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Kurzfassung

Diese Arbeit beschäftigt sich mit Transient Storage, welcher als Zwischenspeicher in
Smart Contracts dient und Eigenschaften sowohl des flüchtigen Smart Contract Memory
(insbesondere die Eigenschaft, nach jeder Transaktion zurückgesetzt zu werden) wie
auch des permanenten Smart Contract Storage (insbesondere die Eigenschaft, innerhalb
einer Transaktion über mehrere Smart Contract Frames hinweg bestehen zu bleiben)
aufweist. Seine korrekte Modellierung ist entscheidend für die präzise Programmanalyse
und Schwachstellenerkennung in Smart Contracts. Insbesondere untersucht diese Arbeit
die geeignete Modellierung von Transient Storage für Symbolic Execution Tools, mit einem
Fokus auf den Trade-off zwischen Genauigkeit und Recheneffizienz bei der Erkennung
von Schwachstellen in Smart Contracts. Sie identifiziert Schlüsselfaktoren und deren
Implikationen für die Implementierung des Modells, mit dem Ziel, den besten Ansatz zu
finden. Wir führen eine vergleichende Analyse der existierenden State-of-the-Art Symbolic
Execution Tools durch, gefolgt von der Entwicklung einer Erweiterung für das Symbolic
Execution Tool Mythril, die aus der Modellierung des Transient Storage besteht. Die
neu entwickelte Erweiterung wird dann systematisch evaluiert, um ihre Effektivität in
der Verbesserung der Erkennung von Schwachstellen in Smart Contracts zu bewerten.
Die Evaluation zeigt, dass unser Ansatz, ein Python Dictionary statt eines SMT Arrays
für die Modellierung des Transient Storage zu verwenden, eine praktikable Alternative
darstellt, die Recheneffizienz ohne Einbußen bei der Genauigkeit bietet.
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Abstract

This work focuses on Transient Storage, which serves as an intermediary storage in
Smart Contracts and exhibits characteristics of both the volatile Smart Contract Memory
(notably the property of being reset after each transaction) and the permanent Smart
Contract Storage (notably the property of persisting across multiple Smart Contract
frames within a transaction). Its accurate modeling is crucial for precise program analysis
and vulnerability detection in Smart Contracts. Specifically, this thesis explores the
appropriate modeling of transient storage for symbolic execution tools, focusing on
achieving the right balance between accuracy and computational efficiency in detecting
vulnerabilities in smart contracts. It identifies key factors and their implications for
model implementation, aiming to identify the best approach. We conduct a comparative
analysis of existing state-of-the-art symbolic execution tools, followed by the development
of an extension to the symbolic execution tool Mythril, that consists of transient storage
modeling. The newly developed extension is then systematically evaluated to assess
its effectiveness in enhancing the detection of vulnerabilities in smart contracts. The
evaluation illustrates that our approach, employing a Python dictionary instead of an SMT
array for transient storage modeling, presents a viable alternative offering computational
efficiency without compromising accuracy.
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CHAPTER 1
Introduction

1.1 Motivation and Problem Statement
The Ethereum platform [But14], which enables the execution of autonomous programs,
called smart contracts, on a decentralized ledger, has witnessed a strong increase in
number of applications and use cases. Accordingly, the high financial throughput makes
smart contracts an attractive target for malicious actors. Like other kinds of software,
smart contracts are prone to bugs, and exploits can lead to high financial damage [Cha23].

Symbolic execution is a technique for strengthening the security of smart contracts
by attempting to explore all possible paths through a program, thereby enabling a
comprehensive coverage of the program’s behavior [Kin76]. For the symbolic execution to
provide results efficiently and accurately, the different data storage areas of the Ethereum
Virtual Machine (EVM), the smart contracts’ runtime environment, need to be modeled
appropriately in the symbolic execution tool. The modeling needs to be precise enough
to catch important details but abstract enough to provide efficiency. This is no easy task
since the EVM data storage architecture is quite complex, incorporating many different
types of data storage. Making the wrong decisions can lead to problems such as path
explosion or a large number of false positives.

Additionally, the EVM data storage architecture is expected to soon incorporate transient
storage [AS18], complicating the landscape further. This new data storage type functions
similarly to a smart contract’s existing storage but is ephemeral, with its contents being
discarded after the transaction completes. No tools publicly available currently account
for ’transient storage’. Also, not all symbolic execution tools for smart contracts are
accompanied by a scientific paper, and for those that are, the paper usually does not
provide a profound reasoning behind the data storage modeling. This underscores the
need for a robust implementation that includes a detailed analysis and justification of
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1. Introduction

how transient storage should be modeled within symbolic execution tools.

1.2 Aim of the Thesis and Expected Results
The aim of this thesis is to provide an extensive examination and reasoning of how transient
storage should be modeled in a symbolic execution tool to discover vulnerabilities in smart
contracts. The thesis will be accompanied by the implementation of the data storage
modeling for transient storage, leveraging the insights gained in the afore-mentioned
examination. Specifically, the tool Mythril [Con18] will be extended in this regard.
We aim to answer the following research questions:

• Which modeling techniques do state-of-the-art security analysis tools use to navigate
the trade-off between accuracy and computational efficiency for modeling data
storage to effectively identify vulnerabilities in smart contracts?

• What factors need to be considered when modeling transient storage in a sym-
bolic execution tool to detect vulnerabilities both accurately and computationally
efficiently?

• What implications do the identified factors have for the implementation of the
transient storage modeling?

• Which of the identified modeling techniques is the most appropriate for the imple-
mentation of the modeling of transient storage in a symbolic execution tool?

1.3 Methodology
1.3.1 Literature Review
In order to determine the current state of data storage modeling techniques in symbolic
execution, particularly for the EVM but also regarding conventional techniques, an
examination of the literature and of the implementation of publicly available symbolic
execution tools is necessary.

1.3.2 Definition of Objectives for the Solution
We will define what the capabilities of our implementation should be. We will also
examine what levels of accuracy and computational efficiency are necessary for a symbolic
execution tool to discover vulnerabilities in smart contracts and what this implies for
modeling of a specific data storage type.

1.3.3 Design and Development
We will explore what factors need to be considered in order to make the best decisions for
the implementation of the modeling for transient storage, guaranteeing high computational
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1.4. Related Work

efficiency as well as accuracy. We will investigate what implications the identified factors
have for the design of the modeling of transient storage.
We will extend the data storage modeling of Mythril to account for transient storage and
describe in detail our implementation and the rationale behind it.

1.3.4 Demonstration
The Solidity compiler supports transient storage when used in inline assembly. Using this
method, we will demonstrate our implementation by analyzing a set of smart contracts
that represent different use cases. Thereby, we showcase how our extension of Mythril
performs in different scenarios.

1.3.5 Evaluation
We will evaluate our modeling of transient storage by testing it against a set of smart
contracts. The accuracy and efficiency of transient storage will be empirically compared
against the accuracy and efficiency of the existing modeling of storage, which will act as
a baseline.

1.4 Related Work
In 2008, De Moura et al. [DMB08] at Microsoft Research Redmond developed the state
of the art satisfiability modulo theories (SMT) solver Z3. Z3 supports several different
theories, including arithmetic, bit-vectors, arrays and uninterpreted functions. Z3 has
become an industry-standard for symbolic execution. Most symbolic execution tools for
smart contracts (including Mythril) generate constraints based on the simulated data
storage operations and rely on an efficient SMT solver to solve those constraints, making
Z3 very relevant to our research.

In 2011, Godefroid [God11] introduces a novel way of utilizing uninterpreted functions in
symbolic execution. Instead of just using uninterpreted functions as an abstraction for
complex program behavior, which was common in traditional symbolic execution and
oftentimes introduced imprecision, Godefroid also systematically recorded uninterpreted
function samples by capturing input-output pairs during runtime. Thereby, he addresses
some inherent limitations to traditional symbolic execution tools by ensuring consistency
in the symbolic execution process: The same input will yield the same hash output
across different points in the analysis, preventing the creation of different unrelated
symbols representing the hash outputs of the same input. His method is being applied in
several symbolic execution tools to model hash functions., e.g. Manticore [MMH+19], a
state-of-the-art symbolic execution tool for smart contracts and ELF binaries.

