chosen and
merged with the closest record in the synthetic data. The benefit of this approach
is that it provides a better trade-off between privacy and utility compared to the
other categories [SM17]. However, it is more computationally expensive.

2.1.2 Synthetic Data Generation Methods
Literature proposes multiple approaches for generating synthetic data. Hernandez et al.
[HEA+22] classified these approaches into three main categories: classical, deep learning,
and others. The classical approaches encompass statistical and probabilistic models such
as Bayesian Networks (BNs) or copulas and ML models such as support vector machines
(SVMs) or classification and regression trees (CART). The deep learning approaches are
based on neural networks, such as generative adversarial networks (GANs), variational
autoencoders (VAEs), or diffusion models. Other approaches refer to generation methods
that rely on various modules or steps like SynSys [DC19], an approach that combines
hidden Markov models (HMMs) and regression algorithms in several steps to generate

10



2.1. Synthetic Data

synthetic health data. In this thesis, we mainly focus on the generation of tabular data
using classical and deep learning methods. Below, we provide an overview of relevant
methods:

• Copulas are probabilistic models that describe the dependence between random
variables. Copulas are particularly useful because they separate the marginal
distributions of variables from their dependence structure and output the joint
probability distribution that best fits the structure [EEMH20]. Generating synthetic
data using copulas from a dataset with n variables denoted as Z1, . . . , Zn comprises
two main steps [MNH21]. In the first step, the corresponding marginal distributions
F1, . . . Fn are identified for each variable. A way to accomplish this is by estimating
their empirical distribution function. The second step creates the model representing
the joint probability distribution based on Sklar’s Theorem [Skl59]. This theorem
states that a joint probability distribution F (Z1, . . . , Zn) can be expressed through
its univariate marginal distributions and a copula function C. Formally,

F (Z1, . . . , Zn) = C(F1(Z1), . . . , Fn(Zn)) (2.1)

The copula function encodes the dependence between the variables. Synthetic data
can be generated by sampling data from the copula. Various families of copulas
exist to capture this dependence. One famous family of functions is the Gaussian
Copula, which represents the joint probability distribution using a multivariate
normal distribution and a correlation matrix. The work by Patki et al. [PWV16]
provides an example of applying Gaussian copulas for synthetic data generation in
relational databases.

• Classification and Regression Trees (CART) is an algorithm commonly used in
machine learning for learning a tree-based predictive model. CART can also be used
for generating synthetic data, as first suggested by Reiter in 2005 [Rei05]. The idea
of CART is to construct a binary decision tree by recursively partitioning a dataset
into smaller subsets until a stopping criterion is met (e.g., a minimum number
of samples in a leaf node). To decide the partition points, CART uses impurity
measures, such as the Gini Index, and identifies the variable and split criteria
that minimize the impurity score from the set of input variables. Additionally,
CART uses pruning techniques to reduce the tree’s complexity. The leaf nodes
of the tree determine the outcome of the target variable. CART models are used
sequentially to generate fully synthetic data [NRD16]. This implies that variables
are synthesized one at a time. The process works as follows: the first variable is
generated using random sampling with replacement from its observed values as
it has no predictors. The second variable is generated using the first variable as
a predictor. The third variable uses the second and first variables as predictors.
The following variables are generated similarly, incorporating previous variables as
predictors. Previous work has shown that CART models perform well compared
to other methods. For instance, Pathare et al. [PMS+23] compared synthetic
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2. Background and Related Work

data generation techniques for tabular data using two well-known fidelity metrics,
propensity and cluster log metric, and showed that the CART performed better for
all the datasets.

• Bayesian Networks are probabilistic graphical models that use a directed acyclic
graph (DAG) to represent the joint probability distribution between a set of random
variables. The graph represents each random variable as a node and the conditional
dependencies between variables as edges. After the graph is constructed using
real data, it is utilized to draw new data samples, which compose a synthetic
dataset [PSH17]. An advantage of Bayesian networks is that the resulting model is
explainable and can incorporate expert knowledge.

• Variational Autoencoders (VAEs) consists of two main components: an en-
coder and a decoder. The encoder and decoder are deep neural networks trained
simultaneously to minimize a loss function. The encoder maps samples from the
real data to a latent space. Conversely, the decoder aims to reconstruct the input
from the latent space. The loss function measures the reconstruction loss and uses,
e.g., the Kullback–Leibler (KL) divergence [FV22].

• Generative Adversarial Networks (GANs) are a class of deep learning models
capable of generating synthetic data. GANs are based on a zero-sum game between
two neural networks, the generator and the discriminator. The generator aims
to produce samples that follow the original data distribution. The discriminator
aims to identify whether a sample comes from real data or from the generator.
This game continues until the discriminator cannot distinguish the real data from
the generated data [GPAM+14]. A well-known architecture for generating tabular
data is a conditional GAN called CTGAN [FV22], which introduces a mode-
specific normalization, a conditional generator, and a sampling method to tackle
the challenges of multi-modal distributions and imbalance of categorical columns
[XSCIV19].

2.1.3 Evaluation Metrics for Synthetic Data

The evaluation of synthetic data is commonly performed in literature considering three
main dimensions: fidelity, utility and privacy [HEA+22, DII22]. Fidelity estimates the
similarity of the synthetic data with respect to the original data. Utility metrics evaluate
the usefulness of synthetic data for a specific application compared to the original data.
Privacy metrics aim to quantify the risk posed by publishing synthetic data instead of
original data.

Further dimensions that have been proposed in the literature are diversity, and general-
ization [AVBSvdS22]. Diversity indicates whether the synthetic data samples covered the
variability of the original data. Generalization quantifies the extent to which synthetic
data copies the original data (e.g., indicating if the model overfits the original data).
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Different metrics have been proposed in each of these dimensions. However, there is no
direct guideline for choosing specific metrics [DII22]. Some authors have investigated
the possibility of defining an All-in-one metric that covers different dimensions to assess
synthetic data [CTM+22, AVBSvdS22, DI21].

Chundawat et al. proposed a universal metric named TabSynDex, which results from
averaging five different scores [CTM+22]. These scores include fidelity and utility metrics.
Dankar et al. proposed reducing four popular fidelity metrics to a unique value using
Principal Component Analysis (PCA) [DI22]. Alaa et al. [AVBSvdS22] proposed a
3-dimensional metric (α-Precision, β-Recall, Authenticity) that characterizes fidelity,
diversity, and generalization and enables the evaluation of synthetic data at two levels:
sample-level and population-level. Instead of providing a unique metric, other works clas-
sify the synthetic data as poor, good, and excellent using different dimensions [HEA+23].

Despite the efforts made to evaluate synthetic data in a standardized way, there is still a
lack of consensus in the literature. In this thesis, we considered commonly used metrics
to evaluate synthetic data in the three main dimensions: fidelity, utility, and privacy.
Instead of looking for the best synthetic data generator in the federated setting, we
investigate the trade-off between these metrics for two SDG methods using different
datasets to provide guidelines for choosing the best method depending on the primary
goals of the application.

Fidelity Metrics

Fidelity metrics can be classified into three categories: univariate fidelity, bivariate fidelity,
and population fidelity [DII22]. Univariate fidelity metrics determine whether synthetic
data preserves the statistical characteristics, structure, and marginal distributions of the
attributes in the original data. Bivariate fidelity metrics capture the correlations between
attribute pairs. Population fidelity metrics provide a global assessment of the similarity
of original and synthetic data distributions.

In this work, we will evaluate the following metrics to assess fidelity, covering the different
categories described above:

• Hellinger Distance (HD) is an univariate fidelity metric which uses a distance
metric to quantify the similarity between two probability distributions. It ranges
from 0 to 1, which makes it interpretable. A distance closer to 0 indicates that the
distributions are similar, while a distance closer to 1 indicates that the distributions
differ significantly. It can be applied to both continuous and categorical data.
The average of this metric can be used to determine the similarity of univariate
distributions across all variables in synthetic data and real data [DII22]. For two
discrete probability distributions P = (p1, . . . , pk) and Q = (q1, . . . , qk) the metric
can be calculated as follows:
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HD(p, q) = 1√
2

(
k

i=1
(√pi − √

qi)2 (2.2)

In the case of numerical variables, we can use binning techniques to transform them
into a discrete form.

• Pairwise Correlation Difference (PCD) is a metric that compares pairwise
correlations in synthetic and real data by calculating the difference of correlation
matrices in terms of Frobenius norm [DII22]. It falls into the category of bivariate
fidelity and is defined as follows:

PCD(R, S) = ||Corr(R) − Corr(S)||F (2.3)

where R and S correspond to the real and synthetic datasets, respectively, and
Corr(·) represents a matrix of correlation coefficients. These coefficients are cal-
culated using different formulas depending on the variable’s types. When both
variables are numeric, the Pearson correlation coefficient is used. When both
variables are categorical, the Cramér’s V [Cra99] coefficient is used. On the other
hand, the correlation ratio is used for numerical and categorical variables. In the
implementation, we used the associations function from the Python dython package
to estimate the correlation coefficient matrix.

• Propensity Score is a popular metric to assess the distinguishability between real
and synthetic data through a classification model. This metric was first adapted
for synthetic data in [SRN+18] and has since been widely applied for evaluating
the fidelity of synthetic data in literature [EEMFEH22, DI21, EF23, PMS+23]. To
compute this score, the real and synthetic data are combined into a new dataset
with an additional label indicating the corresponding source dataset of each record.
This dataset is used as input to train a classification model. The propensity score
for each record is then calculated using the prediction from the classifier. Based on
these scores, a metric that can be used to assess population fidelity is the propensity
mean square error (pMSE), which can be computed as follows:

pMSE = 1
N

i

(p̂i − c)2 (2.4)

where N is the size of the input dataset, p̂i is the probability that the record i
comes from the synthetic data, and c is the proportion of synthetic records to the
number of real records. The pMSE ranges from 0 to 0.25. A value of 0 indicates
no distinction between synthetic and real records; in this case, the probability of
all records is 0.5. Conversely, a value close to 0.25 occurs when the classifier is
confident that a record comes from the synthetic data. Common classification
models used to calculate the propensity score are Logistic Regression and CART
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models. The work in [DI21] found that calculating the propensity score based on
CART models provided a better model for distinguishability. Therefore, we used a
CART model in this thesis.

• Log-Cluster Metric [GRS+20] is a metric that was introduced to compare the
similarity of real and synthetic data in terms of clustering. The metric is computed
by merging the real and synthetic data to form a new dataset. The k-means
algorithm with a specified number of clusters G is used in the new dataset to
perform a cluster analysis. The intuition behind the analysis is that if real and
synthetic data are similar, then the distribution of the records in the different
clusters is even, and they cannot be distinguished. The metric is calculated as
follows:

Uc(R, S) = log


1
G

G

i=1
[
nR

j

nj
− c] (2.5)

where R and S correspond to the real and synthetic datasets, respectively, nR
j is the

number of real records in cluster j and nj is the total number of records in cluster j
and c is the proportion of real records to the total number of records in the combined
dataset. To implement this metric, we first use principal analysis component (PCA)
to reduce the dimensionality of the combined dataset to a number of components
that explain 85% of the total variance. Then, the transformed dataset is used for
cluster analysis. In this step, the k-means algorithm is run for different numbers of
clusters ranging from 2 to 20 as performed in [PMS+23], and the one that gives
the lower Uc value is selected as the final metric.

Utility Metrics

Utility metrics depend on the specific application where synthetic data will be used. A
common way to evaluate utility is to train ML models using synthetic data and compare
the results with those trained on the original data. Similar results indicate that synthetic
data is useful for performing the same analyses done with original data. Popular strategies
proposed in the literature include training on real and testing on real (TRTR) and
training on synthetic and testing on real (TSTR) [HEM19, SRRW23, HEA+23]. Different
classification metrics in machine learning are then used to evaluate the performance.
Figure 2.1 shows a confusion matrix that can be used to derive several of these metrics.

• Accuracy: fraction of correct predictions.

Accuracy = TP + TN

TP + TN + FP + FN
(2.6)
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Figure 2.1: Example of Confusion Matrix for Binary Classification. Source: [Tha20]

• Precision: fraction of correctly classified positive instances out of the total number
of instances predicted as positive.

Precision = TP

TP + FP
(2.7)

• Recall: fraction of correctly classified positive instances out of the total number of
actual positive instances.

Recall = TP

TP + FN
(2.8)

• False Positive Rate (FPR): fraction of negative instances that were incorrectly
classified as positive in a test.

FPR = FP

FP + TN
(2.9)

• F1-Score:: harmonic mean of precision and recall.

F1 score = 2 × Precision × Recall
Precision + Recall (2.10)

• Area Under the Receiver Operating Characteristic Curve (ROC AUC):
quantifies the performance of binary classifiers by computing the area under the
ROC curve, which plots the True Positive Rate (TPR) against the False Positive
Rate (FPR) across thresholds [HL05].

In this work, we use three classification models, namely Random Forest, Naive Bayes,
and k-Nearest Neighbors, to evaluate the machine learning utility. We report the ROC
AUC score as a performance metric since it is commonly used for binary classification.
Furthermore, we prepare the real and synthetic data using the following preprocessing
before training the ML models: for the numeric values, we impute missing values with
Standard Scaler, and for the categorical columns, we use label encoding.
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Privacy Metrics

Privacy metrics quantify the leakage of information on the data subjects in the real
data when sharing synthetic data or giving access to generative models. Several earlier
studies have assumed that synthetic data is inherently private since there is no direct
mapping between real and synthetic records. However, there is an increasing concern
when synthetic data is used in specific application domains, particularly healthcare,
without conducting a proper privacy evaluation [MAK+23]. To date, there has been
little agreement on how to measure the privacy of synthetic data, and several different
metrics have been used across the literature. These metrics can be divided into two
main groups: distance and similarity metrics, and attack-based metrics. Distance and
similarity metrics rely on the idea that leakage can occur when synthetic records are
too close or similar to real records, especially to those representing minority classes, and
that this could lead to re-identification. On the other hand, attack-based metrics rely
on a threat model for designing potential attacks. This model defines the attacker’s
and defender’s profiles and capabilities. One potential attack considered in this thesis
is attribute disclosure, which occurs when the released synthetic dataset increases the
knowledge about sensitive attributes.

In this work, we will employ the following metrics to assess privacy, covering the two
categories mentioned above:

• Distance to Closest Record (DCR) measures the Euclidean distance between
any record in the synthetic dataset and the nearest neighbor record in the original
dataset. The greater the DCR value, the higher the privacy level. A DCR value of
0 indicates an exact match in synthetic data. Some works use all distances’ mean
and standard deviation as a reference for analyzing privacy [HEA+23]. A higher
mean distance and lower standard deviation indicate better privacy.

• Attribute Disclosure (AD) occurs when an attacker can learn new information
about an individual in the real dataset. For example, an attacker that has access
to some quasi-identifier attributes (e.g., the age, the gender, the education) of a
patient then infers the value of a sensitive attribute using the synthetic dataset.
This can occur without necessarily linking the record to an individual.

2.2 Federated Learning
Federated Learning is a privacy-preserving approach that enables multiple clients to
train a machine learning model collaboratively from distributed data sources [WZL+23].
Contrary to centralized learning, federated learning does not require data collection in a
centralized place. Instead, each client trains a model using their local data, and then,
a central server aggregates all the model parameters [KMA+21]. The main objective
of this approach is to address the problem of data silos, where data is collected and
stored distributed across various locations, making sharing difficult due to privacy risks
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and data protection regulations [LDCH22]. Federated Learning has become popular in
several application settings, as it can achieve results comparable to centralized learning
while reducing privacy risks [NSU+18, SVG18].

A typical federated learning process consists of the following main steps:

1. Initialization: The central server initializes the model that will be federated,
either randomly or using a pre-trained model.

2. Client Selection: The central server selects the clients participating in the
federated round. In some cases, all the clients can participate in the round.
However, the selection strategy varies depending on the client’s characteristics and
the specific learning task. For example, the server can select the clients based on
specific criteria (e.g., computational power, sufficient data, internet connection).

3. Broadcast: The central server distributes the global model to the selected clients.

4. Client Computation: Each client trains the global model on their local data and
sends the updated model parameters to the server.

5. Aggregation: The central server aggregates the parameters received from the
clients. Several aggregation algorithms were proposed in the literature. A well-
known example is FedAvg introduced by McMahan et al. [MMR+17], which
computes the average of the client’s parameters.

6. Model Update: The central server updates the global model with the aggregated
parameters. Depending on the type of model used, the learning process may
continue iteratively from step 2 until the model converges or a stopping criteria is
fulfilled (e.g., maximum number of iterations).

2.2.1 Types of Federated Learning
Federated learning can be categorized into two main categories, depending on the types
of clients participating:

• Cross-silo Federated Learning: This setting refers to scenarios where clients are
typically organizations or companies (e.g., hospitals from various countries, research
institutes from different universities) that want to train a model collectively. In
such cases, clients are considered reliable and well-known. The number of clients is
generally small, typically ranging from 2 to 100, with most clients participating in
each federated round [KMA+21].

• Cross-device Federated Learning: This setting refers to scenarios where clients
are edge devices. The number of clients is usually huge (e.g., up to 10 billion clients),
and not all of them participate in each federated round [KMA+21]. Reliability
issues are more common with these clients, as they might experience failure or
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drop out. Furthermore, given the number of clients, communication is also a major
hurdle in this case.

Alternatively, federated learning can also be categorized based on how data samples are
partitioned among the clients as follows [ZXB+21]:

• Horizontal Federated Learning: This setting refers to scenarios where clients
share the same feature space (i.e., the same columns), and the number of samples
may or may not differ between clients. For example, different hospitals want to
predict the treatment for a specific disease, and all hospitals collect the same patient
demographic and clinical information. Still, the number of patients with this disease
varies among the hospitals, and they usually do not overlap.

• Vertical Federated Learning: This setting refers to scenarios where different
clients share the same samples, but the features are not the same, and they aim to
learn a model collaboratively without privacy leakage. For instance, this might be
the case when two companies (e.g., a bank and an internet company) try to predict
information about customer behavior. One company has access to customers’
financial information, while the other has access to their purchase data.

Within the scope of this work, we will focus on cross-silo horizontal federated learning.
The intersection of these settings is particularly important when different trusted parties
collect the same data from various individuals and wish to train a joint machine-learning
model. However, data protection regulations and privacy risks prevent them from sharing
their data. In particular, the model we aim to train is a generative model for publishing
synthetic tabular data that can later be used for further research.

2.2.2 Frameworks for federated learning
Federated learning has gained increased attention in recent years because it was shown
it has the ability to achieve comparable performance to centralized learning in several
applications, such as prediction on keyboards, prediction of human trajectories, and
prediction of mortality rates in heart disease patients [LFTL20].

There has also been an ongoing effort to develop different frameworks to perform federated
learning at both research and industrial levels. These frameworks differ on several aspects,
including the aggregation methods, the privacy and security mechanisms, the model,
device, and machine learning support, as well as the use cases [BKKZ22]. An overview
of some of the available open-source frameworks is provided below:

• FATE1 is an open-source project initiated by the company WeBank and later hosted
by the Linux Foundation. It provides a secure framework for federated learning at

1https://github.com/FederatedAI/FATE
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the industry level. This framework is suitable for deployment in production-ready
environments and supports standalone and cluster deployments. Additionally,
it includes secure computation protocols based on homomorphic encryption and
multi-party computation (MPC).
Regarding federated training, FATE supports various federated learning algorithms,
including logistic regression, tree-based algorithms, and deep learning algorithms.
It also offers federated modules for preprocessing and feature engineering, such
as federated sampling, feature binning, and feature scale. The modules can be
combined to form a pipeline.

• PySyft2 is an open-source library enabling privacy-preserving machine learning
developed as part of the OpenMined initiative. This library provides different
techniques to enhance data privacy, including federated learning, differential Privacy,
and encrypted computation based on homomorphic encryption and multi-party
computation. In addition, it integrates with the major deep learning frameworks
PyTorch and TensorFlow. However, the support of ML models is limited.
To model different clients in the federated environment, PySyft employs virtual
workers, which refers to separate processes running on the same machine [RTD+18].
These workers communicate through a standardized communication protocol to
simulate FL.

• Flower3 is an open-source framework for implementing federated learning systems
at a large scale. It was initiated as a research project at the University of Oxford to
provide a tool that is easily extendable, framework-agnostic, and flexible [BTM+22].
The current version of Flower includes implementations of multiple aggregation
strategies for performing federated learning proposed in the literature and examples
for different use cases.
Flower’s core architecture comprises three main components: the strategy, the
client manager for edge clients or virtual clients, and the FL training pipeline as
illustrated in Figure 2.2. Edge clients refer to real devices that communicate with a
server over a remote execution protocol (specifically, remote procedure call, RPC).
In contrast, virtual clients correspond to ephemeral clients managed by the Virtual
Client Engine in a resource-aware manner, primarily used for simulation purposes
[BTM+20].
In addition to its architectural components, Flower also offers mechanisms to miti-
gate data privacy risks. In particular, Flower includes different secure aggregation
protocols to prevent the server from inferring client information during model
aggregation, such as SecAgg and SecAgg+ [LdGBL21]. Additionally, it offers a
differential privacy wrapper, which is currently experimental.
In this work, we use Flower to perform the federated learning experiments. We
selected this framework because it offers comprehensive documentation, facilitates

2https://github.com/OpenMined/PySyft
3https://github.com/adap/flower
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Figure 2.2: Flower’s Framework Architecture, taken from [BTM+20]

extension and integration of new modules, and allows running experiments with
multiple clients with minimal overhead with the virtual client engine [BTM+20].

2.2.3 Challenges in Federated Learning
Several challenges arise when implementing FL in real-world scenarios. One prominent
challenge is data heterogeneity. Usually, the data collected from different clients is
non-i.i.d (Non-Independent and Identically Distributed) or varies in size. Compared to
i.i.d. settings, this degrades the performance of models trained using federated learning
[LDCH22]. Another important challenge is security and privacy. Several works have shown
that federated learning is vulnerable to inference attacks [PM20, MSDCS19, HAPC17].
For instance, the information exchanged with the central server can leak information
about the clients’ data. Additional privacy-preserving methods (e.g., differential privacy,
secure aggregation, homomorphic encryption) are thus often needed to mitigate privacy
and security risks in FL. Further challenges in FL include communication overhead and
computation resources [WZL+23].

This work investigates two main challenges when training synthetic data generators in the
federated setting: data heterogeneity and privacy. In particular, we consider a scenario
with an honest but curious server. This means we have a server that follows the protocol,
but still tries to infer some information from the clients.

2.3 Differential Privacy
Differential privacy (DP) is a widely used concept to define privacy in statistical analysis;
it is based on rigorous mathematical guarantees. The concept, formally introduced in
2006 by Dwork et al. [DMNS06], emerges from the idea of learning statistical properties

21



2. Background and Related Work

about a population without compromising the privacy of a single individual. In particular,
it ensures that any possible output of an algorithm is equally likely, regardless of whether
an individual was part or not of the database(s) used in a study. This is achieved by
adding controlled random noise. A formal definition of differential privacy is given below.

Definition 1 (Differential Privacy [DR+14]) A randomized algorithm M with domain
N|x| satisfies (ϵ, δ)-differential privacy if for all S ⊆ Range(M) and for all x, y ∈ N|x|

such that ∥x − y∥1 ≤ 1:

Pr[M(x) ∈ S] ≤ eϵ Pr[M(y) ∈ S] + δ

where the probability space is over the coin flips of the mechanism M. If δ = 0, we say
that M is ϵ-differentially private.

The definition contains two privacy parameters, ϵ and δ. The parameter ϵ, denoted as the
privacy budget, quantifies the privacy loss of applying the mechanism M. The smaller
the value of ϵ, the greater the privacy protection, and vice versa. This parameter must
be fine-tuned to control the trade-off between privacy and utility. On the other hand,
the parameter δ is a probability expressing the likelihood of a privacy breach. Therefore,
it is desirable to have small values of δ [DR+14], close to zero, to ensure stronger privacy
guarantees.

When applying differential privacy, it is crucial to determine the amount of noise required.
Typically, this amount is based on the sensitivity of the statistical function f applied to
the data (i.e., the "query"). The sensitivity refers to the largest change in the output of
f when a single entry from the input changes [LC11]. For example, the sensitivity of a
counting query, such as "How many individuals in the database satisfy condition C?" is
one since adding or removing an individual from the database alters the counts at most
by one.

Different mechanisms can be used to achieve differential privacy. One of the simplest
mechanisms is the randomized response [DR+14], which was proposed for surveys col-
lecting responses on a sensitive topic by introducing random noise based on a chance
mechanism (e.g., flipping a coin). Another approach is the Laplace mechanism [DMNS06],
which adds noise drawn from the Laplace distribution to the query response. For cate-
gorical outputs, a well-known mechanism is the exponential mechanism [MT07], which
assigns a higher probability to the output elements that maximize a previously chosen
utility function.

Apart from the mechanisms, a key property for the design of differentially private
algorithms is composition. This property enables the combination of multiple differentially
private mechanisms while preserving differential privacy guarantees. In particular,
sequential and parallel composition are relevant properties that we consider in our work,
defined as follows [ZLZP17]:
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• Sequential composition: the composition of a set of differential private mechanisms
(M1 . . . Mn), where each mechanism Mi satisfies ϵi-differential privacy, is i ϵi-
differentially private.

• Parallel composition: the composition of a set of differential private mechanisms
(M1 . . . Mn) applied on disjoint subsets of data, where each mechanism Mi satisfies
ϵi-differential privacy, is max(ϵi)-differentially private.

Another critical property of differential privacy is that it is immune to post-processing
[DR+14]. In other words, privacy guarantees hold even if the output of a differen-
tially private mechanism undergoes arbitrary transformations or auxiliary information is
available.

Because of its properties and the fact that DP can mitigate various privacy risks like
linkage, inference, and reconstruction attacks [DR+14, YSZ+22], many researchers have
been interested in combining differential privacy with other privacy-preserving techniques,
such as synthetic data generation and federated learning [ZCP+17, DLH+23, STC+16].

Various differentially private mechanisms have been investigated to strengthen privacy in
synthetic data generation. For instance, Zhang et al. [ZCP+17] used the exponential and
Laplace mechanisms in their work called PrivBayes. Duan et al. [DLH+23] introduced
Gaussian noise to the parameters of the discriminator of the CTGAN model to enhance
privacy. Similarly, Fang et al. [FDK22] achieved differential privacy for the CTGAN
model by clipping gradients and adding calibrated noise.

Additionally, differential privacy can prevent data leakage from the models shared in
federated learning. Differential privacy mechanisms can be applied on the server, client,
or both sides. Specifically, three categories can be distinguished when using DP in
federated learning: central, local, and distributed differential privacy. The first applies
noise on the server side and protects the global model updates, the second adds noise
on the client side before sharing the parameters with the server, and the third combines
secure aggregation with differential privacy. A full description of these categories is out
of the scope of our work. For a detailed overview, we refer the reader to the survey by
Zhang et al. in 2023 [ZLL23].

