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Abstract

We consider three different methods for the coupling of the finite element method
and the boundary element method, the Bielak-MacCamy coupling, the symmetric
coupling, and the Johnson—Nédélec coupling. For each coupling, we provide discrete
interior regularity estimates. As a consequence, we are able to prove the existence of
exponentially convergent H-matrix approximants to the inverse matrices correspond-
ing to the lowest order Galerkin discretizations of the couplings.

Mathematics Subject Classification 65F05 - 65N30 - 65N38 - 65F30

1 Introduction

Transmission problems are usually posed on unbounded domains, where a (possibly
nonlinear) equation is given on some bounded domain, and another linear equation
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is posed on the complement of the bounded domain. While the interior problem can
be treated numerically by the finite element method (FEM), the unbounded nature of
the exterior problem makes requires a different approach. A suitable method to treat
unbounded problems is provided by the boundary element method (BEM), where
the differential equation in the unbounded domain is reformulated via an integral
equation posed just on the boundary. In order to combine both methods for transmission
problems, additional conditions on the interface have to be imposed, and the precise
choice of these conditions leads to different couplings of the FEM and the BEM.
We study three different FEM-BEM couplings, the Bielak—-MacCamy coupling [9],
Costabel’s symmetric coupling [13,15], and the Johnson—-Nédélec coupling [27]. Well-
posedness and unique solvability of these formulation have been studied in, e.g.,
[1,32,35], where a main observation is that the coupled formulations are equivalent to
an elliptic problem.

Elliptic problems typically feature interior regularity known as Caccioppoli esti-
mates, where stronger norms can be estimated by weaker norms on larger domains.
In this paper, we provide such Caccioppoli-type estimates for the discretized prob-
lem. More precisely, we obtain simultaneous interior regularity estimates for the finite
element solution as well as for the single- and double-layer potential of the boundary
element solution (cf. Theorems 2.4-2.6). Discrete Caccioppoli-type estimates for the
FEM and the BEM separately can be found in our previous works [2,18-20]. While
the techniques for the FEM and the BEM part are similar therein, some essential
modifications have to be made to treat the coupling terms on the boundary.

Caccioppoli-type estimates are at the heart of the proof that the inverses of stiffness
matrices can be approximated by blockwise low-rank matrices. In this context, [8]
was the first to construct local, separable approximations of the Green’s function of
elliptic boundary value problems that converge at an exponential rate in the number of
terms. The technique relies on iterating local approximations and using a Caccioppoli
inequality on the continuous level. A projection then transfers this approximation to
the discrete level and results in exponentially convergent blockwise low-rank approx-
imations to the stiffness matrix up to the projection error. These results were further
generalized in [3,5,10]. [16] extended this technique from elliptic PDEs to pseudod-
ifferential operators. Fully discrete Caccioppoli inequalities, as developed here, allow
one to avoid the final projection step and yield exponential convergence in the block
rank. This approach was first developed for FEM-discretizations of elliptic PDEs in
[18] and extended to BEM-matrices in [19,20] and the fractional Laplacian in [28].
Here, we show also for the inverse of the FEM-BEM coupling matrix that it can be
approximated at an exponential rate in the block rank by blockwise low-rank matrices.
We adopt the specific setting of H{-matrices introduced in [23]. In comparison with
other compression methods, -matrices have the advantage that they come with an
additional approximate arithmetic that allows for addition, multiplication, inversion or
LU-decompositions in the H-matrix format; for more details, we refer to [21,22,24].

The paper is structured as follows: in Sect. 2, we present our model problem and
state the main results of the article, the discrete Caccioppoli-type interior regularity
estimates for each coupling, and the existence of exponentially convergent H-matrix
approximants to the inverse matrices corresponding to the FEM-BEM discretizations
of the couplings. Section 3 provides an abstract framework for the proof of low-
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rank approximability to inverse matrices using Caccioppoli-type estimates, which
can be applied for other problems as well. Section 4 is concerned with the proofs
of the Caccioppoli-type estimates. Section 5 verifies the assumptions of the abstract
framework of Sect. 3 for the three considered FEM-BEM couplings and consequently
shows the approximation results for the inverse stiffness matrices. Finally, Sect. 6
provides some numerical examples.

2 Main results

On a Lipschitz domain 2 ¢ R?, d = 2, 3 with polygonal (for d = 2) or polyhedral
(for d = 3) boundary I" := 952, we study the transmission problem

—div(C-Vu) = f in 2, (2.1a)
—Aut =0 in X, (2.1b)
u—u®™ = ug on I, (2.1¢)

(CVu - Vue’“) SV =@ on I, (2.1d)
Lt — O(x|™h as |x] — ooifd =3
blog|x| 4+ O(x|™") forbeRas|x| > o ifd = 2.
(2.1e)

Here, 2t := R4 \5 denotes the exterior of 2, and v denotes the outward normal
vector. For the data, we assume f € Lz(.Q), Uy € H1/2(F), Qo € H_I/Z(F), and
C e L*>®(£; ]Rd) to be pointwise symmetric and positive definite, i.e., there is a
constant Ce; > 0 such that

(Cx,x)y > Cen lIx113 . (22)

For d = 2, we assume diam £2 < 1 for the single-layer operator V introduced below
to be elliptic.

Remark 2.1 The radiation condition (2.1¢) is such that the representation form ut =
—V o+ Ku™ holds in 2% with ¢ = Vu®'. v (see, e.g., [33, Chap. 3.1]). Ford = 2,
the compatibility condition (f, 1);2(o) + (¢0, 1)72(r) = 0 ensures b = 0 in (2.1e).
See also [30, Thm. 8.9] for more on the radiation condition.

With the Green’s function for the Laplacian G(x) = —5- log |x| for d = 2 and
Gx) = 411 o for d = 3, we introduce the single-layer boundary integral operator

V e L(HY2(I"), HY2(I")) by

Vo(x) = /F G(x —y)p(y)dsy, xel.
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The double-layer operator K € L(H 172(ry, H'2(I")) has the form

K$(x) = /F (oG — Y)B()dsy, x €T,

where 9,(y) denotes the normal derivative at the point y. The adjoint of K is denoted
by K'. Finally, the hyper-singular operator W € L(H'/>(I"), H~'/2(I")) is given by

W (x) = —dugo /F (o G(x — Y)P(dsy, x €T

The single-layer operator V is elliptic ford = 3 and for d = 2 provided diam(£2) < 1.
The hyper-singular operator W is semi-elliptic with a kernel of dimension being the
number of components of connectedness of /". In addition to the boundary integral
operators, we need the volume potentials V and K defined by

Vo = [ Gl = yods,, 3 eRAT,

Ko@) := /Fa,)(y)G(x — Y)p(y)dsy, x e RANT.

Moreover, by yém we denote the interior trace operator (see [33, Thm. 2.6.8]) for £2. In
the following, in order to keep notation compact, we do not write trace operators, when
it is clear that they are used, e.g., we write Wu for u € H'(£2) instead of W(yému)
or omit them, when we are using scalar products on I.

In this paper, we study discretizations of weak solutions of the model problem refor-
mulated via three different FEM-BEM couplings: the Bielak-MacCamy coupling,
Costabel’s symmetric coupling, and the Johnson—-Nédélec coupling. All these cou-
plings lead to a variational formulation of finding (u, ¢) € H'(2) x H~!/ 2(ry=:X
such that

a(u, p; ¥, &) =g, ) VW, ¢) eX, 2.3)

where a : X x X — R is a bilinear form and g : X — R is a continuous linear
functional.

For the discretization, we assume that §2 is triangulated by a quasi-uniform mesh
T, = {1, ..., T;} of mesh width h := maxr; e7;, diam(T;). The elements T; € 7},
are open triangles (d = 2) or tetrahedra (d = 3). Additionally, we assume that the
mesh 7, is regular in the sense of Ciarlet and y-shape regular in the sense that we
have diam(7;) < y |T}] 1/d for all T; € Ty, where |T;| denotes the Lebesgue measure
of T;. By K, := {K1, ..., K5}, we denote the restriction of 7, to the boundary I,
which is a regular and shape-regular triangulation of the boundary.

@ Springer



Caccioppoli-type estimates and H{-matrix approximations... 853

For simplicity, we consider lowest order Galerkin discretizations in S'-!(7;,) x
$9.9(1C,), where

SYNTy) == {u e C(2): ulr € PI(T) VT € Tp},
SO0, == {u e L>(I') : ulg € Po(K) VK € Ky},

with P, (T') denoting the space of polynomials of degree (at most) p on an element 7" of
the triangulation. Welet B, :={£; : j =1,..., n}bethebasis of SU1(7;,) consisting
of the standard nodal hat functions, and we let Wy, :== {x; : j =1, ..., m} be the
basis of $%-0(K;,) that consists of the characteristic functions of the surface elements.
These bases feature the following norm equivalences:

cth®? x|y < 10Xl 2(0) < 2k X, VxeR", (2.4a)

sh V2 Nyl < 19yl agry < cah D2 lyll, Vy e R™ (2.4b)

for the isomorphisms @ : R” — SL1(7;),x — Z’}:l x;§jand¥ : R" — S0-9(KCy),
Yy 2 Y

Remark 2.2 We note that differently scaled bases can be employed as well, which
would just change the powers of  on the right-hand sides in the main result, Theo-
rem 2.13.

Finally, we need the notion of concentric boxes.

Definition 2.3 (Concentric boxes) A cube (for d = 3) or a square (for d = 2) will be
called a box. Two boxes Bg and By of side length R and R’ are said to be concentric
if they have the same barycenter and Bg can be obtained by a stretching of By’ by the
factor R/R’ taking their common barycenter as the origin.

Before we can state our first main results, the interior regularity estimates, we
specify the norm we are working with, an h-weighted norm equivalent to the H!-
norm. For a box By with side length R, an open set w C R4, and v € HY(Bg Nw),
we introduce

2 ) 2 2
|||v|”h,R,a) = h ”vv”LZ(Bme) + ”v”LZ(BRﬂa)) . (25)
For the case w = R9, we abbreviate Ny g me =2 lIllx, r and for the case w = ]Rd\F
we write |-l g ra\r =: lllln, g, re and understand the norms over Bg\I” as a sum

of integrals over Bg N £2 and Bg N £2°*. Moreover, for triples (u, v, w) € Hl(BR N
2) x H'(Bg) x H'(BR\I"), we set

2 . 2 2 2
G, v, W2 g = Nl g 2 + W02 & + Nl g e - 2.6)

We mention that # will be the interior solution, v be chosen as a single-layer potential
and w as a double-layer potential (which jumps across I"), which explains the different
requirements for the set w.
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2.1 The Bielak-MacCamy coupling

The Bielak-MacCamy coupling is derived by making a single-layer ansatz for the
exterior solution, i.e., u®™' = Vg in 2% with an unknown density ¢ € H~'/2(I").
For more details, we refer to [9]. This approach leads to the bilinear form

abme (1, 93 ¥, §) 1= (CVu, Vi) 1200y +{(1/2 = Ko, ) 2 )
= . 2y + Ve, Oy s (2.7a)
gome (W, &) == (f, ¥) 2y + (00, V) 2y — (w0, &) 2y - (2.7b)

Replacing H'(£2) x H~'/2(I") by the finite dimensional subspace S"!(7;) x
$9.9(fC,), we arrive at the Galerkin discretization of (2.7) of finding (up, ¢p) €
SUL(T) x §%0(Cy) such that

(CVun, Vyn) 2@y +{(1/2 = Kon ¥n) o)
= (f, ¥ndr2@) + (@0, W) 2y Y € SN (T, (2.8a)

(wns &) 2y — (Veon, @) r2ery = o, &) 2ry Y¥en € SO0 (K). (2.8b)

If the ellipticity constant of C satisfies Ce;; > 1/4, then [1, Thm. 9] shows that
the Bielak-MacCamy coupling is equivalent to an elliptic problem with the use of a
(theoretical) implicit stabilization. Therefore, (2.8) is uniquely solvable.

