
Simulation und Analyse von
Transaktionsreihenfolgen in

Ethereum

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Othmar Lechner
Matrikelnummer 11841833

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dr. Gernot Salzer
Mitwirkung: Ass.Prof.in Dr.in Monika di Angelo

Wien, 29.08.2024

Othmar Lechner Gernot Salzer

Technische Universität Wien
A-1040 Wien ⋅ Karlsplatz 13 ⋅ Tel. +43-1-58801-0 ⋅ www.tuwien.at

Using state changes to detect and
simulate transaction order
dependency in Ethereum

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Othmar Lechner
Registration Number 11841833

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dr. Gernot Salzer
Assistance: Ass.Prof.in Dr.in Monika di Angelo

Vienna, 29.08.2024

Othmar Lechner Gernot Salzer

Technische Universität Wien
A-1040 Wien ⋅ Karlsplatz 13 ⋅ Tel. +43-1-58801-0 ⋅ www.tuwien.at

Declaration of Authorship
Othmar Lechner

I hereby declare that I have written this thesis independently, that I have completely specified the
utilized sources and resources and that I have definitely marked all parts of the work - including
tables, maps and figures - which belong to other works or to the internet, literally or extracted, by
referencing the source as borrowed.

I further declare that I have used generative AI tools only as an aid, and that my own intellectual
and creative efforts predominate in this work. In the appendix “Overview of Generative AI Tools
Used” I have listed all generative AI tools that were used in the creation of this work, and indicated
where in the work they were used. If whole passages of text were used without substantial changes,
I have indicated the input (prompts) I formulated and the IT application used with its product name
and version number/date.

Wien, 29.08.2024
Othmar Lechner

Acknowledgements
I want to express gratitude towards all the companions I had so far. Fooling around with sib-
lings, hiking towards wiggly stones, sharing meals in the kitchen with flatmates, enjoying
movies together, playing games, learning new languages by doing uni projects or being at
random parties. This work would, and should, not exist without these precious moments.
Merci! Mulțumesc! Grazie! Gracias! Teşekkürler! جهانی سپاس! Danke! Thank you!

I also want to thank Gernot Salzer and Monika di Angelo for their continuous support. With
the regular meetings and their inputs and the plentitude of constructive feedback, they helped
me a lot to steadily progress and improve this work.

i

Kurzfassung
Ethereum speichert einen Zustand ab, der mittels Transaktionen verändert wird. Die
Reihenfolge, in der Transaktionen ausgeführt werden, kann einen Einfluss auf diese Zu-
standsänderungen haben (transaction order dependency; TOD). Man kann analysieren,
ob zwei Transaktionen TOD sind, indem man diese in zwei verschiedenen Reihenfol-
gen ausführt und die Ergebniszustände miteinander vergleicht. Jedoch können Transak-
tionen, die zwischen den beiden analysierten Transaktionen ausgeführt wurden, diese
Analyse beeinflussen. Dies kann eine fokussierte Analyse von zwei Transaktionen auf
TOD verhindern.

In dieser Diplomarbeit entwerfen wir eine Methode, um verschiedene Reihenfolgen von
Transaktionen zu simulieren und auf TOD zu analysieren. Wir verwenden Zustandsän-
derungen von Transaktionen, um Zustände zu berechnen, mit denen wir verschiedene
Reihenfolgen von Transaktionen simulieren. Diese Berechnungen können Zustandsän-
derungen von dazwischenliegenden Transaktionen inkludieren, ohne diese während der
Simulation ausführen zu müssen. Weiters ermöglicht es, nur jene Änderungen am Zu-
stand vorzunehmen, die von den Transaktionen verursacht wurden, die wir analysieren.
Wir verwenden diese Simulation zum Feststellen, ob Transaktionen TOD sind und ob
sie Eigenschaften eines Angriffes haben. Außerdem erläutern wir Umstände, in denen
es trotz dieser Methodik zu Beeinflussungen der Analyse durch dazwischenliegende
Transaktionen kommen kann.

Weiters durchsuchen wir Transaktionen, die in Ethereum ausgeführt wurden, nach
Transaktionspaaren, welche potentiell TOD sind. Wir paaren Transaktionen anhand
ihrer Zustandsabfragen und -änderungen. Unsere Analyse zeigt, dass nur Änderungen
von Kontoständen und Kontospeichern relevant für Angriffe sind, daher verwerfen wir
Paare ohne solche Änderungen. Weiters filtern wir Paare, bei welchen potentielle Stör-
faktoren die Simulation beeinflussen. Schließlich reduzieren wir die Anzahl an Paaren,
welche ähnliche Zustandsabfragen und -änderungen haben.

Wir evaluieren unsere Methoden anhand eines existierenden Datensatzes, welcher 5.601
Angriffe aus einer Analyse von 175.552 Transaktionen enthält. Unsere Suche nach po-
tentieller TOD markiert 5.600 Transaktionspaare als potentiell TOD. Nachdem wir diese
filtern, verbleiben wir mit 115 Paaren. Wir zeigen, dass diese 115 Paare ähnlich zu
703 der gefilterten Angriffe sind. Weiters evaluieren wir unsere Simulationsmethode an
allen 5.601 Angriffen und stellen bei 86% davon TOD fest und bei 81% Angriffseigen-
schaften. Wir analysieren die Unterschiede zwischen unseren Ergebnissen und dem An-
griffsdatensatz, und führen für 60 Angriffe eine manuelle Untersuchung durch.

ii

Abstract
In Ethereum, the order in which two transactions are executed can influence the changes
they perform on the world state. One method to analyze such transaction order depen-
dencies (TOD) is to execute the transactions in two orders and compare their behaviors.
However, when simulating a reordering of two transactions, the transactions that oc-
curred between the two transactions can influence the analysis. This influence can pre-
vent an isolated analysis of two transactions.

To address this issue, this thesis proposes a new method to simulate transaction orders
to analyze TOD. We use state changes of transactions to compute world states that we
use to simulate transaction execution in different orders. This computation removes the
need to execute intermediary transactions for the simulation and allows applying only
the state changes of the transactions we want to analyze. We then use our simulation
method to detect if transactions are TOD and show attack characteristics. We discuss
cases where, despite using this method, intermediary transactions can interfere with
TOD analysis.

Furthermore, we use state changes to detect transaction pairs on the blockchain that
are potentially TOD. We match transactions based on the state they access and modify.
By enumerating and analyzing the causes of TOD, we show that only TODs related to
the storage and balance of accounts are relevant attack vectors. With this insight, we
can remove matches that are irrelevant to an attack analysis. Additionally, we filter out
transaction pairs where intermediary transactions may interfere with the TOD simula-
tion. Finally, we also reduce the amount of transaction pairs with similar state accesses
and modifications.

For the evaluation, we use a dataset from a previous study as a ground truth, which
contains 5,601 attacks obtained from analyzing 175,552 transactions. Our method to de-
tect potential TODs finds 5,600 of the attacks. After applying the filters, only 115 of the
attacks remain for further analysis. We show that these are similar to at least 703 of the
removed attacks. We apply our simulation method to all 5,601 attacks and verify that
86% of them are TOD and 81% fulfill the attack characteristic used by the ground truth.
We analyze the cases where our results differ from the ground truth, including a manual
analysis of 60 attacks.

iii

Contents
Acknowledgements ... i

Kurzfassung ... ii

Abstract .. iii

1 Introduction .. 1
1.1 Related works .. 2

2 Background .. 3
2.1 Ethereum .. 3
2.2 World State ... 3
2.3 EVM ... 3
2.4 Transactions ... 4
2.5 Blocks .. 5
2.6 Transaction submission .. 5
2.7 Transaction execution ... 5
2.8 Nodes ... 7
2.9 RPC .. 7
2.10 Tokens ... 7

3 Transaction order dependency .. 8
3.1 Approaching TOD .. 8
3.2 Motivating examples ... 8
3.3 Relation to previous works .. 11
3.4 Imprecise definitions ... 12
3.5 TOD simulation .. 15
3.6 TOD definition .. 16
3.7 TOD approximation ... 16
3.8 Definition strengths ... 17
3.9 Definition weaknesses ... 18
3.10 State collisions .. 19
3.11 TOD candidates .. 20
3.12 Causes of state collisions .. 21
3.13 Everything is TOD ... 24

iv

4 TOD candidate mining .. 25
4.1 TOD candidate finding .. 25
4.2 TOD candidate filtering .. 25
4.3 Experiment ... 29
4.4 Deduplication .. 32

5 TOD detection ... 34
5.1 Transaction execution via RPC ... 34
5.2 Execution inaccuracy .. 34
5.3 TOD assessment ... 35
5.4 Experiment ... 36

6 TOD attack characteristics ... 38
6.1 Attacker gain and victim losses .. 38
6.2 Securify TOD properties ... 40
6.3 ERC-20 multiple withdrawal ... 42
6.4 Trace analysis .. 42

7 Evaluation .. 44
7.1 Evaluation limitations ... 44
7.2 Overall evaluation .. 45
7.3 Evaluation of Securify and ERC-20 multiple withdrawal characteristics 46
7.4 Evaluation of TOD candidate mining .. 48
7.5 Evaluation of TOD detection ... 51
7.6 Evaluation of TOD attack analysis ... 53
7.7 Performance evaluation .. 55

8 Discussion .. 56

9 Data availability and reproducibility 57
9.1 Tool .. 57
9.2 Data availability .. 57
9.3 Experiment setup ... 57

Bibliography ... 61

A. Overview of Generative AI Tools Used 66

v

B. Case studies .. 67
B.1. Analysis of definition differences .. 67
B.2. Analysis of TOD .. 68

C. Javascript tracer .. 70

vi

1 Introduction
Ethereum is a blockchain that keeps track of a world state and updates this state by
executing transactions. The transactions can execute so-called smart contracts, which
are programs that are stored on the blockchain. As these programs are nearly Turing-
complete, they can have vulnerabilities and become exploited.

