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Abstract
We consider three different methods for the coupling of the finite element method
and the boundary element method, the Bielak–MacCamy coupling, the symmetric
coupling, and the Johnson–Nédélec coupling. For each coupling, we provide discrete
interior regularity estimates. As a consequence, we are able to prove the existence of
exponentially convergentH-matrix approximants to the inverse matrices correspond-
ing to the lowest order Galerkin discretizations of the couplings.

Mathematics Subject Classification 65F05 · 65N30 · 65N38 · 65F30

1 Introduction

Transmission problems are usually posed on unbounded domains, where a (possibly
nonlinear) equation is given on some bounded domain, and another linear equation
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is posed on the complement of the bounded domain. While the interior problem can
be treated numerically by the finite element method (FEM), the unbounded nature of
the exterior problem makes requires a different approach. A suitable method to treat
unbounded problems is provided by the boundary element method (BEM), where
the differential equation in the unbounded domain is reformulated via an integral
equation posed just on the boundary. In order to combine bothmethods for transmission
problems, additional conditions on the interface have to be imposed, and the precise
choice of these conditions leads to different couplings of the FEM and the BEM.
We study three different FEM-BEM couplings, the Bielak–MacCamy coupling [9],
Costabel’s symmetric coupling [13,15], and the Johnson–Nédélec coupling [27].Well-
posedness and unique solvability of these formulation have been studied in, e.g.,
[1,32,35], where a main observation is that the coupled formulations are equivalent to
an elliptic problem.

Elliptic problems typically feature interior regularity known as Caccioppoli esti-
mates, where stronger norms can be estimated by weaker norms on larger domains.
In this paper, we provide such Caccioppoli-type estimates for the discretized prob-
lem. More precisely, we obtain simultaneous interior regularity estimates for the finite
element solution as well as for the single- and double-layer potential of the boundary
element solution (cf. Theorems 2.4–2.6). Discrete Caccioppoli-type estimates for the
FEM and the BEM separately can be found in our previous works [2,18–20]. While
the techniques for the FEM and the BEM part are similar therein, some essential
modifications have to be made to treat the coupling terms on the boundary.

Caccioppoli-type estimates are at the heart of the proof that the inverses of stiffness
matrices can be approximated by blockwise low-rank matrices. In this context, [8]
was the first to construct local, separable approximations of the Green’s function of
elliptic boundary value problems that converge at an exponential rate in the number of
terms. The technique relies on iterating local approximations and using a Caccioppoli
inequality on the continuous level. A projection then transfers this approximation to
the discrete level and results in exponentially convergent blockwise low-rank approx-
imations to the stiffness matrix up to the projection error. These results were further
generalized in [3,5,10]. [16] extended this technique from elliptic PDEs to pseudod-
ifferential operators. Fully discrete Caccioppoli inequalities, as developed here, allow
one to avoid the final projection step and yield exponential convergence in the block
rank. This approach was first developed for FEM-discretizations of elliptic PDEs in
[18] and extended to BEM-matrices in [19,20] and the fractional Laplacian in [28].
Here, we show also for the inverse of the FEM-BEM coupling matrix that it can be
approximated at an exponential rate in the block rank by blockwise low-rank matrices.
We adopt the specific setting of H-matrices introduced in [23]. In comparison with
other compression methods, H-matrices have the advantage that they come with an
additional approximate arithmetic that allows for addition, multiplication, inversion or
LU -decompositions in theH-matrix format; for more details, we refer to [21,22,24].

The paper is structured as follows: in Sect. 2, we present our model problem and
state the main results of the article, the discrete Caccioppoli-type interior regularity
estimates for each coupling, and the existence of exponentially convergent H-matrix
approximants to the inverse matrices corresponding to the FEM-BEM discretizations
of the couplings. Section 3 provides an abstract framework for the proof of low-
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rank approximability to inverse matrices using Caccioppoli-type estimates, which
can be applied for other problems as well. Section 4 is concerned with the proofs
of the Caccioppoli-type estimates. Section 5 verifies the assumptions of the abstract
framework of Sect. 3 for the three considered FEM-BEM couplings and consequently
shows the approximation results for the inverse stiffness matrices. Finally, Sect. 6
provides some numerical examples.

2 Main results

On a Lipschitz domain Ω ⊂ R
d , d = 2, 3 with polygonal (for d = 2) or polyhedral

(for d = 3) boundary Γ := ∂Ω , we study the transmission problem

− div(C · ∇u) = f in Ω, (2.1a)

−Δuext = 0 in Ωext, (2.1b)

u − uext = u0 on Γ , (2.1c)
(
C∇u − ∇uext

) · ν = ϕ0 on Γ , (2.1d)

uext =
{
O(|x |−1) as |x | → ∞ if d = 3

b log |x | + O(|x |−1) for b ∈ R as |x | → ∞ if d = 2.

(2.1e)

Here, Ωext := R
d\Ω denotes the exterior of Ω , and ν denotes the outward normal

vector. For the data, we assume f ∈ L2(Ω), u0 ∈ H1/2(Γ ), ϕ0 ∈ H−1/2(Γ ), and
C ∈ L∞(Ω;Rd) to be pointwise symmetric and positive definite, i.e., there is a
constant Cell > 0 such that

〈Cx, x〉2 ≥ Cell ‖x‖22 . (2.2)

For d = 2, we assume diamΩ < 1 for the single-layer operator V introduced below
to be elliptic.

Remark 2.1 The radiation condition (2.1e) is such that the representation form uext =
−Ṽϕ + K̃ uext holds in Ωext with ϕ = ∇uext · ν (see, e.g., [33, Chap. 3.1]). For d = 2,
the compatibility condition 〈 f , 1〉L2(Ω) + 〈ϕ0, 1〉L2(Γ ) = 0 ensures b = 0 in (2.1e).
See also [30, Thm. 8.9] for more on the radiation condition.

With the Green’s function for the Laplacian G(x) = − 1
2π log |x | for d = 2 and

G(x) = 1
4π

1
|x | for d = 3, we introduce the single-layer boundary integral operator

V ∈ L(H−1/2(Γ ), H1/2(Γ )) by

Vφ(x) :=
∫

Γ

G(x − y)φ(y)dsy, x ∈ Γ .
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The double-layer operator K ∈ L(H1/2(Γ ), H1/2(Γ )) has the form

Kφ(x) :=
∫

Γ

(∂ν(y)G(x − y))φ(y)dsy, x ∈ Γ ,

where ∂ν(y) denotes the normal derivative at the point y. The adjoint of K is denoted
by K ′. Finally, the hyper-singular operator W ∈ L(H1/2(Γ ), H−1/2(Γ )) is given by

Wφ(x) := −∂ν(x)

∫

Γ

(∂ν(y)G(x − y))φ(y)dsy, x ∈ Γ .

The single-layer operator V is elliptic for d = 3 and for d = 2 provided diam(Ω) < 1.
The hyper-singular operator W is semi-elliptic with a kernel of dimension being the
number of components of connectedness of Γ . In addition to the boundary integral
operators, we need the volume potentials Ṽ and K̃ defined by

Ṽφ(x) :=
∫

Γ

G(x − y)φ(y)dsy, x ∈ R
d\Γ ,

K̃φ(x) :=
∫

Γ

∂ν(y)G(x − y)φ(y)dsy, x ∈ R
d\Γ .

Moreover, by γ int
0 we denote the interior trace operator (see [33, Thm. 2.6.8]) forΩ . In

the following, in order to keep notation compact, we do not write trace operators, when
it is clear that they are used, e.g., we write Wu for u ∈ H1(Ω) instead of W (γ int

0 u)

or omit them, when we are using scalar products on Γ .
In this paper, we study discretizations of weak solutions of themodel problem refor-

mulated via three different FEM-BEM couplings: the Bielak–MacCamy coupling,
Costabel’s symmetric coupling, and the Johnson–Nédélec coupling. All these cou-
plings lead to a variational formulation of finding (u, ϕ) ∈ H1(Ω)× H−1/2(Γ ) =: X
such that

a(u, ϕ;ψ, ζ ) = g(ψ, ζ ) ∀(ψ, ζ ) ∈ X, (2.3)

where a : X × X → R is a bilinear form and g : X → R is a continuous linear
functional.

For the discretization, we assume that Ω is triangulated by a quasi-uniform mesh
Th = {T1, . . . , T̂n} of mesh width h := maxTj∈Th diam(Tj ). The elements Tj ∈ Th
are open triangles (d = 2) or tetrahedra (d = 3). Additionally, we assume that the
mesh Th is regular in the sense of Ciarlet and γ -shape regular in the sense that we
have diam(Tj ) ≤ γ |Tj |1/d for all Tj ∈ Th , where |Tj | denotes the Lebesgue measure
of Tj . By Kh := {K1, . . . , Km̂}, we denote the restriction of Th to the boundary Γ ,
which is a regular and shape-regular triangulation of the boundary.
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For simplicity, we consider lowest order Galerkin discretizations in S1,1(Th) ×
S0,0(Kh), where

S1,1(Th) := {u ∈ C(Ω) : u|T ∈ P1(T ) ∀T ∈ Th},
S0,0(Kh) := {u ∈ L2(Γ ) : u|K ∈ P0(K ) ∀K ∈ Kh},

with Pp(T ) denoting the space of polynomials of degree (atmost) p on an element T of
the triangulation. We letBh := {ξ j : j = 1, . . . , n} be the basis of S1,1(Th) consisting
of the standard nodal hat functions, and we let Wh := {χ j : j = 1, . . . ,m} be the
basis of S0,0(Kh) that consists of the characteristic functions of the surface elements.
These bases feature the following norm equivalences:

c1h
d/2 ‖x‖2 ≤ ‖Φx‖L2(Ω) ≤ c2h

d/2 ‖x‖2 ∀ x ∈ R
n, (2.4a)

c3h
(d−1)/2 ‖y‖2 ≤ ‖Ψ y‖L2(Γ ) ≤ c4h

(d−1)/2 ‖y‖2 ∀ y ∈ R
m (2.4b)

for the isomorphismsΦ : Rn → S1,1(Th), x �→ ∑n
j=1 x jξ j andΨ : Rm → S0,0(Kh),

y �→ ∑m
j=1 y jχ j .

Remark 2.2 We note that differently scaled bases can be employed as well, which
would just change the powers of h on the right-hand sides in the main result, Theo-
rem 2.13.

Finally, we need the notion of concentric boxes.

Definition 2.3 (Concentric boxes) A cube (for d = 3) or a square (for d = 2) will be
called a box. Two boxes BR and BR′ of side length R and R′ are said to be concentric
if they have the same barycenter and BR can be obtained by a stretching of BR′ by the
factor R/R′ taking their common barycenter as the origin.

Before we can state our first main results, the interior regularity estimates, we
specify the norm we are working with, an h-weighted norm equivalent to the H1-
norm. For a box BR with side length R, an open set ω ⊂ R

d , and v ∈ H1(BR ∩ ω),
we introduce

|||v|||2h,R,ω := h2 ‖∇v‖2L2(BR∩ω)
+ ‖v‖2L2(BR∩ω)

. (2.5)

For the case ω = R
d , we abbreviate |||·|||h,R,Rd =: |||·|||h,R and for the case ω = R

d\Γ
we write |||·|||h,R,Rd\Γ =: |||·|||h,R,Γ c and understand the norms over BR\Γ as a sum
of integrals over BR ∩ Ω and BR ∩ Ωext. Moreover, for triples (u, v, w) ∈ H1(BR ∩
Ω) × H1(BR) × H1(BR\Γ ), we set

|||(u, v, w)|||2h,R := |||u|||2h,R,Ω + |||v|||2h,R + |||w|||2h,R,Γ c . (2.6)

We mention that u will be the interior solution, v be chosen as a single-layer potential
andw as a double-layer potential (which jumps acrossΓ ), which explains the different
requirements for the set ω.
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2.1 The Bielak–MacCamy coupling

The Bielak–MacCamy coupling is derived by making a single-layer ansatz for the
exterior solution, i.e., uext = Ṽϕ in Ωext with an unknown density ϕ ∈ H−1/2(Γ ).
For more details, we refer to [9]. This approach leads to the bilinear form

abmc(u, ϕ;ψ, ζ ) := 〈C∇u,∇ψ〉L2(Ω) + 〈
(1/2 − K ′)ϕ, ψ

〉
L2(Γ )

− 〈u, ζ 〉L2(Γ ) + 〈Vϕ, ζ 〉L2(Γ ) , (2.7a)

gbmc(ψ, ζ ) := 〈 f , ψ〉L2(Ω) + 〈ϕ0, ψ〉L2(Γ ) − 〈u0, ζ 〉L2(Γ ) . (2.7b)

Replacing H1(Ω) × H−1/2(Γ ) by the finite dimensional subspace S1,1(Th) ×
S0,0(Kh), we arrive at the Galerkin discretization of (2.7) of finding (uh, ϕh) ∈
S1,1(Th) × S0,0(Kh) such that

〈C∇uh,∇ψh〉L2(Ω) + 〈
(1/2 − K ′)ϕh, ψh

〉
L2(Γ )

= 〈 f , ψh〉L2(Ω) + 〈ϕ0, ψh〉L2(Γ ) ∀ψh ∈ S1,1(Th), (2.8a)

〈uh, ζh〉L2(Γ ) − 〈Vϕh, ζh〉L2(Γ ) = 〈u0, ζh〉L2(Γ ) ∀ζh ∈ S0,0(Kh). (2.8b)

If the ellipticity constant of C satisfies Cell > 1/4, then [1, Thm. 9] shows that
the Bielak–MacCamy coupling is equivalent to an elliptic problem with the use of a
(theoretical) implicit stabilization. Therefore, (2.8) is uniquely solvable.

The following theorem is one of the main results of our paper. It states that for the
interior finite element solution and the single-layer potential of the boundary element
solution, a Caccioppoli type estimate holds, i.e., the stronger H1-seminorm can be
estimated by a weaker h-weighted H1-norm on a larger domain.

Theorem 2.4 Assume that Cell > 1/4 in (2.2). Let ε ∈ (0, 1) and R ∈ (0, 2 diam(Ω))

be such that h
R < ε

16 , and let BR and B(1+ε)R be two concentric boxes. Assume that the
data is localized away from B(1+ε)R, i.e., (supp f ∪suppϕ0∪supp u0)∩B(1+ε)R = ∅.
Then, there exists a constant C depending only onΩ , d,C, and the γ -shape regularity
of the quasi-uniform triangulation Th such that for the solution (uh, ϕh) of (2.8) we
have

‖∇uh‖L2(BR∩Ω) + ∥∥∇ Ṽϕh
∥∥
L2(BR)

≤ C

εR

(
|||uh |||h,(1+ε)R,Ω + ∣∣∣∣∣∣Ṽϕh

∣∣∣∣∣∣
h,(1+ε)R

)
,

where the norms on the right-hand side are defined in (2.5).

With the basesBh of S1,1(Th) andWh of S0,0(Kh), the Galerkin discretization (2.8)
leads to a block matrix Abmc ∈ R

(n+m)×(n+m)

Abmc :=
(
A 1

2M
T − KT

M −V

)
, (2.9)
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where A ∈ R
n×n is given by Ai j = 〈

C∇ξ j ,∇ξi
〉
L2(Ω)

, M ∈ R
m×n by Mi j =

〈
ξi , χ j

〉
L2(Γ )

, K ∈ R
m×n by Ki j = 〈

K ξi , χ j
〉
L2(Γ )

, and V ∈ R
m×m by Vi j =

〈
Vχ j , χi

〉
L2(Γ )

. As mentioned in the introduction, we omitted the trace operators,

i.e., inM and K, ξi is understood as γ int
0 ξi .