Shoshitaishvili et al. [SWS+16] present a binary analysis framework along with a cor-
responding implementation in a tool called angr [ang16], which is publicly available.
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1. Introduction

Angr implements the index-based data storage technique [CARB12]. Angr has become a
standard tool for analyzing binary files for vulnerabilities.

Krupp et al. [KR18] present the tool TeEther, also available publicly [tee18]. The tool
introduces a novel way of handling hash values symbolically. TeEther treats fixed-sized
data storage elements as fixed-size bitvectors, while variable-length data storage elements
are handled using Z3’s array theory.

VerX, a symbolic execution tool for smart contracts, developed by Permenev et al.
[PDT+20] relies on the reduction of temporal property verification to reachability check-
ing. VerX models hash functions very similarly to Mythril. As modeling hash functions is
one of the main issues of handling data storage in symbolic execution of smart contracts,
and considering the absence of an accompanying scientific paper for Mythril, examining
VerX becomes particularly relevant.
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CHAPTER 2
Technical Background

In this section, we lay the groundwork by providing the necessary technical background
knowledge, a crucial foundation for comprehending the intricacies of the subject matter.

2.1 SMT Solver and Theories
Satisfiability Modulo Theories (SMT) solvers are foundational tools in symbolic execution
and constraint solving. There are numerous widely recognized SMT solvers; examples
include Z3 [DMB08], CVC4 [BCD+11] and Boolector [NPWB18]. These solvers have the
ability to efficiently determine the satisfiability of logical formulas over various theories,
such as bitvectors, arrays, and arithmetic, which differentiates SMT solvers from SAT
(boolean satisfisability) solvers. SMT solvers are usually integrated in some form of
application for solving constraints generated by the application.

As the different theories are what make SMT solvers able to reason about complex
satisfiability problems, we will briefly go into the theories important in the context of
symbolic execution of smart contracts:

• Bitvectors represent fixed-size sequences of binary digits (0s and 1s). They are
often used to model low-level operations in hardware and software. Bitvectors allow
for precise control over the number of bits in a variable, making them suitable for
certain datatypes in smart contracts (e.g. uint8, uint256). SMT solvers can reason
about bitvector constraints efficiently, as they deal with discrete values and support
bitwise operations, bit manipulation and binary arithmetic.

• SMT Arrays are used to represent array-like datastructures in a logical and
efficient manner. This makes them a viable option for modeling EVM data storage
types that store data in an address-value like structure. SMT arrays enable the
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2. Technical Background

modeling and analysis of complex array operations, such as element updates and
queries, as well as the handling of respective constraints.

2.2 Symbolic Execution
Symbolic execution is a program analysis technique that has evolved over time. It involves
systematically exploring a program’s execution paths symbolically, without relying on
concrete input values. Instead, it tracks constraints on program variables and computes
the possible states the program can reach. This approach allows for the detection of
bugs, vulnerabilities, and property violations within software systems by employing
SMT solvers to check for the reachability of different program states by solving the
previously generated constraints. The underlying concepts of symbolic execution were
initially introduced in the late 1960s [Flo67] and further formalized in subsequent years
[Kin76]. It has since become a fundamental tool in the fields of formal methods, software
verification, and program testing, offering valuable insights into program behavior and
correctness.

2.3 Data storage types in smart contracts
The data storage architecture within the Ethereum Virtual Machine (EVM) is quite
complex. Various data storage types collectively form the data storage landscape of the
EVM and serve diverse and essential roles in the execution of smart contracts.

The following four data storage areas primarily serve the purpose of managing data and
computations:

• Calldata is a read-only area storing function arguments and data for contract
calls.

• Stack is used for temporary data storage during contract execution, operates as
a stack (LIFO). Every invocation of a smart contract starts with an empty stack,
with limit of 1024 entries. Its content is discarded once the contract terminates.

• Memory is a temporary and expandable data storage for computations within a
contract. Every invocation of a smart contract starts with an empty memory. Its
content is discarded once the contract terminates.

• Storage is a persistent data storage for contract state variables. Operations cause
higher gas costs as reading and writing persistent data requires disk access. The
storage is initialized when the contract is created, and persists between transactions.
Its content can be either reset programmatically by the contract or is discarded
when the contract performs a SELFDESTRUCT operation.

6



2.3. Data storage types in smart contracts

The remaining three data storage areas expand the EVM’s capability by enabling output
delivery, event recording, and logic execution within smart contracts.

• Return Data is used to send data back to the caller after a function execution,
allowing contracts to provide information as a response.

• Logs are a mechanism for event logging, not direct data storage. They are used to
emit structured data for external monitoring and notification.

• Code is where the contract’s bytecode resides, containing the executable logic of
the contract.

• Callstack can hold up to 1024 entries and manages nested calls between contracts.
The callstack is used to store return addresses and context information. Entries
are removed once the associated function call completes.

As the functionality and purpose of transient storage (explained in detail in a dedicated
chapter 3) is comparable to memory and storage, we will briefly go into some technicalities
that are important for understanding how memory and storage are currently modeled in
symbolic execution tools.

2.3.1 EVM Memory
Data stored to EVM memory is discarded after each contract execution (and is thus also
not persisted across transactions). Memory is byte-addressable (256-bit long addresses,
each pointing to one byte). Memory operations, such as loading (MLOAD) and storing
(MSTORE) data, are fundamental for efficient data management within a contract. EVM
memory follows a big-endian byte order for data storage (most significant byte is located
at the smallest address). Memory allocation in the EVM occurs in 32-byte words and can
be conceptualized as using an incrementing pointer, where newly allocated memory is
added sequentially, expanding the memory space word by word, 32 bytes at a time (one
opcode MSTORE8 also allows for writing a single byte). It is important to note that
certain complex data types, including dynamically sized arrays and mappings, cannot be
stored directly in memory.

2.3.2 EVM Storage
Unlike memory, which is temporary, storage in Ethereum provides a persistent data
storage solution and is word-addressable, with each address being 256-bit long and
pointing to 256-bit values (one word). Smart contracts use storage to maintain long-term
data, such as contract state variables. In terms of data storage format, Ethereum storage is
big-endian, same as memory. Unlike memory, which is a linear array, storage is inherently
a mapping of 256-bit keys to 256-bit values. This key-value pair structure explains why
certain complex data types, such as mappings (in Solidity), are implemented in storage
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2. Technical Background

rather than memory. Fixed-size variables are stored in consecutive slots, following their
declaration order, while dynamic-size data types utilize a hash-based allocation scheme.

8



CHAPTER 3
EIP-1153: Transient Storage

This chapter delves into Transient Storage as introduced by Ethereum Improvement
Proposal (EIP) 1153. The EIP was created in 2018 [AS18] and as of 15.01.2024 is
undergoing peer-review in the Ethereum community. EIP-1153 is strongly anticipated to
be a part of the next Ethereum upgrade, known as the “Cancun Upgrade”, expected in
early 2024.
A great part of this chapter leans on what is specified in the EIP ([AS18]).

3.1 Motivation of Transient Storage
An Ethereum transaction can generate multiple frames of a contract. This can happen
when a contract uses the CALL, DELEGATECALL, CALLCODE or STATICCALL
instruction to either call another contract or itself recursively. In this case, a new
execution frame is created and managed by the EVM and further execution happens in
the new contract frame. This new frame has its own memory, stack and program counter.
As a result, communication between multiple frames of the same contract is currently
only possible using one of two options:

• Storage. This comes with high gas costs, as it requires disk access.

• Inputs passed via CALL instructions. This is insecure, if there exists an intermediate
frame belonging to an untrusted contract.