This thesis focuses on transaction order dependence (TOD), which is a prerequisite for
a kind of attack called front-running. TOD means that the state changes performed by
transactions depend on the order in which the transactions are executed. In a front-run-
ning attack, an attacker sees that someone is about to perform a transaction and then
quickly inserts a transaction before it. Because of TOD, executing the attacker’s transac-
tion before the victim’s transaction yields different state changes than when execution
the victim’s transaction first.

This work proposes a method to take a pair of transactions and to simulate the two
transactions in both orders. When executing the transactions in both orders, we can
compare their behaviors to see if they are TOD and also if it exhibits characteristics of
a front-running attack.

We use the state changes of transactions to calculate the world states used for transac-
tion execution. This removes the need to execute intermediary transactions that were
originally executed between the two transactions we analyze. Instead, we can use their
state changes to maintain the effect they had on the second transaction, while updating
the world states according to the different orders.

Moreover, we search the blockchain history for transaction pairs that are potentially
TOD. We match transactions that access and modify the same state and define several
filters to remove irrelevant transaction pairs. On these transaction pairs, we use our sim-
ulation method to check if they are TOD and if they have characteristics of a front-run-
ning attack. We check for the characteristics of the ERC-20 multiple withdrawal attack
[1], the TOD properties implemented by Securify [2], and financial gains and losses[3].

We show that our concepts can be implemented with endpoints exposed by an archive
node. We neither require custom modifications nor local access to an archive node.

Overall, our main contributions are:

• A method to simulate a pair of transactions in two different orders.
• A precise definition of TOD in the context of blockchain transaction analysis.
• An evaluation of an approximation for TOD.
• A compilation of EVM instructions that can cause TOD.

1

1. Introduction

• A method to mine and filter transaction pairs that are potentially TOD.

1.1 Related works
The studies by W. Zhang et al. [3] and C. F. Torres, R. Camino, and R. State [4] both
detect and analyze front-running attacks that occurred on the Ethereum blockchain. We
discuss potential inaccuracies in their simulation approaches. Contrary to these works,
our study focuses on TOD, a prerequisite of front-running. However, we also implement
the attack definition by W. Zhang et al. [3] to compare our results with theirs.

P. Daian et al. [5] detect a specific kind of front-running attack by observing transaction
executions. They measure so-called arbitrage opportunities, where a single transaction
can make net revenue. While this is TOD, as only the first transaction that uses an arbi-
trage opportunity makes revenue, they do not need to simulate the different transaction
orders for their analysis. Similarly, Y. Wang, P. Zuest, Y. Yao, Z. Lu, and R. Wattenhofer
[6] also study a type of front-running attack without simulating different transaction
orders.

D. Perez and B. Livshits [7] explicitly analyze transactions for TOD. They do so by
recording for each transaction which storage it accessed and modified and then match-
ing transactions where these overlap. Our work discusses the theoretical background of
this approach and our method to detect potential TODs works in a similar way as theirs.

Several other works provide frameworks to analyze attack transactions in Ethereum [8]–
[11]. None of these frameworks supports the simulation of transactions in different or-
ders, therefore we cannot directly use them to detect TOD. Regarding the use of archive
nodes, an evaluation by S. Wu et al. [10] states that replaying transactions with them
is slow, taking “[…] more than 47 min to replay 100 normal transactions”. However, C.
Ferreira Torres, A. K. Iannillo, A. Gervais, and R. State [8] show that it is indeed feasible
to use archive nodes for attack analysis. We follow this work and use archive nodes to
implement our simulation method.

2

2 Background
This chapter provides background knowledge on Ethereum that is helpful for following
the remaining paper. We also introduce a notation for these concepts.

2.1 Ethereum
Ethereum is a blockchain that can be characterized as a “transactional singleton machine
with shared-state” [12, p.1]. By using a consensus protocol, a decentralized set of nodes
agrees on a globally shared state. This state contains two types of accounts: externally
owned accounts (EOA) and contract accounts (also referred to as smart contracts). The
shared state is modified by executing transactions [13].

2.2 World State
Similar to [12, p.3], we will refer to the shared state as world state. The world state maps
each 20-byte address to an account state, containing a nonce, balance, storage and code¹.
They store the following data [12, p.4]:

¹Technically, the account state only contains hashes that identify the storage and code, not the actual
storage and code. This distinction is not relevant in this paper, therefore we simply refer to them as
storage and code.

• nonce: For EOAs, this is the number of transactions submitted by this account. For
contract accounts, this is the number of contracts created by this account.

• balance: The value of Wei this account owns, the smallest unit of Ether.
• storage: The storage allows contract accounts to persist information across transac-

tions. It is a key-value mapping where both, key and value, are 256 bits long. For EOAs,
the storage is empty.

• code: For contract accounts, the code is a sequence of EVM instructions.

We denote the world state as ඿ and the value at a specific state key ް as ඿(ް). For the
nonce, balance and code the state key denotes the state type and the account’s address,
written as ඿((‘nonce’, ,’඿((‘balance ,((ߠ ,’and ඿((‘code ((ߠ respectively. For the ,((ߠ
value at a storage slot ߻ we use ඿((‘storage’, ,ߠ .((߻
2.3 EVM
The Ethereum Virtual Machine (EVM) is used to execute code in Ethereum. It executes
instructions that can access and modify the world state. The EVM is Turing-complete,
except that it is executed with a limited amount of gas, and each instruction costs some

3

2. Background

gas. When it runs out of gas, the execution will halt [12, p.14]. This prevents infinite
loops, as their execution exceeds the gas limit.

Most EVM instructions are formally defined in the Yellowpaper [12, p.30-38]. However,
the Yellowpaper currently does not include the changes from the Cancun upgrade [14],
therefore we will also refer to the informal descriptions available on evm.codes [15].

2.4 Transactions
A transaction can modify the world state by transferring Ether and executing EVM code.
It must be signed by the owner of an EOA and contains the following data relevant to
our work:

• sender: The address of the EOA that signed this transaction.²
• recipient: The destination address.
• value: The value of Wei that should be transferred from the sender to the recipient.
• gasLimit: The maximum amount of gas that can be used for the execution.

²The sender is implicitly given through a valid signature and the transaction hash [12, p.25-27]. We
are only interested in transactions that are included in the blockchain, thus the signature must be valid,
and the transaction’s sender can always be derived.

If the recipient address is empty, the transaction will create a new contract account.
These transactions also include an init field that contains the code to initialize the new
contract account.

When the recipient address is given and a value is specified, this will be transferred to the
recipient. Moreover, if the recipient is a contract account, it also executes the recipient’s
code. The transaction can specify a data field to pass input data to the code execution
[12, p.4-5].

For every transaction, the sender must pay a transaction fee. This fee is composed of a
base fee and a priority fee. Every transaction must pay the base fee. The amount of Wei
will be withdrawn from the sender and not given to any other account. For the priority
fee, the transaction can specify if and how much they are willing to pay. This fee will be
taken from the sender and given to the block validator, which is explained in the next
section [12, p.8].

We denote a transaction as ߋ , sometimes adding a subscript ޓߋ to differentiate it from
another transaction ޖߋ.

4

https://www.evm.codes/

2. Background

2.5 Blocks
The Ethereum blockchain consists of a sequence of blocks, where each block builds upon
the state of the previous block. To achieve consensus about the canonical sequence of
blocks in a decentralized network of nodes, Ethereum uses a consensus protocol. In this
protocol, validators build and propose blocks to be added to the blockchain [16]. It is
the choice of the validator which transactions to include in a block. However, they are
incentivized to include transactions that pay high transaction fees, as they receive the
fee [12, p.8].

Each block consists of a block header and a sequence of transactions that are executed
in this block.

2.6 Transaction submission
This section discusses how a transaction signed by an EOA ends up being included in
the blockchain.

Traditionally, the signed transaction is broadcasted to the network of nodes, which tem-
porarily store them in a mempool, a collection of pending transactions. The current block
validator then picks transactions from the mempool and includes them in the next block.
With this submission method, the pending transactions in the mempool are publicly
known to the nodes in the network, even before being included in the blockchain. This
time window will be important for our discussion on front-running, as it gives nodes
time to react to a transaction before it becomes part of the blockchain [17].

A different approach, the Proposer-Builder Separation (PBS), has gained more popular-
ity recently. Here, we separate the task of collecting transactions and building blocks
with them from the task of proposing them as a validator. A user submits their signed
transaction or transaction bundle to a block builder. The block builder has a private
mempool and uses it to create profitable blocks. Finally, the validator picks one of the
created blocks and adds it to the blockchain [18].

2.7 Transaction execution
In Ethereum, transaction execution is deterministic [12, p.9]. Transactions can access
the world state and their block environment, therefore their execution can depend on
these values. After executing a transaction, the world state is updated accordingly.

We denote a transaction execution as ඿ ߌ→ ඿′, implicitly letting the block environment
correspond to the transaction’s block. Furthermore, we denote the state change by a

5

2. Background

transaction ߋ as Δߌ , with prestate(Δߌ) = ඿ being the world state before execution
and poststate(Δߌ) = ඿′ the world state after the execution of ߋ .

