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Abstract

Knowledge graphs have been identified within the manufacturing industry as a suitable
technology for integrating multidisciplinary knowledge from heterogeneous data sources.
Effectively reusing this knowledge can enhance decision-making processes, and thereby fos-
tering a competitive edge. However, there has been limited attention given in production
research to the active human involvement in exploring these manufacturing knowledge
graphs. In this context, exploratory search systems present a promising solution to
encourage such engagement.

Nevertheless, the majority of exploratory search systems are designed for general knowl-
edge graphs where common knowledge suffices. Within the multifaceted and complex
landscape of manufacturing, it is crucial to focus more closely on specific exploratory
search features. Drawing from interviews with domain experts, this thesis highlights
three distinct features that boost the efficacy of exploratory search for manufacturing
environments. These include the system’s ability to tailor itself to numerous engineering
perspectives, the availability of transparent provenance information that notably assists
engineers in their investigative work, and the need for comprehending as well as navigating
complex and deep hierarchical structures.

An exploratory search system (ESS) has been designed, informed by an examination of
common interface paradigms for generic exploratory search systems, coupled with an
exploratory analysis of paradigms equipped to meet the identified requirements for the
manufacturing domain. This system encompasses a rendering engine that supports an
adaptive user interface, enabling a multifaceted configuration of visualizations and the
underlying search algorithms. To address the need for provenance visibility, the system
is structured to disseminate named graph information pertinent to each statement to the
relevant UI components. A simple tree view was employed to overcome the challenge of
navigating through hierarchical structures.

This ESS prototype was evaluated on a small scale with five participants for the pilot
factory use case. The initial assessment of the ESS demonstrated its value for users
executing exploratory search tasks in the domain of collaborative robotics. Potential
areas for enhancement were identified, however. Users perceived the tree view design as
not useful, and they frequently opted for managing multiple browser tabs over utilizing
the memorization feature. Despite these potential areas for improvement, users were
overall successful in achieving their search objectives.
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CHAPTER 1
Introduction

The fusion of traditional manufacturing technology with modern information and commu-
nication technology is guiding a new paradigm shift in manufacturing, which is commonly
referred to as the fourth industrial revolution [HA18]. This shift is investigated by
several strategic initiatives such as "Industrie 4.0" in Germany [BHVH14], "Society 5.0"
in Japan [Fuk18], or "MIC 2025" in China [WMZ+16]. Core to all of these initiatives is
the digitization of multidisciplinary knowledge about production systems and processes.

Knowledge graphs (as defined in Section 2.3) are a promising solution to facilitate this
digital transformation. As shown by the survey of Li et al. [LLW+21], knowledge graphs
have received considerable attention in production research over the last years. In fact, it
has been widely recognized as an important component of the next generation of infor-
mation systems for manufacturing [LLW+21]. He et al. [HJ19] identify knowledge graphs
as a technology to increase the reuse of manufacturing knowledge inside of a company.
The effective reuse of manufacturing knowledge can better inform engineers in their
decision making processes and consequently, establish a competitive advantage [ZZL+20].
Industrial enterprises such as Bosch or Siemens started to internally construct knowledge
graphs related to manufacturing [HLHH18][STF+19].

Problem. While the manufacturing industry consists of a diverse range of sectors,
all enterprises face similar issues with information management and sharing. Decision
making is guided by information originating from many different sources, and different
types of decision have to be carried out. Organizational groups inside manufacturing
enterprises (e.g. design, production, maintenance, etc.) produce as well as select their
own type of information and might have to gain knowledge from diverse sources to form
a decision [PUJ+18]. The knowledge reuse for decision making is furthermore low, due
to the complexity of production processes as well as the lack of clear standardization and
formalization to knowledge in this field [HJ19].
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1. Introduction

A suitable search system over manufacturing knowledge graphs could increase the reuse.
However, a lot of production research is dedicated to the utilization of knowledge graphs
for autonomous decision making systems, e.g., Rožanec et al. [RLR+22]. In contrast, less
attention has been given to the creative participation of engineers in the exploration of
manufacturing knowledge graphs. In particular, we consider two concrete use cases in
two different organizations in which the need for such a search system arises.

(UC1) The first organization is a production plant manufacturer1 from the metallurgy
domain. In this company, several engineering disciplines work together to build a
production system. An engineering activity is initiated across several disciplines such as
mechanical and electrical engineering. In order to make well-informed design decisions for
a planned production plant, engineers with potentially different perspectives using distinct
tools and vocabularies within the company have to necessarily exchange engineering
information, which constitutes a challenge. Simulation experts are tasked with the
simulation of designed production plants, and subsequently, the optimization with respect
to several key indicators. Yet, obtaining a coherent and complete system design to be
used as input for simulation currently requires tedious manual work by a simulation
experts to identify, reconcile and merge different versions and viewpoints on the same
system component provided by engineers from diverse disciplines.

(UC2) Secondly, researchers from the Aspern pilot factory collaborate as part of
various research projects. The Aspern factory is one of several Austrian "learning and
experimentation factories" initiated and co-funded by the Austrian Federal Ministry of
Transportation, Innovation, and Technology [HSSW16]. It currently hosts a series of
valuable collaborative and industrial robotic arms as well as a wide range of supporting
tools (grippers, 3D cameras, projectors, etc.), which can be used by students, researchers,
and companies for their own purposes. The detailed capabilities of these machines are,
however, unknown to a wider, potentially interested audience because (1) they are not
publicly available, (2) they depend on the application-context (e.g., so-called robotic
skills like assembling, drilling, screwing, etc. which are implemented in software), and (3)
they continuously evolve and change. In this context, interested students, researchers,
and companies are unaware of the availability and capabilities of the manufacturing
technology in the Aspern factory, which contributes to a relatively low usage degree of
these expensive, state of the art production machines.

Solution. Systems that enable exploratory search over manufacturing knowledge graphs
can support engineers in their decision and sense making. Exploratory search (see
Section 2.4) is an open-ended and multi-faceted information-seeking activity. It is
commonly used in the context of scientific discovery, learning and decision making [WR09].
However, most publicized exploratory search systems focus on general knowledge graphs
for which common knowledge is sufficient. We argue that within the complex environment
of manufacturing, closer attention has to be paid to particular exploratory search features.

1Use case partner cannot be named, due to confidentiality agreements.
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Contribution. To that end, this thesis investigates the three research questions outlined
in the subsequent Section 1.1. The methodology of this thesis is discussed in Section 1.2,
while the structure of the remaining thesis is outlined in Section 1.3.

1.1 Research Questions & Aims
This thesis endeavors to investigate ways of leveraging exploratory search mechanisms to
assist engineers in the domain of manufacturing. The thesis will probe into the subsequent
three research questions:

RQ I. What are special requirements for exploratory search in the manufac-
turing domain?

In the multifaceted landscape of manufacturing, engineers may have particular needs
pertaining to an exploratory search system. These needs might not be exclusively unique
to manufacturing professionals, but are often overlooked in the design of exploratory
search systems for general domains. The majority of publicized exploratory search
systems are intended for use on general knowledge graphs, where common knowledge
suffices, and the domain of engineering and manufacturing has not received substantial
attention to date.

Aim. Informal interviews will be held with stakeholders from the partnering organi-
zations, which are from the field of manufacturing. This approach aims to collect insights
into potential requirements that, while not exclusive to manufacturing professionals, may
often be overlooked in the design of exploratory search systems for more general domains.

RQ II. Which of the common exploratory mechanisms are most suitable to
address the needs of the two presented use cases? What interface paradigms
are of particular interest for engineers in manufacturing?

Over time, a variety of exploratory search systems have been publicized, experimenting
with diverse search and interface paradigms. While certain semantic-based exploratory
search systems such as Aemoo [NPG+17], for example, visualize entities and their
relationships as a graph, others try to mask the graph structure of the underlying data
model. This thesis, in particular, is focused on facilitating exploratory search within
manufacturing knowledge. As such, it seeks to pinpoint those interface paradigms best
equipped to aid engineers in a manufacturing environment.

Aim. Several recurring interface paradigms are found among the exploratory search
systems publicized in the past two decades. These common paradigms will be thoroughly
examined bearing in mind that this thesis concentrates on the manufacturing domain.
Drawing on insights gained from investigating research question RQI with the partner-
ing organizations, interface paradigms will be proposed and highlighted that could be
particularly beneficial for the manufacturing domain.

3



1. Introduction

RQ III. What effect do the selected interface paradigms have on the explo-
ration utility of the search system, when applied on manufacturing knowledge?

An assessment of the interface paradigms selected from research question RQII is required
to determine their capability to aid engineers in navigating manufacturing knowledge.
This thesis will refer to this capability as exploration utility. As previously stated, most
publicized exploratory search systems concentrate on general knowledge graphs, leading
to the question of whether the commonly used performance indicators in the evaluation
of these systems are also applicable for exploration within the manufacturing domain.

Aim. An exploratory search system prototype (ESS) will be built and set for
assessment using a robust evaluation methodology. The key focus of the evaluation is to
ascertain the system’s capability to enable a user to actively explore, learn, and understand
a given subject. Emilie Palagi, in her PhD thesis [Pal18], suggested an evaluation model
that is suitable for assessing the exploratory process rather than concentrating on a single
key performance indicator such as recall, precision, or speed. Additionally, Al-Tawil et
al. [ADT20] proposed a methodology for designing an exploratory search system evaluation
using Bloom’s taxonomy as a framework to assess the usefulness of an exploration. The
evaluation methodology for the ESS prototype will be crafted based on the work of Palagi
and Al-Tawil et al.

1.2 Methodology
This thesis is following the methodology outlined briefly in the subsequent description.

1. Requirements Survey: Informal interviews were conducted with engineering profes-
sionals from the two collaborating organizations. In these interviews, expectations
towards the search system as well as specific requirements for their manufacturing
domain were discussed to address RQI.

2. Design & Implementation of ESS prototype: Building upon the gathered re-
quirements from the informal interviews and a literature study of exploratory search
systems, an exploratory search system with the main goal of assisting engineers in
exploring manufacturing knowledge was designed. The designed system assumes
that an ontology-based data access is provided to the manufacturing data. It was
implemented following a microservice architecture and it shall not only be flexibly
adaptable to any manufacturing use case, but it shall also be agnostic to the legacy
information management systems maintaining the manufacturing data.

3. Evaluation: An evaluation model was constructed for the designed exploratory search
system based on the research of Emilie Palagi [Pal18], and Al-Tawil et al. [ADT20].
This model was applied to our system and the pilot factory use case (UC2). In
order to get a meaningful result from the evaluation, 5 participants were invited to
take part in user experiments.
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1.3 Structure of Work
The remainder of this thesis is structured as follows:

Chapter 2

This chapter outlines the required background knowledge for the remaining thesis, and
relevant related work for our three research questions. Section 2.1 takes a look at the
Resource Description Framework (RDF) and Section 2.2 briefly describes ontologies,
which are both fundamental technologies of the Semantic Web. Section 2.3 defines how
the term knowledge graph is meant to be understood in this thesis. A deeper dive into
exploratory search is taken in Section 2.4. The chapter is concluded with Section 2.5,
which outlines related work about exploratory search in manufacturing.

Chapter 3

This chapter addresses the first research question, RQI. Firstly, Section 3.1 provides an in-
depth description of the two manufacturing use cases, namely, the use case concerning the
production plant manufacturer (UC1) and the use case concerning the pilot factory (UC2).
Subsequently, Section 3.2 lays out the requirements for the exploratory search system, as
gathered in interviews from stakeholders of both use cases. The chapter concludes with
Section 3.3, where it underscores three manufacturing-specific requirements and delves
into their details.

Chapter 4

This chapter aims to answer the second research question, RQII. Initially, in Section 4.1, it
delves into common interface paradigms utilized in publicized exploratory search systems.
Subsequently, certain interface paradigms are highlighted with the potential to meet the
collected requirements for manufacturing. Building on these insights, Section 4.2 presents
the design of an exploratory search system for the manufacturing domain. Finally, the
concepts and architecture of the proposed exploratory search system (ESS) prototype
are outlined in Section 4.3.

Chapter 5

This chapter addresses the third research question, RQIII. The ESS introduced in
Chapter 4 was evaluated with five participants on UC2, focusing on qualitative analysis
due to the small sample size. A specialized knowledge graph was created specifically for
this use case including an ontology for smart manufacturing and collaborative robotics,
which are discussed in Section 5.1. Subsequently, the design and results of the user study
are outlined in Section 5.2.

Appendices A & B provide supplementary material for the conducted user study.

Chapter 6

This chapter brings this thesis to a close by revisiting the three research questions in
Section 6.1. In Section 6.2, it details the potential avenues for future work, aiming at
further refinement and optimization of the ESS.
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CHAPTER 2
Background & Related Work

Knowledge graphs are seen as a promising solution for the digital transformation of
multidisciplinary manufacturing knowledge, but the concept of a knowledge graph is not
clearly defined. This thesis adheres to the simple definition that a knowledge graph is "a
structured dataset that is compatible with the RDF data model and has an ontology as its
schema." [VTGSR+17]. Section 2.3 discusses how this concept has been defined by other
authors.

The Resource Description Framework (RDF) is flexible data model to describe resources
with statements, where a resource can be anything that is uniquely identifiable. This
framework and related technologies of the Semantic Web stack are outlined in Section 2.1.
While RDF facilitates the collaborative sharing of information in form of a collection of
statements about resources, the need for a medium arises in which people can collaborate
on models that allow us to organize shared knowledge [AH11]. This is enabled by
ontologies, and Section 2.2 briefly describes common ontology languages.

Exploratory search systems over manufacturing knowledge graphs are suggested by this
thesis as a solution to support engineers in their decision-making. Similarly to knowledge
graphs, exploratory search is a loosely defined concept with an unstable definition. This
thesis adheres to the simple definition that it is an open-ended, weakly defined information
seeking task such as learning and sense-making. A deeper dive into exploratory search
is taken in Section 2.4. The evaluation of exploratory search systems is a challenging
task, and the aforementioned section also discusses proposed evaluation methodologies
for such systems.

Finally, this chapter concludes with related work about exploratory search in manu-
facturing in Section 2.5. It outlines scientific works from the manufacturing domain
that concern themselves with knowledge management and reusability of manufacturing
knowledge as well as search and exploration in manufacturing.
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2. Background & Related Work

2.1 Resource Description Framework (RDF)

The Resource Description Framework (abbreviated with RDF) offers a flexible data
model that facilitates data sharing and data integration. It is one of the fundamental
technologies to represent data on the Semantic Web and is recommend by W3C as such.
It gained widespread momentum in the last decade resulting in a number of big public
datasets. The DBpedia project, which is an attempt to extract facts from Wikipedia
pages and make them machine-readable, offers an RDF dataset with billion pieces of
information describing million of entities [LIJ+15]. The broad goal of RDF is to define a
mechanism to describe resources. A resource can be anything that is uniquely identifiable,
including a document, person, physical object or an abstract concept [SR14].

An RDF dataset consists of statements providing pieces of information about a resource
in the form of ⟨subject, predicate, object⟩, which is commonly called a triple. The subject
of a triple is a resource about which one wants to make a statement. It can be identified
either globally by an Internationalized Resource Identifier (IRI) or a local identifier.
The later is also known as blank node. A predicate puts the given subject in a certain
relationship with the object of the triple. An object can be a literal or another resource.
A literal is a value of a specific data type, whereas this data type is identified by an IRI as
well. If no data type is explicitly assigned to a literal, it is considered to be a text string.
Text strings have the distinct feature of language tags that can be attached to them.
The predicate in a triple is a resource itself and ascribes a meaning to the relationship
between the subject and object. Figure 2.1 depicts an example of an RDF graph.

Blank nodes are local identifier that allow for the representation of entities without
the necessity of assigning explicit names in form of an IRI. These identifiers are not
recognizable outside their local system application [HPS14]. Although blank nodes offer
convenience to RDF authors and ontologists, they pose a challenge from an engineering
perspective. According to the SPARQL specification [HSP13], an identifier of a blank
node received in one query cannot be reused in subsequent SPARQL queries. This
restriction complicates the tracking and unique identification of the entity represented
by a blank node. Hence, the proposed ESS mandates skolemization, requiring all blank
nodes to have an explicit IRI.

Collections and Containers are two distinct constructs in RDF to group resources.
RDF collections can describe closed lists (known as rdf:List), which have a clearly
specified beginning and end. Similarly to Lisp, a list can be constructed with the properties
rdf:first, rdf:next and the instance rdf:nil. In contrast to collections, containers
represent open collections, where "open" refers here to the fact that the RDF specification
defines no mechanism for containers to state that there are no more members in the
container [BGM14]. This is especially relevant for reasoning on-top of RDF data. RDF
knows three classes of containers, namely rdf:Bag, rdf:Seq and rdf:Alt, each with
its own unique semantics.

8



2.1. Resource Description Framework (RDF)

Figure 2.1: Example of an RDF graph [SR14].

Reification allows an RDF graph to act as metadata describing other RDF triples
[HPS14] by introducing a special vocabulary with the class rdf:Statement, and the
three predicates rdf:subject, rdf:predicate, as well as rdf:object. With this
vocabulary an RDF triple such as ’ex:bob foaf:knows ex:alice’ can be formulated
as identifiable resource (e.g. _:s in Listing 2.1) and hence, one can assert statements
about this triple as about any other RDF resource.

Listing 2.1: Reification Example (Turtle syntax1)
_: s a rd f : Statement ;

rd f : s ub j e c t ex : bob#me ;
rd f : p r e d i c a t e f o a f : knows ;
rd f : ob j e c t ex : a l i c e#me .

Named Graphs are an extension of the RDF model [HPS14], which provide the ability
to organize an RDF graph in a number of named subgraphs. A named subgraph is a
non-empty collection of triples of the original RDF graph that is identified either by an
IRI or a blank node. Thus, a named graph is itself an RDF resource and one can assert
facts about it. An example for named graphs is shown in Listing 2.2.

1RDF 1.1 Turtle, https://www.w3.org/TR/turtle/

9
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2. Background & Related Work

Listing 2.2: Named Graphs Example (TriG syntax2) [SR14]
GRAPH ex : datase t {

ex : bob#me a f o a f : Person ;
f o a f : knows ex : a l i c e#me ;
schema : birthDate "1990−07−04"^^xsd : date ;
f o a f : t o p i c _ i n t e r e s t wd : Q12418 .

}
GRAPH <https : //www. wik idata . org / wik i / S p e c i a l : EntityData /Q12418> {

wd : Q12418 dct : t i t l e "Mona Lisa " ;
dct : c r e a t o r dbr : Leonardo_da_Vinci .

}

Triplestore is a name given to a database management system with the ability of
storing and retrieving triples. Most triplestores support SPARQL, which is a semantic
query language with which triples can be retrieved and manipulated (see Section 2.1.1).

2.1.1 SPARQL
SPARQL is the W3C recommended semantic query language for RDF data and is thus
supported by most triplestores. The first language specification of SPARQL (referred to
as version 1.0) [PS08] was published in January 2008 with basic patterns for graph pattern
matching. SPARQL 1.1 [HSP13] extended this first specification with new features (e.g.
path properties, sub-queries, aggregation) and was released in March 2013.

Basics

SPARQL provides four query forms, namely SELECT, ASK, DESCRIBE and CONSTRUCT.
A SELECT query returns all or a subset of the variables bound in a query pattern match.
ASK returns a boolean value indicating whether a query pattern matches (non-empty
solution set) or not. DESCRIBE returns an RDF graph composed of available statements
concerned with a given resource. With CONSTRUCT a new RDF graph can be constructed
by specifying triple templates. Potential variables in the triple templates are substituted
with the values of the corresponding bound variables in a query pattern match.

As stated in the specification of SPARQL [HSP13], "Most forms of SPARQL queries
contain a set of triple patterns called a basic graph pattern. Triple patterns are like RDF
triples except that each of the subject, predicate and object may be a variable. A basic
graph pattern matches a subgraph of the RDF data when RDF terms from that subgraph
may be substituted for the variables.".

Listing 2.3 shows a simple SELECT query with a basic graph pattern that consists of two
triple patterns. The first triple pattern has a variable on the subject position, while the sec-
ond one has the same variable on the object position. This query asks for all person that are

2RDF 1.1 TriG, https://www.w3.org/TR/trig/

10
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2.1. Resource Description Framework (RDF)

known to Bob, and this would only be Alice (i.e. http://example.org/alice#me)
considering the RDF example in Figure 2.1.

Listing 2.3: SELECT SPARQL Query
SELECT ? person WHERE {

? person a f o a f : Person .
<http :// example . org /bob#me> f o a f : knows ? person .

}

Shortcomings

Centrality and similarity metrics (see thesis of Armin Friedl [Fri17]) are crucial for
constructing an exploratory search system. Centrality metrics such as Page Rank assign
an "importance" value to entities in the knowledge graph. Similarity metrics on the
other side evaluate the similarity of a pair of entities. However, we cannot solely rely on
SPARQL for computing those metrics, because the specification of SPARQL 1.1 [HSP13]
has some shortcomings.

Traversing an RDF Graph: SPARQL 1.1 introduces property paths as a new feature,
which is defined as a possible route between two nodes of a graph. A triple pattern
is a property path of length 1. It adds the ability to match the connectivity of two
resources in a knowledge graph. However, computing the distance between a pair
of resources is not possible, because we can only check whether a path exists and
don’t know how the path looks like. Hence, SPARQL is not well suited for tasks
like computing the shortest path between a pair of resources.