Several use cases however require inter-frame communication.
Previous attempts addressing this issue have inherent limitations. [Tan19] proposes to
reprice SSTORE and SLOAD opcodes to make it cheaper for use cases where the lifetime
of the data is limited by the end of the transaction. This is not a satifying solution as
the maximum refund is limited to only 20% of the transaction gas cost.

9



3. EIP-1153: Transient Storage

‘EIP-1153: Transient Storage’ offers inter-frame communication without security concerns
and using significantly less gas than storage as transient storage does not require disk
access.

3.2 Technical Details of EIP-1153
The functionality of transient storage is virtually equivalent to storage, with the important
difference that it is discarded after every transaction. Storage in contrast persists between
transactions and hence requires disk access.

EIP-1153 specifically introduces “Opcodes for manipulating state that behaves identically
to storage but is discarded after every transaction”. The opcodes being added are TSTORE
and TLOAD for writing and reading, respectively, which are similar to SSTORE and
SLOAD. Addressing (32-byte addresses pointing to 32-byte values) in transient storage
also works equivalently to storage.
Gas costs for TSTORE and TLOAD are significantly lower (100 gas each) than for the
storage opcodes (100-20000 gas [Woo23], depending on whether the storage slot has been
read/written to yet).

3.3 Use Cases and Applications
As everything that is possible with transient storage would also be possible with conven-
tional storage, transient storage does not directly provide new functionality. However,
transient storage is useful in cases where inter-frame communication is necessary, but the
data stored does not need to persist between transactions.

This can be useful for a range of use cases and applications. [AS18] lists the following
ones:

• Reentrancy Locks. A security mechanism designed to prevent recursive calls of
functions when interacting with untrusted contracts.

• On-Chain Computable CREATE2 Addresses. A use case where constructor
arguments are read from the factory contract’s state instead of being passed as
part of the initialization code hash.

• Single Transaction ERC-20 Approvals. Temporary ERC-20 token approvals
within a single transaction.

• Fee-on-Transfer Contracts. A fee to be paid in order to unlock temporary
transfers within a transaction.

• Till Pattern. Enable users to perform multiple actions in a single transaction,
with a check at the end to ensure the “till” is balanced.

10



3.3. Use Cases and Applications

• Proxy Call Metadata. Storing additional metadata temporarily for implementa-
tion contracts, especially useful for immutable proxy constructor arguments.
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CHAPTER 4
Comparative Analysis of existing

Data Storage Modeling Techniques

Numerous analysis tools have been developed for addressing the issue of finding vulnera-
bilities in smart contracts, some of which employ symbolic execution. During symbolic
execution, these tools need to model the different data storage types of the EVM as
well as the operations performed on them. In order to get a solid understanding for
existing data storage modeling techniques in symbolic execution tools for smart contracts,
we conducted a review of the code of several of the most well-known and respected
open-source tools. In the following, the different methods we extracted are presented,
explained and compared.

4.1 Analysis of the tools
Di Angelo and Salzer present a detailed overview of many analysis tools for smart
contracts [DAS19]. We apply similar criteria for choosing the smart contract analysis
tools from which we extract the data storage modeling techniques. The tool needs to:

• perform symbolic execution

• aim at finding security vulnerabilities

• be open-source

We also consider whether the tool:

• is recently maintained and well-structured

• is reasonably well-respected in industry and/or in the literature

13



4. Comparative Analysis of existing Data Storage Modeling Techniques

Finally, out of nine security analysis tools for smart contracts that employ symbolic exe-
cution identified by [DAS19], our choice fell on the tools Mythril, TeEther and Manticore.
The other tools have been disregarded due to the fact that they are either stale, have not
been publicly released or extend another tool (reusing the symbolic execution engine and
its data storage modeling).

For this comparative analysis, we will focus on the techniques for modeling smart contract
storage and memory, as these two memory areas are most closely related to transient
storage.

4.1.1 Mythril
Mythril [Con18] being the tool we extend with a model for transient storage, an analysis
of the existing data storage modeling techniques applied in this tool are obviously very
relevant. Mythril is a symbolic execution security analysis tool for smart contract
bytecode. It supports multi-transactional exploits. Mythril has been published on Github
in 2018 and is still actively maintained by the company ConsenSys.

• Storage is modeled as an SMT array (theory of arrays). The indices and values
are modeled as 256-bit bitvectors.

• Memory is modeled as a Python dictionary. The indices are modeled as 256-bit
bitvectors, the values are modeled as 8-bit bitvectors.

4.1.2 TeEther
TeEther [tee18] (accompanied by a paper [KR18]) is a symbolic execution tool for finding
vulnerabilities and generating exploits for smart contracts, focussing on exploits that
transfer Ether to an arbitrary address. It supports multi-transactional exploits. The
TeEther paper has been published in 2018, the public release of the tool followed in 2019.

• Storage is modeled as an SMT array (theory of arrays). The indices and values
are modeled as 256-bit bitvectors.

• Memory is modeled as an SMT array (theory of arrays). The indices are modeled
as 256-bit bitvectors, the values are modeled as 8-bit bitvectors.

4.1.3 Manticore
Manticore [man19] (accompanied by a paper [MMH+19]) is an analysis tool that supports
symbolic execution for both traditional ELF binaries as well as for EVM bytecode.

• Storage is modeled as an SMT array (theory of arrays). The indices and values
are modeled as 256-bit bitvectors.

14



4.2. Analysis and Comparison of Methods

• Memory is modeled as an SMT array (theory of arrays). The indices are modeled
as 256-bit bitvectors, the values are modeled as 8-bit bitvectors.

4.2 Analysis and Comparison of Methods
In the following, we juxtapose the techniques with which storage and memory are modeled
by the different tools.

4.2.1 Modeling Smart Contract Storage
All three tools model storage as an SMT array with appropriately sized 256-bit bitvectors
as indices and values (2256 addresses, each addressing one word, i.e. 32 bytes or 256
bits). This model perfectly reflects how the EVM works and can accurately reason about
symbolic reads and writes on the SMT array representing storage. The only deviation
from precise modeling is related to the SHA3 hash function, which is used in high-level
languages like Solidity for certain data types. This hash-based allocation scheme is a
feature of these languages, not of EVM storage itself. In the EVM context, storage
is simply a mapping of 256-bit keys to 256-bit values. Hash functions are modeled as
uninterpreted functions, which affects the precision of reasoning about storage indices
derived from hashes.

4.2.2 Modeling Smart Contract Memory
When it comes to memory, TeEther and Manticore are consistent in their approach of using
an SMT array. For memory, the tools capture the fact that memory is byte-addressable
with 256-bit bitvectors as indices and 8-bit bitvectors as values (2256 addresses, each
addressing one byte, i.e. 8 bits).
Mythril handles memory differently, though: A simple Python dictionary is used. This
dictionary also uses bitvectors to accurately capture the size of addresses/bytes as
index/value pairs.

4.2.3 Using an SMT Array vs. using a Dictionary
The analysis of data storage modeling techniques has come up with two methods for
modeling an index-value pair-based datastructure: SMT arrays and dictionaries.

Conceptually, a dictionary works the same as an SMT array, providing the possibility to
perform read and write operations on a structure of addresses pointing to values. However,
in the context of symbolic execution, SMT arrays provide more accuracy than dictionaries.
This is due to the fact that SMT arrays can reason about the SMT constraints put on
the bitvectors that are used as indices. An SMT array recognizes whenever a bitvector
used as index is potentially equivalent to an already existing index, even when the two
operations (the one writing the value and the other one retrieving the value) use different
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symbols as index to access the SMT array. Reasoning about the SMT constraints of the
symbols used as indices, however, makes SMT arrays less efficient.

A Python dictionary is a much more light-weight data structure than an SMT array and
due to its simpler nature and its inability to reason about SMT constraints, it is more
efficient. However, a Python dictionary comes with the downside of being inaccurate in
cases of symbolic storage/memory access. A dictionary will treat different symbols as
different indices, even if the symbols are potentially equivalent according to their SMT
constraints: Writing a value to transient storage and later attempting to retrieve that
value with a symbolic index (potentially equivalent to the written index) will fail, as the
dictionary treats any symbol as separate index.