2.4 Secure Multi-Party Computation
Secure Multi-Party Computation (SMPC) [CD+15] is a privacy-preserving technique that
enables multiple distributed parties holding a secret input to compute a joint function
without disclosing any information beyond the output. It relies on cryptographic protocols
that ensure two main properties: privacy of the parties’ input and correctness of the
function output if the number of dishonest parties [ZZZ+19] does not exceed the threshold
of the scheme (in many settings, this means not more than half of the participant can
be dishonest). The concept of SMPC has its roots in the famous Yao’s Millionaires
Problem [Yao82], first introduced in 1982, which involves two millionaires aiming to
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Figure 2.3: Example of average salary computation among three employees (A, B, and C)
using additive secret sharing. The grey boxes indicate the private salary of each employee,
whereas the colors (red, blue, and green) indicate the respective shares exchanged in the
computation. The values used to compute the average salary correspond to the sum of
the shares disclosed by each employee.

find out who is richer without disclosing their wealth. Several solutions to this problem
have been proposed since its introduction, serving as building blocks to resolve more
complex problems. Although the research was mainly theoretical in the early stages,
SMPC has evolved in recent years into a more practical tool relevant to many applications
(e.g., privacy-preserving machine learning and data mining) [ZZZ+19]. Some limitations
remain, such as the communication overhead and computational cost. Nevertheless, there
is an ongoing effort in the literature to find more efficient and practical protocols.

Secret Sharing is a well-known cryptographic primitive used in practical implementations
of SMPC [KVH+21]. This technique splits a secret into shares and distributes them among
multiple parties so no single party can learn the secret. However, when authorized parties
combine their shares, they can reconstruct the original secret and perform computations
on it. To showcase this, we consider the simple example in Figure 2.3, where three
employees, represented as A, B, and C, want to determine their average salary without
revealing more information. Each employee partitions their salary into three random
shares such that the sum of the shares equals their salary. Then, they exchange one share
with each other participant; in our example of three participants, this means that each
of the other two participants receives a total of two other shares. Once the process is
completed, each participant sums up all shares they possess and discloses the result to
other participants to compute the average salary. Notice that the average salary obtained
is the same as if we compute the average using their secret inputs. This is a simple
example of a secret sharing scheme, but operations are usually performed over finite
fields, and different schemes can be used.

Researchers have investigated the possibility of using SMPC in federated learning to
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enhance the privacy of the local models during aggregation. Secret sharing-based protocols
have gained popularity in this context. The first proposed protocol to address this problem
was SecAgg [BIK+17], which uses pairwise random masks to hide the client’s updates.
These masks are later canceled at the server during aggregation. Several protocols have
been developed to improve SecAgg, such as SecAgg(+) [BBG+20], LightSecAgg [SHY+22],
and FastSegAgg [KRKR20]. However, they vary in the communication overhead, the
ability to handle participant dropouts, and privacy guarantees. Despite ongoing research,
there are still open challenges when implementing secure aggregation in FL across different
scenarios.

2.5 Homomorphic Encryption
Homomorphic Encryption (HE) is an encryption mechanism that enables computations
in ciphertexts while ensuring the same results as operations on plaintexts. There are
different types of homomorphic schemes. Usually, these schemes can be classified as
partially and fully HE schemes [KFE17]. Partially homomorphic encryption (PHE) only
allows for one mathematical function on the ciphertexts (e.g., addition). Meanwhile,
fully homomorphic encryption (FHE) enables multiplication and addition operations on
ciphertexts [AAUC18]. The past fifteen years have seen significant advances in the field
of HE with several schemes proposed and optimized.

2.6 Privacy-preserving data synthesis in distributed
settings

Much research has been conducted on data synthesis in centralized settings. However,
in some situations, having a representative amount of high-quality data in a centralized
setting is not feasible due to legal constraints and privacy concerns. This directly impacts
the quality of the synthetic data as it is closely related to real data quality. Therefore,
there has been an increasing interest in using federated learning to enable data synthesis
for distributed settings. The main goal is to produce more representative synthetic
data by leveraging information from multiple clients without sharing the data. Little et
al. [LEA23] provided an overview of this field’s current state of research. Their findings
demonstrate that much of the research concentrates on image data. Out of 21 papers,
only six considered tabular data, and in most cases, they used GANs as the generation
method but with different configurations on the server and clients. Moreover, from the
papers analyzed, nine used differential privacy. The outcomes of this work suggest that
federated data synthesis requires more exploration, especially for tabular data.

Duan et al. [DLH+23] proposed a federated generative model for decentralized tabular
data synthesis consisting of three main parts: a federated variational Bayesian Gaussian
mixture model for learning multi-modal distributions, a federated conditional one-hot
encoding for categorical variables, and a privacy-consumption-based federated GAN
for generating the synthetic data. The authors used five datasets to evaluate the final
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synthesizer and split the data into three clients. Then, they trained a model for different
ML tasks and compared the results with the state-of-the-art federated generative model
for images and with the original data. The results showed that regarding utility, their
approach outperforms the model for images and sometimes can even get better results
than with the original data. Furthermore, they used a membership inference attack to
verify the privacy level of the proposed model. This work is similar to the work in this
thesis. Still, we consider more data partition scenarios, evaluate scenarios with different
numbers of clients, extend the metrics for analyzing synthetic data, including various
dimensions, and use other generation methods.

Similarly, Zhao et al. [ZBKC21] proposed a federated GAN for tabular data based
on the well-known approach CTGAN. Their main contributions are (i) a novel feature
encoding scheme that can reconstruct the entire column distribution via bootstrapping
each client’s partial information and (ii) a weighting scheme to effectively merge local
models considering the quantity and distribution dissimilarity for every column across
the clients. To evaluate the synthetic data, the authors used four datasets, generated
different data distributions, and compared them against different baselines regarding
two statistical metrics. In particular, for categorical features, they used the Average
Jensen-Shannon divergence (Avg-JSD), while for continuous features, they used the
Average Wasserstein distance (Avg-WD). The results demonstrated that both in the IID
and non-IID cases the synthetic tabular data preserves the statistical properties of real
data. This work has only examined the fidelity of synthetic data but not privacy and
utility.

Other studies have also considered GANS for tabular data in the federated setting. Fang
et al. [FDK22] proposed a federated version of CTGAN using DP on the client side
and evaluated utility for binary classification tasks. However, they did not compare
different scenarios or further dimensions like fidelity and privacy. Moreover, Weldon et.
al. [WWB21] proposed a federated GAN to generate synthetic electronic health records
(EHR), which are evaluated (i) using a statistical comparison between the real and the
synthetic data and (ii) subjectively by medical experts through a survey that contained
real and synthetic patients that were rated to see how realistic their characteristics are.
Results demonstrated no significant difference between real and synthetic patients based
on the experts. However, their work suffers from the mode collapse problem.

Moreover, some works have investigated other methods, such as Bayesian networks and
VAEs, to generate synthetic tabular data in distributed settings. Su et al. [STC+16]
proposed a differentially private sequential update of Bayesian networks, denoted as DP-
SUBN, which addresses the problem of high dimensional data publishing in distributed
settings. Their approach comprises different phases. First, they propose a search frontier
that allows a semi-trusted curator(server) and multiple parties to build a Bayesian
Network structure jointly. Then, they use the multi-party Laplace mechanism [PRR10]
to learn the network parameters. Finally, they sample tuples from the approximate
distribution defined by the learned Bayesian network. The search frontier contains possible
candidate attribute-parent (AP) pairs and their marginal distributions. A strategy using
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correlations between attributes is proposed to reduce the number of possible candidates.
Since different steps in their approach required the exchange of information that might
lead to a privacy breach, such as the correlations of attribute pairs, the authors used
differential privacy mechanisms such as the Distributed Laplace Perturbation Algorithm
(DLPA) [RN10] and exponential mechanism to provide privacy guarantees.

Cheng et al. [CTS+19] proposed an extended version of DP-SUBN, and performed
a more exhaustive evaluation. Specifically, they introduced two different methods for
the search frontier: an exact method based on backtracking and a heuristic method
that adds edges greedily, ensuring the resulting structure is a valid directed acyclic
graph. Furthermore, the authors changed the DP mechanism to aggregate results for the
distributed Laplace permutation algorithm (DLPA) proposed in [RN10]. They used four
tabular datasets and partitioned them randomly and equally among the parties for their
evaluation. The results were evaluated with respect to the accuracy of α-way marginals,
the misclassification rate of an SVM classifier, and the number of parties against the ϵ
parameter used to achieve differential privacy. Also, the communication cost was reported.
Both [CTS+19] and [STC+16] address a similar problem to this thesis. However, we
propose a new methodology to build the Bayesian Network in the distributed setting
and consider different partitions, including non-IID and unbalanced distributions among
clients.

Margaritis [Mar21] proposed a federated variational auto-encoder with differential privacy
for generating synthetic data in distributed settings in his diploma work. The approach
federates the decoder and keeps the encoder private to provide guarantees in terms of
privacy. The evaluation is performed on an image and tabular dataset and compared with
PrivBayes [ZCP+17] and DPFedGANs [AMR+19], which have been adapted for the same
purpose. The results were favorable regarding data utility and provided good privacy
guarantees when the number of clients is larger than 1,0000. The author proposed several
directions for future work, such as using a non-private encoder, alternative notions of
local differential privacy (LDP), extending to other datasets and data partitions, and
using further evaluation metrics. In this thesis, we considered all these aspects and
studied VAEs in the federated setting specifically for synthetic data generation of tabular
data under multiple scenarios.
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CHAPTER 3
Federated Bayesian Networks

In this chapter, we provide the necessary background knowledge to understand how
Bayesian network learning works, explain how it is used in a centralized setting to
generate synthetic data, discuss the challenges of adapting this method to the federated
setting for the same purpose in a privacy-preserving manner and present the approaches
investigated in this work to solve these challenges.

3.1 Bayesian Networks Learning
A Bayesian network (BN) [KF09] is a probabilistic graphical model used to encode the
joint probability distribution P over some set of random variables X = {X1, . . . , Xd}.
Formally, it can be defined as a pair B = (G, θ), where G is the network representation
and θ are the parameters associated with the network. More precisely, G = (V, E) is a
directed acyclic graph (DAG) characterized by a set of nodes V and a set of edges E.
Each node Xj ∈ V represents a random variable. An edge (Xj , Xi) ∈ E indicates a direct
dependence between Xj and Xi, where Xj is defined as a parent of Xi and Xi as a child
of Xj . The set of all parents of Xi is denoted as Πi. On the other hand, the degree of the
network, denoted as k, is given by the size of the largest parent set Πi. Figure 3.1 shows
a simple example of a Bayesian Network with four variables {A, B, C, D} with degree 1.
The notion of d-separation in Bayesian networks relates the separation of nodes in the
DAG with the concept of independence [KF09]. This is crucial for obtaining a compact
representation of the joint probability distribution P , which can be expressed as follows:

P (X1, . . . , Xd) =
d

i=1
P (Xi | Πi) (3.1)

where P (Xi | Πi) is the conditional probability distribution (CPD) of a variable Xi given
its parents Πi, the parameters θ correspond to the CPDs of all attributes.
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Figure 3.1: Simple Example of a Bayesian Network with four variables

The learning process comprises two main steps: structure learning and parameter learning.
The structure learning step involves finding the DAG structure that best encodes the
causal relationships between variables in the data. The parameter learning step estimates
the CPDs of the data based on the DAG structure.

The structure learning step can be performed manually, through automatic learning
from data, or by using a hybrid approach. The manual process when dealing with large
amounts of variables can be time-consuming and may not be accurate [FZM+23]. On the
other hand, learning the structure of the data is a very challenging task. Namely, it is an
NP-hard problem, as shown in [CGH94, CHM04], because the number of possible DAGs
grows exponentially with the number of variables. Therefore, researchers have investigated
approaches based on heuristics and approximate algorithms to tackle this problem. Kitson
et al. [KCG+23] provided an overview of these approaches and classified them mainly
into three categories: constraint-based, score-based, and hybrid. The constraint-based
approaches employ conditional independence (CI) tests to construct DAGs that accurately
represent the independence of variables in the data. The score-based approaches employ
optimization strategies to find a DAG that maximizes an objective scoring function.
The hybrid approach commonly reduces the space of possible DAG structures using the
constraint-based approach, and then it selects the best structure using the score-based
approach.

Popular algorithms used as search strategies include hill-climbing, genetic algorithms,
and greedy algorithms [KCG+23]. Meanwhile, scoring functions can be divided into
Bayesian scoring functions and Information-theoretic scoring functions. The Bayesian
scoring functions incorporate prior knowledge to find the structure. Examples include
the K2 [CH92] and the Bayesian Dirichlet equivalent uniform (BDeu) [HGC95] scores.
Information-theoretic scoring functions seek to balance the fit of the network to the data
against the model complexity. Examples include the Bayesian Information Criteria (BIC)
[Sch78] and the Mutual Information Test (MIT) [DCF06]. In the case of synthetic data
generation, there is no prior information about the structure or dependencies. Hence,
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information-theoretic scores are preferred [KCG+23].

The parameter learning step depends on whether the data is complete or incomplete.
The data is complete if all variables are fully observed and there are no missing data.
Otherwise, it is incomplete. Maximum likelihood estimation (MLE) is a well-known
parameter learning method for complete data. The method maximizes a likelihood
function by finding the parameters that better fit the observed data. On the other hand,
expectation maximization (EM) is an algorithm that can be used when data is incomplete,
which relies on inference methods to deal with hidden variables [JXM15].

This work concentrates on score-based approaches for the structure learning step, charac-
terized by a search strategy and a scoring function, and considers complete data for the
parameter learning step. However, if missing data is present, we discuss how to handle
this case.

Several works use BNs to generate synthetic data in the centralized setting [YGP09,
ZCP+17, KSP+21]. We adapt this to the federated setting in this thesis.

3.2 Bayesian Networks: Centralized Setting
In this section, we present specific approaches for generating synthetic data using Bayesian
networks in a centralized setting and describe the main building blocks considered in our
work as a reference for the federated setting.

Zhang et al. [ZCP+17] undertook relevant work in this line. In particular, they proposed
PrivBayes, an approach for publishing private high-dimensional data in a centralized
setting using low-degree Bayesian Networks and differential privacy. Their approach
comprises three main steps. The first step is structure learning, which uses a greedy
algorithm to construct a k-degree Bayesian Network. This step is modeled as an
optimization problem that aims to reduce the Kullback–Leibler (KL) divergence between
the original data distribution and the approximate version that comes from the network.
To achieve this, the greedy algorithm selects a parent set for each attribute in such a
way that the mutual information is maximized and ensures that the process satisfies
differential privacy via the exponential mechanism. The second step is parameter learning,
which injects Laplacian noise into the conditional distributions for each attribute in the
Bayesian Network. The final step involves generating synthetic data by approximating
the original data distribution using the constructed structure and noisy conditional
distributions and then sampling from it.

Several works have extended PrivBayes. For instance, Ping et al. [PSH17] developed a
Python-based implementation named DataSynthesizer, which generates synthetic data,
leveraging the algorithms and privacy mechanisms of PrivBayes. This tool is composed of
three main components: the DataDescriber, the DataGenerator, and the ModelInspector.
The DataDescriber learns the characteristics of the input data, including the data types,
domains, and missing rates. Then, depending on the mode of operation selected by the
user (random, independent, or correlated), different mechanisms are used to describe
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the input data. In particular, the correlated attribute mode constructs a k-degree BN
with DP guarantees following the approach of Zhang et al. [ZCP+17]. The user can
control the amount of noise injected in this mode by setting a value to the parameter ϵ.
If ϵ = 0, no noise is injected. The DataGenerator uses the description provided by the
first component to sample new (synthetic) data. Finally, the ModelInspector generates a
statistical report on the similarity between the input and synthetic data generated.

Furthermore, Hittmeir et al. [HME22] proposed a variation of the structure learning
step in PrivBayes based on a genetic algorithm (GA) and introduced a novel approach
for mitigating disclosure risks in BNs by decreasing specific correlations for sensitive
attributes. Overall, their results demonstrated a significant improvement in efficiency
with respect to the original greedy algorithm proposed by Zhang et al. [ZCP+17] and
similar performance in terms of fidelity and utility on three tabular datasets. Furthermore,
their experiments showed that the approach for mitigating disclosure risks also performs
well against attribute disclosure attacks without compromising the utility of the synthetic
data.

Considering the advantages in terms of efficiency of the approach by Hittmeir et al.
compared to the greedy algorithm by Hittmeir et al. [ZCP+17], we investigate in detail
this approach for the structure learning step. Meanwhile, we utilise the parameter
learning and data generation step of PrivBayes [ZCP+17]. Furthermore, we use the
DataSynthesizer tool for the implementation phase with the functionalities provided by
Hittmeier et al. [HME22] and extend it to support our approach.

3.2.1 Structure Learning
The genetic algorithm proposed by Hittmeir et al. [HME22] represents possible BNs
as individuals. Each individual is characterized by two independent chromosomes: the
ordering chromosome and the connectivity chromosome. The ordering chromosome is
a list representing the ordering in which the nodes (attributes) are added to the DAG
structure. The connectivity chromosome is a list of sets where each set has exactly k
attributes representing the possible parents of a node. Recall that k is the degree of the
BN. It is important to bear in mind that the first k attributes in the ordering have fewer
parents. This occurs because the number of preceding attributes in their case is less than
k. Therefore, when transforming an individual into a valid DAG, attributes in the parent
set of a given node appearing later in the ordering are ignored.

Figure 3.2 provides an example of an individual obtained when running the genetic
algorithm in a simplified version of the Adult dataset described in Section 5.1. The
upper box in the figure shows the individual’s chromosomes, whereas the bottom box
depicts the valid DAG structure after transforming the individual. Note that the ordering
chromosome is a permutation of the attributes in the dataset, which, in the example,
are encoded as numbers. Meanwhile, the i-th set in the connectivity chromosome always
corresponds to the possible parents of attribute i. For instance, attribute 3 (Relationship)
is the second attribute in the ordering chromosome, and its possible parents based on the
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connectivity chromosome (3-rd set) are 5 and 2. However, attribute 2 (Marital-status)
does not precede attribute 3 in the ordering chromosome. Therefore, it is ignored, and
the only valid parent for this node in the DAG structure is attribute 5 (Income), as
shown in the network. The same principle applies to all other attributes.
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Figure 3.2: Example illustrating an individual in the genetic algorithm of a 2-degree
Bayesian Network with its respective ordering and connectivity chromosomes for a
simplified version of the Adult dataset.

Algorithm 3.1 presents the pseudo-code of the genetic algorithm proposed by Hittmeir et
al. [HME22]. The process starts with the initialization step, where a population of N
individuals is randomly generated. Then, these individuals are evaluated with respect
to a fitness function, and then the S fittest individuals are selected. In this case, the
fitness function is the sum of the pairwise mutual information of each attribute-parent
pair. These values are pre-computed and stored at the beginning of the algorithm, so
access to the input dataset is required only once. The S fittest individuals undergo
several operations: crossover and mutations until a new generation of N individuals
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is obtained. The Crossover operation selects two individuals and combines their
connectivity chromosomes to generate a new individual. Meanwhile, for mutation, two
operators are employed: (i) the Order Flip operation alters the ordering of some
attributes in the ordering chromosome, and (ii) the Swap operation performs random
swaps on the connectivity chromosome and repairs invalid structures obtained in the last
operation. For more details on the operations, we refer the reader to the original work
of Hittmeir et al. [HME22]. The same process from the evaluation step is repeated e
times for individuals in the new generations. In the last generation, the fittest individual
is selected and transformed into a valid DAG. The resulting DAG G is the solution
of the structure learning step. Algorithm 3.2 describes how the parameters from the
Bayesian network are derived in a differentially private manner in PrivBayes. For a
detailed explanation, refer to [ZCP+17].

Algorithm 3.1: Genetic Algorithm (Adapted from [HME22])
1 t ← 0;
2 Initialize first generation P0 with N random individuals;
3 Evaluate P0 based on fitness function;
4 for t ← 1 to e do
5 Let E be the set of the S fittest individuals from the previous generation Pt−1;
6 G ← E ;
7 while |G| < N do
8 Choose a random individual i in E ;
9 Generate a random number x in [0, 1];

10 if x < r then
11 Choose a random individual i′ in E ;
12 i ← Crossover(i, i′) ;
13 end
14 i ← Order Flip(i);
15 i ← Swap(i);
16 Add i to G;
17 end
18 Pt = G;
19 Evaluate Pt based on fitness function;
20 end
21 Select the best individual in the last generation Pt=e;
22 Let G be the valid DAG obtained from the best individual;
23 return G;

3.2.2 Parameter Learning

The parameter learning step proposed by Zhang et al. [ZCP+17] assumes that the
network structure of a Bayesian network B is fixed and that the input dataset D is
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complete. It then uses a frequentist approach to estimate the CPDs of all attributes.

The frequentist approach uses maximum likelihood estimation (MLE) to estimate the
parameters θ. The MLE of a Bayesian network can be computed by maximizing each
local likelihood function independently and combining the solutions [KF09]. The local
likelihood determines how well a variable Xi can be approximated given its parents Πi.
This is maximized using the local relative frequencies from the data. Therefore, the
parameters to compute are reduced to:

θ̂ijk = mijk

j mijk
(3.2)

where mijk corresponds to the number of frequency of occurrences where the variable
Xi = j given that the parent variables Πi takes values corresponding to k.

Algorithm 3.2: NoisyConditionals [ZCP+17])
1 Initialize P∗ = ∅
2 for i ← k + 1 to d do
3 Materialize the joint probability distribution P (Xi, Πi)
4 Generate differentially private P ∗(Xi, Πi) by adding Laplace noise

Lap


2·(d−k)
n·ε


5 Set negative values in P ∗(Xi, Πi) to 0 and normalize; Derive P (Xi | Πi) from

P ∗(Xi, Πi)
6 add it to P∗

7 end
8 for i ← 1 to k do
9 Derive P (Xi | Πi) from P ∗(Xk+1, Πk+1); add it to P∗

10 end
11 return P∗

3.2.3 Data Generation
The approach proposed in PrivBayes for the data generation step uses the structure
and parameters of the Bayesian network B to produce a synthetic dataset D∗ with an
arbitrary number of tuples. In particular, the structure G is used to sample attribute
values efficiently. The process starts by sampling from an unconditional probability
distribution of the root attribute X1 and then follows by sampling from the conditional
probabilities P (Xj | Πj) the remaining attributes Xj(j ∈ [2, d]) in the order they were
inserted to the network. As shown in Equation (3.1), the conditional probabilities for
each attribute Xi only depend on {Xi} ∪ Πi. Since the parents Πi of an attribute Xi

always appear before in the ordering, by the time when we sample Xi, the parents have
already been sampled, and we are able to sample from the conditional probabilities
P (Xi | Πi). Hence, we don’t require the full approximate joint distribution to perform
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the sampling process [ZCP+17], only the network and the parameters to sample attribute
values in the appropriate order [PSH17].

3.3 Bayesian Networks: Federated Setting
The findings in the last section further motivate the idea of considering BNs as a potential
method for generating high-quality synthetic tabular data in distributed settings. This
section analyzes the challenges of adapting this method to the federated setting.

The problem we are considering is the following: A set of clients C1 . . . Cn aim to learn a
Bayesian network B collaboratively for privacy-preserving data synthesis. Each client Ci

owns a tabular dataset Di containing sensitive information that cannot be disclosed to
other clients due to legal constraints and privacy concerns. The private datasets D1 . . . Dn

have the same feature space, but their sample space differs (i.e., the dataset is horizontally
partitioned). The feature space can contain mixed data types (discrete and continuous
variables). The model is constructed under the coordination of an honest-but-curious
server. Therefore, each step for learning B must be carried out in a privacy-preserving
manner to prevent the server from inferring client information. Furthermore, we assume
the synthetic dataset generated using B will be shared with third parties. This means
that the synthetic dataset should not compromise the privacy of the individuals in the
private datasets but is expected to have high fidelity and utility to serve for further
analysis or research purposes.

Before addressing the problem of adapting BNs for federated learning, we investigate
related work in this direction. Table 3.1 provides an overview of approaches that address
related problems. In particular, we classify these works based on the distributed setting
(horizontal or vertical), the learning phase (structure learning, parameter learning), the
algorithm used in the structure learning phase (if it applies), and the privacy-preserving
techniques applied. We also include our work in the table to indicate the main differences
with other works.

Ma and Sivakumar [MS06] proposed an approach based on post-randomization for
structure and parameter learning. Meng et al. [MSK04] proposed a random projection-
based method for securely learning the parameters of a given Bayesian network in a
vertically distributed setting and showed that for binary value datasets, conditional
probabilities can be expressed as a set of linear equations with inner products. Zhang and
Wright [YW06] proposed an approach using SMPC and the K2 algorithm for structure
and parameter learning from vertically partitioned data but extended it to non-binary
data. Furthermore, Samet and Miri [SM09] proposed a privacy-preserving construction
of Bayesian networks structure for horizontally partitioned data using the K2 algorithm
and three secure protocols: Secure Exponentiation, Secure Multi-party Factorial, and
Secure Product Comparison. It is worth noting that the purpose of most works is not
synthetic data generation.

We now describe our approach to adapting BNs to the federated setting. The design
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comprises four main parts: preprocessing, structure learning, parameter learning, and
data generation. Here, we discuss the implications of each phase, the ways we can handle
this privately, and the design we propose. For simplicity, in upcoming sections, we will
refer to the proposed approach as FedBN.

Approaches [WY04] [MSK04] [MS06] [SM09] [STC+16] [Dig18] [NZ22] [VDIDB22] Our work
Distributed Setting Horizontal ✓ ✓ ✓ ✓ ✓

Vertical ✓ ✓ ✓ ✓

Learning Phase Structure ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Parameter ✓ ✓ ✓ ✓ ✓ ✓

Algorithm (Structure) K2 ✓ ✓ ✓ ✓

Greedy ✓ ✓

GA ✓

Other ✓

Privacy Techniques Post Randomization ✓

Random Projection ✓

DP ✓ ✓ ✓

SMPC ✓ ✓ ✓ ✓

HE ✓

Table 3.1: Approaches for learning a BN in distributed settings

3.3.1 Preprocessing

Continuous variables are generally not suited for Bayesian Networks. Therefore, one
step usually performed before learning BNs is discretizing continuous variables. This is
not an issue in the centralized setting where the variable’s range is known. However, in
the distributed setting, the ranges might differ among clients, and sharing statistics as
minimum and maximum values can sometimes raise privacy concerns, mainly if outliers
exist in the data. As this is required for the federated setting, an option to prevent
data leakage is to use SMPC protocols [ZCZ15] to perform the minimum and maximum
computation privately. However, it is worth noting that while this prevents the server
from learning each client’s specific min max values, the server will still know the global
min and max values.

On the other hand, not all the values of categorical attributes might be present in all
the clients in the federated setting [DLH+23]. Therefore, information about the existing
categories should also be shared with the server to align the features before learning the
BN model. While this might not necessarily be a privacy issue, as some categories can
be publicly known (e.g., gender, civil status), the server could potentially exploit this
information if the categories are rare or too specific and belong to a sensitive attribute.
In such cases, one alternative is to leverage an SMPC protocol, such as Private Set Union
(PSU) [KS05], which ensures that the server only learns the union of each categorical
variable without revealing which categories belong to specific clients. The disadvantage
of such protocols is that they are computationally expensive. Another alternative for a
production-ready setting is for clients to agree on a standard data model.