Intractable Blank Nodes: Blank nodes are no stable identifiers and they can get an
arbitrary name assigned to in the query result of a SPARQL query according to the
specification of SPARQL 1.1, which makes it impossible to track entities referred
to by a blank node over multiple SPARQL queries.

2.1.2 RDF-star and SPARQL-star

RDF-star and SPARQL-star are proposed extensions of RDF and SPARQL respec-
tively [HCKS21]. In the original RDF 1.1 specification [HPS14], the subject of a triple
can either be a resource or a blank node. The object of a triple can furthermore be either
a resource, a blank node or a literal. However, with RDF-star a triple can be placed itself
on the subject or object position of a triple. An RDF-star triple can then take the form
«ex:bob foaf:knows ex:alice» ex:confidence 0.75, in which a confidence
value is assigned to the assertion that Bob knows Alice. SPARQL-star is an extension of
SPARQL, which allows users to query RDF-star triples.

11



2. Background & Related Work

At the moment of writing, RDF-star and SPARQL-star are not recognized as standard.
Nonetheless, popular triplestores such as GraphDB3 and the Java framework RDF4J4

have already implemented these extensions.

Provenance , which is a crucial part of data management, are often stated as use
case for RDF-star, because the original RDF 1.1 specification [HPS14] doesn’t provide a
convenient method to annotate statements. Harting identified in [Har17] three strategies
for annotating RDF triples, which all have their shortcomings.

1. RDF reification: The reification vocabulary proposed in the RDF specification [HPS14]
can be used to assert provenance statements about a triple. The problem of this
approach is that suddenly four triples are needed instead of one to make an assertion
and furthermore, querying of such data becomes cumbersome with common RDF
query languages.

2. Singleton properties: Another approach would be to create a new property for
each triple and to assert that it is a subclass of the corresponding property in the
triple. Consequently, statements can be made about this individual relationship
between subject and object as it can be done in property graphs. However, the
occurrence of this many subproperties is untypical for RDF data and hence, can
be an issue for certain storage models and query optimization strategies used in
tripelstores (e.g. vertical partitioning [AMMH07]).

3. Single-triple named graphs: Triples can as aforementioned be assigned to named
graphs and those named graphs can uniquely be identified by an IRI or a local
blank node. Assertions about these triples can then be made in form of statements
about this particular named graph. A shortcoming of using named graphs is that
there is no explicitly, formally specified meaning to the relationship of being added
as triple to a named graph, which makes it less convenient when used for more than
one use case, e.g. for provenance information on one side and assigning confidence
or trust values to triples on the other side.

The application of strategy (3) with conventional RDF is shown in Listing 2.2, where
triples are assigned to the dataset resource from which they originated. Listing 2.4 shows
how to achieve the same use case with RDF-star.

Listing 2.4: RDF-star example (Turtle-star syntax5)
<ex : bob#me a f o a f : Person> : statedBy ex : d a t a s e t .
<ex : bob#me f o a f : knows ex : a l i c e#me> : statedBy ex : d a t a s e t .
<ex : bob#me schema : birthDate "1990 −07 −04"^^ xsd : date> : statedBy ex : d a t a s e t .
<ex : bob#me f o a f : t o p i c _ i n t e r e s t wd : Q12418> : statedBy ex : d a t a s e t .

<wd : Q12418 dct : t i t l e "Mona Lisa "> : statedBy d : S p e c i a l : EntityData /Q12418> .
<wd : Q12418 dct : c r e a t o r dbr : Leonardo_da_Vinci> : statedBy d : S p e c i a l : EntityData /Q12418 .

3Ontotext GraphDB triplestore, https://www.ontotext.com/products/graphdb/
4Java framework for RDF from the Eclipse Foundation, https://rdf4j.org/
5Turtle-star from RDF-star draft [HCKS21]
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2.1.3 Property Graphs
A property graph is composed of vertices and directed edges with labels, whereas both
vertices and edges can have an arbitrary number of key/value pairs, also called properties,
associated with them. RDF data can as well be seen as a directed, labelled graph (see
Figure 2.1) and it is possible to represent RDF data as a property graph. Thus, making
it possible to use a number of graph query languages on RDF data stored in form of a
property graph.

At the moment of writing, no query language is accepted as a standard for property
graphs. GQL is one of the emerging attempts to establish such a standard [ISO24]. In
the following, two prominent query languages for property graphs are outlined, namely
openCypher and Gremlin. The benefit of those query languages from the perspective of
analysing RDF data is that they can compensate for the shortcomings of SPARQL.

openCypher: The graph database Neo4J6 popularized Cypher as query language for
property graphs, and the openCypher project intends to enable the use of Cypher as a
standardized language capable of being implemented in other graph databases. Cypher
as a declarative language was inspired by SPARQL and XPath. As stated in [FGG+18],
"A Cypher query takes as input a property graph and outputs a table. These tables can
be thought of as providing bindings for parameters that witness some patterns in a graph,
with some additional processing done on them. Cypher structures queries linearly. This
allows users to think of query processing as starting from the beginning of the query text
and then progressing linearly to the end. Each clause in a query is a function that takes
a table and outputs a table that can both expand the number of fields and add new tuples.
The whole query is then the composition of these functions.". While some other graph
databases besides Neo4J support this query language (e.g. Redis Graph, Agens Graph),
it is not recognized as standard yet. Listing 2.5 shows the openCypher equivalent of the
SPARQL query shown in Listing 2.3.

Listing 2.5: openCypher example
MATCH ( bob ) −[ : ’ f o a f : knows ’]−>( f r i e n d ) −[ : ’ r d f : type ’]−>( type )
WHERE id ( bob ) = ’ ex : bob#me’ AND id ( type ) = ’ f o a f : Person ’
RETURN id ( f r i e n d )

Gremlin: Gremlin is a functional graph traversal language for property graphs that
can be executed on all Tinkerpop-enabled systems. Apache TinkerPop is an open source,
vendor-agnostic, graph computing framework. As stated in [Fou18], "Every Gremlin
traversal is composed of a sequence of (potentially nested) steps. A step performs an
atomic operation on the data stream. Every step is either a map-step (transforming the
objects in the stream), a filter-step (removing objects from the stream), or a sideEffect-step
(computing statistics about the stream)." Listing 2.6 shows the Gremlin equivalent of the
SPARQL query shown in Listing 2.3.

6Neo4J graph database, https://neo4j.com
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Listing 2.6: Gremlin traversal example
g .V( ’ ex : bob#me ’ ) . out ( ’ f o a f : knows ’ )

. where (__. out ( ’ rd f : type ’ ) . has (T. id , ’ f o a f : Person ’ ) )

2.2 Ontologies
RDF facilitates the collaborative sharing of information on the Semantic Web in form
of a collection of statements about entities. However, the need for a medium arises in
which people can collaborate on models, that is, models that allow us to organize shared
knowledge [AH11].

Computational ontologies are a means to formally organize knowledge [SS09]. Studer
et al. defines an ontology as "a formal, explicit specification of a shared conceptual-
ization." [SBF98]. A conceptualization is thereby "an abstract, simplified view of the
world that we wish to represent for some purpose. Every knowledge base, knowledge-based
system, or knowledge-level agent is committed to some conceptualization, explicitly or
implicitly" [Gru93]. An ontology is in other words a domain model which is explicitly
expressed formally in a machine-readable format. It should express a shared view among
various parties, rather than being the perspective of an individual. Ontologies facilitate
the communication of knowledge between computers themselves as well as with and
among humans by representing the knowledge in a computer-processable format [Sab16].

The Semantic Web technology stack offers a number of modeling languages of varying
expressiveness. RDF is a basic model that allows us to make simple statements about
entities (see Section 2.1). The RDFS language provides the expressivity to describe
basic notions of commonality and variability known from object-oriented programming
languages and other class systems [AH11]. It introduces classes and properties as well as
langauag elements for building hierarchies of classes and properties. We elaborate on
RDFS in Section 2.2.1. The Web Ontology Language (OWL) furthermore introduces
the expressiveness of logics, allowing us to define detailed constraints between instances,
properties and classes. We elaborate on OWL in Section 2.2.2.

2.2.1 RDF Schema (RDFS)
The RDF Schema (RDFS) specification [BGM14] provides basic means for modeling
RDF data. The schema itself is expressed in RDF. The elements of an RDF schema are
defined as resources and statements (in form of triples) involving those resources. The
key constructs of the RDFS vocabulary are listed in table 2.1.

RDFS makes it possibles to define classes (sets) of resources and to organize those
classes in a hierarchy. Listing 2.7 shows the definition of the classes :Motor and
:ElectricMotor, whereas :ElectricMotor was made a specialization of :Motor.
Consequently, each instance of an electric motor would thus be also an instance of the
more general class motor.
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Modelling construct Definition according to language specification
rdfs:Resource All things described by RDF are called resources.
rdfs:Class Declares a resource as a class for other resources.
rdfs:subClassOf States that all the instances of one class are instances

of another.
rdf:type States that a resource is an instance of a class.
rdf:Property Used to define an RDF property.
rdfs:subPropertyOf States that all resources related by one property are

also related by another.
rdfs:domain Declares the class or datatype of the subject in triples

whose second component is a certain predicate.
rdfs:range Declares the class or datatype of the object in triples

whose second component is a certain predicate.

Table 2.1: Overview of key constructs of RDF/RDFS as outlined in [Sab16]

Listing 2.7: Example for a class in RDFS (Turtle syntax)
: Motor rd f : type r d f s : Class .
: E l ec t r i cMotor rd f : type r d f s : Class ; r d f s : subClassOf : Motor .

Additionally, we can define an rdf:Property, which relates a subject to an object,
whereas a subject must be a resource and an object can either be a literal or another
resource. Moreover, the domain of subjects and the range of objects for a property can
be defined with rdfs:domain and rdfs:range. The values for domain and range of
a property are expected to be classes of resources. Listing 2.8 outlines the definition
of the property :nominalVoltage, which expects electrical objects as subjects and
floating numbers as objects.

Listing 2.8: Example for a property in RDFS (Turtle syntax)
: nominalVoltage rd f : type rd f : Property ;

r d f s : domain : E l e c t r i c a l O b j e c t ;
r d f s : range xsd : double .

However, not only classes can be organized in a hierarchy, but also properties with
rdfs:subPropertyOf. If P is a subproperty of P’ and there exists a resource pair
that can be related with P, then this resource pair can also be related with P’ [Sab16].
Listing 2.9 shows the utilization of rdfs:subPropertyOf, where ex:machineA hasn’t
only an engine and sensor, but also two general components by inference.

Listing 2.9: Example for a property hiearchy in RDFS (Turtle syntax)
: hasEngine r d f s : subPropertyOf : hasComponent .
: hasSensor r d f s : subPropertyOf : hasComponent .

ex : machineA : hasEngine ex : squirrelCageMotorD .
ex : machineA : hasSensor ex : u l t rason icProx imityB .
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While the RDFS language has limited expressiveness, it is well suited for expressing
lightweight ontologies consisting of (hierarchies of) relations and classes [Sab16].

2.2.2 Web Ontology Language (OWL)
The first version of the Web Ontology Language (OWL) was introduced in 2004 [MvH04],
but the W3C recommends to use the most recent release 2.0 [HPPsR12]. It introduces
language elements to define detailed constraints between instances, properties and classes.
While OWL can be expressed in different formats, it can also be represented under the
semantics of RDF as it is the case for RDFS. A selection of key constructs of OWL is
listed in table 2.2.

Modelling construct Definition according to language specification
owl:equivalentClass Relates two classes whose class extensions contain ex-

actly the same set of individuals.
owl:disjointWith Asserts that the class extensions of the two class de-

scriptions involved have no individuals in common.
owl:intersectionOf Defines a class that contains the same instances as the

intersection of a specified list of classes.
owl:unionOf Defines a class that contains the same instances as the

union of a specified list of classes.
owl:complementOf Defines a class as a class of all individuals that do not

belong to a certain specified class.
owl:ObjectProperty Defines a property that captures a relation between

instances of two classes.
owl:DatatypeProperty Defines a property that captures a relation between

instances of classes and RDF literals/XML Schema
datatypes.

owl:inverseOf If a property, P1, is owl:inverseOf P2, then ∀x, y :
P1(x, y) ⇐⇒ P2(y, x).

owl:TransitiveProperty If a property, P, is transitive then ∀x, y, z : P (x, y) ∧
P (y, z) =⇒ P (x, z).

owl:ReflexiveProperty A reflexive property relates everything to itself.
owl:SymmetricProperty If a property P is symmetric then if the pair (x,y) is

an instance of P, then the pair (y,x) is also an instance
of P.

Table 2.2: Overview of key constructs of OWL as outlined in [Sab16]

In RDFS (see Section 2.1), basic hierarchies of classes and properties can be defined.
OWL on the other hand introduces additional language elements to model complex forms
of classes. As a result, one can define classes based on set operations on other classes (i.e.
union, intersection and complement). Listing 2.10 outlines how to define such a complex
class as the union of three atomic classes.
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Listing 2.10: Example for complex class in OWL (Turtle syntax)
: Arch i tectura lE lement owl : unionOf ( : DesignPattern

: Des ignTact ic
: SEMethod) .

A class can furthermore be a restriction, which specifies constraints that all it‘s member
instances have to satisfy. OWL knows different kinds of restrictions; some of which are
concerned about the object types of properties (e.g. owl:someValuesFrom) and others
are concerned with cardinality (e.g. owl:minCardinality). If a resource satifies the
constraints of a restriction class, then it can implicetely be inferred that this resource is an
instance of this class. Listing 2.11 shows how a property named :scheduleRepairAt
is defined with a certain restriction class as domain. Consequently, this property can
only be used on components that have the status of "broken".

Listing 2.11: Example for a restriction class in OWL (Turtle syntax)
: BrokenComponent a owl : R e s t r i c t i o n ;

owl : onProperty : hasStatus ;
owl : hasValue : BrokenStatus .

: scheduleRepairAt a owl : DatatypeProperty ;
r d f s : domain : BrokenComponent ;
r d f s : range xsd : date .

In contrast to RDFS, OWL also categorizes properties into datatype and object properties
(owl:DatatypeProperty and owl:ObjectProperty respectively). The former is
linking resources to literals, and the later is linking resources to other resources. A number
of axioms are introduced for object properties such as reflexive, symmetric, functional or
transitive axioms. Listing 2.12 shows the definition of a property as transitive. Hence, it
can implicetely be inferred that the squirrel cage motor as well as it‘s fan are part of
ex:machineA.

Listing 2.12: Example for property axioms in OWL (Turtle syntax)
: i sPartOf rd f : type owl : Trans i t i veProper ty .

ex : fanB : i sPartOf ex : squirrelCageMotorD .
ex : squirrelCageMotorD : i sPartOf : machineA .

In order to find a balance between expressitivity and scalability, OWL has been divided
into multiple profiles. The "OWL 2 Full" profile includes all language constructs of
OWL 2 and has the highest expressivity, but it is also undecidable (under RDF-based
semantics) [SS09]. Additionally, OWL 2 [HPPsR12] defines three subsets of "OWL 2
Full", namely "OWL 2 EL", "OWL 2 QL", and "OWL 2 RL". Each of these profiles was
designed with an application domain in mind. These application domains correspond to
a required level of expressitivity and scalability.
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2.3 Knowledge Graph
The term "knowledge graph" was popularized back in 2012 by Google [Sin12], and it
refers to their use of semantic knowledge in Web search [Pau17]. Nonetheless, there is
no agreed upon and common definition for knowledge graphs in literature [EW16]. This
section aims to outline how different authors defined knowledge graphs in the past and
clarifies how this term shall be understood in the remaining part of this thesis.

Pujara et al. [PMGC13] lists a number of information extraction systems, "which use a
variety of techniques to extract new knowledge, in the form of facts, from the web. These
facts are interrelated, and hence, recently this extracted knowledge has been referred to as
a knowledge graph". This definition remains vague and defines knowledge graphs as a
collection of interrelated facts generated from information extraction systems that are
applied to the Web.

Ehrlinger and Wöß [EW16] draw a clear distinction between a knowledge base and a
knowledge graph based on the usage of the term in literature. Their terminological
analysis lead to the definition that "a knowledge graph acquires and integrates information
into an ontology and applies a reasoner to derive new knowledge". A knowledge base
in contrast is missing the integration of new knowledge from multiple sources, and the
reasoning engine to infer new knowledge. Bellomarini et al. [BFGS19] builds upon this
definition of Ehrlinger et al., and defines a knowledge graph as a "semi-structured data
model characterized by three components: (i) a ground extensional component, that is,
a set of relational constructs for schema and data (which can be effectively modeled as
graphs or generalizations thereof); (ii) an intensional component, that is, a set of inference
rules over the constructs of the ground extensional component; (iii) a derived extensional
component that can be produced as the result of the application of the inference rules over
the ground extensional component (with the so-called “reasoning” process)". A knowledge
graph is in this definition essentially a knowledge base with a reasoning mechanism for
inferring new knowledge.

According to Paulheim [Pau17], a knowledge graph has four defining characteristics in
contrast to other collections of knowledge. A knowledge graph "(1) mainly describes real
world entities and their interrelations, organized in a graph, (2) defines possible classes
and relations of entities in a schema, (3) allows for potentially interrelating arbitrary
entities with each other, and (4) covers various topical domains". This definition is
tailored towards encyclopedic projects in the LOD Cloud7 such as Wikidata8, but it
ignores the use of this technology in (manufacturing) enterprises.

Färber et al. [FBMR18] defines a knowledge graph formally as an RDF graph. "An RDF
graph consists of a set of RDF triples where each RDF triple (s, p, o) is an ordered set
of the following RDF terms: a subject s ∈ U ∪ B, a predicate p ∈ U , and an object
U ∪ B ∪ L. An RDF term is either a IRI u ∈ U , a blank node b ∈ B, or a literal l ∈ L".
Consequently, any RDF dataset is a knowledge graph according to this definition.

7The Linked Open Data Cloud, https://lod-cloud.net/
8Wikidata, https://www.wikidata.org
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Figure 2.2: Example of a knowledge graph.

This thesis defines a knowledge graph as "a structured dataset that is compatible
with the RDF data model and has an ontology as its schema. A knowledge graph is
not necessarily linked to external knowledge graphs; however, entities in the knowledge
graph usually have type information, defined in its ontology, which is useful for providing
contextual information about such entities" [VTGSR+17]. This definition is not concerned
with reasoning over RDF-based knowledge graphs, but rather sees the knowledge graph
as the final product that is the union of explicetely stated and implicetely inferred
relationships.

A small sample of a knowledge graph about Renaissance painters is shown in Figure 2.2.
It makes use of FOAF9 as lightweight ontology to ascribe a meaning to relationships
between persons and related artifacts.

An exploratory search system can utilize the machine-readable contextual information
about entities for the implementation of an adaptive user interface (see Chapter 4).

9Friend-of-a-Friend (FOAF) vocabulary, http://xmlns.com/foaf/spec/
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2.4 Exploratory Search
Exploratory search is a particular information seeking activity, which we adopt as a
solution concept to address the problem of information seeking in the manufacturing
domain introduced in Section 2.5. As with the concept of knowledge graphs, there is
at the moment of writing no stabilized or consensus definition of exploratory search
in literature. It is rather a loosely defined concept with an unstable definition which
continues to evolve [Pal18]. Section 2.4.1 outlines how different authors have tried to
define exploratory search. Surveys about regular semantics-based search systems and
exploratory search systems are summarized in Section 2.4.2. Section 2.4.3 is devoted to
the challenging question of how to properly evaluate the ability of a search system to
enable exploratory search.

2.4.1 Definition
A number of researchers have over the years discussed the defining characteristics of
exploratory search. An early contribution has been made by Marchionini [Mar06],
who highlights learning and investigating as pertinent activities of exploratory search.
Considering the terminology of Blooms taxonomy of educational objectives [BK56],
searches with the intention to learn involve multiple iterations and aim to achieve
"knowledge acquisition, comprehension of concepts or skills, interpretation of ideas, and
comparisons or aggregations of data and concepts" [Mar06]. Investigative searches on
the other hand aim to achieve Bloom‘s highest level objective such as analysis, synthesis
and evaluation. Knowledge is in this activity carefully examined before it is added to
the personal knowledge base [Mar06]. Figure 2.3 illustrates their conceptual model of
exploratory search.

While exploratory search and lookup searches are often contrasted, they should not be
seen as mutually exclusive. Lookup based activities might be embedded in an activity of
exploratory search. Lookup-based information retrieval is a predominant search paradigm
commonly used by major search engines among others. This search model has been
proven successful for well-defined information seeking tasks in which a user already knows
what to exactly search for. A user issues a precise query, e.g. types "longest river in
South America" into a search engine on the Web, and gets in response a well-structured
answer with minimal need for result examination and aggregation. On the other hand,
exploratory search is described as open-ended with an unclear information need [Pal18],
e.g., I want to learn more about the country Honduras in South America. This kind of
search activity is evolving and non-linear.

White et al. [WR09] defines exploratory search as the term "can be used to describe an
information-seeking problem context that is open-ended, persistent, and multi-faceted;
and to describe information-seeking processes that are opportunistic, iterative, and multi-
tactical. In the first sense, exploratory search is commonly used in scientific discovery,
learning, and decision-making contexts. In the second sense, exploratory tactics are used
in all manner of information seeking and reflect seeker preferences and experience as much
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Figure 2.3: Taxonomy of search tasks proposed by Marchionini [Mar06].

as the goal". Exploratory search systems support aspects of sense-making, information
foraging, and berrypicking [WR09].