Whether sacrificing accuracy for efficiency using a dictionary is acceptable therefore
depends on two things:

1. Are symbolic storage/memory accesses with different but equivalent symbols com-
mon? Are they rare enough so that the inaccuracies can be disregarded?

2. How much more efficient is the dictionary in comparison to an SMT array? Is the
increased efficiency substantial enough to justify the inferior accuracy?

Using a dictionary for modeling storage would result in numerous false positives/negatives
during a security analysis. This is due to the fact that symbolic storage accesses with
different but equivalent symbols occur quite often, since the purpose of storage is long
term, as storage is part of the blockchain’s state and persists across transactions. For
example: storing a value within one transaction and reading it in a later transaction is
quite common, but will result in two different (but equivalent) symbols used as indices.
Therefore, we conclude that using a dictionary for modeling smart contract storage is not
an option, as the number of false positives/negatives would render a security analysis
useless.

Using a dictionary for modeling memory, however, works quite well. As memory does
not persist across transactions and is reset after a transaction concludes, smart contracts
mainly use memory as short term cache and symbolic memory accesses with different but
equivalent symbols are therefore rare. Writing a value at a symbolic index (e.g. using
msg.sender as key to a mapping) in one transaction and reading it in a later transaction is
a common case of equivalent symbolic indices, which are interpreted as different symbols
by the symbolic execution engine, since two different transactions are involved. This
is not a common case for memory, however, as memory only persists per transaction.
Whether such a case of symbolic memory access can still occur, obviously depends on the
smart contract being analyzed, but there are few use cases for it. As a result, Mythril
sacrifices accuracy for efficiency by modeling memory as dictionary and not as SMT array.
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The modeling remains quite accurate, since the cases introducing inaccuracies are rare.

We can therefore conclude that the choice between using an SMT array or a dictionary for
modeling a smart contract data storage type depends on whether the use cases typically
result in different but equivalent symbolic indices for the data storage type in question,
which in turn depends on whether the data storage type is used for persistent storage or
for per-transaction temporary storage.

4.3 Additional observations
Modeling Hashes. Hashes, particularly the keccak256 (a variant of SHA-3) function
used by Ethereum, are significant in smart contracts, serving various purposes in both
code and system design. In addition to their direct application within contract code,
hashes are integral to high-level languages like Solidity for storage allocation mechanisms,
determining the location of mappings and dynamically sized arrays. However, if the kec-
cak256 function were to be modeled with precise SMT constraints in a symbolic execution
engine, it would significantly hinder the engine’s performance due to the computational
complexity and resource-intensive nature of accurately simulating cryptographic hash
functions. Mythril models hash functions as uninterpreted functions, which is a common
technique in symbolic execution. The input and output data of the hash function are
modeled as 256-bit bitvectors. SMT constraints are applied to the output hash to mimic
properties of EVM hash functions in order to enable handling hashes symbolically.
Mythril and Manticore capture input-output pairs of hash functions during runtime, a
technique introduced by Godefroid [God11]. This is relevant for modeling a data storage
type like transient storage, especially if a dictionary is used. The reason for this is that
whenever the keccak256 function is encountered by the symbolic execution engine, it
normally creates a new bitvector. If no input-output pairs would be captured and the
same input symbol would be hashed twice, this would result in two different output
symbols. This would obviously lead to problems when a data storage type that uses
hash-based allocation scheme (for e.g. mappings) is modeled as a dictionary, because
multiple accesses to the same mapping slot (calculated by one input symbol) would
result in different output symbols and would hence be recognized as accesses to different
mapping slots by the symbolic execution engine.

EVM Stack. All three tools extend Python’s list class for modeling the EVM stack.
This might be due to Python’s list class being similar in nature to the EVM stack, offering
push and pop methods with a Last-In-First-Out functionality. This enables repurposing
Python’s list class to model the EVM stack accurately and intuitively.

SMT Solver. All three tools employ Z3 as the SMT solver to solve the constraints
generated by the symbolic execution engine.

Bitvector Theory. All three tools model all symbolic values using the SMT theory of
bitvectors, providing a low-level, fine-grained representation and allowing for detailed
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operations at the bit-level. The bitvector theory aligns well with the fixed-size data types
(like 256-bit integers) in Ethereum. No abstraction is applied by the tools to symbolic
values by modeling them in a more coarse-grained manner, e.g. using integer theory.
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CHAPTER 5
Definition of Requirements

In the following, we define the requirements that an implementation of transient storage
in a symbolic execution security analysis tool for smart contracts should fulfill. We
also explain the role that the modeling of transient storage plays in the definition of
requirements.

5.1 Modeling of storage as baseline

Transient storage is defined as “state that behaves identically to storage, except that
transient storage is discarded after every transaction” [AS18]. The fact that the behavior
within one transaction is identical qualifies the modeling of storage as comparison /
benchmark candidate for the modeling of transient storage in symbolic execution tools.

5.2 Requirements towards accuracy

We are extending a security analysis tool that detects vulnerabilities in smart contracts.
The utility of a security analysis tool depends to a large degree on correctly identifying
security issues. Inaccurate modeling of data storage worsens the accuracy of identified
vulnerabilities. Consequently, an important metric for evaluating accuracy is the num-
ber of true/false positives/negatives. However, if the evaluation results contain false
positives/negatives, it is hard to tell to what degree these mistakes can be attributed
to our extension, which only consists of the modeling of one data storage type; false
positives/negatives can also result from a faulty symbolic execution engine for example.

For this reason, we rely on the modeling of storage that is already present in Mythril as
a baseline.
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We define as a requirement that our model of transient storage is as accurate as the
model of storage in the state-of-the-art. The details regarding the comparison of accuracy
in the context of an empirical evaluation are described in chapter 8.

5.3 Requirements towards efficiency
Efficient modeling of EVM operations by smart contract symbolic execution tools is
crucial to maintain the efficiency of smart contract analysis. Inefficient modeling can
significantly increase the computational complexity and runtime of the analysis, leading
to substantial time delays.

As it is difficult to evaluate efficiency objectively without comparison, we also rely on
the modeling of storage, that is already present in Mythril, as a baseline. Storage in
Myhtril (and in other state-of-the-art tools) is modeled as an SMT array, which is the
less efficient option compared to using a simple dictionary (as explained in chapter 4).

Consequently, we define as a requirement that the operations on the transient storage
model are at least as efficient as the operations on the storage model. The details
regarding the comparison of efficiency are described in chapter 8.
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CHAPTER 6
Development: Modeling Transient

Storage

In the previous chapter 5, we defined the state-of-the-art modeling techniques for modeling
smart contract storage as the baseline for transient storage modeling.

We also defined in chapter 4 that the modeling of storage is almost completely precise
(compared to how storage works in the EVM), with the exception of the hash-based
allocation scheme that is used for some data structures stored to storage. The imprecision
of modeling hash functions is a well-known problem in symbolic execution and is an issue
separate from modeling storage. Therefore, we deem the modeling of storage itself as
being as precise as it can be.

The comparative analysis in chapter 4 has shown that another option for modeling
transient storage besides using an SMT array is using a dictionary. This is an interesting
alternative for modeling transient storage because the inaccuracies, introduced by the
dictionary’s inability to reason about SMT constraints, are relevant especially for data
storage types that store data long term and therefore experience more data storage
accesses with (different but potentially equivalent) symbolic indices.

Transient storage is only used for short term, per-transaction purposes, and differs in
precisely this way from storage, making it a candidate for modeling it using a simple
dictionary. This can lead to gains in efficiency. Therefore, we use a dictionary to model
transient storage, which allows us to evaluate whether it is in fact a viable option.

Our implementation is published on GitHub [Wey23].
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6.1 Extension of Mythril
We focus on extending an existing tool, Mythril, with a transient storage model. Our
extension is based on Mythril version 0.24.5, specifically commit b8ad3a9, pushed on
Jan 16, 2024.