2.2 Costabel’s symmetric coupling

The coupling is based on the representation formula uext = −Ṽϕ + K̃ uext in Ωext

with ϕ = ∇uext · ν (see, e.g., [33, Chap. 3.1]). Coupling the interior and exterior
solution in a symmetric way (which uses all four boundary integral operators) results
in Costabel’s symmetric coupling, introduced in [15,25]. Here, the bilinear form and
right-hand side are given by

asym(u, ϕ;ψ, ζ ) := 〈C∇u,∇ψ〉L2(Ω) + 〈
(K ′ − 1/2)ϕ, ψ

〉
L2(Γ )

+ 〈Wu, ψ〉L2(Γ )

+ 〈(1/2 − K )u, ζ 〉L2(Γ ) + 〈Vϕ, ζ 〉L2(Γ ) , (2.10a)

gsym(ψ, ζ ) := 〈 f , ψ〉L2(Ω) + 〈ϕ0 + Wu0, ψ〉L2(Γ ) + 〈(1/2 − K )u0, ζ 〉L2(Γ )

=: 〈 f , ψ〉L2(Ω) + 〈v0, ψ〉L2(Γ ) + 〈w0, ζ 〉L2(Γ ) . (2.10b)

The Galerkin discretization leads to the problem of finding (uh, ϕh) ∈ S1,1(Th) ×
S0,0(Kh) such that

〈C∇uh,∇ψh〉L2(Ω)+
〈
(K ′−1/2)ϕh, ψh

〉
L2(Γ )

+〈Wuh, ψh〉L2(Γ )

=〈 f , ψh〉L2(Ω)+〈v0, ψh〉L2(Γ ) , (2.11a)

〈(1/2 − K )uh, ζh〉L2(Γ ) + 〈Vϕh, ζh〉L2(Γ ) =〈w0, ζh〉L2(Γ ) (2.11b)

for all (ψh, ζh) ∈ S1,1(Th) × S0,0(Kh).
With similar arguments as for the Bielak–MacCamy coupling, [1] proves unique

solvability for the symmetric coupling for any Cell > 0.
The following theorem is similar to Theorem 2.4 and provides a simultaneous

Caccioppoli-type estimate for the interior solution aswell as for the single-layer poten-
tial of the boundary solution and the double-layer potential of the trace of the interior
solution. Here, the double-layer potential appears in addition since all boundary inte-
gral operators, especially the hyper-singular operator, arise in the coupling.

Theorem 2.5 Let ε ∈ (0, 1) and R ∈ (0, 2 diam(Ω)) be such that h
R < ε

32 , and let
BR and B(1+ε)R be two concentric boxes. Assume that the data is localized away
from B(1+ε)R, i.e., (supp f ∪ supp v0 ∪ suppw0) ∩ B(1+ε)R = ∅. Then, there exists a
constant C depending only onΩ , d,C and the γ -shape regularity of the quasi-uniform
triangulation Th such that for the solution (uh, ϕh) of (2.11) we have

‖∇uh‖L2(BR∩Ω) + ∥∥∇ Ṽϕh
∥∥
L2(BR)

+ ∥∥∇ K̃ uh
∥∥
L2(BR\Γ )

≤ C

εR

∣∣∣∣∣∣(uh, Ṽφh, K̃ uh)
∣∣∣∣∣∣
h,(1+ε)R , (2.12)
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where the norm on the right-hand side is defined in (2.6).

With the bases Bh of S1,1(Th) and Wh of S0,0(Kh), the Galerkin discretization
(2.11) leads to a block matrix Asym ∈ R

(n+m)×(n+m)

Asym :=
(
A + W KT − 1

2M
T

1
2M − K V

)
, (2.13)

whereA,M,K are defined in (2.9), andW ∈ R
n×n is given byWi j = 〈

Wξ j , ξi
〉
L2(Γ )

.
As mentioned in the introduction, we omitted the trace operators. Thus, the matrixW
is assembled with respect to the traces of basis functions in the volume Ω .

2.3 The Johnson–Nédélec coupling

The Johnson–Nédélec coupling, introduced in [27] again uses the representation for-
mula for the exterior solution, but differs from the symmetric coupling in the way
how the interior and exterior solutions are coupled on the boundary. Instead of all four
boundary integral operators, only the single-layer and the double-layer operator are
needed. The bilinear form for the Johnson–Nédélec coupling is given by

ajn(u, ϕ;ψ, ζ ) := 〈C∇u,∇ψ〉L2(Ω) − 〈ϕ,ψ〉L2(Γ )

+ 〈(1/2 − K )u, ζ 〉L2(Γ ) + 〈Vϕ, ζ 〉L2(Γ ) , (2.14a)

gjn(ψ, ζ ) := 〈 f , ψ〉L2(Ω) + 〈ϕ0, ψ〉L2(Γ ) + 〈(1/2 − K )u0, ζ 〉L2(Γ )

=: 〈 f , ψ〉L2(Ω) + 〈ϕ0, ψ〉L2(Γ ) + 〈w0, ζ 〉L2(Γ ) . (2.14b)

The Galerkin discretization in S1,1(Th) × S0,0(Kh) leads to the problem of finding
(uh, ϕh) ∈ S1,1(Th) × S0,0(Kh) such that, for all ψh ∈ S1,1(Th) and ζh ∈ S0,0(Kh).

〈C∇uh,∇ψh〉L2(Ω) − 〈ϕh, ψh〉L2(Γ ) = 〈 f , ψh〉L2(Ω) + 〈ϕ0, ψh〉L2(Γ ) , (2.15a)

〈(1/2 − K )uh, ζh〉L2(Γ ) + 〈Vϕh, ζh〉L2(Γ ) = 〈w0, ζh〉L2(Γ ) . (2.15b)

As in the case of the Bielak–MacCamy coupling, the Johnson–Nédélec coupling
has a unique solution provided Cell > 1/4, see [1].

The following theorem gives the result analogous to Theorems 2.4 and 2.5 for the
Johnson–Nédélec coupling. Similarly to the symmetric coupling, we simultaneously
control a stronger norm of the interior solution and both layer potentials by a weaker
norm on a larger domain.

Theorem 2.6 Assume that Cell > 1/4 in (2.2). Let ε ∈ (0, 1) and R ∈ (0, 2 diam(Ω))

be such that h
R < ε

32 , and let BR and B(1+ε)R be two concentric boxes. Assume that the
data is localized away from B(1+ε)R, i.e., (supp f ∪suppϕ0∪suppw0)∩B(1+ε)R = ∅.
Then, there exists a constant C depending only on Ω , d,C and the γ -shape regularity
of the quasi-uniform triangulation Th such that for the solution (uh, ϕh) of (2.11) we
have
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‖∇uh‖L2(BR∩Ω) + ∥∥∇ Ṽϕh
∥∥
L2(BR)

+ ∥∥∇ K̃ uh
∥∥
L2(BR\Γ )

≤ C
R

(εR)2

∣∣∣∣∣∣(uh, Ṽϕh, K̃ uh)
∣∣∣∣∣∣
h,(1+ε)R , (2.16)

where the norm on the right-hand side is defined in (2.6).

With the bases Bh of S1,1(Th) and Wh of S0,0(Kh), the Galerkin discretization
(2.15) leads to a matrix Ajn ∈ R

(n+m)×(n+m)

Ajn :=
(

A −MT

1
2M − K V

)
, (2.17)

where A, M, K, V are defined in (2.9).

2.4 H-Matrix approximation of inverses

As a consequence of the Caccioppoli-type inequalities, we are able to prove the exis-
tence ofH-matrix approximants to the inverses of the stiffness matrices corresponding
to the discretized FEM-BEM couplings.

We briefly introduce the matrix compression format of H-matrices. For more
detailed information, we refer to [6,11,23,24]. The main idea of H-matrices is to
store certain far field blocks of the matrix efficiently as a low-rank matrix. In order to
choose blocks that are suitable for compression, we need to introduce the concept of
admissibility.

Definition 2.7 (Bounding boxes and η-admissibility) A cluster τ is a subset of the
index setI = {1, 2, ..., n+m}. For a cluster τ ⊂ I, a set BRτ ⊆ R

d is called a bounding
box if BRτ is an axis-parallel hyper cube with side length Rτ and ∪i∈τ supp ξi ⊆ BRτ

as well as ∪i∈τ suppχi ⊆ BRτ .
For η > 0, a pair of clusters (τ, σ ) with τ, σ ⊂ I is called η-admissible, if there exist
bounding boxes BRτ and BRσ such that

max{diam(BRτ ), diam(BRσ )} ≤ η dist(BRτ , BRσ ).

Remark 2.8 Definition 2.7 clusters the degrees of freedom associated with the trian-
gulation Th of Ω and the triangulation Kh of Γ simultaneously.

The symmetry of the matrixAsym of the symmetric coupling also allows one to use
theweaker admissibility conditionmin{diam(BRτ ), diam(BRσ )} ≤ η dist(BRτ , BRσ ).

The block-partition of H-matrices is based on so-called cluster trees.

Definition 2.9 (Cluster tree) A cluster tree with leaf size nleaf ∈ N is a binary tree
TI with root I such that each cluster τ ∈ TI is either a leaf of the tree and satisfies
|τ | ≤ nleaf , or there exist disjoint subsets τ ′, τ ′′ ∈ TI of τ , so-called sons, with
τ = τ ′ ∪ τ ′′. We denote the set of sons of τ by S(τ ) := {

τ ′, τ ′′} . Here and below,
|τ | denotes the cardinality of the finite set τ . The level function level : TI → N0 is
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inductively defined by level(I) = 0 and level(τ ′) := level(τ ) + 1 for τ ′ a son of τ .
The depth of a cluster tree is depth(TI) := maxτ∈TI level(τ ).

Definition 2.10 (Block cluster tree, sparsity constant and partition) LetTI be a cluster
tree with root I and η > 0 be a fixed admissibility parameter. The block cluster tree
TI×I is a tree constructed recursively from the root I × I such that for each block
τ × σ ∈ TI×I with τ, σ ∈ TI , the set of sons of τ × σ is defined as

S(τ × σ) :=
{∅ if τ × σ is η-admissible orS(τ ) = ∅ or S(σ ) = ∅,

S(τ ) × S(σ ) else.

The sparsity constant Csp of a block cluster tree, see, e.g., [22,26], is given as

Csp := max

{
maxτ∈TI

∣∣{σ ∈ TI : τ × σ ∈ TI×I}∣∣ ,
maxσ∈TI

∣∣{τ ∈ TI : τ × σ ∈ TI×I}∣∣
}

. (2.18)

The leaves of the block cluster tree induce a partition P of the set I × I. For such a
partition P and a fixed admissibility parameter η > 0, we define the far field and the
near field as

Pfar := {(τ, σ ) ∈ P : (τ, σ ) is η-admissible}, Pnear := P\Pfar. (2.19)

Remark 2.11 For our purposes, a precise and efficient construction of a partition is not
of interest; it suffice to have a given partition and decomposition into near field and far
field at hand. As such, we call a partition satisfying the conditions of Definitions 2.10
a partition of I × I that is based on a cluster tree TI .

Definition 2.12 (H-matrices) Let P be a partition of I × I that is based on a cluster
treeTI and η > 0. AmatrixA ∈ R

(n+m)×(n×m) is anH-matrix with blockwise rank r ,
if for every η-admissible cluster pair (τ, σ ) ∈ Pfar, we have a low-rank factorization

A|τ×σ = XτσYT
τσ ,

where Xτσ ∈ R
|τ |×r and Yτσ ∈ R

|σ |×r .

Due to the low-rank structure on far-field blocks, the memory requirement to store
an H matrix is given by O(Csp depth(TI)r(n + m)). Provided Csp is bounded and
the cluster tree is balanced, i.e., depth(TI) = O(log(n + m)), which can be ensured
by suitable clustering methods (e.g. geometric clustering [24]), we get a storage com-
plexity of O(r(n + m) log(n + m)).

The following theorem shows that the inverse matrices A−1
bmc, A

−1
sym, and A−1

jn cor-
responding to the three mentioned FEM-BEM couplings can be approximated in the
H-matrix format, and the error converges exponentially in the maximal block rank
employed.
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Theorem 2.13 For a fixed admissibility parameter η > 0, let P be a partition of I×I
that is based on the cluster tree TI . Then, there exists anH-matrix BH with maximal
blockwise rank r such that

∥∥∥A−1
bmc − BH

∥∥∥
2

≤ CapxCsp depth(TI)h−(2+d)e−br1/(2d+1)

for the Bielak–MacCamy coupling. In the same way, there exists a blockwise rank-r
H-matrix BH such that

∥∥∥A−1
sym − BH

∥∥∥
2

≤ CapxCsp depth(TI)h−(2+d)e−br1/(3d+1)

for the symmetric coupling and

∥∥∥A−1
jn − BH

∥∥∥
2

≤ CapxCsp depth(TI)h−(2+d)e−br1/(6d+1)

for the Johnson–Nédélec coupling. Here, ‖·‖2 denotes the spectral norm and the
constants Capx > 0 and b > 0 depend only on Ω , d, C, η, and the γ -shape regularity
of the quasi-uniform triangulations Th and Kh.

Remark 2.14 The previous approximation result can also be formulated in norms other
than the spectral norm, e.g., the Frobenius norm ‖·‖F that is commonly used in the
H-matrix literature. Using the norm equivalence ‖A‖2 ≤ ‖A‖F ≤ √

N ‖A‖2 for
arbitrary A ∈ R

N×N shows that this simply produces a different (algebraic) prefactor
to the exponentials in Theorem 2.13.

3 An abstract setting forH-matrix approximation to inverse matrices

Analyzing the procedure in [2,18,19] shows structural similarities in the derivation of
H-matrix approximations based on low-dimensional spaces of functions:A single-step
approximation is obtained by using a Scott–Zhang operator on a coarse grid. Iterating
this argument is made possible by a Caccioppoli-inequality, resulting in a multi-step
approximation. The key ingredients of the argument are collected in properties (A1)–
(A3) below. We mainly follow [2].

3.1 Abstract setting: frommatrices to functions

We start by reformulating the matrix approximation problem as a question of approx-
imating certain functions from low dimensional spaces. Let X be a Hilbert space of
functions. We consider variational problems of the form: find u ∈ X such that

a(u,ψ) = 〈 f ,ψ〉 ∀ψ ∈ X

for given a(·, ·) : X × X → R, f ∈ X′. Here, the bold symbols may denote vectors,
e.g.,u = (u, ϕ) in (2.3) forX = H1(Ω)×H−1/2(Γ ), and 〈·, ·〉 denotes the appropriate
duality bracket.
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For fixed k, � ∈ N (given by the formulation of the problem), we define L2 :=
L2(Ω)k × L2(Γ )�.

Definition 3.1 Let XN ⊂ X be a finite dimensional subspace of dimension N that
is also a subspace XN ⊂ L2. Then, the linear mapping SN : X′ → XN is called
the discrete solution operator, if for every f ∈ X′, there exists a unique function
SN f ∈ XN satisfying

a(SN f ,ψ) = 〈 f ,ψ〉 ∀ψ ∈ XN . (3.1)

Let {φ1, . . . ,φN } ⊆ XN be a basis of XN . We denote the Galerkin matrix A ∈
R

N×N by

A = (
a(φ j ,φi )

)N
i, j=1

. (3.2)

The translation of the problem of approximating matrix blocks of A−1 to the problem
of approximating certain functions from low dimensional spaces essentially depends
on the following crucial property (A1), the existence of a local dual basis.