The following theorem is one of the main results of our paper. It states that for the
interior finite element solution and the single-layer potential of the boundary element
solution, a Caccioppoli type estimate holds, i.e., the stronger H'-seminorm can be
estimated by a weaker h-weighted H'-norm on a larger domain.

Theorem 2.4 Assume that Ceyp > 1/4in(2.2). Lete € (0, 1) and R € (0, 2 diam($2))
be such that % < %, and let B and B(1 )R be two concentric boxes. Assume that the
data is localized away from B(14¢)R, i.e., (supp f Usupp @oUsupp ug) N B(i4+e)r = 9.
Then, there exists a constant C depending only on 2, d, C, and the y -shape regularity
of the quasi-uniform triangulation Ty, such that for the solution (uy, ¢p) of (2.8) we
have

~ C ~
IVunll 2 aeney + [V VRl 2, < R <|||“h|||h,(1+s>R,rz +[[Ven “|h,(1+8)R> ;

where the norms on the right-hand side are defined in (2.5).

With the bases By, of S©1(7,) and W, of $%9(/Cy,), the Galerkin discretization (2.8)
leads to a block matrix Apge € RO+ (ntm)

A imT — kT
Apme = (M 2 v ) ) 2.9
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where A € R™ is given by A;; = (CVEj,Vé,-)LZ(Q), M e R™" by M;; =
(& xi)acry K € B by Kij = (K&, xj),2(p) and V € R™™ by V;; =
(V Xjs Xi) L) As mentioned in the introduction, we omitted the trace operators,
i.e., in M and K, &; is understood as y(;mf;‘i.

2.2 Costabel’s symmetric coupling

The coupling is based on the representation formula u® = —V¢ + Ku®' in 2%
with ¢ = Vu®'. v (see, e.g., [33, Chap. 3.1]). Coupling the interior and exterior
solution in a symmetric way (which uses all four boundary integral operators) results
in Costabel’s symmetric coupling, introduced in [15,25]. Here, the bilinear form and
right-hand side are given by

asym (U, @3 ¥, €) 1= (CVu, V) 12(q) +{(K' = 1/2)0, ) 5y + (Wi, ¥) 12

+ (/2= K)u. O p2ry + (Ve O 2y » (2.10a)
gsym(V, &) == ([, V) 122y + (w0 + Wuo, ¥) 2y + ((1/2 = K)uo, &) 2y
= (f. V)2 + (o, V) 2y + (wo, O 2y - (2.10b)

The Galerkin discretization leads to the problem of finding (uy, ;) € SV1(7p) x
§9-0(K;,) such that

(CVup, Vlﬁh)LZ(Q)‘i‘((K/_ 1/2)¢n, 1/fh>Lz(1~)+(WMh, 1//h>L2(1")
=(f, Wh)LZ(_Q)‘i‘(UO, 1;WL)LZ(['), (2.11a)
((1/2 = K)up, &n) p2cry + Vons Sn) g2y = (wo, &n) L2 (2.11b)

for all (. 1) € S (Th) x S%O(K).

With similar arguments as for the Bielak-MacCamy coupling, [1] proves unique
solvability for the symmetric coupling for any Ce¢j; > O.

The following theorem is similar to Theorem 2.4 and provides a simultaneous
Caccioppoli-type estimate for the interior solution as well as for the single-layer poten-
tial of the boundary solution and the double-layer potential of the trace of the interior
solution. Here, the double-layer potential appears in addition since all boundary inte-
gral operators, especially the hyper-singular operator, arise in the coupling.

Theorem 2.5 Let ¢ € (0, 1) and R € (0, 2diam(S2)) be such that % < %, and let
B and B(14¢)r be two concentric boxes. Assume that the data is localized away
Sfrom B(14¢)R, i.e., (supp f Usuppvp Usupp wo) N Bi4+¢)r = Y. Then, there exists a
constant C depending only on §2, d, C and the y -shape regularity of the quasi-uniform
triangulation Ty, such that for the solution (up, ¢p) of (2.11) we have

IVunll2srne) + va‘ph HLZ(BR) + ”VI?W! “LZ(BR\F)

C ~ -
< — llwn. Von Kun)ll, 140z 2.12)
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where the norm on the right-hand side is defined in (2.6).

With the bases B, of S11(7;,) and W, of S%°(K},), the Galerkin discretization
(2.11) leads to a block matrix Agym € RHmx(+m)

A+W KT - lMT>
Agym = (1 2 , (2.13)
v sM—K \

where A, M, K are defined in (2.9), and W € R"*" is givenby W;; = Wéj, E, 12
As mentioned in the introduction, we omitted the trace operators. Thus, the matrix V>V
is assembled with respect to the traces of basis functions in the volume £2.

2.3 The Johnson-Nédélec coupling

The Johnson—-Nédélec coupling, introduced in [27] again uses the representation for-
mula for the exterior solution, but differs from the symmetric coupling in the way
how the interior and exterior solutions are coupled on the boundary. Instead of all four
boundary integral operators, only the single-layer and the double-layer operator are
needed. The bilinear form for the Johnson—-Nédélec coupling is given by

ain(u, 93 ¥, §) == (CVu, Vr) 1200y — {0, ¥) 12y

((1/2—K)u,é‘)Lz(p)—l—(V(p,é‘)Lz(r), (2143)
gin(W, &) = (f, ¥) 22y + (wo. V) p2ry + ((1/2 = K)uo, &) 2y
= (. ¥y + (@0, ¥) 2y + (wo. ) 2y - (2.14b)

The Galerkin discretization in S1(7;) x §%0(KC;,) leads to the problem of finding
(un, on) € SV () x §90(KC,) such that, for all ¥, € S (7,) and ¢, € SO(K),).

(CVup, Vym) 12y — (on, Ynd2ry = (s ¥ 122y + (0. Y p2ry » (2.152)
((1/2 = K)up, fh)LZ(r) + (Von, {h)[)(r) = {(wo, fh)LZ(r) . (2.15b)

As in the case of the Bielak-MacCamy coupling, the Johnson—Nédélec coupling
has a unique solution provided Ce > 1/4, see [1].

The following theorem gives the result analogous to Theorems 2.4 and 2.5 for the
Johnson—-Nédélec coupling. Similarly to the symmetric coupling, we simultaneously
control a stronger norm of the interior solution and both layer potentials by a weaker
norm on a larger domain.

Theorem 2.6 Assume that Ceyp > 1/4in(2.2). Lete € (0, 1) and R € (0, 2 diam($2))
be such that % < %, and let B and B(| ) be two concentric boxes. Assume that the
data is localized away from B(11¢)R, i.e., (supp f Usupp @oUsupp wo) N B(i4+e)r = 9.
Then, there exists a constant C depending only on $2, d, C and the y -shape regularity
of the quasi-uniform triangulation Ij, such that for the solution (uy, ¢p) of (2.11) we
have
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IVunll2gene) + | VVen ||L2(BR) + “Vguh”LZ(BR\F)

< C(sR)2 |||(uh, Von, E”h)mh,(us)R’ (2.16)

where the norm on the right-hand side is defined in (2.6).

With the bases Bj, of S11(7;,) and W, of S%°(K},), the Galerkin discretization
(2.15) leads to a matrix Aj, € ROHm)>x(tm)

A M7
Ajn = <%M_K v > (2.17)

where A, M, K, V are defined in (2.9).

2.4 'H-Matrix approximation of inverses

As a consequence of the Caccioppoli-type inequalities, we are able to prove the exis-
tence of H-matrix approximants to the inverses of the stiffness matrices corresponding
to the discretized FEM-BEM couplings.

We briefly introduce the matrix compression format of H-matrices. For more
detailed information, we refer to [6,11,23,24]. The main idea of H-matrices is to
store certain far field blocks of the matrix efficiently as a low-rank matrix. In order to
choose blocks that are suitable for compression, we need to introduce the concept of
admissibility.

Definition 2.7 (Bounding boxes and n-admissibility) A cluster T is a subset of the
indexsetZ = {1, 2, ..., n+m}.Foraclustert C Z,aset Bg, C R is called abounding
box if Bg, is an axis-parallel hyper cube with side length R, and U;¢, supp&; C Bg,
as well as U;¢; supp x; € Bg, .

For n > 0, a pair of clusters (t, o) with 7, 0 C 7 is called n-admissible, if there exist
bounding boxes Bg, and Bg_ such that

max{diam(Bg, ), diam(Bg,)} < n dist(Bg,, Bg,).

Remark 2.8 Definition 2.7 clusters the degrees of freedom associated with the trian-
gulation 7}, of £2 and the triangulation Cj, of I" simultaneously.

The symmetry of the matrix Agy, of the symmetric coupling also allows one to use
the weaker admissibility condition min{diam(Bg, ), diam(Bg, )} < n dist(Bg,, Bg,).

The block-partition of H-matrices is based on so-called cluster trees.

Definition 2.9 (Cluster tree) A cluster tree with leaf size nieass € N is a binary tree
Tz with root Z such that each cluster T € Ty is either a leaf of the tree and satisfies
|T] < nyear, Or there exist disjoint subsets t/, 7”7 € Tz of 7, so-called sons, with
7 = 1/ U 1”. We denote the set of sons of T by S(7) := {‘L'/, r”} . Here and below,
|7| denotes the cardinality of the finite set t. The level function level : T — Ny is
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inductively defined by level(Z) = 0 and level(z’) := level(t) + 1 for / a son of 7.
The depth of a cluster tree is depth(T7) := max,ct; level(t).

Definition 2.10 (Block cluster tree, sparsity constant and partition) Let Tz be a cluster
tree with root Z and 1 > 0 be a fixed admissibility parameter. The block cluster tree
Tz 7 is a tree constructed recursively from the root Z x Z such that for each block
T X 0 € Tzy7 with 7, 0 € T7, the set of sons of T x ¢ is defined as

]9 if T X o is p-admissible or S(t) = ¥ or S(o) = 0,
ST xo0):= {S(‘L’) x S(o) else.

The sparsity constant Cgp of a block cluster tree, see, e.g., [22,26], is given as

max;eT, |{0’ €Ty :txo0€Try7}

Csp := max
P {maxgeqrz {r €Tz : T x 0 € Try1}

’}. (2.18)

The leaves of the block cluster tree induce a partition P of the set Z x Z. For such a
partition P and a fixed admissibility parameter n > 0, we define the far field and the
near field as

Par :={(r,0) € P : (t,0) isn-admissible}, Ppear := P\ Prar- (2.19)

Remark 2.11 For our purposes, a precise and efficient construction of a partition is not
of interest; it suffice to have a given partition and decomposition into near field and far
field at hand. As such, we call a partition satisfying the conditions of Definitions 2.10
a partition of Z x Z that is based on a cluster tree T7.

Definition 2.12 (H-matrices) Let P be a partition of Z x 7 that is based on a cluster
tree T7 and n > 0. Amatrix A € R@+m)x(nxm) jg an H-matrix with blockwise rank r,
if for every n-admissible cluster pair (7, o) € Pg,,, we have a low-rank factorization

A|‘L’X(T = X‘[O’YT

70’

where X;, € RIT™" and Y,, € RIOI>7,

Due to the low-rank structure on far-field blocks, the memory requirement to store
an H matrix is given by O(Csp depth(Tz)r(n + m)). Provided Cs, is bounded and
the cluster tree is balanced, i.e., depth(T7) = O(log(n 4+ m)), which can be ensured
by suitable clustering methods (e.g. geometric clustering [24]), we get a storage com-
plexity of O(r(n + m) log(n + m)).