In our implementation, we assume we have access to an SMPC protocol to compute
clients’ minimum and maximum values. Meanwhile, for categorical attributes that are not
publicly known, we assume the existence of one of the alternatives discussed beforehand.
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3.3.2 Structure Learning
In the structure learning step, we need to decide what to share with the server to
ensure that the Bayesian Network structure accurately approximates the distribution
of the private datasets but does not leak private information. Intuitively, the structure
encodes information about the correlations between the variables in the dataset [ZCP+17].
Therefore, we must ensure that this does not disclose information about the sensitive
attributes in private datasets.

Considering the genetic algorithm described in section 3.2.1, we propose a distributed
approach for learning BN structure inspired by the work proposed in [DFDCK+23].
In particular, [DFDCK+23] studied a Grammatical Evolution algorithm for glucose
prediction in the federated setting. Their approach leverages the idea of migrating
individuals over populations in each client over a certain frequency with a server in such a
way that the clients can combine their individuals with those that other clients have best
ranked, and the diversity can, in the end, provide a population that combines information
from all the clients.

We leverage the same migration idea in [DFDCK+23] but apply it in the context of
Bayesian network learning. Algorithm 3.3 describes our approach. Each client generates
a random population of N individuals in the first round and runs the genetic algorithm
for some local epochs. Then, individuals in the last generation are stored, and the best
individual is sent to the server. The server collects the best individuals from all the
clients. This set is denoted as It. The server proceeds to send It to the clients. Each
client determines the set E of the fittest individuals from their previous generation and
then adds the individuals in the set It from other clients to their set E in the first local
iteration. After that, the client generates new generations for the corresponding local
epochs and repeats the same process. The process stops after the server completes T
rounds. At this point, the server again sends the set It to the clients. But this time,
the clients evaluate all the individuals received in their data and send the scores to the
server. The server calculates the average scores and selects the individual with the highest
average score as the global solution for the structure learning step.

3.3.3 Parameter Learning
After the structure learning step, the global network structure G is known by the clients
participating in the federated training. Therefore, the remaining task is to estimate the
parameters θ of the Bayesian network.

In the centralized setting, we can compute the parameters immediately from the dataset.
Unfortunately, the records are spread across multiple clients in the federated setting. This
implies that each client needs to share sufficient statistics to compute the global CPDs
(i.e., the counts for all possible combinations of nodes and their parents). This can leak
information about their private datasets to the server. Note that the fewer the elements
in the combinations counts, the higher the risk of re-identification. Therefore, we must
use privacy-preserving techniques to protect the computation during the aggregation.
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Algorithm 3.3: FedGA
1 Server runs:
2 Initialize the individuals set I0 = ∅
3 foreach round t = 0 . . . T do
4 foreach client k ∈ M in parallel do
5 xk

t+1= ClientUpdate(k,It)
6 end
7 It = k{xk

t }
8 end
9 foreach client k ∈ M in parallel do

10 fk
t = ClientEvaluate(k,It)

11 end
12 ft = M

k=0 fk
t

13 Select the individual i ∈ It with the highest fitness score on average in ft

14 Let G be the valid DAG obtained from the best individual
15 Send G to each of the clients
16 Function ClientUpdate(k,It):
17 f = Evaluate generation Pt−1 based on fitness function
18 foreach round j = 1 . . . local_epochs do
19 Let E be the set of fittest individuals in f
20 if j == 1 then
21 E = E ∪ It

22 end
23 Pj = nextGeneration(E)
24 f = Evaluate Pj based on fitness function
25 end
26 Pt = Pj

27 Store current generation Pt

28 Let xk
t be the best individual in the current generation

29 return xk
t to server

30 Function ClientEvaluate(k,It):
31 fk

t = Evaluate individuals It based on fitness function
32 return fk

t to server

Note that, in general, when publishing synthetic data, the parameters can also leak
information about the data; thus, considering the protection of the output, even if not
specific to the federated setting, can influence the choice of protection of the computation
during aggregation.

Zhang et al. [ZCP+17] proposed to use differential privacy when computing the parame-
ters of the BN via the Laplace mechanism in the centralized setting to protect the output,
as explained in section 3.2.2.
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One approach that could be leveraged in the distributed setting is to let each client
generate the noisy counts locally via the Laplace mechanism, ensuring differential privacy
and sending the noisy counts to the server. The parallel composition theory implies that
the aggregated result also satisfies differential privacy, so the leakage in the aggregation
step is reduced. However, as noted in previous works [CTS+19, GX15], the total amount
of noise in the aggregated result is too large, making the model ineffective. Therefore,
one way to mitigate this problem is to use distributed privacy mechanisms.

A distributed privacy mechanism that has been used in this setting is the Distributed
Laplace Perturbation Algorithm (DLPA) [CTS+19]. This mechanism exploits the Laplace
distribution’s property of infinite divisibility, which entails that the same distribution
can be approximated by summing up n random variables. Different distributions can be
used to draw the partial noise, including Gamma, Gauss, and Laplace [GX15]. The main
difference between them is the number of random variables that need to be generated by
the clients and the operations that should be performed under SMPC.

The Laplace distribution L ∼ L(0, s) can be simulated using four random variables drawn
from the normal distribution as follows:

L(0, s) = N1
2 + N2

2 − N3
2 − N4

2 (3.3)

where Ni ∼ Gauss(0, s
2)(i ∈ {1, 2, 3, 4}).

In our implementation, we ensure differential privacy during the parameter learning step
by injecting partial noise into each client’s counts. This noise guarantees that the global
parameters satisfy differential privacy when the server aggregates the counts. We assume
access to the Distributed Laplace Perturbation Algorithm (DLPA) for this aggregation
process.
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CHAPTER 4
Federated Variational

AutoEncoders

In this chapter, we provide the necessary background knowledge to understand how
Variational Autoencoders work, explain how they are used in a centralized setting to
generate synthetic tabular data, and then discuss how we adapted this method to the
federated setting for the same purpose in a privacy-preserving manner.

4.1 Variational Autoencoders
Variational Autoencoders (VAEs) [KW13] are generative models composed of two neural
networks, an encoder and a decoder, which are connected through an intermediary layer
known as the latent space. Since their introduction in [KW13], they have been used for
multiple applications, including synthetic data generation [XSCIV19, MTT+20], anomaly
detection [AC15, KKH18], and representation learning [RV20]. From an architectural
point of view, VAEs are similar to traditional autoencoders (AEs). However, the
mathematical foundations of these models differ significantly [Doe16]. VAEs incorporate
concepts of probability theory and statistics to achieve robust generative capabilities. We
thus first outline the differences between traditional AEs and VAEs, focusing on their
application for synthetic data generation.
In traditional AEs (see Figure 4.1), the encoder transforms the input data into an
intermediate representation known as the latent space, usually with a lower dimension.
This representation takes the form of fixed-size vectors z and is used by the decoder
as input to reconstruct the original input. The main goal of AEs is to minimize the
reconstruction error between the input data x and the reconstructed data x̂. To achieve
this, the encoder and decoder are trained simultaneously using backpropagation to find
the parameters that reduce this error. Usually, the error is calculated using the Mean
Squared Error (MSE) or the Binary Cross-Entropy (BCE) [Mic22].
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Figure 4.1: Traditional Autoencoders Architecture

Once trained, AEs can be leveraged to generate new data by sampling data points from
the latent space and then passing them as input to the decoder [EW22]. However, since
the latent space is not regularized, data points lying far from the training data might
arise in the sampling process, leading to representations that the decoder cannot handle
and thus, generate inconsistent outputs.

VAEs address this limitation in traditional AEs representing the latent space as a
probability distribution, typically Gaussian [Doe16], characterized by a mean and variance
vector (see Figure 4.2). More precisely, the encoder is formulated as an inference model,
qϕ(z|x), and the decoder as a generative mode, pθ(x|z), using neural networks in each
case [KW+19]. The inference model approximates the intractable posterior distribution
pθ(z|x) given the input data x using a method known as variational inference [GG14].
This method turns the approximation task into an optimization problem, which assumes
the existence of a tractable distribution and tries to find the parameters ϕ that closely
approximate the intractable one by minimizing the Kullback-Leibler (KL) divergence.
This is still not trivial since the posterior distribution pθ(z|x) is intractable.

However, minimizing the KL Divergence is equivalent to maximizing the Evidence Lower
Bound (ELBO), denoted as Lθ,ϕ(x) (see Equation (4.2)). This equivalence is crucial for
VAEs because it achieves two key objectives [KW+19]. On the one hand, maximizing
the ELBO also maximizes the marginal likelihood pθ(x), improving the quality of the
reconstructed data. On the other hand, it minimizes the KL divergence between the
estimated posterior distribution and the true posterior distribution. This implies that
the ELBO enables the optimization of both the decoder and encoder parameters, making
it a suitable loss function for training VAEs.

Lθ,ϕ(x) = Eqϕ(z|x)[log pθ(x, z) − log qϕ(z|x)] (4.1)
= log pθ(x) − DKL(qϕ(z|x)∥pθ(z|x)) (4.2)
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Figure 4.2: Variational Autoencoders Architecture, adapted from [WPL+23])

As mentioned, for traditional AEs, the encoder and decoder are trained together to mini-
mize the loss function. Nonetheless, the sampling process for VAEs is not differentiable,
so backpropagation is not possible [Doe16]. To address this, the reparametrization trick
[KW13] is employed, which expresses the sample variable z ∼ qϕ(z|x) in a differentiable
form as follows:

z = µ + σϵ (4.3)
where ϵ is a random variable sampled from a standard normal distribution (ϵ ∼ N (0, 1)).

Once the VAE model is trained, we can generate new data by sampling latent variables
z ∼ N (0, I) and then passing them as input to the decoder [Doe16].

4.2 Variational Autoencoders: Centralized Setting
This section describes TVAE, a well-known method for generating synthetic tabular data
in the centralized setting introduced by Xu et al. [XSCIV19].

TVAE is a generative model that adapts the loss function of VAEs to handle mixed
attributes (continuous and discrete) commonly found in tabular data. The model’s design
incorporates neural networks producing a joint probability distribution with 2Nc + Nd

variables, where Nc is the number of continuous variables and Nd is the number of discrete
variables.

4.3 Variational Autoencoders: Federated Setting
This section explains how TVAE can be adapted to the federated setting and outlines
the challenges associated with privacy.

Similar to the problem described in section 3.3, the objective here is to collaboratively
learn a TVAE model among n clients with horizontally partitioned tabular data, enabling
privacy-preserving data synthesis under the coordination of an honest-but-curious server.
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The design of federated VAEs comprises three parts: preprocessing, training, and post-
processing, which are described in the following sections. For simplicity, in this work, we
will refer to the proposed approach as FedVAE.

4.3.1 Preprocessing
Continuous variables usually need to be transformed before being used as input to neural
networks. In the centralized setting of TVAE, this is achieved through an approach
called mode-specific normalization, which normalizes each variable independently using a
variational Gaussian mixture model (VGM). This approach is essential for the performance
of TVAE because it allows learning multimodal distributions in continuous variables,
helping to prevent mode collapse.

However, as pointed out in previous work [DLH+23], training a VGM model in federated
learning is not trivial since the global distribution of continuous variables is not available,
and sharing statistics can leak information about the clients. Duan et al. [DLH+23]
proposed a novel method called the Federated Variational Bayesian Gaussian Mixture
Model (Fed-VB-GMM) to solve this issue. This method adapts the Expectation Maxi-
mization (EM) algorithm, which is inherently not privacy-preserving, to the federated
setting and employs homomorphic encryption to secure the information shared with the
server. Their results demonstrated that Fed-VB-GMM performs comparable to VGM in
the centralized setting. However, we cannot reuse their implementation in our work due
to incompatibilities in programming environments, and re-implementing their approach
from scratch is beyond the scope of this thesis. Despite this, their method is independent
of the specific implementation details, and our work focuses on effectiveness rather than
the efficiency of the implementation. Therefore, we assume that the approach proposed
by [DLH+23] could be effectively adapted for a production-ready setting, but in the
experiments conducted in this thesis, we perform the normalization before simulating
the federated setting.

On the other hand, categorical variables also need to be adapted to train the TVAE
model. This is usually done using one-hot encoding. In the federated setting, clients must
share their categories with the server to achieve this. As discussed for the BN model in
section 3.3.1, different alternatives can be leveraged if categories leak information, such
as using an SMPC protocol or deciding on a standard data model before the federated
setting. We assume that one of the alternatives is possible in this work.

4.3.2 Training
The aggregation step in VAEs is less complex than the one in BNs because VAEs are
composed of neural networks, and aggregating parameters (weights and biases) of these
types of models across different clients is more straightforward. However, one decision
that has to be made is whether to share the parameters of the encoder, the decoder,
or both. Previous work has explored a federated scheme in which the encoder is kept
private, and only the decoder is synchronized [Mar21]. In our approach, we federate
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both the encoder and the decoder and aggregate their parameters using the well-known
FedAvg strategy, which samples clients in each federated round and then computes the
average of the parameters on the server side. The pseudocode of this strategy is given in
Algorithm 4.1. In our implementation, clients participate in all federated rounds.

Algorithm 4.1: FedAvg (Federated Averaging) [MMRyA16]
Input: Clients’ data {Dk}K

k=1, global rounds T , client fraction C, local epochs E,
batch size B, learning rate η

1 Server executes:
2 Initialize w0
3 foreach round t = 1, 2, . . . T do
4 St ← (random set of (max(C · K, 1)) clients)
5 foreach client k ∈ St in parallel do
6 wt+1

k ← ClientUpdate(k, wt)
7 end
8 wt+1 ← K

k=1
nk
n wt+1

k

9 end
10 ClientUpdate(k, wt):
11 ; for each local epoch i from 1 to E do
12 batches ← split Dk into batches of size B
13 for batch b in batches do
14 w ← w − η∇ℓ(w; b)
15 end
16 end
17 return w to server

Sharing parameters can still leak information in federated learning [PM20]. Therefore,
we also explored using additional privacy-preserving techniques to enhance privacy in the
proposed approach. In particular, since we assume the server coordinating the federated
training is honest but curious, we consider local DP, which provides strong guarantees
for clients, as the noise addition is performed locally before sharing the parameters with
the server. In particular, we consider the approach proposed by Naseri et al. [NHDC22].
which uses differentially private stochastic gradient descent (DP-SGD) to train the models
locally. DP-SGD [ACG+16] is a popular approach used to train ML models with DP
guarantees. The approach involves several steps. First, it samples a random batch from
the training data. Then, it computes the gradients for each data point and clips them to
a maximum norm. After this, Gaussian noise is added to the sum of the gradients. In
our implementation, we used the Python library Opacus, which implements the DP-SGD
algorithm.
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4.3.3 Postprocessing
Since we transformed the data before training the VAE model, we also need to reverse
this transformation in order to obtain the same structure as the input data. Here, is
crucial to understand that each transformation has to be reversible to obtain consistent
synthetic data.
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CHAPTER 5
Experiment Design

This chapter describes the methodology followed to perform the experiments for the
proposed synthetic data generation approaches. In particular, we describe the datasets
used for the experiments and analyze their complexity. We also present the baselines
considered to compare the quality of the synthetic data in the federated setting and the
partitions used to distribute the data among clients. Furthermore, we explain how we
ensure the consistency of the results in the generation process, select the hyperparameters
used in the models, and describe the methodology for synthetic data evaluation.

5.1 Datasets
Synthetic data generation is beneficial in fields dealing with sensitive information, as it
protects the privacy of individuals in datasets. Therefore, we considered the following
criteria when selecting datasets for our experiments. First, we choose datasets containing
individual-level information from various sensitive domains, such as healthcare and
finance. Second, we prioritize datasets that are commonly used in the literature to
benchmark synthetic data generation methods and are publicly available in machine
learning repositories such as UCI and Kaggle. Third, we selected datasets with mixed
numerical and categorical features, which are particularly challenging for synthetic tabular
data generation.

To fulfill these criteria, we studied related papers published within the last 6 years
and chose three datasets with the mentioned characteristics. Table 5.1 summarizes the
datasets used in this work, including the number of samples and attributes, the target
variable, the amount of numerical and categorical features, and the specific machine
learning task for which they were originally collected. It is worth noting that we include
datasets from the fields of demographics, finance, and healthcare. Also, the size and
complexity of the datasets and the imbalance of the target variables differ.
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Table 5.1: Summary statistics of the datasets used in this work

Dataset Number of
Instances

# Categorical
Attributes

# Numerical
Attributes

Target
Attribute

Distribution
Target Attribute

Task
Type

Adult 32,561 8 6 income 75:25 Binary Class.
Cardio 70,000 4 6 cardio 50:50 Binary Class.
Bank 45,211 7 10 subscribed 88:12 Binary Class.

5.1.1 Adult Dataset

The Adult dataset [BK96] is derived from the U.S. Census Bureau data collected in 1994.
It contains demographic information about individuals, including their age, occupation,
education, race, and relationship. The target attribute is income, which is a binary
variable indicating whether an individual earns more than 50K per year. Figure 5.1
shows the distribution of each attribute in this dataset. Note that numerical features
such as capital-gain and capital-loss are highly left-skewed. Meanwhile, some of the
categorical variables are highly imbalanced and have numerous categories (more than
six, specifically). For example, native-country has 41 categories, but the majority of
samples are from the United States; education-num has 16 categories, with the majority
of samples coming from the 9th category, which corresponds to high school graduates.
Also, the target variable is highly imbalanced, with the majority of samples corresponding
to individuals earning less than 50K.

We determine the dataset’s complexity with respect to its categorical attributes by
calculating the maximum number of possible combinations, which is 4,762,800. This high
value indicates that the likelihood of generating synthetic entries that exactly replicate
the original records is low.

5.1.2 Bank Dataset

The Bank dataset [MRC12] contains information collected through phone calls from
Portuguese bank clients during a marketing campaign. The variables include general
information about clients, such as their age, gender, marital status, and occupation;
information about their financial situation, such as their average balance, loans, and
credits; and information related to the bank’s marketing campaigns, such as the number
of times a person was contacted, the duration of the phone calls, and the communication
type, among others. The target variable is subscribed, indicating whether a client has
subscribed or not to a term deposit. Figure 5.2 shows the distribution of each attribute in
this dataset. Several observations can be made with respect to the distributions. Similar
to the Adult dataset, several numeric variables are highly left-skewed, including balance,
day, duration, campaign, pdays, and previous. Furthermore, the numeric variable day
exhibits multiple modes, posing a challenge for synthetic data generation methods. On
the other hand, categorical attributes have a maximum of 12 categories, and some of
them are highly imbalanced, such as default, which indicates whether a client has a credit
in default, or subscribed, which is the target variable.
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Figure 5.1: Distributions of the features in the Adult dataset

The complexity of the Bank dataset with respect to its categorical attributes is 63,552.
Compared to the Adult dataset, this dataset is less complex, meaning there is a higher
probability of generating synthetic records with similar entries to the original data.

5.1.3 Cardio Dataset
The Cardiovascular Disease dataset [Kag18] (referred to as the cardio dataset in this
work) consists of a collection of 70,000 patient records with information related to
cardiovascular diseases. Specifically, it includes demographic information such as age and
gender, medical measurements collected when the patient was examined, including blood
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Figure 5.2: Distributions of the features in the Bank dataset

pressure, cholesterol, and glucose, and information provided by the patient with respect
to their physical activity and specific habits like smoking and alcohol consumption. The
target variable in the dataset is cardio, which is a binary variable indicating whether the
patient has a cardiovascular disease. Figure 5.2 shows the distribution of each attribute
in this dataset. Like in the previous two datasets, we also have numeric variables with
highly left-skewed distributions. Namely, ap_hi and ap_low correspond to a patient’s
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systolic and diastolic blood pressure readings at the time of the medical examination.
The distributions also reveal highly imbalanced categorical attributes such as smoke,
alcohol, and active. However, in this dataset, the target variable is balanced, with an
equal number of patients with and without cardiovascular disease.

Figure 5.3: Distributions of the features in the Cardio dataset

Now, when considering the complexity of the Cardio dataset, we observe that the
categorical attributes have a maximum of three categories. Therefore, this dataset is the
least complex among those considered. In this case, the maximum number of possible
combinations is 288, which means that it becomes very likely that we generate exact
matches or close matches to the original records in the synthetic data.

5.1.4 Preprocessing
Preprocessing is usually a crucial step performed when using a dataset for machine
learning purposes. It involves cleaning the raw data and transforming it for the specific
task at hand. In the case of synthetic data generation, the goal is to preserve the original
data’s structure and statistical properties as closely as possible. Previous work suggests
that there is no benefit from pre-processing real data prior to synthesizing it [DI21]. In our
work, we delete redundant columns or entries with unique values and change the names
of some attributes for convenience. In particular, we make the following modifications.
For the adult dataset, we deleted the column fnwl because it contains only unique values;
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further, the column education because it is redundant with education-num. In the cardio
dataset, we delete the id column since it only contains unique entries. Finally, for the
bank dataset, no specific preprocessing was required. Furthermore, depending on the
synthetic data generation models, we transformed the real data to ensure the input is
suitable for training. Specifically, in the BN method, we binned the numeric attributes
and label-encoded the categorical attributes. For the VAE, we used Gaussian Mixture
Models (GMM) to encode numerical attributes and one-hot encoding for categorical
attributes as previously proposed in the literature [XSCIV19].

5.2 Partition of data in different clients
One of the main challenges in federated learning is the heterogeneity of data distributions
across different clients. In many applications, real-world data is often not balanced and
not independent and identically distributed (non-i.i.d). For example, the distribution
of patients from hospitals in different regions may vary significantly, as well as the
number of patients with a specific disease [PSA21]. These differences impact the model
performance and convergence [CCL23]. Our experiments investigate the effect of training
synthetic data generators under i.i.d and non-i.i.d settings. In particular, we analyze
two distribution scenarios for the non-i.i.d setting: quantity skew and label distribution
skew. These scenarios have been proposed previously to analyze models trained with
federated learning [LDCH22]. For simulating the scenarios, we used built-in functions
for data partitioning provided by the framework FedLab [ZLH+23]. In the following, we
describe in detail how each partition was obtained:

• Uniform (i.i.d): In this scenario, the data is partitioned evenly and distributed
uniformly among the clients participating in the federation.

• Quantity skew (non-i.i.d): In this scenario, the data is partitioned unevenly
across the different clients. In particular, this is achieved by sampling the indices
of samples assigned to each client from a Dirichlet distribution. The Dirichlet
distribution is commonly used as a prior distribution in Bayesian statistics be-
cause it is beneficial for modeling proportional data [Hua05]. This distribution is
parameterized by a scalar parameter α > 0, which controls the concentration of
the Dirichlet distribution. The smaller the value of this parameter, the larger the
unbalance [LDCH22]. In our experiments, α is set to 0.5 in all scenarios with this
partition.

• Label distribution skew (non-i.i.d): In this scenario, each client is assigned
a subset of the samples, decided by the value of the target variable, using the
Dirichlet distribution. In some cases, clients may have samples from only one target
variable class. We use α = 0.5 in all scenarios with this partition. Additionally, we
have another parameter denoted as the minimum required size, which controls the
minimum number of samples that should be assigned to a client. In our experiments,
the minimum required size is set to 200.
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Figure 5.4 provides an example of the different data distribution settings described in
this section for the Adult dataset. Specifically, it shows the distribution of samples with
respect to the target variable income for the scenario with five clients in the federated
setting.
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(c) Label distribution skew (non-i.i.d)

Figure 5.4: Example of the different data distribution settings used in the Adult dataset
for five clients with respect to the class label.

5.3 Data Generation in the federated setting
The following procedure was used to prepare the datasets for synthetic data generation
in the federated setting and, subsequently, for evaluation:

1. We performed a hold-out method iteratively to ensure consistency of the results.
This method generates three random dataset partitions into training and hold-out
data with a split ratio of 80:20. Figure 5.5 illustrates this method for one random
partition in the left box, where training data is represented in blue and the hold-out
data is represented in red.

2. For each split, we simulated a federated scenario by further partitioning the training
data into the number of clients specified as shown in the right box of Figure 5.5.
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The partition is based on the data distribution specified (cf. Section 5.2). To ensure
reproducibility, we assigned a fixed random seed.

3. Finally, we applied the synthetic data generation techniques that we adapted in
this thesis to the federated setting for each scenario. We used the final global model
to generate synthetic datasets with the same number of samples as the training
data. These datasets (represented in yellow) were then used to assess the synthetic
data generation methods in terms of fidelity, utility, and privacy. In particular, the
utility evaluation used the hold-out data.

Federated Setting

Client 1

Client 2

Client N

...

TD

Training 
Data

Real Data

 

TD

HD

80%
20%

Global Synthetic
Data Generator

Model

Federated
Synthetic Dataset

Figure 5.5: Diagram of synthetic data generation in the federated setting

5.4 Baselines
In our work, we consider two common baselines used in the literature to assess the
performance of federated learning models:

• Centralized Baseline: In this case, we assume that the training data from all the
clients can be shared and stored in a central server, which is then used to train a
centralized model. This model can generate a given number of synthetic samples.
This approach might not be feasible in practice due to privacy concerns and legal
restrictions. However, it serves as an upper bound for the performance of federated
learning models.

• Local Baseline: In this case, we assume that each client trains a model independently
with their local data and generates a certain number of synthetic samples. The
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Figure 5.6: Baselines for assessing the performance of the federated approaches proposed
in this work.

performance of these datasets, when used for machine learning, is then averaged,
serving as a lower bound for our performance evaluation. The expectation is that
federated learning outperforms the average results of local models.

Figure 5.6 illustrates the two baselines previously described. It is worth noting that
to ensure consistency in the comparison, we use the same three randomly partitioned
datasets containing original data, with an 80:20 split between training and testing data for
all baselines. The synthetic datasets used for evaluation in each baseline are highlighted
in yellow.

Once we have collected the results of all baselines for the three random data partitions in
our experiments, we use significance testing when comparing the results. In this context,
a commonly used statistical test is the Student’s t-test [Stu08], which compares the
means of two groups with an approximately normal distribution to determine whether
significant differences exist. These test’s hypotheses are defined as follows:

H0 : µ1 = µ2

H1 : µ1 ̸= µ2
(5.1)

This test provides a better justification for deciding whether the differences between
the baselines are meaningful. If the test indicates a significant difference, we can assess
whether one baseline outperforms the other. The Student’s t-test returns a p-value, and
if the given p-value is below 0.05, we reject the null hypothesis and conclude that the
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difference is statistically significant. For this test, we round the means to three decimal
places and assume that the variances of the sample groups are equal. Furthermore, since
we have two baselines (Centralized and Local), multiple metrics, and different scenarios, we
perform the Student’s t-test independently for each metric and each scenario. Specifically,
we compare the centralized and federated baselines for each metric in a given scenario;
we do the same for the local baseline.

5.5 Hyperparameter Selection
Hyperparameter tuning in federated learning is quite challenging [ZFZ+23, Pre23]. In the
centralized setting, different configurations are tested on a validation set, and standard
methods such as grid search, random search, or Bayesian optimization can be used
for hyperparameter selection. Federated learning, meanwhile, involves data distributed
across clients, which increases the training overhead and the number of hyperparameters,
since both the client and server side must be considered (e.g., local epochs of a client)
[MPS24]. Moreover, the evaluation step for deciding the optimal configuration can be
more challenging because centralizing data to create a validation set may not be available
due to privacy reasons and legal restrictions, and local data at a single client may not
accurately represent the overall data distribution [Pre23].