(A1) There exist dual functions {λ1, . . . ,λN } ⊂ L2 satisfying

〈
φi ,λ j

〉 = δi j and
∥∥
∥

N∑

j=1

x jλ j

∥∥
∥
L2

≤ Cdb(N ) ‖x‖2

for all i, j ∈ {1, . . . , N } and x ∈ R
N . Moreover, we require the λi to have

local support in the sense that #{ j : supp(λi ) ∩ supp(λ j ) �= ∅} � 1 for all
i ∈ {1, . . . , N }.

We denote the coordinate mappings corresponding to the basis and the dual basis by

Φ :
{
R

N −→ XN

x �−→ ∑N
j=1 x jφ j

, Λ :
{
R

N −→ L2

x �−→ ∑N
j=1 x jλ j

.

The Hilbert space transpose of Λ is denoted by ΛT . Moreover, for τ ⊂ {1, . . . , N },
we define the sets Dj (τ ) := ∪i∈τ suppλi, j , where λi, j is the j-th component of λi ,
and write L2(τ ) := ∏k+�

j=1 L
2(Dj (τ )).

In the following lemma, we derive a representation formula forA−1 based on three
linear operators ΛT , SN and Λ.

Lemma 3.2 ([2, Lemma 3.10], [2, Lemma 3.11]) The restriction of ΛT to XN is the
inverse mapping Φ−1. More precisely, for all x, y ∈ R

N and v ∈ XN , we have

〈Λx, Φy〉 = 〈x, y〉2 , ΛTΦx = x, ΦΛT v = v.
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The mappings Λ and ΛT preserve locality, i.e, for τ ⊂ {1, . . . , N } and x ∈ R
N with

{i : xi �= 0} ⊂ τ , we have supp(Λx) ⊂ ∏
j D j (τ ). For v ∈ L2, we have

∥
∥∥ΛT v

∥
∥∥

�2(τ )
≤ ‖Λ‖ ‖v‖L2(τ ) .

Moreover, there holds the representation formula

A−1x = ΛTSNΛx ∀x ∈ R
N .

Proof For sake of completeness, we provide the derivation of the representation for-
mula from [2, Lemma 3.11]. Using that ΛT = Φ−1|XN and the definition of the
discrete solution operator, we compute

〈
AΛTSNΛx, y

〉

2
= a(ΦΛTSNΛx, Φy) = a(SNΛx, Φy) = 〈Λx, Φy〉 = 〈x, y〉2

for arbitrary y ∈ R
N . ��

This lemma is the crucial step in the proof of the following lemma.

Lemma 3.3 Let A be the Galerkin matrix, Λ be the coordinate mapping for the dual
basis, and SN be the discrete solution operator. Let τ ×σ ⊂ {1, . . . , N }×{1, . . . , N }
be an admissible block andWr ⊆ L2 be a finite dimensional space. Then, there exist
matrices Xτσ ∈ R

|τ |×r ,Yτσ ∈ R
|σ |×r of rank r ≤ dimWr satisfying

∥
∥∥A−1|τ×σ − XτσYT

τσ

∥
∥∥
2

≤ ‖Λ‖2 sup
f∈L2:

supp( f )⊂∏
j D j (σ )

infw∈Wr ‖SN f − w‖L2(τ )

‖ f ‖L2
,

where ‖·‖2 denotes the spectral norm.

Proof We use the representation formula from Lemma 3.2. With the given space
Wr , we define Xτσ ∈ R

|τ |×r columnwise as vectors from an orthonormal basis of
the space Ŵ := (ΛTWr )|τ . Then, the product XτσXT

τσ is the orthogonal projection
onto Ŵ. Defining Yτσ := (A−1|τ×σ )TXτσ , we can compute for all x ∈ R

N with
{i : xi �= 0} ⊂ σ
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∥∥
∥(A−1|τ×σ − XτσYT

τσ )x|σ
∥∥
∥

�2(τ )
=
∥∥
∥(I − XτσXT

τσ )(A−1x)|σ
∥∥
∥

�2(τ )

= inf
ŵ∈Ŵ

∥∥∥(A−1x)|σ − ŵ
∥∥∥

�2(τ )

Lemma 3.2= inf
w∈Wr

∥∥∥ΛT (SNΛx − w)

∥∥∥
�2(τ )

≤ ‖Λ‖ inf
w∈Wr

‖SNΛx − w‖L2(τ ) .

Dividing both sides by ‖x‖2, substituting f := Λx and using that the mapping Λ

preserves supports, we get the desired result. ��
Finally, the question of approximating the whole matrix A−1 can be reduced to

the question of blockwise approximation. For arbitrary matrices M ∈ R
N×N and an

arbitrary block partition P of {1, . . . , N } × {1, . . . , N } this follows from

‖M‖2 ≤ N 2 max{‖M|τ×σ ‖2 : (τ, σ ) ∈ P}.

If the block partition P is based on a cluster tree TI , the more refined estimate

‖M‖2 ≤ Csp depth(TI)max{‖M|τ×σ ‖2 : (τ, σ ) ∈ P} (3.3)

holds, see [22], [24, Lemma 6.32], [11].
In Sect. 5, we give explicit definitions of the dual basis for the FEM-BEM coupling

model problem.

3.2 Abstract setting: low dimensional approximation

We present a general framework that only uses a Caccioppoli type estimate for the
construction of exponentially convergent low dimensional approximations.

Let M ∈ N be fixed. For R > 0 let BR := {Bi }Mi=1 be a collection of boxes, i.e.,
Bi ∈ {BR ∩ Ω, BR, BR\Γ } for all i = 1, . . . , M , where BR denotes a box of side
length R. The choice, which of the three sets is taken for each index i , is determined
by the application and fixed.

We write B ⊂ B′ := {B ′
i }Mi=1 meaning that Bi ⊂ B ′

i for all i = 1, . . . , M . For a
parameter δ > 0, we call Bδ

R := {Bδ
i }Mi=1 a collection of δ-enlarged boxes of BR , if it

satisfies

Bδ
i ∈ {BR+2δ ∩ Ω, BR+2δ, BR+2δ\Γ } ∀i = 1, . . . , M, and Bδ

R ⊃ BR,

where BR and BR+2δ are concentric boxes.Definingdiam(BR) := max{diam(Bi ), i =
1, . . . , M}, we get

diam(Bδ
R) ≤ diam(BR) + 2

√
dδ. (3.4)

In order to simplify notation, we drop the subscript R and write B := BR in the
following abstract setting.
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Weuse the notationH1(B) to abbreviate the product spaceH1(B) = ∏M
i=1 H

1(Bi ),
and write ‖v‖2H1(B)

:= ∑M
i=1 ‖vi‖2H1(Bi )

for the product norm.

Remark 3.4 For the application of the present paper, we chose boxes (or suitable sub-
sets of those) for the sets Bi . We also mention that different constructions can be
employed as demonstrated in [2], where a construction for non-uniform grids is pre-
sented and where the metric is not the Euclidean one but one that is based on the
underlying finite element mesh.

In the following, we fix some assumptions on the collections B of interest and the
norm |||·|||B on B we derive our approximation result in. In essence, we want a norm
weaker than the classical H1-norm that has the correct scaling (e.g., an L2-type norm).

(A2) Assumptions on the approximation norm |||·|||B: For each B, the Hilbertian norm
|||·|||B is a norm onH1(B) and such that for any δ > 0 and enlarged boxes Bδ and
H > 0 there is a discrete space VH ,Bδ ⊂ H1(Bδ) of dimension dimVH ,Bδ ≤
Cdim(diam(Bδ)/H)Md and a linear operator QH : H1(Bδ) → VH ,Bδ such that

|||v − QHv|||B ≤ CQapH(‖∇v‖L2(Bδ) + δ−1 |||v|||Bδ )

with constants Cdim, CQap > 0 that do not depend on B, Bδ , δ, and N .

Finally, we require a Caccioppoli type estimate with respect to the norm from (A2).

(A3) Caccioppoli type estimate: For each B, δ > 0 and collection Bδ of δ-enlarged
boxes with δ ≥ CSet(N ) with a fixed constant CSet(N ) > 0 that may depend
on N , there is a subspace Hh(Bδ) ⊂ H1(Bδ) such that for all v ∈ Hh(Bδ) the
inequality

‖∇v‖L2(B) ≤ CCac
diam(B)α−1

δα
|||v|||Bδ (3.5)

holds. Here, the constants CCac > 0 and α ≥ 1 do not depend on B,Bδ , δ, and N .
We additionally assume the spaces Hh(Bδ) to be finite dimensional and nested,
i.e.,Hh(B′) ⊂ Hh(B) for B ⊂ B′.
By Πh,B, we denote the orthogonal projection Πh,B : H1(B) → Hh(B) onto that

space with respect to the norm |||·|||B, which is well-defined since Hh(B) is closed by
assumption.

Lemma 3.5 (Single-step approximation) Let 2 diam(Ω) ≥ δ ≥ 2CSet(N ) with the
constant CSet(N ) from (A3), B be a given collections of boxes and B ⊂ Bδ/2 ⊂ Bδ

be enlarged boxes of B. Let |||·|||Bδ be a norm on H1(Bδ) such that (A2) holds for
the sets B ⊂ Bδ/2. Let v ∈ Hh(Bδ) meaning that (A3) holds with the collection
B replaced by Bδ/2 therein. Then, there exists a space W1 of dimension dimW1 ≤
Cssa

(
diam(Bδ)

δ

)αMd
such that

inf
w∈W1

|||v − w|||B ≤ 1

2
|||v|||Bδ .
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Proof We set W1 := Πh,BQHHh(Bδ) ⊂ VH ,Bδ . Since v ∈ Hh(Bδ), we obtain from
(A2) and (A3) that

∣∣∣∣∣∣v − Πh,BQHv
∣∣∣∣∣∣
B = ∣∣∣∣∣∣Πh,B(v − QHv)

∣∣∣∣∣∣
B

≤ |||v − QHv|||B ≤ CQapH(‖∇v‖L2(Bδ/2) + 2δ−1 |||v|||Bδ/2)

≤ C1CQapCCac
diam(Bδ/2)α−1

δα
H |||v|||Bδ (3.6)

with a constant C1 depending only on Ω since α ≥ 1 and δ ≤ 2 diam(Ω). With the
choice H = δα

2C1CQapCCac diam(Bδ)α−1 , we get the asserted error bound. Since W1 ⊂
VH ,Bδ and by choice of H , we have

dimW1 ≤ Cdim

(
diam(Bδ)

H

)Md

≤ Cdim

(
2C1CQapCCac

diam(Bδ)α

δα

)Md

=: Cssa

(
diam(Bδ)

δ

)αMd

,

which concludes the proof. ��
Iterating the single-step approximation on concentric boxes leads to exponential

convergence.

Lemma 3.6 (Multi-step approximation) Let L ∈ N and δ ≥ 2CSet(N ) with the
constant CSet(N ) from (A3). Let B be a collection of boxes and BδL ⊃ B a collection
of δL-enlarged boxes. Then, there exists a space WL ⊆ Hh(BδL) such that for all
v ∈ Hh(BδL) we have

inf
w∈WL

|||v − w|||B ≤ 2−L |||v|||BδL ,

and, with C ′
dim := 2

√
dCssa,

dimWL ≤ C ′
dim

(
L + diam(B)

δ

)αMd+1
.

Proof The assumptions onB andBδL allow for the construction of a sequence of nested
enlarged boxes B ⊆ Bδ ⊆ B2δ ⊆ . . . ⊆ BδL satisfying diam(B�δ) ≤ diam(B)+C�δ.

We iterate the approximation result of Lemma 3.5 on the sets Bδ�, � = L, . . . , 1.
For � = L , Lemma 3.5 applied with the sets B(L−1)δ ⊂ BδL provides a subspace

V1 ⊂ Hh(BδL) with dimV1 ≤ Cssa

(
diam(BδL )

δ

)αMd
such that

inf
v̂1∈V1

|||v − v̂1|||B(L−1)δ ≤ 2−1 |||v|||BδL . (3.7)
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For v̂1 ∈ V1, we have (v − v̂1) ∈ Hh(B(L−1)δ), so we can use Lemma 3.5 again with
the sets B(L−2)δ ⊂ B(L−1)δ , and get a subspace V2 of Hh(B(L−2)δ) with dimV2 ≤
Cssa

( diam(B(L−1)δ)
δ

)αMd . This implies

inf
v̂2∈V2

inf
v̂1∈V1

|||(v − v̂1) − v̂2|||B(L−2)δ ≤ 2−1 inf
v̂1∈V1

|||v − v̂1|||B(L−1)δ ≤ 2−2 |||v|||BδL .

(3.8)

Continuing this process L − 2 times leads to the subspaceWL :=
L⊕

�=1
V� ofHh(BδL)

with dimension

dimWL ≤ Cssa

L∑

�=1

(diam(Bδ�)

δ

)αMd ≤ Cssa

L∑

�=1

(diam(B)

δ
+ �2

√
d
)αMd

≤ Cssa2
√
d
(
L + diam(B)

δ

)αMd+1
,

which finishes the proof. ��

4 The Caccioppoli-type inequalities

In this section, we provide the proofs of the interior regularity estimates of The-
orems 2.4–2.6. The techniques employed are fairly similar to [18,19], where
Caccioppoli-type estimates for FEM and BEM are proven. Nonetheless, in the case of
the FEM-BEM couplings, the additional terms in the bilinear forms arising from the
coupling on the boundary need to be treated carefully.

4.1 Preliminary estimates

In the following, we collect some well-known facts about the volume potential
operators Ṽ , K̃ and the boundary integral operators V , K , K ′,W as well as some
super-approximation estimates and inverse type inequalities for the volume poten-
tials. We assume that Γ is Lipschitz.

For details concerning the following mapping properties, we refer to [33, Chap. 3]
and [34, Chap. 6].

– With the interior trace operator γ int
0 (for Ω) and exterior trace operator γ ext

0 (for
R
d\Ω), we have

γ int
0 Ṽϕ = Vϕ = γ ext

0 Ṽϕ,

γ int
0 K̃ u = (−1/2 + K )u and γ ext

0 K̃ u = (1/2 + K )u, (4.1)
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which implies the jump conditions across Γ

[γ0Ṽϕ] := γ ext
0 Ṽϕ − γ int

0 Ṽϕ = 0, [γ0 K̃ u] = u. (4.2)

– Similarly, with the interior γ int
1 u := γ int

0 ∇u · ν and exterior conormal derivative
γ ext
1 u := γ ext

0 ∇u · ν (ν is the outward normal vector of Ω), we have

γ int
1 Ṽϕ = (1/2 + K ′)ϕ and γ ext

1 Ṽϕ = (−1/2 + K ′)ϕ,

γ int
1 K̃ u = −Wu = γ ext

1 K̃ u, (4.3)

and consequently the jump conditions

[γ1Ṽϕ] := γ ext
1 Ṽϕ − γ int

1 Ṽϕ = −ϕ, [γ1 K̃ u] = 0. (4.4)

– The potentials Ṽϕ and K̃ u are harmonic in Rd\Γ and are bounded operators (see
[33, Chap. 3.1.2])

Ṽ : H−1/2+s(Γ ) → H1+s
loc (Rd),

K̃ : H1/2+s(Γ ) → H1+s
loc (Rd\Γ ), |s| ≤ 1/2. (4.5)

– For |s| ≤ 1/2 we have the boundedness for the boundary integral operators (see
[14])

V : H−1/2+s(Γ ) → H1/2+s(Γ ), K : H1/2+s(Γ ) → H1/2+s(Γ ),

W : H1/2+s(Γ ) → H−1/2+s(Γ ). (4.6)

In the following, we use the notation � to abbreviate ≤ up to a constant C > 0
which depends only on Ω , the dimension d, the coefficient C in the model problem,
and the γ -shape regularity of Th . Moreover, we use � to indicate that both estimates
� and � hold.