For two state changes Δޔߌ and Δޗߌ , we say that they are equivalent, Δޔߌ ∼ Δޗߌ , if
the relative change of the values is equal. Formally, let Δޔߌ ∼ Δޗߌ be true if and only if:∀ް : poststate(Δޔߌ)(ް) − prestate(Δޔߌ)(ް) = poststate(Δޗߌ)(ް) − prestate(Δޗߌ)(ް)
We extend this equivalence definition to sequences of state changes by summing up the
differences of the state changes on both sides. We define that two sequences of state
changes ⟨Δ0ޔߌ , …, Δࠆޔߌ ⟩ and ⟨Δ0ޗߌ , …, Δࠃޗߌ ⟩ are equivalent if:∀ް : 0=߶ࠅ∑ poststate(Δޔߌ߷)(ް) − prestate(Δޔߌ߷)(ް) = 0=߹ࠂ∑ poststate(Δߺޗߌ)(ް) − prestate(Δߺޗߌ)(ް)
For example, if both Δޔߌ and Δޗߌ increase the balance at address ߠ by 10 Wei and make
no other state changes, then Δޔߌ ∼ Δޗߌ . If one of them had modified it by e.g. 15 Wei
or 0 Wei, or additionally modified some storage slot, we would have Δޔߌ ≁ Δޗߌ .

We define ඿ + Δߌ to be equal to the state ඿, except that every state that was changed
by the execution of ߋ is overwritten with the value in poststate(Δߌ). Similarly, ඿ −Δߌ is equal to the state ඿, except that every state that was changed by the execution
of ߋ is overwritten with the value in prestate(Δߌ). Formally, these definitions are as
follows:changed_keys(Δߌ) ≔ {ް | prestate(Δߌ)(ް) ≠ poststate(Δߌ)(ް)}(඿ + Δߌ)(ް) ≔ {poststate(Δߌ)(ް) if ް ∈ changed_keys(Δߌ)඿(ް) otherwise(඿ − Δߌ)(ް) ≔ {prestate(Δߌ)(ް) if ް ∈ changed_keys(Δߌ)඿(ް) otherwise
For instance, if transaction ߋ changed the storage slot 1234 at ad-
dress 0xabcd from 0 to 100, then we have changed_keys(Δߌ) ={(‘storage’, 0xabcd,1234)}. Further, we have (඿ + Δߌ)((‘storage’, 0xabcd,1234)) =100 and (඿ − Δߌ)((‘storage’, 0xabcd,1234)) = 0. For all other storage slots ߻ we have(඿ + Δߌ)((‘storage’, ,ߠ ((߻ = ඿((‘storage’, ,ߠ ((߻ = (඿ − Δߌ)((‘storage’, ,ߠ .((߻

6

2. Background

2.8 Nodes
A node consists of an execution client and a consensus client. The execution client keeps
track of the world state and the mempool and executes transactions. The consensus
client takes part in the consensus protocol. For this work, we will use an archive node,
which is a node that allows reproducing the state and transactions at any block [19].

2.9 RPC
Execution clients implement the Ethereum JSON-RPC specification [20]. This API gives
remote access to an execution client, for instance, to inspect the current block number
with eth_blockNumber or to execute a transaction without committing the state via
eth_call. In addition to the standardized RPC methods, we will also make use of meth-
ods in the debug namespace, such as debug_traceBlockByNumber. While this namespace
is not standardized, several execution clients implement these additional methods [21]–
[23].

2.10 Tokens
In Ethereum, tokens are assets managed by contract accounts [24]. The contract account
stores which address holds how many tokens. There are several token standards that
a contract account can implement, allowing standardized methods to interact with the
token. For instance, the ERC-20 standard defines a transfer method, which allows the
holder of a token to transfer the token to someone else [25].

7

3 Transaction order dependency
In this chapter we discuss our definitions of transaction order simulations and transac-
tion order dependency (TOD). We first introduce the idea of TOD with a preliminary
definition and then show several shortcomings of this simple definition. Based on these
insights, we construct precise definitions of TOD and our transaction order simulation.

3.1 Approaching TOD
Intuitively, a pair of transactions (ޓߋ, is transaction order dependent (TOD), if the (ޖߋ
result of sequentially executing the transactions depends on the order of their execution.
As a preliminary TOD definition we use the following:඿ ޔߌ→ ඿1 ޗߌ→ ඿′඿ ޗߌ→ ඿2 ޔߌ→ ඿″඿′ ≠ ඿″
So, starting from an initial state, when we execute first ޓߋ and then ޖߋ it will result in
a different state, than when we execute ޖߋ and afterwards ޓߋ.

We will refer to the execution order ޓߋ → ,the one that occurred on the blockchain ,ޖߋ
as the normal execution order, and ޖߋ → .as the reverse execution order ޓߋ

3.2 Motivating examples
We provide two examples to illustrate how TOD can be exploited.

3.2.1 Password leaking
The first example is an attack from a dataset by [4]³. A simplified version of the vulner-
able contract with added comments is presented below. It allows depositing some Ether

³The attacker transaction is
0x15c0d7252fa93c781c966a98ab46a1c8c086ca2a0da7eb0a7a06c522818757da, and the victim transaction
is 0x282e4de019b59a50b89c1fdc2e70c4bbd45a7ad7f7a1a6d4807a587b5fcdcdf6.

and locking it with a password, and then anyone with the password can withdraw this
Ether.

8

https://etherscan.io/tx/0x15c0d7252fa93c781c966a98ab46a1c8c086ca2a0da7eb0a7a06c522818757da
https://etherscan.io/tx/0x282e4de019b59a50b89c1fdc2e70c4bbd45a7ad7f7a1a6d4807a587b5fcdcdf6

3. Transaction order dependency

contract PasswordEscrow {
 struct Transfer {
 address from;
 uint256 amount;
 }

 mapping(bytes32 => Transfer) private transferToPassword;

 function deposit(bytes32 _password) public payable {
 // REMARK: this stores an entry for the password and saves the amount
of Ether
 // that was sent along the transaction
 bytes32 pass = sha3(_password);
 transferToPassword[pass] = Transfer(msg.sender, msg.value);
 }

 function getTransfer(bytes32 _password) public payable {
 // REMARK: this verifies that an entry for the password exists
 // and gets the amount of Ether that was deposited for the password
 require(
 transferToPassword[sha3(_password)].amount > 0
);
 bytes32 pass = sha3(_password);
 uint256 amount = transferToPassword[pass].amount;

 transferToPassword[pass].amount = 0;

 // REMARK: this transfers the Ether to the account that transaction's
sender
 msg.sender.transfer(amount);
 }
}
Contract 1: The PasswordEscrow contract. This is a simplified version with added com-

ments, based on the source code from Etherscan [26].

The victim previously interacted with the contract to deposit some Ether and lock it with
a password. For the sake of the argument, we ignore that the password is already public
at this step. This could be fixed, e.g. by directly submitting sha3(password) rather than
the password itself, without resolving the TOD issue we discuss here.

Later, the victim tried to withdraw this Ether by creating a transaction that calls
getTransfer with the password. However, in the time between the transaction submis-

9

3. Transaction order dependency

sion and its inclusion in a block, an attacker saw this transaction and determined that
they can perform the Ether withdrawal themselves. They copied the transaction data,
including the password, and submitted their own transaction with a higher gas price
than the victim’s. The attacker’s transaction ended up being executed first and withdrew
all the Ether.

If we map this attack to our preliminary TOD definition above, the first transaction that
executes will withdraw the Ether and thus increase the sender’s balance. If the attacker’s
transaction executes first, we end up in a state where the attacker has more balance than
if the victim’s transaction is executed first. Therefore, ඿′ ≠ ඿″.

3.2.2 ERC-20 multiple withdrawal
As a second example, we explain the ERC-20 multiple withdrawal attack [1]. Contracts
that implement the ERC-20 token standard must include an approve method [25]. This
method takes as parameters a spender and a value and allows the spender to spend
<value> tokens from your account. For instance, when some account ߠ calls approve(b,
0x1234), then b can transfer 0x1234 tokens from ߠ to any other account. If the approve
method is called another time, the currently approved value is overwritten with the new
value, regardless of the previous value.

We illustrate that approvals and the spending of approved tokens can be TOD in Table 1.
In the benign scenario, ߣ spends one token and remains with two tokens that are still
approved. However, in the attack scenario, ߣ spends one token and only afterwards ߠ
approves ߣ to spend three tokens. Therefore, ߣ remains with three tokens approved to-
kens instead of two. As such, changing the order of the second and third transaction
results in different states, hence they are TOD.

From the perspective of ߠ, they only wanted to allow ߣ to use three tokens. However,
when ߣ reacts to a pending approval by executing a transferFrom before the approval is
included in a block, then ߣ is able to use more than three tokens in total. This happened
in the attack scenario, where the transferFrom is executed before the second approve
got included in a block.

10

3. Transaction order dependency

Benign scenario Attack scenario

Action Approved to-
kens

approve(b, 1) 1
approve(b, 3) 3
transferFrom(a,
b, 1)

2

Action Approved to-
kens

approve(b, 1) 1
transferFrom(a,
b, 1)

0

approve(b, 3) 3

Table 1: Benign and attack scenario for ERC-20 approvals.

3.3 Relation to previous works
This section discusses, how our preliminary TOD definition relates to previous works
that detect front-running attacks.

In [4], the authors do not provide a formal definition of TOD or front-running attacks.
Nevertheless, for displacement attacks, they include the following check to detect if two
transactions fall into this category:

“[…] we run in a simulated environment first ޓߋ before ߒߋ and then ߒߋ before ޓߋ.
We report a finding if the number of executed EVM instructions is different across
both runs for ޓߋ and ߒߋ , as this means that ޓߋ and ߒߋ influence each other.”