6.2 Development Environment and Tools
Mythril is written in Python. We also use Python for our extension, which is necessary
as our extension is implemented directly inside the existing code.

We use Github for version control and better overview of the design process.

6.3 Design Choices and Implementation Details
As discussed at the start of this chapter, we implement transient storage as a dictionary
in order to determine if this approach allows for efficiency gains without introducing
inaccuracies. The indices and values of the dictionary are modeled as 256-bit bitvectors.

6.3.1 Mythril Architecture

In order to explain how the dictionary representing transient storage is integrated into
Mythril, we take a brief look at the existing implementation and architecture of Mythril.

In the context of symbolic execution, Mythril keeps track of different states of smart
contracts and their execution. In this regard, Mythril implements multiple Python classes
that are structured in a hierarchy-like structure. This structure needs to be considered
when deciding how to extend Mythril with transient storage, as transient storage needs
to be placed in the proper place inside this structure in order to properly simulate the
EVM.

We start by giving a brief overview of the most important Python classes situated in this
hierarchy, along with the information we deem most important to understand the role of
each class in symbolic execution and in managing data storage. Some of the following
descriptions are derived from Mythril’s documentation [Con18].

GlobalState class is at the top of the hierarchical structure. Mythril’s symbolic execution
engine can keep track of a list of different GlobalStates. GlobalState keeps track of a
WorldState, an Evironment and a MachineState. It also manages a transaction stack
(of all transactions leading to that specific global state) as well as a list of annotations,
which are used to note detected issues.

WorldState class represents the world state as described in the Ethereum Yellow Paper.
It keeps track of different accounts and their balances.
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Environment class represents the current execution environment for the symbolic
execution engine. It keeps track of an active account as well as several values relevant to
the transaction (origin, active_account, ...).

Account class represents Ethereum accounts and keeps track of the account’s code and
the account’s storage.

Storage class represents smart contract storage and keeps track of the data stored to
the persistent storage of a smart contract.

MachineState keeps track of contract frame specific values, like Memory, the Stack and
the program counter.

Memory represents smart contract memory and keeps track of the data stored to the
ephemeral memory of a smart contract.

Stack represents the smart contract stack and keeps track of the data pushed on and
popped off the stack.

6.3.2 Transient Storage in Mythril

In the following, we list and briefly describe the different components and changes to
the existing code that make up our extension of Mythril. Most of these are situated
in Mythril’s mythril/laser/ethereum/state directory, as it contains all existing
modeling of state and data storage (essentially the classes described above in 6.3.1).

• Transient storage itself (the dictionary and all relevant methods for interacting
with and copying it) are implemented in a separate file
mythril/laser/ethereum/state/transient_storage.py.

• Transient storage is integrated in the Account class (same as storage). The reason
for this decision is that the Account class is part of the Environment class. Transient
storage fits well into this, because the Environment of an account persists across the
entire transaction and represents the larger context of the transaction and account-
specific information that might be relevant across multiple computational steps.
The other option would have been to integrate transient storage in the MachineState
(same as memory). However, as mentioned above in 6.3.1, MachineState represents
the execution frame specific values. As transient storage persists across execution
frames, it would not fit into Mythril’s MachineState class.

• The functionality of the transient storage opcodes TLOAD and TSTORE is imple-
mented in mythril/laser/ethereum/instructions.py

• Adding the transient storage opcodes to mythril/support/opcodes.py en-
sures that Mythril can recognize the opcodes when disassembling bytecode.
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Figure 6.1 depicts the hierarchy of the existing classes in Mythril as well as a transient
storage class added in the context of our extension.

Figure 6.1: Data Storage in Mythril

6.3.3 Transient Storage in the EVM

Figure 6.2 depicts an interpretation of the storage structure of the Ethereum virtual
machine including transient storage. This visualization was uploaded to the Fellowship
of Ethereum Magicians forum.
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Figure 6.2: Adjusted EVM With Transient Storage [Pas]

This visualization was uploaded by an independent user to the Ethereum Magicians forum
(a platform dedicated to discussions mainly about EIPs) and is not officially recognized
by the authors of EIP-1153. However, it is worth examining it more closely in relation to
our model of transient storage.

In this visualization, transient storage is more closely associated with the MachineState.
The figure differentiates between a volatile machine state (which contains the execution
frame specific data and is equivalent to the MachineState class in Mythril) and a persistent
machine state which exclusively contains transient storage. The storage is separate from
what the author of this visualization calls “persistent machine state”. The author of this
visualization uses the concept of this persistent machine state to explain the fact that the
persistence of transient storage is to be understood somewhere between the ephemeral
nature of the EVM’s volatile machine state and the EVM’s persistent storage.

Our implementation of transient storage associates transient storage less closely with
the volatile machine state and instead places it into the Environment class. We believe
this is appropriate, because Mythril’s architecture (specifically the environment class) is
structured differently than what the visualization presents. The environment class (even
though it contains storage) does not represent a cross-transaction persistent state and
is therefore ideal to also keep track of account data that should be persisted across one
whole transaction, but not across multiple transactions (which is exactly what is needed
for transient storage).
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6.4 Mythril Analysis Modules
We modify some analysis modules so that the analysis recognizes potential vulnerabilities
relevant to transient storage.

• The Arbitrary Write module now supports recognition of arbitrary write to
transient storage. This case would occur when untrusted user input is used to
determine the transient storage slot to write to in inline assembly.

• The State Access after external Call module now supports recognition
of transient storage access after external call. Additionally, the name has been
changed to Storage / Transient Storage Access after external Call.
Even though transient storage is not part of the state, transient storage is persisted
across function calls / execution frames, making it necessary to regard accesses
after external function calls as potential vulnerability.
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CHAPTER 7
Demonstration

In the following, we demonstrate the application of our extension of Mythril [Wey23]. We
aim at showing its capability in modeling transient storage according to how transient
storage is defined in EIP-1153, in order to identify vulnerabilities involving transient
storage in smart contracts.

7.1 Setup

As defined in chapter 6, our extension of Mythril consists of the capability of recognizing
transient storage opcodes in smart contract bytecode and modeling them appropriately.
In order to demonstrate our extension, we therefore need to prepare appropriate smart
contracts’ bytecode, which involves transient storage in different scenarios & use cases.

7.1.1 Solidity Compiler

On Ethereum’s main chain, transient storage was activated with the Cancun fork in
March 2024. The Solidity compiler supports the opcodes for transient storage in inline
assembly since version 0.8.24, released on Jan 26, 2024. Consequently, there are two
methods to obtain a contract’s bytecode that includes transient storage: Either (a)
compose a contract using transient storage opcodes in assembly and compile it using the
latest version of the solidity compiler or (b) compose a contract using storage, compile
it and then replace the storage opcodes with transient storage opcodes in the bytecode.
Both methods yield equivalent bytecode (assuming the inline assembly is coded properly).
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7.1.2 Construction of Smart Contracts

The smart contracts we construct involve different scenarios using transient storage. They
include vulnerabilities that, when analyzed with our extension of Mythril, demonstrate
the reliability of our modeling approach.

The contracts are written in Solidity, with all transient storage operations defined in
inline assembly.

The scenarios in the smart contracts we compose contain code that sends the contracts
balance to the caller of the contract. The conditions of whether this part in the code is
reached depend on the previous interactions with transient storage. We can use Mythril’s
“Unprotected Ether Withdrawal” analysis module to verify reachability. This allows
demonstrating the correct functioning of transient storage.

7.2 Executing the Tool
As transient storage only persists across one transaction and is discarded afterwards,
we execute the analysis with the number of transactions limited to 1. However, we also
demonstrate separately that our extension of Mythril, when executed using multiple
transactions, does not report persist data in transient storage across transactions and
consequently does not indicate recognized vulnerabilities that should only be reachable
with data persisted across transactions.