We continue with a classical approximation result, so-called super-approximation,
see, e.g., [31,37].

Lemma 4.1 Let IΓ
h : L2(Γ ) → S0,0(Kh) be the L2(Γ )-orthogonal projection. Then,

there is C > 0 depending only on the γ -shape regularity of the triangulation and Γ

such that for any discrete function ψh ∈ S0,0(Kh) and any η ∈ W 1,∞(Γ )

∥∥ηψh − IΓ
h (ηψh)

∥∥
H−1/2(Γ )

≤ Ch3/2 ‖∇η‖L∞(Γ ) ‖ψh‖L2(Γ ∩supp(η)) . (4.7)

Proof The main observation is that, on each element K ∈ Kh , we have ∇ψh |K ≡ 0.
Therefore, a standard approximation result provides

∥∥ηψh − IΓ
h (ηψh)

∥∥
L2(K )

� h ‖∇(ηψh)‖L2(K ) � h ‖∇(η)ψh‖L2(K ) . (4.8)
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Using the orthogonality and approximation properties of the L2-projection, we have

∥∥ηψh − IΓ
h (ηψh)

∥∥
H−1/2(Γ )

= sup
ϕ∈H1/2(Γ )

〈
ηψh − IΓ

h (ηψh), ϕ
〉
L2(Γ )

‖ϕ‖H1/2(Γ )

= sup
ϕ∈H1/2(Γ )

〈
ηψh − IΓ

h (ηψh), ϕ − IΓ
h ϕ

〉
L2(Γ )

‖ϕ‖H1/2(Γ )

�
∥∥ηψh − IΓ

h (ηψh)
∥∥
L2(Γ )

sup
ϕ∈H1/2(Γ )

∥∥ϕ − IΓ
h ϕ

∥∥
L2(Γ )

‖ϕ‖H1/2(Γ )

� h1/2
∥∥ηψh − IΓ

h (ηψh)
∥∥
L2(Γ )

.

Together with (4.8), this completes the proof. ��
Similarly, there also holds a super-approximation result for the nodal interpolation

operator.

Lemma 4.2 Let IΩ
h : C(Ω) → S1,1(Th) be the nodal interpolation operator. Then,

there is C > 0 depending only on the γ -shape regularity of the triangulation and Ω

such that for any discrete function vh ∈ S1,1(Th) and any η ∈ W 1,∞(Ω)

∥∥ηvh − IΩ
h (ηvh)

∥∥
Hk (Ω)

≤ Ch2−k
(

‖∇η‖L∞(Ω) ‖∇vh‖L2(supp(η)) +
∥∥∥D2η

∥∥∥
L∞(Ω)

‖vh‖L2(supp(η))

)
(4.9)

for k = 0, 1, where H0(Ω) := L2(Ω).

Proof On each element T ∈ Th , we have D2vh |T ≡ 0. Therefore, the standard approx-
imation result for nodal interpolation gives

∥
∥ηvh − IΩ

h (ηvh)
∥
∥
Hk (T )

� h2−k |ηvh |H2(T )

� h2−k
(∥∥∥(D2η)vh

∥∥∥
L2(T )

+ ‖∇η · ∇vh‖L2(T )

)
,

and summation over all elements concludes the proof. ��
In the proof of the Caccioppoli type inequality, we need the following inverse

inequalities from [19, Lemma 3.8] and [20, Lemma 3.6].

Lemma 4.3 ([19, Lemma 3.8], [20, Lemma 3.6]) Let BR ⊂ BR′ be concentric boxes
with dist(BR, ∂BR′) ≥ 4h. Then, for every ψh ∈ S0,0(Kh) and every vh ∈ S1,1(Th),
we have

‖ψh‖L2(BR∩Γ ) � h−1/2
∥∥∇ Ṽψh

∥∥
L2(BR′ ) , (4.10)

∥
∥γ1 K̃vh

∥
∥
L2(BR∩Γ )

� h−1/2
(∥
∥∇ K̃vh

∥
∥
L2(BR′ ) + 1

dist(BR, ∂BR′)

∥
∥K̃vh

∥
∥
L2(BR′ )

)
.

(4.11)
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Combining Lemma 4.1with Lemma 4.3 (assuming supp η ⊂ BR), we obtain estimates
of the form

∥∥ηψh − IΓ
h (ηψh)

∥∥
H−1/2(Γ )

� h ‖∇η‖L∞(Γ )

∥∥∇ Ṽψh
∥∥
L2(BR′ ) . (4.12)

Remark 4.4 An inspection of the proof of (4.10) [20, Lemma 3.6] shows that the
main observation is that K̃vh is harmonic. The remaining arguments therein only
use mapping properties and jump conditions for the potential K̃ and can directly be
modified such that the same result holds for the single-layer potential as well, i.e., for
every ψh ∈ S0,0(Kh), we have

∥∥γ1Ṽψh
∥∥
L2(BR∩Γ )

� h−1/2
(∥∥∇ Ṽψh

∥∥
L2(BR′ ) + 1

dist(BR, ∂BR′)

∥∥Ṽψh
∥∥
L2(BR′ )

)
.

(4.13)

4.2 The Bielak–MacCamy coupling

With the help of a localized ellipticity result, the discrete variational formulation, and
super-approximation, we are able to prove Theorem 2.4.

Proof (Proof of Theorem 2.4) In order to reduce unnecessary notation, we write (u, ϕ)

for the Galerkin solution (uh, ϕh). The assumption on the support of the data implies
the local orthogonality

abmc(u, ϕ;ψh, ζh) = 0 ∀(ψh, ζh) ∈ S1,1(Th) × S0,0(Kh)

with suppψh, supp ζh ⊂ B(1+ε)R . (4.14)

Let η ∈ C∞
0 (Rd) be a cut-off function with supp η ⊆ B(1+δ/4)R , η ≡ 1 on BR ,

0 ≤ η ≤ 1, and
∥∥D jη

∥∥
L∞(B(1+δ)R)

� 1
(δR) j

for j = 1, 2. Here, 0 < δ ≤ ε is such

that h
R ≤ δ

8 . We note that this choice of δ implies that
⋃{K ∈ Kh : supp η ∩ K �=

∅} ⊂ B(1+δ/2)R . In the final step of the proof, we will choose two different values for
δ (≤ ε) depending on ε - one of them, δ = ε

2 , explains the assumption made on ε in
the theorem.
Step 1: We provide a “localized” ellipticity estimate, i.e., we prove an inequality of
the form

‖∇(ηu)‖2L2(Ω)
+ ∥∥∇(ηṼϕ)

∥∥2
L2(Rd )

� abmc(u, ϕ; η2u, η2ϕ) + terms in weaker norms.

See (4.25) for the precise form. Since the ellipticity constant Cell of C satisfies Cell >

1/4, we may choose a ρ > 0 such that 1/4 < ρ/2 < Cell. This implies Cρ :=
min{1 − 1

2ρ ,Cell − ρ
2 } > 0, and we start with
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(
Cell − ρ

2

)
‖∇(ηu)‖2L2(Ω)

+
(
1 − 1

2ρ

)∥
∥∇(ηṼϕ)

∥
∥2
L2(Rd )

≤ Cell ‖∇(ηu)‖2L2(Ω)
+ ∥∥∇(ηṼϕ)

∥∥2
L2(Rd )

− 1

2ρ

∥∥∇(ηṼϕ)
∥∥2
L2(Ω)

− ρ

2
‖∇(ηu)‖2L2(Ω)

. (4.15)

Young’s inequality implies

− 1

2ρ

∥∥∇(ηṼϕ)
∥∥2
L2(Ω)

− ρ

2
‖∇(ηu)‖2L2(Ω)

≤ − ∥∥∇(ηṼϕ)
∥∥
L2(Ω)

‖∇(ηu)‖L2(Ω)

≤ − 〈∇(ηṼϕ),∇(ηu)
〉
L2(Ω)

. (4.16)

Inserting (4.16) into (4.15) leads to

Cρ ‖∇(ηu)‖2L2(Ω)
+ Cρ

∥∥∇(ηṼϕ)
∥∥2
L2(Rd )

≤ ∥∥∇(ηṼϕ)
∥∥2
L2(Rd )

+ Cell ‖∇(ηu)‖2L2(Ω)

− 〈∇(ηṼϕ),∇(ηu)
〉
L2(Ω)

. (4.17)

An elementary calculation shows

〈∇(ηṼϕ),∇(ηu)
〉
L2(Ω)

=
〈
∇ Ṽϕ,∇(η2u)

〉

L2(Ω)

+ 〈
(∇η)Ṽϕ,∇(ηu)

〉
L2(Ω)

− 〈∇ Ṽϕ, η(∇η)u
〉
L2(Ω)

. (4.18)

Since the single-layer potential is harmonic in Ω , integration by parts (in Ω) and
γ int
1 Ṽ = 1/2 + K ′ lead to
〈
∇ Ṽϕ,∇(η2u)

〉

L2(Ω)
=
〈
γ int
1 Ṽϕ, η2u

〉

L2(Γ )
=
〈
(1/2 + K ′)ϕ, η2u

〉

L2(Γ )
. (4.19)

Similarly, with integration by parts (in Ω and Ωext) and the jump condition of the
single-layer potential we obtain

∥∥∇(ηṼϕ)
∥∥2
L2(Rd )

=
〈
∇ Ṽϕ,∇(η2Ṽϕ)

〉

L2(Rd )
+ 〈

(∇η)Ṽϕ, (∇η)Ṽϕ
〉
L2(Rd )

= −
〈[

γ1Ṽϕ
]
, η2Vϕ

〉

L2(Γ )
+ 〈

(∇η)Ṽϕ, (∇η)Ṽϕ
〉
L2(Rd )

=
〈
Vϕ, η2ϕ

〉

L2(Γ )
+ 〈

(∇η)Ṽϕ, (∇η)Ṽϕ
〉
L2(Rd )

. (4.20)

Moreover, the symmetry and positive definiteness of C implies

Cell ‖∇(ηu)‖2L2(Ω)
≤ 〈C∇(ηu),∇(ηu)〉L2(Ω)

=
〈
C∇u,∇(η2u)

〉

L2(Ω)
+ 〈C(∇η)u, (∇η)u〉L2(Ω) . (4.21)
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Plugging (4.18)–(4.21) into (4.17), we infer

Cρ ‖∇(ηu)‖2L2(Ω)
+ Cρ

∥∥∇(ηṼϕ)
∥∥2
L2(Rd )

≤
〈
C∇u,∇(η2u)

〉

L2(Ω)
+ 〈C(∇η)u, (∇η)u〉L2(Ω) +

〈
Vϕ, η2ϕ

〉

L2(Γ )

+ ∥∥(∇η)Ṽϕ
∥∥2
L2(Rd )

−
〈
(1/2 + K ′)ϕ, η2u

〉

L2(Γ )

+ 〈∇ Ṽϕ, (∇η)ηu
〉
L2(Ω)

− 〈
(∇η)Ṽϕ,∇(ηu)

〉
L2(Ω)

= abmc(u, ϕ; η2u, η2ϕ) + 〈C(∇η)u, (∇η)u〉L2(Ω) + ∥
∥(∇η)Ṽϕ

∥
∥2
L2(Rd )

+ 〈∇ Ṽϕ, (∇η)ηu
〉
L2(Ω)

− 〈
(∇η)Ṽϕ,∇(ηu)

〉
L2(Ω)

. (4.22)

Young’s inequality and ‖∇η‖L∞(Rd ) � 1
δR imply

∣∣
∣
〈∇ Ṽϕ, (∇η)ηu

〉
L2(Ω)

∣∣
∣ ≤

∣∣
∣
〈∇(ηṼϕ), (∇η)u

〉
L2(Ω)

∣∣
∣ +

∣∣
∣
〈
(∇η)Ṽϕ, (∇η)u

〉
L2(Ω)

∣∣
∣

≤ ∥∥∇(ηṼϕ)
∥∥
L2(Ω)

‖(∇η)u‖L2(Ω) + C

(δR)2
‖u‖L2(B(1+δ)R∩Ω)

∥∥Ṽϕ
∥∥
L2(B(1+δ)R)

≤ C

(δR)2

(
‖u‖2L2(B(1+δ)R∩Ω)

+ ∥∥Ṽϕ
∥∥2
L2(B(1+δ)R)

)
+ Cρ

4

∥∥∇(ηṼϕ)
∥∥2
L2(Rd )

,

(4.23)

as well as

∣∣∣
〈
(∇η)Ṽϕ,∇(ηu)

〉
L2(Ω)

∣∣∣ ≤ ∥∥∇ηṼϕ
∥∥
L2(Ω)

‖∇(ηu)‖L2(Ω)

≤ 2C

(δR)2

∥∥Ṽϕ
∥∥2
L2(B(1+δ)R)

+ Cρ

4
‖∇(ηu)‖2L2(Ω)

. (4.24)

Absorbing the gradient terms in (4.23)–(4.24) into the left-hand side of (4.22), we
arrive at

‖∇(ηu)‖2L2(Ω)
+ ∥∥∇(ηṼϕ)

∥∥2
L2(Rd )

� abmc(u, ϕ; η2u, η2ϕ) + 1

(δR)2

∥∥Ṽϕ
∥∥2
L2(B(1+δ)R)

+ 1

(δR)2
‖u‖2L2(B(1+δ)R∩Ω)

. (4.25)

Step 2: We apply the local orthogonality of (u, ϕ) to piecewise polynomials and use
approximation properties.