Similar to our preliminary TOD definition, they execute ޓߋ and ߒߋ in different orders
and check if it affects the result. In their case, they only check the number of executed
instructions, instead of the resulting state. This check misses attacks where the same
instructions are executed, but the operands of instructions in the second transaction
change because of the first transaction.

In [3], the authors define an attack as a triple ޒ = ,ߡߋ⟩ ,ࠝߋ ߋ ߡࠋ ⟩, where ߡߋ and ࠝߋ are
similar to ޓߋ and ޖߋ from our definition, and ߋ ߡࠋ is an optional third transaction. They
consider the execution orders ߡߋ → ࠝߋ → ߋ ߡࠋ and ࠝߋ → ߡߋ → ߋ ߡࠋ and check if the ex-
ecution order influences financial gains, which we will discuss in more detail in Sec-
tion 6.1.

We note that if these two execution orders result in different states, this is not because of
the last transaction ߋ ߡࠋ , but because of a TOD between ߡߋ and ࠝߋ. As we always executeߋ ߡࠋ last, and transaction execution is deterministic, it only gives a different result if the

11

3. Transaction order dependency

execution of ߡߋ and ࠝߋ gave a different result. Therefore, if the execution order results
in different financial gains, then ߡߋ and ࠝߋ must be TOD.

3.4 Imprecise definitions
Our preliminary definition of TOD, and the related definitions above, are not precise
regarding the semantics of a reordering of transactions and their executions. This makes
it impossible to apply exactly the same methodology without analyzing the source code
related to the papers. We describe three issues where the definition is not precise enough,
and show how these are differently interpreted by the two papers.

For the analysis of the tools by [3] and [4], we will use the current version of the source
codes, [27] and [28], respectively.

3.4.1 Intermediary transactions
To analyze a TOD (ޓߋ, ,in the normal order ޖߋ affects ޓߋ we are interested in how ,(ޖߋ
and how ޖߋ affects ޓߋ in the reverse order. Our preliminary definition does not specify
how to handle transactions that occur between ޓߋ and ޖߋ, which we will name inter-
mediary transactions.

Suppose that there is one transaction ߘߋ between ޓߋ and ޖߋ: ඿ ޔߌ→ ඿ޓ ߙߌ→ ඿ߘޓ ߘߋ and ޓߋ may depend on both ޖߋ The execution of .ޖߘޓ඿ޗߌ→ . When we are interested
in the effect of ޓߋ on ޖߋ, we need to define what happens with ߘߋ .

For executing in the normal order, we have two possibilities:

1. ඿ ޔߌ→ ඿ޓ ߙߌ→ ඿ߘޓ ޗߌ→ ඿ޖߘޓ, the same execution as on the blockchain, including the
effects of ߘߋ .

2. ඿ ޔߌ→ ඿ޓ ޗߌ→ ඿ޖޓ, leaving out ߘߋ and thus having a normal execution that potentially
diverges from the results on the blockchain (as ඿ޖޓ may differ from ඿ޖߘޓ).

When executing the reverse order, we have the following choices:

1. ඿ ޗߌ→ ඿ޖ ޔߌ→ ඿ޓޖ, which ignores ߘߋ and thus may influence the execution of ޖߋ.
2. ඿ ߙߌ→ ඿ߘ ޗߌ→ ඿ޖߘ ޔߌ→ ඿ޓޖߘ, which executes ߘߋ on ඿ rather than ඿ޓ and now also

includes the effects of ߘߋ for executing ޓߋ.
3. ඿ ޗߌ→ ඿ޖ ߙߌ→ ඿ߘޖ ޔߌ→ ඿ޓߘޖ, which executes ߘߋ after ޖߋ and before ޓߋ, thus poten-

tially influencing the execution of both ޓߋ and ޖߋ.

All of these scenarios are possible, but none of them provides a clean solution to solely
analyze the effect of ޓߋ on ޖߋ, as we always may have some indirect effect from the
(non-)execution of ߘߋ .

12

3. Transaction order dependency

In [3], this influence of intermediary transactions is acknowledged as causing a few false
positives:

“In blockchain history, there could be many other transactions between ࠝߋ ,ߡߋ, andߋ ࠋߡ . When we change the transaction orders to mimic attack-free scenarios, the rel-
ative orders between ߡߋ (or ࠝߋ) and other transactions are also changed. Financial
profits of the attack or victim could be affected by such relative orders. As a result,
the financial profits in the attack-free scenario could be incorrectly calculated, and
false-positively reported attacks may be induced, but our manual check shows that
such cases are rare.”

Nonetheless, it is not clear, which of the above scenarios they applied for their analysis.
The other work, [4], does not mention this issue of intermediary transactions.

3.4.1.a Code analysis of [3]
In [3], algorithm 1 takes all the executed transactions as its input. These transactions and
their results are used in the searchVictimGivenAttack method, where ar represents the
attack transaction with result and vr represents the victim transaction with result.

For the normal execution order (ߡߋ → the authors use ar and vr and pass them to ,(ࠝߋ
their CheckOracle method, which then compares the resulting states. As ar and vr are
obtained by executing all transactions, they also include the intermediary transactions
for these results (similar to our ඿ ޔߌ→ ඿ޓ ߙߌ→ ඿ߘޓ ޗߌ→ ඿ޖߘޓ case).

For the reverse order (ࠝߋ → i.e. ඿. Then they execute ,ߡߋ they take the state before ,(ߡߋ
all transactions obtained from the SlicePrerequisites method. And finally, they exe-
cute ࠝߋ and ߡߋ.

The SlicePrerequisites method uses the hbGraph, which is built in StartSession.
hbGraph seems to be a graph where each transaction points to the previous transac-
tion from the same EOA. The SlicePrerequisites method uses this graph to obtain all
transactions between ߡߋ and ࠝߋ that are from the same sender as ࠝߋ. This interpretation
matches the test case “should slide prerequisites correctly” from the source code. As the
paper does not mention these prerequisite transactions, we do not know why this subset
of intermediary transactions was chosen.

We can conclude that [3] executes all intermediary transactions in the normal order.
However, in the reverse order, they only execute intermediary transactions that are also
sent by the victim, but do not execute any other intermediary transactions.

13

3. Transaction order dependency

3.4.1.b Code analysis of [4]
In the file displacement.py, lines 154-155 replay the normal execution order, and lines
158-159 the reverse execution order. They only execute ޓߋ and ߒߋ (in normal and re-
verse order), but do not execute any intermediate transactions.

3.4.2 Block environments
When we analyze a pair of transactions (ޓߋ, it may happen that these are not part ,(ޖߋ
of the same block. The execution of the transactions may depend on the block environ-
ment they are executed in, for instance, if they access the current block number. Thus,
executing ޓߋ or ޖߋ in a block environment different from the blockchain may alter their
behavior. From our preliminary TOD definition, it is not clear which block environmen-
t(s) we use when replaying the transactions in normal and reverse order.

3.4.2.a Code analysis of [3]
In the normal scenario, the block environments used are the same as originally used for
the transaction.

For the reverse scenario, the block environment used to execute all transactions is con-
tained in ar.VmContext and corresponds to the block environment of ߡߋ. Therefore, ߡߋ is executed in the same block environment as on the blockchain, while ࠝߋ and the
intermediary transactions may be executed in a block environment different from the
normal scenario.

3.4.2.b Code analysis of [4]
In the file displacement.py line 151, we see that the emulator uses the same block en-
vironment for both transactions. Therefore, at least one of them will be executed in a
block environment different from the blockchain. However, it uses the same block en-
vironment for both scenarios, thus being consistently different from the execution on
the blockchain.

3.4.3 Initial state ඿
While our preliminary TOD definition specifies that we start with the same ඿ in both
execution orders, it is up to interpretation which world state ඿ actually designates.

3.4.3.a Code analysis of [3]
Both, in the normal and reverse scenario, it uses the state directly before executing ߡߋ, including the state changes of previous transactions within the same block. In the
reverse scenario, this is the case as it uses ar.State.

14

3. Transaction order dependency

3.4.3.b Code analysis of [4]
The emulator is initialized with the block front_runner["blockNumber"]-1 and no sin-
gle transactions are executed prior to running the analysis. Therefore, the state cannot
include transactions that were executed in the same block before ޓߋ.

Similar to the case with the block environment, this could lead to differences between
the emulation and the results from the blockchain when ޓߋ or ߒߋ are affected by a
previous transaction in the same block.

3.5 TOD simulation
To address the issues above, we define a TOD simulation method that explicitly defines
the used world states and block environments while also taking intermediary transac-
tions into account:

Definition 3.5.1 (Normal and reverse scenarios) : Consider a sequence of transac-
tions, with ඿ being the world state right before ޓߋ was executed on the blockchain:඿ ޔߌ→ ඿ޓ 1ߙߌ→ … ࠆߙߌ→ ඿ࠆߘ ޗߌ→ ඿ޖ
Let Δޔߌ and Δޗߌ be the corresponding state changes from executing ޓߋ and ޖߋ,
and let all transactions be executed in the same block environment as they were
executed on the blockchain.

Let Δ′ޗߌ be the state change when executing (඿ࠆߘ − Δޔߌ) ޗߌ→ ඿′ޖ and Δ′ޔߌ be
the state change when executing (඿ + Δ′ޗߌ) ޔߌ→ ඿′ޓ.

We call Δޔߌ and Δޗߌ the state changes from the normal scenario and Δ′ޔߌ and Δ′ޗߌ the state changes from the reverse scenario.

The normal scenario represents the order ޓߋ → ޔߌThe state changes Δ .ޖߋ and Δޗߌ
are equal to the ones observed on the blockchain, as we execute the transactions in their
original block environment and with their original prestate.