In order to receive the bytecode, we compile the smart contracts using the following
command:

./solc --bin PATH_TO_SOL_FILE --evm-version cancun

We run our extension of Mythril on the demonstration contracts using the following
command:

./myth analyze -c "BYTECODE_OF_CONTRACT" -t 1

The -t flag indicates the limit for the number of transactions to use. This is set to 1
as transient storage only persists across 1 transaction. The non-persistence of transient
storage in our extension of Mythril is demonstrated as well in one of the demonstration
contracts, which is analyzed without this limit of one transaction.
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7.3 Demonstration Contracts
In this section, we discuss the demonstration contracts together with the analysis results.
We explain how the results demonstrate proper functionality of our transient storage
model.

7.3.1 Simple Case
The contract in Listing 7.1 below contains a vulnerability (Ether can be withdrawn if
the correct input value is given) requiring single transaction. The control flow involves
an internal function call. Running our extension of Mythril on this contract detects an
“External Call to User-Supplied Address” as well as an “Unprotected Ether Withdrawal”
vulnerability, which is expected. The transaction sequence is given as a call to the
storeAndWithdraw with input 42.

1 pragma solidity ^0.8.24;
2
3 // This contract demonstrates transient storage in a simple case

with functions calls inside the same smart contract, creating
multiple execution frames of the contract.

4
5 contract SimpleCase {
6
7 constructor() payable {}
8
9 function storeAndWithdraw(uint256 _input) public {

10 assembly {
11 tstore(0x123, _input)
12 }
13
14 this.withdrawBalance();
15 }
16
17 function withdrawBalance() public {
18 uint256 storedValue;
19 assembly {
20 storedValue := tload(0x123)
21 }
22
23 require(storedValue == 42, "Stored value is not equal to

42.");
24
25 (bool sent, ) = msg.sender.call{value:

address(this).balance}("");
26 require(sent, "Failed to send Ether");
27 }
28 }

Listing 7.1: Simple Case
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7.3.2 No Persistence across Multiple Transactions
The contract in Listing 7.2 below demonstrates that transient storage is not persisted
across transactions. It contains a vulnerability reachable only if transient storage was
persisted across multiple transactions. Running our extension of Mythril on this contract
detects no vulnerabilities, as expected. Using storage instead of transient storage (replac-
ing TLOAD and TSTORE with SLOAD and SSTORE respectively) detects a vulnerability.

Note that this contract is analyzed without the limit of one transaction. Without a
specified limit, Mythril defaults to a limit of two transactions, which is enough to trigger
the vulnerability, if transient storage was persisted across transactions.

1 pragma solidity ^0.8.24;
2
3 // This contract demonstrates that transient storage does not

persist across multiple transactions.
4
5 contract NoPersistenceAcrossTransactions {
6
7 constructor() payable {}
8
9 function store(uint256 _input) public {

10 assembly {
11 tstore(0x80, _input)
12 }
13 }
14
15 function withdrawBalance() public {
16 uint256 storedValue;
17 assembly {
18 storedValue := tload(0x80)
19 }
20
21 require(storedValue == 123, "Stored value is not equal to

123.");
22
23 (bool sent, ) = msg.sender.call{value:

address(this).balance}("");
24 require(sent, "Failed to send Ether");
25 }
26 }

Listing 7.2: No Persistence across Multiple Transactions

7.3.3 Failure to recognize the potential equivalence of different
symbolic indices

The contract in Listing 7.3 below demonstrates that transient storage as we implement
it does not recognize the potential equivalence of two different symbolic indices. The
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reason for this is that we implement transient storage using a dictionary. The failure
to recognize potentially equivalent, but different symbolic indices is therefore expected.
The function symbolicIndices below takes two user parameters (leading to different,
but potentially equivalent symbols during symbolic analysis) which are used as indices
to transient storage. As expected, the analysis fails to recognize that the contract is
vulnerable to Unprotected Ether Withdrawal and External Call to User-Supplied Address.
Even though symbolic access to a data storage type that only persists for one transaction
is rare, it is important to demonstrate this expected shortcoming of our implementation.

1 pragma solidity ^0.8.24;
2
3 // This contract demonstrates that our modeling of transient storage

fails to recognize the potential equivalene of two different
symbolic indices.

4
5 contract EquivalentSymbolicIndices {
6
7 constructor() payable {}
8
9 function symbolicIndices(uint256 _key1, uint256 _key2) public {

10 assembly {
11 tstore(_key1, 123)
12
13 // if transient storage at key2 is equal to what has

been stored at key1, send balance of contract to
msg.sender

14 if eq(tload(_key2), 123) {
15 let success := call(gas(), caller(), selfbalance(),

0, 0, 0, 0)
16 }
17 }
18 }
19 }

Listing 7.3: Potentially Equivalent Symbolic Indices

7.3.4 Hashes as Indices
The contract in Listing 7.4 below demonstrates that our modeling of transient storage
does recognize two different, but equivalent hashes as indices. Our extension of Mythril
detects an Unprotected Ether Withdrawal as well as an External Call to User-Supplied
Address.

As Mythril models hashes using Bitvectors (meaning symbols), when the same value is
hashed twice, this should result in two different symbols. Therefore, one might expect
the same behaviour as above, meaning that symbolic execution would not recognize the
equivalence of the two hashes, even if the hashes result from the same input symbol.
However, this is not the case. The reason for this is that Mythril captures input-output
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pairs of hashes (Godefroid’s method [God11]). The fact that our extension does recognize
this is not directly a quality of our extension, but instead a feature of Mythril’s existing
handling of hashes. However, it is relevant to demonstrate this in the context of our
implementation of transient storage, as hashes play a central role when indexing in
storage/transient storage.

1 pragma solidity ^0.8.24;
2
3 // This contract demonstrates that our modeling of transient storage

does recognize the equivalence of two hashes used as indices.
4
5 contract HashesUsedAsIndices {
6
7 constructor() payable {}
8
9 function hashStoreAndWithdraw(uint256 _key1) public {

10 // Compute the hash of _key1 and _key2 to use as indices
11 uint256 hashIndex1 =

uint256(keccak256(abi.encodePacked(_key1)));
12 uint256 hashIndex2 =

uint256(keccak256(abi.encodePacked(_key1)));
13
14 assembly {
15 // Store 123 at the computed index
16 tstore(hashIndex1, 123)
17
18 // if transient storage at key2 is equal to what has

been stored at key1, send balance of contract to
msg.sender

19 if eq(tload(hashIndex2), 123) {
20 let success := call(gas(), caller(), selfbalance(),

0, 0, 0, 0)
21 }
22 }
23 }
24 }

Listing 7.4: HashesAsIndices

7.3.5 Arbitrary Write to Transient Storage

The contract in Listing 7.5 demonstrates the Arbitrary Write to Storage /
Transient Storage detection module. The vulnerability is enabled by writing to
transient storage with a user-supplied transient storage slot number. The vulnerability is
detected as expected.

1 pragma solidity ^0.8.24;
2
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3 // This contract demonstrates the Arbitrary Write to Transient
Storage detection module.

4
5 contract ArbitraryWrite {
6
7 function arbitraryWrite(uint256 _key, uint256 _value) public {
8 assembly {
9 tstore(_key, _value)

10 }
11 }
12 }

Listing 7.5: Arbitrary Write to Transient Storage

7.3.6 Access to Transient Storage after External Call
The contract in Listing 7.6 demonstrates the Access to Storage / Transient
Storage after External Call detection module. This vulnerability is triggered
by writing to transient storage after a call to an external contract. The vulnerability is
detected as expected.

1 pragma solidity ^0.8.24;
2
3 // This contract demonstrates the Transient Storage Access after

external Call detection module.
4
5 contract AccessAfterExternalCall {
6
7 function accessAfterExternalCall() public {
8
9 msg.sender.call("");

10
11 assembly {
12 tstore(0x123, 0x456)
13 }
14 }
15 }

Listing 7.6: Access to Transient Storage after External Call
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CHAPTER 8
Evaluation

We evaluate our extension of Mythril in terms of accuracy and efficiency.