Let IΩ
h : C(Ω) → S1,1(Th) be the nodal interpolation operator and IΓ

h the L2(Γ )-
orthogonal projection mapping onto S0,0(Kh). Then, the orthogonality (4.14) leads
to
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abmc(u, ϕ; η2u, η2ϕ) = abmc(u, ϕ; η2u − IΩ
h (η2u), η2ϕ − IΓ

h (η2ϕ))

=
〈
C∇u,∇(η2u − IΩ

h (η2u))
〉

L2(Ω)

+
〈
(1/2 − K ′)ϕ, IΩ

h (η2u) − η2u
〉

L2(Γ )

+
〈
Vϕ, η2ϕ − IΓ

h (η2ϕ)
〉

L2(Γ )
−
〈
u, IΓ

h (η2ϕ) − η2ϕ
〉

L2(Γ )

=: T1 + T2 + T3 + T4. (4.26)

We mention that the volume term T1 and the boundary term T3 involving V were
already treated in [18,19]. However, for the sake of completeness, we also provide the
estimates in the following. For T1 in (4.26), the assumptions on the cut-off function η,
the super-approximation properties of IΩ

h from Lemma 4.2, Young’s inequality, and
h
δR ≤ 1 lead to

∣
∣∣
〈
C∇u, ∇(η2u − IΩ

h (η2u))
〉
L2(Ω)

∣
∣∣ ≤ ‖C∇u‖L2(B(1+δ)R∩Ω)

∥
∥∇(η2u − IΩ

h (η2u))
∥
∥
L2(Ω)

� ‖∇u‖L2(B(1+δ)R∩Ω)

(
h

(δR)2
‖u‖L2(B(1+δ)R∩Ω) + h

δR
‖∇u‖L2(B(1+δ)R∩Ω)

)

� h

δR
‖∇u‖2L2(B(1+δ)R∩Ω)

+ 1

(δR)2
‖u‖2L2(B(1+δ)R∩Ω)

. (4.27)

For the term T3,wemention that the assumption 8h ≤ δR implies that supp IΓ
h (η2ϕ) ⊆

B(1+δ/2)R . In the following, we employ a second cut-off function η̃ with 0 ≤
η̃ ≤ 1, η̃ ≡ 1 on B(1+δ/2)R ⊇ supp(η2ϕ − IΓ

h (η2ϕ)), supp η̃ ⊆ B(1+δ)R and
‖∇η̃‖L∞(B(1+δ)R) � 1

δR . The trace inequality together with the super-approximation

properties of IΓ
h , expressed in (4.12), lead to

∣∣∣∣
〈
Vϕ, η2ϕ − IΓ

h (η2ϕ)
〉

L2(Γ )

∣∣∣∣ =
∣∣∣∣
〈
η̃Vϕ, η2ϕ − IΓ

h (η2ϕ)
〉

L2(Γ )

∣∣∣∣

≤ ‖η̃Vϕ‖H1/2(Γ )

∥∥
∥η2ϕ − IΓ

h (η2ϕ)

∥∥
∥
H−1/2(Γ )

�
∥∥η̃Ṽϕ

∥∥
H1(Ω)

h

δR

∥∥∇ Ṽϕ
∥∥
L2(B(1+δ)R)

�
(

1

δR

∥∥Ṽϕ
∥∥
L2(B(1+δ)R)

+ ∥∥∇ Ṽϕ
∥∥
L2(B(1+δ)R)

)
h

δR

∥∥∇ Ṽϕ
∥∥
L2(B(1+δ)R)

� h

δR

∥∥∇ Ṽϕ
∥∥2
L2(B(1+δ)R)

+ 1

(δR)2

∥∥Ṽϕ
∥∥2
L2(B(1+δ)R)

. (4.28)
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With the same arguments, we obtain an estimate for T4:

∣
∣∣∣
〈
u, IΓ

h (η2ϕ)−η2ϕ
〉

L2(Γ )

∣
∣∣∣ � ‖η̃u‖H1(Ω)

h

δR

∥∥∇ Ṽϕ
∥∥
L2(B(1+δ)R)

� h

δR
‖∇u‖2L2(B(1+δ)R∩Ω)

+ h

δR

∥∥∇ Ṽϕ
∥∥2
L2(B(1+δ)R)

+ 1

(δR)2
‖u‖2L2(B(1+δ)R∩Ω)

. (4.29)

It remains to treat the coupling term T2 involving the adjoint double-layer operator in
(4.26). With the support property supp(IΩ

h (η2u) − η2u) ⊂ B(1+δ/2)R , which follows
from 8h ≤ δR, and (1/2 − K ′)ϕ = −γ ext

1 Ṽϕ, we obtain

∣∣∣
∣
〈
(1/2 − K ′)ϕ, IΩ

h (η2u) − η2u
〉

L2(Γ )

∣∣∣
∣

≤ ∥∥γ ext
1 Ṽϕ

∥∥
L2(B(1+δ/2)R∩Γ )

∥∥∥IΩ
h (η2u) − η2u

∥∥∥
L2(Γ )

. (4.30)

The multiplicative trace inequality for Ω , see, e.g., [12], the super-approximation
property of IΩ

h from Lemma 4.2, and h
δR � 1 lead to

∥∥∥IΩ
h (η2u) − η2u

∥∥∥
L2(Γ )

�
∥∥∥IΩ

h (η2u) − η2u
∥∥∥
L2(Ω)

+
∥∥∥IΩ

h (η2u) − η2u
∥∥∥
1/2

L2(Ω)

∥∥∥∇(IΩ
h (η2u) − η2u)

∥∥∥
1/2

L2(Ω)

�
(

h2

(δR)2
‖u‖L2(B(1+δ)R∩Ω) + h2

δR
‖∇u‖L2(B(1+δ)R∩Ω)

)

+
(

h

δR
‖u‖1/2

L2(B(1+δ)R∩Ω)
+ h

(δR)1/2
‖∇u‖1/2

L2(B(1+δ)R∩Ω)

)

(
h1/2

δR
‖u‖1/2

L2(B(1+δ)R∩Ω)
+ h1/2

(δR)1/2
‖∇u‖1/2

L2(B(1+δ)R∩Ω)

)

� h3/2

δR
‖∇u‖L2(B(1+δ)R∩Ω) + h3/2

(δR)2
‖u‖L2(B(1+δ)R∩Ω) .

(4.31)
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We use estimate (4.13) and (4.31) in (4.30), which implies

∣∣
∣∣
〈
(1/2 − K ′)ϕ, IΩ

h (η2u) − η2u
〉

L2(Γ )

∣∣
∣∣

� h−1/2
(∥∥∇ Ṽϕ

∥∥
L2(B(1+δ)R)

+ 1

δR

∥∥Ṽϕ
∥∥
L2(B(1+δ)R)

)

·
(
h3/2

δR
‖∇u‖L2(B(1+δ)R∩Ω) + h3/2

(δR)2
‖u‖L2(B(1+δ)R∩Ω)

)

� h

δR

(( ∥∥∇ Ṽϕ
∥∥2
L2(B(1+δ)R)

+ ‖∇u‖2L2(B(1+δ)R∩Ω)

)

+ 1

(δR)2

(
‖u‖2L2(B(1+δ)R∩Ω)

+ ∥∥Ṽϕ
∥∥2
L2(B(1+δ)R)

))
. (4.32)

Finally, inserting (4.28), (4.29), (4.27), and (4.32) into (4.26) and further into (4.25)
implies

‖∇u‖2L2(BR∩Ω)
+ ∥∥∇ Ṽϕ

∥∥2
L2(BR)

≤ ‖∇(ηu)‖2L2(Ω)
+ ∥∥∇(ηṼϕ)

∥∥2
L2(Rd )

� h

δR

(
‖∇u‖2L2(B(1+δ)R∩Ω)

+ ∥
∥∇ Ṽϕ

∥
∥2
L2(B(1+δ)R)

)

+ 1

(δR)2

(
‖u‖2L2(B(1+δ)R∩Ω)

+ ∥∥Ṽϕ
∥∥2
L2(B(1+δ)R)

)
.

(4.33)

Step 3: We iterate (4.33) to improve the powers of h for the gradient terms to finally
obtain the result of Theorem 2.4.

We set δ = ε
2 , and use (4.33) again for the gradient terms on the right-hand side

with the boxes BR̃ and B(1+δ̃)R̃ , where δ̃ = ε
ε+2 and R̃ = (1 + ε/2)R. We note that

16h ≤ εR implies 8h ≤ δ̃ R̃, so we may apply (4.33). Since (1 + δ̃)(1 + ε
2 ) = 1 + ε,

we get

‖∇u‖2L2(BR∩Ω)
+ ∥∥∇ Ṽϕ

∥∥2
L2(BR)

� h2

(εR)2

(
‖∇u‖2L2(B(1+ε)R∩Ω)

+ ∥∥∇ Ṽϕ
∥∥2
L2(B(1+ε)R)

)

+
(

h

(εR)3
+ 1

(εR)2

)(
‖u‖2L2(B(1+ε)R∩Ω)

+ ∥∥Ṽϕ
∥∥2
L2(B(1+ε)R)

)
,

(4.34)

and with h
εR < 1, we conclude the proof. ��

4.3 The symmetric coupling

In this section, we provide the proof of Theorem 2.5. While some parts of the proof
are similar to the proof of Theorem 2.4 and are therefore shortened, there are some
differences as well, namely, that it does not suffice to study the single-layer potential.
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Indeed, one has to add a term containing the double-layer potential to the Caccioppoli
inequality in order to get a localized ellipticity estimate.

Proof (Proof ofTheorem2.5)Again,wewrite (u, ϕ) for theGalerkin solution (uh, ϕh).
The assumption on the support of the data implies the local orthogonality

asym(u, ϕ;ψh, ζh) = 0 ∀(ψh, ζh) ∈ S1,1(Th) × S0,0(Kh)

with suppψh, supp ζh ⊂ B(1+ε)R . (4.35)

As in the proof of Theorem 2.4 let η ∈ C∞
0 (Rd) be a cut-off function with supp η ⊆

B(1+δ/4)R , η ≡ 1 on BR , 0 ≤ η ≤ 1, and
∥
∥D jη

∥
∥
L∞(B(1+δ)R)

� 1
δR for j = 1, 2. Here,

0 < δ ≤ ε satisfies h
R ≤ δ

16 and will be chosen in the last step of the proof.

Step 1: We start with a localized ellipticity estimate. More precisely, we show

‖∇(ηu)‖2L2(Ω)
+ ∥∥∇(ηṼϕ)

∥∥2
L2(Rd )

+ ∥∥∇(ηK̃ u)
∥∥2
L2(Rd\Γ )

≤ asym(u, ϕ; η2u, η2ϕ) + terms in weaker norms.

See (4.40) for the precise statement. From (4.21) and the Cauchy-Schwarz inequality
we get

Cell ‖∇(ηu)‖2L2(Ω)
+ 1

2

∥∥∇(ηṼϕ)
∥∥2
L2(Rd )

+ 1

2

∥∥∇(ηK̃ u)
∥∥2
L2(Rd\Γ )

≤
〈
C∇u,∇(η2u)

〉

L2(Ω)
+ 〈C(∇η)u, (∇η)u〉L2(Ω) + ∥∥∇(ηṼϕ)

∥∥2
L2(Rd )

+ ∥∥∇(ηK̃ u)
∥∥2
L2(Rd\Γ )

− 〈∇(ηṼϕ),∇(ηK̃ u)
〉
L2(Rd\Γ )

. (4.36)

A direct calculation reveals that ‖∇(ηK̃ u)‖2
L2(Rd\Γ )

= ‖(∇η)K̃ u‖2
L2(Rd\Γ )

+
〈∇ K̃ u,∇(η2 K̃ u)

〉
L2(Rd\Γ )

. Inserting this and (4.20) in (4.36) yields

Cell ‖∇(ηu)‖2L2(Ω)
+ 1

2

∥∥∇(ηṼϕ)
∥∥2
L2(Rd )

+ 1

2

∥∥∇(ηK̃ u)
∥∥2
L2(Rd\Γ )

≤
〈
C∇u,∇(η2u)

〉

L2(Ω)
+ 〈C(∇η)u, (∇η)u〉L2(Ω) +

〈
Vϕ, η2ϕ

〉

L2(Γ )

+ ∥∥(∇η)Ṽϕ
∥∥2
L2(Rd )

+
〈
∇ K̃ u,∇(η2 K̃ u)

〉

L2(Rd\Γ )
+ ∥∥(∇η)K̃ u

∥∥2
L2(Rd\Γ )

− 〈∇(ηṼϕ),∇(ηK̃ u)
〉
L2(Rd\Γ )

. (4.37)

Integration by parts together with the jump conditions (4.2), (4.4) for the double-layer
potential gives

〈
∇ K̃ u,∇(η2 K̃ u)

〉

L2(Rd\Γ )
=
〈
Wu, η2u

〉

L2(Γ )
. (4.38)
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With a calculation analogous to (4.18) (in fact, replace u therein with K̃ u), we get

〈∇(ηṼϕ),∇(ηK̃ u)
〉
L2(Rd\Γ )

=
〈
∇(Ṽϕ),∇(η2 K̃ u)

〉

L2(Rd\Γ )
+ l.o.t.,

where the omitted terms (cf. (4.18))

l.o.t. = 〈(∇η)Ṽϕ,∇(ηK̃ u)〉L2(Rd\Γ ) − 〈∇ Ṽϕ, η(∇η)K̃ u〉L2(Rd\Γ )

can be estimated inweaker norms (i.e., ‖Ṽϕ‖L2(B(1+δ/2)R), ‖K̃ u‖L2(B(1+δ/2)R\Γ )) or lead
to terms that are absorbed in the left-hand side as in the proof of Theorem 2.4 (see
(4.23), (4.24)). With integration by parts on Ω and Ωext, we get

〈∇ Ṽϕ,∇(η2 K̃ u)
〉
L2(Rd\Γ )

= 〈
γ int
1 Ṽϕ, γ int

0 (η2 K̃ u)
〉
L2(Γ )

− 〈
γ ext
1 Ṽϕ, γ ext

0 (η2 K̃ u)
〉
L2(Γ )

= 〈
(K ′ + 1/2)ϕ, η2(K − 1/2)u

〉
L2(Γ )

− 〈
(K ′ − 1/2)ϕ, η2(K + 1/2)u

〉
L2(Γ )

= 〈
η2ϕ, (K − 1/2)u

〉
L2(Γ )

− 〈
(K ′ − 1/2)ϕ, η2u

〉
L2(Γ )

. (4.39)

Putting everything together and using ‖∇η‖L∞(B(1+δ)R) � 1
δR , we obtain

‖∇(ηu)‖2L2(Ω)
+ ∥∥∇(ηṼϕ)

∥∥2
L2(Rd )

+ ∥∥∇(ηK̃ u)
∥∥2
L2(Rd\Γ )

� asym(u, ϕ, η2u, η2ϕ) + 1

(δR)2
‖u‖2L2(B(1+δ)R∩Ω)

+ 1

(δR)2

∥∥Ṽϕ
∥∥2
L2(B(1+δ)R)

+ 1

(δR)2

∥∥K̃ u
∥∥2
L2(B(1+δ)R\Γ )

. (4.40)

Step 2: We apply the local orthogonality as well as approximation results.
With the L2(Γ )-orthogonal projection IΓ

h and the nodal interpolation operator IΩ
h ,

the orthogonality (4.35) implies

asym(u, ϕ; η2u, η2ϕ) = asym(u, ϕ; η2u − IΩ
h (η2u), η2ϕ − IΓ

h (η2ϕ))

=
〈
C∇u,∇(η2u − IΩ

h (η2u))
〉

L2(Ω)
+
〈
Wu, η2u − IΩ

h (η2u)
〉

L2(Γ )

+
〈
(K ′ − 1/2)ϕ, η2u − IΩ

h (η2u)
〉

L2(Γ )
+
〈
Vϕ, η2ϕ − IΓ

h (η2ϕ)
〉

L2(Γ )

+
〈
(1/2 − K )u, η2ϕ − IΓ

h (η2ϕ)
〉

L2(Γ )

=: T1 + T2 + T3 + T4 + T5. (4.41)

The terms T1, T3, T4 can be estimated with (4.27), (4.32), and (4.28) respectively
as in the case for the Bielak–MacCamy coupling. We also mention that the term T2
involving the hyper-singular integral operatorW was treated in [20]. For our purpose,
a simplified version of the proof is sufficient, which is presented in the following.