The reverse scenario models the order ޖߋ → ,Therefore .ޓߋ occurs before ޖߋ where ,ޓߋ
we execute ޖߋ on a state that does not contain the changes of ޓߋ. We do so by taking
the world state exactly before executing ޖߋ, namely ඿ࠆߘ , and then removing the state
changes of ޓߋ by computing ඿ࠆߘ − Δޔߌ . Executing ޖߋ on ඿ࠆߘ − Δޔߌ gives us the
state change Δ′ޗߌ . To model the execution of ޓߋ after ޖߋ, we take the state ඿ on whichޓߋ was originally executed and add the state changes Δ′ޗߌ .

15

3. Transaction order dependency

3.6 TOD definition
Based on the definition of normal and reverse scenarios, we define TOD as follows:

Definition 3.6.1 (TOD): Let ޓߋ and ޖߋ be two transactions with the correspond-
ing state changes Δޔߌ and Δޗߌ from the normal scenario and Δ′ޔߌ and Δ′ޗߌ from
the reverse scenario.

We say that (ޓߋ, ޔߌis TOD if and only if ⟨Δ (ޖߋ , Δޗߌ⟩ ≁ ⟨Δ′ޔߌ , Δ′ޗߌ⟩.
Consider the example of the ERC-20 multiple withdrawal from Section 3.2.2, with ޓߋ
being the attacker transaction that calls transferFrom(a, b, 1) and ޖߋ being the vic-
tim transaction that calls approve(b, 3). In the normal scenario, we have shown that
the attacker remains with three approved tokens, while in the reverse scenario, only
two tokens would remain. Intuitively, this satisfies ⟨Δޔߌ , Δޗߌ⟩ ≁ ⟨Δ′ޔߌ , Δ′ޗߌ⟩, as the
change approved tokens differs between the normal and the reverse scenario.

More formally, let ް be the state key that tracks how many tokens are approved
by ߠ for ߣ. Initially, one token is approved, therefore ඿(ް) = 1. When executing ޓߋ in the normal scenario, where the attacker spends the one approved token,
this changes to ඿(ް) = 0. Therefore, we have a change of poststate(Δޔߌ)(ް) −prestate(Δޔߌ)(ް) = −1. We then continue to execute ޖߋ in the normal sce-
nario, which sets ඿(ް) = 3, therefore poststate(Δޗߌ)(ް) − prestate(Δޗߌ)(ް) =3. When we add up these two state changes, we get an overall state change of 2 for the
state at key ް . However, doing the same calculations for the reverse scenario results in
an overall state change of 1 for ް , as ޖߋ first increases it by two and ޓߋ then reduces it
by one. As the overall changes differ between the normal and reverse scenario, we have⟨Δޔߌ , Δޗߌ⟩ ≁ ⟨Δ′ޔߌ , Δ′ޗߌ⟩ and (ޓߋ, .is TOD (ޖߋ

Similarly, for the password leaking example in Section 3.2.1 we showed that the execu-
tion order determines who can withdraw the stored Ether. If the attacker’s transaction
is executed first, they withdraw the Ether. If it is executed second, the attacker does not
withdraw any Ether. Therefore, the change at the state key ް = (‘balance’, (ࠐ߬߻ߦߠࠖࠖߠ
depends on the transaction order, and thus, the transactions are TOD.

3.7 TOD approximation
This paper focuses on detecting TOD attacks, in which the attacker inserts a transaction
prior to some transaction ߋ . We assume that the first transaction tries to influence the
second transaction, which implies that in every TOD attack, the state changes of ޖߋ

16

3. Transaction order dependency

should be dependent on the transaction order. We use this assumption to define an ap-
proximation of TOD:

Definition 3.7.1 (Approximately TOD): Let ޓߋ and ޖߋ be transactions with the
state changes Δޗߌ for the normal scenario and Δ′ޗߌ for the reverse scenario.

We say that (ޓߋ, ޗߌis approximately TOD if and only if Δ (ޖߋ ≁ Δ′ޗߌ .

In principle, the assumption that an attack influences the transaction it front-runs need
not hold. For example, suppose a transaction ߋ leaks a password that can be used to
withdraw Ether, but at the same time, ߋ locks the contract that contains this Ether. An
attacker may use the password to withdraw the Ether without necessarily influencing
the execution of ߋ but it needs need to front-run ߋ because of the contract locking.

3.8 Definition strengths

3.8.1 Performance
To check if two transactions, ޓߋ and ޖߋ, are TOD, we need the initial world state ඿, and
the state changes from ޖߋ ,ޓߋ and the intermediary transactions ࠆߘߋ . With the state
changes we can compute ඿ࠆߘ − Δޔߌ = ඿ + Δޔߌ + 0=߶ࠅ∑) Δߙߌ߷) − Δޔߌ and then
execute ޖߋ on this state. With the recorded state changes, Δ′ޗߌ , we can compute ඿ +Δ′ޗߌ and execute ޓߋ on this state. As such, we need one transaction execution to check
for the TOD approximation and two transaction executions to check for TOD. Despite
including the effect of arbitrarily many intermediary transactions, we do not need to
execute them to check for TOD.

When we want to check ࠄ transactions for TOD, there are 2ࠅ−2ࠅ possible transaction
pairs. Thus, if we want to test each pair for TOD we end up with a total of 2ࠅ−2ࠅ transac-
tion executions for the approximation and 2ࠄ − .executions for the exact TOD check ࠄ
Similar to [4] and [3], we can filter irrelevant transaction pairs to reduce the search
space.

Depending on the available world states and state changes, the exact number of required
transaction executions and the method to compute world states may differ. For instance,
the archive nodes Erigon 2 and Reth currently only store state changes for each block,
but not on a transaction level [29], [30]. We show the state calculations under such
constraints in Section 5. Other systems, such as EthScope [10], and Erigon 3 [31], store
changes for every transaction. However, EthScope is not publicly available anymore and
Erigon 3 is still in development.

17

3. Transaction order dependency

3.8.2 Similarity to blockchain executions
With our definition, the state changes Δޔߌ and Δޗߌ from the normal execution are
equivalent to the state changes that happened on the blockchain. Also, the reverse or-
der is closely related to the state from the blockchain, as we start with the world states
before ޓߋ and ޖߋ and only change state keys that were modified by ޓߋ and ޖߋ, thus
only the state keys relevant for TOD simulation. Furthermore, we prevent the effects of
block environment changes by using the same environments as on the blockchain.

This contrasts with other implementations, where transactions are executed in different
block environments than originally, a different world state is used for the first transac-
tion or the effect of intermediary transactions is ignored. All three cases can alter the
execution of ޓߋ and ޖߋ, such that the result is not closely related to the blockchain.

3.9 Definition weaknesses

3.9.1 Approximation focuses on effect on ޖߋ
In some cases, the transaction order can affect the execution of the individual transac-
tions, but does not affect the overall result of executing both transactions. The approxi-
mation does not consider the execution of ޓߋ after ޖߋ in the reverse order, which could
lead to incorrect TOD classification.

For example, consider the case where both ޓߋ and ޖߋ multiply a value in a storage
slot by 5. If the storage slot initially has the value 1, then executing both ޓߋ and ޖߋ
will result in 25, regardless of the order. However, the state changes Δޗߌ and Δ′ޗߌ are
different, as for one scenario, the value changes from 1 to 5 and for the other from 5 to
25. Therefore, this would be classified as approximately TOD.

Note that the approximation is robust against the cases, where the absolute values differ,
but the change is constant. For instance, if both ޓߋ and ޖߋ would increase the storage
slot by 5 rather than multiplying it, the state changes Δޗߌ and Δ′ޗߌ would be from 1
to 6 and from 6 to 11. As our definition for state change equivalence uses the difference
between the state before and after execution, we would compare the change 6 − 1 = 5
against 11 − 6 = 5, thus Δޗߌ ∼ Δ′ޗߌ .

3.9.2 Indirect dependencies
An intuitive interpretation of our TOD definition is that we compare ޓߋ → ߷ߘߋ → ޖߋ
with ߘߋ߷ → ޖߋ → .is not executed first but last ޓߋ i.e. reckon what happens if ,ޓߋ
However, the definition we provide does not perfectly match this concept, because it
does not consider interactions between ޓߋ and the intermediary transactions ߘߋ߷ . In
the intuitive model, not executing ޓߋ before the intermediary transactions may influ-

18

3. Transaction order dependency

ence them and thus indirectly change the behavior of ޖߋ. Then, we do not know if ޓߋ
directly influences ޖߋ, or only through some interplay with intermediary transactions.
Similarly, when executing ޓߋ last, we do not know if ޓߋ behaves differently this is be-
cause of an interaction with ޖߋ or an intermediary transaction.

Therefore, our exclusion of interactions between ޓߋ and ߘߋ߷ may be desirable to focus
only on interactions between ޓߋ and ޖߋ, however it can cause divergences between our
analysis results and what would have happened on the blockchain.

As an example, consider the three transactions ߘߋ ,ޓߋ and ޖߋ:

1. .ࠢ transfers 5 Ether to address ߠ sender :ޓߋ
2. ߘߋ : sender ࠢ transfers 5 Ether to address ߣ.
3. .ࠥ transfers 5 Ether to address ߣ sender :ޖߋ

When executing these transactions in the normal order, and ߠ initially has 5 Ether and
the others have 0, then all of these transactions succeed. If we remove ޓߋ and only ex-
ecute ߘߋ and ޖߋ, then firstly ߘߋ would fail, as ࠢ did not get the 5 Ether from ߠ, and
consequently, also ޖߋ fails.