The theory of information foraging was proposed by Pirolli et al. [PC95][PC99] and it
draws an analogy between the behaviour of humans when seeking information and food
foraging strategies in evolutionary anthropology. It analyses search activities from the
point of view that all activities have resource currency returned and cost incurred. An
academic has to invest energy to find valuable information from a wide range of sources
for their project like a bird has to invest energy into finding prey. The theory introduces
the concept of information patches as well as information diet and scent following. The
concept of information patches refers to a situation in which relevant information might
reside in collections of documents scattered over multiple sources and one has to decide
on which documents to focus energy on. Information scent refers to the perception of
cost and value of an information source obtained by proximal clues. An information diet
is the careful selection of information sources to focus on. By analogy, the aim of an
information predator is to select information prey so to maximize the information gain
per invested energy unit [PC99].

A pictorial model of an exploratory search activity is given by the analogy of berrypicking
in a forest, where "berries are scattered on bushes, not in bunches, and the seeker must
pick the berries singly" [Bat89]. The information seeker is confronted with a landscape
of information being scattered among a number of sources, and they have to navigate
through this information space, gathering relevant pieces of information and clues that
aid navigation decisions [WR09]. At each stage of the search, the finding of new pieces
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of information might lead to the information seeker getting new ideas and directions to
follow. Hence, the information seeker might have different conceptualization of the query
along the stages of the search in contrast to traditional models of information retrieval,
in which a query is satisfied by a final retrieved set. In case of this model, it is rather
satisfied by a collection of individual references and information fragments gathered along
the evolving search [WR09].

Figure 2.4: Venn diagram of characteristics of exploratory search [Pal18].

Palagi aims to define in her thesis [Pal18] an approximate model of exploratory search
with the intention of covering an exploratory search process accurately enough to discuss
evaluation methodologies for such search systems. The model defines characteristics of
the exploration task and the inner state of the information seeker during the search. The
model is based on an aggregation of characteristics commonly ascribed to exploratory
search in literature and is depicted in detail in Figure 2.4.

According to this model, an exploratory search process typically starts with a loosely
defined information need and is open ended as well as evolving. An information seeker
might change their information need based on results discovered throughout the search
session and perform a reformulation of current queries. An information seeker might
not have one precise single goal in mind, but rather multiple goals or a loosely defined
objective, which may evolve throughout the search session as well. In an exploratory
search session, an information seeker is in general not looking for a correct answer
to the goals or vague objective, but for relevant information that can be added to the
personal knowledge base and further informs the ongoing search process. An serendipitous
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attitude can be ascribed to exploring information seekers, which means that they have
the faculty to be surprised about a discovered element in a result set and the motivation
to reformulate the search objectives based on the surprise. Moreover, an information
seeker might perform several pinpoint searches to investigate a specific element of the
result set or why in particular it was part of the result set given the issued query [Pal18].

This thesis simply defines exploratory search as an open-ended, weakly defined
information seeking task such as learning and sense-making. A system is an exploratory
search system, if it supports information seekers in their exploratory search tasks.

2.4.2 Exploratory Search Systems
An early survey of semantic-based exploratory search systems was published by Marie et
al. [MG14]. It portrays the history of semantic-based search systems and characterizes
them. The first generation of tools for navigating knowledge graphs were semantic
browsers such as Tabulator [BlCC+06]. These tools were heavily inspired by the way we
are browsing Web pages and provided a simple view of the data. A number of recommen-
dation systems that make use of the semantic similarity of resources in a knowledge graph
were proposed in the following years. An example is Yahoo SPARK[BCMT13], which was
used for entity recommendation in Yahpoo‘s search interface. However, the most advanced
systems in the field of exploring knowledge graphs are exploratory search systems [MG14],
which are categorized by Marie et al. into either view-based or algorithm-based. Ae-
moo [NPG+17] is a view-based exploratory search system in which the neighborhood
of a resource of interest is visualized as a graph. A user can then navigate through the
neighborhood and explore it, whereas the neighborhood is restricted to a manageable
number of neighbors based on Encyclopedic Knowledge Patterns10 to not overwhelm
users with irrelevant information. Lookup Explore Discover (LED) [MN10] is in contrast
an algorithm-based exploratory search system in which a user can enter a list of topics of
interest and gets a tag cloud of semantically similar resources in response. User can add
topics from this tag cloud to their initial list in order to refine the query, because the
specified topics are eventually used to issue a regular search with Google and the highest
ranked results of this search are shown to users below their corresponding tag cloud.

Klimek et al. [KSN19] conducted a comprehensive survey of tools supporting the discovery,
processing, and consumption of knowledge graphs (as defined in Section 2.3). 110 tools
were identified and sixteen of them were evaluated based on a big set of criteria after
they passed all three elimination rounds of the systematic literature study. While
exploratory search was no concern of this survey, different forms of searching through
Linked Data including full-text search, faceted search and SPARQL querying were part
of the evaluation. Among the sixteen evaluated tools is SemFacet [AGK+16], which is
an exploratory search system utilizing facets for the exploration of knowledge graphs. It
can automatically generate these facets given that the metadata and domain knowledge
of the graph is described with OWL 2 (see Section 2.2.2).

10Encyclopedic Knowledge Patterns, generated from DBpedia graph analysis [NGPC11].
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Po et al. [PBDP20] discuss in their book different tools and methods to visualize and
navigate knowledge graphs (as defined in Section 2.3). The tools are categorized into
five categories: (1) browsers and exploratory tools, (2) tools using multiple visualization
types, (3) graph-based visualization tools, (4) domain and vocabulary-specific as well as
device-oriented visualization tools, and lastly, (5) ontology visualization tools. This thesis
is mostly concerned with the first category of browsers and exploratory tools. These tools
enable browsing and exploration of knowledge graphs in an intuitive way, but they lack or
only have limited visual support in contrast to the other categories. The first generation
of tools in this category were semantic browsers using tabular views for presentation of
resources and links for navigation, whereas most of the newly publicized systems follow
the faceted exploration paradigm to provide effective browsing functionalities [PBDP20].

These surveys offer a starting point for collecting search and interface paradigms that
might be valuable for exploratory search systems in the manufacturing domain (as
part of research question RQII). Section 4.1 discusses common interface paradigms and
furthermore, paradigms of particular interest for manufacturing.

2.4.3 Evaluation Methodology for Exploratory Search Systems
In the previous section, we outlined a number of surveys for semantic-based exploratory
search systems. Some of the publicized works that have been presented in those surveys
conducted no evaluation of their system (e.g. [CFM14], [AGK+16]), whereas others
have evaluated the search and recommendation results of their system using well-known
metrics from information retrieval such as precision and recall (e.g. [MRNS10], [MGRR13],
[NDC15]) or asked users to answer a questionnaire about the usability after some search
tasks (e.g. [TRJ+17]). Marie et al. [MGRR13] claimed to have resorted to an evaluation
of their recommendation engine by users, due to a lack of evaluation methodologies
for exploratory search at that time. The evaluation of ranking and recommendation
algorithms is however not sufficient, as is it the case for questionnaires about the usability
of a system. In the following, we want to outline evaluation methodologies from literature
with the aim of evaluating the exploratory search process.

Medlar et al. [MPG17] conducted a comprehensive user study for their search system to
investigate how different exploration rates affect "(1) the number of clicks and the reading
time, (2) subjective satisfaction, and (3) overall correlation between the user’s knowledge
of a given research topic, the exploration rate and the user search behaviour". In their
search system, a user gets a number of research papers as response to their query and has
to give feedback to them in form of a "thumbs up" or a "thumbs down". Afterwards, the
user gets other research papers recommended based on the initial feedback. Exploration
rate refers here to the trade-off between exploitation and exploration. A low exploration
rate supports exploitation, i.e. only closely related works are recommended, while
high exploration rates support exploration with a more diverse set of recommendations.
Students were recruited from computer science classes and given the task to explore with
this search system a certain research topic for which they had to write an abstract at the
end of the task. The designed tasks followed the template of Wildemuth et al. [WF12]
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for exploratory search tasks. Each student got a different exploration rate assigned,
and got tracked during the search process with intermediate questionnaires about the
satisfaction with the recommendations. However, the evaluation methodology is heavily
tied to the specifics of their search system. Moreover, the ability of the system to support
learning and sense-making was no concern of the study (e.g. the gain of knowledge was
not assessed). Nonetheless, valuable lessons can be learned from it.

Emilie Palagi [Pal18] conducted a survey on a subset of published ES systems and the
evaluation employed by the authors of the corresponding publication. She concluded
that it was necessary to define an evaluation methodology for exploratory search systems.
Palagi defines an exploratory search process that must be supported by an ES system. She
suggests a user-centered as well as an inexpensive, quantitative model without users for
evaluating how well an ES system supports this process. The later is an inspection method
known from usability research. It is intended as a testing ground before undergoing a
costly evaluation with users [Pal18]. For the user evaluation, Emilie Palagi outlines a
guideline for creating exploratory search tasks and she formulates a model based on
qualitative video analysis to detect usability flaws in the search system that have a
negative effect on aforementioned exploration process.

In [ADT20], Al-Tawil et al. outline a methodology to construct an evaluation of an
exploratory search system using the taxonomy of Bloom to conceptualize the utility
of an exploration. "It suggests linking knowledge to six cognitive processes: remember,
understand, apply, analyze, evaluate, and create" [ADT20], whereas only remember and
understand are considered. Exploration tasks are designed following a guideline similar to
Palagi’s suggestions. However, users have to answer knowledge questions before and after
they performed a task to facilitate a quantitative analysis. The answers are evaluated
with a point system, and the utility of an exploration is assessed by the difference of the
point score between answers given before the task and after the search system was used
to perform the task.

Our evaluation methodology is going to be designed based on the work of Palagi [Pal18]
and Al-Tawil et al. [ADT20]. Palagi provides an universal framework for the qualitative
analysis of generic exploratory search systems, while Al-Tawil et al. outline a methodology
to assess the knowledge gain of users for their specific system, which we adapted for our
user study in Chapter 5.

2.5 Search and Exploration in Manufacturing
Several authors have investigated the need for search and exploration in industry. Manu-
facturing is a knowledge intensive field with the need for tools to explore this knowledge.
He et al. [HJ19] formulate the need for reusing manufacturing knowledge in order to
facilitate decision making in industrial enterprises. Similarly, Zhou et al. [ZZL+20] see
in the reuse of manufacturing knowledge a potential for better informing engineers,
software or even machine tools in their decision making processes. Thus, they introduce
a knowledge-driven framework for autonomous manufacturing cells.

25



2. Background & Related Work

As part of the EU FLEXINET project, Palmer et al. [PUJ+18] identify common problems
with information management in manufacturing enterprises and propose a reference
ontology that can be specialized by manufacturers to suit their needs. In manufacturing,
the information for supporting decision making comes from many different sources, and
many different types of decisions have to be carried out. Groups in manufacturing
businesses can work on different types of information and might require multiple sources
of knowledge to best support decisions. While they stress the need for constructing a
knowledge base for manufacturing knowledge and propose techniques to construct it,
human-friendly exploration of this knowledge plays a minor role in their discussion.

Biffl et al. [BMM+21] are specifically concerned about properly tracking change dependen-
cies and coordination states of engineering artifacts in multi-disciplinary manufacturing
environments. A failed coordination of engineering activities can lead to unplanned
rework and project delays, which is costly for any manufacturing company. They propose
a knowledge graph based on I4.0 assets11 as a new coordination artifact. It shall represent
change dependencies explicitly in a machine-readable format, and thus, allow a more
efficient coordination of changes. However, a human-friendly search interface was not a
focus of their feasibility study, rather, Cypher queries (see Section 2.1.3) were used to
extract required information from the knowledge graph.

Apart from knowledge organization frameworks for manufacturing, a few search systems
have been proposed for exploring knowledge graphs related to manufacturing and en-
gineering. Sabou et al. [SEI+18] published an exploratory search system for assisting
software engineers at Siemens in sieving through the central repository of architectural
knowledge. In order to facilitate exploration, a faceted view of the direct neighborhood
was rendered and a recommendation engine was introduced to recommend related ar-
chitectural artifacts (e.g. software engineering design pattern) to the currently selected
one.

At the same time, Kharlamov et al. [KSH+18] outlines the need of a big Norwegian oil
and gas company named Equinor to facilitate exploration of new oil and gas fields while
the valuable knowledge is dispersed over multiple isolated systems. The paper discusses
the construction of an ontology based data access to those dispersed data sources and a
query formulation tool for domain experts with the intent of simplifying the formulation
of SPARQL queries and hence, the extraction of sought after information.

A platform for knowledge graph management named "Metaphactory" is presented by Haase
et al. [HHK+19], and they briefly outline use cases in the engineering and manufacturing
domain at Siemens for this platform. A use case involves the construction of a digital
twin of a building including the static information about its composition and live data
from sensors located in the building. While exploratory search is not discussed, it touches
on faceted navigation, query building assistance and customizable search experience as
well as result visualization. Nonetheless, no deeper insight is given into how engineers at
Siemens actually interact with the platform.

11A physical or non-physical object, specified in ASS information model: https://bit.ly/37A002I
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Despite of those preliminary systems, there is currently a lack in literature about typical
requirements for exploratory search in manufacturing knowledge, which is why we will
partially address it in Chapter 3 for research question RQI.
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CHAPTER 3
Manufacturing Requirements

Most publicized exploratory search systems are designed to be applied on generic knowl-
edge graphs for which common knowledge is sufficient, and not much attention has yet
been dedicated to domains such as engineering and manufacturing. This thesis argues
that within the complex environment of manufacturing new approaches are needed for
assisting stakeholders in the exploration process of manufacturing knowledge.

In order to derive real-life requirements for exploratory search systems, two organizations
from the domain of manufacturing collaborated with a use case in which the need for
such a system arises. The first organization is a production plant manufacturer from
the metallurgy domain. In this organization, a simulation expert has to collect and
consolidate engineering artifacts of a designed plant for simulations, which is a challenge
due to the fact that engineers from different disciplines work on such a plant design and
sometimes provide inconsistent details about the same individual component. Secondly,
researchers from the Aspern pilot factory collaborate, where researchers, industrial
partners and students have access to collaborative robots and related equipment, but are
not necessarily aware of their availability and potential. Section 3.1 elaborates on both
use cases.

Informal interviews with members of the collaborating organizations were conducted
to get an understanding about requirements that might not necessarily be unique to
professionals in manufacturing, but are not considered for exploratory search systems
on generic domains. The methodology and the results for these informal interviews are
outlined in Section 3.2.

Section 3.3 proposes then three specific features based on the gathered requirements from
these informal interviews. Firstly, adaptability of the system to multiple (engineering)
perspectives. Secondly, visibility of provenance details to simplify investigative work.
And finally, the ability to browse deep hierarchical structures. Exploratory search systems
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that are applied to the manufacturing domain should draw special attention to these
three features in addition to the widespread ones for generic domains.

3.1 Manufacturing Use Cases
Two organizations from the domain of manufacturing collaborated to derive real-life
requirements for exploratory search systems. The first organization is a production plant
manufacturer from the metallurgy domain. Their use case is introduced in Section 3.1.1
in more detail. Secondly, researchers from the Aspern pilot factory collaborate. This pilot
factory intends to provide researchers, industrial partners and students with space and
equipment to experiment with new ways of shaping manufacturing work. Section 3.1.2
elaborates on this second use case.

3.1.1 Production Plant Manufacturing (PPM)
This section reports on a real-life use case supplied by a production plant manufacturer
(PPM)1 from the metallurgy domain with more than 10.000 employees. The goal of this
use case is to assist simulation experts in their daily tasks of consolidating diverse views
of production system designs.

Project Hierarchy

Project Setup Simulation

FluidicMechanic Electric

Engineering

Parameter Table

Engineering
Data Artifact

Project Structure
Data Flow

Engineering
Data Exchange

Process Flow Simulation 
Data Delivery

Figure 3.1: Engineering data exchange for simulation.

As depicted in Figure 3.1, representatives of several engineering disciplines work together
during production system engineering (PSE) to build a production system. The PPM
follows a specific process defined by the VDI2 for plant engineering, where a functional

1Use case partner cannot be named, due to confidentiality agreements.
2Verein Deutscher Ingenieure e. V. (VDI), a German organization of engineers and natural scientists
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hierarchy is created during project setup (see project hierarchy in bottom left of Fig. 3.1).
This initiates the engineering activity across several disciplines such as mechanical and
electrical engineering.

The interdisciplinary exchange of engineering data is challenging, however. Discipline-
specific habits and vocabularies are hard to overcome in an organization, due to the
education and socialization of engineers in their respective discipline [LPRB19]. The views
on engineering artifacts in a production system might vary between engineers [BLRW19].
The characteristics of a motor could for instance be described in a impressively detailed
manner by mechanical engineers, but only superficially by electrical engineers.

Nonetheless, engineers within the company have to necessarily exchange engineering
information in order to make well-informed design decisions for a planned production
plant. This is especially the case for simulation experts, who are tasked with the
simulation of plant designs, and the optimization of these plant designs in respect to
several key performance indicators. As an input for the simulation task, they have to
collect engineering information about the individual components to fill the corresponding
parameter table for simulations [BLRW19]. To that end, they:

1. identify similar component descriptions in various design files that are likely to
refer to the same physical component;

2. select relevant parameters (individual disciplines send all their data); e.g. supply
voltage for a motor

3. collect the values suggested by different disciplines; e.g. value A, value B, value C

4. choose the right value. A simulation expert either calls colleagues from relevant
disciplines, or consults data sheets from device providers in order to decide on the
right value.

This data collection and consolidation process performed by simulation experts is currently
a manual process involving identification as well as inspection of relevant engineering
artifacts. The details about individual components are scattered over multiple artifacts
in a plethora of formats, e.g., Computer-Aided Design (CAD), Comma Separated Value
(CSV), or Portable Document Format (PDF) [WRKB20]. Due to the fact that these
artifacts are originating from different domain experts and sources, the simulation expert
has to put additional effort into manual synchronization, which can be error-prone, and
induces avoidable project risks [BLRW19].

An exploratory search system could support a simulation expert in their analysis of engi-
neering artifacts, and help them in their decision-making process about what parameters
should eventually be added to the parameter tables for simulations. This system would
however require the engineering artifacts to be semantically-annotated and integrated
into a central manufacturing knowledge graph, which is a challenging task.
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3.1.2 Pilotfabrik 4.0: Collaborative Robots (COBOT)
The Aspern pilot factory is one of several Austrian "learning and experimentation factories"
initiated and co-funded by the Austrian Federal Ministry of Transportation, Innovation,
and Technology starting with 2015 [HSSW16]. The Aspern factory is administered by
the Technical University of Vienna (TU Wien) and currently, several institutes lease
certain areas in the factory for research, teaching, and industry contacts.

Industrial machines ranging from (collaborative) robot arms, 3D-printers, and CNC
milling machines to virtual reality systems and real work pieces can be used by students,
researchers, and companies to experiment with new ways of shaping manufacturing work.
To better organize topics and presentations, the different projects are usually focused on
creating demonstrators, which exist for a limited period, after which they are dismantled
and the composing elements reused in other projects.

This thesis is concerned with collaborative robots and related equipment in the pilot
factory. The Aspern factory currently hosts a series of valuable collaborative robotic
arms as well as a wide range of supporting tools (grippers, 3D cameras, projectors, etc.),
which are ready to be used by students, researchers, and companies.

The detailed capabilities of these machines are, however, unknown to a wider, potentially
interested audience, because:

1. they are not publicly available,

2. they depend on the application-context (e.g., so-called robotic skills like assembling,
drilling, screwing, etc. which are implemented in software),

3. they continuously evolve and change.

In this context, interested students, researchers, and companies are unaware of the
availability and capabilities of the manufacturing technology in the Aspern factory, which
leads to a relatively low usage degree of these expensive, state of the art production
machines. Hence, the need arises for an exploratory search interface such that students,
researchers and companies can explore and learn about the equipment at the pilot factory.

In Section 5.1, the process of constructing a knowledge graph for this use case is outlined
in more detail, from the design of a domain ontology to the integration of heterogeneous
data into a single knowledge graph. The resulting knowledge graph was used to evaluate
the exploratory search system proposed in this thesis.

3.2 Stakeholder Interviews
Informal interviews were conducted with stakeholders of the collaborating organizations
to get a better understanding of their requirements towards an exploratory search system.
The interviews started with a brief introduction to the concept of exploratory search,
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and a showcase of an early prototype was presented. The stakeholders were then asked
about their daily tasks and what requirements they would have towards such a system.
The interviews would take up to one hour.

The remarks of the stakeholders were noted down during the interviews. Afterwards, all
the notes were aggregated for each use case, and the following requirement lists were
generated.

Collected Requirements

(UC1) PPM: One simulation expert of the production plant manufacturer was inter-
viewed as well as one researcher who was closely connected to this use case.

Domain-Specific Lenses: As a domain expert, I want to see details about a
component that are relevant to my discipline (electrical, mechanical, etc.), and
not be overloaded with information from other disciplines. Moreover, I should
be able to easily switch between discipline lenses and not be fixed to one. As
an electrical engineer for example, I might be interested mainly in electrical
properties and wiring details for an electrical motor, but not necessarily in
mechanical properties.