As stated in the requirements in chapter 5, we use the modeling of storage as a baseline
to evaluate our modeling of transient storage. We rely on the fact that in the EVM,
transient storage and storage behave identically if the number of transactions is limited
to 1. This is especially relevant for comparing accuracy, because an analysis for one
transaction should detect the same vulnerabilities for a contract, regardless of whether
that contract uses storage or transient storage for its global variables. For this reason, we
evaluate our implementation using two versions of a set of contracts: Once the contracts
use storage for global variables and once they use transient storage for global variables.
Other than that, the two versions are identical.

8.1 Contracts used for evaluation
The evaluation was conducted using the set of “Solidity example” contracts published
alongside the original Mythril tool [Con18]. This is a set of 14 Solidity files, mostly
containing a single contract while a few files contain multiple contracts. The contracts
illustrate different use cases and contain various vulnerabilities detectable by Mythril’s
detection modules (this also allows us to check whether our extension properly works in
conjunction with these detection modules). The contracts originally use storage for the
global variables.

8.2 Preparation of evaluation contracts
We need two versions of each contract: One using storage (which already exists) and one
using transient storage.
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We compile the contracts with the Solidity compiler version 0.8.24. In some cases, the
contracts use deprecated syntax (like missing function modifiers virtual and override,
usage of now instead of block.timestamp, certain forms of type casting, etc.), which
we update using the respective up-to-date Solidity features.

The compilation results in bytecode containing opcodes for storage interactions (SLOAD
and SSTORE). We create copies of each contract’s bytecode and replace the storage
opcodes with their respective transient storage pendant (TLOAD and TSTORE).

8.3 Accuracy
We analyze both versions of each contract using our extension of Mythril. The command-
line output is published alongside our extension on GitHub. We compare the identified
vulnerabilities for both versions of each contracts.

For the contracts in 12 of the 14 Solidity files, the same vulnerabilities are identified
for both versions of each contract. For the remaining two contracts (rubixi.sol and
weak_random.sol), Integer Arithmetic Bugs are identified as vulnerability by
the analysis of the version using storage, while these vulnerabilities are not recognized by
the analysis of the version using transient storage.

To understand the reasons for this discrepancy, we use the information provided by
Mythril for each identified vulnerability, in particular the function name and the exact
bytecode address where the issue was found. This allows for further inspection, which we
conduct using the Remix IDE [Rem]. Running the transactions leading to the identified
vulnerabilities, we find that these integer arithmetic bugs (which essentially represent a
potential underflow or overflow) result not from vulnerabilities in the contract, but from
low-level EVM computations involving a SUB opcode. One example that could lead to
such a case is the equality check for two values read from storage. The EVM performs this
equality check by subtracting the second value from the first value and checking whether
the result is 0. This subtraction (SUB opcode) is what causes a potential underflow, if
the second value is larger than the first. Hence, these vulnerabilities identified by Mythril
(for the version using storage) are false positives, as the code does not actually lead to an
underflow or overflow relevant to the logic of the contract.

We therefore deem that our modeling of transient storage fulfills the baseline requirement
towards accuracy defined in chapter 5, since the identified vulnerabilities are identical to
the ones found in the contracts using storage (apart from the two false positives).

8.4 Efficiency
In order to evaluate the computational efficiency of our implementation of transient
storage modeling, we execute the tool ten times on the contract’s version using storage
and 10 time for the contract’s version using transient storage. We use Linux’s ‘time’
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command, which measures the total elapsed time for the tool to complete. We then
calculate the mean execution time as well as the standard deviation for the 10 runs.

Mythril’s symbolic execution engine features a plugin designed to profile the performance
of the different EVM instructions as modeled by symbolic execution. The plugin records
opcode-specific execution times, which are used to generate statistics for each opcode,
including absolute and percentage (relative to the whole analysis) execution times.

We utilize these statistics to compare the efficiency of the modeling of transient storage
opcodes to the baseline (the existing modeling of storage opcodes).

Contract Storage Transient Storage Difference [%]
Mean [s] σ [s] Mean [s] σ [s]

BECToken1 6.7424 0.1428 6.5751 0.1572 - 2.48%
BECToken2 358.7670 60.5354 151.1230 11.7600 - 57.88%
BECToken3 4.5255 0.0917 4.4438 0.1204 - 1.81%
BECToken4 5.7368 0.1942 5.6689 0.0949 - 1.18%
BECToken5 126.2600 7.4414 124.0750 9.3496 - 1.73%
BECToken6* 2.7902 0.5081 2.7926 0.5270 + 0.09%
BECToken7 13.9255 0.1811 12.9056 0.2663 - 7.32%
WalletLibrary1* 2.7689 0.4640 2.7540 0.4886 - 0.54%
WalletLibrary2 113.8440 0.9489 77.5613 1.4764 - 31.87%
calls 26.3215 1.6657 25.1456 1.5213 - 4.47%
etherstore 18.5326 0.5547 12.8863 0.2460 - 30.47%
hashforether* 3.7008 0.0970 3.6428 0.0906 - 1.57%
killbilly 5.7143 0.1025 5.6821 0.1607 - 0.56%
origin 5.4522 0.6025 5.3856 0.6455 - 1.22%
returnvalue 5.7183 0.7833 5.5538 0.6944 - 2.88%
rubixi 338.3390 49.2120 223.6430 8.0032 - 33.90%
suicide* 3.3814 0.0849 3.8928 0.0906 + 1.60%
timelock 8.1895 0.1480 8.1075 0.1149 - 1.00%

Table 8.1: Execution times for Storage and Transient Storage

Table 8.1 shows the obtained mean execution times as well as the standard deviation
for the 10 runs of the tool on both versions of the contract. The table list all contracts
published as Solidity examples alongside Mythril. The contracts in the list are named
after the solidity files. Some contracts are indexed, indicating that a specific solidity file
contains multiple contracts and hence results in multiple bytecodes when compiled. An
asterisk (*) next to the contracts name means that this specific contract does not use
SSTORE, SSLOAD, TSTORE or TLOAD opcodes, meaning the difference in execution
time is not the result of the modeling of either storage or transient storage. As shown
in the table, for the contracts marked with an asterisk, the percentage differences in
execution time are very low (less than 2%).
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Comparing the execution times in the table, we see that for the majority of contracts,
the execution on the contract’s version using transient storage completed faster. This is
visible in the last column, showing the difference in percent between the storage mean
execution time and the transient storage mean execution time. Negative values refer to
a drop of the execution time from the storage version to the transient storage version,
meaning the execution of the transient storage version completed faster.

We can identify 2 contracts where the execution time for the transient storage version is
higher (indicated by the ‘+’ in the Difference column). However, these two contracts do
not contain any storage or transient storage opcodes (indicated by the asterisk near their
name). As the absolute execution time is quite low (less than 4 seconds mean execution
time on both versions for both contracts) and the increase in percent is also neglectable
(+0.09% and +1.60%), the increase in execution time from the storage version to the
transient storage version is likely the result of noise.

Overall, we can see that there are multiple contracts with low mean execution times (less
than 10 seconds). Our implementation of transient storage modeling seems to have less
of an effect (also percent-wise) on the execution times of these contracts. These contracts
in the Mythril repository are generally simpler and contain less code (hence the lower
execution times).

There are also contracts that have higher absolute mean execution times (more than 10
seconds, with some more than 100 seconds and 2 of those with more than 300 seconds).
Inspecting these contracts in the Mythril repo shows that these are contracts with a lot
more code and more interactions with storage, using Solidity mappings and structs. The
percentage differences of the execution times for these contracts are significantly higher,
with execution time reductions of more than 30% for some of the contracts and up to
57% for one of the contracts.