However, when using our TOD definition and computing (඿ࠆߘ − Δޔߌ), we would only
modify the balances for ߠ and ࠢ, but not for ߣ, because ߣ is not modified in Δޔߌ . Thus, ޖߋ would still succeed in the reverse order according to our definition, but would fail
in practice due to the indirect effect. This shows, how the concept of removing ޓߋ does
not map exactly to our TOD definition.

In this example, we had a TOD for (ޓߋ, ,ߘߋ) and (ߘߋ However, we can also have .(ޖߋ
an indirect dependency between ޓߋ and ޖߋ without a TOD for (ߘߋ, ,For instance .(ޖߋ
if ߘߋ and ޖߋ would be TOD, but ޓߋ caused ߘߋ to fail. When inspecting the normal
order, ߘߋ failed, so there is no TOD between ߘߋ and ޖߋ. However, when executing the
reverse order without ޓߋ, then ߘߋ would succeed and could influence ޖߋ.

3.10 State collisions
We denote the state accesses by a transaction ߋ as a set of state keys ߌ߅ = {ް1, …, {ࠅް
and the state modifications as ߌߔ = {ް1, …, .{ࠂް

Inspired by the definition of a transaction race in [32], we define the state collisions of
two transactions as:collisions(ޓߋ, (ޖߋ = ޔߌߔ) ∩ (ޗߌ߅ ∪ ޔߌߔ) ∩ (ޗߌߔ

19

3. Transaction order dependency

For instance, if transaction ޓߋ modifies the balance of some address ߠ, and ޖߋ accesses
this balance, we have collisions(ޓߋ, (ޖߋ = ({(‘balance’, {(ߠ ∩ {(‘balance’, ({(ߠ ∪({(‘balance’, {(ߠ ∩ ∅) = {(‘balance’, .{(ߠ

With ޔߌߔ ∩ ޗߌ߅ we include write-read collisions, where ޓߋ modifies some state key
and ޖߋ accesses the same state key. With ޔߌߔ ∩ ޗߌߔ we include write-write collisions,
where both transactions write to the same state location, for instance by writing to the
same storage. Following the assumption of the TOD approximation, we do not include ޔߌ߅ ∩ ޗߌߔ , as in this case ޓߋ does not influence the execution of ޖߋ.

3.11 TOD candidates
We will refer to a transaction pair (ޓߋ, ,ޓߋ)and collisions ޖߋ was executed before ޓߋ where ,(ޖߋ (ޖߋ ≠ ∅ as a TOD candidate.

A TOD candidate is not necessarily TOD or approximately TOD. For instance, consider
the case that ޖߋ only reads the value that ޓߋ wrote but never uses it for any compu-
tation. This would be a TOD candidate, as they have a collision, however the result of
executing ޖߋ is not influenced by this collision.

If (ޓߋ, ,ޓߋ) is approximately TOD, then (ޖߋ must also be a TOD candidate. We (ޖߋ
can only have Δޗߌ ≁ Δ′ޗߌ if the state keys that ޖߋ accesses or modifies differ be-
tween the normal and reverse scenarios. As the only difference between the scenarios
is the removal of Δޔߌ in the reverse scenario, the differences of the state keys must
come from Δޔߌ . Therefore, ޓߋ also modifies these state keys, and we have (ޔߌߔ (ޗߌ߅∩ ∪ ޔߌߔ) ∩ (ޗߌߔ ≠ ∅. This is equivalent to collisions(ޓߋ, (ޖߋ ≠ ∅, showing that(ޓߋ, .must be a TOD candidate (ޖߋ

Therefore, the set of all approximately TOD transaction pairs is a subset of all TOD can-
didates.

In the case that (ޓߋ, ,ޓߋ) is TOD but not approximately TOD, the pair (ޖߋ need (ޖߋ
not be a TOD candidate. By the definitions of TOD and approximately TOD, we have ⟨Δޔߌ , Δޗߌ⟩ ≁ ⟨Δ′ޔߌ , Δ′ޗߌ⟩ and Δޗߌ ∼ Δ′ޗߌ , which implies that Δޔߌ ≁ Δ′ޔߌ must
hold. Similar to the previous argument, Δޔߌ ≁ Δ′ޔߌ implies (ޔߌ߅ ∩ (ޗߌߔ ∪ ޔߌߔ) (ޗߌߔ∩ ≠ ∅. However, in this case we cannot conclude collisions(ޓߋ, (ޖߋ ≠ ∅, because
we excluded ޔߌ߅ ∩ ޔߌߔ from our collision definition.

As such, the definition of TOD candidates aligns with the approximation of TOD, but
not necessarily the exact TOD definition.

20

3. Transaction order dependency

3.12 Causes of state collisions
This section discusses what can cause two transactions ޓߋ and ޖߋ to have state colli-
sions. To do so, we show the ways a transaction can access and modify the world state.

3.12.1 Causes with code execution
When the recipient of a transaction is a contract account, it will execute the recipient’s
code. The code execution can access and modify the state through several instructions.
By inspecting the EVM instruction definitions [12, p.30-38], [15], we compiled a list of
instructions that can access and modify the world state.

In Table 2, we see the instructions that can access the world state. For most, the reason
of the access is clear, for instance BALANCE needs to access the balance of the target ad-
dress. Less obvious is the nonce access of several instructions, which is because the EVM
uses the nonce (among other things) to check if an account already exists [12, p.4]. For
CALL, CALLCODE and SELFDESTRUCT, this is used to calculate the gas costs [12, p.37-38].
For CREATE and CREATE2, this is used to prevent creating an account at an already active
address [12, p.11]⁴.

⁴In the Yellowpaper, the check for the existence of the recipient for CALL, CALLCODE and SELFDESTRUCT
is done via the DEAD function. For CREATE and CREATE2, this is done in the condition (113) named F.

In Table 3, we see instructions that can modify the world state.

21

3. Transaction order dependency

Instruction Storage Balance Code Nonce
SLOAD ✓
BALANCE ✓
SELFBALANCE ✓
CODESIZE ✓
CODECOPY ✓
EXTCODECOPY ✓
EXTCODESIZE ✓
EXTCODEHASH ✓
CALL ✓ ✓ ✓
CALLCODE ✓ ✓ ✓
STATICCALL ✓
DELEGATECALL ✓
CREATE ✓ ✓ ✓
CREATE2 ✓ ✓ ✓
SELFDESTRUCT ✓ ✓ ✓

Table 2: Instructions that access state. A checkmark indicates, that the execution of this
instruction can depend on this state type.

Instruction Storage Balance Code Nonce
SSTORE ✓
CALL ✓
CALLCODE ✓
CREATE ✓ ✓ ✓
CREATE2 ✓ ✓ ✓
SELFDESTRUCT ✓ ✓ ✓ ✓

Table 3: Instructions that modify state. A checkmark indicates, that the execution of this
instruction can modify this state type.

22

3. Transaction order dependency

3.12.2 Causes without code execution
Some state accesses and modifications are inherent to transaction execution. To pay
the transaction fees, the sender’s balance is accessed and modified. When a transaction
transfers some Wei from the sender to the recipient, it also modifies the recipient’s bal-
ance. To check if the recipient is a contract account, the transaction also needs to access
the code of the recipient. Finally, it also verifies the sender’s nonce and increments it by
one [12, p.9].

3.12.3 Relevant collisions for attacks
The previous sections list possible ways to access and modify the world state. Many
previous works have focused on storage and balance collisions, however they did not
discuss if or why code and nonce collisions are not important [2], [33]–[36]. Here, we
argue, why only storage and balance collisions are relevant for TOD attacks and code
and nonce collisions can be neglected.

Following the assumption we made in Section 3.7, in a TOD attack an attacker influences
the execution of some transaction ޖߋ, by placing a transaction ޓߋ before it. To have
some effect, there must be a write-write or write-read collisions between ޓߋ and ޖߋ.
Therefore, our scenario is that we start from some (victim) transaction ޖߋ and try to
create impactful collisions with a new transaction ޓߋ.

Let us first focus on the instructions that could modify the codes and nonces that ޖߋ
accesses or modifies. As we see in Table 3, these are SELFDESTRUCT, CREATE and CREATE2.
Since the EIP-6780 update [37], SELFDESTRUCT only destroys a contract if the contract
was created in the same transaction. Therefore, SELFDESTRUCT can only modify a code
and nonce within the same transaction, but cannot be used to attack an already submit-
ted transaction ޖߋ. The instructions to create a new contract, CREATE and CREATE2, both
fail when there is already a contract at the target address [12, p.11]. Therefore, we can
only modify the code if the contract previously did not exist. In the case that ޖߋ inter-
acts with some address ߠ that contains no code, the attacker needs CREATE or CREATE2
to create a contract at the address ߠ to force a collision. This is not possible for arbitrary
addresses, as the address computation uses the sender’s address as an input to a hash
function in both cases [12, p.11]. A similar argument can be made about contract cre-
ation directly via the transaction and some init code.

Apart from instructions, the nonces of an EOA can also be increased by transactions
themselves. ޖߋ could make a CALL or CALLCODE to the address of an EOA and transfer
some Ether. The gas costs for these instructions depend on whether the recipient account
already exists or has to be newly created. As such, if ޖߋ makes a CALL or CALLCODE to
a non-existent account, then an attacker could create this account in ޓߋ to reduce the

23

3. Transaction order dependency

gas costs of the transfer by ޖߋ. We do not consider this an attack, as it only reduces the
gas costs for ޖߋ, which likely has no adverse effects.

Therefore, the remaining attack vectors are SSTORE, which can modify the storage of an
account, and Ether transfers of CALL, CALLCODE, SELFDESTRUCT, which modify the bal-
ance of an account.