Hyperparameter tuning in federated learning is also an emerging research area [ZFZ+23]
with limited works already published. Recent works have proposed using techniques such
as reinforcement learning [GYH+22], swarm optimization [LLZ21], and local optimiza-
tion [MPS24] to find the optimal hyperparameters. Other works propose to adapt the
hyperparameters while training the federated model. For instance, Zhang et al. [ZFZ+23]
proposed to adjust the hyperparameters in each training round by searching the ones that
minimize an objective function considering aspects such as the number of clients, the num-
ber of training rounds, and model complexity. Mitic et al. [MPS24] proposed performing
hyperparameter tuning in a privacy-preserving manner by letting each client optimize its
model locally and then sending the optimal set found, along with a performance metric
using multi-party homomorphic encryption, to the server. The server then combines the
results from all clients using a specific strategy. Their findings showed that computing
the mean of the performance metric for the top five hyperparameter configurations of
each client for i.i.d settings works well. In comparison, density-based clustering for
non-i.i.d settings yields better results. Many open challenges remain, including efficiency,
applicability to multiple models, and the consideration of hyperparameters affecting the
federated training.

Apart from the challenges mentioned above, when tuning hyperparameters for synthetic
data generation models, we also need to consider that the main goal is to enhance the
quality of the generated synthetic data. However, the quality of the synthetic data can be
defined in terms of fidelity, utility, and privacy, and multiple metrics can be used to assess
these dimensions. Therefore, we also need to choose a metric to optimize based on the
specific use case of the synthetic data. One way to select this metric is by investigating
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the correlation between metrics, as demonstrated by Basri et al. [BHA+23], and then
choosing the one with the strongest correlations to other metrics.

It is beyond the scope of this work to determine the best strategy for hyperparameter
optimization of synthetic data generation models in a federated setting. Therefore, we
do not explore this topic in detail. Instead, in the implementation, we treat federated
learning models as black boxes and perform standard methods such as grid search and
random search over a grid of hyperparameters defined for the client and server sides
using Weight& Biases1. We use the Log-Cluster metric as the objective function, as it
provides a global assessment of the similarity of the latent structure of real and synthetic
data. All configurations were evaluated against the local data on each client after the
global model was trained, and the average results were then calculated on the server. In
this final step, we assume we have access to a SMPC protocol for the computation.

For our FedBN approach introduced in Section 3.3, we performed a grid search with the
hyperparameter values presented in Table 5.2. The hyperparameters P and S are derived
from the genetic algorithm used in the structure learning step of the Bayesian Network
(BN) approach. The hyperparameter T is associated with the server in the federated
setting and directly impacts the aggregation of the client results, mainly the aggregation
frequency.

Table 5.2: Hyperparameter grid for the FedBN approach

Hyperparameter Possible Values
Population Size P 100,150,200

Selection Pressure S 5,10,15
Aggregation Interval T 5,10,20,25

In contrast to the BN approach proposed, the VAE approach in the federated setting
has more hyperparameters that can significantly influence the model’s performance,
making the tuning process more complex. Therefore, we used a random grid search
with 30 iterations to limit the number of configurations since running each iteration is
computationally expensive. The hyperparameters were also selected depending on the
characteristics of the datasets. The grid used for the Adult and Bank datasets was the
same and is shown in Table 5.3. Meanwhile, the grid used in the Cardio dataset, which
has fewer columns, is shown in Table 5.4.

Figure 5.7 shows the results of the hyperparameter tuning in the FedBN approach for
each dataset using five clients with a non-i.i.d data partition, specifically with a label
skew distribution. The optimal configuration is obtained by minimizing the Mean Log
Cluster metric from three runs with different data partitions. The aim is to find a model
that generates synthetic data that closely resembles real data in its latent structure. The
model that provides the best results for the Adult dataset (Figure 5.7a) obtained a score
of -19.0. On the other hand, for the Bank dataset (Figure 5.7b), the best score is -21.68.

1https://wandb.ai/
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Table 5.3: Hyperparameter grid for the FedVAE approach for the Adult and Bank
datasets

Hyperparameter Possible Values
Loss Factor 2,4,6,8

Local Epochs 1,5,10,20
Global Epochs 50,100,200,300

Batch size 50,100,200,300
Embedding dimension 16,32,56,64
Compress dimension [128],[64],[128,128],[128, 64],[64, 64]

Weight Decay 0.00001, 0.0001, 0.001, 0.01, 0.1

Table 5.4: Hyperparameter grid for the FedVAE approach for the Cardio dataset

Hyperparameter Possible Values
Loss Factor 2,4,6,8

Local Epochs 1,5,10,20
Global Epochs 50,80,100

Batch size 100,200,300
Embedding dimension 5,10,20,25,30
Compress dimension [32],[56],[64],[64, 32],[64, 56]

Weight Decay 0.00001, 0.0001, 0.001, 0.01, 0.1

Finally, the best score for the Cardio dataset (Figure 5.7c) is -12.679. In particular, for
this last dataset, the differences between multiple hyperparameter configurations are
smaller compared to the best score, unlike in the other two datasets.

Table 5.5 summarizes the optimal hyperparameter configurations for each dataset ac-
cording to the tuning process of the FedBN approach. Note that in our experiments, we
used the same hyperparameters in all the scenarios considered in the federated setting
with different numbers of clients and data partitions to ensure consistency. However,
depending on the use case of the synthetic data, it would be beneficial to run the process
for each scenario. We can conclude from the table that the hyperparameters are highly
dependent on the dataset.

Table 5.5: Best training hyperparameter settings for FedBN

Dataset Aggregation Interval Population Size Selection Pressure
Adult 20 100 10
Bank 10 200 10

Cardio 25 150 15

Similar to the approach used for the FedBN model, we also perform hyperparameter
tuning for the FedVAE model for each dataset using five clients with a non-i.i.d data
partition, specifically with a label skew distribution. Figure 5.8 shows the results obtained
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(a) Adult Dataset

(b) Bank Dataset

(c) Cardio Dataset

Figure 5.7: Results of hyperparameter tuning to determine the optimal configuration for
training the FedBN model in a scenario with five clients using non-i.i.d data partitions
with label distribution skew for the different datasets. Each line is a hyperparameter
configuration. The vertical axes represent the hyperparameter values, with the rightmost
axis depicting the performance metric (Mean Log Cluster) used for selecting the optimal
configuration.
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for all datasets. As we can see, the FedVAE model explores a more extensive range
of hyperparameters. The main reason is that VAEs are composed of neural networks.
Therefore, we have hyperparameters related to the architecture (e.g., the embedding
dimension and compression dimensions), the training of the local models (e.g., the
batch size, the weight decay, and the loss factor), as well as parameters directly tied to
the federated learning process (e.g., global epochs and local epochs of the clients). It
is necessary to clarify that the compression dimension is a list of numbers indicating
the number of hidden layers and the dimension of each layer in the encoder. In our
implementation, we replicate the architecture of the encoder in the decoder, following
the approach proposed by Xu et al. [XSCIV19].

As shown in Figure 5.8a, the best-performing model for the Adult dataset obtained
a score of -20.927. On the other hand, for the Bank dataset (Figure 5.8b) and the
Cardio dataset (Figure 5.8c), the best scores are -18.118 and -15.969 respectively. It is
apparent from the figures that smaller values in the weight decay yield better results in
all datasets. This is not surprising, as weight decay imposes a penalty on the model’s
weights. Smaller weight decay values result in a less severe penalty, allowing the model
to learn better while benefiting from regularization. We also observe that the differences
between hyperparameter configurations near the optimal set are smaller for this model
than the FedBN model. Especially for the Bank dataset, the closest configuration to
the optimal hyperparameter set has a difference of approximately 0.06 in terms of the
evaluation metric used.

Table 5.6: Best training hyperparameter settings for FedVAE

Dataset Global
Epochs

Local
Epochs

Batch
Size

Compress
Dim.

Embedding
Dim.

Weight
Decay

Loss
Factor

Adult 100 20 200 [64,64] 64 0.0001 4
Bank 200 20 200 [128] 56 0.001 4

Cardio 50 1 100 [64,56] 20 0.001 2

Table 5.5 presents the best training hyperparameter settings for the FedVAE model for
all datasets. In a similar fashion, as described for the FedBN model, the hyperparameters
reported in the table are the ones we used for all the scenarios explored (i.e., with different
numbers of clients and data partitions). The only remark is that the global epochs were
modified in the scenarios using local differential privacy due to problems with the model
convergence. A detailed explanation is provided in Chapter 6.

5.6 Evaluation
We evaluate properties of synthetic data across three dimensions: fidelity, utility, and
privacy. We investigate popular metrics used in the literature for each dimension and
select ones that cover multiple aspects of the synthetic data. The metrics chosen are
depicted in Figure 5.9 grouped by the dimension they belong to, and a more detailed
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(a) Adult Dataset

(b) Bank Dataset

(c) Cardio Dataset

Figure 5.8: Results of hyperparameter tuning to determine the optimal configuration for
training the FedVAE model in a scenario with five clients using non-i.i.d data partitions
with label distribution skew for the different datasets. Each line is a hyperparameter
configuration. The vertical axes represent the hyperparameter values, with the rightmost
axis depicting the performance metric (Mean Log Cluster) used for selecting the optimal
configuration.
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categorization that is based on further attributes. Furthermore, the definitions for each
metric are provided in Section 2.1.3.

Evaluation Metrics
Synthetic Data Utility

Fidelity

Privacy 

Bivariate

Population 

Distance and
Similarity

Attack-Based

Application-
Based

Univariate Hellinger Distance
(M-HD)

Pairwise Correlation
Difference (PCD)

Propensity Score
(PMSE)

Train on Real Test
on Real (TRTR)

Train on Synthetic
Test on Real

(TSTR)

Distance to Closest
Record (DCR)

Attribute
Disclosure  

Log Cluster Metric
(Log Cluster)

Figure 5.9: Metrics used for evaluation

5.6.1 Privacy Risk Assessment
The two metrics considered to evaluate the privacy of synthetic data are Distance to
Closest Record (DCR) and Attribute Disclosure (AD). The literature analyzes these
metrics in multiple ways. Therefore, we provide a detailed explanation of the methodology
used in our work.

For the DCR metric, we consider the hold-out assessment proposed in [PR21]. This
assessment compares the DCR results obtained from synthetic and training data with
those from the holdout data. Specifically, it analyzes the average DCRs and calculates
the share of records that are closer to the training data than to the hold-out data. A
share close to 0.5 indicates that the distances to the training and hold-out data are
similar. This suggests that the synthetic data does not reveal whether a particular record
was part of the training data.

In the proposed assessment, the authors split the real data into training and holdout
datasets with a 50:50 ratio. However, in our case, the holdout dataset contains only 20%
of the real records. Therefore, to avoid bias when computing the share of records, and in
lack of a directly comparable baseline, we use bootstrapping to sample an equal number
of records from the training data across ten iterations and calculate the mean share of
all iterations. This procedure is repeated for each random split used in the experiments.
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Additionally, we calculate the minimum distance of a synthetic record to a training record
to check for exact matches (i.e., records with DCR=0).

On the other hand, for the attribute disclosure experiments, we follow the approach
presented in [HME20], which defines possible attack scenarios for a given dataset. Each
scenario assumes that the attacker has access to a set of quasi-identifiers from an individual
that might be in the original dataset and tries to learn the value of a sensitive attribute,
denoted as the target attribute, using the synthetic dataset provided. The attack is
performed as a classification task, and the risk is estimated for each record in the original
dataset. We use the machine learning algorithms previously reported in the centralized
setting [HME20] to perform the attack. All the algorithms are trained using the default
parameters from the Python library (scikit-learn). Furthermore, we use two baselines to
estimate the disclosure risk: the real data and the dummy classifier. The real data serves
as an upper bound on the performance of the synthetic data, and the dummy classifier,
which predicts the most frequent class, serves as a lower bound. In particular, we are
interested in the risk reduction provided by the synthetic data with respect to the real
data.

The scenarios defined for each dataset are depicted in Table 5.7. In each scenario, we
define the key length, denoted as n, which represents the number of quasi-identifiers the
attacker is assumed to know about a particular individual from one of the client’s datasets.
Note that the individual may or may not be part of these datasets. We also define a
quasi-identifier set, denoted as QI, which can be larger than the key length, to simulate
the attacker’s knowledge and a target attribute representing sensitive information about
the target individual. After defining these elements, we run the aforementioned ML
algorithms and compute the accuracy for all combinations of QI with the given key
length using the synthetic data as the training set and real data as the test set. Finally,
we report the average and standard deviation of all the runs.

Scenario Dataset Key-length(n) Quasi-Identifiers(QI) Target(t)
1 Adult 3 {’age, marital-status’, ’sex’,’race’} marital-status
2 Bank 3 {’age’, ’job’, ’marital’, ’education’} housing
3 Cardio 2 {’age’,’gender’,’height’} cholesterol

Table 5.7: Attribute Disclosure Scenarios

5.7 Experimental Setup
The experiments for this thesis were performed in Python 3.9 using the Flower Library
version 1.6 with the virtual engine available for simulations. Since the models we used
have different characteristics, the experiments were run on two machines.

For the BN model, we used a server with the following specifications:

• CPU: 56 cores (with hyperthreading), Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz
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• RAM: 256 GB

• Operating System: Ubuntu Linux

On the other side, for the VAE model, we used GPUs with the following specifications:

• GPU: NVIDIA RTX 2080 Ti

• Operating System: Ubuntu Linux

The code that has been used for each of the methods will be available at the following
repositories:

• https://gitlab.sba-research.org/machine-learning/federate
d-ga-datasynthesizer (FedBN approach)

• https://github.com/danielamartinezd02/Federated-SyntheticTa
bularDataGeneration (FedVAE approach)
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CHAPTER 6
Results and Evaluation

This chapter analyzes the results obtained following the experiment design described
in Chapter 5. It is organized as follows. The first part investigates the quality of
the synthetic data generated with Bayesian Networks in the distributed setting. The
quality is analyzed in terms of fidelity, utility, and privacy. The results include different
settings and comparisons against two baselines, namely the centralized and the local
setting. The second part of the results presents the VAE experiments conducted in
the distributed setting. It also includes an analysis of different settings and metrics in
multiple dimensions. The last part compares the Bayesian Networks and the VAEs in the
distributed setting. One important aspect to note in this analysis is that a centralized
dataset to assess synthetic data quality is usually not available in a distributed setting.
Therefore, the evaluation is much more challenging, and one must consider combining the
local assessment to get a global overview. For experimental purposes, however, we use
the real centralized dataset to benchmark the performance of the federated setting, as it
is commonly done in the literature [DLH+23, ZBKC21, FV22]. In real scenarios, due to
privacy concerns, SMPC and other privacy-preserving techniques could be leveraged to
evaluate this baseline performance.

To run the experiments, we used the hyperparameter settings presented in Section 5.5 for
each dataset. To provide statistically more robust evidence for the analysis, we further
contact statistical significance testing on the differences of the classifier performance, as
explained in Section 5.4. Since there are two baselines, we conducted two separate tests
for each of them, i.e., the first test compares the federated baseline against the centralized
baseline, while the second test compares the local baseline against the federated setting.
The results of these tests are color-coded for the tables following in this chapter. If the
differences are statistically significant, we highlight the result in green if it performs
better or in red if it performs worse. Otherwise, we do not highlight the result. As
there are two baselines, the color-coding in rows showing federated (labeled as "Fed")
results indicate the significance of the federated result compared to the centralized result.
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Likewise, in rows providing local results (labeled as "Loc"), the color-coding indicates the
performance of federated learning against the local baseline.

To improve readability, this chapter presents only the tables and figures that offer new
insights. The remaining results are provided in the Appendix (see the Appendix A).

6.1 Federated Bayesian Networks
6.1.1 Fidelity Evaluation
The aim of the fidelity evaluation is to determine whether the synthetic data preserves
the structure and statistics of the real data. This section analyses fidelity results of 27
federated learning scenarios tested on three datasets. The scenarios combine settings
for different numbers of clients NC ∈ [3, 5, 10], different data partitions (i.i.d, non-i.i.d
quantity skew, and non-i.i.d label skew), and two privacy budgets (ϵ = 0.5 and ϵ = 1.6).
We also include scenarios without DP to showcase the impact of adding privacy-preserving
techniques on the synthetic data generation process. The metrics used for the fidelity
evaluation are the following: mean Hellinger distance (M-HD), pair correlation difference
(PCD), propensity mean squared error (pMSE), and log-cluster metric (LC). A detailed
description of each metric was provided in Section 2.1.3. The result for each metric
shows the mean and the standard deviation across three different iterations with distinct
splits of the real data. Note that the lower the value of all the metrics, the better the
performance in terms of fidelity. It should be emphasized that the epochs and other
applicable hyperparameters for the two baselines are set to the same values, and the
number of synthetic samples generated in each case is equal to the total number of
samples across all clients.

Table 6.1 shows the results on the Adult dataset. It can be observed from these results
that the variations in the metrics M-HD and pMSE across different numbers of clients and
data partitions are not significant within the federated setting for the same epsilon value.
In contrast, PCD and LC metrics show significant differences across various scenarios.
When comparing the different results across the scenarios, we can observe no significant
differences in most cases between the centralized and federated settings for the non-DP
case. This means that the fidelity of the synthetic data is comparable for both baselines or
slightly better as desired. On the other hand, statistical tests reveal significant differences
between the federated and local settings in two fidelity metrics: M-HD and LC. Notably,
in the non-i.i.d, label skew partitions, federated results outperform the average local
results for LC when using 5 and 10 clients.

Interestingly, the synthetic data generated with a privacy budget ϵ = 1.6 for the Adult
dataset in the federated setting shows significant differences compared to the centralized
and local settings. Specifically, the federated setting outperforms the centralized setting
in terms of PCD and LC across six scenarios. Additionally, it provides comparable results
for these metrics in the rest of the scenarios with the centralized setting. Meanwhile, the
local setting results for this privacy budget are worse than the federated setting for all
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Table 6.1: Fidelity results for the Adult dataset with 3, 5, and 10 clients under different
data partitions (i.i.d, non-i.i.d quantity skew, and non-i.i.d label skew) using FedBN.
Statistical significance is highlighted as follows: green indicates significantly better
performance than the baseline, and red indicates worse performance than the baseline.
Federated results are compared to the centralized one, while local results are compared
to the federated ones.

Model BN
Non-DP DP ( ϵ = 0.5) DP ( ϵ = 1.6)

NC Bas. M-HD
↓

PCD
↓

pMSE
↓

LC
↓

M-HD
↓

PCD
↓

pMSE
↓

LC
↓

M-HD
↓

PCD
↓

pMSE
↓

LC
↓

Cen 0.186±0.000 0.409±0.077 0.249±0.000 -15.328±1.135 0.419±0.006 2.045±0.021 0.250±0.000 -3.031±0.010 0.379±0.009 1.788±0.022 0.250±0.000 -3.116±0.004
i.i.d

Fed 0.185±0.000 0.365±0.024 0.249±0.000 -17.772±0.739 0.451±0.006 2.205±0.050 0.250±0.000 -3.027±0.002 0.374±0.035 1.634±0.184 0.250±0.000 -3.201±0.0713 Loc 0.190±0.001 0.363±0.041 0.249±0.000 -17.470±2.189 0.454±0.006 2.126±0.043 0.250±0.000 -3.023±0.016 0.418±0.010 1.874±0.070 0.250±0.000 -3.045±0.022
Fed 0.186±0.000 0.318±0.023 0.249±0.000 -16.969±0.928 0.426±0.010 1.930±0.094 0.250±0.000 -3.031±0.003 0.319±0.010 1.259±0.108 0.249±0.000 -3.430±0.0405 Loc 0.192±0.001 0.408±0.070 0.249±0.000 -16.673±4.456 0.468±0.005 2.254±0.042 0.250±0.000 -3.027±0.031 0.448±0.008 2.083±0.058 0.250±0.000 -3.032±0.028
Fed 0.186±0.000 0.502±0.117 0.249±0.000 -19.161±3.942 0.457±0.003 2.194±0.070 0.250±0.000 -3.036±0.016 0.378±0.018 1.615±0.039 0.250±0.000 -3.281±0.09710 Loc 0.196±0.002 0.558±0.099 0.249±0.000 -14.572±2.315 0.471±0.005 2.352±0.066 0.250±0.000 -3.015±0.035 0.462±0.008 2.279±0.099 0.250±0.000 -3.017±0.035

non-i.i.d (Quantity Skew)
Fed 0.186±0.000 0.320±0.027 0.249±0.000 -18.608±2.186 0.442±0.006 2.096±0.099 0.250±0.000 -3.034±0.011 0.349±0.011 1.443±0.132 0.249±0.000 -3.269±0.0383 Loc 0.190±0.001 0.348±0.023 0.249±0.000 -15.550±2.166 0.461±0.008 2.116±0.052 0.250±0.000 -3.021±0.027 0.431±0.015 1.903±0.089 0.250±0.000 -3.037±0.026
Fed 0.186±0.000 0.387±0.059 0.249±0.000 -17.470±1.750 0.441±0.011 2.066±0.126 0.250±0.000 -3.023±0.011 0.349±0.036 1.421±0.205 0.250±0.000 -3.337±0.1345 Loc 0.194±0.003 0.489±0.091 0.249±0.000 -16.501±4.020 0.464±0.012 2.282±0.122 0.250±0.000 -3.021±0.031 0.447±0.024 2.158±0.191 0.250±0.000 -3.031±0.031
Fed 0.185±0.000 0.505±0.105 0.249±0.000 -18.215±1.364 0.458±0.004 2.227±0.088 0.250±0.000 -3.029±0.008 0.376±0.018 1.596±0.076 0.250±0.000 -3.287±0.06010 Loc 0.179±0.026 0.716±0.295 0.236±0.029 -14.141±2.497 0.462±0.011 2.360±0.101 0.249±0.002 -2.992±0.069 0.453±0.010 2.286±0.163 0.249±0.002 -2.996±0.072

non-i.i.d (Label Skew)
Fed 0.186±0.001 0.369±0.028 0.249±0.000 -16.556±1.484 0.455±0.015 2.247±0.135 0.250±0.000 -3.019±0.007 0.376±0.029 1.622±0.167 0.250±0.000 -3.194±0.0613 Loc 0.247±0.035 1.045±0.535 0.249±0.000 -13.129±2.142 0.460±0.012 2.306±0.160 0.250±0.000 -3.024±0.017 0.437±0.019 2.153±0.179 0.250±0.000 -3.047±0.015
Fed 0.185±0.000 0.507±0.167 0.249±0.000 -18.090±2.149 0.448±0.019 2.184±0.194 0.250±0.000 -3.026±0.007 0.361±0.045 1.561±0.275 0.250±0.000 -3.270±0.1365 Loc 0.257±0.032 1.116±0.592 0.248±0.003 -12.627±2.092 0.463±0.017 2.372±0.226 0.250±0.000 -3.008±0.043 0.445±0.021 2.263±0.255 0.250±0.000 -3.022±0.046
Fed 0.186±0.001 0.554±0.104 0.249±0.000 -20.346±3.426 0.457±0.005 2.187±0.104 0.250±0.000 -3.032±0.015 0.385±0.017 1.653±0.064 0.250±0.000 -3.255±0.06610 Loc 0.274±0.048 1.261±0.444 0.248±0.003 -12.139±2.191 0.469±0.009 2.452±0.101 0.250±0.000 -2.991±0.078 0.460±0.014 2.392±0.131 0.250±0.000 -2.999±0.084

the metrics except for pMSE, excluding the scenario with three clients and i.i.d partition.
These observations suggest that using distributed DP for synthetic data generation in the
federated setting can provide better results than DP applied in the centralized setting in
some instances. A possible explanation is that local data requires less noise to achieve the
same privacy level, leading to more useful information being preserved and better results
after aggregation, especially for certain privacy budgets. However, further experiments
are required to validate these findings.

The results obtained for the Bank dataset (Table 6.2) show statistically significant
differences in multiple metrics between the federated results and the centralized baseline
for the non-DP case. Specifically, the federated results outperform the centralized baseline
in the M-HD metric for the non-DP version in 6 out of 9 scenarios and the PCD metric in
3 out of 9 scenarios, achieving comparable performance in the remaining cases. However,
the pMSE is worse than the centralized baseline in 8 out of 9 scenarios. Despite these
statistically significant differences, the variations in M-HD and pMSE are only 0.01 in all
cases, which is not meaningful given the range of these metrics. However, the PCD results
suggest that synthetic data in the federated setting may better capture correlations
compared to the centralized setting. Additionally, when comparing the local baseline
and federated settings, we can observe that the average results in the local baseline even
outperform federated learning across multiple metrics in the non-DP case for the i.i.d
and non-i.i.d quantity skew data partitions. This can occur when the distribution of
client’s data resembles the distribution of aggregated (centralized) data – then, federated
learning provides a more general model, that is however not better fitting for the specific
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local data. In such cases, the federated approach may not provide additional benefits
over local data generation.

Table 6.2: Fidelity results for the Bank dataset with 3, 5, and 10 clients under different
data partitions (i.i.d., non-i.i.d. quantity skew, and non-i.i.d. label skew) using FedBN.
Statistical significance is highlighted as follows: green indicates significantly better
performance than the baseline, and red indicates worse performance than the baseline.
Federated results are compared to the centralized one, while local results are compared
to the federated ones.