The following theorem shows that the inverse matrices A];nllc, As’y%n, and Aj:ll cor-
responding to the three mentioned FEM-BEM couplings can be approximated in the
‘H-matrix format, and the error converges exponentially in the maximal block rank
employed.
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Theorem 2.13 For a fixed admissibility parameter n > 0, let P be a partition of T x T
that is based on the cluster tree Tt. Then, there exists an H-matrix By with maximal
blockwise rank r such that

br — _prl/@d+1)
HAbrIllC — By Hz < Capx Csp depth(T7)h Q2+d) ,~br

for the Bielak—MacCamy coupling. In the same way, there exists a blockwise rank-r
‘H-matrix By such that

_ _ __hy1/@Bd+1)
HASyln ~ By H2 < Capx Csp depth(Tp) = @) g0

for the symmetric coupling and

1/(6d+1)

5! - By H2 < Capx Cip depth(Tp)h =+ e=br

for the Johnson—Nédélec coupling. Here, |-||, denotes the spectral norm and the
constants Cypx > 0 and b > 0 depend only on 2, d, C, n, and the y-shape regularity
of the quasi-uniform triangulations T, and KCj,.

Remark 2.14 The previous approximation result can also be formulated in norms other
than the spectral norm, e.g., the Frobenius norm ||-||  that is commonly used in the
H-matrix literature. Using the norm equivalence ||Al, < ||Allr < /N ||A]|, for

arbitrary A € RY*" shows that this simply produces a different (algebraic) prefactor
to the exponentials in Theorem 2.13.

3 An abstract setting for 7{-matrix approximation to inverse matrices

Analyzing the procedure in [2,18,19] shows structural similarities in the derivation of
‘H-matrix approximations based on low-dimensional spaces of functions: A single-step
approximation is obtained by using a Scott—Zhang operator on a coarse grid. Iterating
this argument is made possible by a Caccioppoli-inequality, resulting in a multi-step
approximation. The key ingredients of the argument are collected in properties (A1)—
(A3) below. We mainly follow [2].

3.1 Abstract setting: from matrices to functions

We start by reformulating the matrix approximation problem as a question of approx-
imating certain functions from low dimensional spaces. Let X be a Hilbert space of
functions. We consider variational problems of the form: find u € X such that

aw, ) =(f.¥) VyeX
for given a(-, -) : X x X — R, f € X'. Here, the bold symbols may denote vectors,

e.g.,u= (u,¢)in(2.3)forX = HY(2)x H~Y2(I"),and (-, -) denotes the appropriate
duality bracket.
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For fixed k, £ € N (given by the formulation of the problem), we define L? :=
L2(2)F x L*(N)t.

Definition 3.1 Let Xy C X be a finite dimensional subspace of dimension N that
is also a subspace Xy C LZ2. Then, the linear mapping Sy : X' — Xy is called
the discrete solution operator, if for every f € X/, there exists a unique function
Sn f € Xy satisfying

alSNf.¥) =(f.¥) V¥ eXy. 3.1
Let {¢;,..., o5} S Xu be a basis of Xy. We denote the Galerkin matrix A €
NxN
R by
N
A= (a(¢]7 ¢i))i,j:1 . (32)

The translation of the problem of approximating matrix blocks of A~! to the problem
of approximating certain functions from low dimensional spaces essentially depends
on the following crucial property (A1), the existence of a local dual basis.

(A1) There exist dual functions {Af, ..., Ay} C L2 satisfying

N
(¢;.x;)=6i; and H ij)vj HL2 < Cap(N) [Ix]l»
=1

foralli,j € {I,...,N} and x € RY. Moreover, we require the A; to have
local support in the sense that #{j : supp(X;) N supp(r;) # @} < 1 for all
ie{l,...,N}.

We denote the coordinate mappings corresponding to the basis and the dual basis by

o {RN—> Xy {RN—> L2
: N ) : N .

X |—>Zj=1xj¢j X |—>Zj=1lej
The Hilbert space transpose of A is denoted by A”. Moreover, for r {1, ..., N},
we define the sets D;(t) := U;e; supp A;, j, where A; ; is the j-th component of A;,
and write L?(7) := [T{2] L2(D; ().

In the following lemma, we derive a representation formula for A~! based on three
linear operators A7, Sy and A.

Lemma 3.2 ([2, Lemma 3.10], [2, Lemma 3.11]) The restriction of AT 10 Xy is the
inverse mapping ®~'. More precisely, for all x,y € RN and v € Xy, we have

(Ax, @y) = (X,¥),, AT ox = X, oAV =v.
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The mappings A and AT preserve locality, i.e, for t C {1, ..., N} and x € R with
{i :x; #0} C 7, we have supp(Ax) C ]—[j Dj(z). Forv e L2, we have

HATV

< |[All v .
P AN NVIIL2 ()

Moreover, there holds the representation formula
A 'x=ATSyAx  VvxeRV.

Proof For sake of completeness, we provide the derivation of the representation for-
mula from [2, Lemma 3.11]. Using that AT = @~! Ix,y and the definition of the
discrete solution operator, we compute

<AAT3NAx, y>2 — a(@ AT Sy Ax, DY) = a(Sy Ax, DY) = (Ax, DY) = (X, ¥)>

for arbitrary y € RV, O
This lemma is the crucial step in the proof of the following lemma.

Lemma 3.3 Let A be the Galerkin matrix, A be the coordinate mapping for the dual
basis, and Sy be the discrete solution operator. Lett x o C {1,..., N} x{l,..., N}
be an admissible block and W, C L? be a finite dimensional space. Then, there exist
matrices Xy € R Yoo € RO of rank r < dim W, satisfying

infwew, 1S5S = Wil
< hAlP sup = _—

feL2: I1f 1l ’
supp(f)C[]; Dj(o)

-1 T
[A exo = Xeo YT,

where |||, denotes the spectral norm.

Proof We use the representation formula from Lemma 3.2. With the given space
W,, we define X;, € R!7*" columnwise as vectors from an orthonormal basis of
the space W= (ATW,)|;. Then, the product X;,XZ_ is the orthogonal projection
onto W. Defining Yr5 := (A" |rx0)? Xz, we can compute for all x € RV with

i x;#0}Co
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H A oo — Xeo YT )Xo

- H I — X X7 YA %),

o

(1) £2(7)

— inf H(A‘lx)lg —W
weWw
Lem@ 3.2

()

o, [T ax—w

Ez(r)
<|lA 1nf 8 AX — W .

Dividing both sides by ||x||,, substituting f := Ax and using that the mapping A
preserves supports, we get the desired result. O

Finally, the question of approximating the whole matrix A~! can be reduced to
the question of blockwise approximation. For arbitrary matrices M € RV*" and an
arbitrary block partition P of {1,..., N} x {1, ..., N} this follows from

IMll, < N?max{[Mlrxoll, : (r,0) € P}.
If the block partition P is based on a cluster tree Tz, the more refined estimate
M|, < Csp depth(T7) max{||M|; x5l : (t,0) € P} (3.3)

holds, see [22], [24, Lemma 6.32], [11].
In Sect. 5, we give explicit definitions of the dual basis for the FEM-BEM coupling
model problem.

3.2 Abstract setting: low dimensional approximation

We present a general framework that only uses a Caccioppoli type estimate for the
construction of exponentially convergent low dimensional approximations.

Let M € N be fixed. For R > 0 let Bg := {B,-},.I‘i1 be a collection of boxes, i.c.,
B; € {BRN 2, Bg, Bg\I'} foralli = 1,..., M, where Bg denotes a box of side
length R. The choice, which of the three sets is taken for each index i, is determined
by the application and fixed.

We write B ¢ B := {Bi’}i"i1 meaning that B; C B/ foralli =1,..., M. Fora
parameter § > 0, we call B?e = {Bf}f.‘i | a collection of §-enlarged boxes of Bk, if it
satisfies

Blf3 € {Br+y2s N 82, Bryas, Br+os\I'} Yi=1,..., M, and B% D Bg,

where B and B s are concentric boxes. Defining diam (Bg) := max{diam(B;), i =
I,..., M}, we get

diam (%) < diam(Bg) + 2v/ds. (3.4)

In order to simplify notation, we drop the subscript R and write B := By in the
following abstract setting.
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We use the notation H! (B) to abbreviate the product space H' (B) = ]_[f‘il HY(B)),
and write ||V||%{,(B) = Zlﬁil ||V,'||%11(Bi) for the product norm.

Remark 3.4 For the application of the present paper, we chose boxes (or suitable sub-
sets of those) for the sets B;. We also mention that different constructions can be
employed as demonstrated in [2], where a construction for non-uniform grids is pre-
sented and where the metric is not the Euclidean one but one that is based on the
underlying finite element mesh.

In the following, we fix some assumptions on the collections B of interest and the
norm |[|-||z on B we derive our approximation result in. In essence, we want a norm
weaker than the classical H'-norm that has the correct scaling (e.g., an L?-type norm).

(A2) Assumptions on the approximation norm ||-|| g: For each B, the Hilbertian norm
l-ll 5 is a norm on H' (B) and such that for any 8§ > 0 and enlarged boxes B° and
H > 0 there is a discrete space Vy 35 C H!(B%) of dimension dim Vup <
Caim (diam(B?)/ H)M? and a linear operator Qp : H'(B%) — V ps such that

IV — Quvlls < CauHIVVI 280y + 67 IVl 3)

with constants Cdim, CQap > 0 that do not depend on B, B% 8, and N.
Finally, we require a Caccioppoli type estimate with respect to the norm from (A2).

(A3) Caccioppoli type estimate: For each B, § > 0 and collection B° of §-enlarged
boxes with § > Cse(N) with a fixed constant Cse(N) > 0 that may depend
on N, there is a subspace M, (3°) ¢ H' (%) such that for all v € Hj, (%) the
inequality

diam(B)*~!

||VV||L2(B) < Ccac 5

vl zs (3.5)
holds. Here, the constants Ccye > 0 and @ > 1 do not depend on B, B3, 5, and N.
We additionally assume the spaces H, (B%) to be finite dimensional and nested,
ie., H,(B) Cc Hy(B) for B C B.

By I1}, 5, we denote the orthogonal projection IT), 5 : H'(B) — H;(B) onto that

space with respect to the norm |[|-[| g, which is well-defined since Hj, (B) is closed by
assumption.

Lemma 3.5 (Single-step approximation) Let 2diam(§2) > § > 2Cse(N) with the
constant Cset(N) from (A3), B be a given collections of boxes and B C BY? c B?
be enlarged boxes of B. Let ||-llgs be a norm on H!(B%) such that (A2) holds for
the sets B C B%?. Let v e Hy,(B%) meaning that (A3) holds with the collection
B replaced by B%/? therein. Then, there exists a space W1 of dimension dim W <

. S aMd
Cssa (_dlan;(B )) such that
inf || Iz < : vl
m V—W — IV 5 .
W€W1 B = 2 B
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Proof We set Wy := IT, sQuHp B% ¢ Vy ps. Since v e Hj, (%), we obtain from
(A2) and (A3) that

IV = T 50uv|l5 = |50 — Qv
< IV = Quvliz < CauH (IVVI 2 + 257" IVlis0)
diam (8%/2)~!

<C CQap Ccac s

H vz (3.6)

with a constant C dependlng only on §2 since @ > 1 and 6 < 2diam($2). With the
choice H = we get the asserted error bound. Since Wi C

2C1CdeCCdL diam(Bd)*—1°
Vs and by choice of H, we have

‘ diam(B%)\ "' diam(B%)*\ "'
dim Wy < Cgim <T> < Cdim (ZCICQapCCaCT
<diam(85)>“’”"
= Coa | —— s
8
which concludes the proof. O

Iterating the single-step approximation on concentric boxes leads to exponential
convergence.