Simulation Table: As a simulation expert, I am interested in finding parameter
values for a physical component that can be found across different data sources
(design files, datasheet, etc.). I want to see the values for parameters and the
original data source in which this specific value for the parameter was stated
(i.e., provenance information) in order to help me with choosing the correct
value and constructing the simulation table. The provenance information for
a value shall contain a link to the original data source, software that was used
in the integration, agent that issued the integration, and timestamp of the
integration.

Related Components: Given a specific component (e.g. squirrel cage motor
employed in a certain project), as a domain expert, I want to get similar
components in other projects, sites, areas, etc. suggested to me. Moreover, I
want to be able to compare those components side-by-side.

Hierarchical Navigation: As a domain expert, I want to navigate quickly through
the different parts of projects by using a tree view commonly known from
various engineering tools. Maximum usability shall be ensured by finding
a minimal structure of the neighborhood, such that I am not overloaded
with too much information and being able to focus on the important parts.
Furthermore, I want to be able to search for components matching a partial
identifier.

Export Search Results: As a domain expert, I must be able to export details
about the currently displayed components in a CSV file. Per default all known
properties about those components are exported, but I should be able to
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select the properties that are relevant to me, and deselect ones that I am not
interested in. The CSV file (or Excel sheet) shall also contain the provenance
information for the values. The provenance will indicate the original data
source and should also provide a link with more information such as the trace
can be requested.

SPARQL Querying: As a domain expert that is familiar with SPARQL, I should
be able to formulate SELECT queries for the data using a SPARQL editor
with auto-suggestions. The results of the formulated SPARQL query shall
be displayed in a table. In case of resources, a snippet similar to the one
presented in the search results (see picture in introduction) shall be displayed.

(UC2) COBOT: Two smart manufacturing researchers were interviewed, who were
working in the pilot factory. They have an industry and university background
respectively.

Research Overview: As a researcher, I want to see on what projects other
researchers are working on in the pilot factory and what fields are those
researchers focusing on in general by listing all their publications.

Provenance: As a domain expert, I want to be able to see the source of a piece
of information and assign it a value of trust. I would like for example know
whether a use case (i.e. the application of a collaborative robot for a particular
task such as picking a transistor and placing it correctly into a printed circuit
board) has been successfully tested by a trusted person, or is it only based on
promotional material.

Familiarity: As a domain expert, I don’t want to be overwhelmed by an overly
complex user interface with a sharp learning curve. I shouldn’t have to learn
new complex interaction models with the search system, but I should rather
be able to rely on established ones (e.g. known from major search engines on
the Web).

Advanced Filtering: As a domain expert, I want to be able to filter search results
about robots based on economical factors and safety standards. I should be
able to filter robots on characteristics such as reach, maximum payload and
degrees-of-freedom as well as price range and market availability. Moreover, I
want to know whether a robot fits into safety concept of my project and filter
based on this.

3.3 Special Manufacturing Requirements
A survey about widespread features in KG-based exploratory search systems was con-
ducted by Marie et al. [MG14] (see left-side of Table 3.1). From the gathered requirements
of the informal interviews outlined in the previous Section 3.2, three additional features
were identified to be specifically important for the domain of manufacturing (see right-side
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Common Features [MG14] Manufacturing Features
(1) Overview and analysis feature (9) Multiperspectival exploration
(2) Faceted interface (10) Provenance visibility
(3) Result clustering (11) Hierarchical browsing
(4) Facilitator for back and forth naviga-
tion
(5) Query-suggestions and refinement
(6) Serendipitous discovery enforcement
(7) Result explanation generator
(8) Memorization feature

Table 3.1: Exploratory search features for the domain of manufacturing.

of Table 3.1). As outlined in our workshop paper [HESP22], the remaining part of this
section elaborates on the three extracted features from these collected requirements.

Multiperspectival exploration accommodates diverse information needs by allowing
stakeholders to choose their preferred perspective. Stakeholders can focus on the relevant
aspects of engineering artifacts without being overwhelmed by irrelevant information
that is not pertinent to their engineering discipline. In a manufacturing environment,
stakeholders from various disciplines collaborate and contribute their conceptualizations
and descriptions of engineering artifacts to the overall knowledge graph.

Provenance visibility is a crucial feature in a manufacturing environment that
integrates interdisciplinary knowledge from diverse sources. Provenance visibility becomes
particularly valuable when stakeholders need to investigate the properties of an engineering
artifact and resolve ambiguities for informed decision-making.

By knowing the original data source of reported property values, stakeholders can
assess the reliability and trustworthiness of the information. For instance, a parameter
value might come from the manufacturer’s promotional material or be measured by a
local engineer. Provenance visibility allows stakeholders to quickly reason about the
trustworthiness of the presented information, ensuring they can make proper decisions
based on accurate and reliable data.

Hierarchical browsing is a prevalent search task within manufacturing knowledge
graphs, especially when dealing with complex digital twins of production equipment
and machines. These digital twins often exhibit deep containment relationships between
components. Similarly, manufacturing processes and product bills of materials frequently
involve deep hierarchies. To support stakeholders in efficiently navigating these hierarchies,
it is crucial to enable them to focus on essential parts without being overwhelmed by the
entire structure.
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By providing stakeholders with proper hierarchical browsing capabilities, they can
cognitively focus on the most relevant parts of the hierarchy, extracting valuable insights
and making informed decisions.

In Chapter 4, three manufacturing-specific desired effects are derived from these require-
ments for exploratory search systems. The system must (M1) facilitate the traversal of
deep hierarchical knowledge structures, (M2) make it easy to cognitively focus on relevant
information, and (M3) make it transparent and easy to process where information comes
from.
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CHAPTER 4
Design of Concepts &

Implementation

Manufacturing is a knowledge intensive field with the need for tools to explore this knowl-
edge for better decision-making by stakeholders. Chapter 3 discussed special requirements
of engineers in manufacturing towards exploratory search systems. Multiperspectival
exploration (1), provenance visibility (2), and hierarchical browsing (3) were presented as
features that need special attention.

Additional desired effects for exploratory search systems are deduced from these require-
ments. The system must (M1) facilitate the traversal of deep hierarchical knowledge
structures, (M2) make it easy to cognitively focus on relevant information, and (M3) make
it transparent and easy to process where information comes from. In Section 4.1, this
thesis initially discusses common interface paradigms applied in publicized exploratory
search systems. Then, some interface paradigms are highlighted with the potential of
satisfying the three additional desired effects for manufacturing.

Building on the insights of this section, the design of an exploratory search system tailored
specifically for the manufacturing domain is presented in Section 4.2. The key element
of the design is an adaptive user interface, which selects visualizations and underlying
search algorithms based on the activated engineering perspective (e.g. mechanical or
electrical engineer). Provenance information is passed down to the UI elements such that
this information can be made visible. A simple tree view was employed to overcome the
challenge of finding relevant information in deep hierarchical structures.

Finally, the concepts and architecture of the proposed ESS are outlined in Section 4.3.
The objective of this prototype is to facilitate the integration of new interface paradigms
without the need of major architectural restructuring of the core application. The ESS
forms the basis of the evaluation in the user study, which is outlined in Chapter 5.
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(a) Common interface paradigms, adapted from Marie et al. [MG14].

(b) Manufacturing-specific interface paradigms, constructed from Chapter 3.

Figure 4.1: Interface paradigms for exploratory search.

4.1 Interface Paradigms for Exploratory Search

General exploratory search tasks have a number of defining characteristics (see Sec-
tion 2.4.1). As outlined by Gary Marchionini [Mar06], learning and investigating are
pertinent to this kind of search task. The information seeker does not usually have
a specific goal in mind, but the search is open-ended and the information need might
evolve over time depending on newly discovered information and interests. Overall, a
list of desired effects towards an exploratory search interface can be derived from these
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defining characteristics as depicted in Figure 4.1a. Exploratory search systems aim to
achieve these desired effects by implementing specific interface paradigms. Section 4.1.1
summarizes commonly implemented interface paradigms that address one or multiple of
these desired effects towards a general exploratory search interface.

While exploratory search tasks in the manufacturing domain adhere to the same general
characteristics, this thesis wants to draw special attention to some specific characteristics
that are not prominently discussed for general exploratory search. As outlined in
more detail in the previous Chapter 3, information seeking engineers in manufacturing
face the challenge of disciplinary-specific conceptualizations, information overload and
inconsistencies. Consequently, a number of additional desired effects are expected
from an exploratory search system as depicted in Figure 4.1b. Section 4.1.2 discusses
manufacturing-specific interface paradigms that address these additional desired effects.

4.1.1 Common Paradigms
Marie et al. [MG14] identified a number of desired effects (see Section 4.1a) for exploratory
search systems: (G1) the system provides efficient overviews, (G2) the system helps to
understand the information space and shape their mental model, (G3) the user explores
multiple, heterogeneous results and browsing paths, (G4) the system inspires the user
and shapes their information need, (G5) the system provokes discoveries, and (G6) the
system eases the memorization of relevant results.

Over the last two decades, the publicized exploratory search systems tried to provide
these desired effects using different approaches. The most common interface paradigms
that address one or more of these desired effects are summarized in this section.

Query & Response

Lookup and keyword search are the most popular interaction paradigm among the
surveyed exploratory search systems. It should allow the information seeker to shape
their information need (G4). White refers to this paradigm as query-response, "where
queries are issued by the user, and a set of potentially relevant items are offered in
response" [WR09].

Certain exploratory search systems such as Aemoo [NPG+17] (see Figure 4.2a) aim to
identify an exact match for the specified search term, subsequently providing relevant
information regarding this exact match. Similarly, this approach is applied for Discovery
Hub [MGRR13] and inWalk [CFM14]. In case of Aemoo, an information box provides a
high-level overview on a selected entity, while an interactive graph view allows the user
to navigate through directly related entities.

In contrast, other exploratory search systems, such as Lookup Explore Discover (LED) [MN10]
(see Figure 4.2b), operate differently by yielding a series of items that align with the
inputted search phrase, similar to the functionality of most widely recognized search
engines on the Web.
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(a) Aemoo [NPG+17] (general domain)

(b) Lookup Discover Explore (LED) [MN10] (general domain)

Figure 4.2: Selected exploratory search systems to showcase the query-response paradigm.

Faceted Exploration

Faceted exploration is an interface paradigm that enables information seekers to shape
their information need (G4) and explore multiple heterogeneous results and browsing
paths (G3). An information seeker can on their own behalf fluidly transition between
browsing strategies, and thus, facets form an alternative to query reformulation [KCBS09].
As outlined by Heim et al. [HZL08], in faceted exploration, "the data gets partitioned
using orthogonal conceptual dimensions. One of the dimensions serves as the result set
and the others are used as facets to filter the result set by different attributes that can be
selected independently from each other". Facets are a well-known and popular interface
paradigm. Moreover, facets have shown to play an important role in the exploratory
search process for information seekers as outlined by Kules et al. [KCBS09].
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(a) gFacet [HZL08] (general domain)

(b) AdaSilk [ELT21] (cultural heritage)

Figure 4.3: Selected exploratory search systems to showcase the faceted exploration
paradigm.

Recognizing the significance of facets in exploratory search, several variants have been
proposed throughout time. An example is gFacet [HZL08] (see Figure 4.3a), which
incorporates a graph-based navigation system within hierarchical facets. This hierarchy
within facets enables query refinement through selecting desired values for a specified
chain of properties.

On the other hand, AdaSilk [ELT21] (see Figure 4.3b) utilizes the traditional facets
in a sidebar layout, a design approach commonly known from e-commerce sites. Each
facet serves as a filter for a particular attribute within the knowledge graph, giving
users the option to confine the results to entities possessing the chosen property value.
SemFacet [AGK+16] is capable of auto-generating this kind of facets given that metadata
and domain knowledge is represented as OWL 2 (see Section 2.2.2) in the knowledge
graph. Meanwhile, GraFa [MH18] enables responsive faceted navigation of this type for
large-scale knowledge graphs on the scale of Wikidata.
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Results Overview & Analytics

The presentation of the information space is as important as an intuitive interface for
query refinement. Sense-making is a pertinent activity of exploratory search, and the user
might want to do several one-off pinpoint searches. They might seek specific information
to enhance their comprehension of a result or to discern the reasoning why a result was
proposed for a given query [Pal18]. Hence, the search system must help the user to
understand the presented information space and assist them in shaping their mental
model (G2). Overall, the system must provide efficient overviews (G1). Typically, there
are three main approaches employed by established exploratory search systems.

(1) Graph-based visualizations are the most common approach for presenting the
information space in KG-based exploratory search systems. Given that the underlying
data model of knowledge graphs resembles a directed, labeled graph, it is only natural to
use a node-link layout. Po et al. [PBDP20] draw a distinction between relation-oriented
and incremental graph visualizations.

In relation-oriented graph visualizations, the focus is on presenting the paths between
entities in the knowledge graph [PBDP20]. RelFinder [HLS10] (see Figure 4.4a) for
instance allows the user to select a number of entities, and then, highlights all paths in
the knowledge graph that connect these selected entities.

In incremental graph visualizations, the initial focus is on a starting point within the
knowledge graph, as opposed to presenting the entire graph at once. Then, as the
user interacts with the system, additional sections of the graph can be progressively
unfolded [PBDP20]. The previously presented system, Aemoo [NPG+17] (see Figure 4.2a),
lets the user jump to a specific entity in the knowledge graph with a lookup search, and
then, the user can navigate through the neighboring entities from this starting point.

(2) Tabular-based visualizations started to be utilized by the early semantic browsers
such as Tabulator [BlCC+06]. These tools drew significant inspiration from traditional
Web browsing methods, offering a simplified tabular data view. Unfolding new sections of
the knowledge graph is accomplished by following Web links embedded within the tabular
presentation. RDF Surveyor [VGS17] (see Figure 4.4b) is such a modern semantic browser,
which can be applied to any knowledge graph over a SPARQL endpoint (see Section 2.1.1).
While graph-based exploration tools use an interactive graph-view for navigation instead,
many of these tools also incorporate tabular visualizations, often implemented as compact
information boxes (e.g. LODmilla [MTG14] or Aemoo [NPG+17]).

(3) Chart-based visualizations display information from the knowledge graph in
various chart forms, including scatter charts, and tree maps among others. A detailed
insight into these chart forms is out of scope for this thesis, but they are elaborated on by
Po et al. [PBDP20]. Nonetheless, these forms of visualization are frequently overlooked in
many exploratory search systems. SynopsViz [BPSS17] (see Figure 4.4c) is an exception
as it introduces a generic tree model for exploring and analysing numeric as well as
temporal data in a multilevel manner.
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(a) Graph-based visualization by RelFinder [HLS10] (general domain)

(b) Tabular-based visualization by RDF Sur-
veyor [VGS17] (general domain)

(c) Chart-based visualization by Syn-
opsViz [BPSS17] (general domain)

Figure 4.4: Different visualization types across exploratory search systems.
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Figure 4.5: Recommendations by DiscoveryHub [MGRR13] (general domain)

Recommendations

Recommendations have become an integral part of (exploratory) search systems. Typically,
recommendation engines provide the user with a list of recommended items they might be
interested in, or the engine even predicts how much they might prefer each item [GSY22].
In context of exploratory search, recommendations suggest additional exploration paths
to a user and hence, such a system provokes new discoveries (G5). While prediction
accuracy and coverage are important metrics for recommenders, diversity and serendipity
may play a more important role for exploratory search.

Generally, recommendation systems can be categorized into collaborative-filtering-based
and content-based systems. However, KG-based exploratory search systems usually
utilize a content-based approach, where either traditional graph algorithms are applied
or more recently KG embeddings [PB18]. Lately, there’s been an increase of proposed
hybrid systems where user profiles are modeled in user-item knowledge graphs. Given
the corresponding item knowledge graph, these systems employ algorithms to suggest
items tailored to a specific user profile [GZQ+22].

In terms of presenting recommendations, there is little variation across KG-based ex-
ploratory search systems. Recommended items are usually displayed in a simple list
format, as it can be observed in DiscoveryHub [MGRR13] (see Figure 4.5) for instance.
DiscoveryHub furthermore computes a number of related topics for an entity, and recom-
mends specific items for each of these topics.
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Figure 4.6: Search history (LogCanvas) by LearnWeb [XFZN18] (education)

Memorization

Exploratory search tasks can span hours, days, or even weeks, encompassing numerous
search sessions as noted by White [WR09]. Consequently, it’s crucial for the system to
facilitate the memorization of queries and results (G6).

Maintaining a log of search sessions can aid users in retaining and revisiting their
exploratory search journey, allowing them to quickly retrieve previously encountered
information or insights. LogCanvas [XFZN18] is an advanced search history tool that
groups search activities into sessions, as shown on the left side of Figure 4.6, and it
identifies semantic entities within text queries and browsed content. A user can open an
interactive graph visualization for a specific session, which displays the identified entities
and their relationships within a target knowledge graph. LogCanvas aims to assist users
in re-constructing the semantic relationships among their search activities.

Alternatively, the in-session memory feature (commonly referred to as breadcrumbs)
eliminates the need for users to recall their browsing sequences, freeing up cognitive
resources for more meaningful search tasks [MG14]. Aemoo [NPG+17] (see Figure 4.2a)
utilizes breadcrumbs, allowing users to navigate back and forth, retracing their exploration
path.

Moreover, bookmarks are a frequently employed tool for revisitation [AJK05], enabling
users to proactively add results or queries to their personal collection.
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4.1.2 Manufacturing-specific Paradigms

In Chapter 3, this thesis delved into the unique requirements of engineers in manufacturing
concerning exploratory search systems. Information seeking engineers in manufacturing
face the challenge of disciplinary-specific conceptualizations, information overload and in-
consistencies. Three features were highlighted as particularly essential: multiperspectival
exploration (1), provenance visibility (2), and hierarchical browsing (3).

Beyond the general desired effects outlined in the preceding section, three specific desired
effects were derived from these features: (M1) the system facilitates the traversal of deep
hierarchical knowledge structures, (M2) the system makes it easy to cognitively focus
on relevant information, and (M3) the system makes it transparent and easy to process
where information comes from. This section highlights interface paradigms that address
one or more of these three desired effects.

Knowledge Lenses

An integral part of exploratory search is the act of navigating the information landscape,
or in context of this thesis, browsing entities within a knowledge graph. As Bates [Bat07]
suggests, browsing involves a sequence of glimpses at entities. Some of these glimpses
may lead to a more in-depth examination, while others prompt glimpses at additional
entities. This underscores the need for the information seeker to quickly identify and
target an entity of interest from a visually presented scene. As outlined in the information
foraging theory by Pirolli et al. [PC99], the information seeker aims to select entities so
to maximize their information gain per invested energy unit.

In the manufacturing domain, the conceptualization and views of engineering artifacts
might vary between engineering disciplines. The characteristics of a motor could for
instance be described in a impressively detailed manner by mechanical engineers, but
only superficially by electrical engineers. Thus, it is crucial for engineers to focus on
the relevant aspects of artifacts without being overwhelmed by irrelevant information
that is not pertinent to their engineering discipline. The system must make it easy to
cognitively focus on relevant information (M2).

Nuzzolese et al. proposed the Encyclopedic Knowledge Patterns (EKP) [NGPC11] to
address the competency question: "What are the most relevant entity types that provide an
effective and intuitive description of entities of a certain type?". In essence, they sought
to determine the properties of an entity that should be showcased to users to provide
an easily understandable overview of that entity. Their method involved analyzing the
forward and backward links on Wikipedia pages, leading to the formulation of knowledge
patterns for 84 different entity classes (e.g. persons or places). These patterns act as a
filtering lens on the knowledge graph, ensuring users are not overwhelmed with extraneous
properties when seeking information about an entity, a technique demonstrated in Aemo
(see Figure 4.2a). Nonetheless, these pattern were defined for a general domain, operating
under the assumption that all users would prefer the same knowledge pattern for an
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(a) Adaptive user interface by Linked Data Reactor [KLvH16] (general domain)

(b) Multi-perspective portal by Sampo-UI [IHRK22] (cultural heritage)

entity class. This thesis argues however that this assumption is false for the domain of
manufacturing.

Khalili et al. [KLvH16] proposed the Linked Data Reactor (LD-R), which suggests the
use of adaptive and data-driven web components. These components can be configured
and then compiled to create a customized user interface. As illustrated in Figure 4.7a,
LD-R makes use of the faceted exploration paradigm to allow users to navigate the
knowledge graph efficiently. In this system, both facets and the visualization of entities
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Figure 4.8: Tree view in Protégé ontology editor [Mus15] (knowledge engineering)

are configurable, allowing for a tailored user experience. While an application assembler
would handle the initial configuration, users can potentially modify the user interface
according to their preferences and requirements, ensuring it aligns with their interests
and needs. The ESS prototype extends this approach by having a list of predefined
perspectives (e.g. mechanical engineer) instead of individual user profiles. Section 4.2.1
elaborates on this extension.

Ikkala et al. [IHRK22] advocate for providing end-users with multiple application per-
spectives to the content of a knowledge graph. Similarly to LD-R, faceted exploration
is the key paradigm for navigating the content of a knowledge graph. An application
perspective then dictates the facets that are displayed for a specific faceted browsing
experience. Figure 4.7b illustrates one faceted search perspective over 200,000 medieval
and renaissance manuscripts within a cultural heritage knowledge graph. Additionally, a
perspective defines the available data-analytic visualizations (see Section 4.4).