Model BN
Non-DP DP ( ϵ = 0.5) DP ( ϵ = 1.6)

NC Bas. M-HD
↓

PCD
↓

pMSE
↓

LC
↓

M-HD
↓

PCD
↓

pMSE
↓

LC
↓

M-HD
↓

PCD
↓

pMSE
↓

LC
↓

Cen 0.148±0.000 1.039±0.080 0.226±0.000 -20.746±2.368 0.379±0.026 1.895±0.229 0.246±0.001 -8.087±0.371 0.320±0.038 1.780±0.052 0.245±0.002 -9.513±1.052
i.i.d

Fed 0.147±0.000 0.928±0.036 0.227±0.000 -18.020±0.505 0.423±0.013 2.262±0.243 0.248±0.000 -7.715±0.256 0.349±0.050 1.803±0.227 0.245±0.002 -9.584±2.2833 Loc 0.143±0.006 0.794±0.255 0.224±0.004 -20.021±3.024 0.404±0.005 2.131±0.073 0.247±0.001 -7.708±0.171 0.360±0.009 1.761±0.059 0.246±0.001 -8.290±0.291
Fed 0.147±0.000 0.890±0.020 0.227±0.000 -19.807±1.030 0.423±0.001 2.334±0.013 0.248±0.000 -7.412±0.097 0.330±0.001 1.759±0.029 0.241±0.003 -8.258±0.0505 Loc 0.138±0.006 0.703±0.224 0.221±0.004 -19.211±1.574 0.420±0.005 2.439±0.096 0.247±0.001 -7.416±0.137 0.404±0.011 2.252±0.183 0.246±0.001 -7.556±0.181
Fed 0.147±0.000 0.884±0.005 0.227±0.000 -21.758±1.113 0.414±0.004 2.371±0.120 0.248±0.000 -7.515±0.131 0.330±0.028 1.950±0.068 0.240±0.001 -8.353±0.66010 Loc 0.135±0.006 0.569±0.106 0.219±0.003 -17.904±2.535 0.420±0.005 2.553±0.076 0.246±0.001 -7.445±0.083 0.413±0.009 2.485±0.149 0.246±0.001 -7.465±0.136

non-i.i.d (Quantity Skew)
Fed 0.148±0.000 0.953±0.049 0.227±0.000 -18.496±0.801 0.406±0.014 2.148±0.223 0.248±0.000 -7.812±0.334 0.298±0.031 1.702±0.193 0.245±0.003 -9.971±1.0593 Loc 0.139±0.007 0.756±0.177 0.222±0.004 -18.032±1.560 0.409±0.015 2.241±0.308 0.247±0.001 -7.915±0.512 0.379±0.035 2.038±0.390 0.246±0.001 -8.549±0.885
Fed 0.147±0.000 0.894±0.008 0.227±0.000 -19.657±1.583 0.432±0.001 2.555±0.016 0.248±0.000 -7.390±0.046 0.391±0.001 2.073±0.007 0.244±0.000 -7.716±0.0535 Loc 0.138±0.006 0.614±0.162 0.221±0.004 -19.614±2.927 0.419±0.006 2.468±0.139 0.247±0.001 -7.507±0.160 0.41±0.013 2.336±0.233 0.205±0.017 -8.514±0.541
Fed 0.147±0.000 0.965±0.079 0.227±0.000 -19.513±1.377 0.417±0.009 2.445±0.112 0.248±0.000 -7.650±0.295 0.327±0.042 1.859±0.117 0.239±0.001 -9.156±1.58910 Loc 0.129±0.011 0.711±0.223 0.216±0.006 -18.255±4.049 0.411±0.012 2.558±0.113 0.244±0.003 -7.506±0.156 0.404±0.010 2.461±0.220 0.244±0.003 -7.570±0.218

non-i.i.d (Label Skew)
Fed 0.147±0.000 0.943±0.083 0.227±0.000 -23.485±6.252 0.432±0.001 2.561±0.029 0.249±0.000 -7.804±0.351 0.380±0.009 1.912±0.162 0.244±0.001 -7.959±0.2653 Loc 0.182±0.033 1.123±0.431 0.225±0.005 -14.413±2.433 0.408±0.019 2.428±0.212 0.246±0.001 -7.763±0.453 0.384±0.042 2.336±0.256 0.245±0.001 -8.272±1.048
Fed 0.148±0.001 0.988±0.058 0.227±0.000 -18.776±0.197 0.431±0.001 2.572±0.013 0.249±0.000 -7.394±0.021 0.388±0.004 2.055±0.024 0.244±0.000 -7.703±0.0355 Loc 0.180±0.034 1.136±0.345 0.224±0.006 -13.669±2.235 0.414±0.012 2.556±0.102 0.246±0.002 -7.506±0.162 0.399±0.024 2.450±0.174 0.245±0.002 -7.683±0.345
Fed 0.148±0.000 0.990±0.069 0.226±0.000 -18.928±1.312 0.405±0.019 2.228±0.233 0.247±0.001 -7.691±0.288 0.306±0.046 1.868±0.119 0.240±0.001 -9.178±0.99610 Loc 0.165±0.030 1.105±0.441 0.221±0.005 -15.744±3.444 0.412±0.013 2.670±0.093 0.245±0.004 -7.510±0.157 0.406±0.012 2.602±0.130 0.244±0.004 -7.555±0.234

Moreover, when considering the results with DP for the Bank dataset, we observe that
the federated setting performs worse than the centralized baseline in several metrics.
For instance, the federated setting with ϵ = 1.6 performs worse than the centralized
baseline for the PCD metric in 3 out of 9 scenarios, while in the others, the difference
is not significant. This contrasts with the findings from the Adult dataset, where the
federated setting performed better. This indicates that the distributed DP approach
does not consistently outperform centralized DP. Its effectiveness is also related to the
characteristics of the dataset. On the other hand, the local baseline results with DP
exhibit worse or comparable results than the federated baseline with no clear trend.

Table 6.3 shows the results obtained with the Cardio dataset. Contrary to the previous
two datasets, there are fewer differences across the scenarios between the baselines
and federated learning. For the non-DP case, we observe that the federated setting
outperforms the local baseline in the LC metric across all scenarios with a non-i.i.d. label
skew data partition. This means the federated approach provides better similarity to
the real data regarding clustering. Similarly, when applying DP, the federated setting
outperforms the local baseline in 5 out of 9 scenarios for the LC metric, particularly in
non-i.i.d. partitions. In other cases, the results are not significantly different.

Conversely, observing the other metrics, we can see that the federated setting with a
privacy budget ϵ = 1.6 outperforms the centralized baseline in the pMSE metric in 7 out
of 9 scenarios by 0.01, which as previously stated is not representative for this metric.
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Table 6.3: Fidelity results for the Cardio dataset with 3, 5, and 10 clients under different
data partitions (i.i.d, non-i.i.d quantity skew, and non-i.i.d label skew) using FedBN.
Statistical significance is highlighted as follows: green indicates significantly better
performance than the baseline, and red indicates worse performance than the baseline.
Federated results are compared to the centralized one, while local results are compared
to the federated ones.

Model BN
Non-DP DP ( ϵ = 0.5) DP ( ϵ = 1.6)

NC Bas. M-HD
↓

PCD
↓

pMSE
↓

LC
↓

M-HD
↓

PCD
↓

pMSE
↓

LC
↓

M-HD
↓

PCD
↓

pMSE
↓

LC
↓

Cen 0.212±0.001 0.251±0.032 0.242±0.000 -19.025±0.646 0.229±0.013 0.915±0.049 0.244±0.000 -12.215±0.514 0.219±0.007 0.710±0.044 0.243±0.000 -14.847±0.047
i.i.d

Fed 0.212±0.001 0.232±0.028 0.242±0.000 -21.702±2.632 0.251±0.017 0.882±0.061 0.245±0.000 -12.948±2.302 0.219±0.004 0.643±0.090 0.242±0.000 -18.215±1.6483 Loc 0.209±0.003 0.269±0.019 0.239±0.003 -18.919±2.120 0.253±0.032 1.184±0.200 0.244±0.002 -10.174±2.491 0.232±0.023 1.045±0.289 0.242±0.003 -13.238±2.938
Fed 0.212±0.001 0.277±0.008 0.242±0.000 -18.701±1.973 0.275±0.045 1.220±0.260 0.245±0.001 -10.308±3.101 0.224±0.012 0.908±0.384 0.242±0.001 -15.975±4.2825 Loc 0.205±0.003 0.302±0.061 0.235±0.007 -19.010±2.963 0.279±0.032 1.216±0.175 0.244±0.005 -7.231±1.259 0.242±0.021 1.162±0.289 0.240±0.007 -11.227±3.678
Fed 0.212±0.001 0.279±0.003 0.242±0.000 -22.063±4.099 0.235±0.003 1.168±0.048 0.243±0.000 -13.533±0.953 0.218±0.005 0.765±0.340 0.242±0.000 -16.762±1.23410 Loc 0.203±0.004 0.341±0.121 0.231±0.008 -17.872±2.875 0.312±0.035 1.167±0.101 0.244±0.004 -5.623±0.693 0.269±0.033 1.240±0.189 0.239±0.008 -7.937±1.382

non-i.i.d (Quantity Skew)
Fed 0.212±0.001 0.238±0.032 0.242±0.000 -17.379±1.248 0.262±0.004 1.123±0.133 0.245±0.000 -11.505±2.261 0.220±0.001 0.791±0.065 0.242±0.000 -17.431±1.3933 Loc 0.208±0.002 0.264±0.013 0.239±0.003 -18.751±1.978 0.276±0.037 1.217±0.164 0.245±0.004 -8.113±1.652 0.245±0.024 1.149±0.222 0.242±0.004 -10.696±1.892
Fed 0.212±0.001 0.278±0.002 0.242±0.000 -16.852±1.629 0.267±0.005 1.175±0.084 0.245±0.000 -10.663±1.485 0.220±0.001 0.771±0.061 0.242±0.000 -20.392±2.3935 Loc 0.206±0.004 0.318±0.069 0.234±0.007 -18.298±2.822 0.275±0.037 1.200±0.151 0.245±0.002 -7.260±1.367 0.241±0.026 1.145±0.268 0.241±0.004 -10.284±1.948
Fed 0.212±0.001 0.283±0.015 0.242±0.000 -17.268±1.038 0.239±0.007 1.027±0.070 0.244±0.000 -13.640±1.038 0.215±0.001 0.600±0.018 0.242±0.000 -19.213±3.01210 Loc 0.201±0.006 0.424±0.200 0.222±0.015 -16.421±2.722 0.318±0.054 1.189±0.122 0.244±0.005 -5.705±1.516 0.285±0.053 1.172±0.208 0.239±0.009 -7.585±2.850

non-i.i.d (Label Skew)
Fed 0.212±0.001 0.303±0.031 0.242±0.000 -19.207±0.650 0.248±0.031 0.948±0.235 0.245±0.001 -9.773±1.857 0.217±0.007 0.653±0.222 0.243±0.000 -15.444±2.0793 Loc 0.234±0.019 0.453±0.165 0.237±0.004 -9.707±1.581 0.277±0.042 1.142±0.147 0.245±0.002 -7.556±1.734 0.253±0.030 1.065±0.204 0.242±0.002 -11.777±4.026
Fed 0.212±0.001 0.310±0.027 0.242±0.000 -21.373±2.303 0.263±0.004 1.253±0.052 0.245±0.000 -9.786±1.219 0.219±0.002 0.817±0.027 0.242±0.000 -16.412±1.2645 Loc 0.234±0.021 0.584±0.327 0.231±0.012 -10.483±3.298 0.297±0.031 1.218±0.185 0.243±0.006 -6.128±1.323 0.269±0.026 1.195±0.215 0.237±0.012 -8.336±2.477
Fed 0.212±0.001 0.317±0.023 0.242±0.000 -19.218±0.608 0.234±0.012 0.983±0.169 0.244±0.000 -12.489±1.259 0.214±0.001 0.643±0.093 0.242±0.000 -18.954±2.35110 Loc 0.233±0.020 0.553±0.284 0.226±0.013 -9.885±2.373 0.333±0.035 1.226±0.222 0.246±0.003 -5.375±1.295 0.295±0.042 1.219±0.229 0.241±0.006 -6.465±1.480

Furthermore, in some scenarios of the non-DP case, the local baseline outperforms the
federated setting in the M-HD metric for the i.i.d and non-i.i.d quantity skew partitions.
However, the remaining scenarios found no significant differences between the baselines
and the federated setting. Also, we can conclude from this table that the impact of noise
with different privacy budgets is subtle across all metrics.

Overall, the results demonstrate a clear trend: increasing the number of clients often
leads to worse outcomes for the PCD metric. This may be due to the experimental
setup, where having more clients results in less local data per client. Therefore, learning
the correlations becomes more challenging since individual datasets contribute less to
the global model. While this holds for the PCD metric, we can observe that the same
conclusion does not hold for the LC metric, where it is difficult to say whether the number
of clients significantly impacts the results. Moreover, when comparing scenarios with the
same number of clients but different data partitions in the non-DP case, we find that, for
all datasets, the non-i.i.d. label skew partition leads to worse results for the PCD metric.

Another interesting observation is that the fidelity metrics M-HD and pMSE show slight
variation across different scenarios within each DP case in the federated setting for all
datasets. This occurs for the M-HD metric because our BN approach uses privacy-
preserving techniques to share counts in all scenarios during the parameter learning step.
Consequently, neither the data partition nor the number of clients affects the inference
process used to calculate the marginal distributions of variables.

On the other hand, for the pMSE metric, we observe that in most datasets and scenarios,
results are close to 0.25, indicating that a CART model can distinguish which records
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come from the synthetic data instead of the real data. These results suggest that some
characteristics and structures are not well preserved with the BN model. We suspect
that the observed values are mainly due to the numeric attributes in the datasets, which
are uniformly binned during preprocessing and uniformly sampled during generation.
Thus, some bins contain more values, even for highly skewed distributions, making it
easier for a CART model to distinguish synthetic records based on these attributes. We
confirm this observation by examining the CART model used to calculate the pMSE
metric. Results highlight the following attributes as key decision nodes for distinguishing
between synthetic and real data: capital-loss for the Adult dataset, balance for the Bank
dataset, and ap_hi for the Cardio dataset. Note that all these attributes are highly
skewed, as shown in Section 5.1. Furthermore, our findings align with previous work
[PMS+23], which demonstrated that BN models lead to pMSE scores close to 0.25 in
datasets with mixed attributes.

Finally, not surprisingly, if we compare the results for different privacy budgets, we can
observe a direct impact on the fidelity results, with a lower privacy budget providing worse
results. Bear in mind, however, that the impact of privacy budgets varies significantly
for the datasets, with the Adult dataset showing the greatest differences in the fidelity
metrics. It should be noted, though, that for all datasets, the values obtained for the
metrics with a privacy budget ϵ = 1.6 are still far from the reference values obtained
without DP. We can conclude that balancing the privacy budget against the requirements
of each application is beneficial to obtain a better fidelity-privacy trade-off.

6.1.2 Utility Evaluation
So far, we have seen synthetic data’s performance in terms of fidelity. However, one
common objective of generating synthetic data is to use it as a replacement in ML
tasks where sensitive data cannot be used. In this section, we assess the effectiveness
of synthetic data on binary classification tasks using the TRTR and TSTR methods
described in Section 2.1.3. Furthermore, we report the ROC AUC scores obtained for the
real and synthetic data in all the datasets and compare the results against the baselines
(central and local) using statistical significance.

Table 6.4 shows the results obtained for the Adult dataset in terms of utility. Unlike
the fidelity results, the differences between the centralized and federated settings and
between the federated and local settings are not significant across all non-DP case metrics,
indicating comparable performance. On the other hand, when analyzing the results with
a privacy budget ϵ = 1.6, we can spot significant differences in some of the scenarios
between the federated and local settings. Especially for the KNN model, the federated
setting outperforms the local results in 6 out of 9 cases whereas in other 3 scenarios the
difference is not significant. Meanwhile, the NB model performs poorly with this privacy
budget for all scenarios, giving results close to 0.5, indicating that the model performance
is close to random guessing.

Another observation from the results is that we cannot tell, as in the case of fidelity, that
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Table 6.4: Utility results for Adult dataset with 3, 5, and 10 clients under different data
partitions (i.i.d, non-i.i.d quantity skew, and non-i.i.d label skew) using FedBN.
Statistical significance is highlighted as follows: green indicates significantly better
performance than the baseline, and red indicates worse performance than the baseline.
Federated results are compared to the centralized one, while local results are compared
to the federated ones.

Model BN
Non-DP DP ( ϵ = 0.5) DP ( ϵ = 1.6)NC Ref RF NB KNN RF NB KNN RF NB KNN

Real 0.771±0.003 0.640±0.008 0.749±0.003 0.771±0.003 0.640±0.008 0.749±0.003 0.771±0.003 0.640±0.008 0.749±0.003
Cen 0.724±0.043 0.696±0.015 0.712±0.026 0.685±0.031 0.508±0.003 0.629±0.019 0.705±0.014 0.515±0.002 0.657±0.024

i.i.d
Fed 0.761±0.022 0.701±0.013 0.725±0.007 0.665±0.081 0.506±0.004 0.608±0.019 0.723±0.014 0.512±0.002 0.673±0.0243 Loc 0.752±0.031 0.699±0.013 0.717±0.013 0.604±0.028 0.503±0.003 0.565±0.047 0.646±0.037 0.506±0.004 0.648±0.035
Fed 0.761±0.014 0.701±0.004 0.720±0.004 0.652±0.035 0.501±0.001 0.619±0.015 0.726±0.017 0.537±0.017 0.699±0.0055 Loc 0.757±0.013 0.688±0.026 0.713±0.013 0.591±0.039 0.511±0.032 0.538±0.049 0.622±0.042 0.503±0.004 0.589±0.050
Fed 0.700±0.028 0.691±0.023 0.688±0.027 0.642±0.015 0.502±0.001 0.586±0.018 0.687±0.041 0.509±0.001 0.656±0.02910 Loc 0.719±0.039 0.679±0.045 0.677±0.028 0.591±0.052 0.544±0.050 0.526±0.050 0.621±0.055 0.505±0.010 0.549±0.041

non-i.i.d (Quantity Skew)
Fed 0.752±0.030 0.698±0.009 0.725±0.004 0.674±0.026 0.500±0.000 0.597±0.036 0.732±0.022 0.521±0.011 0.690±0.0113 Loc 0.763±0.019 0.698±0.017 0.721±0.011 0.636±0.048 0.503±0.004 0.567±0.063 0.653±0.052 0.504±0.004 0.624±0.036
Fed 0.758±0.015 0.697±0.010 0.717±0.009 0.630±0.036 0.504±0.003 0.636±0.006 0.716±0.024 0.522±0.008 0.690±0.0055 Loc 0.731±0.037 0.701±0.027 0.691±0.026 0.619±0.058 0.530±0.059 0.540±0.036 0.643±0.046 0.532±0.059 0.575±0.050
Fed 0.704±0.013 0.704±0.014 0.679±0.023 0.654±0.032 0.502±0.002 0.568±0.029 0.667±0.059 0.510±0.001 0.665±0.02510 Loc 0.712±0.035 0.684±0.037 0.677±0.030 0.572±0.056 0.514±0.056 0.523±0.048 0.595±0.062 0.511±0.055 0.541±0.050

non-i.i.d (Label Skew)
Fed 0.727±0.054 0.714±0.008 0.716±0.015 0.627±0.055 0.517±0.020 0.582±0.022 0.733±0.008 0.510±0.007 0.688±0.0083 Loc 0.641±0.136 0.623±0.114 0.623±0.120 0.605±0.104 0.517±0.035 0.572±0.080 0.617±0.116 0.545±0.075 0.586±0.096
Fed 0.718±0.043 0.724±0.022 0.687±0.040 0.681±0.052 0.506±0.003 0.624±0.037 0.734±0.021 0.513±0.010 0.674±0.0335 Loc 0.649±0.134 0.642±0.123 0.628±0.118 0.585±0.108 0.548±0.068 0.552±0.064 0.618±0.112 0.566±0.087 0.586±0.095
Fed 0.683±0.066 0.724±0.012 0.688±0.036 0.575±0.058 0.501±0.001 0.586±0.016 0.664±0.034 0.506±0.004 0.671±0.02610 Loc 0.596±0.107 0.604±0.104 0.585±0.094 0.539±0.059 0.524±0.078 0.504±0.037 0.553±0.069 0.534±0.066 0.529±0.037

the performance for the same number of clients but different data partitions is always
better for the i.i.d setting. In some algorithms, the non-i.i.d label skew partition results
even outperform those for i.i.d scenarios. For example, if we compare the results for 5
clients in the NB algorithm without DP, we can see that the results are better than those
in the other data partitions with the same number of clients.

Turning our attention to the ROC AUC scores on the real data, we observe that the
synthetic data in the federated setting achieves scores close to the real data for the RF
and KNN algorithms, with less than a 3% difference. In some scenarios, the synthetic
data even outperforms the real data results for the NB algorithm. This indicates that
the quality of the synthetic data generated without DP is good in terms of utility.

Similar conclusions to those observed in the Adult dataset for the non-DP scenarios are
also evident in the utility results of the Bank dataset. On the other hand, for the results
with privacy budgets (ϵ = 1.6 and ϵ = 0.5), most of the scenarios show ROC AUC scores
close to 0.5 for the different scenarios, meaning that the noise introduced directly impacts
the utility results, providing poor performance in the binary task.

Table 6.5 shows the results for the cardio dataset. Interestingly, these results show that
the impact of DP on utility is negligible in all scenarios considered. Furthermore, the
most significant differences between the baselines and the federated setting are observed
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in the non-i.i.d label skew scenarios for the results with ϵ = 0.5 and ϵ = 1.6. In particular,
for the scenario with 10 clients, we can observe that the federated setting outperforms
the local setting for all the algorithms.

Table 6.5: Utility results for the Cardio dataset with 3, 5, and 10 clients under different
data partitions (i.i.d, non-i.i.d quantity skew, and non-i.i.d label skew) using FedBN.
Statistical significance is highlighted as follows: green indicates significantly better
performance than the baseline, and red indicates worse performance than the baseline.
Federated results are compared to the centralized one, while local results are compared
to the federated ones.

Model BN
Non-DP DP ( ϵ = 0.5) DP ( ϵ = 1.6)NC Bas. RF NB KNN RF NB KNN RF NB KNN

Real 0.715±0.003 0.589±0.004 0.652±0.006 0.715±0.003 0.589±0.004 0.652±0.006 0.715±0.003 0.589±0.004 0.652±0.006
Cen 0.627±0.006 0.613±0.003 0.597±0.008 0.619±0.004 0.598±0.007 0.591±0.004 0.626±0.002 0.604±0.006 0.592±0.004

i.i.d
Fed 0.630±0.001 0.614±0.003 0.597±0.005 0.621±0.007 0.607±0.014 0.591±0.007 0.630±0.004 0.605±0.008 0.600±0.0063 Loc 0.626±0.003 0.608±0.003 0.596±0.005 0.597±0.013 0.590±0.017 0.580±0.007 0.621±0.006 0.597±0.007 0.592±0.007
Fed 0.633±0.002 0.608±0.002 0.596±0.002 0.617±0.006 0.601±0.009 0.592±0.003 0.628±0.001 0.599±0.004 0.593±0.0035 Loc 0.632±0.013 0.609±0.006 0.600±0.011 0.587±0.027 0.583±0.025 0.565±0.016 0.617±0.021 0.596±0.009 0.587±0.009
Fed 0.624±0.001 0.605±0.001 0.592±0.006 0.623±0.006 0.591±0.000 0.592±0.003 0.628±0.005 0.596±0.005 0.596±0.00510 Loc 0.640±0.032 0.616±0.022 0.607±0.029 0.578±0.045 0.570±0.049 0.559±0.033 0.611±0.038 0.603±0.019 0.587±0.031

non-i.i.d (Quantity Skew)
Fed 0.624±0.007 0.609±0.006 0.591±0.011 0.620±0.005 0.602±0.011 0.594±0.004 0.624±0.003 0.605±0.002 0.597±0.0013 Loc 0.628±0.004 0.607±0.004 0.596±0.005 0.597±0.018 0.588±0.012 0.580±0.012 0.620±0.007 0.597±0.011 0.591±0.004
Fed 0.627±0.002 0.605±0.003 0.600±0.003 0.620±0.006 0.589±0.000 0.591±0.003 0.628±0.005 0.598±0.001 0.592±0.0025 Loc 0.638±0.025 0.612±0.009 0.602±0.018 0.587±0.040 0.567±0.037 0.568±0.022 0.615±0.034 0.596±0.011 0.589±0.017
Fed 0.625±0.002 0.608±0.003 0.592±0.003 0.625±0.003 0.592±0.002 0.592±0.003 0.624±0.002 0.603±0.005 0.595±0.00210 Loc 0.642±0.038 0.616±0.025 0.607±0.034 0.573±0.047 0.560±0.047 0.556±0.040 0.601±0.047 0.581±0.033 0.573±0.039

non-i.i.d (Label Skew)
Fed 0.619±0.010 0.614±0.009 0.580±0.006 0.605±0.013 0.610±0.013 0.580±0.019 0.621±0.008 0.615±0.012 0.583±0.0153 Loc 0.552±0.056 0.567±0.048 0.544±0.043 0.537±0.036 0.531±0.036 0.530±0.028 0.548±0.048 0.552±0.044 0.535±0.033
Fed 0.606±0.006 0.608±0.014 0.573±0.011 0.606±0.007 0.592±0.009 0.575±0.011 0.609±0.008 0.601±0.013 0.581±0.0115 Loc 0.555±0.055 0.561±0.055 0.544±0.044 0.543±0.048 0.526±0.038 0.528±0.028 0.549±0.050 0.531±0.043 0.534±0.034
Fed 0.614±0.009 0.612±0.013 0.582±0.015 0.612±0.010 0.606±0.020 0.579±0.005 0.614±0.005 0.606±0.015 0.580±0.00810 Loc 0.550±0.058 0.551±0.051 0.539±0.043 0.530±0.036 0.518±0.035 0.520±0.024 0.537±0.045 0.528±0.039 0.526±0.030

Overall, we can conclude that the impact of noise added in DP scenarios varies depending
on the ML algorithm used and the characteristics of the datasets. In particular, we
observe that the noise does not impact the utility results for the Cardio dataset. A
possible explanation might be that the PCD between the real and synthetic data remains
small (below or close to 1.0) with the chosen privacy budgets. Hence, the ML models
can still exploit the correlations between features to make a prediction close to the one
in the real data. Similarly, the data partition and the number of clients demonstrate no
significant impact on the utility results.

6.1.3 Privacy Evaluation
Although fidelity and utility are relevant for evaluating the usefulness of synthetic data, it
is also crucial for applications dealing with sensitive data to analyze whether the synthetic
data discloses information from real data. This section evaluates synthetic data privacy
using two metrics: DCR and AD (Section 2.1.3). For the first metric, we considered the
27 scenarios corresponding to federated settings reported in previous sections. For each
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dataset, we report the following metrics: the minimum distance to the closest record
(Min DCR), the average distance to the training data (Avg DCR Train), the average
distance to holdout data (Avg DCR Holdout), and the proportion of synthetic records
(Share) closer to the training data than to the holdout data. We report the minimum
DCR to observe whether there are exact matches (i.e., a synthetic record that is identical
to a real record). A DCR value of 0 indicates there is an exact match. It is worth noting
that exact matches can occur by chance and do not necessarily imply a disclosure risk.

Table 6.6 shows the results obtained for the Adult dataset regarding the DCR metric.
The generated synthetic data in the different federated settings exhibits almost identical
DCR distributions for the training and holdout records with share values close to 0.5.
This provides empirical evidence that the synthetic data can generalize the patterns in
the real data. Furthermore, the minimum DCR is greater than 0 across all scenarios,
meaning no exact matches exist. Moreover, the average distances to the training and
holdout data increase when differential privacy (DP) is applied during the synthetic data
generation process. Results for the remaining datasets provide similar insights.

Table 6.6: DCR results of the holdout assessment for the Adult dataset with 3, 5 and 10
clients under different data partitions (i.i.d and non-i.i.d label skew) using FedBN.