Lemma 3.6 (Multi-step approximation) Let L € N and § > 2Cse(N) with the
constant Cset(N) from (A3). Let B be a collection of boxes and BL 5 Ba collection
of 8 L-enlarged boxes. Then, there exists a space Wi C H;,(BL) such that for all
v € Hp(BL) we have

. -L
inf Jlv—wlg <27 Ivligs ,
WEWL

and, with Cl; = 24/dCys,

diam(B)\ aMd+1
dim Wy, = Cjin (L &())a .

Proof The assumptions on /3 and 3L allow for the construction of a sequence of nested
enlarged boxes B C B cp¥c.. . cpiL satisfying diam(B¥) < diam(B) + C¥3.

We iterate the approximation result of Lemma 3.5 on the sets B ¢ =1L1,.. 1.
For ¢ = L, Lemma 3.5 applied with the sets B~1% < B%L provides a subspace

. ) aMd
Vi CHu(B) with dim V) = Cuy (2B ) such that

_inf |Iv=Villge-ns <27 Ivllgse - (3.7
V1€V1

@ Springer



Caccioppoli-type estimates and H{-matrix approximations... 865

For V| € Vi, we have (v — V) € H;,(BL D) 50 we can use Lemma 3.5 again with
the sets BL 2% « BL=D3 and get a subspace Vs of Hy,(BL~2%) with dim V, <

am(BL—D3 o
Cssa(dlm(lfs—))aMd. This implies

1
inf _inf [I(v—V1) —Vallga-2s <27 lIlf IV =il gz-ns <272 IVllgs -
VoeVavieV,
(3.8)

L
Continuing this process L — 2 times leads to the subspace Wy, := @ V, of Hy, (B‘SL )
=1
with dimension

dim W, < Cya Z (—dlam(Bw) )aMd XL: (dlam(B) +e2vd )

=1 g
diam(B)\ eMd+1
< Cua2Vd(L + IT()) :
which finishes the proof. O

4 The Caccioppoli-type inequalities

In this section, we provide the proofs of the interior regularity estimates of The-
orems 2.4-2.6. The techniques employed are fairly similar to [18,19], where
Caccioppoli-type estimates for FEM and BEM are proven. Nonetheless, in the case of
the FEM-BEM couplings, the additional terms in the bilinear forms arising from the
coupling on the boundary need to be treated carefully.

4.1 Preliminary estimates

In the following, we collect some well-known facts about the volume potential
operators V, K and the boundary integral operators V, K, K', W as well as some
super-approximation estimates and inverse type inequalities for the volume poten-
tials. We assume that " is Lipschitz.

For details concerning the following mapping properties, we refer to [33, Chap. 3]
and [34, Chap. 6].

— With the interior trace operator y&“‘ (for £2) and exterior trace operator yg’“ (for
R?\2), we have

" Vo = Vo =5V,
yo"Ku=(=1/2+Ku and y"Ku=(1/2+Ku, @&
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which implies the jump conditions across I”
Vel i=y5" Vo — " Ve =0, [yKul =u. 4.2)

— Similarly, with the interior y{"u := yI"Vu - v and exterior conormal derivative

yu := y§Vu - v (v is the outward normal vector of £2), we have

yi'Wo =(1/2+Ke and yXVe=(-1/2+Kg,
Yi"Ku = —Wu =y Ku, 4.3)

and consequently the jump conditions
Vel i= Ve — 1" Vo = —¢, [nKul=0. (4.4)

— The potentials \7<p and K u are harmonic in R? \I" and are bounded operators (see
[33, Chap. 3.1.2])

. H—1/2+S(F) — H1+S(Rd),

loc

CHYPS (DY > HITS@®RINT),  Is| < 1)2. 4.5

loc

"‘/’
K

— For |s| < 1/2 we have the boundedness for the boundary integral operators (see

[14])

V : H71/2+S(1ﬂ) N H1/2+A(F)’ K . H1/2+A(I'V) N H1/2+S(F),
W HY*S(ry - HV2S (). (4.6)

In the following, we use the notation < to abbreviate < up to a constant C > 0
which depends only on §2, the dimension d, the coefficient C in the model problem,
and the y-shape regularity of 7;,. Moreover, we use = to indicate that both estimates
< and 2 hold.

We continue with a classical approximation result, so-called super-approximation,
see, e.g., [31,37].

Lemma4.1 Let I{ : L2(F) — S90(K,) be the L2(F)-orthogonalprojection. Then,

there is C > 0 depending only on the y-shape regularity of the triangulation and I’
such that for any discrete function vy, € S®°(KCy) and any n € W-°(I")

I = 1 i) | -1y < C2 IV ooy W2 resuppiny - @7

Proof The main observation is that, on each element K € K, we have Vyr,| g = 0.
Therefore, a standard approximation result provides

[ = 1 )| 2y S HIVOYDII 2 k) S IVl 2k) - (48)
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Using the orthogonality and approximation properties of the L>-projection, we have

<77Wh - I{(UWh)a ¢>L2(F)

r
N — I, M) g-1,2 = sup
“ ”H &) peH2(IN) ||§0||H1/2(F)
<77‘ﬁh - I{(UWh)a (2 I[¢>L2(F)
= sup
peH2(IN) ”(p”H'/Z(F)
_qr
< le -1, ‘p”L2(1‘)

r
N — 1, ¥n) sup
” h ”LZ(F) pern 2y el

Sk |y — Ihr(nlﬂh)HLz(F)'

Together with (4.8), this completes the proof. O

Similarly, there also holds a super-approximation result for the nodal interpolation
operator.

Lemma4.2 Let 1}{2 1 C(82) — SY1(Tp) be the nodal interpolation operator. Then,
there is C > 0 depending only on the y-shape regularity of the triangulation and §2
such that for any discrete function vy, € SV (T) and any n € W (£2)

|non — 1 Gpow) | HE(Q)

< ch** <||V77“L°°(.Q) IV nll 2 suppeny) + H DZUHLOQ(Q) ||Uh||L2(supp(n))> 4.9)

fork =0, 1, where H*(2) := L*(2).

Proof Oneachelement T € 7;,, we have D2v, |7 = 0. Therefore, the standard approx-
imation result for nodal interpolation gives

[non — 17 Grow) | HET) S R nvnl g r)

Sh (H (D*nyu|

L2(T) +IVn - VUhHLZ(T)) s

and summation over all elements concludes the proof. O

In the proof of the Caccioppoli type inequality, we need the following inverse
inequalities from [19, Lemma 3.8] and [20, Lemma 3.6].

Lemma4.3 ([19, Lemma 3.8], [20, Lemma 3.6]) Let B C Bpg' be concentric boxes
with dist(Bg, 0 Bg') > 4h. Then, for every vy, € $9.9(1C,) and every vy, € sz,
we have

1l 2senry S 02 [V V] 208, - (4.10)
~ 3 ~ 1 ~
” yiKvp HLZ(BRmF) Sh V2 (”Vth ”LZ(BR/) + m ”th ”LZ(BR’)) :
4.11)
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Combining Lemma4.1 with Lemma 4.3 (assuming supp n C Br), we obtain estimates
of the form

[ = 1 v | -2y S BNVl Loy [V VR 2, - (4.12)

Remark 4.4 An inspection of the proof of (4.10) [20, Lemma 3.6] shows that the
main observation is that K vy is harmonic. The remaining arguments therein only
use mapping properties and jump conditions for the potential K and can directly be
modified such that the same result holds for the single-layer potential as well, i.e., for
every ¥, € S%0(K;), we have

~ B ~ 1 ~
”VlVI/’h ||L2(BRmr) Sh 12 (”VV‘/”I ”LZ(BR/) + m “th HL2(BR’)> :

4.13)

4.2 The Bielak-MacCamy coupling

With the help of a localized ellipticity result, the discrete variational formulation, and
super-approximation, we are able to prove Theorem 2.4.

Proof (Proof of Theorem 2.4) In order to reduce unnecessary notation, we write (u, ¢)
for the Galerkin solution (u,, ¢5,). The assumption on the support of the data implies
the local orthogonality

abme (, 03 Ui, &n) =0 Y, &) € SY1(Tp) x S™0(Kh)
with  supp ¥y, supp & C B(i+6)R- (4.14)

Letn € C(‘)’O(]Rd) be a cut-off function with suppn S B4s/4)r, # = 1 on Bg,
0<n<1l,and ”Djn“LN(B(H(;)R) < (8+Uf for j = 1,2. Here, 0 < § < ¢ is such
that % < %. We note that this choice of § implies that | J{K € K, : suppn N K #
#} C B(1+5/2)r- In the final step of the proof, we will choose two different values for
8 (< ¢) depending on ¢ - one of them, § = §, explains the assumption made on ¢ in
the theorem.

Step 1: We provide a “localized” ellipticity estimate, i.e., we prove an inequality of
the form

IV 1220, + [V 0V 0) |72

< apme(u, ¢; nzu, n2¢) + terms in weaker norms.

See (4.25) for the precise form. Since the ellipticity constant Cej; of C satisfies Cej >
1/4, we may choose a p > 0 such that 1/4 < p/2 < Cej. This implies C, :=
min{1 — %, Cel — %} > 0, and we start with

@ Springer



Caccioppoli-type estimates and H{-matrix approximations... 869

(Can = 5) 1V 0u0I22 0 + (1 p) IV 70) |32 ga)

< Car V)220, + HV(nV@ ||iz(Rd)

1 ~ 2
Young’s inequality implies
1 ~ 2 P 5 ~
2 VOV 120y = 5 IV 2y = = [VOVO) | o) IV (101 2(e)
< —(VOV), Vo) o) - (416)

Inserting (4.16) into (4.15) leads to
~ 2 ~ 2
Co IV 200y + Co [VOVO) |20y < [V OV 1250, + Cen IV ()72 g,
— (YOV), Vo) 2, (4.17)
An elementary calculation shows
(V7). V)20, = (VP Vo) | o

Since the single-layer potential is harmonic in £2, integration by parts (in £2) and
"V =1/2+ K'lead to

Ve, v 2> =<““ > =<12 K’ ,2> @1
(Vo vorw),, =" Volu), = {024 KDgnu), o @19)

Similarly, with integration by parts (in £2 and £2°*') and the jump condition of the
single-layer potential we obtain

V0T 2@, = (V70 V02 T) |, + (I T, T T0), 2 50

L2(RY)
(Vo] wve) , .+ DTo. (VM T) 2y

— 2 v %
= (Vo) . HODTe (I T0) g, (420)
Moreover, the symmetry and positive definiteness of C implies

Cen IIV(nu)IILz(Q) (CV(qu), V(nu)) 120y

_ <cw, Y u)>L2(9) (YU, (V) 2y . (421)
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Plugging (4.18)—(4.21) into (4.17), we infer

Co IV 22, + Co [VV O 72 0,

2 2
= (Cvu.vrw) , o+ OO Iy +(Vende)
~ 2 ’ 2
S N PR (R ST
+ (Ve (Ynu) 2 ) = (VD Vo, V) 2 o)
5 o2

= ame(u, 93 1°u, 1°9) + (CVmu, (V)u) 2@y + (VD V | 2 ga)

+ (VVo, (Vmu) 2oy = (VD Ve, Vo) 1 g - (4.22)

Young’s inequality and || V1| o ey < 5% imply

~ C ~
= ||V(77v§0) “LZ(Q) ”(Vn)u”LZ(Q) + ((ST)Z ||u||L2(B(1+5)Rﬁ.Q) “V(’0||L2(B(1+5)R)

~ 2 C ~ 2
- (SR)Z (”u”i2(3(1+5)Rﬁﬂ) + ”Vw”Lz(B(l+8)R)) + Tp HV(T’}V@) HLZ(Rd) ’
(4.23)

as well as
(T 70, Vo) o | = 19170] 20y IV R0 1120

2C 1~ 2 Cp 2
= 7 170z + LIV O g @424

Absorbing the gradient terms in (4.23)—(4.24) into the left-hand side of (4.22), we
arrive at

V@122, + [ Y070 |72 50,

1 ~ 2
.2 2
5 abmc(ua Y;nu,n (p) + W ”VgDHLZ(B(lJra)R)

+ (4.25)

- 2
(8R)? lu ”LZ(B(HS)RWQ) )

Step 2: We apply the local orthogonality of (u, ¢) to piecewise polynomials and use
approximation properties.