For the term T2, we mention that the assumption 16h ≤ δR implies that
supp IΓ

h (η2ϕ) ⊆ B(1+δ/2)R . We employ equation (4.10) from Lemma 4.3 for K̃ u
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and the boxes B(1+δ/2)R and B(1+δ)R satisfying dist(B(1+δ/2)R, ∂B(1+δ)R) = δ
4 ≥ 4h

due to the assumptions on δ. Together with Wu = −γ int
1 K̃ u, (cf. (4.31)), and the

Young inequality this implies

∣
∣∣∣
〈
Wu, η2u − IΩ

h (η2u)
〉

L2(Γ )

∣
∣∣∣

=
∣∣∣∣
〈
γ int
1 K̃ u, η2u − IΩ

h (η2u)
〉

L2(Γ )

∣∣∣∣

≤
∥
∥∥γ int

1 K̃ u
∥
∥∥
L2(B(1+δ/2)R∓∩Γ )

∥
∥∥η2u − IΩ

h (η2u)

∥
∥∥
L2(Γ )

� h−1/2
(∥∥∇ K̃ u

∥∥
L2(B(1+δ)R∩Γ )

+ 1

δR

∥∥K̃ u
∥∥
L2(B(1+δ)R\Γ )

)

(
h3/2

δR
‖∇u‖L2(B(1+δ)R) + h3/2

(δR)2
‖u‖L2(B(1+δ)R)

)

� h

δR

(
‖∇u‖2L2(B(1+δ)R)

+ ∥∥∇ K̃ u
∥∥2
L2(B(1+δ)R\Γ )

)

+ 1

(δR)2

(
‖u‖2L2(B(1+δ)R)

+ ∥∥K̃ u
∥∥2
L2(B(1+δ)R\Γ )

)
.

We finish the proof by estimating T5. To that end, we need another cut-off function
η̃ ∈ S1,1(Th) with 0 ≤ η̃ ≤ 1, η̃ ≡ 1 on B(1+δ/2)R ⊇ supp

(
IΓ
h (η2ϕ) − η2ϕ

)
,

supp η̃ ⊆ B(1+δ)R and ‖∇η̃‖L∞(B(1+δ)R) � 1
δR . Since (1/2− K )u = −γ int

0 K̃ u, we get
with a trace inequality and the approximation properties expressed in (4.12) that

|T5| =
∣∣
∣∣
〈
η̃γ int

0 K̃ u, η2ϕ − IΓ
h (η2ϕ)

〉

L2(Γ )

∣∣
∣∣

�
∥∥∥γ int

0 (̃ηK̃ u)

∥∥∥
H1/2(Γ )

∥∥∥η2ϕ − IΓ
h (η2ϕ)

∥∥∥
H−1/2(Γ )

� h

δR

∥∥η̃K̃ u
∥∥
H1(Ω\Γ )

∥∥∇ Ṽϕ
∥∥
L2(B(1+δ)R)

� h

δR

(∥∥∇ K̃ u
∥∥2
L2(B(1+δ)R\Γ )

+ ∥∥∇ Ṽϕ
∥∥2
L2(B(1+δ)R)

)

+ 1

(δR)2

∥∥K̃ u
∥∥2
L2(B(1+δ)R\Γ )

. (4.42)

Putting everything together in (4.41) and further in (4.40) finally yields

‖∇u‖2L2(BR∩Ω)
+ ∥∥∇ Ṽϕ

∥∥2
L2(BR)

+ ∥∥∇ K̃ u
∥∥2
L2(BR\Γ )

� h

δR

(
‖∇u‖2L2(B(1+δ)R∩Ω)

+ ∥∥∇ K̃ u
∥∥2
L2(B(1+δ)R\Γ )

+ ∥∥∇ Ṽϕ
∥∥2
L2(B(1+δ)R)

)

+ 1

(δR)2

(
‖u‖2L2(B(1+δ)R∩Ω)

+ ∥
∥Ṽϕ

∥
∥2
L2(B(1+δ)R)

+ ∥
∥∇ K̃ u

∥
∥2
L2(B(1+δ)R\Γ )

)
.

(4.43)
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Step 3: By reapplying (4.43) to the gradient terms with δ = ε
2 and suitable boxes, we

get the desired result exactly as in step 3 of the proof of Theorem 2.4. ��

4.4 The Johnson–Nédélec coupling

In this section, we prove the Caccioppoli-type inequality from Theorem 2.6 for the
Johnson–Nédélec coupling. Most of the appearing terms have already been treated in
the previous sections. The main difference is that the double-layer potential appears
naturally due to the boundary coupling terms, but the local orthogonality is not suited
to provide an approximation for it, since the hypersingular operator does not appear in
the bilinear form.A remedy for this problem is to localize the double-layer potential by
splitting it into a local near-field and a non-local, but smooth far-field. This techniques
follows [17], where a similar localization using commutators is employed.

Lemma 4.5 Let δ ∈ (0, 1) and R ∈ (0, 2 diam(Ω)) and let BR and B(1+δ)R be two
concentric boxes. Let η ∈ C∞

0 (Rd) be a cut-off function with supp η ⊆ B(1+δ/2)R,
η ≡ 1 on B(1+δ/4)R, 0 ≤ η ≤ 1, and

∥∥D jη
∥∥
L∞(B(1+δ)R)

� 1
(δR) j

for j = 1, 2. Then,

for u ∈ H1(Ω), we have

∥∥∇ K̃ u
∥∥
L2(BR\Γ )

�
√
1 + 1/δ ‖ηu‖H1(Ω) + 1

δR
‖u‖L2(B(1+δ/4)R∩Ω)

+ 1

δR

∥
∥K̃ u

∥
∥
L2(B(1+δ/4)R\Γ )

. (4.44)

Proof We start with a localized splitting for the double-layer potential. More precisely,
with a second cut-off function η̂ satisfying η̂ ≡ 1 on BR , supp η̂ ⊆ B(1+δ/4)R , and
‖∇η̂‖L∞(B(1+δ)R) � 1

δR , we write

η̂K̃ u = η̂K̃ (ηu) + η̂K̃ (1 − η)u =: vnear + vfar.

First, we estimate the near-field vnear := η̂K̃ (ηu). The mapping properties of the
double-layer potential, (4.5), together with the fact that supp∇η̂ ⊂ B(1+δ/4)R\BR and
the trace inequality provide

‖∇vnear‖L2(BR\Γ ) � ‖ηu‖H1/2(Γ ) + 1

δR
‖K̃ (ηu)‖L2(B(1+δ/4)R\BR)

� ‖ηu‖H1(Ω) + 1

δR
‖K̃ (ηu)‖L2(B(1+δ/4)R\BR).

Since η̂(1 − η) ≡ 0, the far field vfar is smooth. Integration by parts using
ΔK̃ ((1− η)u) = 0, as well as [γ1 K̃ u] = 0 and η̂(1− η) ≡ 0 (therefore no boundary
terms appear), leads to
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‖∇vfar‖2L2(BR\Γ )
=
∣∣
∣∣
〈
∇ K̃ ((1 − η)u),∇ (̂η2 K̃ ((1 − η)u))

〉

L2(Rd\Γ )

∣∣
∣∣

+ ∥∥(∇η̂)K̃ ((1 − η)u)
∥∥2
L2(Rd )

� 1

(δR)2

∥∥K̃ ((1 − η)u)
∥∥2
L2(B(1+δ/4)R\BR)

� 1

(δR)2

∥
∥K̃ u

∥
∥2
L2(B(1+δ/4)R\BR)

+ 1

(δR)2

∥
∥K̃ (ηu)

∥
∥2
L2(B(1+δ/4)R\BR)

.

Here, we used that supp(∇η̂) ⊂ B(1+δ/4)R\BR . For the last term, we apply [19,
Lemma 3.7,(ii)], which states that
∥
∥K̃ (ηu)

∥
∥
L2(B(1+δ/4)R\BR)

�
√

δR

(
1√

(1 + δ)R

∥
∥K̃ (ηu)

∥
∥
L2(B(1+δ/4)R\Γ )

+ √
(1 + δ)R

∥
∥∇ K̃ (ηu)

∥
∥
L2(B(1+δ/4)R\Γ )

)
.

[19, Lemma 3.7,(i)] provides the estimate

∥∥K̃ (ηu)
∥∥
L2(B(1+δ/4)R)

�
√
R
∥∥∥γ int

0 K̃ (ηu)

∥∥∥
L2(Γ )

+ R
∥∥∇ K̃ (ηu)

∥∥
L2(B(1+δ/4)R\Γ )

.

The combination of these two estimates and the fact that γ int
0 K̃ u = (−1/2 + K )u

gives us
∥∥K̃ (ηu)

∥∥
L2(B(1+δ/4)R\BR)

�
√

δR ‖(1/2 − K )(ηu)‖L2(Γ )

+ √
δR

√
(1 + δ)R

∥
∥∇ K̃ (ηu)

∥
∥
L2(B(1+δ/4)R\Γ )

.

With the mapping properties of K , K̃ from (4.5), (4.6) and the multiplicative trace
inequality this implies

1

δR

∥∥K̃ (ηu)
∥∥
L2(B(1+δ/4)R\BR)

� 1√
δR

‖ηu‖L2(Γ ) + √
1 + 1/δ ‖ηu‖H1(Ω)

� 1√
δR

‖ηu‖L2(Ω) + 1√
δR

‖ηu‖1/2
L2(Ω)

‖∇(ηu)‖1/2
L2(Ω)

+ √
1 + 1/δ ‖ηu‖H1(Ω)

� 1

δR
‖ηu‖L2(Ω) + ‖∇(ηu)‖L2(Ω) + √

1 + 1/δ ‖ηu‖H1(Ω) .

Putting the estimates for the near-field and the far-field together, we obtain
∥∥∇ K̃ u

∥∥
L2(BR\Γ )

≤ ‖∇vnear‖L2(BR\Γ ) + ‖∇vfar‖L2(BR\Γ )

�
√
1 + 1/δ ‖ηu‖H1(Ω) + 1

δR
‖u‖L2(B(1+δ/4)R∩Ω)

+ 1

δR

∥∥K̃ u
∥∥
L2(B(1+δ/4)R\Γ )

,
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which finishes the proof. ��
Proof (Proof of Theorem 2.6) Once again, we write (u, ϕ) for the Galerkin solution
(uh, ϕh). The assumption on the support of the data implies the local orthogonality

ajn(u, ϕ;ψh, ζh) = 0 ∀(ψh, ζh) ∈ S1,1(Th) × S0,0(Kh)

with suppψh, supp ζh ⊂ B(1+ε)R . (4.45)

Let η ∈ C∞
0 (Rd) be a cut-off function with supp η ⊆ B(1+δ/2)R , η ≡ 1 on B(1+δ/4)R ,

0 ≤ η ≤ 1, and
∥∥D jη

∥∥
L∞(B(1+δ)R)

� 1
(δR) j

for j = 1, 2. Here, 0 < δ ≤ ε is given such

that h
R ≤ δ

16 . We note that the condition η ≡ 1 on B(1+δ/4)R is additionally imposed
in order to satisfy estimate (4.44), as the localization of the double-layer operator is
additionally needed in comparison with the other couplings.
Step 1: We provide a localized ellipticity estimate, i.e., we prove

‖∇(ηu)‖2L2(Ω)
+ ∥∥∇(ηṼϕ)

∥∥2
L2(Rd )

+ ∥∥∇ K̃ u
∥∥2
L2(BR\Γ )

� ajn(u, ϕ; η2u, η2ϕ) + terms in weaker norms.

See (4.50 for the precise form). We start with (4.44) to obtain

‖∇(ηu)‖2L2(Ω)
+ ∥
∥∇(ηṼϕ)

∥
∥2
L2(Rd )

+ ∥
∥∇ K̃ u

∥
∥2
L2(BR\Γ )

� (1 + 1/δ)
(
‖∇(ηu)‖2L2(Ω)

+ ∥∥∇(ηṼϕ)
∥∥2
L2(Rd )

)
+ (1 + 1/δ)

(δR)2
‖u‖2L2(B(1+δ)R∩Ω)

+ 1

(δR)2

∥∥K̃ u
∥∥2
L2(B(1+δ)R\Γ )

. (4.46)

The last two terms are already in weaker norms, and for the first two terms, we apply
(4.17). Since we assumed Cell > 1/4 for unique solvability, we choose a ρ > 0 such
that 1/4 < ρ/2 < Cell and setCρ := min{1− 1

2ρ ,Cell− ρ
2 } > 0. Then, (4.17) implies

Cρ ‖∇(ηu)‖2L2(Ω)
+ Cρ

∥∥∇(ηṼϕ)
∥∥2
L2(Rd )

≤ Cell ‖∇(ηu)‖2L2(Ω)
+ ∥∥∇(ηṼϕ)

∥∥2
L2(Rd )

− 〈∇(ηṼϕ),∇(ηu)
〉
L2(Ω)

−
〈
∇ Ṽϕ,∇(η2 K̃ u)

〉

L2(Rd\Γ )

+
〈
∇ Ṽϕ,∇(η2 K̃ u)

〉

L2(Rd\Γ )
. (4.47)

The first three terms can be expanded as in Theorem 2.4, where (4.18) leads to

〈∇(ηṼϕ),∇(ηu)
〉
L2(Ω)

=
〈
∇ Ṽϕ,∇(η2u)

〉

L2(Ω)
+ l.o.t., (4.48)

where the omitted terms (cf. (4.18))

l.o.t. = 〈(∇η)Ṽϕ,∇(ηu)〉L2(Ω) − 〈∇ Ṽϕ, η(∇η)u〉L2(Ω)
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can be estimated in weaker norms (i.e., ‖Ṽϕ‖L2(B(1+δ/2)R∩Ω), ‖u‖L2(B(1+δ/2)R∩Ω)) or
lead to terms that are absorbed in the left-hand side as in the proof of Theorem 2.4
[see (4.23), (4.24)]. Equations (4.39) and (4.19) give

〈
∇ Ṽϕ,∇(η2u)

〉

L2(Ω)
+
〈
∇ Ṽϕ,∇(η2 K̃ u)

〉

L2(Rd\Γ )
=
〈
(1/2 + K )u, η2ϕ

〉

L2(Γ )
.

(4.49)

Therefore, we only have to estimate the last term in (4.47). We write in the same way
as in (4.48)

〈
∇ Ṽϕ,∇(η2 K̃ u)

〉

L2(Rd\Γ )
=
〈
∇(η2Ṽϕ),∇ K̃ u

〉

L2(Rd\Γ )
+ l.o.t.,

where again, the omitted terms

l.o.t. = 2〈(∇(ηṼϕ), (∇η)K̃ u〉L2(Rd\Γ ) − 2〈(∇η)Ṽϕ,∇(ηK̃ u)〉L2(Rd\Γ )

can be estimated in weaker norms (i.e., by ‖K̃ u‖L2(B(1+δ/2)R\Γ ) and ‖Ṽϕ‖L2(B(1+δ/2)R
)

or absorbed in the left-hand side. Integration by parts on R
d\Ω and Ω together with

ΔK̃ u = 0 and [γ1 K̃ u] = 0 = [η2Ṽϕ] implies

〈
∇(η2Ṽϕ),∇ K̃ u

〉

L2(Rd\Γ )
=
〈
η2Ṽϕ,ΔK̃ u

〉

L2(Rd\Γ )
= 0.