Hierarchical Results Overview

Hierarchical browsing is a common search task within manufacturing knowledge graphs,
particularly when working with intricate digital twins of production equipment and
machinery. These digital twins often display extensive containment relationships between
components. Likewise, manufacturing processes and product bills of materials often
encompass deep hierarchies. Hence, the system must generally make it easy to cognitively
focus on relevant information (M2), and allow the information seeker to efficiently traverse
deep hierarchical knowledge structures (M1).
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Tree views are a commonly used interface paradigm for navigating hierarchical structures.
They consist of top-level nodes, which can either branch into child nodes or stand as
terminal nodes. Nodes with children can be toggled to reveal or conceal them, and visual
cues often indicate whether a node can be expanded [Pap11]. Figure 4.8 depicts the
conventional tree view employed in the Protégé ontology editor, which is used to navigate
the class hierarchy in ontologies.

As Tominski et al. [TAvHS06] argue, a limitation of these textual tree views is their
restricted capacity for displaying a limited number of entities simultaneously. While
vertical and horizontal scroll bars allow exploration of a tree’s breadth and depth
by bringing different parts into view, obtaining a comprehensive overview of the tree
structure remains a challenging task. Hence, they suggest a non-textual fisheye tree view,
which presents the hierarchical structure through a top-down graphic representation.
Additionally, this visualization allows for the application of lenses to magnify specific
areas of interest.

Provenance Labeling

Provenance visibility is a key aspect in manufacturing settings where knowledge from
various disciplines is merged. Its importance is amplified when stakeholders need to
understand the characteristics of an engineering artifact and clear up uncertainties
to make well-informed choices. Knowing where the data originated, stakeholders can
evaluate how much they can trust the information. Hence, the system has to make it
transparent and cognitively easy to process where information comes from (M3).

As outlined in Section 2.1.2, multiple mechanisms within RDF and its extensions are
available to articulate provenance information about a specific statement in a knowledge
graph. This diversity presents a significant challenge in developing a universal strategy
for utilizing this provenance knowledge effectively in the design and implementation of
user interfaces.

Transparent Fresnel as proposed by Rutledge et al. [RBLS23] is an extension of Fresnel to
support RDF reification, which is one of the various mechanisms to provide provenance.
Fresnel is a presentation vocabulary that serves as a bridge between the structured data
model of RDF and its visualization on human-friendly web interfaces. It introduces the
concepts of lenses and format together with a box-based presentation model. Lenses
determine the properties of a class of resources in the knowledge graph to be displayed
and their arrangement order, while formats dictate the styling and presentation of
the content chosen by these lenses [PBKL06]. Transparent Fresnel wraps the boxes
visualizing the property of a resource into a dedicated “reify” box, which allows to specify
the visualization of provenance information.

Similarly, the ESS presented in this thesis shares the provenance knowledge with the cor-
responding UI components in order to enable the development of components visualizing
this knowledge. It however assumes that the singled triple named graph approach is used
in favor of RDF reification and other mechanisms.

49



4. Design of Concepts & Implementation

Interface Paradigms Desired Effects Solution
Query & Response G4 Keyword search with result list

(see Fig. 4.9 δ1, δ2)
Faceted Exploration G3, G4
Results Overview & Analytics G1, G2 Tabular visualizations with infor-

mation boxes (see Fig. 4.9 α)
Recommendations G5 List of items (see Fig. 4.9 γ)
Memorization G6 Search history log (see Fig. 4.9 η)
Knowledge Lenses M2 Adaptive UI (see Fig. 4.9)
Hierarchical Results Overview M1, M2 Tree view (see Fig. 4.10a µ)
Provenance Labeling M3 Provenance tables in adaptive UI

(see Fig. 4.9 β)

Table 4.1: Design choices for the exploratory search system (ESS).

4.2 Exploratory Search Interface
Drawing upon requirements collected from stakeholder interviews associated with the
two manufacturing use cases (see Chapter 3), coupled with a thorough literature review
of publicized systems and common interface paradigms (see previous Section 4.1), an
exploratory search system has been designed for the manufacturing domain. Table 4.1
summarizes the design choices made for the user interface. While faceted exploration is
valuable for this domain, it hasn’t been implemented for time reasons.

The interface is designed to resemble popular search engines on the Web, aiming to
minimize the learning curve for novel users. The principal entry point to initiate an
exploration is through a keyword search, as illustrated in Figure 4.9 δ1. The outcomes
of a keyword search are displayed in a vertical list (see Fig. 4.9 δ2). An information
box is presented for the top-ranked entry in the results list (see Fig. 4.9 α). As with
the previously discussed semantic browsers, new sections of the knowledge graph can be
unfolded by following the Web links in the information boxes or result lists.

At the upper-left corner (see Fig. 4.9 ε), the entry point for exploration can be switched
from a keyword search to either a tree view or a SPARQL editor. Moving forward,
additional entry points could be added. The tree view (see Fig. 4.10a µ) was incorporated
to aid users in comprehending and navigating complex hierarchical structures more
effectively. It can be controlled on the left panel, while an information box is shown on
the right side for the currently selected entity in the tree view (see Fig. 4.10a α). The
SPARQL editor (see Fig. 4.10b λ) was added for Semantic Web experts, but should be
disabled or hidden for end users in the manufacturing domain.

A simple search history log (see Fig. 4.9 η) can be expanded at the upper-right corner.
The log is organized such that the most recent activity is displayed at the top. Each
entry represents a previous state and by clicking on the right "back" icon, the search
system recovers this state and jumps back to it.
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Figure 4.9: Exploratory Search System (ESS) [HESP22] (manufacturing).
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(a) Tree view as entry point for exploration.

(b) SPARQL editor as entry point for exploration.

Figure 4.10: Other entry points for exploration in the ESS.
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Figure 4.11: Scopes in the Linked Data Reactor (LD-R) [KLvH16].

Most importantly, the currently selected perspective can be switched in the upper-right
corner (see Fig. 4.9 ζ). Depending on the defined configuration of a specific perspective,
a switch can change the rendered UI and search experience quite considerably. This
mechanism is elaborated on in the subsequent Section 4.2.1.

4.2.1 Adaptive UI
This adaptive search interface is based on the concept of scopes and configurations,
which was introduced by the Linked Data Reactor (LD-R) [KLvH16]. LD-R proposes
adaptive data-driven web components that can be compiled into a custom user interface
and configured by an application assembler, thereby reducing the need to design such
applications from the scratch.

A scope is in LD-R a hierarchical permutation of dataset, resource, property and value,
where dataset is at the top and value at the bottom of this hierarchy, as depicted in
Figure 4.11. Presentation templates for LD-R are written in JSON format for a particular
scope, which tells the web application how to render entities in the knowledge graph that
match this scope. Each scope has a specificity, and if entities belong to multiple scopes,
then the configuration of the most specific scope overwrites the others.

Scopes

While the ESS adopts the mechanism from LD-R for it‘s adaptive search interface,
the scope components and their hierarchy were changed to integrate multiperspectival
exploration. The new organization of scope components for the ESS is illustrated in
Figure 4.12. The remainder of this section outlines each scope component in more detail.
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Figure 4.12: Scope hierarchy for the adaptive UI engine [HESP22].

Resource class or selection R is at the top of this hierarchy. This is either the IRI
of a class, or the IRI of one single specific resource. The class rdfs:Resource
can be used as a wildcard to match all resources in a knowledge graph.

Perspective P is a newly introduced scope component for the ESS. A perspective is
identified by an unique name such as "Software Engineer" or "Robotics
Engineer" (see Fig. 4.9 ζ). With this scope component, the presentation of
widgets and entities as well as the algorithms powering the search experience can
be customized for a specific perspective. The underscore (i.e. ’_’) is a wildcard and
represents all perspectives.

Widget path W1, ..., Wn is the subsequent component in the hierarchy. Widget
refers here to an interface element with an unique name. The list always begins
with the outermost widget and progresses towards the innermost one. This scope
component enables the distinct presentation of entities dependent on the widget
path context, e.g. different presentation of an entity in context of a bookmark
widget compared to an information box (see Fig. 4.9 α).

Predicate path PR is one level below in the hierarchy and a subset of predicate paths
in SPARQL, only allowing sequences (i.e. ’/’), alternatives (i.e. ’|’) and inversion
(i.e. ’ˆ’). A predicate path allows to define how the values of a matching property
are presented.

Value class or selection V is at the bottom of the hierarchy. This is either the IRI
of a class, or the IRI of one single specific resource. In contrast to the resource
selector R, it makes sense here to also define the class rdf:Literal in order to
distinguish between literals and other resources. This scope component enables
the configuration of UI elements for matching values. Provenance metadata is
passed to the UI elements of values, but no matching mechanism is proposed in
this thesis to allow the adaptive rendering based on information in this metadata.
Moreover, it is assumed that the single-triple named graphs approach is used to
state provenance information in the knowledge graph, in favor of RDF reification,
singleton properties or RDF-star (see Section 2.1).
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Analysis

Centrality metrics

Degree centrality

Page Rank [PBMW99]

Recommendation metrics

Embeddings

RDF2Vec [Ris19]

TransE [BUG+13]

Information content metrics
PICSS [MD16]

Resnik [Res95]

Distance metrics
ASRMPm [VGGS20]

LDSD [Pas10]

Figure 4.13: Centrality and similarity metrics for KG analysis.

Centrality & Recommendation Metrics

Knowledge graphs potentially consist of a large number of resources, and when displaying
a bigger subset of these resources to the user, the questions arises, how to rank them.
Centrality metrics help to identify the most "important" vertices in general graphs, and
thus, can be used to rank resources of a knowledge graph based on their "importance".

A selection of centrality metrics Mc can be defined for a specific perspective within the
adaptive user interface. A centrality score is computed from this selection Mc, which is
then used to rank resources. A weight can be applied to each metric in order to allow
prioritization of a metric over another.

Centrality score: When given a resource v ∈ V (KG), the centrality score is defined as
following, where wi is the assigned weight to the metric fi:

rank(v) =
fi∈Mc

wi ∗ fi(v) (4.1)

A common interface paradigm among exploratory search systems is the recommendation
of similar or related entities to a given entity (see Section 4.1.1). A recommendation metric
assigns a score to a pair of resources (i1, i2) : i1, i2 ∈ V (KG) in the knowledge graph.
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The ESS prototype implements a number of metrics to evaluate either the similarity or
relatedness of resources. Similarly to centrality metrics, a selection of recommendation
metrics Mrec can be defined for a resource selector R within the adaptive user interface,
and a weight can be applied to each metric. A top-n recommendation is then computed
from this selection Mrec for a given resource, if this resource matches R.

Top-n recommendation: When given an resource v ∈ V (KG) and a set of candidates
P ⊆ V (KG), the recommendation is defined as following, where wi is the assigned weight
to the metric fi:

rec(n, v) = arg max
P ′⊆P,|P ′|=n u∈P ′ fi∈Mrec

wi ∗ fi(v, u) (4.2)

Centrality and recommendation metrics can have different domain ranges. The simple
degree metric for instance maps a resource v ∈ V (KG) to the range of [0, ∞[, whereas
Page Rank [PBMW99] maps it to the range [0, 1]. Thus, feature scaling is required before
computing the score. At the moment, the ESS prototype provides min-max normalization
and standardization. New centrality and recommendation metrics can be added to the
ESS using the plugin system (see Section 4.3).

Configuration Templates

Configuration templates are defined for each resource selector in separate HCL1 files.
The Hashicorp configuration language (HCL) was chosen, because it is easier to read and
edit for humans than JSON or YAML. The web application of the ESS only interprets
JSON, however. Thus, the HCL files are translated into JSON using an extension of the
standard HCL compiler2.

A snippet of the configuration file for the class RobotType is shown in Listing 4.1.
Figure 4.10a (α,β,γ) showcases the rendered visualization of an instance of this class. UI
elements are assigned to widgets, properties, and values with the ’handler’ keyword.
Moreover, these UI elements may be customized by passing a property object with the
’config’ keyword.

Lines 29-39 in Listing 4.1 state that every value for the property cobot:reach of a
RobotType shall be rendered as ordinary text literal as long as it is not a quantity value
from the QUDT ontology3, which needs some additional parsing. Hence, a specific UI
element, which uniquely identifier by the name QudtQuantityValue, is specified in line
36. This element is capable of accurately parsing and visualizing quantities represented
using the QUDT ontology.

1Hashicorp configuration language, https://github.com/hashicorp/hcl
2Extension of HCL compiler, https://github.com/khaller93/esw-hcl-compiler
3Semantic specifications for units of measure, quantity kind, dimensions and data types, https:

//qudt.org/
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Lines 40-53 in Listing 4.1 configure the recommendation section (see Figure 4.9 γ)
for instances of RobotType to generally use the Linked Data Semantic Distance
(LDSD) [Pas10]. However, lines 54-60 state for the "Robotics Engineer" perspec-
tive that the recommendation candidates should be restricted to instances of the class
RobotType, while lines 61-68 restrict it to software-related classes for the "Software
Engineer" perspective.

Listing 4.1: Configuration of RobotType [HESP22].
( 1 0 ) class = " cobot : RobotType "
( 1 1 )
( 1 2 ) perspective _ widget in fobox {
( 1 3 ) handler = " GeneralInfoBox "
( 1 4 ) c o n f i g {
( 1 5 ) s e c t i o n s = [ " prop_table " ,
( 1 6 ) " recommendations " ]
( 1 7 ) }
( 1 8 ) }
( 1 9 ) perspective _ widget in fobox s e c t i o n prop_table {
( 2 0 ) handler = " ProvenanceTableSect ion " ,
( 2 1 ) c o n f i g {
( 2 2 ) neighbourhood {
( 2 3 ) i n c l u d e = [ " cobot : degreesOfFreedom " ,
( 2 4 ) " cobot : handl ingPayload " , " cobot : reach " ,
( 2 5 ) " cobot : s k i l l s " ] ,
( 2 6 ) }
( 2 7 ) }
( 2 8 ) }
( 2 9 ) perspective _ widget in fobox {
( 3 0 ) property " cobot : reach " {
( 3 1 ) handler = " LinkedProperty "
( 3 2 ) value _ {
( 3 3 ) handler = " TextValue "
( 3 4 ) }
( 3 5 ) value " qudt : Quantity " {
( 3 6 ) handler = " QudtQuantityValue "
( 3 7 ) }
( 3 8 ) }
( 3 9 ) }
( 4 0 ) perspective _ widget in fobox {
( 4 1 ) s e c t i o n recommendations {
( 4 2 ) handler = " S i m i l a r i t y S e c t i o n "
( 4 3 ) c o n f i g {
( 4 4 ) number = 4
( 4 5 ) ranking = {
( 4 6 ) ld sd {
( 4 7 ) s tep = " esm . e x p l o i t . sim . ld sd "
( 4 8 ) weight = −1.0
( 4 9 ) }
( 5 0 ) }
( 5 1 ) }
( 5 2 ) }
( 5 3 ) }
( 5 4 ) perspective Robot icsEngineer widget in fobox {
( 5 5 ) s e c t i o n recommendations {
( 5 6 ) c o n f i g {
( 5 7 ) c l a s s e s = [ " cobot : RobotType " ]
( 5 8 ) }
( 5 9 ) }
( 6 0 ) }
( 6 1 ) perspective SoftwareEngineer widget in fobox {
( 6 2 ) s e c t i o n recommendations {
( 6 3 ) c o n f i g {
( 6 4 ) c l a s s e s = [ " cobot : HandlingFunction " ,
( 6 5 ) " s t a r : Arch i tectura lE lement " ]
( 6 6 ) }
( 6 7 ) }
( 6 8 ) }
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4.3 Exploratory Search Platform
The exploratory search platform is comprised of two distinct components. One component
(A) is the exploratory search system (ESS), providing the exploratory search interface
(as discussed in Section 4.2) for a given manufacturing knowledge graph. The other
component (B) involves a process for acquiring and synthesizing a knowledge graph,
which converts selected engineering and manufacturing artifacts into a cohesive knowledge
graph representation. However, this thesis is primarily focused on the first component of
the platform, and it will not delve far into the second component.

(A) Exploratory Search System (ESS) has three main components, which are
going to be the focus of this section.

The middleware4 is a Spring Boot application written in Java and it has two main tasks.
Firstly, it provides an interpreter for exploration flows. Secondly, it orchestrates the
computation of analytical services such as centrality and similarity metrics among others.
Section 4.3.1 describes the concepts and architecture of this middleware in more detail.

An exploration flow is a sequence of steps which all execute a single operation. The
goal of an exploration flow is to abstract the more complex parts of the Semantic
Web technologies, and only expose the basic concepts of RDF to the web application.
Section 4.3.2 elaborates on the concept of an exploration flow.

The web application5 is designed to be a thin single-page application that implements the
adaptive search interface presented in Section 4.2.1. ReactJS6 is used to implement the
UI components, and the state is managed with Redux7. The required data for rendering
the UI components is then fetched by assembling corresponding exploration flows, and
sending them to the middleware. The web application is only responsible for the correct
rendering and is not handling any RDF data and SPARQL queries itself.

(B) Knowledge Graph Acquisition & Synthesis heavily relies on the specific
information environment of the manufacturer. Consequently, the ESS only anticipates
a set of well-defined interfaces to access the built knowledge graph, but it does not
directly aid in its construction. The ESS aims however to be agnostic to the choices
made by the manufacturing company with an extendable plugin system. A discussion
about how to transform the information landscape of a manufacturing company into a
unified knowledge graph is out of scope for this thesis, but readers are encouraged to
take a look at the book of Pan et al. [VTGSR+17].

Section 5.1 briefly outlines the construction of a sample knowledge graph for the pilot
factory use case (UC2), from the design of an ontology to the alignment of semi-structured
data to said ontology.

4Source code of middleware: https://github.com/khaller93/es-middleware
5Source code of web application: https://github.com/khaller93/es-web-app
6JavaScript library for building user interfaces - https://reactjs.org
7State container for JavaScript applications - https://redux.js.org

58

https://github.com/khaller93/es-middleware
https://github.com/khaller93/es-web-app
https://reactjs.org
https://redux.js.org


4.3. Exploratory Search Platform

Figure 4.14: Component diagram of the ESS middleware.

4.3.1 Exploratory Search Middleware

The middleware is on one hand responsible for orchestrating the computation of knowledge
graph analytics. It implements a range of information retrieval services, including
centrality metrics for ranking entities and similarity metrics for recommendations. To
that end, the middleware requires the target knowledge graph to be accessible for queries
using SPARQL and Gremlin.

On the other hand, the web application shouldn’t process any RDF data or SPARQL
queries itself, which is why the exploratory search flow API (see subsequent Section 4.3.2)
is provided by the middleware to the web application. This API must be expressive enough
to implement all types of interface paradigms (see Section 4.1) in the web application.

The middleware is implemented in Java 8 and makes use of the Spring Boot framework8.
It adopts a plugin-oriented architecture, where the middleware core implements the main
business logic, and well-defined interfaces are established to facilitate seamless extension
of the core with other storage solutions or analytical services. Plugins that conform
to these well-defined interfaces can be effortlessly placed into the middleware‘s library
directory, enabling the extension of its functionality without the need to modify the
source code or recompile the application.

The two major components of the middleware core are the 1) Knowledge Graph DAO,
and the 2) Service Core, as depicted in the component diagram in Figure 4.14. While the
Knowledge Graph DAO abstracts the storage solution, the Service Core uses the DAO to
compute knowledge graph analytics and to process exploration flows.

8Spring Boot - https://spring.io/projects/spring-boot
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1) Knowledge Graph DAO aims to abstract the storage solutions and tries to achieve
this goal by introducing three interfaces. Moreover, Apache Commons RDF9 is used in
the definition of these interfaces in order to abstract over the different RDF frameworks
in Java (e.g. RDF4J10 or Apache Jena11).

1. SPARQL 1.1: The SPARQL interface defines two methods, one making it possible
to issue a SELECT, ASK, DESCRIBE as well as CONSTRUCT query, and one method
allowing it to issue update queries. Both of these methods must behave as expected
from a standard SPARQL endpoint.

2. Full-text search interface: Among most of the popular triplestores, a full-
text-search index for fast keyword searches can only be accessed with proprietary
additions to SPARQL (differing from vendor to vendor), which is why a full-text
search interface was additionally introduced. This interface has a single method for
issuing a search given a keyword phrase. This single method is expected to return
the results of the search in form of a list of resources (their IRI) and optionally a
score assigned to them.

3. Gremlin: SPARQL, while useful for querying RDF-based knowledge graphs, has
a notable limitation in terms of graph traversals. It can only confirm the existence
of a path without providing specific details about the path itself. Therefore, a
Gremlin query interface is introduced in order to provide advanced graph traversal
capabilities to analytical services and exploration flow operators.

The middleware includes plugins, which implement these three interfaces for a number of
popular triplestores (Blazegraph12, GraphDB13, Stardog14 and Virtuoso15). And given
that barely any triplestore supports the Gremlin query language, the middleware provides
also a mechanism to clone the knowledge graph over the SPARQL interface into an
embedded JanusGraph16 instance.