Model BN
Non-DP DP ( ϵ = 0.5) DP (ϵ = 1.6)

Clients Min DCR Share Avg DCR
Train

Avg DCR
Holdout Min DCR Share Avg DCR

Train
Avg DCR
Holdout Min DCR Share Avg DCR

Train
Avg DCR
Holdout

i.i.d
3 0.002±0.001 0.477±0.024 0.699±0.009 0.686±0.002 0.054±0.017 0.468±0.008 4.278±0.034 4.232±0.021 0.005±0.002 0.466±0.007 3.538±0.308 3.485±0.307
5 0.003±0.001 0.476±0.024 0.705±0.008 0.694±0.003 0.031±0.005 0.462±0.009 4.177±0.052 4.117±0.060 0.004±0.003 0.466±0.011 2.931±0.074 2.882±0.081
10 0.002±0.001 0.477±0.024 0.717±0.010 0.704±0.005 0.027±0.009 0.465±0.010 4.267±0.033 4.219±0.025 0.005±0.003 0.469±0.008 3.525±0.200 3.476±0.208

non-i.i.d (Quantity Skew)
3 0.002±0.001 0.476±0.024 0.702±0.008 0.689±0.001 0.032±0.015 0.463±0.006 4.242±0.041 4.186±0.047 0.005±0.000 0.465±0.006 3.281±0.082 3.223±0.084
5 0.001±0.001 0.481±0.024 0.704±0.004 0.691±0.005 0.046±0.033 0.464±0.007 4.223±0.056 4.171±0.064 0.004±0.000 0.467±0.007 3.231±0.393 3.183±0.403
10 0.002±0.001 0.482±0.028 0.707±0.011 0.699±0.006 0.040±0.019 0.466±0.009 4.285±0.025 4.234±0.028 0.005±0.001 0.464±0.009 3.495±0.153 3.444±0.162

non-i.i.d (Label Skew)
3 0.002±0.000 0.481±0.022 0.695±0.002 0.688±0.002 0.066±0.023 0.468±0.009 4.290±0.043 4.240±0.039 0.006±0.002 0.465±0.003 3.545±0.296 3.493±0.296
5 0.002±0.001 0.477±0.023 0.707±0.008 0.696±0.005 0.034±0.013 0.467±0.007 4.248±0.078 4.196±0.085 0.009±0.005 0.467±0.007 3.411±0.456 3.364±0.464
10 0.002±0.001 0.482±0.023 0.710±0.008 0.698±0.004 0.028±0.002 0.468±0.006 4.274±0.035 4.226±0.038 0.004±0.001 0.463±0.012 3.598±0.168 3.548±0.178

On the other hand, for the AD metric, we analyze one attacker scenario per dataset as
described in Section 5.6.1 and select a subset of the 27 federated settings considered
in previous experiments. Specifically, we report settings with 10 clients, and i.i.d and
non-i.i.d label skew data partitions. The DP cases remain the same.

Table 6.7 shows the average attribute disclosure risk for all real records in the attack
scenarios considered. It includes accuracy scores obtained for the real and synthetic data.
The real data results serve as a point of comparison to see how well an attacker can infer
a sensitive attribute with access to the complete information [HME20]. The columns in
each row represent the following ML algorithms: Random Forest (RF), Support Vector
Machine (SVM), Naive Bayes (NB), K-Nearest Neighbors (KNN), Logistic Regression
(LR), an Ensemble algorithm (ENS), and the Dummy Classifier (DUM). The ENS refers
to an algorithm that combines all other algorithms’ predictions using majority voting.
We include the ENS to simulate a stronger attacker that leverages multiple classifiers to
infer the sensitive attribute. The DUM classifier predicts the most frequent value in real
and synthetic data. Additionally, each row includes the mean results of all algorithms
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listed (RMEAN), excluding the DUM algorithm.

We can make the following observations from Table 6.7. For the Adult dataset, the results
of the non-DP scenarios using an ENS classifier on the synthetic data show scores close
to the real data for both data partitions, with only a 0.006 difference. Similar results are
observed for the Bank dataset, with a difference of around 0.002. It is also evident that
smaller privacy budgets lead to smaller accuracy scores in all the algorithms, reducing the
risk of disclosure. Nevertheless, it should be noted that in the Adult and Bank datasets,
the accuracy scores for the given privacy budgets are still close to those in the real data.
The risk reduction concerning the ENS model with a privacy budget ϵ = 0.5 is 0.046,
and the RMEAN still beats the DUM classifier by 0.066, meaning that the attacker can
still exploit the structure of the synthetic data. Unfortunately, this is a consequence of
the close relationship between attribute disclosure risk and data utility, which has been
discussed in several works [HME20, TEPS18]. On the other hand, the results obtained
for the cardio dataset show that the DUM classifier provides the same results as the
ENS algorithm used by the attacker, and the real data also provides similar results to
the dummy classifier for all algorithms. Therefore, in this case, the algorithms do not
provide extra information to the attacker in any scenarios considered.

Table 6.7: Attribute Disclosure results for the different datasets with 3, 5 and 10 clients
under different data partitions (i.i.d and non-i.i.d label skew) using FedBN.

Scenario Baseline Model BN
RF SVM NB KNN LR ENS DUM RMEAN

Scenario 1 (Adult)

Real 0.648±0.053 0.648±0.049 0.618±0.049 0.592±0.067 0.629±0.049 0.636±0.050 0.458 0.626±0.007
i.i.d

DP (ϵ = 0.5) 0.460±0.077 0.595±0.045 0.592±0.048 0.347±0.016 0.559±0.050 0.590±0.048 0.458 0.524±0.021
DP (ϵ = 1.6) 0.596±0.046 0.610±0.054 0.609±0.037 0.514±0.053 0.603±0.048 0.613±0.049 0.458 0.591±0.008

Non-DP 0.624±0.047 0.630±0.047 0.621±0.047 0.579±0.053 0.627±0.047 0.630±0.049 0.458 0.619±0.002
non i.i.d (Label Skew)

DP (ϵ = 0.5) 0.465±0.085 0.615±0.050 0.607±0.051 0.341±0.047 0.581±0.037 0.605±0.052 0.458 0.535±0.020
DP (ϵ = 1.6) 0.595±0.049 0.620±0.043 0.613±0.036 0.491±0.072 0.610±0.036 0.620±0.042 0.458 0.592±0.014

Non-DP 0.623±0.047 0.631±0.048 0.622±0.047 0.574±0.060 0.627±0.048 0.630±0.049 0.458 0.618±0.007

Scenario 2 (Bank)

Real 0.642±0.016 0.618±0.005 0.603±0.019 0.594±0.021 0.595±0.020 0.616±0.020 0.554 0.611±0.006
i.i.d

DP (ϵ = 0.5) 0.555±0.016 0.586±0.006 0.572±0.011 0.532±0.015 0.563±0.010 0.579±0.007 0.518 0.565±0.006
DP (ϵ = 1.6) 0.600±0.006 0.590±0.007 0.571±0.011 0.560±0.016 0.563±0.019 0.586±0.006 0.518 0.578±0.006

Non-DP 0.617±0.006 0.615±0.005 0.599±0.022 0.583±0.009 0.593±0.025 0.614±0.011 0.554 0.603±0.009
non i.i.d (Label Skew)

DP (ϵ = 0.5) 0.556±0.008 0.583±0.005 0.568±0.013 0.525±0.012 0.570±0.013 0.580±0.005 0.518 0.564±0.007
DP (ϵ = 1.6) 0.603±0.008 0.600±0.006 0.569±0.018 0.557±0.019 0.566±0.024 0.589±0.009 0.518 0.581±0.009

Non-DP 0.619±0.006 0.616±0.005 0.599±0.024 0.587±0.010 0.595±0.022 0.615±0.010 0.554 0.605±0.008

Scenario 3 (Cardio)

Real 0.820±0.084 0.748±0.000 0.748±0.073 0.747±0.015 0.748±0.000 0.748±0.000 0.748 0.760±0.034
i.i.d

DP (ϵ = 0.5) 0.679±0.053 0.748±0.000 0.748±0.000 0.715±0.013 0.748±0.000 0.748±0.000 0.748 0.731±0.022
DP (ϵ = 1.6) 0.677±0.056 0.748±0.000 0.748±0.000 0.727±0.006 0.748±0.000 0.748±0.000 0.748 0.733±0.023

Non-DP 0.679±0.055 0.748±0.000 0.748±0.000 0.724±0.003 0.748±0.000 0.748±0.000 0.748 0.733±0.022
non i.i.d (Label Skew)

DP (ϵ = 0.5) 0.678±0.055 0.748±0.000 0.748±0.000 0.725±0.006 0.748±0.000 0.748±0.000 0.748 0.733±0.022
DP (ϵ = 1.6) 0.679±0.055 0.748±0.000 0.748±0.000 0.724±0.012 0.748±0.000 0.748±0.000 0.748 0.732±0.022

Non-DP 0.677±0.056 0.748±0.000 0.748±0.000 0.716±0.008 0.748±0.000 0.748±0.000 0.748 0.731±0.023

6.1.4 Sensitivity Analysis of Hyperparameters
In this section, we investigate the impact of hyperparameters on the quality of the
synthetic data generated using FedBN. For this analysis, we select the same scenario
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used for hyperparameter tuning (5 clients with a non-i.i.d label skew partition). However,
instead of finding the optimal configuration, we concentrate on the importance and
correlation of hyperparameters concerning the LC fidelity metric computed with respect
to the real data for three random splits. The importance and correlation values are
obtained using Weight & Biases. The former values are obtained by training a random
forest model using all hyperparameters and the runtime as features, with the mean LC
metric as the target, and then computing the feature importance. The latter values
correspond to the linear correlation between the hyperparameter and the LC metric.

Figure 6.1 shows the results obtained for all datasets. The hyperparameter with the
highest importance in two of the datasets is the aggregation interval, showing a slight
positive correlation with the LC metric in the Adult dataset and a strong negative
correlation in the Cardio dataset. This implies that depending on the dataset, the
frequency at which clients share their best individuals (i.e., best BN structures in the
GA algorithm) with the server directly impacts the fidelity results. From this analysis,
we can conclude that the importance of the order of hyperparameters and correlations
is highly dependent on the characteristics of the datasets. However, the aggregation
interval shows high importance across most analyzed experiments.

(a) Adult Dataset

(b) Bank Dataset

(c) Cardio Dataset

Figure 6.1: Sensitivity analysis of hyperparameters on synthetic data fidelity using the
Log Cluster Metric in a federated setting with 5 clients and a non-i.i.d. label skew
partition across all datasets: (a) Adult, (b) Bank, and (c) Cardio, using FedBN.
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6.2 Federated Variational Autoencoder
Here, we present the results for the FedVAE model described in Section 4.3. The
results cover fidelity, utility, and privacy metrics and follow the same structure as those
reported with the FedBN model. Note that differences between models may impact the
computation of results. Therefore, we clarify these differences in the relevant sections.

6.2.1 Fidelity Evaluation

The tables here follow the same structure explained in Section 6.1. Nevertheless, there
are some differences in how the privacy budget is interpreted for DP settings. Note that
DP guarantees for the VAE model are obtained using DP-SGD, a commonly used method
for training neural networks with DP. In particular, we employ local DP in the federated
setting following the approach presented in previous work [NHDC22], where each client
applies the noise locally using DP-SGD before sharing the parameters with the server.
In this context, the privacy budgets corresponding to the federated setting (ϵ = 0.5 or
ϵ = 1.6) indicate the DP guarantees satisfied by the models of each client.

Furthermore, the number of epochs used in the experiments with DP differs from the
values reported in the hyperparameter tuning section. This is mainly because we observe
when running the experiments in the federated setting that the model fails to converge
with the same number of global epochs and that increasing this value can improve the
results. Nonetheless, it also increases the computational cost of the experiments. Taking
this trade-off into account, we set the number of global epochs for the DP settings as
follows: 300 epochs for the Adult dataset, 300 epochs for the Bank dataset, and 100
epochs for the Cardio dataset. It is important to note that the number of local epochs
and other hyperparameters remained unchanged.

Table 6.8 shows the results for the Adult dataset. We can observe that for the non-DP
case, the centralized setting outperforms the federated setting in all the scenarios in
the PCD metric. In particular, we note more significant differences in the scenarios
with a non-i.i.d label skew data partition. This indicates that preserving correlations is
more challenging for the FedVAE model when label distributions differ among clients.
Furthermore, when examining the results across the other metrics, we observe that the
federated setting outperforms the local setting in the LC, pMSE, and M-HD metrics in
two scenarios each. At the same time, it performs worse than the centralized setting in
the same metrics in exactly one scenario each. The remaining scenarios show comparable
results between the baselines.

The results for a privacy budget of ϵ = 1.6 demonstrate that the federated setting
outperforms the centralized setting in the PCD metric for 3 scenarios. However, the
federated setting performs worse than the centralized setting in the pMSE metric in 4
out of 9 scenarios. Similarly, the results with an ϵ = 0.5 show that the federated setting
consistently outperforms the centralized setting in most scenarios for the PCD metric,
and the local setting performs worse than the centralized setting for the M-HD and PCD
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in several scenarios. Additionally, if we compare the metrics results for both privacy
budgets, we observe that the results are sometimes worse for a higher epsilon. At first
glance, these results seem counterintuitive. However, we suspect this discrepancy could
be attributed to the low quality of the latent representations caused by the introduction
of noise during the training process. This leads to significant fluctuations in outcomes
and generally indicates poor performance.

Table 6.8: Fidelity results for the Adult Dataset for 3, 5, and 10 clients under different
data partitions (i.i.d, non-i.i.d quantity skew, and non-i.i.d label skew) using FedVAE.
Statistical significance is highlighted as follows: green indicates significantly better
performance than the baseline, and red indicates worse performance than the baseline.
Federated results are compared to the centralized one, while local results are compared
to the federated ones.

Model VAE
Non-DP DP ( ϵ = 0.5) DP ( ϵ = 1.6)

NC Bas. M-HD
a

PCD
a

pMSE
a

LC
a

M-HD
a

PCD
a

pMSE
a

LC
a

M-HD
a

PCD
a

pMSE
a

LC
a

Cen 0.150±0.018 1.014±0.031 0.108±0.017 -11.391±1.054 0.309±0.004 2.525±0.145 0.178±0.006 -7.671±1.286 0.344±0.032 2.673±0.306 0.191±0.013 -6.955±2.798
i.i.d

Fed 0.193±0.036 1.693±0.102 0.160±0.033 -10.962±2.953 0.267±0.030 2.046±0.151 0.193±0.005 -10.952±4.738 0.405±0.013 2.142±0.156 0.224±0.009 -5.355±0.4823 Loc 0.172±0.019 1.220±0.093 0.125±0.012 -10.988±3.668 0.348±0.012 2.991±0.072 0.197±0.008 -4.869±0.831 0.368±0.006 3.181±0.073 0.195±0.006 -6.434±1.501
Fed 0.180±0.009 1.514±0.059 0.159±0.016 -15.956±3.931 0.267±0.024 2.054±0.081 0.184±0.015 -7.698±0.970 0.253±0.019 2.172±0.044 0.171±0.003 -7.752±2.9245 Loc 0.196±0.022 1.330±0.153 0.148±0.015 -8.640±1.533 0.351±0.029 2.238±0.124 0.209±0.019 -7.015±2.038 0.397±0.013 3.218±0.085 0.217±0.011 -4.693±2.017
Fed 0.168±0.012 1.472±0.045 0.128±0.017 -14.390±2.368 0.442±0.006 2.186±0.158 0.232±0.011 -3.149±0.093 0.401±0.018 2.967±0.174 0.227±0.009 -3.553±0.60910 Loc 0.247±0.018 2.243±0.208 0.170±0.006 -7.201±3.173 0.478±0.041 2.157±0.107 0.243±0.006 -3.210±0.326 0.423±0.035 2.184±0.091 0.232±0.009 -4.357±1.847

non-i.i.d (Quantity Skew)
Fed 0.160±0.035 1.565±0.036 0.112±0.016 -10.996±4.939 0.232±0.022 2.027±0.119 0.174±0.018 -5.880±0.586 0.382±0.006 1.980±0.177 0.214±0.007 -5.442±2.1273 Loc 0.175±0.027 1.131±0.147 0.132±0.016 -12.150±2.232 0.356±0.021 2.926±0.177 0.196±0.011 -7.486±2.355 0.374±0.007 3.149±0.105 0.200±0.006 -5.349±0.898
Fed 0.159±0.002 1.470±0.044 0.111±0.004 -7.787±2.832 0.258±0.014 2.004±0.045 0.186±0.015 -11.776±3.609 0.387±0.017 2.302±0.205 0.217±0.009 -3.151±0.2175 Loc 0.201±0.026 1.537±0.229 0.148±0.024 -8.782±3.745 0.391±0.042 2.925±0.363 0.213±0.018 -4.118±1.173 0.388±0.023 3.232±0.150 0.212±0.015 -5.820±2.049
Fed 0.150±0.002 1.413±0.028 0.107±0.011 -16.594±4.803 0.301±0.010 2.618±0.101 0.182±0.000 -8.801±0.969 0.359±0.016 2.802±0.154 0.192±0.004 -5.894±1.99110 Loc 0.270±0.087 2.076±0.759 0.170±0.030 -7.492±3.499 0.448±0.064 2.670±0.494 0.230±0.018 -5.612±3.942 0.436±0.051 2.866±0.527 0.224±0.019 -4.608±2.588

non-i.i.d (Label Skew)
Fed 0.203±0.036 1.862±0.246 0.162±0.058 -8.766±1.218 0.239±0.003 1.893±0.065 0.185±0.011 -10.795±2.943 0.388±0.018 2.039±0.246 0.219±0.011 -3.339±0.2523 Loc 0.218±0.034 1.684±0.316 0.143±0.026 -11.915±7.521 0.367±0.040 3.101±0.337 0.197±0.012 -4.564±1.366 0.371±0.035 3.183±0.196 0.199±0.008 -8.123±3.341
Fed 0.187±0.009 2.118±0.154 0.170±0.052 -10.059±4.225 0.274±0.032 2.133±0.074 0.182±0.020 -9.571±1.456 0.347±0.012 2.304±0.155 0.192±0.002 -6.899±2.5585 Loc 0.262±0.085 1.937±0.492 0.159±0.036 -8.179±3.031 0.398±0.065 2.929±±0.383 0.215±0.017 -9.238±3.756 0.406±0.053 3.159±0.395 0.212±0.022 -5.642±2.388
Fed 0.191±0.031 2.107±0.164 0.159±0.060 -11.367±4.796 0.339±0.015 2.763±0.094 0.185±0.008 -4.57±1.552 0.360±0.017 3.016±0.059 0.192±0.013 -7.679±0.68310 Loc 0.304±0.086 2.305±0.280 0.179±0.032 -7.007±2.960 0.427±0.070 2.772±0.460 0.228±0.015 -5.007±2.383 0.426±0.040 3.170±0.414 0.222±0.013 -5.419±2.450

Table 6.9 exhibits the results for the Bank dataset. Different insights to those observed
in the Adult dataset are noted here. In particular, for the non-DP case, no significant
differences were found between the centralized and the federated baseline for the experi-
ments with i.i.d and non-i.i.d quantity skew data partitions, excluding the scenario with
10 clients for the non-i.i.d case were the federated setting outperformed the centralized
setting. In contrast, for the non-i.i.d label skew scenarios, the centralized setting out-
performed the federated setting in all cases. Furthermore, for scenarios with a privacy
budget ϵ = 1.6 the centralized setting consistently outperforms the federated setting in
all M-HD, PCD, and pMSE metrics in all the scenarios. Likewise, for a privacy budget
ϵ = 0.5 the centralized setting outperforms the federated setting in 6 out of 9 scenarios
for the M-HD and the pMSE metrics. Fluctuations in the metrics for the DP results are
also observed in this dataset. Similar observations are obtained for the Cardio dataset.
Except in the non-DP case were no significant differences is evident in the baselines
compared.

Overall, we conclude that the heterogeneity in data distribution among clients in the
federated setting directly impacts the performance of the FedVAE model, particularly
in terms of the PCD metric, showing worse results for the non-i.i.d. label skew data
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Table 6.9: Fidelity results for the Bank Dataset with 3, 5, and 10 clients under different
data partitions (i.i.d, non-i.i.d quantity skew, and non-i.i.d label skew) using FedVAE.
Statistical significance is highlighted as follows: green indicates significantly better
performance than the baseline, and red indicates worse performance than the baseline.
Federated results are compared to the centralized one, while local results are compared
to the federated ones.

Model VAE
Non-DP DP ( ϵ = 0.5) DP ( ϵ = 1.6)

NC Bas. M-HD
a

PCD
a

pMSE
a

LC
a

M-HD
a

PCD
a

pMSE
a

LC
a

M-HD
a

PCD
a

pMSE
a

LC
a

Cen 0.056±0.006 1.014±0.053 0.032±0.003 -12.927±1.548 0.185±0.008 2.408±0.100 0.118±0.004 -9.063±1.938 0.088±0.002 1.502±0.056 0.063±0.002 -12.475±1.793
i.i.d

Fed 0.061±0.004 1.055±0.025 0.025±0.001 -14.650±3.268 0.302±0.009 2.352±0.036 0.220±0.005 -12.266±1.923 0.227±0.014 2.168±0.031 0.185±0.017 -9.183±3.1393 Loc 0.075±0.007 0.813±0.046 0.042±0.004 -12.835±1.726 0.211±0.005 2.528±0.074 0.144±0.007 -7.926±2.451 0.192±0.006 2.483±0.075 0.115±0.007 -8.120±1.411
Fed 0.054±0.004 1.073±0.054 0.027±0.005 -15.751±0.726 0.198±0.017 2.377±0.055 0.144±0.022 -5.975±1.105 0.207±0.012 2.427±0.103 0.132±0.013 -6.634±0.8685 Loc 0.072±0.007 0.798±0.081 0.043±0.003 -12.206±2.496 0.221±0.007 2.495±0.025 0.151±0.013 -7.415±1.844 0.228±0.009 2.675±0.090 0.149±0.009 -6.560±1.400
Fed 0.056±0.004 0.953±0.088 0.038±0.008 -11.526±1.726 0.210±0.001 2.357±0.041 0.160±0.009 -10.425±3.522 0.220±0.015 2.532±0.034 0.145±0.022 -6.896±1.78010 Loc 0.076±0.007 0.753±0.076 0.043±0.004 -13.250±2.550 0.218±0.016 2.350±0.035 0.171±0.019 -8.326±2.976 0.231±0.010 2.536±0.078 0.158±0.011 -8.628±3.780

non-i.i.d (Quantity Skew)
Fed 0.056±0.002 1.003±0.043 0.025±0.001 -12.386±1.458 0.273±0.005 2.280±0.102 0.198±0.018 -9.251±0.420 0.237±0.006 2.188±0.046 0.160±0.019 -9.965±2.8243 Loc 0.070±0.010 0.812±0.029 0.041±0.006 -13.314±1.345 0.206±0.017 2.519±0.062 0.134±0.014 -9.589±2.946 0.191±0.025 2.371±0.294 0.119±0.018 -7.750±1.415
Fed 0.053±0.002 0.964±0.034 0.026±0.004 -17.435±5.049 0.263±0.021 2.318±0.039 0.213±0.009 -9.500±1.404 0.239±0.007 2.135±0.083 0.173±0.020 -8.878±1.3605 Loc 0.080±0.006 0.835±0.105 0.044±0.003 -13.435±1.776 0.217±0.019 2.475±0.051 0.146±0.013 -8.453±2.737 0.236±0.038 2.789±0.328 0.152±0.032 -5.839±1.250
Fed 0.049±0.004 0.899±0.016 0.024±0.002 -16.747±2.952 0.199±0.005 2.411±0.054 0.173±0.025 -9.777±3.152 0.197±0.018 2.557±0.135 0.127±0.008 -7.658±1.36210 Loc 0.099±0.036 1.001±0.342 0.061±0.025 -12.861±2.562 0.255±0.046 2.425±0.156 0.186±0.035 -8.758±3.567 0.247±0.026 2.606±0.273 0.180±0.026 -6.754±1.649

non-i.i.d (Label Skew)
Fed 0.075±0.002 1.622±0.016 0.036±0.005 -13.765±3.108 0.305±0.020 2.311±0.027 0.215±0.001 -9.397±6.104 0.298±0.032 2.251±0.008 0.200±0.005 -10.171±2.3323 Loc 0.110±0.040 1.208±0.305 0.085±0.049 -12.925±2.111 0.228±0.041 2.528±0.075 0.167±0.043 -9.356±1.540 0.224±0.068 2.614±0.361 0.153±0.060 -10.282±2.799
Fed 0.070±0.004 1.636±0.011 0.038±0.003 -13.182±3.086 0.261±0.018 2.338±0.038 0.209±0.026 -8.225±1.972 0.257±0.029 2.223±0.030 0.191±0.015 -7.006±1.8225 Loc 0.117±0.047 1.222±0.327 0.098±0.057 -13.583±2.552 0.245±0.052 2.485±0.144 0.171±0.044 -8.141±2.033 0.239±0.055 2.646±0.223 0.162±0.050 -8.988±1.684
Fed 0.067±0.004 1.631±0.012 0.036±0.001 -13.302±1.807 0.186±0.010 2.414±0.039 0.127±0.008 -8.985±2.084 0.191±0.005 2.393±0.058 0.113±0.008 -7.588±1.20810 Loc 0.121±0.060 1.269±0.449 0.083±0.060 -13.174±3.193 0.252±0.053 2.512±0.185 0.173±0.034 -7.775±2.947 0.263±0.036 2.741±0.275 0.178±0.027 -7.321±2.572

partitions. This implies that correlations between features are not well preserved. On the
other hand, the number of clients showed no effect on the fidelity results for the chosen
metrics. Finally, as pointed out previously, the results obtained when applying local DP
exhibited significant fluctuations, leading to poor results. These findings are consistent
with previous work [Mar21]. An alternative to improve these results is to apply central
DP in conjunction with an SMPC protocol. However, the privacy guarantees are less
strict compared to those provided by local DP [PHK+23].

6.2.2 Utility Evaluation
This section analyzes the utility results of synthetic data generated with the VAE model
for the different baselines. The main challenge when using local DP in the federated setting
is that the model requires more epochs to converge, making the process computationally
expensive.

Table 6.10 presents the results obtained from the utility analysis of the Adult dataset.
The results indicate that in most non-DP scenarios, the centralized setting outperforms
the federated setting. The differences between these two baselines are subtle in the i.i.d.
settings. However, the non-i.i.d. label skew data partition exhibits ROC-AUC scores
close to 0.5, indicating that the model performs nearly at the level of random guessing.
This suggests that heterogeneity among clients’ data distribution directly impacts the
utility of synthetic data generated with the FedVAE approach proposed. This aligns with
the results obtained in the case of fidelity.

Similarly, we observe no apparent effect on the utility results when considering the
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number of clients. Furthermore, both privacy budgets yield poor utility results for the RF
and KNN models, not only in the federated but also in the centralized setting. Possible
reasons for this behavior include redundant noise aggregation during the training process
and the fact that the hyperparameters specifically targeting DP-SGD were not optimized,
as optimizing them was outside the scope of this thesis. Similar conclusions can be drawn
from the results obtained in the Bank dataset.

Table 6.10: Utility Results Adult Dataset for 3, 5, and 10 clients under different data
partitions (i.i.d, non-i.i.d quantity skew, and non-i.i.d label skew) using FedVAE.
Statistical significance is highlighted as follows: green indicates significantly better
performance than the baseline, and red indicates worse performance than the baseline.
Federated results are compared to the centralized one, while local results are compared
to the federated ones.