Let I : C(22) — S"1(7}) be the nodal interpolation operator and /;/ the L*(I")-
orthogonal projection mapping onto S*(fC;,). Then, the orthogonality (4.14) leads
to
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Aome (1, @3 171, 17Q) = apme (, @3 n*u — 12 (%), n°e — I (% 9))

- <CVu, V(nu — 1,{2(n2u))>L2(m

172 — KNo. 12 (n? _2>
+<(/ e, Iy (n"u) LD P

V,2—IF2> —(,1F2—2>
+<<pn¢) h("‘p)Lz(r) u, Iy (") L0

=TT+ +T5+ 14 (4.26)

We mention that the volume term 77 and the boundary term 73 involving V were
already treated in [18,19]. However, for the sake of completeness, we also provide the
estimates in the following. For 77 in (4.26), the assumptions on the cut-off function 7,
the super-approximation properties of 1 hg from Lemma 4.2, Young’s inequality, and

% < 1 lead to

(€Y, V0w — 12 P10 20| = 1CVul 25, 0y |V 0P = TE P00 12

h h
S IVull2 s 50n0) (W lullz2(s sene) +35 ||v””L2(B(1+5)Rﬂ9))

1
< 2 - 2
53R N GR) lulZ2 g, s pne) - (4.27)

For the term T3, we mention that the assumption 82 < § R implies that supp I{ (%) €
B(i+s/2)r- In the following, we employ a second cut-off function 77 with 0 <
7 < 1,% =1onButsr 2 supp(n’e — I (n%¢)), suppi € B(+sr and
V7l oo Bli45)8) < #. The trace inequality together with the super-approximation
properties of I/, expressed in (4.12), lead to

‘(Vw, e — I,,F(n2<p)>

= ‘(ﬁqu, e — Ihr(n2<p)>

L2(I) L2(I")

=< ”’ﬁVQOHHl/Z(F) H ’72('0 - I[(nz(p) ”H—I/Z([‘)

A

. hoyo
||nV(pHH1(Q) ﬁ HVV(p”L2(B(1+8)R)
1~ ~ h ~
(ﬁ ” V(pHLZ(B(H—é)R) + ”VV('DHLZ(B(H—S)R)) ﬁ ”VV¢||L2(B(1+5)R)

h - 2 1 ~ 2
s SR ”VV(p”LZ(B(lM)R) + (5R)? ”V‘p“LZ(B(Hs)R) . (4.28)

A
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With the same arguments, we obtain an estimate for 7j:

_ ooy
(w1 P =ne) , | S il 57 V79l

L2(D) (Ba+5)R)
h h U
< 2 h
TR ”vu”Lz(B“”)ng) + SR ||VV¢||L2(B<1+5)R)
_ 1 2
+ (5R)2 ”u”L2(3(1+5)RﬁQ) : (4.29)

It remains to treat the coupling term 7> involving the adjoint double-layer operator in
(4.26). With the support property supp(/, f (n*u) — n*u) C B(1+s/2)Rr, Which follows
from 82 <8R, and (1/2 — K')¢ = —y{*' V¢, we obtain

’((1/2 ~ K¢, 1 GPw) = nu)

LX)

(4.30)

ext 17 2,2 2
= “7’1 V¢||L2(B<H5/2)Rﬂl") th u) —n ”’ L2(I)

The multiplicative trace inequality for £2, see, e.g., [12], the super-approximation

property of 72 from Lemma 4.2, and §% < 1 lead to

|20 -

< |20 -

Ly "~ L2(R2)
1/2 172
2.2 2 2.2 2
S GCEORE R B MU CEOE Ol

2 2
S (W el 2208 00020 + 55 ||V“||L2(Ba+a>zeﬂﬂ>>

h 12 h 1/2
* (8_R ”u”LZ(B(Hs)RﬂQ) + (8R)1/2 ”VMHLZ(B(H»RQQ)

1/2 12 1/2 12
<8_R ”u”L2(B<1+5)R09) + W ||Vu||L2(B('+‘”ng))
n3/2 h3/2

S SR IVull 2 45 pn02) + GR)? Il 2B, 45002 -

4.31)
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We use estimate (4.13) and (4.31) in (4.30), which implies

‘((1/2 ~ Kg. 12 0Pw) ),

ST <”VV(p|| L2(B(115)R) T3R SR ” V(p”LZ(B(IHS)R)>
32 B3/
( R ||Vu||Lz(B(I+5)ng) +—= GR)? ||u||L2(B(|+5)RﬂQ)>
S 3R (( [vVel; LBine) T ”V””izwwmm)
1 2 ~ o2
+ W( ”u”LZ(B(H—B)RmQ) + ” V¢||L2(B(l+6)R) )) ’ (4.32)

Finally, inserting (4.28), (4.29), (4.27), and (4.32) into (4.26) and further into (4.25)
implies

IVull2a gonay + V70205, < IVO0O1220) + [ V0T @) 720,

N

I’l 2 <5 2
ﬁ (”VMHLZ(B(HS)RQ-Q) + ”VV¢||L2(B(1+5)R))

1 2 ~ 2
+ (8R)? (”u”LZ(B(Ha)RﬂQ) + ”V(pHLZ(B(Ham)) :
(4.33)

Step 3: We iterate (4.33) to improve the powers of 4 for the gradient terms to finally
obtain the result of Theorem 2.4.

We set § = 5, and use (4.33) again for the gradlent terms on the right-hand side
with the boxes By and B<1+5)R, where § = +2 and R = 1+ 8/2)R We note that
16h < ¢R implies 8h < (SR so we may apply (4.33). Since (1 + 5)(1 + ) =1+e,
we get

2 ~ o2 2 S o2
||v””L2(BRm2) + ”VV‘PHﬁ(BR) S (e R)2 (” ”L2(B(H£)ng) + ”VV<p|| LZ(B(HS)R))
h 1 ‘7 2
T\ Gr3 T er2 (ISR L P R
(4.34)
and with ﬁ < 1, we conclude the proof. O

4.3 The symmetric coupling
In this section, we provide the proof of Theorem 2.5. While some parts of the proof

are similar to the proof of Theorem 2.4 and are therefore shortened, there are some
differences as well, namely, that it does not suffice to study the single-layer potential.
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Indeed, one has to add a term containing the double-layer potential to the Caccioppoli
inequality in order to get a localized ellipticity estimate.

Proof (Proof of Theorem 2.5) Again, we write (1, ¢) for the Galerkin solution (uj,, ¢p,).
The assumption on the support of the data implies the local orthogonality

dsym (tt, 03 Y, &) = 0 Y, &) € ST1(Tp) x S*0(KCh)
with  supp ¥, supp & C B(i+¢)R- (4.35)

As in the proof of Theorem 2.4 let € Cgo(Rd) be a cut-off function with suppn C
B(its/4r-n=1on Bg,0<n <1, and ”DJUHLDC(B(H.,;)R) < # for j =1, 2. Here,

0 < § < ¢ satisfies % < 1‘3—6 and will be chosen in the last step of the proof.

Step 1: We start with a localized ellipticity estimate. More precisely, we show

IV 1220, + [V 0V |22y + | V0K 020,

< asym(u, ¢; r;zu, nz(p) + terms in weaker norms.

See (4.40) for the precise statement. From (4.21) and the Cauchy-Schwarz inequality
we get
Can 19 g, + 5 V70 s, + 5 VR
ell ” (7714)||L2(_Q) + E (77 (0) L2(R4) + z (T] u) L2(RI\T)

< (cw, V<n2u)) +(CVmU, (Y 20y + [V 0) |2

L2(£2)
~ 2 ~ ~
+ ”V(nKu)”LZ(Rd\[') - <V(77V(P)» V(TIKM)>L2(]R¢1\F) . (436)
A direct calculation reveals that ||V(nl?u)||iz(Rd\F) = “(V’?)E””iz(w\m +

(VEu, V(nh?u)) Inserting this and (4.20) in (4.36) yields

IRIAVAN

1 ~ 1 ~
Can IVOOI320) + 5 VOV 2oy + 5 V0K W 200, )

= (CVu, Vo), (OO, (V) 2 + (Ve o)

L2(2) L2(IN)

= o2 ~ ~ ~ 2
+ (vn)V¢||L2(Rd) + (VKu, V(nzKu)>L2(Rd\r) + | (Vn)Ku”Lz(Rd\F)

Integration by parts together with the jump conditions (4.2), (4.4) for the double-layer
potential gives

2

(w?u, V(nzl?u)> Wu, n*u (4.38)

L2(RI\I") - < >L2(F) '
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With a calculation analogous to (4.18) (in fact, replace u therein with K u), we get

(VO Ve), VK W) gy ry = <V(\7<p), V<n2Eu)>L2(]Rd\I‘) +lo.t.,

where the omitted terms (cf. (4.18))
Lot. = (V) Ve, V1K) 2y — (VV @, (V) K ) 25y )

can be estimated in weaker norms G.e., | ‘7<p I L2(B(145/2)8)° I Ku ||L2(B(I+8/2)R\F)) orlead
to terms that are absorbed in the left-hand side as in the proof of Theorem 2.4 (see
(4.23), (4.24)). With integration by parts on £2 and 2%, we get

(VVo, VP K)o gy ry = 1" Ve, ™ 0P K)oy = (P Ve, 15 0 K1) o
= ((K"+ 1/, 1* (K = 1/2u) 5 = (K = 1/2)0, 0> (K + 1/2)u) 5
= (1’0, (K = 1/2u)a ) = (K" = 1/, 17u) 2 ) - (4.39)

we obtain

Putting everything together and using IIVnIILOO(B(Ha)R) < #,

V@122, + |V V) ||§2(Rd) + VR 32 gy

(lsym(u @, T) u,n (P)+ (5R)2 “ ||L2(B(1+5)Rﬁﬂ)

=2
+ ((SR)Z || V(p||L2(B(1+5)R) + (SR)Z || KM ||L2(B(1+5)R\F) : (440)
Step 2: We apply the local orthogonality as well as approximation results.