3.13 Everything is TOD
Our definition of TOD is very broad and marks many transaction pairs as TOD. For in-
stance, if a transaction ޖߋ uses some storage value for a calculation, then the execution
likely depends on the transaction that previously has set this storage value. Similarly,
when someone wants to transfer Ether, they can only do so when they first received
that Ether. Thus, they are dependent on some transaction that gave them this Ether pre-
viously.

Proposition 3.13.1 : For every transaction ޖߋ after the London upgrade⁵, there
exists a transaction ޓߋ such that (ޓߋ, .is TOD (ޖߋ

⁵We reference the London upgrade here, as this introduced the base fee for transactions.

Proof : Consider an arbitrary transaction ޖߋ with the sender being some address ࠐ߬ߩࠄ߬ࠓ. The sender must pay some upfront cost ࠜ0 > 0, because they must pay
a base fee [12, p.8-9]. Therefore, we must have ඿((‘balance’, ((ࠐ߬ߩࠄ߬ࠓ ≥ ࠜ0. This
requires that a previous transaction ޓߋ increased the balance of ࠐ߬ߩࠄ߬ࠓ to be high
enough to pay the upfront cost, i.e. prestate(Δޔߌ)((‘balance’, ((ࠐ߬ߩࠄ߬ࠓ < ࠜ0
and poststate(Δޔߌ)((‘balance’, ((ࠐ߬ߩࠄ߬ࠓ ≥ ࠜ0.⁶

When we calculate ඿ − Δޔߌ for our TOD definition, we would set the balance ofࠐ߬ߩࠄ߬ࠓ to prestate(Δޔߌ)((balance, ((ࠐ߬ߩࠄ߬ࠓ < ࠜ0 and then execute ޖߋ based
on this state. In this case, ޖߋ would be invalid, as the ࠐ߬ߩࠄ߬ࠓ would not have
enough Ether to cover the upfront cost. □

⁶For block validators, their balance could have also increased from staking rewards, rather than a
previous transaction. However, this would require that a previous transaction gave them enough Ether
for staking in the first place. [38]

Given this property, it is clear that TOD alone is not a useful attack indicator, since every
transaction would be considered as having been attacked. In Section 6, we discuss more
restrictive definitions.

24

4 TOD candidate mining
In this chapter, we discuss how we search for potential TODs in the Ethereum
blockchain. We use the RPC from an archive node to obtain transactions and their state
accesses and modifications. Then we search for collisions between these transactions to
find TOD candidates. Lastly, we filter out TOD candidates that are not relevant to our
analysis.

4.1 TOD candidate finding
We make use of the RPC method debug_traceBlockByNumber, which allows for replay-
ing all transactions of a block the same way they were originally executed. With the
prestateTracer config, this method also outputs, which part of the state has been ac-
cessed, and using the diffMode config, also which part of the state has been modified⁷.

⁷When running the prestateTracer in diffMode, several fields are only implicit in the response. We
need to make these fields explicit for further analysis. Refer to the documentation or the source code
for further details.

By inspecting the source code of the tracers for Reth [39] and the results of the RPC call,
we found out that for every touched account, it always includes the account’s balance,
nonce and code in the prestate. For instance, even when only the balance was accessed,
it will also include the nonce in the prestate⁸. Therefore, we do not know precisely which
part of the state has been accessed, which can be a source of false positives for collisions.

⁸I opened a pull request to clarify this behavior and now this is also reflected in the documenta-
tion[40].

We store all the accesses and modifications in a database and then query for accesses
and writes that have the same state key. As in our definition of collisions, we only match
state keys where the first transaction modifies the state. We then use the transactions
that cause these collisions as a preliminary set of TOD candidates.

4.2 TOD candidate filtering
Many of the TOD candidates from the previous section are not relevant for our further
analysis. To prevent unnecessary computation and distortion of our results, we define
which TOD candidates are not relevant and then filter them out.

A summary of the filters is given in Table 4 with detailed explanations in the following
sections. The filters are executed in the order as presented in the table and always oper-
ate on the output of the previous filter. The only exception is the “Same-value collision”

25

https://github.com/ethereum/go-ethereum/pull/30081

4. TOD candidate mining

filter, which is directly incorporated into the initial collisions query for performance
reasons.

The “Block windows”, “Same senders” and “Recipient Ether transfer” filters have already
been used in [3]. The filters “Nonce and code collision” and “Indirect dependency” follow
directly from our discussion above. Furthermore, we also applied an iterative approach,
where we searched for TOD candidates in a sample block range and manually analyzed
whether some of these TOD candidates may be filtered. This approach led us to the
“Same-value collisions” and the “Block validators” filter.

Filter name Description of filter criteria
Same-value collision Drop collision if ޓߋ writes a different value than the value

accessed or overwritten by ޖߋ.
Block windows Drop candidate if ޓߋ and ޖߋ are 25 or more blocks apart.
Block validators Drop collisions on the block validator’s balance.
Nonce and code collision Drop nonce and code collisions.
Indirect dependency Drop candidates (ޓߋ, ,with an indirect dependency (ޖߋ

e.g. when candidates (ޓߋ, ,ߘߋ) and (ߘߋ .exist (ޖߋ
Same senders Drop candidate if ޓߋ and ޖߋ are from the same sender.
Recipient Ether transfer Drop candidate if ޖߋ does not execute code.

Table 4: TOD candidate filters sorted by usage order. When a filter describes the removal
of collisions, the TOD candidates will be updated accordingly.

4.2.1 Filters

4.2.1.a Same-value collisions
When we have many transactions that modify the same state, e.g. the balance of the
same account, they will all have a write-write conflict with each other. The number of
TOD candidates grows quadratic with the number of transactions modifying the same
state. For instance, if 100 transactions modify the balance of address ߠ, the first transac-
tion has a write-write conflict with all other 99 transactions, the second transaction with
the remaining 98 transactions, etc., leading to a total of 2ࠅ−2ࠅ = 4, 950 TOD candidates.

To reduce this growth of TOD candidates, we additionally require for a collision that ޓߋ writes exactly the value that is read or overwritten by ޖߋ. Formally, the following
condition must hold to pass this filter:

26

4. TOD candidate mining

∀ް ∈ collisions(ޓߋ, (ޖߋ : poststate(Δޔߌ)(ް) = prestate(Δޗߌ)(ް)
With the example of 100 transactions modifying the balance of address ߠ, when the first
transaction sets the balance to 1234, it only has a write-write conflict with transactions
where the balance of ߠ is exactly 1234 before the execution. If all transactions write dif-
ferent balances, this will reduce the amount of TOD candidates to ࠄ − 1 = 99.

Apart from the performance benefit, this filter also removes many TOD candidates that
are potentially indirectly dependent. For instance, let us assume that we removed the
TOD candidate (ޓߋ, (ް)(ޔߌΔ)By definition of this filter, there must be some key ް with poststate .(ޖߋ ≠ prestate(Δޗߌ)(ް), thus some transaction ߘߋ must have mod-
ified the state at ް between ޓߋ and ޖߋ. Therefore, we also have a collision (and TOD
candidate) between ޓߋ and ߘߋ , and between ߘߋ and ޖߋ. This is a potential indirect
dependency, which may lead to unexpected results, as argued in Section 3.9.2.

4.2.1.b Block windows
According to a study of 24 million transactions from 2019 [41], the maximum observed
time it took for a pending transaction to be included in a block was below 200 seconds.
Therefore, when a transaction ޖߋ is submitted, and someone instantly attacks it by cre-
ating a new transaction ޓߋ, the inclusion of them in the blockchain differs by at most
200 seconds. We currently add a new block to the blockchain every 12 seconds according
to Etherscan [42], thus ޓߋ and ޖߋ are at most 20012 ≈ 17 blocks apart from each other.
As the study is already five years old, we use a block window of 25 blocks instead to
account for a potential increase in latency since then.

Thus, we filter out all TOD candidates, where ޓߋ is in a block that is 25 or more blocks
away from the block of ޖߋ.

4.2.1.c Block validators
In Ethereum, each transaction must pay a transaction fee to the block validator and thus
modifies the block validator’s balance. This makes each transaction pair in a block a
TOD candidate, as they all modify the balance of the block validator’s address.

We exclude TOD candidates, where the only collision is the balance of any block val-
idator.

4.2.1.d Nonce and code collisions
We showed in Section 3.12.3 that nonce and code collisions are not relevant for TOD
attacks. Therefore, we ignore collisions of this state type.

27

4. TOD candidate mining

4.2.1.e Indirect dependency
As argued in Section 3.9.2, indirect dependencies can cause unexpected results in our
analysis, therefore we will filter TOD candidates that have an indirect dependency. We
will only consider the case, where the indirect dependency is already visible in the nor-
mal order and accept that we may miss indirect dependencies. Alternatively, we could
also remove a TOD candidate (ޓߋ, ,ޓߋ) when we there exists a TOD candidate (ޖߋ (ߘߋ
for some intermediary transaction ߘߋ , however this would remove many more TOD
candidates.

We already have a model of all direct (potential) dependencies with the TOD candidates.
We can build a transaction dependency graph ޤ = ߑ) , ߑ with (ޞ being all transactions
and ޞ = ,ޓߋ)} (ޖߋ ∣ ,ޓߋ) (ޖߋ ∈ TOD candidates}. We then filter out all TOD candi-
dates (ޓߋ, ,ޓߋ where there exists a path (ޖߋ 1ߘߋ , …, ࠆߘߋ , -with at least one inter ޖߋ
mediary node ߘߋ߷ .