Putting everything together into (4.47) and in turn into (4.46), we obtain

‖∇(ηu)‖2L2(Ω)
+ ∥∥∇(ηṼϕ)

∥∥2
L2(Rd )

+ ∥∥∇(ηK̃ u)
∥∥2
L2(Rd\Γ )

� (1 + 1/δ) ajn(u, ϕ; η2u, η2ϕ) + (1 + 1/δ)

(δR)2

∥
∥K̃ u

∥
∥2
L2(B(1+δ)R\Γ )

+ (1 + 1/δ)

(δR)2
‖u‖2L2(B(1+δ)R∩Ω)

+ (1 + 1/δ)

(δR)2

∥∥Ṽϕ
∥∥2
L2(B(1+δ)R)

. (4.50)

Step 2: We apply the local orthogonality of (u, ϕ) to piecewise polynomials and use
approximation properties. Let IΩ

h : C(Ω) → S1,1(Th) be the nodal interpolation
operator and IΓ

h the L2(Γ )-orthogonal projection mapping onto S0,0(Kh). Then, the
orthogonality (4.45) leads to

ajn(u, ϕ; η2u, η2ϕ) = ajn(u, ϕ; η2u − IΩ
h (η2u), η2ϕ − IΓ

h (η2ϕ))

=
〈
∇u,∇(η2u − IΩ

h (η2u))
〉

L2(Ω)
+
〈
Vϕ, η2ϕ − IΓ

h (η2ϕ)
〉

L2(Γ )

−
〈
ϕ, η2u − IΩ

h (η2u)
〉

L2(Γ )
+
〈
(1/2 − K )u, η2ϕ − IΓ

h (η2ϕ)
〉

L2(Γ )

=: T1 + T2 + T3 + T4. (4.51)
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The terms T1, T2 have already been estimated in the proof of Theorem 2.4, inequalities
(4.27), (4.28), and T4 was treated in (4.42) in the proof of Theorem 2.5.

It remains to estimate T3. With supp
(
η2u − IΩ

h (η2u)
) ⊂ B(1+δ/2)R due to 16h ≤

δR, we get

|T3| =
∣∣
∣∣
〈
ϕ, η2u − IΩ

h (η2u)
〉

L2(Γ )

∣∣
∣∣ ≤ ‖ϕ‖L2(B(1+δ/2)R∩Γ )

∥
∥∥η2u − IΩ

h (η2u)

∥
∥∥
L2(Γ )

.

Lemma 4.3 provides

‖ϕ‖L2(B(1+δ/2)R) � h−1/2
∥∥∇ Ṽϕ

∥∥
L2(B(1+δ)R)

.

Therefore, with (4.31), we obtain

∣∣∣
〈
ϕ, IΩ

h (η2u) − η2u
〉
L2(Γ )

∣∣∣ � h−1/2
∥∥∇ Ṽϕ

∥∥
L2(B(1+δ)R)

(
h3/2

δR
‖∇u‖L2(B(1+δ)R∩Ω) + h3/2

(δR)2
‖u‖L2(B(1+δ)R∩Ω)

)

� h

δR

(∥∥∇ Ṽϕ
∥∥2
L2(B(1+δ)R)

+ ‖∇u‖2L2(B(1+δ)R∩Ω)

)

+ 1

(δR)2
‖u‖2L2(B(1+δ)R)

. (4.52)

Putting the estimates of T1, T2, T3, T4 together and using δ � 1 leads to

‖∇u‖2L2(BR∩Ω)
+ ∥∥∇ Ṽϕ

∥∥2
L2(BR)

+ ∥∥∇ K̃ u
∥∥2
L2(BR\Γ )

� h

δ2R

(
‖∇u‖2L2(B(1+δ)R∩Ω)

+ ∥∥∇ Ṽϕ
∥∥2
L2(B(1+δ)R)

+ ∥∥∇ K̃ u
∥∥2
L2(B(1+δ)R\Γ )

)

+ 1

δ3R2

(
‖u‖2L2(B(1+δ)R∩Ω)

+ ∥∥Ṽϕ
∥∥2
L2(B(1+δ)R)

+ ∥∥K̃ u
∥∥2
L2(B(1+δ)R\Γ )

)
. (4.53)

Step 3: Reapplying (4.53) to the gradient terms with δ = ε
2 and suitable boxes, we get

the desired result exactly as in step 3 of the proof of Theorem 2.4. ��

5 H-Matrix approximation to inverses: application of the abstract
framework for the FEM-BEM couplings

In this section, we prove the existence of exponentially convergentH-matrix approx-
imants to the inverses of the stiffness matrices of the FEM-BEM couplings, as stated
in Theorem 2.13. For this purpose, we ascertain the validity of the assumptions (A1)–
(A3) from Sect. 3 for the FEM-BEM couplings.
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5.1 The local dual basis

In the setting of Sect. 3.1, we have X = H1(Ω) × H−1/2(Γ ). In order to suitably
represent the data f , u0, ϕ0 in (2.1), we understand the discrete space S1,1(Th) �
S1,10 (Th) × S1,1(Kh) ⊂ L2(Ω) × L2(Γ ), where S1,10 (Th) := S1,1(Th) ∩ H1

0 (Ω).

Having identified S1,1(Th) with S1,10 (Th) × S1,1(Kh), we view the full FEM-BEM

coupling problem as one approximating in S1,10 (Th) × S1,1(Kh) × S0,0(Kh). That is,
we set k = 1 and � = 2, and consider L2 = L2(Ω) × L2(Γ ) × L2(Γ ) for all three
FEM-BEMcouplings. The discrete spaceXN = S1,10 (Th)×S1,1(Kh)×S0,0(Kh) ⊂ L2

has dimension N = n1 + n2 + m, where n1 = dim(S1,10 (Th)), n2 = dim(S1,1(Kh))

(n1 + n2 = n) and m = dim(S0,0(Kh)). It remains to show (A1).
The dual functions λi are constructed by use of L2-dual bases for S1,1(Th) and

S0,0(Kh). [2, Sect. 3.3] gives an explicit construction of a suitable dual basis {λΩ
i :

i = 1, . . . , n1} for S1,10 (Th). This is done elementwise in a discontinuous fashion,
i.e., λΩ

i ∈ S1,0(Th) ⊂ L2(Ω), where each λΩ
i is non-zero only on one element of Th

(in the patch of the hat function ξi ), and the function on this element is given by the
push-forward of a dual shape function on the reference element. Moreover, the local
stability estimate

∥∥∥
n1∑

j=1

x jλ
Ω
j

∥∥∥
L2(Ω)

≤ h−d/2 ‖x‖2 (5.1)

holds for all x ∈ R
n1 , and we have supp λΩ

i ⊂ supp ξi . We note that the zero boundary
condition is irrelevant for the construction. The same can be done for the boundary
degrees of freedom, i.e., there exists a dual basis {λΓ

i : i = 1, . . . , n2} with the
analogous stability and support properties.

For the boundary degrees of freedom in S0,0(Kh), the dual mappings are given by
μΓ
i := χi/ ‖χi‖2L2(Ω)

, i.e., the dual basis coincides—up to scaling—with the given

basis {χi : i = 1, . . . ,m} of S0,0(Kh). With (2.4b), this gives

∥∥∥
m∑

j=1

y jμ
Γ
j

∥∥∥
L2(Ω)

≤ h−(d−1)/2 ‖y‖2 (5.2)

for all y ∈ R
m .

The dual basis is defined as λi := (λΩ
i , 0, 0) for i = 1, . . . , n1, λi+n1 := (0, λΓ

i , 0)
for i = 1, . . . , n2, and λi+n := (0, 0, μΓ

i ) for i = 1, . . . ,m. The estimates (5.1), (5.2)
together with the analogous one for the λΓ

i show (A1).

5.2 Low dimensional approximation

The sets B, Bδ and the norm |||·|||B: We take M = 3 and choose collections B = BR :=
{BR ∩ Ω, BR, BR\Γ }, where BR is a box of side length R. For � ∈ N, the enlarged
sets Bδ� then have the form
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Bδ� = Bδ�
R := {BR+2δ� ∩ Ω, BR+2δ�, BR+2δ�\Γ } (5.3)

with the concentric boxes BR+2δ� of side length R + 2δ�.
For v = (u, v, w), we use the norm from (2.6)

|||v|||B := |||(u, v, w)|||h,R

in (A2). For the Bielak–MacCamy coupling, taking M = 2 and choosing collections
BR := {BR ∩ Ω, BR} would suffice, however, in order to keep the notation short, we
can use M = 3 for this coupling as well by setting the third component to zero, i.e.,
v = (u, v, 0).

The operator QH and (A2): For the operator QH , we use a combination of localization
and Scott–Zhang interpolation, introduced in [36], on a coarse grid. Since the double-
layer potential is discontinuous across Γ , we need to employ a piecewise Scott–Zhang
operator. LetRH be a quasi-uniform (infinite) triangulation ofRd (into open simplices
R ∈ RH ) with mesh width H that conforms to Ω , i.e., every R ∈ RH satisfies either
R ⊂ Ω or R ⊂ Ωext and the restrictions RH |Ω and RH |Ωext are γ -shape regular,
regular triangulations of Ω and Ωext of mesh size H , respectively.

With the Scott–Zhang projections I intH , I extH for the grids RH |Ω and RH |Ωc , we

define the operator I pwH : H1(Rd\Γ ) → S1,1pw (RH ) := {v : v|Ω ∈ S1,1(RH |Ω) and
v|Ωext ∈ S1,1(RH |Ωext )} in a piecewise fashion by

I pwH v =
{
I intH v on Ω,

I extH v on Ωext.
(5.4)

We denote the patch of an element R ∈ RH by

ωΩ
R := interior

(⋃{
R′ : R′ ∈ RH |Ω s.t. R ∩ R′ �= ∅

})
,

ωΩext

R := interior
(⋃{

R′ : R′ ∈ RH |Ωext s.t. R ∩ R′ �= ∅
})

.

The Scott–Zhang projection reproduces piecewise affine functions and has the follow-
ing local approximation property for piecewise Hs functions:

∥∥v − I pwH v
∥∥2
Ht (R)

≤ CH2(s−t)

⎧
⎨

⎩

|v|2
Hs (ωΩ

R )
if R ⊂ Ω

|v|2
Hs (ωΩext

R )
if R ⊂ Ωext (5.5)

with t, s ∈ {0, 1}, 0 ≤ t ≤ s ≤ 1, and a constant C depending only on the shape-
regularity of RH and d.

Let η ∈ C∞
0 (BR+2δ) be a cut-off function satisfying supp η ⊂ BR+δ, η ≡ 1 on

BR and ‖∇η‖L∞(Rd ) � 1
δ
. We define the operator

QHv := (I intH (ηv1), IH (ηv2), I
pw
H (ηv3)), (5.6)
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where IH denotes the classical Scott–Zhang operator for the meshRH . We have

|||v − QHv|||2B =
∥
∥
∥v1 − I intH (ηv1)

∥
∥
∥
2

h,R,Ω
+ ‖v2 − IH (ηv2)‖2h,R +

∥
∥
∥v3 − I

pw
H (ηv3)

∥
∥
∥
2

h,R,Γ c
.

Each term on the right-hand side can be estimated with the same arguments. We
only work out the details for the second component. Assuming h ≤ H , and using
approximation properties and stability of the Scott–Zhang projection, we get

‖v2 − IH (ηv2)‖2h,R = ‖ηv2 − IH (ηv2)‖2h,R

= h2 ‖∇(ηv2 − IH (ηv2))‖2L2(BR)
+ ‖ηv2 − IH (ηv2)‖2L2(BR)

� (h2 + H2) ‖∇(ηv2)‖2L2(Rd )

� H2
(
‖∇v2‖2L2(BR+2δ)

+ δ−1 ‖v2‖2L2(BR+2δ)

)
,

which shows (A2) for the discrete space VH ,Bδ = S1,1(RH )|BR+2δ∩Ω ×
S1,1(RH )|BR+2δ × S1,1pw (RH )|BR+2δ of dimension dim VH ,Bδ ≤ C

(
diam(BR+2δ)

H

)Md
.

The Caccioppoli inequalities and (A3): Theorems 2.4–2.6 provide the Caccioppoli
type estimates asserted in (A3) with δ = εR/2. For the Bielak–MacCamy coupling,
we have α = 1 and CSet = 8h, for the symmetric coupling α = 1 and CSet = 16h.
For the Johnson–Nédélec coupling, we have to take α = 2 and CSet = 16h. For
BR = {BR ∩ Ω, BR, BR\Γ }, the spaces Hh(BR) can be characterized by

Hh(BR) := {(v, Ṽφ, K̃v) ∈ H1(BR ∩ Ω) × H1(BR) × H1(BR\Γ ) :
∃ṽ ∈ S1,1(Th), φ̃ ∈ S0,0(Kh) :
ṽ|BR∩Ω = v|BR∩Ω, Ṽ φ̃|BR = Ṽφ|BR ,

K̃ ṽ|BR\Γ = K̃v|BR\Γ , a(v, φ;ψh, ζh) = 0

∀(ψh, ζh) ∈ S1,1(Th) × S0,0(Kh), suppψh, ζh ⊂ BR},

where the bilinear form a(·, ·) is either asym or ajn. For the Bielak–MacCamy coupling,
it suffices to require

Hh(BR) :={(v, Ṽφ, 0) ∈ H1(BR ∩ Ω) × H1(BR) × H1(BR\Γ ):
∃ṽ ∈ S1,1(Th), φ̃ ∈ S0,0(Kh):
ṽ|BR∩Ω = v|BR∩Ω, Ṽ φ̃|BR = Ṽφ|BR , abmc(v, φ;ψh, ζh) = 0

∀(ψh, ζh) ∈ S1,1(Th) × S0,0(Kh), suppψh, ζh ⊂ BR}.

With these definitions, the closedness and nestedness of the spaces Hh(BR) clearly
holds.
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5.3 Proof of Theorem 2.13

As a consequence of the above discussions, the abstract framework of the previous
sections can be applied and it remains to put everything together.

The following propositions constructs the finite dimensional space required from
Lemma 3.3, from which the Galerkin solution can be approximated exponentially
well.

Proposition 5.1 (Low dimensional approximation for the symmetric coupling) Let
(τ, σ ) be a cluster pair with bounding boxes BRτ and BRσ that satisfy for given η > 0

η dist(BRτ , BRσ ) ≥ diam(BRτ ).

Then, for each L ∈ N, there exists a space ŴL ⊂ S1,1(Th)× S0,0(Kh)with dimension
dim ŴL ≤ ClowL3d+1 such that for arbitrary right-hand sides f ∈ L2(Ω), v0 ∈
L2(Γ ), andw0 ∈ L2(Γ )with

(
supp f ∪supp v0∪suppw0

) ⊂ BRσ , the corresponding
Galerkin solution (uh, ϕh) of (2.11) satisfies

min
(̃u,ϕ̃)∈ŴL

(
‖uh − ũ‖L2(BRτ ∩Ω) + ‖ϕh − ϕ̃‖L2(BRτ ∩Γ )

)

≤ Cboxh
−22−L (‖ f ‖L2(Ω) + ‖v0‖L2(Γ ) + ‖w0‖L2(Γ )

)
.

The constants Clow, Cbox depend only on Ω , d, C, η, and the γ -shape regularity of
the quasi-uniform triangulation Th and Kh.

Proof For given L ∈ N, we choose δ := Rτ

2ηL . Then, we have

dist(BRτ +2δL , BRσ ) ≥ dist(BRτ , BRσ ) − Lδ
√
d ≥ √

dRτ

(1
η

− 1

2η

)
> 0.