With the L2 (I")-orthogonal projection 1 [ and the nodal interpolation operator 52,
the orthogonality (4.35) implies

asym (tt, 3 17U, 17 9) = asym (u, @; n°u — I (*u), o — I (*p))

_ 2 2.2 2y — 122
_<CVu,V(n u—1,"(n u))>L2(Q) +<Wu,n u—1,"(n u)>L2(F)

K/—12,2—192) <V,2—1F2>
+<( /2. n"u h(””)Lz(r)+ @.n"g h(nw)LZ(F)

+ <(1/2 = K. i’g - I[(n2¢)>L2(1‘)

=T+ +T:3+Ts+Ts. 4.41)

The terms 77, T3, T4 can be estimated with (4.27), (4.32), and (4.28) respectively
as in the case for the Bielak-MacCamy coupling. We also mention that the term 7>
involving the hyper-singular integral operator W was treated in [20]. For our purpose,
a simplified version of the proof is sufficient, which is presented in the following.
For the term 7>, we mention that the assumption 162 < &R implies that
supp 1, F(n*¢) C B(14s/2)r- We employ equation (4.10) from Lemma 4.3 for Ku
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and the boxes B(1+5/2)R and B(1ys)r satisfying diSt(B(1+3/2)R, 0B(1+5)R) = % > 4h
due to the assumptions on §. Together with Wu = —yli“‘K u, (cf. (4.31)), and the
Young inequality this implies

‘(Wu, nu — 1;29(77214)>

L2(I)

= ‘(yf“tfu, n2u — Ihg(nzu)>

LX)

< |y R = 12 0|

L2(B(145/2rFNT) ‘ L>(I)

— | 1 K
Shol? <HVK”“L2(B<1+5)RHF) + SR ”KMHLZ(B“”)R\F)>

32 B3/2
(S_R ||V“||L2(B(1+5)R) + W ||”||L2(B<1+5>R)>

h ~ 2
S 5= (1Vulag, o+ VR

1 2 = 2
+ (6R)? (”M”LZ(B(M)R) + ”K””L2(3<1+5)R\F)) )

(B(|+6)R\F)>

(=9}

We finish the proof by estimating 75. To that end, we need another cut-off function
e ST with0 < % < 1,7 = 1 on Bjsar 2 supp (1[(?7290) —n?9),
supp 7l € B(i1s)r and VTl (s, 50 S 5g- Since (1/2— K)u = —y3" Ku, we get
with a trace inequality and the approximation properties expressed in (4.12) that

T=<~int1"{‘,2_11“2>
|75 '773/0 u,n"e h('“o)Lz(r)

< H YK u)H H o — 1L (n*) H

HI/2(I) H-Y2(I)
h o~ ~
S SR ||'7K”||H1(.Q\1‘) ”VV('O”Lz(B(H(;)R)
h ~ U
S SR (”VKMHLZ(BUM)R\I‘) + ”VV(p”LZ(B(Ha)R))

1=
- (8R)? HKMHLZ(B(IM)R\F)' (4.42)

Putting everything together in (4.41) and further in (4.40) finally yields

IVl + [VT0 22, + VR

(BR) (BR\I")

h _
< <||Vu||2 + | VEu|?,

S~ o2
~ SR Lz(B(]+5)RﬂQ) + ||V‘/(’0||L2

Ba+sr\I") (B(1+6)R)>

=~ 2
+ ||VKM||L2(B(1+5)R\F)> !

(4.43)

1 2 S 02
T GR? (112250 + 170022050
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Step 3: By reapplying (4.43) to the gradient terms with § = § and suitable boxes, we
get the desired result exactly as in step 3 of the proof of Theorem 2.4. O

4.4 The Johnson-Nédélec coupling

In this section, we prove the Caccioppoli-type inequality from Theorem 2.6 for the
Johnson—-Nédélec coupling. Most of the appearing terms have already been treated in
the previous sections. The main difference is that the double-layer potential appears
naturally due to the boundary coupling terms, but the local orthogonality is not suited
to provide an approximation for it, since the hypersingular operator does not appear in
the bilinear form. A remedy for this problem is to localize the double-layer potential by
splitting it into a local near-field and a non-local, but smooth far-field. This techniques
follows [17], where a similar localization using commutators is employed.

Lemma4.5 Let § € (0,1) and R € (0,2diam(82)) and let Br and B(14s)r be two
concentric boxes. Let n € Cgo (R be a cut-off function with suppn < B(141s/2)R

n=1onBatsar 0<n =1, and HDjn||LOO(B(H5)R) S mforj = 1,2. Then,
foru € H'(2), we have

||VKM||L2(BR\F) V 1 + 1/ ||’7“||H1(Q) + ” ||L2(B(1+5/4)Rﬂ(2)

1

+ 57 ”K””m(B(MM)R\m . (4.44)

Proof We start with a localized splitting for the double-layer potential. More precisely,
with a second cut-off function 7 satisfying 77 = 1 on Bg, supp 77 € B(i45/4)r, and

IVl o0 (B g0 S 50 We Write
Ku =K (qu) + 5K (1 — mu =% vnear + Vtar.

First, we estimate the near-field vpeyr = ﬁg (nu). The mapping properties of the
double-layer potential, (4.5), together with the fact that supp V) C B(14s/4)r\ Br and
the trace inequality provide

1 ~
IVUnear ll 2By S il gz ry + —||K(77H)||L2(3(1+5/4>R\3R)

1
< ||77”||H1(.Q) + ”K(nu)||L2(B(l+a/4)R\BR)

Since 71 —n) = 0, the far field vgyr is smooth. Integration by parts using
AK((] —n)u) = 0, as well as [leu] = 0 and (1 — 1) = O (therefore no boundary
terms appear), leads to
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”vaar”LZ(BR\F) '(VK((I — ), VK1 = nu ))>L2(Rd\1‘)

+ | (VDR = )| 72z

<

1 ~ 2
S Grp 1K@ =mwl

(B(1+8/4)R\BR)

~ 2 1 ~ 2
S GRE | KUl 2050500800 + GR? K 2m, sz

Here, we used that supp(V7) C B(14s/4r\BRr. For the last term, we apply [19,
Lemma 3.7,(ii)], which states that

” Ko ” L2(B(115/4)r \BR)
1 ~ ~
S VR (m ||K(’7“)||L2(B(1+5/4)R\F) VI +HR ”VK(nM)||L2(B(1+5/4)R\F)> :
[19, Lemma 3.7,(i)] provides the estimate
% < int =
| K Gpu) ||L2(B(1+5/4)R) SVR ’ Vo K (mu) LX(I) +R[VK @ ||L2(B(1+5/4)R\F) ’

The combination of these two estimates and the fact that y, ntK u=(—1/24+ K)u
gives us

K@ om0 < VIRI/2 = K)0) 12y
+ V3R (1 +8R ”VE(HM)HLQ(B(HSM)R\F) .

With the mapping properties of K, K from (4.5), (4.6) and the multiplicative trace
inequality this implies

—R”KW)HH(BMM)R\BR)~ F||nu||Lz<r)+¢1+1/ Il 1)

1/2

1/2
by IVl o

+ V1+1/8 ||'7M||H1(.o)

S 3R InullL2) + IV 22y + V1 +1/8 Inull g e -
Putting the estimates for the near-field and the far-field together, we obtain
IVEull 250 r) < 1V Vnearll 200 r + 1V 08l 2800
SVIE+1/8Inullg o)+ % Nl 2By s 0 p052)

+ SR ||Ku||L2(B(1+5/4)R\F) ’
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which finishes the proof. O

Proof (Proof of Theorem 2.6) Once again, we write (u, ¢) for the Galerkin solution
(up, on). The assumption on the support of the data implies the local orthogonality

i, @3 Y, cn) = 0 V(W &n) € S1(Tn) x S“0(KCh)
with  supp ¥, supp &n C B(i+¢)R- (4.45)

Letn € Cgo (Rd) be a cut-off function with suppn C B(145/2)r. 1 = 1 on B(145/4)R,
i 1 . .
0<n<l,and ”D‘/n”LO@(B(H(;)R) < GRY for j = 1,2.Here,0 < § < gis given such

that % < 18—6. We note that the condition 7 = 1 on B(145/4)r is additionally imposed
in order to satisfy estimate (4.44), as the localization of the double-layer operator is
additionally needed in comparison with the other couplings.

Step 1: We provide a localized ellipticity estimate, i.e., we prove

< ajpn(u, @; nzu, n2<p) + terms in weaker norms.

See (4.50 for the precise form). We start with (4.44) to obtain

2 ~ 2 ~ 2
||V(77u)||L2(Q) + ||V(T)V<P) ||L2(]Rd) + ||VKM||L2(BR\F)
) S A+1/8)
S A+ 18 IV 1226, + [VOT0) [ oz ) + ~arr im0 mene)

I (4.46)

1 = 12
GR)? [ Kul a0

The last two terms are already in weaker norms, and for the first two terms, we apply
(4.17). Since we assumed C¢); > 1/4 for unique solvability, we choose a p > 0 such
that 1/4 < p/2 < Cej and set C, := min{1 — %, Cenl — g} > 0. Then, (4.17) implies
= 2 N
Co IV 320y + Co [VOVO) | [2ay < Cen IV @172 ) + [VOVO) 12y
~ ~ )
— (V@ T9), V)2, — (Y70, V0 K”)>L2<Rd\m

+ <V\7<p, V(nzk‘u)) (4.47)

L2RAT)

The first three terms can be expanded as in Theorem 2.4, where (4.18) leads to

(Y V ). V), 2 ) = <V\7¢, V(nzu)>L2(m flot, (4.48)

where the omitted terms (cf. (4.18))

Lot. = (V) Ve, V() 1200y — (VV, (Vi) 2
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can be estimated in weaker norms (i.e., ||\7¢||L2(B(1+5/2)R09), lull 2By 5/0p052)) OF
lead to terms that are absorbed in the left-hand side as in the proof of Theorem 2.4
[see (4.23), (4.24)]. Equations (4.39) and (4.19) give

(VPo. Vi), o +(VPp. V0 Ru (1/2+ Ku. n’g)

)>L2(Rd\r) - ( L)’

(4.49)

Therefore, we only have to estimate the last term in (4.47). We write in the same way
as in (4.48)

<V\7(p, V(nzl?u)> = <V(n2Vg0), Vl?u> + lLo.t.,

L2RA\I) L2RI\I)

where again, the omitted terms
Lot. = 2((V( V), (V) Ku) 2y — 20V Vo, V(K1) 12 er )

can be estimated in weaker norms (i.e., by ||Eu ||L2(B(1+6/2)R\F) and || V¢||L2(B(l+6/2)R)

or absorbed in the left-hand side. Integratlon by parts on R?\§2 and £2 together with
AKu = 0and [leu] =0= [n V(p] implies

vV ,VE) :<2V,AE> _
< Ve ML2(Rd\r) TYe uL2(Rd\F)

Putting everything together into (4.47) and in turn into (4.46), we obtain

V@120 + [ VOV |2z + [V OR 0 |2

1+1/8) , ~
< . c a2 2 (
~ (1+1/8)ajn(’4, esnu,n (0)+ ((SR)Z ” u”LZ(B(lJra)R\F)
1+1/8) 1+1/8 ~
+ (5R)2 e ”L2(B<1+5)R09) + (8R)2 ” ||L2(B(1+5)R) : (4.50)

Step 2: We apply the local orthogonality of (u, ¢) to piecewise polynomials and use
approximation properties. Let If? : C(2) — S!(7j) be the nodal interpolation
operator and / [ the L2 (I")-orthogonal projection mapping onto S (/Cy,). Then, the
orthogonality (4.45) leads to

ajn (u, 03 01, n*Q) = ajn(u, ¢; n°u — I (°u), n°p — I (n*¢))
= (Vu, VPu — 12 (2 > (V’2_1F2>
< u, V(i u — I;" (n"u)) L T\Ve e () 2
2 2,2 2 r.2
Mo Pu—1 ) (172 = Ko nPo ~ 1 )
<<pnu w0 u)Lz(F)Jr(/ u, n°¢ h(”‘”)mm

=T +T+T:+ 14 4.51)
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The terms 71, T have already been estimated in the proof of Theorem 2.4, inequalities
(4.27), (4.28), and T, was treated in (4.42) in the proof of Theorem 2.5.