Nonetheless, it is not mandatory for the storage solution to be a triplestore. An alternative
approach, as demonstrated by Sabou et al. [SEI+18] for managing software-architectural
knowledge, involved transforming MongoDB documents into RDF and then storing the
resulting RDF data in a Sesame (now rebranded as RDF4J) triplestore. MongoDB, in
this case, was utilized for text indexing by introducing a backward link in the form of an
IRI. The presented middleware could also be applied to this storage solution, provided
that a stakeholder develops a suitable plugin for its integration.

9Open source Java library for RDF, Apache Commons RDF - https://commons.apache.org/
proper/commons-rdf/

10Open source Java library for RDF, Eclipse RDF4J - https://rdf4j.org/
11Open source Java library for RDF, Apache Jena - https://jena.apache.org/
12Open source triplestore - https://blazegraph.com/
13Commercial triplestore from ontotext - https://www.ontotext.com/products/graphdb/
14Commercial triplestore from Stardog - https://www.stardog.com/
15Commercial triplestore from OpenLink - https://virtuoso.openlinksw.com/
16Open source distributed graph database - https://janusgraph.org/
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2) Service core carries out two primary functions: a) coordinating the computational
analysis of the knowledge graph, and b) processing requests to the exploration flow API.

Analytical services focus on analyzing specific components of a knowledge graph’s
semantic structure. They can harness the capabilities of the three interfaces offered by
the Knowledge Graph DAO, or depend on the outcomes of other analytical services. These
services are organized and stored in a registry, each expected to include a method named
compute() and to carry an RegisterForAnalyticalProcessing annotation. The
registry searches for these services within the Java class path, ensuring it can identify
and incorporate such services even from newly added plugins.

This RegisterForAnalyticalProcessing annotation details the unique identifier
of the given analytical service, along with any other services upon which it depends.
To illustrate this, the Resnik similarity metric requires that the class hierarchy and the
information content values for classes be computed to generate any meaningful results.
Consequently, these two services need to be indicated as dependencies within Resnik‘s
annotation.

The analytical pipeline manager is equipped to autonomously formulate an appropriate
pipeline incorporating all registered analytical services. The pipeline’s execution can
be triggered at system startups, during updates to the knowledge graph, or both. The
output of the analysis can be accessed via the exploration flow API after a successful run.

Exploration flow processor serves as an interpreter for exploration flows transmit-
ted to the middleware’s API. It tries to find each operator defined in a given exploration
flow within an operator registry, arranges the flow of operators along with their associated
arguments, and subsequently executes them. Each operation can harness the capabilities
of the three interfaces offered by the Knowledge Graph DAO, or can access the computed
results of analytical services. The operator registry is assembled automatically at the
start-up by scanning the Java class path of the application. Operators that can be used in
an exploration flow request must be annotated with RegisterForExplorationFlow.
Similarly to analytical services, plugins can add new operators to the middleware. The
subsequent Section 4.3.2 discusses exploration flows in more detail.

4.3.2 Exploration Flow
The introduction of the exploration flow interface is motivated by the limitations of
SPARQL (see Section 2.1.1) and the missing flexibility of conventional HTTP+JSON
APIs. An exploration flow consists of a sequence of steps (see Figure 4.15a), which we will
thenceforward refer to as operators. Each operator has an apply method that expects
an input of a certain type and returns a result of a specific type.

An interpreter assembles an execution plan for a given exploration flow and then, executes
it. An executed operator can make use of any of the aforementioned three interfaces
(namely SPARQL, Gremlin and full-text search) or access pre-computed values of metrics.
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(a) Exploration Flow Step / Operator.

(b) ExplorationContext class hierarchy.

Figure 4.15: Exploration flow input/output types
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A context is passed along from one step to the next step during the execution. The
context can be manipulated by any operator or it can be newly created and passed
on. An operator can be categorized into a) a source operator creating a new context,
b) exploitation operator manipulating a context and c) aggregation operators. An
ExplorationContext (see Figure 4.15b) manages an identifiable result, which can be
a resource, a pair of resources, or a statement respectively. A context can take many
forms. It can be among others a collection of resources (ResourceList), or a collection
of predicates with their values for a given subject (i.e. the neighbourhood of a subject).
A context does not only manage an identifiable result, it can also store meta information
and values about an identifiable result.

Listing 4.2: Keyword search for "robot" (written in Python).
(1 ) f = FTS( keyword=’ robot ’ ) \
(3 ) >> PageRank ( ) \
(4 ) >> WeightedSum ( ’sum ’ , {Cent . pagerank : 2 . 0 , FTS. s c o r e : 1 . 0 } ) \
(5 ) >> OrderBy ( ’sum ’ , s t r a t e g y=Order .DESC) \
(6 ) >> Limit (n=10)
(7 ) resp = FlowAPI ( " http :// l o c a l h o s t :8080 " ) . execute ( f )

Listing 4.3: Top 10 recommendations for a certain gripper (written in Python) [HESP22].
(1 ) f = S i n g l e ( r e s o u r c e=’ ex : g r ipper04 ’ ) \
(2 ) >> PairWith ( f low=Al l ( ) )
(3 ) >> (LDSD( ) | PeerPressure ( ) ) \
(4 ) >> WeightedSum ( ’sum ’ , {Sim . ldsd : −1, Sim . p e e r p r e s s u r e : 1}) \
(5 ) >> OrderBy ( ’sum ’ , s t r a t e g y=Order .DESC) \
(6 ) >> Limit (n=10)
(7 ) resp = FlowAPI ( " http :// l o c a l h o s t :8080 " ) . execute ( f )

Example: Given the flow from Listing 4.2, firstly a full-text search with the phrase
’robot’ is invoked. The result, which is a list of resources, is wrapped into a ResourceList
context. Optionally, if a full-text score is given, the score will be stored in the value
section of the context using the IRI of the resource as key. Then, this context is passed
on to the next operator, which is computing the page rank for all the resources in the
context. The result of the computation is stored in the value section of the context as
the aforementioned score. In the next operation, a weighted sum is computed from the
values given in the specified location (using JSON pointers17). The next operator ranks
the results based on the values given at the specified pointer location and eventually, the
ResourceList is limited to 10 entries and the rest is dismissed.

Similarly, Listing 4.3 describes a flow that computes the weighted sum of LDSD [Pas10]
and a peer pressure metric for all possible pairs between a particular gripper and all
other resources within the knowledge graph. This set of pairs is then sorted according to
this weighted sum, with only the top 10 pairs ultimately being returned.

17https://tools.ietf.org/html/rfc6901
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Figure 4.16: Component diagram of the ESS web application.

4.3.3 Exploratory Search Web Application
The web application is architectured as a lightweight single-page application that embodies
the adaptive search interface outlined in Section 4.2. The primary components of this
application are depicted in Figure 4.16.

Adaptive UI Manager reads the user-defined configurations of the adaptive UI in
JSON format (i.e. HCL files are translated to JSON for the web application) and
thenceforward maintains an index of what components to render in a given situation.
The UI Rendering Engine component specifies a context and then asks the manager
to return the corresponding UI element class.

Flow Assembler is asked to assemble exploration flows by the UI Rendering Engine, if
certain data is missing for the rendering to complete, or the end user triggered new
actions.

UI Rendering Engine implements all the UI elements, and contains the business logic
for accurately assembling the user interface that is eventually shown to the end
user. The UI elements are developed using ReactJS, while Redux is employed for
state management.
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CHAPTER 5
Evaluation

The ESS proposed in Chapter 4 was examined through a small-scale evaluation involving
five participants on the COBOT use case (see Section 3.1.2 for details to the use case).
Due to the limited participant number, this thesis primarily emphasizes the qualitative
analysis of this prototype. In the experiments, participants assumed the role of information
seekers exploring the domain of collaborative robotics. The objective of the evaluation
was to determine the ESS’s effectiveness in enabling participants to interactively explore,
comprehend, and derive insights from a topic within the manufacturing domain.

For this purpose, a dedicated knowledge graph was developed from scratch specifically
for the COBOT use case. As elaborated in Section 5.1, the process began with the design
of an ontology tailored to the domain of smart manufacturing and collaborative robotics.
Subsequently, data was collected from both interviews and public sources. This data
was then aligned with the created ontology to construct the knowledge graph used in
the evaluation, integrating also the software architectural knowledge from the STAR
enterprise knowledge graph [SEI+18].

Subsequently, Section 5.2 provides a detailed outline of the design of the user study and
presents its results. The quantitative analysis of the evaluation follows the methodology of
Al-Tawil et al. [ADT20], where participants answer knowledge questions before and after a
task, with scores indicating "learning utility". Additionally, participants rate the usability
of the ESS and the usefulness of specific interface paradigms. In the qualitative analysis
Emilie Palagi’s [Pal18] model is used, employing video analysis to identify usability issues
impacting the exploratory search process.

The user study revealed that, generally, users successfully met their search objectives.
However, it also highlighted potential areas for improvement. The final Chapter 6
discusses these topics in greater detail and presents considerations for potential future
extensions.
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Figure 5.1: COBOT ontology.

5.1 COBOT Knowledge Graph Construction

The COBOT use case is concerned with the challenge of low utilization and limited
awareness of manufacturing technology in the Aspern pilot factory, which is an Austrian
learning and experimentation facility. The factory provides access to a range of industrial
machines, including collaborative robots. However, the detailed capabilities of these
robots are unknown to potential users due to factors such as limited public availability,
contextual dependence, and continuous evolution.

To tackle this issue, this thesis proposes an exploratory search system that allows students,
researchers, and companies to explore and learn about the available equipment. The
key approach is the construction of a knowledge graph, which begins with designing a
domain ontology and integrating heterogeneous data into a unified representation.

Section 5.1.1 elaborates on the design of the COBOT domain ontology, which aims to
cover the field of collaborative robotics. This ontology was then used to align entities
from several data sources into a unified representation. The process of this knowledge
graph construction is outlined in Section 5.1.2 in more detail. The resulting knowledge
graph was used to evaluate the exploratory search system ESS in the user study described
in the subsequent Section 5.2.
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5.1. COBOT Knowledge Graph Construction

5.1.1 Ontology
An OWL ontology1 (see Figure 5.1) was designed for the COBOT use case based on
accessible data, documentation and multiple interviews with a domain expert. It aims to
cover the field of collaborative robots in manufacturing, from the bills of materials and
process plans for manufacturing a product to the concrete implementation of a process
with robots and their capabilities and equipment.

Besides the discipline of robotics and mechanical engineering, software engineers are
needed for the implementation of handling functions for a robot (e.g. a simple pick &
place routine). Thus, the COBOT ontology links to the STAR ontology designed by
Sabou et al. [SEI+18], which is intended to cover the domain of architectures and design
patterns in software engineering.

Description: The scope of this ontology ranges from manufactured products, manu-
facturing processes to robots and equipment used in those processes.

A manufactured Product may have a BOM (Bill of Materials) associated with it, which is
a description of atomic parts and their required quantity for assembling the corresponding
Product. A manufactured Product might additionally have a Production Plan
associated with it. A Production Plan represents an ordered list of Production
Steps for manufacturing the associated Product, whereas a Production Step rep-
resents a certain Skill being applied given a number of input Parameters.

A Skill is an activity of higher granularity, e.g. transporting a small object from
location A to B, or picking and placing an object. Such a Skill could be part of
the Production Plan of an electronic Product, where a transistor has to be picked
from a storage box and placed into a certain drilling hole of a printed circuit board. A
Skill is composed of atomic Handling Functions such as pick, place and approach.
Software might be required to implement Handling Functions and Skills for a
Hardware entity.

This thesis mainly focuses on Robots and hardware equipment for Robots such as End
Effectors and Sensors. The COBOT ontology distinguish between the physically
existing Hardware and abstract Hardware Types. The concrete Franka Emika2

Robot at the pilot factory is of the Robot Type "Franka Emika Panda". A Robot itself
has usually a limited number of Handling Functions, but those can be extended
by equipping the concrete Robot with compatible End Effectors and Sensors.
Consequently, a Robot might be able to perform more Skills. The Franka Emika
Robot at the pilot factory can perform Handling Functions such as move and
approach, which however are not sufficient to perform the aforementioned pick & place
Skill. The Robot must be equipped with an End Effector that provides pick and
place among other Handling Functions. Grippers (e.g. Robotiq 2F-85) and vacuum
systems (e.g. Robotiq Airpick) are examples for such End Effectors.

1Ontology file and COBOT KG dataset at: https://github.com/khaller93/cobot-ontology
2Franka Emika collaborative robot, https://www.franka.de/
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Figure 5.2: Class distribution of the COBOT KG (classes of the COBOT ontology are
colored in red, classes of the STAR ontology [SEI+18] are colored in green and blue).

5.1.2 Knowledge Graph Acquisition & Synthesis
At the time of the study, the Aspern pilot factory didn’t have an accessible information
system dedicated to account maintained manufacturing technology, which is why the
knowledge graph had to be manually curated. To that end, the following sources were
utilized:

(A) Stakeholder interviews were conducted to compile a list of available equipment
and associated skills using pen and paper. This data was subsequently digitized into
Comma-separated values (CSV) files. For the equipment, datasheets were obtained,
and properties were extracted from the tables within these PDFs using Tabula3.
This extraction also yielded CSV files. The RDF extension4 of the OpenRefine5

tool was then employed to align this structured data with the COBOT ontology
detailed in the preceding section.

3Open source tool for table extraction, https://tabula.technology/
4Open source RDF extension of OpenRefine, https://github.com/AtesComp/rdf-transform
5Open source cleansing and transformation tool, https://openrefine.org/
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(B) Website scraping was performed on coboticsworld.com, a website that offers
a comprehensive list of collaborative robots and their associated equipment. This
data extraction was executed using BeautifulSoup6. Subsequently, the obtained
structured data was mapped to the COBOT ontology utilizing rdflib7.

(C) Integration of software architectural knowledge from the STAR enterprise knowl-
edge graph [SEI+18]. It encompasses design patterns and software engineering
methods that are ready to be reused by robotics engineers in their specific use
cases.

The COBOT KG8, as a result, encompasses 2,682 distinct entities interconnected by 48,563
edges. This yields a density of 6.75 ∗ 10−3. Notably, there are 116 unique relationship
types observed between these entities. Figure 5.2 illustrates the class distribution of the
knowledge graph.

5.2 User Study
Before the performance of the ESS can accurately be assessed, the properties of ex-
ploratory searches need to be clearly defined. As of the time of this writing, there is
however no stabilized or consensus definition of exploratory search in literature. This
thesis adheres to the definition of Marchionini [Mar06], which states that "knowledge
acquisition, comprehension of concepts or skills, interpretation of ideas, and comparisons
or aggregations of data and concepts" are pertinent activities of exploratory search. Hence,
a system qualifies as an exploratory search system when it assists users in learning and
making sense of information. Therefore, the main objective of the user study is to evaluate
how well the ESS prototype aids participants in gaining insights and knowledge in the
selected manufacturing domain of collaborative robotics.

To that end, a specialized knowledge graph was crafted from the ground up specifically
for the COBOT use case as outlined in the preceding section. Additionally, a reproducible
environment9 for the user study was established using Docker.

Section 5.2.1 introduces the design of the user study. This section details the methodologies
employed for both qualitative and quantitative evaluations of the ESS, and also explains
the approach used in designing the exploratory search tasks. Following this, Section 5.2.2
elaborates on the the participant recruitment process for the user study, providing details
on the selection criteria and the rationale behind these requirements. Lastly, Section 5.2.3
and Section 5.2.4 comprehensively present the quantitative and qualitative findings of
the user study respectively.

6Open source Python library for pulling data out of HTML, https://pypi.org/project/
beautifulsoup4/

7Open source Python library for handling RDF, https://pypi.org/project/rdflib/
8COBOT KG dataset, https://github.com/khaller93/ess-cobot-playground
9User study environment, https://github.com/khaller93/ess-cobot-playground
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5. Evaluation

TASK A TASK B
Imagine that you are a member of a team which is
working on a manufacturing project with collabo-
rative robots and you have access to the equipment
located at the pilot factory in Aspern. In this
project, you have to move a 4 kg heavy and cubic
object with a length of 20cm from a conveyor belt
to a manufacturing cell that is 60cm away.

Imagine that you are a member of a team which
is working on a collaborative robot picking up a
small transistor from a storage box and placing it
on a certain position on a circuit board. The robot
works in proximity of human workers and it might
have to interrupt it‘s task, due to them coming too
close. However, we don’t want the robot to remain
in this state, and proceed with the task as soon as
possible.

GoalYou have been asked to design a hardware
setup for this project with equipment that is avail-
able at the pilot factory. Your team would be glad
about a brief presentation of your findings.

Goal: You have been asked to explore design pat-
terns that could be lend from software engineer-
ing for this kind of error handling and eventually
present promising design patterns to your team.

Table 5.1: Exploratory search tasks for evaluating the system.

5.2.1 Design
A system qualifies as an exploratory search system if it aids users in learning and making
sense of information. Thus, the primary aim of our evaluation is to assess the effectiveness
of the ESS prototype in helping participants acquire knowledge within the manufacturing
domain. For the quantitative analysis (see Section 5.2.3 for results), the evaluation
adheres to the methodology outlined by Al-Tawil et al. [ADT20]. Participants must
answer knowledge questions before and after performing a task. Answers are scored using
a point system. The "learning utility" is assessed by the difference in scores from answers
given before and after completing the task with the ESS. Furthermore, participants are
asked to rate the usability of the ESS and the "usefulness" of selected interface paradigms.
For qualitative analysis (see Section 5.2.4 for results), the evaluation follows Emilie
Palagi’s model [Pal18], which employs video analysis to identify usability flaws in the
search system that adversely impact the exploratory search process.

To that end, exploratory search tasks need to be specified. The design of these tasks is
centered around work tasks aimed at learning, investigation, and decision making. It
necessitates the selection of broad, open-ended topics in the domain of collaborative
robotics that are poorly organized, embody some level of uncertainty, and involve the
evolution of the search strategy. These topics should also be multi-dimensional and
relatively challenging to search for. Moreover, the task scenario should encourage the
information seeker to dedicate a substantial amount of time to search for and engage
with various artifacts in the manufacturing knowledge graph [WF12].

Table 5.1 shows the two designed exploratory search tasks, which were crafted to elicit this
behavior. Task A requires participants to research collaborative robots, understanding
their capabilities and equipment, to determine a suitable assembly. Task B requires
participants on the other side to identify relevant software engineering design patterns to
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(a) Overall session flow.

(b) Performing exploratory search tasks.

Figure 5.3: Evaluation session flow.

address issues arising when a collaborative robot is interrupted during its task.

The whole evaluation procedure is illustrated in Figure 5.3, including the expected
duration for each step. Steps highlighted in orange are carried out by the evaluation
team, while those in green are executed by the participant. Due to COVID-19 concerns,
all evaluations were conducted via Skype sessions. Participants received tasks and
questionnaires through Google Documents and Forms respectively. Although participants
were allowed to make notes in the Google Document while working on the tasks, they were
prohibited from using the ESS post-task completion and after receiving the questionnaire.
During the task execution, participants shared their screens, which were recorded by the
evaluation staff for further analysis.

The remaining section delves into each step of the evaluation procedure in more detail.

Greeting. The evaluation starts with a cordial introduction, followed by a concise
overview of the evaluation’s objective. Participants are provided with an illustration
of the session’s structure, as shown in Figure 5.3, to familiarize them with the
upcoming proceedings.
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"Experience" Questionnaire. Subsequently, the participant is requested to complete
the "experience" questionnaire (refer to Section B.1). This survey is designed to
gather insights into the background of participants, as well as their familiarity with
smart manufacturing, software architecture design, and Semantic Web technologies.

Tutorial. Next, participants will be introduced to the primary concepts of the ESS
through a walkthrough. During this session, the system will be showcased on a
knowledge graph focused on Pokémon10, which diverges from the engineering context.
If participants are unfamiliar with the Pokémon world, a concise introduction will
be provided.

Domain Introduction. The participant receives an introduction to smart manufactur-
ing and collaborative robots through a short presentation.

Evaluation Introduction. The participant is briefed on the main session’s procedure,
emphasizing that it’s an evaluation of the ESS rather than a test of their abilities.
They are informed that they will initially receive a skill questionnaire, which is not
meant to be fully mastered. Tasks will then be provided sequentially. Participants
are instructed to think aloud, verbalizing their thoughts as they navigate the user
interface. Additionally, they are notified that their screen will be recorded during
the task execution.
"You will be given tasks one at a time. Please read the task aloud once upon receipt.
Afterwards you can try to fulfill the task and have up to 15 minutes for that. If you
believe the task was completed successfully, please say so out loud."

Skill Questionnaire. Before tackling the assigned tasks, participants are prompted to
answer a series of questions related to those tasks. This preliminary questionnaire
(see Section A.2) aims to assess the a-priori domain knowledge of participants. To
measure the learning utility of the system, the same questions will be posed again
post-task (see Section A.3 for these questionnaires).

Performing Tasks. Participants are given tasks individually and are instructed to read
the task out loud. This approach ensures participants don’t preview subsequent
tasks, which could bias their approach based on anticipated future challenges.
Such foresight might skew evaluation results. Furthermore, tasks are presented
in a randomized sequence for each participant to avoid any sequence-based bias.
Each task is expected to take no more than 15 minutes, with a total of 2 tasks
assigned per participant. After each task, participants are prompted to answer a
few questions to assess the knowledge they’ve acquired (see Section A.3 for these
questionnaires).