WithBRτ = {BRτ ∩Ω, BRτ , BRτ \Γ } and BδL
Rτ

= {BRτ +2δL ∩Ω, BRτ +2δL , BRτ +2δL\
Γ } from (5.3), the assumption on the support of the data therefore implies the local
orthogonality imposed in the space Hh(BδL

Rτ
). In order to define the space ŴL , we

distinguish two cases.
Case δ > 2CSet: Then, Lemma 3.6 applied with the sets Bδ

Rτ
and BδL

Rτ
provides a

space WL of dimension

dimWL ≤ Cdim

(
L − 1 + diam(Bδ

Rτ
)

δ

)3d+1
�
(
L +

√
dRτ2ηL

Rτ

)3d+1
� L3d+1

with the approximation properties for v = (uh, Ṽϕh, K̃ uh)

inf
w∈WL

|||v − w|||Bδ
Rτ

≤ 2−(L−1) |||v|||BδL
Rτ

. (5.7)

Therefore, it remains to estimate the norm |||·|||B from above and below.
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With h � 1, the mapping properties of Ṽ and K̃ from (4.5), and the trace inequality
we estimate

∣∣∣∣∣∣(uh, Ṽϕh, K̃ uh)
∣∣∣∣∣∣BδL

Rτ

� ‖uh‖H1(Ω) + ∥∥Ṽϕh
∥∥
H1(B(1+1/(2η))Rτ )

+ ∥∥K̃ uh
∥∥
H1(B(1+1/(2η))Rτ \Γ )

� ‖uh‖H1(Ω) + ‖ϕh‖H−1/2(Γ ) . (5.8)

The stabilized form ãsym(u, ϕ;ψ, ζ ) := asym(u, ϕ;ψ, ζ ) +〈
1, Vϕ + ( 12 − K )u

〉
L2(Γ )

〈
1, V ζ + ( 12 − K )ψ

〉
L2(Γ )

is elliptic by [1]. Moreover, [1,
Theorem18] proves that theGalerkin solution (uh, ϕh) also solves ãsym(uh, ϕh;ψ, ζ ) =
gsym(ψ, ζ ) + 〈1, w0〉L2(Γ )

〈
1, ( 12 − K )ψ + V ζ

〉
L2(Γ )

. Therefore, we have

‖ϕh‖2H−1/2(Γ )
+ ‖uh‖2H1(Ω)

� ãsym(uh, ϕh; uh, ϕh)

= 〈 f , uh〉L2(Ω) + 〈v0, uh〉L2(Γ ) + 〈w0, ϕh〉L2(Γ )

+ 〈1, (1/2 − K )uh + Vϕh〉L2(Γ ) 〈1, w0〉L2(Γ ) . (5.9)

The stabilization term can be estimated with the mapping properties of V and K from
(4.6) and the trace inequality by

∣
∣〈1, (1/2 − K )uh + Vϕh〉L2(Γ ) 〈1, w0〉L2(Γ )

∣
∣

�
(‖(1/2 − K )uh‖L2(Γ ) + ‖Vϕh‖L2(Γ )

) ‖w0‖L2(Γ )

� ‖w0‖L2(Γ )

(‖uh‖H1(Ω) + ‖ϕh‖H−1/2(Γ )

)
.

Inserting this in (5.9), using the trace inequality and an inverse estimate we further
estimate

‖ϕh‖2H−1/2(Γ )
+ ‖uh‖2H1(Ω)

�
(‖ f ‖L2(Ω) + ‖v0‖H−1/2(Γ )

) ‖uh‖H1(Ω)

+ ‖w0‖L2(Γ )

(‖ϕh‖L2(Γ ) + ‖uh‖H1(Ω) + ‖ϕh‖H−1/2(Γ )

)

≤ (‖ f ‖L2(Ω) + ‖v0‖H−1/2(Γ )

) ‖uh‖H1(Ω)

+ h−1/2 ‖w0‖L2(Γ )

(‖uh‖H1(Ω) + ‖ϕh‖H−1/2(Γ )

)
.

With Young’s inequality and inserting this in (5.8), we obtain the upper bound

∣∣∣∣∣∣(uh, Ṽϕh, K̃ uh)
∣∣∣∣∣∣
BδL

Rτ

�
(
‖ f ‖L2(Ω) + ‖v0‖L2(Γ ) + h−1/2 ‖w0‖L2(Γ )

)
. (5.10)

The jump conditions of the single-layer potential and Lemma 4.3 provide for arbitrary
ϕ̃ ∈ S0,0(Kh)

‖ϕh − ϕ̃‖L2(BRτ ∩Γ ) = ∥∥[γ1Ṽϕh] − [γ1Ṽ ϕ̃]∥∥L2(BRτ ∩Γ )

� h−1/2
∥∥∇(Ṽϕh − Ṽ ϕ̃)

∥∥
L2(BR+2δ)

� h−3/2
∣∣∣∣∣∣Ṽϕh − Ṽ ϕ̃

∣∣∣∣∣∣
h,R+2δ . (5.11)
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Finally, we define ŴL := {(̃u, [γ1ṽ]) : (̃u, ṽ, w̃) ∈ WL}. Then, the dimension of ŴL

is bounded by dim ŴL ≤ CL3d+1, and the error estimate follows from (5.7) since

inf
(̃u,ϕ̃)∈ŴL

(
‖uh − ũ‖L2(BRτ ∩Ω) + ‖ϕh − ϕ̃‖L2(BRτ ∩Γ )

)

� h−3/2 inf
w∈WL

∣∣∣∣∣∣(uh, Ṽϕh, K̃ uh) − w
∣∣∣∣∣∣
Bδ

Rτ

� h−3/22−L
∣∣∣∣∣∣(uh, Ṽϕh, K̃ uh)

∣∣∣∣∣∣
BδL

Rτ

.

Applying estimate (5.10) finishes the proof for the case δ ≥ 2Cset.

Case δ ≤ 2Cset = 32h: Here, we use the space ŴL := S1,1(Th)|BRτ
×

S0,0(Kh)|BRτ
. Since (uh, ϕh)|BRτ

∈ ŴL , the error estimate holds trivially. For the
dimension of ŴL , we obtain

dim ŴL ≤ C

(
diam(BRτ )

h

)2d

≤ C

(
32

√
dRτ

δ

)2d

≤ C
(
2Cset

√
d2ηL

)2d
� L2d ,

which finishes the proof. ��
Proposition 5.2 (Lowdimensional approximation for theBielak–MacCamycoupling)
Let (τ, σ ) be a cluster pair with bounding boxes BRτ and BRσ that satisfy for given
η > 0

η dist(BRτ , BRσ ) ≥ diam(BRτ ).

Then, for each L ∈ N, there exists a space ŴL ⊂ S1,1(Th)× S0,0(Kh)with dimension
dim ŴL ≤ ClowL2d+1 such that for arbitrary right-hand sides f ∈ L2(Ω), ϕ0 ∈
L2(Γ ), and u0 ∈ L2(Γ )with

(
supp f ∪suppϕ0∪supp u0

) ⊂ BRσ , the corresponding
Galerkin solution (uh, ϕh) of (2.8) satisfies

min
(̃u,ϕ̃)∈ŴL

(
‖uh − ũ‖L2(BRτ ∩Ω) + ‖ϕh − ϕ̃‖L2(BRτ ∩Γ )

)

≤ Cboxh
−22−L (‖ f ‖L2(Ω) + ‖ϕ0‖L2(Γ ) + ‖u0‖L2(Γ )

)
.

The constants Clow, Cbox depend only on Ω , d, C, η, and the γ -shape regularity of
the quasi-uniform triangulation Th and Kh.

Proof The proof is essentially identical to the proof of Proposition 5.1. We stress that
the bound of the dimension dim ŴL ≤ ClowL2d+1 is better, since no approximation
for the double-layer potential is needed, i.e., we can choose M = 2 in the abstract
setting. ��
Proposition 5.3 (Low dimensional approximation for the Johnson-Nédélec coupling)
Let (τ, σ ) be a cluster pair with bounding boxes BRτ and BRσ that satisfy for given
η > 0

η dist(BRτ , BRσ ) ≥ diam(BRτ ).
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Then, for each L ∈ N, there exists a space ŴL ⊂ S1,1(Th)× S0,0(Kh)with dimension
dim ŴL ≤ ClowL6d+1, such that for arbitrary right-hand sides f ∈ L2(Ω), ϕ0 ∈
L2(Γ ), andw0 ∈ L2(Γ )with

(
supp f ∪suppϕ0∪suppw0

) ⊂ BRσ , the corresponding
Galerkin solution (uh, ϕh) of (2.15) satisfies

min
(̃u,ϕ̃)∈ŴL

(
‖uh − ũ‖L2(BRτ ∩Ω) + ‖ϕh − ϕ̃‖L2(BRτ ∩Γ )

)

≤ Cboxh
−22−L (‖ f ‖L2(Ω) + ‖ϕ0‖L2(Γ ) + ‖w0‖L2(Γ )

)
.

The constants Clow, Cbox depend only on Ω , d, C, η, and the γ -shape regularity of
the quasi-uniform triangulation Th and Kh.

Proof The proof is essentially identical to the proof of Proposition 5.1. We stress
that the bound of the dimension dim ŴL ≤ ClowL6d+1 is worse than for the other
couplings, since in the abstract setting, we have to choose M = 3 and α = 2, and the
bound follows from Lemma 3.6. ��

Finally, we can prove the existence ofH-matrix approximants to the inverse FEM-
BEM stiffness matrix.

Proof (Proof of Theorem 2.13) We start with the symmetric coupling.We mention that
the symmetry of the system matrix together with the requirement η dist(BRτ , BRσ ) ≥
diam(BRτ ) of Proposition 5.1 does also allow one to use the weaker admissibility
condition mentioned in Remark 2.8. As H matrices are low rank only on admissible
blocks, we set BH|τ×σ = A−1

sym|τ×σ for non-admissible cluster pairs and consider an
arbitrary admissible cluster pair (τ, σ ) in the following.

With a given rank bound r , we take L := �(r/Clow)1/(3d+1)�. With this choice, we
apply Proposition 5.1, which provides a space ŴL ⊂ S1,1(Th)×S0,0(Kh) and use this
space in Lemma 3.3, which produces matrices Xτσ ,Yτσ of maximal rank dim ŴL ,
which is by choice of L bounded by

dim ŴL = ClowL
3d+1 ≤ r .

Proposition 5.1 can be rewritten in terms of the discrete solution operator of the frame-
work of Sect. 3.1. Let f = ( f , v0, w0) ∈ L2 be arbitrary with supp( f ) ⊂ ∏

j D j (σ ).
Then, the locality of the dual functions implies

(
supp f ∪ supp v0 ∪ suppw0

) ⊂ BRσ ,
and we obtain

inf
w∈ŴL

‖SN f − w‖L2(τ ) ≤ inf
(̃u,ϕ̃)∈ŴL

(
‖uh − ũ‖L2(BRτ ∩Ω) + ‖ϕh − ϕ̃‖L2(BRτ ∩Γ )

)

� h−22−L (‖ f ‖L2(Ω) + ‖v0‖L2(Γ ) + ‖w0‖L2(Γ )

)

� h−22−L ‖ f ‖L2 .

Defining BH|τ×σ := XτσYT
τσ , the estimates (3.3) and ‖Λ‖ � h−d/2 together with

Lemma 3.3 then give the error bound
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∥
∥∥A−1

sym − BH
∥
∥∥
2

≤ Csp depth(TI)max

{∥∥
∥∥
(
A−1 − BH

) ∣∣∣
τ×σ

∥∥
∥∥
2

: (τ, σ ) ∈ P

}

≤ Csp depth(TI) ‖Λ‖2 max
(τ,σ )∈Pfar

sup
f∈L2:

supp( f )⊂∏
j D j (σ )

infw∈ŴL
‖SN f − w‖L2(τ )

‖ f ‖L2

� Csp depth(TI)h−(d+2)2−L

≤ CapxCsp depth(TI)h−(d+2) exp(−br1/(3d+1)).

This finishes the proof for the symmetric coupling.
The approximations to A−1

bmc and A
−1
jn are constructed in exactly the same fashion.

The different exponentials appear due to the different dimensions of the low-
dimensional space ŴL in Propositions 5.2 and 5.3. ��

6 Numerical results

In this section, we provide a numerical example that supports the theoretical results
from Theorem 2.13, i.e, we compute an exponentially convergent H-matrix approxi-
mant to an inverse FEM-BEM coupling matrix.

If one is only interested in solving a linear system with one (or few) different
right-hand sides, rather than computing the inverse—and maybe even its low-rank
approximation—it is more beneficial to use an iterative solver. TheH-matrix approx-
imability of the inverse naturally allows for black-box preconditioning of the linear
system. [5] constructed LU -decompositions in theH-matrix format for FEMmatrices
by approximating certain Schur-complements under the assumption that the inverse
can be approximated with arbitrary accuracy. Theorem 2.13 provides such an approx-
imation result and the techniques of [5,18–20] can also be employed to prove the
existence of H-LU-decompositions for the whole FEM-BEM matrices for each cou-
pling provided the Schur complements of all quadratic principal subblocks of the
system matrix exist. With certain stabilizations, see [1], this can be ensured.

We choose the 3d-unit cube Ω = (0, 1)3 as our geometry, and we setC = I. In the
following, we only consider the Johnson-Nédélec coupling, the other couplings can
be treated in exactly the same way.

In order to guarantee positive definiteness, we study the stabilized system (see [1,
Theorem 15] for the assertion of positive definiteness)

((
A −MT

1
2M − K V

)
+ ssT

)(
x
φ

)
=
(
f
g

)
, (6.1)

where the stabilization s ∈ R
N+M is given by si = 〈1, (1/2 − K )ξi 〉L2(Γ ) for i ∈

{1, . . . , N } and si = 〈1, Vχi 〉L2(Γ ) for i ∈ {N + 1, . . . , M}.
We stress that [1] shows that solving the stabilized (elliptic) system is equivalent

to solving the non-stabilized system (with a modified right-hand side). By Ast :=
A + bbT , we denote the stabilization of A, where b contains the degrees of freedom
of s corresponding to the FEM part.
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All computations are done using the C-library HLiB, [7], where we employed a
geometric clustering algorithm with admissibility parameter η = 2 and a leaf size of
25.

6.1 Approximation to the inverse matrix

The H-matrices are computed by using a very accurate blockwise low-rank approxi-
mation to

B :=
(

A −MT

1
2M − K V

)
+ ssT . (6.2)

Then, using H-matrix arithmetic and blockwise projection to rank r , the H-matrix
inverse is computed with a blockwise algorithm using theH-arithmetic from [22]. In
order to not compute the inverse of a dense matrix, we use the upper bound

∥
∥∥B−1 − BH

∥
∥∥
2

≤
∥
∥∥B−1

∥
∥∥
2
‖I − BBH‖2

as our error measure.
We also compute a second approximate inverse by use of theH-LU decomposition,

which can be computed using a blockwise algorithm from [4,29]. Tomeasure the error
without computing B−1, we compute

∥∥I − B(LHUH)−1
∥∥
2.

Figure 1 shows convergence of the upper bounds of the error and the growth of the
storage requirements with respect to the block-rank r for two different problem sizes.

Fig. 1 H-matrix approximation to inverse of FEM-BEMmatrix. Left: error vs. block rank r ; right: memory
requirement vs. block rank r ; top: N = 6959 (FEM-dofs), M = 3888 (BEM-dofs); bottom: N = 10648,
M = 5292
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We observe exponential convergence and linear growth in storage for the approximate
inverse using H-arithmetics and the approximate inverse using the H-LU decompo-
sition, where the H-LU decomposition performs significantly better. The observed
exponential convergence is even better than the asserted bound from Theorem 2.13.
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