It remains to estimate 73. With supp (n”u — 1,2 (n*u)) C B(145/2)r due to 164 <
SR, we get

2 2.2
= ”(p”U(B(Ha/z)RN") H’? u— I (n"u)

L2y’

T :<,2 —12(n2 >
73] ‘¢nu h(””)Lz(r)

Lemma 4.3 provides

12 ot
||¢||L2(B(1+5/2>R) Sh ||VV§0”L2(B(1+5)R) ’

Therefore, with (4.31), we obtain

o 1 0w =)o | S5 VT

3/2 3/2
(ﬁ IVull 28,5 0n2) + GR? ||M||L2(B<1+5>R09)>

SR (“VV‘/’” LB T IVH ”L2<B<1+5)Rm>>

(5R)2 llu ||L2(B(1+5)R) (4.52)
Putting the estimates of T, T», T3, T4 together and using § < 1 leads to
”VMHLZ(BRO.Q) + ”VV‘P”iZ(BR) + ||VI?””12(BR\F)
82R (” ||L2(B(1+5)Rﬂ52) + HVV(/) ”iZ(B(Ha)R) + ”VEMHEZ(B(IM)R\F))
83R2 (” ||L2(B<1+3)ROQ) + ” ‘790”?2(3(1”),{) + H E“ Hi2(3(1+5),<\1")) - (4.53)

Step 3: Reapplying (4.53) to the gradient terms with § = 5 and suitable boxes, we get
the desired result exactly as in step 3 of the proof of Theorem 2.4. O

5 ‘H-Matrix approximation to inverses: application of the abstract
framework for the FEM-BEM couplings

In this section, we prove the existence of exponentially convergent 7H-matrix approx-
imants to the inverses of the stiffness matrices of the FEM-BEM couplings, as stated
in Theorem 2.13. For this purpose, we ascertain the validity of the assumptions (A1)-
(A3) from Sect. 3 for the FEM-BEM couplings.
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5.1 The local dual basis

In the setting of Sect. 3.1, we have X = HY(£2) x H7Y2(I"). In order to suitably
re]p]resent the data f, uo, o in (2.1), we understand the discrete space S (7)) ~
S (Tn) x SUN(Kp) © L2(2) x LAX(I), where Sy (Tp) = S"'(Ty) N HL(2).
Having identified S*1(7;) with Sy (Z3) x S"'(Ky), we view the full FEM-BEM
coupling problem as one approximating in Sé‘l(Th) x SLL(IC,) x S9O(K,). That is,
we set k = 1 and ¢ = 2, and consider L? = L?(2) x L*(I") x L*(I'") for all three
FEM-BEM couplings. The discrete space Xy = Sé’l (Tp) x SV () x 899 (KCp,) ¢ L2
has dimension N = ny + na 4 m, where ny = dim(Sy"' (7)), n2 = dim(S"" (K))
(n1 + no = n) and m = dim(S%%(K},)). It remains to show (A1).

The dual functions A; are constructed by use of L2-dual bases for S 1’1(77,) and
SO0, [2, Sect. 3.3] gives an explicit construction of a suitable dual basis {)»;Q :
i =1,...,n} for Sé’] (73). This is done elementwise in a discontinuous fashion,
ie., )\;Q e S19(7,) ¢ L?(£2), where each Afz is non-zero only on one element of 7,
(in the patch of the hat function &;), and the function on this element is given by the
push-forward of a dual shape function on the reference element. Moreover, the local
stability estimate

Ly S M I (5.1)

ni
| x|
j=1

holds for all x € R"!, and we have supp )»;Q C supp&;. We note that the zero boundary
condition is irrelevant for the construction. The same can be done for the boundary
degrees of freedom, i.e., there exists a dual basis {)Lf i = 1,...,n2} with the
analogous stability and support properties.

For the boundary degrees of freedom in S%9(K;,), the dual mappings are given by
/Llr = xi/ lxi ”22(9)’ i.e., the dual basis coincides—up to scaling—with the given

basis {x; : i = 1,...,m} of S%0(C,). With (2.4b), this gives

m
| X vinf]
j=1

j=

O (5:2)

forally e R™.

The dual basis is defined as A; := (A?, 0,0)fori =1,...,n1, ity = (0, )f, 0)
fori =1,...,n2,and X4, := (0,0, ,ul.r) fori =1, ..., m.The estimates (5.1), (5.2)
together with the analogous one for the )Lf show (A1).

5.2 Low dimensional approximation
The sets B, B® and the norm ||-|| 3: We take M = 3 and choose collections B = Bg :=

{Br N §2, B, BR\I'}, where By is a box of side length R. For £ € N, the enlarged
sets B%¢ then have the form
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B = BY = {Bryase N 2, Bry2se, Bryase\I'} (5.3)

with the concentric boxes Bgy2s¢ of side length R + 25¢.
For v = (u, v, w), we use the norm from (2.6)

vl == G, v, w)lly, g

in (A2). For the Bielak—-MacCamy coupling, taking M = 2 and choosing collections
Br := {Br N $2, Bg} would suffice, however, in order to keep the notation short, we
can use M = 3 for this coupling as well by setting the third component to zero, i.e.,
v=(u,v,0).

The operator Q g and (A2): For the operator Q i, we use a combination of localization
and Scott—Zhang interpolation, introduced in [36], on a coarse grid. Since the double-
layer potential is discontinuous across I”, we need to employ a piecewise Scott—Zhang
operator. Let R i be a quasi-uniform (infinite) triangulation of R (into open simplices
R € Rp) with mesh width H that conforms to £2, i.e., every R € Ry satisfies either
R C 2 or R C 2% and the restrictions Ry | and Ry |gex are y-shape regular,
regular triangulations of £2 and £2°*' of mesh size H, respectively.

int

With the Scott-Zhang projections )%, 15" for the grids Ryl and Ry|ge, we
define the operator IE,W : H'RN\TIM) — Sg,;,} (Ry) = {v:vle € SL'(Ryle) and
V| gext € SV Ry |oext)} in a piecewise fashion by

Ity on £2,
Ty'v= { I%“v on 2%, b

We denote the patch of an element R € Ry by

w3 := interior (U {ﬁ R eRpylg st. RNR # (()]) ,

wgw := interior (U {ﬁ : R e Rylgen st. RNR # Q)}) )

The Scott—Zhang projection reproduces piecewise affine functions and has the follow-
ing local approximation property for piecewise H® functions:

lv|? ifRcC R

S (i $2
< CH2s-D H¥ (wg)
- if R C Xt

lo— 17" (5.5)

2
v ” HI(R) v
HS (wgexl)

withz,s € {0,1}, 0 <t <s <1, and a constant C depending only on the shape-
regularity of Ry and d.

Let n € C3°(Br+2s) be a cut-off function satisfying supp n C Bgys, n = 1 on
Bg and [Vl oo ey S %. We define the operator

Onv = U5 v1), In(pva), Iy (nv3)), (5.6)
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where Iy denotes the classical Scott—Zhang operator for the mesh R 7. We have

2
hR, I

: 2
V= Quvi = |vi — 1 v+ Iv2 = I vl g + [va = 1 v |

Each term on the right-hand side can be estimated with the same arguments. We
only work out the details for the second component. Assuming # < H, and using
approximation properties and stability of the Scott—Zhang projection, we get

Iva = Ig vl g = Inv2 = I (v2) 17 &
=12 IVv2 = T Vo) 725, + I0V2 = TH V)1 72 5,
S (0 + HY) V@V 172 ga)

2 2 —1 2
S H (19222 gy + 07 V2005, )

which shows (A2) for the discrete space Vg s = Sl’l(RH)lBRJrzam_Q X

11 11 i diam (B 29) \ M4
SU N (RE) | Briss X Spw (RH)|Bg,,s of dimension dim Vi 35 < C (TJr) .

The Caccioppoli inequalities and (A3): Theorems 2.4-2.6 provide the Caccioppoli
type estimates asserted in (A3) with 6 = ¢R/2. For the Bielak-MacCamy coupling,
we have @ = | and Cse; = 84, for the symmetric coupling « = 1 and Cse; = 16h.
For the Johnson—-Nédélec coupling, we have to take « = 2 and Cser = 16h. For
Br = {Bgr N 2, Bg, BR\I'}, the spaces Hj,(Bg) can be characterized by

Hp(Bgr) := {(v, Vo, Kv) € H' (BR N 2) x H' (Bg) x H (BR\I") :
W e sH T, ¢ € SO0,
Vgene = visgne. Vols, = Vola,.
E5|BR\F = EleR\r, a(v, ¢; ¥n, ¢n) =0
Y(Wn. ) € SU1(T) x S®O(Kn), supp ¥n., &h C Br),
where the bilinear form a(-, -) is either asym or aj,. For the Bielak-MacCamy coupling,
it suffices to require
Hp(Br) :={(v, V$,0) € H'(Bg N 2) x H'(Bg) x H' (BR\I'):
W e SN, ¢ € SPO(KC):
TVlgene = vigen2. Volsy = Volag. aome(v. d: Y. &n) =0
YW, &n) € SUN(Th) x SYO(Kh). supp Y. &n C Br).

With these definitions, the closedness and nestedness of the spaces H;, (Br) clearly
holds.
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5.3 Proof of Theorem 2.13

As a consequence of the above discussions, the abstract framework of the previous
sections can be applied and it remains to put everything together.

The following propositions constructs the finite dimensional space required from
Lemma 3.3, from which the Galerkin solution can be approximated exponentially
well.

Proposition 5.1 (Low dimensional approximation for the symmetric coupling) Let
(t, o) be a cluster pair with bounding boxes Bg, and B, that satisfy for givenn > 0

ndist(Bg,, Br,) > diam(Bg, ).

Then, for each L € N, there exists a space WL c SLHT,) x SO9(KC,) with dimension
dim WL < C10WL3d+1 such that for arbitrary right-hand sides f € L2(.Q), vy €
L*(I"), andwo € L*>(I") with ( supp f Usupp voUsupp wo) C Bg, . the corresponding
Galerkin solution (up, ¢p) of (2.11) satisfies

_min_ <||uh —llz2g,ne2) + llon — a”LZ(BR,ﬂF))
(u,0)eWL,

< Cooxh 2275 (£l 2¢2y + Mol 2y + lwoll 2¢r)) -

The constants Clow, Cpox depend only on 2, d, C, n, and the y-shape regularity of
the quasi-uniform triangulation T, and ICp,.

Proof For given L € N, we choose § := 21;1. Then, we have

1
dist(Bg, 4251 Br,) = dist(Bg.. Br,) — L3</d = V/dR, (— - 2—) > 0.
n

With Bg, = {Br, N2, Br,, Br, \I'} and BY* = {Bg, +250. N 82, Br, 4251, Br,+25L.\
I'} from (5.3), the assumption on the support of the data therefore implies the local
orthogonality imposed in the space Hj, (B‘”‘ ). In order to define the space W., we
distinguish two cases.

Case § > 2Cse: Then, Lemma 3.6 applied with the sets Bllse, and B‘Isé provides a
space W1 of dimension

. s
N dlam(BRr)>3d+l < <L N JERTZHL)MH < L3+

dim W, < Cain, (L
R

with the approximation properties for v = (uy,, V(ph, Kup)

. —(L-1)
— <
WlenfL lv—w |||3113er <2 |||V|||B§€LT . 5.7

Therefore, it remains to estimate the norm ||-|| 5 from above and below.
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With i < 1, the mapping properties of V and K from (4.5), and the trace inequality
we estimate

~ o~ - ~ ~
|||(”h’ Veon, K”h)’”BBRLT S lunllgre) + ” Von HHl(B(H]/(z”))RT) + HK”h ”HI(B(.Jr,/(z,mRT\r)

S lunllgiey + lonllg-12¢ry - (5.8)

The  stabilized form  Ggym(u, ¢; ¥, ¢) = asym(u, @; ¥, ¢)  +

(1L,Ve+ (- K)u)LQ(F) (Lve+G - K)W)LZ(F) is elliptic by [1]. Moreover, [1,
Theorem 18] proves that the Galerkin solution (uj,, ¢3,) also solves Esym (un, on; ¥, ¢) =
goym (W, §) + (L wo) 2py (1, (5 — KDY + V;)LZ(F). Therefore, we have

len 13y -1a ey + lunlGgn ) S Tsymans @n5 s @)
= (f,un) 2@y + (o, un)r2ry + (wo, ¢n) 2
+ (L, (1/2 = K)un + Vo) 20y (Lwo) 2y - (5.9)

The stabilization term can be estimated with the mapping properties of V and K from
(4.6) and the trace inequality by

\(15 (1/2 = K)un + Vo) 12y (1, w0>L2(r)|
§ (||(1/2 - K)uh”LZ(r) + ||V(Ph||L2(r)) ||w0||L2(r)
S llwoll 2 (||Mh||H1(.Q) + ||<Ph||H—1/2(r)) .