Model VAE
Non-DP DP ( ϵ = 0.5) DP ( ϵ = 1.6)NC Ref RF NB KNN RF NB KNN RF NB KNN

Real 0.771±0.003 0.640±0.008 0.749±0.003 0.771±0.003 0.640±0.008 0.749±0.003 0.771±0.003 0.640±0.008 0.749±0.003
Cen 0.755±0.011 0.679±0.059 0.749±0.005 0.499±0.001 0.514±0.069 0.500±0.000 0.529±0.024 0.631±0.082 0.520±0.019

i.i.d
Fed 0.715±0.027 0.696±0.021 0.721±0.014 0.508±0.015 0.546±0.043 0.500±0.032 0.512±0.014 0.501±0.030 0.512±0.0243 Loc 0.751±0.013 0.714±0.036 0.745±0.018 0.499±0.002 0.545±0.063 0.500±0.001 0.500±0.000 0.512±0.021 0.500±0.000
Fed 0.704±0.030 0.655±0.047 0.715±0.015 0.484±0.060 0.491±0.029 0.484±0.029 0.487±0.018 0.487±0.087 0.487±0.0145 Loc 0.734±0.014 0.709±0.037 0.733±0.019 0.487±0.021 0.481±0.056 0.483±0.024 0.588±0.196 0.497±0.052 0.498±0.025
Fed 0.737±0.009 0.642±0.017 0.744±0.008 0.500±0.000 0.531±0.010 0.498±0.004 0.497±0.004 0.510±0.017 0.499±0.00210 Loc 0.705±0.031 0.679±0.037 0.702±0.029 0.511±0.032 0.497±0.052 0.498±0.025 0.498±0.021 0.516±0.075 0.502±0.021

non-i.i.d (Quantity Skew)
Fed 0.710±0.015 0.695±0.060 0.712±0.012 0.511±0.011 0.561±0.010 0.523±0.030 0.499±0.004 0.471±0.013 0.481±0.0213 Loc 0.740±0.017 0.713±0.027 0.732±0.014 0.498±0.002 0.505±0.048 0.500±0.001 0.500±0.000 0.519±0.043 0.500±0.000
Fed 0.734±0.032 0.654±0.022 0.733±0.029 0.562±0.054 0.543±0.055 0.547±0.029 0.500±0.008 0.475±0.026 0.499±0.0025 Loc 0.741±0.017 0.701±0.038 0.736±0.015 0.505±0.018 0.506±0.040 0.503±0.016 0.505±0.037 0.503±0.058 0.503±0.018
Fed 0.724±0.012 0.700±0.034 0.734±0.008 0.498±0.005 0.480±0.032 0.498±0.003 0.500±0.000 0.477±0.052 0.500±0.00010 Loc 0.649±0.102 0.671±0.065 0.658±0.108 0.505±0.037 0.503±0.058 0.503±0.018 0.501±0.030 0.510±0.030 0.502±0.016

non-i.i.d (Label Skew)
Fed 0.533±0.024 0.669±0.119 0.519±0.015 0.526±0.016 0.581±0.030 0.522±0.011 0.531±0.021 0.503±0.006 0.509±0.0083 Loc 0.622±0.133 0.630±0.104 0.621±0.123 0.504±0.020 0.487±0.055 0.513±0.037 0.491±0.036 0.534±0.094 0.495±0.013
Fed 0.500±0.000 0.502±0.003 0.500±0.000 0.523±0.017 0.573±0.064 0.516±0.012 0.500±0.002 0.548±0.110 0.498±0.0025 Loc 0.630±0.130 0.599±0.093 0.602±0.125 0.505±0.018 0.506±0.040 0.503±0.016 0.501±0.010 0.531±0.065 0.497±0.015
Fed 0.500±0.000 0.556±0.079 0.500±0.000 0.502±0.003 0.486±0.014 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.00010 Loc 0.564±0.096 0.558±0.083 0.553±0.088 0.504±0.028 0.506±0.044 0.504±0.015 0.498±0.007 0.498±0.028 0.498±0.008

On the other hand, Table 6.11 shows no significant differences between the federated
and centralized baselines for the non-DP case in the Cardio dataset. The same holds
for the federated and local baselines. Also, in terms of utility, this dataset has better
results for the non-i.i.d label skew partition. This is mainly because the target variable in
this dataset is balanced, contrary to the Adult and Bank datasets. Therefore, the VAE
works well even in this case. However, if we introduce noise with the considered privacy
budgets, the results are worse than in the centralized setting for all the algorithms. More
precisely, all the results are close to 0.5, meaning the algorithms have no discriminatory
power to distinguish between the two classes.
In summary, these results suggest that the performance of the FedVAE model depends on
the data partition distribution among clients, as observed in the fidelity results. However,
it is also affected by the imbalance of the target variable. On the other hand, the
number of clients does not affect the results, while the noise introduction with the privacy
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Table 6.11: Utility Results for the Cardio Dataset with 3, 5, and 10 clients under different
data partitions (i.i.d, non-i.i.d quantity Skew, and non-i.i.d label skew) using FedVAE.
Statistical significance is highlighted as follows: green indicates significantly better
performance than the baseline, and red indicates worse performance than the baseline.
Federated results are compared to the centralized one, while local results are compared
to the federated ones.

Model VAE
Non-DP DP ( ϵ = 0.5) DP ( ϵ = 1.6)NC Ref RF NB KNN RF NB KNN RF NB KNN

Real 0.715±0.003 0.589±0.004 0.652±0.006 0.715±0.003 0.589±0.004 0.652±0.006 0.715±0.003 0.589±0.004 0.652±0.006
Cen 0.649±0.020 0.659±0.018 0.650±0.019 0.639±0.042 0.565±0.004 0.625±0.036 0.694±0.004 0.660±0.035 0.684±0.009

i.i.d
Fed 0.676±0.020 0.632±0.026 0.678±0.010 0.514±0.019 0.482±0.046 0.467±0.025 0.511±0.012 0.555±0.009 0.512±0.0253 Loc 0.678±0.019 0.654±0.033 0.674±0.014 0.508±0.055 0.512±0.046 0.534±0.071 0.539±0.066 0.536±0.050 0.502±0.069
Fed 0.684±0.017 0.644±0.018 0.675±0.004 0.476±0.016 0.510±0.025 0.510±0.040 0.506±0.011 0.531±0.034 0.510±0.0145 Loc 0.680±0.023 0.662±0.024 0.679±0.017 0.517±0.052 0.530±0.060 0.524±0.054 0.513±0.048 0.501±0.051 0.496±0.039
Fed 0.683±0.017 0.651±0.039 0.685±0.008 0.495±0.020 0.519±0.071 0.478±0.028 0.518±0.038 0.530±0.026 0.520±0.03610 Loc 0.679±0.018 0.635±0.030 0.673±0.014 0.500±0.031 0.495±0.051 0.492±0.045 0.504±0.038 0.528±0.062 0.508±0.040

non-i.i.d (Quantity Skew)
Fed 0.679±0.011 0.681±0.009 0.682±0.004 0.460±0.020 0.524±0.019 0.440±0.038 0.525±0.022 0.517±0.015 0.511±0.0133 Loc 0.672±0.028 0.658±0.025 0.672±0.021 0.567±0.062 0.511±0.067 0.554±0.057 0.549±0.077 0.550±0.036 0.548±0.052
Fed 0.679±0.022 0.686±0.004 0.679±0.013 0.497±0.014 0.465±0.034 0.476±0.040 0.488±0.027 0.456±0.042 0.493±0.0465 Loc 0.671±0.020 0.653±0.029 0.673±0.015 0.516±0.045 0.507±0.050 0.504±0.027 0.541±0.046 0.524±0.042 0.529±0.048
Fed 0.680±0.023 0.649±0.029 0.686±0.010 0.505±0.020 0.539±0.059 0.472±0.015 0.488±0.027 0.456±0.042 0.493±0.04610 Loc 0.682±0.028 0.640±0.029 0.674±0.041 0.509±0.039 0.487±0.047 0.509±0.044 0.541±0.046 0.524±0.042 0.529±0.048

non-i.i.d (Label Skew)
Fed 0.663±0.036 0.664±0.015 0.655±0.035 0.518±0.024 0.546±0.013 0.509±0.012 0.514±0.045 0.521±0.041 0.513±0.0253 Loc 0.588±0.075 0.597±0.078 0.589±0.075 0.499±0.001 0.500±0.010 0.500±0.000 0.520±0.038 0.525±0.034 0.520±0.041
Fed 0.642±0.059 0.628±0.035 0.656±0.046 0.514±0.020 0.505±0.008 0.501±0.001 0.507±0.010 0.510±0.009 0.488±0.0175 Loc 0.581±0.076 0.580±0.069 0.583±0.077 0.506±0.016 0.501±0.020 0.503±0.008 0.497±0.012 0.507±0.030 0.498±0.007
Fed 0.649±0.021 0.637±0.027 0.641±0.025 0.501±0.002 0.505±0.007 0.503±0.004 0.500±0.000 0.462±0.054 0.500±0.00010 Loc 0.580±0.079 0.575±0.065 0.579±0.076 0.502±0.017 0.504±0.047 0.499±0.017 0.497±0.012 0.500±0.040 0.499±0.003

budgets considered provides poor results. Finally, we observe that training classifiers
with synthetic data without DP yields similar performance to training on real data for
most classifiers across both i.i.d. and non-i.i.d. quantity skew partitions. For instance, in
the Adult dataset, the ROC AUC scores for synthetic data are close to those for real
data across all algorithms (i.e., the difference is less than 2%). In some cases, results
even outperform those obtained with the real data with the NB classifier.

6.2.3 Privacy Evaluation

Table 6.12 shows the results obtained for the Adult dataset regarding the DCR metric.
We can observe that the generated synthetic data in the different federated settings
exhibits almost identical DCR distributions for the training and holdout records with
share values close to 0.5 and even below. This provides empirical evidence that the
synthetic data can generalize the patterns in the real data. However, the minimum
DCR is 0 across all scenarios, indicating that exact matches exist. In future work, it
would be interesting to investigate whether these matches are inliers or outliers in the
real dataset using an outlier detection method to assess the potential risk of disclosure.
The results also show that average distances to the training and holdout data change
fluctuate significantly when differential privacy (DP) is applied during the synthetic data
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generation process. Results for the remaining datasets provide similar insights, except
for exact matches, which occur in a few scenarios of the synthetic data generated for the
Bank dataset.

Table 6.12: DCR results of the holdout assessment for the Adult dataset with 3, 5 and
10 clients under different data partitions (i.i.d and non-i.i.d label skew) using FedVAE.

Model VAE
Non-DP DP (ϵ = 0.5) DP (ϵ = 1.6)

Clients Min DCR Share Avg DCR
Train

Avg DCR
Holdout Min DCR Share Avg DCR

Train
Avg DCR
Holdout Min DCR Share Avg DCR

Train
Avg DCR
Holdout

i.i.d
3 0.000±0.000 0.467±0.026 0.951±0.209 0.930±0.218 0.000±0.000 0.385±0.044 0.736±0.041 0.720±0.057 0.000±0.000 0.353±0.183 0.173±0.082 0.112±0.009
5 0.000±0.000 0.461±0.007 0.796±0.145 0.767±0.119 0.000±0.000 0.474±0.012 0.987±0.078 0.962±0.085 0.000±0.000 0.431±0.022 0.657±0.065 0.625±0.082
10 0.000±0.000 0.452±0.016 0.557±0.037 0.533±0.028 0.014±0.019 0.457±0.015 3.356±0.066 3.327±0.101 0.000±0.000 0.513±0.205 0.390±0.145 0.376±0.099

non-i.i.d (Quantity Skew)
3 0.000±0.000 0.470±0.010 0.836±0.126 0.818±0.123 0.000±0.000 0.424±0.045 0.942±0.089 0.910±0.110 0.000±0.000 0.289±0.039 0.274±0.126 0.245±0.149
5 0.000±0.000 0.471±0.012 0.803±0.060 0.793±0.072 0.000±0.000 0.411±0.013 0.751±0.127 0.754±0.119 0.000±0.000 0.391±0.121 0.135±0.035 0.135±0.044
10 0.000±0.000 0.458±0.018 0.635±0.103 0.621±0.115 0.000±0.000 0.427±0.018 0.591±0.076 0.578±0.074 0.000±0.000 0.409±0.010 0.407±0.048 0.392±0.037

non-i.i.d (Label Skew)
3 0.000±0.000 0.467±0.003 0.841±0.057 0.821±0.058 0.000±0.000 0.414±0.010 1.058±0.309 1.023±0.285 0.000±0.000 0.207±0.120 0.151±0.022 0.119±0.033
5 0.000±0.000 0.465±0.015 0.816±0.080 0.799±0.087 0.000±0.000 0.437±0.020 0.705±0.120 0.687±0.136 0.000±0.000 0.376±0.011 0.253±0.116 0.248±0.123
10 0.000±0.000 0.458±0.004 0.706±0.036 0.684±0.036 0.000±0.000 0.420±0.040 0.540±0.035 0.523±0.026 0.000±0.000 0.428±0.053 0.559±0.072 0.558±0.076

Table 6.13 shows the average attribute disclosure risk for all real records in the attack
scenarios considered. It is worth noting that the Cardio dataset is not included in the
table because the synthetic data generated by the FedVAE fails to create different classes
for the sensitive attribute, given its imbalanced nature. For the attack scenario of the
Adult dataset, the attribute disclosure risk is smaller on the synthetic data compared
to the real data in all the cases considered. This implies that an attacker that only has
access to the synthetic data obtains worse predictions on average than the real data.
However, for the non-DP cases, the RMEAN still beats the performance of the DUM
classifier by 0.14 and 0.172 for the i.i.d. and non-i.i.d. partitions considered, respectively.
This indicates that the attacker can still exploit the structure of the synthetic dataset to
gain knowledge about the real data. This is, however, directly related to the fact that
synthetic data tries to mimic the correlations of real data. Notably, when introducing
noise, the RMEAN results are close to or below those from the Dummy Classifier, which
means the attacker gets no advantage from accessing the synthetic data in this model.
However, as observed from the utility and fidelity results, this indicates that the quality
of the synthetic data is poor. Therefore, there is a trade-off when introducing DP to
protect privacy, and it needs to be balanced to ensure that the data is still helpful but
does not leak sensitive information.

6.3 Sensitivity Analysis of Hyperparameters
As explained in the previous model, we investigate the impact of hyperparameters on the
quality of the synthetic data generated in this section. In Figure 6.2, we can see that
the hyperparameter with the highest importance concerning the LC metric is the weight
decay(l2scale) in all the datasets exhibiting a strong positive correlation in all cases.
Furthermore, the loss factor is also significant for the Cardio and the Bank datasets,
showing a positive correlation with the performance metric. Other hyperparameters
exhibit different trends depending on the dataset.
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Table 6.13: Attribute disclosure results with the FedVAE model across different data
partitions (i.i.d. and non-i.i.d. label skew) for ten clients

Scenario Baseline Model VAE
RF SVM NB KNN LR ENS DUM RMEAN

Scenario 1 (Adult)

Real 0.648±0.053 0.634±0.050 0.618±0.049 0.573±0.097 0.629±0.048 0.637±0.050 0.458 0.623±0.019
i.i.d

DP (ϵ = 0.5) 0.407±0.036 0.448±0.016 0.235±0.057 0.398±0.027 0.456±0.003 0.448±0.013 0.458 0.399±0.021
DP (ϵ = 1.6) 0.448±0.009 0.458±0.000 0.310±0.060 0.450±0.009 0.453±0.004 0.453±0.005 0.458 0.429±0.024

Non-DP 0.604±0.039 0.622±0.042 0.599±0.046 0.558±0.052 0.603±0.035 0.621±0.042 0.458 0.601±0.007
non i.i.d (Label Skew)

DP (ϵ = 0.5) 0.409±0.038 0.411±0.041 0.312±0.072 0.398±0.038 0.493±0.072 0.443±0.051 0.329 0.411±0.021
DP (ϵ = 1.6) 0.398±0.030 0.362±0.035 0.307±0.061 0.397±0.038 0.337±0.042 0.379±0.042 0.329 0.364±0.015

Non-DP 0.561±0.059 0.575±0.070 0.519±0.069 0.514±0.049 0.562±0.057 0.576±0.065 0.372 0.551±0.019

Scenario 2 (Bank)

Real 0.642±0.016 0.618±0.005 0.603±0.019 0.594±0.021 0.595±0.020 0.616±0.020 0.554 0.611±0.006
i.i.d

DP (ϵ = 0.5) 0.546±0.007 0.545±0.010 0.556±0.012 0.532±0.010 0.558±0.005 0.553±0.006 0.554 0.548±0.005
DP (ϵ = 1.6) 0.549±0.011 0.554±0.011 0.559±0.014 0.521±0.020 0.562±0.005 0.557±0.011 0.554 0.550±0.006

Non-DP 0.603±0.004 0.610±0.003 0.599±0.018 0.556±0.011 0.593±0.022 0.609±0.007 0.554 0.595±0.008
non i.i.d (Label Skew)

DP (ϵ = 0.5) 0.509±0.016 0.512±0.018 0.490±0.011 0.510±0.013 0.486±0.012 0.498±0.012 0.518 0.501±0.006
DP (ϵ = 1.6) 0.568±0.006 0.563±0.005 0.571±0.017 0.552±0.010 0.566±0.005 0.567±0.007 0.554 0.564±0.005

Non-DP 0.597±0.006 0.597±0.017 0.596±0.021 0.544±0.015 0.594±0.016 0.598±0.016 0.554 0.588±0.005

6.4 Comparison of the two federated approaches

Although we have already seen the results for both FedBN and FedVAE in different
scenarios, in this section, we examine the differences between the two methods in more
depth to understand their advantages and pitfalls concerning the different dimensions
(fidelity, utility, and privacy). For this, we provide additional visual comparisons to
complement the results. Note that the visualizations correspond to one of the random
splits of the training data used for the synthetic data generation.

We investigate the univariate distributions of different features, taking the Adult dataset
as an example. Specifically, we select numeric and categorical features from this dataset
and compare the results obtained with the FedBN and FedVAE approaches for the scenario
with ten clients and non-i.i.d label skew data partition without DP. This scenario is chosen
because our previous analysis showed that it is one of the more challenging for both models.
The results obtained from this comparison are presented in Figure 6.3. Interestingly, we
can observe that the FedBN model struggles to represent the distribution of highly skewed
numerical features as the capital-loss. Conversely, the FedVAE model generates synthetic
data with similar distributions for the numerical features but encounters challenges with
the categorical features, especially when the features are highly imbalanced across the
clients, as in the case of the income feature, it fails in generating the minority classes.

We also investigate the bivariate relationships between features in terms of their correla-
tions. Figure 6.4 shows the results for the same federated scenario previously analyzed.
More significant differences in the correlation values are observed for the FedVAE model,
particularly for features like the native-country, which is highly imbalanced, the model
only generates the most frequent class. Therefore, the correlation values are always 0.
On the other hand, the FedBN model exhibits more errors in the correlations involving
numerical features.
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(a) Adult Dataset

(b) Bank Dataset

(c) Cardio Dataset

Figure 6.2: Sensitivity analysis of hyperparameters on synthetic data fidelity using the
Log Cluster Metric in a federated setting with 5 clients and a non-i.i.d. label skew
partition across all datasets: (a) Adult, (b) Bank, and (c) Cardio, using FedVAE.

In general, when comparing fidelity results for the non-DP cases reported in the last
sections for both models, we observe that the FedBN model consistently outperforms
the FedVAE model in the PCD and LC metrics. Meanwhile, the M-HD is better for the
FedVAE model in the Bank dataset, because this dataset has more numerical features
than categorical ones. Similarly, FedVAE outperforms the FedBN model in the pMSE
metric in all datasets. As discussed, this is due to the uniform binning applied during
preprocessing in the FedBN model. On the other hand, when comparing the utility
results between the two models, we observe that the FedBN model ROC AUC scores are
better than those from the FedVAE in most scenarios of the Adult and Bank datasets.
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However, the FedVAE offers better results for the Cardio dataset.

Moreover, regarding privacy, the attribute disclosure risks are higher for the FedBN model.
On the other hand, both models generate similar DCR results. However, the synthetic
data generated with the FedVAE contains exact matches, unlike the data generated by
the FedBN model.

Finally, it is important to note that the DP mechanisms used for both models are not
comparable since they operate at a distinct level, and therefore, we don’t analyze the
settings with DP here. In particular, the local DP approach used in FedVAE results in
the worst results because it injects noise closer to the data. As discussed by [PHK+23],
the DP impact on utility is less when applied further from the data. Therefore, the
distributed DP approach in FedBN has an advantage over local DP. However, local DP
provides stronger privacy guarantees.

In summary, we can conclude that the quality of the synthetic data generated using
the FedBN exhibits better performance across datasets and federated settings than the
FedVAE model.

84



6.4. Comparison of the two federated approaches

Figure 6.3: Univariate distributions for the non-i.i.d. (label skew) scenario with 10 clients
without DP. The top row shows the synthetic data generated with the FedBN model,
while the bottom row shows the data generated with the FedVAE model. Each column
in the figure corresponds to a variable, with the first two columns corresponding to
numerical features and the last two categorical features. The red color distinguishes the
synthetic data distribution from the real one (in blue).

Figure 6.4: Heatmaps showing the correlation between attributes in the real and synthetic
datasets for the BN and VAE models, respectively, across 10 clients with non-i.i.d. label
skew distribution.
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CHAPTER 7
Conclusion

In this chapter, we present the main contributions and insights from this thesis, including
a summary of the results, answers to the research questions introduced in Chapter 1, and
possible directions for future work. We also discuss the main limitations and challenges
encountered during this work.

7.1 Summary and Contributions
In this work, we have explored synthetic data generation for distributed tabular data
partitioned horizontally. We adapted two well-known methods used in the centralized
setting for generating synthetic tabular data, namely Bayesian Networks and Variational
Autoencoders, and evaluated their performance in different settings using three dimensions:
fidelity, utility, and privacy. We compare the results against two baselines (the centralized
and local). We also highlighted the main findings from the experiments conducted in
this work.

More precisely, the main contributions of this thesis are the following:

• We propose a novel aggregation strategy that combines the knowledge of dif-
ferent clients to construct a Bayesian network for synthetic data generation in
the distributed setting. The approach is inspired by the works of De Falco et
al. [DFDCK+23] and Hittmeir et al. [HME22].

• We adapt the TVAE model introduced by Xu et al. [XSCIV19] from the centralized
to the federated setting. In particular, we used the FedAvg strategy to aggregate
the encoder and decoder parameters simultaneously from all clients.

• We validate the quality of the synthetic data generated in terms of fidelity, privacy,
and utility of both models across multiple scenarios, including different numbers
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of clients ( NC ∈ 3, 5, and10), three data partitions (i.i.d, non-i.i.d quantity skew,
and non-i.i.d label skew), and cases with and without differential privacy (DP),
using two different privacy budgets.

• We compare the results of each model against two baselines: the centralized setting
and the local setting. Additionally, we compare the results of both models.

• We investigate the impact of hyperparameters on the fidelity results of the synthetic
data. Specifically, with respect to the Log Cluster metric.

• We also discuss the challenges of adapting the centralized models to the federating
setting concerning privacy.

7.2 Research Questions
To wrap up the main findings obtained in this thesis, we answer the research questions
defined in Section 1.3.

1. To what extent is federated synthetic tabular data useful?
This question covers all the experiments conducted concerning fidelity and utility
metrics. Our findings suggest that the usefulness of the synthetic tabular data
generated depends on several factors, including the model used, the metric evaluated,
the dataset considered, and the variations in data distribution among clients in the
federated scenario. Detailed insights are provided in the following two sub-questions.

a) How does federated synthetic tabular data compare with centralized
synthetic data and local synthetic data from a single client?
For the FedBN model, we observe that the federated settings provide compa-
rable or even better results than the centralized ones for the following fidelity
metrics in the not differentially private case: M-HD, PCD, and LC. Meanwhile,
the average local results from the clients also demonstrate comparable results
to those of the federated setting. Furthermore, the differences in pMSE scores
across the various baselines are negligible in most scenarios. When distributed
DP is used in the synthetic data generation process, we observe that the
fidelity results for the Adult dataset are better in the federated setting than
in the centralized and local settings. Conversely, the results on the Bank and
Cardio datasets are comparable or perform worse in specific cases and met-
rics. Regarding utility, the baselines exhibit less significant differences when
comparing the ROC AUC scores with respect to the federated setting. On
the other hand, for the VAE model, federated results exhibit more significant
differences compared to the baselines in fidelity and utility metrics depending
on the scenario evaluated.
While we expected the federated setting to outperform the local baseline,
this was not always the case. Our findings suggest that average local results
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can provide comparable or better results than the federated setting when the
clients’ data distribution is representative of the overall distribution. In such
cases, the federated approach may not provide additional benefits over local
data generation.

b) How do fidelity and utility of federated synthetic tabular data
compare for the different synthetic data generation techniques and
datasets?
Our findings regarding fidelity metrics suggest that the FedBN model consis-
tently outperforms the FedVAE model in the PCD and LC metrics. Meanwhile,
the M-HD is better for the FedVAE model in the Bank dataset because this
dataset has more numerical features than categorical ones. Similarly, FedVAE
outperforms the FedBN model in the pMSE metric in all datasets.
On the other hand, when comparing the utility results between the two models,
the findings demonstrate that the ROC AUC scores for the FedBN model
outperform the results from the FedVAE in most scenarios of the Adult and
Bank datasets. However, the FedVAE offers better results for the Cardio
dataset.

2. To what extent is the federated generation of synthetic tabular data
sensitive to hyperparameters and data distribution?
This question considers the results for the three dimensions explored in the exper-
iments. Our findings suggested that the hyperparameters and data distribution
significantly impact the quality of the synthetic data generated in the federated
setting.

a) To what degree do the model hyperparameters used in the federated
synthetic data generator affect the fidelity?
The model hyperparameters have a direct impact on the LC metric results. For
the FedBN, we observed that the aggregation interval was highly important
for the performance. However, the correlation can be positive or negative
depending on the dataset. Meanwhile, for the FedVAE, the hyperparameter
with the highest importance concerning the LC metric was the weight decay
(scale) for all the datasets, exhibiting a strong positive correlation in all cases.
Furthermore, the loss factor was also significant for the Cardio and the Bank
datasets, showing a positive correlation with the performance metric.

b) To what extent do the number of clients and the data heterogeneity
affect the fidelity and utility of synthetic tabular data generated in
a federated setting?
The number of clients shows no significant effect in most datasets and scenarios.
On the other hand, we found that the heterogeneity in data distribution among
clients in the federated setting has a direct impact on the performance of the
FedVAE model, particularly in terms of the PCD metric, showing worse results
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for the non-i.i.d. label skew data partitions. Similar findings are observed from
the FedBN model. However, the impact is highly dependent on the dataset
considered.

3. To what extent does federated synthetic tabular data preserve privacy?
This question covers all experiments conducted using the holdout assessment for
the DCR and attribute disclosure results. Detailed insights are provided in the
following sub-questions.

a) To what extent do records in federated synthetic tabular data
resemble those in real data?
We observe that the share of records that are closer to the training data than to
holdout data is close to 0.5 for the FedBN and FedVAE models. This provides
evidence of these models’ capabilities to generalize the patterns found in the
real data. However, in many scenarios using FedVAE, the generated synthetic
data contained exact matches, requiring further analysis to determine whether
the model is overfitting the training data, potentially leading to disclosure
risks, or if it occurs by chance.

b) To what extent does federated synthetic tabular data prevent at-
tribute disclosure?
We observe that the attribute disclosure risks are higher for the FedBN model
for the attack scenarios analyzed in the Adult and Bank datasets, even when
using distributed DP in the parameter learning step. Specifically, for the Adult
dataset, the results of the non-DP scenarios using an ENS classifier on the
synthetic data show ROC AUC scores close to the real data for both data
partitions, with only a 0.006 difference. Similar results are observed for the
Bank dataset, with a difference of around 0.002. When using DP, results still
outperform the RMEAN and still beat the DUM classifier, meaning that the
attacker can still exploit the structure of the synthetic data. On the other
hand, for the FedVAE model, the attribute disclosure risk is less compared to
FedBN. However, the RMEAN score still beats the DUM classifier, indicating
the attacker can still exploit the structure of the synthetic data.