Feedback Questionnaire. Upon completion of the tasks, participants are provided
with a link to a feedback questionnaire (see Section A.4). This questionnaire
incorporates the System Usability Scale (SUS) and asks for ratings on selected

10Pokémon KG, https://pokemonkg.org/
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1 2 3 4 5

Software Design

Collaborative Robots

Smart Manufacturing

(a) Domain-specific experience/familiarity.
1 2 3 4 5

SPARQL

Knowledge Graphs

(b) Familiarity with Semantic Web technologies.

Figure 5.4: Results of the "experience" questionnaire.

features of the ESS. Additionally, participants are invited to offer open-ended
feedback or suggestions for system enhancement and improvement.

5.2.2 Participants

The aim of this study is to evaluate the effectiveness of the ESS in facilitating participant‘s
acquisition of knowledge on collaborative robotics, which is why the focus was on recruiting
people with a technical inclination. The ecological state of the information seeker is a
crucial aspect of the exploratory search process. Inviting participants with no affinity
towards collaborative robots or with no interest in technical problem solving could
potentially temper with the results of the evaluation.

Thus, the selection process incorporated three eligibility criteria to ensure quality par-
ticipation. They had to (1) be able to understand documents written in English, (2)
be somewhat familiar with technical problem solving, and (3) have a basic interest in
learning about smart manufacturing / collaborative robotics. Overall, five participants
have been recruited from the university campus, researchers and students alike.

Background

All five participants had a background in computer science. Two of the participants (40%)
were male, and three (60%) were female. In terms of age distribution, three participants
(60%) were aged between 25-34, one participant (20%) was in the 35-44 age bracket and
another one (20%) in the 45-54 bracket. Four participants (80%) reported that their
occupation was in research, and one (20%) stated to be a student. All participants
reported a medium or high ability to understand documents written in English.

At the beginning of the experiments, participants were given an "experience" questionnaire
(refer to Section A.1) to assess their familiarity with the use case domain and their
experience with Semantic Web technologies. Detailed results from this questionnaire are
provided in Section B.1.
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Participant Software/Pre Software/Post Cobot/Pre Cobot/Post Utility
P1 0 6 0 5 +11
P2 1 2 4 6 +3
P3 2 4 4 4 +2
P4 0 2 0 2 +4
P5 2 2 1 1 +0

ChatGPT4 16 8 -

Table 5.2: Learning utility scores of participants.

Domain experience. Participants were queried about their familiarity with smart
manufacturing and collaborative robotics, as well as their experience in software design.
A common trend emerged with all participants reporting limited familiarity with collabo-
rative robots and to a slightly lesser degree, smart manufacturing. On the other hand,
they considered themselves highly experienced in software design. Figure 5.4a presents a
box plot diagram illustrating the distribution of responses to these three questions.

Semantic Web experience. Furthermore, participants were questioned regarding their
experience with Semantic Web technologies. The responses indicated some familiarity
with knowledge graphs among participants, but experience with the SPARQL query
language was less commonly reported. Figure 5.4b provides a box plot diagram illustrating
the distribution of responses to these two questions.

5.2.3 Quantitative Results
The quantitative evaluation followed the method defined by Al-Tawil et al. [ADT20].
Participants were required to respond to knowledge questions both prior to and after
executing a task. The "learning utility" is then measured by the variance in scores from
responses provided before and after the completion of a task using the ESS.

At the conclusion of the experiment, participants were furthermore asked for feedback
after using the ESS prototype for approximately 30 minutes. They provided feedback
using a form that included the standard SUS questionnaire and additional questions
about the "usefulness" of selected interface paradigms.

Learning Utility

To measure the learning utility of the ESS, the well-established taxonomy of educational
objectives by Bloom [BK56] is adopted. This taxonomy categorizes learning objectives
into six cognitive processes: remember, understand, apply, analyze, evaluate, and create,
with the first two (i.e. remember and understand) being most relevant to browsing
and exploration activities. Specifically, "remember" involves retrieving knowledge from
memory, including recognition and recall, while "understand" focuses on constructing
meaning, particularly through categorization and comparison [ADT20].
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The user study is following the methodology outlined by Al-Tawil et al. [ADT20]. To
evaluate the understanding and retention of specific domain concepts, the participants
are prompted in a skill questionnaire to identify and name concepts that belong into a
specific category.

In the skill questionnaires, participants are posed open-ended questions like, "What
properties of a robot are important to consider when moving an object from A to B?" both
before and after completing a task. This question comes with a set of acceptable answers,
such as "reach" or "maximum payload". Participants earn one point for each correct
answer listed and lose a point for any incorrect ones, resulting in a final score. However,
it is not possible to get a negative score for a question. The variation in scores before
and after the task is used to measure the learning utility derived from the exploration
conducted with the ESS during the task.

The detailed scores for each participant are presented in Table 5.2. These scores are
divided into two categories, namely one for questions related to software engineering and
another one for questions about collaborative robotics. All participants, except for one,
experienced a positive increase in their knowledge about the domain following their use
of the ESS.

Additionally, the table includes scores for responses provided by ChatGPT11. Given the
large corpus of training data [BMR+20] for ChatGPT in comparison to the relatively
small COBOT knowledge graph, the scores for the learning utility of the ESS are still
discouraging. The responses of the conversational agent were sufficiently informative to
quickly gain knowledge about the domain, and to quickly get reference points for further
research. ChatGPT struggled specifically with providing accurate information regarding
the narrow skill set of a gripper. The effectiveness of these agents for more specialized
manufacturing knowledge is yet to be determined. Section 6.2 discusses this further.

Nevertheless, all participants would have been able to answer the questionnaire with
statistically significant improvement by solely using ChatGPT. However, this does not
provide insights into how effectively the conversational agent aids participants in the
learning activities of retention and understanding, which is the crucial part in evaluating
how well a system supports the exploratory search process.

System Usability Scale

At the end of the experiment, participants provided feedback using the standard SUS
questionnaire. The answers to its ten usability questions were converted into numerical
values and summed based on the methodology proposed by Brooke et al. [Bro86]. The
detailed responses from our five participants can be found in Section B.2.1.

Figure 5.5a presents the computed score for all participants (n = 5) using a box plot
diagram. The ESS prototype has an average score of 63.5 with a standard deviation of

11Version 4, released on 3rd August of 2023, https://help.openai.com/en/articles/
6825453-chatgpt-release-notes
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Figure 5.5: Results of quantitative feedback questionnaires.

8.46. The 95% confidence interval for this score ranges from 52.95 to 74.05. According to
the school-grade interpretation of these scores by Bangor et al. [BKM08], the usability of
the ESS would be graded as a D.

Interface Paradigm Rating

Prior to the completion of the experiment, participants were asked to give feedback
and the latter portion of the feedback questionnaire delved into the assessment of the
"usefulness" of specific interface paradigms. "Usefulness" specifically refers here to how
beneficial a paradigm was in accomplishing the tasks at hand, a point clarified during
the questioning. To ensure clarity and avoid misinterpretation, participants were shown
screenshots illustrating each paradigm in action when rating it. The detailed questionnaire
can be found in Section A.4.

Figure 5.5b depicts the feature ratings of the ESS, evaluated on a Likert scale. A rating
of 1 indicates strong disagreement regarding the feature’s usefulness, while 5 indicates
strong agreement. Participants found common interface paradigms (as surveyed in
Section 4.1.1) such as information boxes and recommendations particularly useful. In
contrast, the tree view was perceived as less beneficial for task completion. Interestingly,
despite participants indicating limited familiarity with the query language SPARQL in
the "experience" questionnaire, the SPARQL editor received high ratings.

5.2.4 Qualitative Results
The exploratory search sessions conducted by participants were analyzed using a video
analysis grid [Pal18] derived from Palagi’s model of exploratory search (see Section 2.4).
This method enables the assessment of whether participants could successfully engage
in all aspects of exploratory search without encountering difficulties. If obstacles were
present, the analysis helps to pinpoint their origin, such as missing features or usability
issues. At the conclusion of the study, participants were also invited to provide open-
ended feedback on the ESS, offering suggestions for enhancements or expressing concerns
about any features they found lacking.
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A The user specifies their goals of search, expresses their lack of knowledge,
their information needs. The user specifies how they decided to start the
search.

A1 Does the user express their goals of search?
A2 Does the user express their information need or lack of knowledge?
A3 Does the user specify how they decided to start the search?
A4 Does the user express their angle of attack of the problem?
B The user uses the search bar or the filter tools in order to formulate or

reformulate their query.
B1 Does the user formulate the query with filter tools or search bar or any other means?
C The user says that an information is interesting. Never mind if this infor-

mation is pertinent for the current problem and search.
C1 Does the user say or imply that some information is interesting?
D The user adds to bookmarks one or several results with some memorization

features, from the list of results or one element description
D1 Does the user add to bookmarks or write down on a paper relevant information?
E The user wants to know more about an element (query result) or the link

between a query and a result. They may use different descriptive information
or features, e.g. a descriptive text, pictures, map, links, etc.

E1 Does the user examine one element to check an information about it?
E2 Does the user examine one element to discover it?
E3 Does the user examine one element to know more about the link between query and

result?
F The user explains why the want to change the goal of search and maybe

explain why.
F1 Does the user say that they don’t find the current goal or the query relevant anymore?
F2 Does the user say that they find something more interesting for their exploration?
F3 Does the user simply say that they want to change the goal or the angle of attack?
G The user can use the browsing history, the breadcrumb, or the back/next

buttons.
G1 Does the user uses the browsing history, the bread crumb or the back or next buttons?
G2 Does the user step backward or forward?
G3 Does the user go back to a previous screen?
H The user browses or scans the results given by the system.
H1 Does the user scan the result list?
H2 Does the user want to know what kind of results are given by the system?
I The user analyses a result description. They evaluate its relevance based

upon the goal of search.
I1 Does the user evaluate the relevance of the result for their goal of search?
J The user stops their search session.
J1 Does the user stop their search session?

Table 5.3: Video analysis grid by Palagi [Pal18] 77
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Video analysis

This section analyzes the recorded videos of exploratory search sessions of the participants,
in conjunction with their logged comments. For this purpose, this section systematically
addresses the questions listed in Palagi’s [Pal18] grid, as presented in Table 5.3. This
approach enables the identification of features of the exploratory search process each
participant engaged with, and to pinpoint areas where issues arose.

A) While participants were instructed to verbalize their thoughts, few explicitly articu-
lated their goals and search strategies (A1, A3). None expressed their angle of attack to
solve the search problem at hand (A4). Some participants however expressed their lack
of knowledge of the domain, and the need for learning about some unclear aspect (A2).

B) While participants have the flexibility to choose different starting points for their
exploration, the ESS initially presents a Google-like search bar. This was the chosen
starting point for all participants, who began their search session by entering keyword
phrases into this bar. The system allows for initiating new keyword searches through
clickable links in the information box, a feature that participants frequently utilized.
However, the tree view option was not popular, with many participants expressing
difficulty in effectively using it. One specific task required the aggregation of robots
based on certain properties, a function not directly supported by the interface due to the
absence of facets. Consequently, some participants resorted to using the SPARQL query
editor. It’s noteworthy, however, that not all participants were familiar with this query
language and got stuck with this task.

C) Throughout the session, every participant identified certain information as interesting
and frequently proceeded to note it down.

D) Since the ESS lacks an integrated bookmarking feature for memorization, partici-
pants were permitted to take notes on a Google Sheet document. This option was utilized
by all participants.

E) All participants actively engaged with the information box (E1), frequently re-
viewing details about specific search results. They often utilized the links within this
information box (E2) to delve deeper into each result. However, none expressed interest
in understanding the connection between their queries and the resulting outputs (E3).
Additionally, the ESS lacks a dedicated feature to effectively address this specific search
requirement.

F) Similar to point A), few participants explicitly articulated their goals and search
strategies. Consequently, questions F1 to F3 must be answered in the negative.
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G) The ESS includes a history feature, accessible by clicking the designated icon in the
top-right corner. However, none of the participants utilized this feature to revisit previous
queries or results. Conversely, one participant, in particular, made extensive use of browser
tabs, frequently switching back and forth between them. All participants revisited their
queries and results, primarily utilizing the standard features of a conventional web browser
(G1 - G3).

H) The ESS presents query results in a vertical list format, similar to that of major
web search engines such as Google. All participants actively scanned through this result
list, and they also clicked on specific entries to further explore information about those
items (H1, H2). However, none of the participants navigated past the first page of results,
which displayed the top 10 entries.

I) Each participant consistently examined individual results by reviewing the infor-
mation provided in their respective information boxes. Additionally, they occasionally
commented on the relevance of specific items in relation to their search goals.

J) Except for two instances, all search sessions were terminated due to the time limit
rather than by the participants themselves.

Feedback

Participants were invited to provide open-ended feedback on the ESS.

One participant didn’t use the SPARQL editor, so they were unable to provide detailed
feedback on this aspect. However, they found the information boxes helpful, although
the changing formats within these boxes were noted to add complexity.

Navigating from the selected class in the search results to the tree view posed a challenge
for another participant. They suggested enhancing the system with more options to
explore examples or recommendations beyond the current display limits.

Regarding the SPARQL editor, due to their lack of familiarity, this participant opted not
to use it. They recommended that including basic guidelines or a tutorial for SPARQL
novices could be beneficial. Such additions would enable users unfamiliar with SPARQL
to try out and effectively utilize this feature.
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CHAPTER 6
Conclusion & Future Work

Creative human exploration of manufacturing knowledge graphs through an exploratory
search system can support engineers in their analysis and decision-making. However,
most publicized exploratory search systems are designed with general knowledge graphs
in mind, for which common knowledge is sufficient.

Based on interviews with domain experts, this thesis highlights three distinct features
that boost the efficacy of exploratory searches for manufacturing environments. These
encompass the system’s ability to tailor itself to numerous engineering perspectives, the
provision of clear provenance information that significantly aids stakeholders during
their investigative process, and the necessity to traverse deep hierarchical structures of
containment relationships prevalent in many manufacturing knowledge graphs.

By studying the common interface paradigms for general exploratory search systems, an
exploratory search system (ESS) has been engineered with additional manufacturing-
specific features. This includes a rendering engine for an adaptive user interface, allowing
for a multi-faceted configuration of visualizations and underlying search algorithms. To
tackle the issue of provenance visibility, the system was designed to share named graph
information for each statement with relevant UI components, hence making possible the
creation of UI components that manifest this knowledge. The challenge of navigating
deep hierarchies was met with a simple tree view, reminiscent of the ontology editor
Protegé, coupled with information boxes.

While the preliminary evaluation of the ESS system demonstrated its utility for users
in carrying out search tasks in the domain of collaborative robotics, certain areas for
improvement can be observed. The tree view design was perceived as not useful, and
the memorization feature was often sidelined in favor of managing multiple browser tabs.
Despite these areas for refinement, users were overall successful in achieving their search
objectives. Section 6.1 discusses the three research questions in more detail. Section 6.2
elaborates on extensions for a contemporary exploratory search system.
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6.1 Discussion
This thesis examined the three research questions that were previously outlined in the
introduction (see Section 1.1). This section delves into each research question, offering a
detailed discussion and analysis of their respective outcomes.

RQ I. What are special requirements for exploratory search in the manu-
facturing domain? Exploratory search systems are typically designed for general
knowledge graphs, relying on common knowledge, and often overlook the specific require-
ments of professionals. To understand these specific needs better, informal interviews
were conducted with stakeholders from partnering manufacturing organizations. The
goal was to gather insights into potential requirements that are often missed in the design
of exploratory search systems for the general domain. The following three features were
extracted from the requirements collected in the interviews.

1. Multiperspectival exploration addresses the diverse information needs of stake-
holders in a manufacturing environment. It allows them to select their preferred
perspective, enabling them to concentrate on aspects of engineering artifacts that
are relevant to their specific discipline.

2. Provenance visibility is identified as a key feature in manufacturing environments
that integrate interdisciplinary knowledge from various sources. Its significance is
particularly noted when stakeholders need to examine properties of an engineering
artifact and clear up uncertainties for well-informed decision-making.

3. Hierarchical browsing is an essential search task, particularly in the context of
complex digital twins representing production equipment and machines. To aid
stakeholders in effectively navigating these complex structures, it is important to
provide a mechanism that allows them to concentrate on critical parts without
getting overwhelmed by the entire hierarchy. By equipping stakeholders with
efficient hierarchical browsing tools, they can mentally focus on the most important
sections of the hierarchy.

The informal interviews were limited in scope, involving a small number of participants
from specific areas of manufacturing. These included a simulation expert from a produc-
tion plant manufacturer and a researcher associated with this partner, as well as two
smart manufacturing researchers active in a pilot factory. To gather a more represen-
tative collection of requirements, it would be beneficial to expand these interviews to
include a wider range of sectors and companies within the manufacturing industry. This
expansion should also involve a larger pool of participants to ensure a more comprehen-
sive understanding of the diverse needs and challenges faced across different areas of
manufacturing.

Additionally, the approach of conducting informal interviews ought to be refined by
adopting a controlled interview format, adhering to an established methodology.
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RQ II. Which of the common exploratory mechanisms are most suitable to
address the needs of the two presented use cases? What interface paradigms
are of particular interest for engineers in manufacturing? This thesis centered
on adapting exploratory search specifically for manufacturing knowledge graphs. Through
insights gathered from exploring research question RQI in collaboration with partnering
organizations, it identified and emphasized interface paradigms to aid engineers in
manufacturing settings.

Beyond the desired effects for general exploratory search systems, three specific desired
effects were derived from the insights of RQI. First, (M1) an exploratory search system for
manufacturing environments ought to enable easy navigation through complex hierarchical
knowledge structures. Second, (M2) the system ought to make it easy to cognitively focus
on relevant information, allowing it to effectively filter through the overwhelming amount
of information about engineering artifacts arising from the integration of multidisciplinary
data. Lastly, (M3) the system ought to provide clarity and ease in observing the sources
of information.

Knowledge lenses as an interface paradigm serve to spotlight essential properties of an
entity, offering information seekers a clear and concise overview for easy understanding
(M2). Within the manufacturing context, knowledge lenses enable the creation of
discipline-specific perspectives of engineering artifacts. They effectively filter out irrelevant
details, significantly reducing information overload for engineers. The ESS presented
in this thesis adapts the approach of the Linked Data Reactor [KLvH16] to implement
knowledge lenses with an adaptive user interface.

Hierarchical result overviews allow the information seeker to efficiently traverse deep
hierarchical knowledge structures (M1). The presented ESS implements a conventional
textual tree view to realize this interface paradigm. A limitation of these textual tree
views is however their restricted capacity for displaying a limited number of entities
simultaneously [TAvHS06].

In manufacturing environments, the visibility of information provenance is crucial. The
system must clearly and intuitively display the origins of information (M3), aiding
engineers in their decision-making processes by making it easier to understand and trust
the source of the data they are using. This diversity of possibilities to state provenance
information in a knowledge graph is a significant challenge in developing a universal
strategy for utilizing this knowledge in a user interface. The ESS presented in this thesis
assumes that the singled triple named graph approach in favor other mechanisms is used.
Hence, the ESS passes the named graph information to UI components. This can then be
utilized by the UI components to visualize provenance knowledge to information seekers.

The interface paradigms outlined here were predominantly sourced from the scientific
literature within the Semantic Web community. However, to gain a more comprehensive
perspective on potential interface paradigms that could benefit engineers, it would broaden
the scope to incorporate more insights from the Human-Computer Interaction (HCI)
community.

83



6. Conclusion & Future Work

RQ III. What effect do the selected interface paradigms have on the explo-
ration utility of the search system, when applied on manufacturing knowledge?
Drawing on the insights from RQII, a prototype of the ESS was developed, incorporating
selected interface paradigms, followed by the conduct of a user study. The primary
objective of the study was to determine the effectiveness of this system in facilitating
active exploration, learning, and comprehension of a specific topic of the manufacturing
domain. The user study involved gathering quantitative data, with a primary emphasis on
qualitative video analysis and participant feedback. The user study yielded the following
key takeaways:

1) Exploratory Search: The qualitative video analysis indicated that participants
could effectively utilize most features of the exploratory search process with minimal
obstacles. Nevertheless, there were some issues, which will be elaborated upon in the
remaining section. Overall, participants were successful in gaining knowledge and learning
about the domain using the ESS.

2) Tree View: Participants seldom used the textual tree views during their exploration,
and they rated the usefulness of this interface element as very low. However, given
that the COBOT knowledge graph lacks extensive hierarchical knowledge structures, it
is understandable that this feature was infrequently used and perceived as less useful
compared to other interface paradigms.

3) Faceted Exploration: The ESS did not include faceted search capabilities, and the
video analysis showed that participants missed this feature. They attempted to use the
SPARQL editor as a substitute for facets, but some participants were unfamiliar with
this query language. Moreover, it should not be necessary for engineers from different
disciplines to learn a query language for this purpose.

4) Memorization: Participants did not use the built-in history feature designed to
facilitate revisiting queries and results. Instead, they relied on the standard navigation
features of their web browser to move back and forth. Although this reliance on standard
browser features is not inherently problematic, their limitations suggest that incorporating
more advanced memorization features could enhance the learning utility of the ESS.

The user study was conducted on a relatively small scale, involving only five participants.
While valuable insights were obtained from the participants verbal feedback and qualitative
video analysis, the quantitative data gathered from this limited sample size is not
representative. User studies in the exploratory search research community typically
involve a larger group of participants, usually more than 32 individuals (e.g. [NPG+17],
[ADT20] or [MLTK21]). This larger sample size is crucial for obtaining more statistically
significant quantitative results. The number of participants ought to be increased in a
future study in order to align with these standards.