Inserting this in (5.9), using the trace inequality and an inverse estimate we further
estimate

el 1y + lunliF @) S (1F 2y + Ivollg-12¢m) lenll a1 2
+ Nwollz2cry (lenll 22y + Nunll gy + lonll g-12(r)
< (If 2@y + lvoll g=172¢ry) lunll g o)

+ h 2 woll g2 py (lunll g1y + lonllg-12¢r)) -
With Young’s inequality and inserting this in (5.8), we obtain the upper bound
llwn. Pon Runllge < (1F Drze@) + Ivollzzry + 0~ lwollzry) - (5.10)

The jump conditions of the single-layer potential and Lemma 4.3 provide for arbitrary
5 S\ 0.0 (’Ch)

lon = Pli2sy,0r) = [ Venl = 11Vl | 285,
< h1/2 ||V(\7g0h - V(}') ||L2(BR+25)
SR L v
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~~~

Finally, we define WL = (@, [y1v]) : ,w) € W }. Then, the dimension of WL
is bounded by dim WL < CL3*! and the error estimate follows from (5.7) since

_inf (||uh — ﬁlle(BRng) + llon — a”LZ(BRTm"))
(,9)eW,

<0 int s Vo R~ wl,

SJ h—3/22_L |H(uh, ‘7(ph7 Euh)MB‘;QL :

Applying estimate (5.10) finishes the proof for the case § > 2Cse.
Case § < 2Cs¢ = 32h: Here, we use the space WL = Sk 1(7},)|BR X

S0: O(IC;,)| Bg, - Since (up, ¢n)| Br, € WL, the error estimate holds trivially. For the
dimension of W, we obtain

_ diam(Bg.)\*¢ 3vaRr, \ >’ 2d
dimW; < C (T) <C (T) <C (2Csm/32nL) < LM,

which finishes the proof. O

Proposition 5.2 (Low dimensional approximation for the Bielak-MacCamy coupling)
Let (z, 0) be a cluster pair with bounding boxes B, and B, that satisfy for given
n>0

ndist(Bg,, Bg,) > diam(Bg, ).

Then, for each L € N, there exists a space WL c SLHT,) x SO9(KC,) with dimension
dimW; < Clow L??*! such that for arbitrary right-hand sides f € L*(£2), ¢y €
L*(I"), andug € L*(I") with (supp J Usupp @oUsupp uo) C Bg, , the corresponding
Galerkin solution (up, ¢p) of (2.8) satisfies

_min_ (||Mh —itllz2Be, ne2y + llon — $||L2(BR,nF)>
(u,0)eW
< Cooxh 227 (1Ll 202y + ol L2y + ol 2y -

The constants Clow, Chox depend only on $2, d, C, n, and the y-shape regularity of
the quasi-uniform triangulation T, and ICy,.

Proof The proof is essentially identical to the proof of Proposition 5.1. We stress that
the bound of the dimension dim WL < CjowL2*! is better, since no approximation
for the double-layer potential is needed, i.e., we can choose M = 2 in the abstract
setting. O

Proposition 5.3 (Low dimensional approximation for the Johnson-Nédélec coupling)
Let (t, 0) be a cluster pair with bounding boxes B, and Br, that satisfy for given
n>0

ndist(Bg,, Bg,) > diam(Bg, ).
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Then, for each L € N, there exists a space WL c SY1(T,) x S%O(K},) with dimension
dim WL < CiowL%T, such that for arbitrary right-hand sides f € L*(£2), o €
L*(I"), and wg € L2(F) with (supp fUsupp goUsupp wo) C Bg, , the corresponding
Galerkin solution (up, ¢p) of (2.15) satisfies

min_(llun = 7l 25, n) + lon = P25, 0r)
@PeW,,

< Cooxh 2275 (I £l 2@ + ll9oll L2y + llwoll z2(ry) -

The constants Clow, Chox depend only on $2, d, C, n, and the y-shape regularity of
the quasi-uniform triangulation Ty and K.

Proof The proof is essentially identical to the proof of Proposition 5.1. We stress
that the bound of the dimension dim WL < C10WL6d+l is worse than for the other
couplings, since in the abstract setting, we have to choose M = 3 and o = 2, and the
bound follows from Lemma 3.6. O

Finally, we can prove the existence of {-matrix approximants to the inverse FEM-
BEM stiffness matrix.

Proof (Proof of Theorem 2.13) We start with the symmetric coupling. We mention that
the symmetry of the system matrix together with the requirement n dist(Bg,, Bg,) >
diam(Bpg,) of Proposition 5.1 does also allow one to use the weaker admissibility
condition mentioned in Remark 2.8. As H matrices are low rank only on admissible
blocks, we set By/|rxo = ASym | xo for non-admissible cluster pairs and consider an
arbitrary admissible cluster pair (t, o) in the following.

With a given rank bound r, we take L := L(r /Ciow) /34D | With this choice, we
apply Proposition 5.1, which provides a space WL cS> 1 L(7) x $99(K,) and use th1s
space in Lemma 3.3, which produces matrices X, Y;» of maximal rank dim W L,
which is by choice of L bounded by

dim Wy = Ciow L34t < r.

Proposition 5.1 can be rewritten in terms of the discrete solution operator of the frame-
work of Sect. 3.1. Let f = (f, vo, wo) € L? be arbitrary with supp(f) C ]_[/- Dj(o).

Then, the locality of the dual functions implies ( supp f Usupp vg U supp wo) C Bg,,
and we obtain

inf IS f — Wiy < inf (lun = T2m, ) + 198 = P25,
WGWL ©,p)eW,,

Sh227E (1 f ) + Ivoll 2y + lwollz2¢r))
Sh227 0 flle -

Defining By | xo := Xwa, the estimates (3.3) and [|A] < h—d/2 together with
Lemma 3.3 then give the error bound
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”Ag_y%“ —Bx H < Csp depth(T7) max { H (A_1 — BH)
A 2 X0
infy, ., ISV f —wlg2
< Cypdepth(T7) [ A]? max sup wew, IS8 S = W2
(ro)ehur  per2 1f1lx2
supp(f)C[]; Dj(o)

i (r,0) € P}
2

< Cyp depth(T7)h @22~ L
< Capx Csp depth(T7)h~@F2 exp(—br!/B34HD),

This finishes the proof for the symmetric coupling.
The approximations to Agnlqc and AJ-_n1 are constructed in exactly the same fashion.
The different exponentials appear due to the different dimensions of the low-

dimensional space W, in Propositions 5.2 and 5.3. O

6 Numerical results

In this section, we provide a numerical example that supports the theoretical results
from Theorem 2.13, i.e, we compute an exponentially convergent H-matrix approxi-
mant to an inverse FEM-BEM coupling matrix.

If one is only interested in solving a linear system with one (or few) different
right-hand sides, rather than computing the inverse—and maybe even its low-rank
approximation—it is more beneficial to use an iterative solver. The H-matrix approx-
imability of the inverse naturally allows for black-box preconditioning of the linear
system. [5] constructed LU -decompositions in the H-matrix format for FEM matrices
by approximating certain Schur-complements under the assumption that the inverse
can be approximated with arbitrary accuracy. Theorem 2.13 provides such an approx-
imation result and the techniques of [5,18-20] can also be employed to prove the
existence of H-LU-decompositions for the whole FEM-BEM matrices for each cou-
pling provided the Schur complements of all quadratic principal subblocks of the
system matrix exist. With certain stabilizations, see [1], this can be ensured.

We choose the 3d-unit cube £2 = (0, 1)3 as our geometry, and we set C = 1. In the
following, we only consider the Johnson-Nédélec coupling, the other couplings can
be treated in exactly the same way.

In order to guarantee positive definiteness, we study the stabilized system (see [1,
Theorem 15] for the assertion of positive definiteness)

(ot )=

where the stabilization s € RN*M is given by s; = (1, (1/2 — K)&) 2 for i €
{L,...,N}tands; = (L, Vi) oy fori e {N+1,..., M}.

We stress that [1] shows that solving the stabilized (elliptic) system is equivalent
to solving the non-stabilized system (with a modified right-hand side). By AS :=
A + bb7, we denote the stabilization of A, where b contains the degrees of freedom
of s corresponding to the FEM part.
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All computations are done using the C-library HLiB, [7], where we employed a
geometric clustering algorithm with admissibility parameter n = 2 and a leaf size of
25.

6.1 Approximation to the inverse matrix

The H-matrices are computed by using a very accurate blockwise low-rank approxi-
mation to

A M7’ T
B .= (%M—K v )—i—ss . (6.2)

Then, using H-matrix arithmetic and blockwise projection to rank r, the 7{-matrix
inverse is computed with a blockwise algorithm using the H-arithmetic from [22]. In
order to not compute the inverse of a dense matrix, we use the upper bound

[B" = Be], <[5, 1 - BBsa

as our error measure.
We also compute a second approximate inverse by use of the H-LU decomposition,
which can be computed using a blockwise algorithm from [4,29]. To measure the error
without computing B~!, we compute ||I —B(LyUp) ™! ||2
Figure 1 shows convergence of the upper bounds of the error and the growth of the
storage requirements with respect to the block-rank r for two different problem sizes.

00 Lo 7 “8 mem. LUx
70 H—A— mem. By i
1072 1 e . o A/A/A/A/A
— QO 60 [™ -
2 104 —. 12 s0f ]
g —B—[[I-BLxUx) ", m 4 I G
10-6 | I1—BBul, G 0 B
---  O(exp(—0.05r)) N 30 E/E’E——E———E—E—E—_E—E -
10,3 - T - O(ex‘p(—O.IS‘T)) ‘ : \,‘ i 2 : ‘ ! ! ! L
20 30 40 60 80 100 20 30 40 60 80 100
rank r rank r
100 [~ - —B— mem. Ly Uy
80 [ —4— mem. By /A/A/A/k/A |
g 10-2 | i % T0H--- O(r) i
I 2 60 .
g 1074 H B 1-BEuUw . 1@ 5l ks IR
—&—  [1-BByul, < gl |
1076777 olee ) - b E/E—/E’—E’—E-E—_E—H
——-  O(exp(—0.18r)) N 30 | |
T T T | | | 1 1 1 | | |
20 30 40 60 80 100 20 30 40 60 80 100
rank r rank r

Fig.1 H-matrix approximation to inverse of FEM-BEM matrix. Left: error vs. block rank r; right: memory
requirement vs. block rank r; top: N = 6959 (FEM-dofs), M = 3888 (BEM-dofs); bottom: N = 10648,
M = 5292
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We observe exponential convergence and linear growth in storage for the approximate
inverse using H-arithmetics and the approximate inverse using the H-LU decompo-
sition, where the H-LU decomposition performs significantly better. The observed
exponential convergence is even better than the asserted bound from Theorem 2.13.
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