7.3 Future Work
Several directions can be considered to extend this work. Indeed, federated learning for
generating synthetic data is an emerging research area, and the amount of work in this
regard is still limited, particularly for tabular data. While working on this thesis, we
encountered several challenges. For instance, there is no agreement on how to evaluate
and compare synthetic data generators consistently. Usually, the metrics and dimensions
considered differ in the papers, limiting the comparability of the results. Furthermore,
the computation details are not always specified, even when using the same metrics.
Based on these challenges, we provide a list of possible directions for future work:
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• Develop guidelines guidelines or standards for evaluating synthetic data consistently.

• Investigate hyperparameter tuning for synthetic data generation in the federated
setting using multiple metrics and a different strategy to the one used in this work.

• Evaluate the impact on computational resources of using SMPC and HE in the
stages of the federated training.

• VAE models suffer when there are imbalanced columns in centralized and federated
settings. Therefore, a possible way to extend this work is to leverage ideas proposed
for other methods to improve the generation of synthetic tabular data. For instance,
one potential option is to consider conditional sampling as previously proposed for
the CTGAN model [DLH+23].

• When comparing federated approaches with the baselines, running more iterations
to generate synthetic datasets can yield more robust results and enable a more
representative comparison of statistical differences.

• The evaluation of other aggregation strategies can also be a possible direction to
extend this work.

• Investigating in detail different DP approaches in the federated setting and com-
paring their impact on the synthetic data generated.
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APPENDIX A
Complementary Results

Here, we present additional results from the experiments conducted that offer similar
insights to the ones discussed in chapter 6.

Table A.1: Utility results for the Bank Dataset with 3, 5, and 10 clients under different
data partitions (i.i.d, non-i.i.d Quantity Skew, and non-i.i.d Label Skew) using the FedBN
model. Statistical significance is highlighted as follows: green indicates significantly
better performance than the baseline, and red indicates worse performance than the
baseline. Federated results are compared to the centralized one, while local results are
compared to the federated ones.

Model BN
Non-DP DP ( ϵ = 0.5) DP ( ϵ = 1.6)NC Ref RF NB KNN RF NB KNN RF NB KNN

Real 0.695±0.005 0.679±0.002 0.651±0.004 0.695±0.005 0.679±0.002 0.651±0.004 0.695±0.005 0.679±0.002 0.651±0.004
Cen 0.626±0.011 0.600±0.012 0.591±0.000 0.509±0.005 0.500±0.000 0.519±0.005 0.517±0.003 0.501±0.001 0.508±0.006

i.i.d
Fed 0.617±0.010 0.599±0.015 0.590±0.009 0.568±0.015 0.501±0.000 0.554±0.019 0.550±0.032 0.501±0.001 0.522±0.0063 Loc 0.625±0.017 0.593±0.025 0.589±0.008 0.546±0.022 0.501±0.001 0.531±0.010 0.528±0.016 0.500±0.001 0.516±0.008
Fed 0.617±0.018 0.603±0.002 0.591±0.004 0.546±0.010 0.500±0.000 0.531±0.008 0.527±0.003 0.500±0.000 0.511±0.0025 Loc 0.630±0.018 0.600±0.030 0.590±0.009 0.574±0.031 0.510±0.031 0.532±0.020 0.560±0.034 0.512±0.034 0.546±0.022
Fed 0.617±0.006 0.606±0.001 0.579±0.002 0.522±0.005 0.500±0.000 0.523±0.004 0.536±0.007 0.500±0.000 0.513±0.00310 Loc 0.636±0.018 0.618±0.022 0.594±0.011 0.576±0.037 0.514±0.038 0.522±0.021 0.583±0.040 0.519±0.041 0.535±0.016

non-i.i.d (Quantity Skew)
Fed 0.625±0.014 0.600±0.015 0.589±0.003 0.520±0.008 0.500±0.000 0.519±0.004 0.517±0.002 0.501±0.001 0.508±0.0023 Loc 0.630±0.014 0.595±0.022 0.593±0.009 0.551±0.025 0.510±0.025 0.530±0.018 0.542±0.034 0.501±0.002 0.528±0.015
Fed 0.611±0.003 0.603±0.003 0.583±0.001 0.520±0.006 0.500±0.000 0.529±0.008 0.520±0.005 0.500±0.000 0.518±0.0055 Loc 0.635±0.016 0.611±0.016 0.590±0.013 0.570±0.021 0.515±0.027 0.529±0.018 0.555±0.035 0.508±0.014 0.527±0.018
Fed 0.633±0.007 0.612±0.004 0.585±0.002 0.529±0.013 0.500±0.000 0.531±0.009 0.575±0.059 0.500±0.000 0.519±0.00810 Loc 0.624±0.021 0.617±0.030 0.588±0.014 0.549±0.043 0.509±0.046 0.518±0.027 0.551±0.035 0.508±0.036 0.523±0.017

non-i.i.d (Label Skew)
Fed 0.610±0.031 0.614±0.005 0.579±0.006 0.534±0.019 0.501±0.001 0.527±0.015 0.544±0.023 0.500±0.000 0.526±0.0143 Loc 0.594±0.113 0.599±0.090 0.569±0.089 0.528±0.055 0.495±0.016 0.508±0.016 0.543±0.052 0.500±0.000 0.503±0.029
Fed 0.632±0.010 0.606±0.009 0.586±0.004 0.552±0.034 0.547±0.067 0.528±0.000 0.563±0.036 0.500±0.000 0.522±0.0125 Loc 0.594±0.112 0.586±0.089 0.571±0.085 0.530±0.038 0.505±0.029 0.509±0.021 0.518±0.075 0.499±0.026 0.505±0.024
Fed 0.637±0.008 0.618±0.004 0.592±0.006 0.579±0.009 0.500±0.000 0.545±0.021 0.604±0.015 0.501±0.001 0.523±0.00210 Loc 0.602±0.112 0.580±0.074 0.574±0.079 0.527±0.061 0.506±0.044 0.503±0.016 0.548±0.060 0.509±0.045 0.514±0.022
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Table A.2: DCR results of the holdout assessment for the Adult dataset with 3, 5 and
10 clients under different data partitions (i.i.d and non-i.i.d label skew) for the FedBN
model.

Model BN

Clients Non-DP DP ( ϵ = 0.5) DP ( ϵ = 1.6)

Min DCR Share Avg DCR
Train

Avg DCR
Holdout Min DCR Share Avg DCR

Train
Avg DCR
Holdout Min DCR Share Avg DCR

Train
Avg DCR
Holdout

i.i.d
3 0.010±0.001 0.483±0.005 0.444±0.004 0.435±0.002 0.075±0.031 0.470±0.003 2.157±0.070 2.145±0.071 0.024±0.004 0.471±0.007 1.766±0.313 1.755±0.312
5 0.008±0.001 0.483±0.001 0.445±0.002 0.438±0.004 0.069±0.019 0.476±0.003 2.166±0.002 2.155±0.004 0.012±0.004 0.473±0.003 1.694±0.007 1.682±0.010
10 0.008±0.003 0.481±0.007 0.447±0.004 0.440±0.001 0.045±0.020 0.470±0.000 2.131±0.011 2.118±0.012 0.016±0.002 0.473±0.002 1.680±0.183 1.669±0.183

non-i.i.d (Quantity Skew)
3 0.009±0.001 0.479±0.004 0.447±0.004 0.439±0.004 0.047±0.016 0.475±0.006 2.089±0.072 2.079±0.071 0.018±0.003 0.473±0.002 1.462±0.208 1.452±0.207
5 0.011±0.001 0.487±0.001 0.447±0.004 0.439±0.002 0.086±0.035 0.475±0.001 2.203±0.001 2.192±0.003 0.022±0.002 0.475±0.003 2.026±0.004 2.016±0.006
10 0.010±0.003 0.475±0.004 0.470±0.034 0.462±0.036 0.057±0.016 0.474±0.003 2.143±0.029 2.132±0.028 0.015±0.004 0.476±0.002 1.692±0.202 1.682±0.202

non-i.i.d (Label Skew)
3 0.008±0.001 0.486±0.005 0.449±0.004 0.442±0.006 0.170±0.071 0.469±0.005 2.206±0.001 2.192±0.004 0.019±0.005 0.471±0.004 1.967±0.055 1.955±0.053
5 0.010±0.001 0.484±0.005 0.452±0.001 0.444±0.003 0.126±0.048 0.476±0.004 2.202±0.002 2.191±0.005 0.023±0.002 0.474±0.007 2.007±0.013 1.996±0.016
10 0.009±0.003 0.488±0.002 0.458±0.011 0.452±0.016 0.043±0.015 0.474±0.004 2.072±0.104 2.061±0.102 0.014±0.003 0.475±0.001 1.478±0.317 1.468±0.317

Table A.3: DCR results of the holdout assessment for the Adult dataset with 3, 5 and
10 clients under different data partitions (i.i.d and non-i.i.d label skew) for the FedBN
model.

Model BN

Clients Non-DP DP ( ϵ = 0.5) DP ( ϵ = 1.6)

Min DCR Share Avg DCR
Train

Avg DCR
Holdout Min DCR Share Avg DCR

Train
Avg DCR
Holdout Min DCR Share Avg DCR

Train
Avg DCR
Holdout

i.i.d
3 0.010±0.001 0.483±0.005 0.444±0.004 0.435±0.002 0.075±0.031 0.470±0.003 2.157±0.070 2.145±0.071 0.024±0.004 0.471±0.007 1.766±0.313 1.755±0.312
5 0.008±0.001 0.483±0.001 0.445±0.002 0.438±0.004 0.069±0.019 0.476±0.003 2.166±0.002 2.155±0.004 0.012±0.004 0.473±0.003 1.694±0.007 1.682±0.010
10 0.008±0.003 0.481±0.007 0.447±0.004 0.440±0.001 0.045±0.020 0.470±0.000 2.131±0.011 2.118±0.012 0.016±0.002 0.473±0.002 1.680±0.183 1.669±0.183

non-i.i.d (Quantity Skew)
3 0.009±0.001 0.479±0.004 0.447±0.004 0.439±0.004 0.047±0.016 0.475±0.006 2.089±0.072 2.079±0.071 0.018±0.003 0.473±0.002 1.462±0.208 1.452±0.207
5 0.011±0.001 0.487±0.001 0.447±0.004 0.439±0.002 0.086±0.035 0.475±0.001 2.203±0.001 2.192±0.003 0.022±0.002 0.475±0.003 2.026±0.004 2.016±0.006
10 0.010±0.003 0.475±0.004 0.470±0.034 0.462±0.036 0.057±0.016 0.474±0.003 2.143±0.029 2.132±0.028 0.015±0.004 0.476±0.002 1.692±0.202 1.682±0.202

non-i.i.d (Label Skew)
3 0.008±0.001 0.486±0.005 0.449±0.004 0.442±0.006 0.170±0.071 0.469±0.005 2.206±0.001 2.192±0.004 0.019±0.005 0.471±0.004 1.967±0.055 1.955±0.053
5 0.010±0.001 0.484±0.005 0.452±0.001 0.444±0.003 0.126±0.048 0.476±0.004 2.202±0.002 2.191±0.005 0.023±0.002 0.474±0.007 2.007±0.013 1.996±0.016
10 0.009±0.003 0.488±0.002 0.458±0.011 0.452±0.016 0.043±0.015 0.474±0.004 2.072±0.104 2.061±0.102 0.014±0.003 0.475±0.001 1.478±0.317 1.468±0.317

Table A.4: Fidelity Results Cardio Dataset for 3, 5, and 10 clients under different
data partitions (i.i.d, non-i.i.d Quantity Skew, and non-i.i.d Label Skew) with FedVAE.
Statistical significance is highlighted as follows: green indicates significantly better
performance than the baseline, and red indicates worse performance than the baseline.
Federated results are compared to the centralized one, while local results are compared
to the federated ones.

Model VAE
Non-DP DP ( ϵ = 0.5) DP ( ϵ = 1.6)

NC Bas. M-HD
a

PCD
a

pMSE
a

LC
a

M-HD
a

PCD
a

pMSE
a

LC
a

M-HD
a

PCD
a

pMSE
a

LC
a

Cen 0.278±0.014 1.995±0.194 0.147±0.014 -12.457±1.970 0.406±0.028 2.780±0.276 0.191±0.021 -9.774±2.006 0.375±0.009 2.941±0.173 0.176±0.006 -13.414±1.607
i.i.d

Fed 0.286±0.003 2.336±0.170 0.152±0.004 -10.363±0.892 0.449±0.026 2.800±0.094 0.232±0.003 -8.070±2.310 0.447±0.019 2.859±0.004 0.239±0.003 -4.945±1.1793 Loc 0.273±0.010 2.249±0.223 0.146±0.007 -10.877±1.571 0.387±0.021 2.571±0.143 0.191±0.013 -8.535±3.846 0.414±0.022 2.684±0.042 0.207±0.010 -7.656±2.997
Fed 0.283±0.026 2.168±0.087 0.153±0.017 -12.296±1.299 0.460±0.023 2.786±0.088 0.237±0.002 -7.619±4.836 0.451±0.030 2.849±0.003 0.241±0.002 -5.832±2.9795 Loc 0.269±0.016 2.440±0.149 0.149±0.008 -13.514±2.529 0.377±0.027 2.634±0.087 0.202±0.012 -7.810±2.687 0.395±0.029 2.668±0.033 0.202±0.016 -9.181±3.166
Fed 0.287±0.024 2.448±0.067 0.151±0.017 -12.585±1.888 0.436±0.022 2.777±0.093 0.218±0.016 -5.294±1.673 0.460±0.031 2.857±0.021 0.238±0.002 -5.428±0.95510 Loc 0.276±0.019 2.464±0.163 0.159±0.025 -12.080±2.415 0.384±0.028 2.661±0.029 0.196±0.022 -7.160±2.963 0.392±0.028 2.742±0.094 0.195±0.016 -7.858±2.622

non-i.i.d (Quantity Skew)
Fed 0.280±0.020 2.379±0.027 0.150±0.011 -11.808±2.680 0.448±0.028 2.662±0.007 0.234±0.005 -6.675±1.726 0.444±0.018 2.866±0.020 0.239±0.002 -5.644±1.2653 Loc 0.276±0.010 2.268±0.205 0.150±0.011 -11.356±1.492 0.393±0.014 2.597±0.067 0.195±0.015 -6.376±1.586 0.406±0.020 2.699±0.086 0.204±0.008 -9.460±3.311
Fed 0.269±0.014 2.237±0.078 0.145±0.013 -14.165±3.808 0.453±0.017 2.670±0.009 0.236±0.004 -6.358±4.220 0.461±0.023 2.849±0.004 0.240±0.004 -5.872±1.0065 Loc 0.272±0.010 2.399±0.164 0.151±0.013 -12.540±1.706 0.387±0.028 2.645±0.096 0.201±0.013 -6.239±2.587 0.398±0.025 2.684±0.052 0.202±0.015 -7.499±2.607
Fed 0.299±0.017 2.423±0.046 0.154±0.017 -13.463±2.425 0.453±0.028 2.783±0.096 0.238±0.004 -6.928±1.073 0.463±0.021 2.852±0.001 0.241±0.002 -5.800±1.33110 Loc 0.296±0.035 2.549±0.246 0.160±0.022 -11.612±2.865 0.368±0.038 2.257±0.564 0.198±0.017 -6.099±3.221 0.379±0.034 2.488±0.405 0.201±0.014 -7.005±3.535

non-i.i.d (Label Skew)
Fed 0.279±0.033 2.240±0.107 0.153±0.026 -12.016±5.188 0.461±0.032 2.655±0.012 0.232±0.003 -4.275±0.967 0.474±0.038 2.730±0.085 0.240±0.003 -4.079±1.0363 Loc 0.296±0.031 2.310±0.205 0.160±0.014 -8.699±2.395 0.421±0.024 2.712±0.202 0.201±0.006 -3.215±0.547 0.440±0.015 2.756±0.099 0.213±0.008 -2.922±0.098
Fed 0.294±0.031 2.301±0.251 0.161±0.013 -12.969±6.356 0.472±0.032 2.668±0.007 0.238±0.001 -2.851±0.048 0.478±0.029 2.797±0.086 0.241±0.001 -4.126±1.8045 Loc 0.300±0.025 2.395±0.270 0.161±0.021 -9.370±3.241 0.392±0.034 2.635±0.246 0.198±0.011 -3.473±1.004 0.411±0.035 2.769±0.135 0.209±0.011 -3.014±0.336
Fed 0.314±0.010 2.223±0.032 0.177±0.004 -6.284±1.540 0.477±0.043 2.973±0.074 0.237±0.003 -2.893±0.076 0.492±0.030 2.970±0.080 0.244±0.000 -2.870±0.05510 Loc 0.323±0.032 2.526±0.412 0.175±0.018 -8.237±3.354 0.392±0.034 2.612±0.438 0.202±0.014 -3.612±1.586 0.419±0.031 2.838±0.180 0.211±0.017 -3.685±1.985
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Table A.5: Utility Results for the Bank Dataset with 3, 5, and 10 clients under different
data partitions (i.i.d, non-i.i.d quantity skew, and non-i.i.d label skew) using the FedVAE
model. Statistical significance is highlighted as follows: green indicates significantly
better performance than the baseline, and red indicates worse performance than the
baseline. Federated results are compared to the centralized one, while local results are
compared to the federated ones.

Model VAE
Non-DP DP ( ϵ = 0.5) DP ( ϵ = 1.6)NC Ref RF NB KNN RF NB KNN RF NB KNN

Real 0.695±0.005 0.679±0.002 0.651±0.004 0.695±0.005 0.679±0.002 0.651±0.004 0.695±0.005 0.679±0.002 0.651±0.004
Cen 0.562±0.038 0.661±0.030 0.555±0.026 0.501±0.001 0.497±0.089 0.500±0.001 0.507±0.002 0.632±0.019 0.515±0.010

i.i.d
Fed 0.534±0.026 0.648±0.014 0.536±0.024 0.504±0.017 0.499±0.033 0.505±0.014 0.539±0.055 0.556±0.056 0.529±0.0383 Loc 0.600±0.014 0.676±0.025 0.578±0.015 0.500±0.000 0.468±0.047 0.500±0.000 0.500±0.000 0.453±0.055 0.501±0.003
Fed 0.522±0.007 0.648±0.016 0.544±0.007 0.500±0.000 0.501±0.026 0.499±0.002 0.500±0.000 0.550±0.029 0.500±0.0005 Loc 0.613±0.033 0.680±0.027 0.593±0.023 0.500±0.000 0.422±0.033 0.500±0.000 0.500±0.000 0.460±0.056 0.500±0.000
Fed 0.570±0.028 0.656±0.002 0.565±0.022 0.500±0.000 0.544±0.026 0.501±0.001 0.500±0.000 0.419±0.040 0.500±0.00010 Loc 0.636±0.022 0.692±0.044 0.604±0.018 0.501±0.003 0.503±0.039 0.501±0.006 0.500±0.001 0.448±0.045 0.500±0.000

non-i.i.d (Quantity Skew)
Fed 0.514±0.003 0.645±0.014 0.530±0.007 0.500±0.000 0.507±0.010 0.503±0.002 0.508±0.010 0.510±0.040 0.515±0.0193 Loc 0.594±0.010 0.681±0.025 0.576±0.009 0.500±0.000 0.455±0.062 0.500±0.001 0.500±0.000 0.520±0.077 0.500±0.000
Fed 0.533±0.008 0.632±0.006 0.534±0.008 0.499±0.001 0.497±0.012 0.504±0.006 0.510±0.011 0.555±0.039 0.513±0.0165 Loc 0.617±0.035 0.680±0.028 0.592±0.025 0.500±0.000 0.448±0.067 0.500±0.000 0.500±0.001 0.500±0.072 0.500±0.000
Fed 0.531±0.010 0.647±0.012 0.539±0.006 0.500±0.000 0.542±0.043 0.499±0.001 0.500±0.000 0.426±0.055 0.500±0.00010 Loc 0.608±0.045 0.683±0.031 0.584±0.032 0.504±0.014 0.469±0.047 0.501±0.006 0.504±0.013 0.481±0.066 0.501±0.004

non-i.i.d (Label Skew)
Fed 0.500±0.000 0.500±0.000 0.500±0.000 0.527±0.036 0.520 ±0.015 0.508±0.008 0.500±0.000 0.505±0.012 0.506±0.0033 Loc 0.562±0.038 0.661±0.030 0.555±0.026 0.500±0.001 0.511±0.042 0.500±0.001 0.501±0.003 0.519±0.045 0.501±0.002
Fed 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.000 0.503±0.037 0.502±0.002 0.500±0.000 0.510±0.016 0.505±0.0045 Loc 0.584±0.117 0.610±0.092 0.564±0.090 0.507±0.030 0.500±0.022 0.502±0.012 0.501±0.002 0.500±0.031 0.499±0.004
Fed 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.000 0.532±0.094 0.501±0.001 0.500±0.000 0.439±0.005 0.500±0.00010 Loc 0.595±0.114 0.615±0.107 0.575±0.091 0.503±0.010 0.499±0.056 0.503±0.009 0.504±0.014 0.494±0.029 0.502±0.017

Table A.6: DCR results of the holdout assessment for the Bank dataset with 10 clients
under different data partitions (i.i.d and non-i.i.d label skew) using the FedVAE model.

Model BN
Non-DP DP ( ϵ = 0.5) DP ( ϵ = 1.6)

Clients Min DCR Share Avg DCR
Train

Avg DCR
Holdout Min DCR Share Avg DCR

Train
Avg DCR
Holdout Min DCR Share Avg DCR

Train
Avg DCR
Holdout

i.i.d
3 0.001±0.000 0.485±0.016 0.499±0.011 0.490±0.012 0.014±0.001 0.471±0.037 1.280±0.006 1.271±0.018 0.004±0.001 0.472±0.025 1.012±0.104 0.996±0.118
5 0.001±0.000 0.488±0.015 0.569±0.023 0.557±0.028 0.002±0.001 0.487±0.042 0.738±0.101 0.725±0.085 0.001±0.000 0.477±0.050 0.453±0.052 0.451±0.078
10 0.001±0.000 0.491±0.015 0.573±0.043 0.563±0.037 0.003±0.000 0.474±0.027 1.015±0.053 0.994±0.043 0.000±0.000 0.464±0.031 0.450±0.045 0.427±0.052

non-i.i.d (Quantity Skew)
3 0.001±0.000 0.482±0.020 0.491±0.016 0.480±0.018 0.008±0.003 0.495±0.040 1.059±0.125 1.050±0.133 0.002±0.001 0.484±0.036 0.845±0.135 0.833±0.151
5 0.001±0.000 0.484±0.014 0.475±0.015 0.465±0.015 0.006±0.000 0.453±0.039 1.080±0.228 1.056±0.232 0.003±0.001 0.480±0.012 0.897±0.053 0.884±0.059
10 0.000±0.000 0.486±0.014 0.489±0.009 0.478±0.009 0.003±0.001 0.471±0.009 0.704±0.042 0.689±0.030 0.001±0.000 0.482±0.046 0.484±0.039 0.471±0.030

non-i.i.d (Label Skew)
3 0.001±0.000 0.489±0.018 0.434±0.019 0.426±0.024 0.011±0.003 0.478±0.014 1.235±0.128 1.227±0.122 0.005±0.002 0.472±0.024 1.335±0.218 1.315±0.224
5 0.001±0.000 0.488±0.014 0.438±0.004 0.429±0.005 0.011±0.003 0.476±0.017 1.136±0.052 1.128±0.047 0.006±0.005 0.450±0.063 1.098±0.215 1.064±0.195
10 0.001±0.000 0.486±0.012 0.487±0.012 0.475±0.010 0.002±0.000 0.456±0.015 0.709±0.044 0.681±0.060 0.001±0.000 0.491±0.023 0.367±0.019 0.359±0.027
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A. Complementary Results

Table A.7: DCR results of the holdout assessment for the Cardio dataset with 3, 5 and 10
clients under different data partitions (i.i.d and non-i.i.d label skew) using the FedVAE
model.

Model BN
Non-DP DP ( ϵ = 0.5) DP ( ϵ = 1.6)

Clients Min DCR Share Avg DCR
Train

Avg DCR
Holdout Min DCR Share Avg DCR

Train
Avg DCR
Holdout Min DCR Share Avg DCR

Train
Avg DCR
Holdout

i.i.d
3 0.000±0.000 0.404±0.102 0.019±0.001 0.017±0.001 0.000±0.000 0.350±0.131 0.014±0.001 0.012±0.001 0.000±0.000 0.365±0.155 0.014±0.002 0.012±0.001
5 0.000±0.000 0.397±0.111 0.019±0.001 0.017±0.002 0.000±0.000 0.375±0.126 0.013±0.000 0.012±0.002 0.000±0.000 0.366±0.091 0.013±0.001 0.011±0.002
10 0.000±0.000 0.406±0.099 0.019±0.001 0.017±0.001 0.000±0.000 0.426±0.142 0.017±0.006 0.015±0.003 0.000±0.000 0.373±0.127 0.014±0.001 0.012±0.002

non-i.i.d (Quantity Skew)
3 0.000±0.000 0.402±0.099 0.019±0.001 0.017±0.001 0.000±0.000 0.363±0.135 0.014±0.002 0.012±0.001 0.000±0.000 0.345±0.141 0.014±0.002 0.012±0.001
5 0.000±0.000 0.400±0.101 0.021±0.001 0.018±0.002 0.000±0.000 0.357±0.141 0.014±0.002 0.012±0.001 0.000±0.000 0.350±0.128 0.014±0.001 0.012±0.001
10 0.000±0.000 0.412±0.101 0.018±0.001 0.017±0.001 0.000±0.000 0.347±0.136 0.014±0.002 0.012±0.001 0.000±0.000 0.357±0.127 0.014±0.001 0.012±0.001

non-i.i.d (Label Skew)
3 0.000±0.000 0.404±0.112 0.020±0.001 0.018±0.002 0.000±0.000 0.302±0.146 0.016±0.003 0.013±0.001 0.000±0.000 0.302±0.165 0.016±0.004 0.013±0.001
5 0.000±0.000 0.413±0.109 0.018±0.002 0.017±0.000 0.000±0.000 0.321±0.132 0.016±0.003 0.013±0.002 0.000±0.000 0.327±0.093 0.014±0.002 0.012±0.002
10 0.000±0.000 0.403±0.120 0.018±0.002 0.016±0.001 0.000±0.000 0.304±0.153 0.016±0.004 0.013±0.002 0.000±0.000 0.291±0.160 0.016±0.004 0.013±0.001
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