Additionally, the "think aloud" protocol of the user study was not adequately explained to
and internalized by the participants, which rendered certain aspects of the video analysis
ineffective and more challenging.
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6.2 Future Work
While the previous section opens a number of avenues for the improvement of the user
study and the current ESS, this section is going to focus on proposing three extensions
of the ESS. These extensions are essential for a contemporary exploratory search system
on (manufacturing) knowledge graphs.

Faceted exploration. In the user study (see Chapter 5), participants were tasked with
locating robots capable of managing payloads over 4 kg and positioned within a specific
manufacturing hall. However, the user interface of the ESS prototype proved challenging
for gathering this information, due to insufficient interface elements for effective robot
aggregation. Consequently, participants proficient in the SPARQL query language
utilized the built-in SPARQL editor for manual information extraction. Nevertheless,
those without familiarity with this language faced difficulties due to the user interface’s
limitations.

As stated in the discussion of Section 4.1, faceted exploration is a valuable interface
paradigm for exploratory search in general, but in particular for manufacturing. However,
it was not implemented, due to time constraints. The introduction of facets would
simplify aggregation and filtering tasks.

Intuitive querying. In a vision paper for 2043, Ilkou et al. [IGD23] foresee user-
friendly and intuitive querying tools to ease adoption of knowledge graphs, but what
might an intuitive method for querying (manufacturing) knowledge graphs look like?
Some publications have suggested the creation of a block-based visual programming
language for SPARQL using Blockly1 [BC15][CB17]. However, these methods introduce
users to RDF and SPARQL constructs, which ought to be circumvented. An exploratory
search system should not necessitate proficiency in programming and Semantic Web
technologies, a prerequisite that many individuals in the manufacturing domain may not
satisfy.

Beyond the incorporation of faceted exploration, a visual programming interface could
be an effective tool to bypass the constraints of a limited user interface. Blockly provides
a framework to create your own domain-specific visual programming language based
on blocks, whereas the vocabulary (i.e. syntax) and the runtime (i.e. semantics) have
to be specified by the integrator of this framework [PFM17]. CoBlox is for instance a
programming platform that aims to make robot programming accessible to a broader
demographic with a block-based interface. In a user study with 67 adult novices, the
designers of CoBlox reported that the majority of participants could correctly implement
a simple pick & place routine using the visual language CoBlox, whereas logical errors
such as not lifting the robot arm before moving it horizontally were prevalent [WAS+18].

An area for future research and extension of the ESS could be the design of such a
block-based interface for exploring knowledge graphs.

1Blockly, Open Source library from Google, https://developers.google.com/blockly
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Question answering. The knowledge questionnaire was not only given to the partici-
pants of the user study (see Chapter 5), but also to ChatGPT, which is a conversational
agent build upon a particular Large Language Model (LLM) [RNS+18]. While the
answers to the questionnaire were not perfect (as documented in Appendix B.3), they
would have been decent enough for the participants to quickly gain knowledge about the
domain, and to quickly get reference points for further research.

Consequently, one might naturally question the necessity of experimenting with different
interface paradigms for exploratory search systems when ChatGPT could seemingly suffice
as an conversational assistant. While modern large language models are an impressive
advancement, they don’t provide a human-analogous understanding of natural language,
but rather offer a statistical framework for generating sequences of word forms [BK20].
As of this writing, the existing models lack a reliable grounding to the factual world. They
often produce information that appears correct at first glance, but proves to be inaccurate
upon deeper examination, a phenomenon termed "hallucination". Martino et al. [MIT23]
propose an injection technique from knowledge graphs to reduce "hallucinations" in
generated text by LLMs. However, in professional settings such as manufacturing, the
expectation for a search system is to deliver accurate and dependable results.

Yet, another potential research question could explore how conversational agents, based
on LLMs, can be incorporated into an exploratory search system and tap into a private
manufacturing knowledge graph, ensuring their limitations are clear to the information
seeker.
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APPENDIX A
Evaluation Questionnaires

This chapter documents all the questionnaires provided to the participants throughout
the experiment. Section A.1 presents the initial questionnaire, filled out at the beginning
of the experiment to gather more insight into the background of participants. The
knowledge questionnaire, distributed prior to the participants starting their tasks, is
outlined in Section A.2. The questionnaires given post completion of tasks A and B are
respectively illustrated in Section A.3. Finally, participants were requested to complete a
feedback form, exhibited in Section A.4.

A.1 Experience Questionnaire
At the beginning of the evaluation, participants were provided with an "experience"
questionnaire. The aim was to capture their level of familiarity with the domain of
collaborative robotics as well as smart manufacturing, and assess their proficiency in
Semantic Web technologies.

1. What is your occupation (developer, researcher, etc.)?

2. Language Skills

a) How do you rate your ability to understand English documents?

bad □ □ □ □ □ excellent
1 2 3 4 5

3. Domain Experience

87



A. Evaluation Questionnaires

a) How familiar are you with smart manufacturing?

not familiar □ □ □ □ □ familiar
1 2 3 4 5

b) How familiar are you with collaborative robots?

not familiar □ □ □ □ □ excellent
1 2 3 4 5

c) How do you rate your experience in designing software?

no experience □ □ □ □ □ excellent
1 2 3 4 5

d) How do you rate your experience with design patterns in software engineering?

no experience □ □ □ □ □ excellent
1 2 3 4 5

4. Semantic Web

a) How do you rate your experience with knowledge graphs?

no experience □ □ □ □ □ excellent
1 2 3 4 5

b) How do you rate your experience with the query language SPARQL?

no experience □ □ □ □ □ excellent
1 2 3 4 5

A.2 Knowledge Questionnaire
This questionnaire is given to participants before they are tasked with the search activities.
Its purpose is to evaluate the baseline knowledge of participants prior to task execution.

1. What design patterns come into your mind, when you hear the term "error handling"?

□ I don’t know

2. What architectural qualities are in your mind related to "error handling"?

□ I don’t know
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3. What handling functions (e.g. drill, screw) come into your mind, when you think
about a gripper?

□ I don’t know

4. Which properties of a robot are in your mind important to consider, when moving
a heavy object from A to B?

□ I don’t know

A.3 Task Questionnaires
This section presents the questionnaires that were distributed to participants following
their engagement in the task for a duration of up to 15 minutes.

A.3.1 Task A

Task A focused on identifying suitable design patterns for a robot to recover from an
error state. The following questions were posed to the participant subsequent to the
execution of this task.

1. What architectural qualities are in your mind related to "error handling"?

□ I don’t know

2. What architectural qualities are in your mind related to "error handling"?

□ I don’t know

3. What is the most promising design pattern that you would present to your team?

□ I don’t know
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A.3.2 Task B
Task B aimed at sourcing appropriate hardware at the Pilotfabrik in Aspern for transfer-
ring an object from point A to point B. The subsequent questions were presented to the
participant after the completion of this task.

1. What handling functions (e.g. drill, screw) come into your mind, when you think
about a gripper?

□ I don’t know

2. Which properties of a robot are in your mind important to consider, when moving
a heavy object from A to B?

□ I don’t know

3. What hardware would you present to your team to solve this task?

□ I don’t know

A.4 Feedback Questionnaire
Upon the conclusion of the experiment, participants were invited to share their feedback.
The feedback form consisted of a standard System Usability Scale (SUS) questionnaire
along with inquiries regarding the "usefulness" of certain features of the ESS prototype
(see Chapter 4 for more details). To avoid confusion and ensure clarity, illustrations of
the features in question were provided to the participants.

1. System Usability Scale (SUS)

a) I think that I would like to use this system frequently?

strongly disagree □ □ □ □ □ strongly agree
1 2 3 4 5

b) I found the system unnecessarily complex?

strongly disagree □ □ □ □ □ strongly agree
1 2 3 4 5
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c) I thought the system was easy to use?

strongly disagree □ □ □ □ □ strongly agree
1 2 3 4 5

d) I think that I would need the support of a technical person to be able to use
this system?

strongly disagree □ □ □ □ □ strongly agree
1 2 3 4 5

e) I found the various functions in this system were well integrated.

strongly disagree □ □ □ □ □ strongly agree
1 2 3 4 5

f) I thought there was too much inconsistency in this system.

strongly disagree □ □ □ □ □ strongly agree
1 2 3 4 5

g) I would imagine that most people would learn to use this system very quickly.

strongly disagree □ □ □ □ □ strongly agree
1 2 3 4 5

h) I found the system very cumbersome to use.

strongly disagree □ □ □ □ □ strongly agree
1 2 3 4 5

i) I felt very confident using the system.

strongly disagree □ □ □ □ □ strongly agree
1 2 3 4 5

j) I needed to learn a lot of things before I could get going with this system.

strongly disagree □ □ □ □ □ strongly agree
1 2 3 4 5

k) If you want to give some free floating feedback about the usability of the
system, please enter it below (optional).

2. Feature Rating

a) Info Boxes were useful for completing the given tasks.

strongly disagree □ □ □ □ □ strongly agree
1 2 3 4 5
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b) Recommendations were useful for completing the given tasks.

strongly disagree □ □ □ □ □ strongly agree
1 2 3 4 5

c) Tree View was useful for completing the given tasks.

strongly disagree □ □ □ □ □ strongly agree
1 2 3 4 5

d) SPARQL editor was useful for completing the given tasks.

strongly disagree □ □ □ □ □ strongly agree
1 2 3 4 5

e) If you want to give some free floating feedback about any of these features,
please enter it below (optional).
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APPENDIX B
Evaluation Results

This chapter encapsulates findings of the evaluations, which may not have been explicitly
laid out in Chapter 5. Detailed insights gathered from the "experience" questionnaire
can be found in Section B.1. We delve into the outcomes of the feedback questionnaire
in Section B.2, while responses from ChatGPT to the knowledge questionnaire are
thoroughly documented in Section B.3.

B.1 Experience Questionnaire
At the beginning of the evaluation, participants were given an "experience" questionnaire
(see Section A.1). This was designed to collate data concerning their familiarity with
collaborative robotics and smart manufacturing, as well as their proficiency level in
relation to Semantic Web technologies.

Demographics: Questions about age and gender were not part of the "experience"
questionnaire, but these characteristics were estimated. Two of the participants (40%)
were male, and three (60%) were female. In terms of age distribution, three participants
(60%) were aged between 25-34, one participant (20%) was in the 35-44 age bracket and
another one (20%) in the 45-54 bracket.

Occupation and English proficiency: Four participants (80%) reported that their
occupation was in research, and one (20%) stated to be a student. Fig. B.1a presents the
selected proficiency levels of English, 1 refers to "bad" and 5 to "excellent".

Familiarity and experience scale: Participants were queried about their familiarity
with smart manufacturing and collaborative robotics, as well as their experience in
software design. Fig. B.1b and Fig. B.1c present the selected levels of familiarity with
smart manufacturing and collaborative robots, 1 refers to "not familiar" and 5 to "strongly
familiar". The selected levels of experience in software design are illustrated in Fig. B.1d,
1 refers to "no experience" and 5 to "strong experience".
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(f) How do you rate your experience with the
query language SPARQL?

Figure B.1: Information from the "experience" questionnaire (see Section A.1).
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B.2. Feedback Questionnaire

B.2 Feedback Questionnaire
Upon conclusion of the experiment, participants were requested to provide their feedback.
The feedback form was split into a standard System Usability Scale (SUS) questionnaire
and inquiries regarding the "usefulness" of certain features of the ESS prototype (see
Chapter 4 for more details).

B.2.1 System Usability Scale

Figure B.2 illustrates the findings from the System Usability Scale (SUS) section of the
feedback questionnaire. The scoring system ranges from 1, denoting "strongly disagree",
to 5, symbolizing "strongly agree". The free-form feedback was as follows:

• URI copy, data model schema/diagram for overview

• For me it is a little bit confusing about the type in the robotic engineering part,
some of them it is the same, maybe we can put a description on it, or maybe we
can put it both the class, so it easy to understand. but so far it is easy to use.

• the similarity to search machines make the first introduction to the system easy,
however there are still some design flaws (diverging textual description, description
needs to be reloaded extra) so I cannot give full rating for usability or confidence .
But I think for context-aware searching it could be helpful after fixing these bugs.

B.2.2 Feature Rating

Figure B.3 showcases the outcomes of the feature rating. The assessment scale spans from
1, representing "strongly disagree", to 5, indicating "strongly agree". The open-ended
feedback provided was as follows:

• explore more on examples or recommendation (not limited to what can be displayed)

• Switching between selected class in search result to tree view

• in the sparql part, since im not to familiar i will prefer to not used it, otherwise,
maybe you can put some guidelines for someone who is not familiar with this sparql,
so i can try it out to use this feature.

• didn’t use the Sparql editor so cannot elaborate. Info boxes were helpful however
again changing formats made it more difficult
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Figure B.2: Evaluation results of System Usability Scale.
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(d) SPARQL editor was useful for completing
the given tasks.

Figure B.3: Evaluation results of feature rating.

B.3 ChatGPT Answering Knowledge Questionnaire
This section outlines the answers of ChatGPT1 to all questions in the knowledge ques-
tionnaire (see Section A.2). Each question was posed separately within its own session,
with a brief context provided prior to each inquiry.

B.3.1 What design patterns come into your mind, when you hear the
term "error handling"?

Interviewer: In context of software design, what design patterns come into your mind,
when you hear the term "error handling"?

1Version 4, released on 3rd August of 2023, https://help.openai.com/en/articles/
6825453-chatgpt-release-notes
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B. Evaluation Results

ChatGPT: Error handling is a critical aspect of any application. In the context of
software design, certain patterns come to mind to help us systematically manage,
handle, and mitigate errors in a way that the application remains stable and users
get a good experience.

Exception handling: The most basic error handling pattern is the use of try/-
catch blocks for exception handling. When you foresee that a particular block
of code can throw an error, you put it in a try block and then catch the error,
so the program doesn’t crash, and you can provide meaningful error messages
to the user.

Retry Pattern: If a certain operation fails due to transient issues (like network
issues), then you can use the Retry Pattern to attempt the operation again
after a certain amount of time or a certain number of times.

Circuit Breaker Pattern: If a system fails repeatedly, the circuit breaker pattern
can stop the system from constantly trying to execute a potentially failing
operation. After a "cool-down" period, the system tries again, and if it’s still
failing, it continues the cool-down.

Fallback Pattern: When a call to a remote service fails, an application can
use a pre-defined fallback operation. This pattern is especially common in
microservices-based architectures.

Null Object Pattern: Rather than using a null reference when an object is not
available, using an object which implements the expected interface but whose
method body is empty can help to avoid null reference exceptions.

Fail-fast: The idea here is that when an error occurs, the system should fail
immediately and loudly. This is often used in systems that require high
reliability to prevent error propagation throughout the system.

Error Accumulation: In scenarios where there are multiple error possibilities,
rather than failing on the first error, accumulate all the errors and then throw
them together, so the user gets a full picture of what went wrong.

Logging and Monitoring: While not a design pattern per se, logging and moni-
toring play a crucial role in error handling. They provide insights into where
and why errors are happening, helping in identifying patterns and in debugging
and resolving issues.

Remember that these are patterns, not strict rules. You should decide which
pattern to use based on the specific context and requirements of your application.

B.3.2 What architectural qualities are in your mind related to "error
handling"?

Interviewer: In context of software design, what architectural qualities are in your
mind related to "error handling"?
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ChatGPT: In software design, error handling is an important aspect of system resilience
and usability. This directly relates to several architectural qualities:

Robustness: This is the ability of a system to cope with errors during execution.
In a robust system, exceptions or errors don’t cause system crashes but are
instead handled gracefully, preserving system functionality as much as possible.

Resilience: Similar to robustness but at a larger scale, resilience is the ability
of the system to recover from failures and continue to function. This often
involves mechanisms to restart failed components or fallback strategies to
ensure essential services remain available.

Reliability: If a system can consistently perform its required functions under stated
conditions, it’s considered reliable. Good error handling helps to increase
system reliability by addressing potential problems before they escalate to a
system-wide failure.

Fault Tolerance: This is the property that enables a system to continue operating
properly in the event of the failure of (or one or more faults within) some
of its components. If its operating quality decreases at all, the decrease is
proportional to the severity of the failure, as compared to a naively designed
system, in which even a small failure can cause total breakdown.

Maintainability: Exception handling and error reporting have a significant effect
on maintainability. Errors should be logged in a way that facilitates diagnosis
and correction of problems. Clear and descriptive error messages, warnings,
and logs can make it easier to understand the root causes of problems and fix
them.

Usability: Good error handling includes providing meaningful error messages to
users, allowing them to understand what went wrong and possibly how to
correct the issue, improving the overall user experience.

Testability: Proper error handling makes the software more testable. When errors
are thrown and caught properly, they can be tested to ensure the system
handles all exceptions as expected.

Security: Proper error handling prevents the exposure of sensitive system infor-
mation when an error occurs. For example, system error messages shouldn’t
reveal system internals that could be exploited by attackers.

Proper error handling involves anticipating potential problems, handling them
appropriately when they occur, logging them for review, and communicating them
clearly to users and developers. It is an essential aspect of high-quality software.
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B.3.3 What handling functions (e.g. drill, screw) come into your mind,
when you think about a gripper?

Interviewer: In context of collaborative robotics, what handling functions (e.g. drill,
screw) come into your mind, when you think about a gripper?

ChatGPT: In the field of collaborative robotics, a gripper is a critical part of the system
that is used for picking up, manipulating, and setting down objects. This tool is
designed to perform a range of handling functions, depending on the specific needs
of the task. Below are some handling functions that could be associated with a
gripper:

Picking and Placing: This is one of the most basic functions of a robotic gripper.
It’s used in applications such as sorting, packaging, and assembly where items
need to be picked up from one location and placed in another.

Screwing: Some grippers are designed to be able to screw or unscrew items, such
as in the assembly of electronics or other products.

Drilling: There are grippers designed with the ability to hold drill bits and perform
drilling operations, typically in manufacturing contexts.

Cutting: In some cases, grippers may also be used to hold and manipulate cutting
tools for processes such as trimming, deburring, or machining.

Soldering/Welding: Some grippers can hold soldering irons or welding torches
and perform these functions in an automated fashion.

Painting or Spraying: Grippers can also hold paint brushes or spray nozzles to
perform tasks such as painting or coating objects.

Buffing or Polishing: Certain types of grippers can hold and manipulate buffing
or polishing tools to finish off products in a manufacturing line.

Dispensing: Grippers can also be used to hold and control dispensing tools, which
could be used to dispense glue, sealant, or other substances onto a product.

Inspection: Grippers can hold cameras or other inspection equipment to inspect
parts or assemblies for quality control.

Testing or Measurement: Grippers can be used to hold testing or measuring
devices to evaluate parts or products.

Keep in mind that the exact functions a gripper can perform depend greatly on
its design and the specific robotic system it’s part of. Some grippers are general-
purpose, while others are designed for very specific tasks. The materials the gripper
is made from, the power of the robotic arm it’s attached to, and the programming
of the system can all affect what tasks a gripper can perform.
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B.3.4 Which properties of a robot are in your mind important to
consider, when moving a heavy object from A to B?

Interviewer: In context of collaborative robotics, which properties of a robot are in
your mind important to consider, when moving a heavy object from A to B?

ChatGPT: Collaborative robotics, or "cobots," are designed to work alongside human
workers in a shared workspace, and they have important properties that are
particularly significant when moving a heavy object from point A to point B. Here
are some of them:

Safety: This is the most critical feature to consider when dealing with heavy
objects. Collaborative robots must be equipped with advanced safety features
such as force sensing or vision systems to avoid colliding with humans or other
objects in the workspace. They must also have the ability to automatically
stop if they encounter an unexpected obstacle.

Payload Capacity: This refers to the maximum weight that a robot can lift or
handle. If the object being moved is heavy, it is crucial that the robot has a
sufficient payload capacity.

Precision and Accuracy: Especially in industrial applications, the robot must
be able to place the heavy object at point B with high precision. This may
involve complex manipulations, which require high accuracy in robot control.

Range of Motion: The robot must be able to reach both point A and point B,
which could potentially be located in complex or tight spaces. This requires a
suitable range of motion and possibly also a high level of maneuverability.

Speed: Depending on the context, the speed at which the robot can safely move
the object may be important. However, speed must always be balanced against
safety considerations.

Endurance: The robot’s ability to perform the task repetitively without degrada-
tion of performance over time is crucial in industrial settings.

Ease of Programming: Depending on the complexity of the task, the robot
may need to be easily programmable to adapt to different objects or tasks,
especially in environments where the tasks change frequently.

Human-Robot Interaction: Since these are cobots, they are meant to work
alongside humans. Therefore, how well they interact with their human coun-
terparts is of utmost importance. This includes easy communication of the
robot’s intentions, the ability to learn from human demonstration, and the
capacity for seamless handovers of objects or tasks.

Compliance and Force Control: In order to safely interact with the environ-
ment and human workers, cobots need to have compliance and force control.
This allows them to adapt to the variable forces during lifting or placing the
heavy object.
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Robustness: The robot must be able to perform under different conditions and
should be resistant to wear and tear, especially when handling heavy objects.

Remember that the importance of these properties can vary depending on the
specifics of the task and the environment in which the robot will be used. Therefore,
these factors should be taken into account when designing or choosing a robot for
a particular task.
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