8.5 Hardware Setup
The evaluation of the tool utilized a system with an AMD Ryzen 5 PRO 4650U with
Radeon Graphics CPU, featuring a base frequency of 1.4 GHz and a maximum boost of
2.1 GHz across 6 cores. The system’s memory includes 16 GB of DDR4 RAM at 3200
MT/s. The GPU is an AMD/ATI Renoir. Storage is provided by a 476.9 GB NVMe
SSD. The operating system used for testing is Kali GNU/Linux Rolling 2023.4.

8.6 Limitations of the Evaluation
This section discusses some limitations associated with the evaluation process. These
limitations are a consequence of deliberate methodological and practical considerations,
essential for the scope and feasibility of this thesis. Acknowledging these constraints is
vital for the interpretation of the evaluation findings and the identification of areas for
future research.
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We focus on two primary limitations:

• Even though the modeling of storage can serve as baseline for evaluating the
modeling of transient storage — since storage opcodes behave equivalently to
transient storage opcodes for the duration of one transaction —, it does not allow to
draw a clear conclusion with regards to the comparison in terms of efficiency. This
is because even though the opcodes of storage and transient storage behave similarly
in the EVM, the modeling for storage in state-of-the-art symbolic execution tools
oftentimes includes additional features. One example of such a feature is the
dynamic loading of on-chain values (obviously not relevant for a transient, per-
transaction data storage). These features increase the complexity of the modeling
and can therefore reduce its efficiency.

• At the time of writing this chapter, transient storage has been incorporated into
Ethereum, but it is still quite new and the available benchmark solidity examples
on Mythril’s Github do not yet contain transient storage use cases. As the topic of
this thesis is not the creation of new benchmark smart contracts, we chose to use
the smart contracts that are currently available on the Mythril Github repository.
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CHAPTER 9
Discussion

In the following section, we discuss the implications of our findings in terms of the
research questions we defined. We also discuss potential future research with regards to
transient storage in symbolic execution tools.

9.1 Implications of Findings

• RQ1: Which modeling techniques do state-of-the-art security analysis tools use to
navigate the trade-off between accuracy and computational efficiency during symbolic
execution to effectively identify vulnerabilities in smart contracts?
For security analysis tools, accuracy is essential. Inaccuracies resulting from im-
precise modeling of data storage areas are problematic, as data storage areas are
relevant for security (e.g. one of the intended use cases of transient storage are
reentrancy locks). This is also reflected in the care that is taken by state-of-the-art
tools: Our comparative analysis in chapter 4 has shown that symbolic execution
tools mostly rely on SMT arrays (a data structure capable of handling SMT con-
straints accurately) and only deviate from this option to increase efficiency if the
probability of inaccuracies is low (Mythril uses a dictionary instead of an SMT
array for memory). Therefore, our methodology advocates for a judicious applica-
tion of abstractions to maintain a balance between accuracy and computational
efficiency. This careful approach ensures that abstractions are employed only under
circumstances where inaccuracies are assessed to be unlikely, thereby upholding
accuracy as a priority while improving efficiency.

• RQ2: What factors need to be considered when modeling transient storage in a
symbolic execution tool to detect vulnerabilities both accurately and computationally
efficiently?
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9. Discussion

– The functionality that has been defined for transient storage and its opcodes
in the EIP [AS18]. As the modeling simulates what happens in the EVM, the
technical specifications of transient storage should be taken into consideration.
This includes aspects like the fact that transient storage maps 256 bit addresses
to 256 bit values, the interaction of TSTORE/TLOAD with the stack, and
the gas costs of these operations.

– The use cases that transient storage is intended for. As our comparative
analysis of state-of-the-art tools has shown, the decision whether to use an
SMT array versus a dictionary depends specifically on whether the use cases
lead to different but equivalent symbolic indices, which in turn depends
on whether the data in the respective data storage type is persisted across
transactions. The fact that transient storage has a rather short-term purpose
and is not persisted across transactions should be taken into consideration.

– The specific symbolic execution tool that transient storage is being integrated
in. The different state-of-the-art symbolic execution security analysis tools for
smart contracts pursue the same overall goal, but each uses its own symbolic
execution engine, is structured differently and features different functionalities.
This should impact the decision making of how to model transient storage, as
a data storage area needs to be integrated in the existing architecture of the
tool, needs to work in lockstep with the symbolic execution engine and needs
to be tailored to the (sometimes unique) features of the overall tool.

• RQ3: What implications do the identified factors have for the implementation of
the transient storage modeling?
The technical specifications (size of addresses and storage slots, interactions with
the stack, gas costs, etc.) should be modeled accurately, as not doing so will
simulate the execution of a transaction improperly, thereby leading to inaccuracies
in the identified vulnerabilities.
Furthermore, the fact that transient storage is not persisted across transactions
enables the option of utilizing a dictionary for modeling transient storage.

• RQ4: Which of the identified modeling techniques is the most appropriate for the
implementation of the modeling of transient storage in a symbolic execution tool?
The use of a dictionary instead of an SMT array allows for gains in efficiency
without lowering accuracy. The evaluation has shown that for larger contracts with
longer execution times, the efficiency gains were more substantial than for smaller
contracts with shorter execution time.

9.2 Future Research
As transient storage has been incorporated into Ethereum only very recently (March
2024) and only little concrete implementations (and no benchmark smart contracts) of
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transient storage use cases exist publicly (especially of the more complex ones), it will
be interesting to evaluate how significant the efficiency gains of our implementation of
transient storage modeling are in absolute terms on contracts that represent the complex
use cases of transient storage.

Another potential topic of future research also depends on the integration of transient
storage into Ethereum: As soon as various implementations of transient storage use
cases emerge, it will be interesting to evaluate if using a dictionary instead of an SMT
array for the modeling of transient storage still behaves accurately and vulnerabilities
are identified correctly. This will to a large degree depend on whether different, but
potentially equivalent symbolic indices used on transient storage will emerge during
symbolic execution of those specific implementations of the use cases.

A third potential topic of future research results from the limitations of some symbolic
execution security analysis tools, such as Mythril, which do not support the analysis of
transient storage use cases involving multiple contracts due to its inability to process
separate contracts in a single analysis. Transient storage use cases however are relevant
specifically when separate contracts interact with each other. Even though this does not
make Mythril’s analysis irrelevant (as analyses on single contracts still yield meaningful
results), the symbolic execution might have to deal with different obstacles in a tool
that does support this feature. In a tool that can process separate contracts in a single
analysis, the problem of different, but potentially equivalent symbolic indices might be
more likely to arise due to the increased complexity. This would potentially rule out the
option of using a dictionary to model transient storage in such a tool.
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Code and Data Availability

The code and the evaluation data is available publicly at https://github.com/
JaakWeyrich/mythril-transient-storage.

Structure of the Repository
The repository is structured similarly to the original Mythril repository. The python
code from the tool itself is inside the mythril directory. The changes made to this
python code in the context of this thesis are described in chapter 6.

There are additional folders that have been added to the repository in the context of this
thesis, specifically evaluation (which contains the evaluation data) and bytecodes
(which contains the bytecodes necessary to carry out the evaluation).

Structure of the Evaluation Directory
The evaluation directory contains a script that was used to carry out the evaluation
semi-automatically (it has to be adapted and run manually per evaluated contract).

The evaluation directory additionally contains all the output (structured by evaluted
contracts) from the script mentioned above, specifically the identified vulnerabilities as
well as the data indicating the computational efficiency.

The evaluation directory also contains one auxiliary script for extracting all the relevant
data on computational efficiency to aggregate it in one file for better overview.
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Overview of Tools Used

Generative AI Tools
Here is a list of tools that were used in the creation of this thesis:

• ChatGPT-4 and ChatGPT-4o

The listed AI tools were used as supportive aids for several purposes, in particular:

• For the initial analysis of code (specifically during the analysis of the existing
symbolic execution tools) and to obtain a basic first overview of code.

• For research purposes, with the information obtained always being verified through
additional sources.

• For the creation of auxiliary scripts for the evaluation (e.g. the conversion of storage
bytecode into transient storage bytecode).
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