Figure 1 shows an example dependency graph, where transaction ޒ influences both ߗ
and ޕ and ޕ is influenced by all other transactions. We filter out the candidate (ޒ, (ޕ
as there is a path ޒ → ߗ → ,ߗ) but keep ,ޕ ,ޘ) and (ޕ .(ޕ

A

X

B

C

Figure 1: Indirect dependency graph. An arrow from x to y indicates that y depends on
x. A dashed arrow indicates an indirect dependency.

4.2.1.f Same sender
If the sender of both transactions is the same, the victim would attack themselves.

To remove these TOD candidates, we use the eth_getBlockByNumber RPC method and
compare the sender fields for ޓߋ and ޖߋ.

28

4. TOD candidate mining

4.2.1.g Recipient Ether transfer
If a transaction sends Ether without executing code, it only depends on the balance of
the EOA that signed the transaction. Other entities can only increase the balance of this
EOA, which has no adverse effects on the transaction.

Thus, we exclude TOD candidates, where ޖߋ has no code access.

4.3 Experiment
In this section, we discuss the results of applying the TOD candidate mining methodol-
ogy to a randomly sampled sequence of 100 blocks, different from the block range we
used for the filters’ development. Refer to Section 9 for the experiment setup.

We mined the blocks from block 19,830,547 up to block 19,830,647, containing a total of
16,799 transactions.

4.3.1 Performance
The mining process took a total of 502 seconds, with 311 seconds used to fetch the data
via RPC calls and store it in the database, 6 seconds used to query the collisions in the
database, 17 seconds for filtering the TOD candidates and 168 seconds for preparing
statistics. If we consider the running time as the total time excluding the statistics prepa-
ration, we analyzed an average of 0.30 blocks per second.

We also see that 93% of the running time was spent fetching the data via the RPC calls
and storing it locally. This could be parallelized to significantly speed up the process.

4.3.2 Filters
In Table 5, we see the number of TOD candidates before and after each filter, showing
how many candidates were filtered at each stage. This shows the importance of filtering
as we reduce the number of TOD candidates to analyze from more than 60 million to
only 8,127.

Note that this does not directly imply that “Same-value collision” filters out more TOD
candidates than “Block windows”, as they operate on different sets of TOD candidates.
Even if “Block windows” filtered out every TOD candidate, this would be less than
“Same-value collision” did, because of the order of filter application.

29

4. TOD candidate mining

Filter name TOD candidates after fil-
tering

Filtered TOD candidates

(unfiltered) (lower bound) 63,178,557
Same-value collision 56,663 (lower bound) 63,121,894
Block windows 53,184 3,479
Block validators 39,899 13,285
Nonce collision 23,284 16,615
Code collision 23,265 19
Indirect dependency 16,235 7,030
Same senders 9,940 6,295
Recipient Ether transfer 8,127 1,813

Table 5: This table shows the application of all filters used to reduce the number of TOD
candidates. Filters were applied from top to bottom. Each row shows how many TOD
candidates remained and were filtered. The unfiltered value is a lower bound, as we only
calculated this number afterwards, and the calculation does not include write-write col-

lisions.

4.3.3 Transactions
After applying the filters, 7,864 transactions are part of at least one TOD candidate. This
amounts to 46.8% of all transactions marked as potentially TOD with some other trans-
action. Only 2,381 of these transactions are part of exactly one TOD candidate. At the
other end, there exists one transaction that is part of 22 TOD candidates.

4.3.4 Block distance
In Figure 2, we see that most TOD candidates are within the same block. Moreover, the
further two transactions are apart, the less likely we are to include them as a TOD can-
didate. A reason for this may be that having many intermediary transactions makes it
more likely to be filtered by our “Indirect dependency” filter. Nonetheless, we can con-
clude that when using our filters, the block window can be reduced even further without
missing many TOD candidates.

30

4. TOD candidate mining

Figure 2: The histogram and the empirical cumulative distribution function (eCDF) of
the block distance for TOD candidates. The blue bars show how many TOD candidates
have been found, where ޓߋ and ޖߋ are ࠄ blocks apart. The orange line shows the per-

centage of TOD candidates that are at most ࠄ blocks apart.

4.3.5 Collisions
After applying our filters, we have 8,818 storage collisions and 5,654 balance collisions
remaining. When we analyze how often each account is part of a collision, we see that
collisions are concentrated around a small set of accounts. For instance, the five accounts
with the most collisions⁹ contribute 43.0% of all collisions. In total, the collisions occur
in only 1,472 different account states.

⁹All of them are token accounts: WETH, DOP, USDT, USDC and CHOPPY

Figure 3 depicts how many collisions we get when we only consider the first ࠄ collisions
for each address. If we set the limit to one collision per address, we end up with 1,472
collisions, which is exactly the number of unique addresses where collisions happened.
When we keep 10 collisions per address, we get 3,964 collisions. This criterion already
reduces the number of collisions by 73%, while still retaining a sample of 10 collisions
for each address.

31

https://etherscan.io/address/0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2
https://etherscan.io/address/0x97a9a15168c22b3c137e6381037e1499c8ad0978
https://etherscan.io/address/0xdac17f958d2ee523a2206206994597c13d831ec7
https://etherscan.io/address/0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48
https://etherscan.io/address/0xf938346d7117534222b48d09325a6b8162b3a9e7

4. TOD candidate mining

This paper tires to obtain a diverse set of attacks. With such a strong imbalance towards
a few contracts, it will take a long time to analyze TOD candidates related to these fre-
quent addresses, and the attacks are likely related and do not cover a wide range of
attack types. To prevent this, we define additional deduplication filters in Section 4.4.

Figure 3: The chart shows how many collisions we have when we limit the number of
collisions we include per address. For instance, if we only included 10 collisions for each

address we would end up with about 4,000 collisions.

4.4 Deduplication
To reduce the prevalence of specific contracts among the TOD candidates, we randomly
pick 10 collisions of each contract and drop the rest. We apply three mechanisms to
group similar contracts:

Firstly, we group the collisions by the address where they happened and randomly select
10 collisions from each group. For instance, if many transactions access the balance and
code of the same address, we would only retain 10 of these accesses.

Secondly, we also group collisions at different addresses if the addresses share exactly
the same code. To do so, we group the collisions by the code hash and sample 10 colli-
sions per code hash.

32

4. TOD candidate mining

Finally, instead of matching for exactly the same code, we also group similar codes to-
gether. We use the grouping mechanism from [43], where the authors compute a “skele-
ton” for each code by removing the metadata and the values for PUSH instructions. They
have shown that codes with the same skeleton mostly yield the same vulnerability de-
tection results. Therefore, we only keep 10 collisions per code skeleton.

4.4.1 Results
We ran the same experiment as in the previous section, but now with the additional
deduplication filters. In Table 6, we see that from the initial 8,127 TOD candidates, only
2,320 remain after removing duplicates. Most TOD candidates are already removed by
limiting the amount of collisions per address and the other group limits reduce it further.

Filter name TOD candidates after
filtering

Filtered TOD candidates

(previous filters) 8,127
Limited collisions per ad-
dress

2,645 5,482

Limited collisions per code
hash

2,435 210

Limited collisions per
skeleton

2,320 115

Table 6: This table shows the application of the deduplication filters. We start with the
TOD candidates from Table 5 and then apply each deduplication filter.

33

5 TOD detection
After mining a list of TOD candidates, we now check which of them are actually TOD.
We first execute ޓߋ and ޖߋ according to the normal and reverse scenario defined in
Section 3.5. Then we compare the state changes of the scenarios to apply the definitions
for TOD and approximately TOD.

5.1 Transaction execution via RPC
Let (ޓߋ, into three sections:඿ ޖߋ be our TOD candidate. We split the block containing (ޖߋ 0ߙߌ→ … ࠆߙߌ→ ඿ࠆߘ ޗߌ→ ඿ޗߌ 0ߜߌ→ … ࠃߜߌ→ ඿ޖ
In the normal scenario, we want to execute ޖߋ on ඿ࠆߘ and in the reverse scenario on ඿ࠆߘ − Δޔߌ . We use the debug_traceCall RPC method for these transaction executions.
As parameters, it takes the transaction data, a block number that specifies the block en-
vironment and the initial world state, and state overrides that allow us to customize spe-
cific parts of the world state. Per default, the method uses the world state after executing
all transactions in this block, i.e. ඿ޖ. Therefore, we use the state overrides parameter to
get from ඿ޖ to ඿ࠆߘ and ඿ࠆߘ − Δޔߌ .

For the normal scenario, we want to execute ޖߋ on ඿ࠆߘ . Conceptually, we start from ඿ޖ and then undo all transaction changes after ࠆߘߋ in reverse order, to reach ඿ࠆߘ . We
do this with the state overrides ∑0߶=ࠂ(−Δߜߌ߷) − Δޗߌ . For the reverse scenario, we
also subtract Δޔߌ from the state overrides, thus simulating how ޖߋ behaves without
the changes from ޓߋ, giving us the state change Δ′ޗߌ .

To execute ޓߋ in the normal scenario we use the same method as for ޖߋ, except that we
apply it on the block of ޓߋ. For the reverse scenario, we take the state overrides from
the normal scenario and add Δ′ޗߌ to it, simulating how ޓߋ behaves after executing ޖߋ.
This yields the state changes Δ′ޔߌ .

5.2 Execution inaccuracy
While manually testing this method, we found that using debug_traceCall with
state overrides can lead to incorrect gas cost calculations with Erigon¹⁰. To account

¹⁰See https://github.com/erigontech/erigon/issues/11254.

for these inaccuracies, we compare the state changes from the normal execution via
debug_traceCall with the state changes from debug_traceBlockByNumber. As we do

34

https://github.com/erigontech/erigon/issues/11254

5. TOD detection

not provide state overrides to debug_traceBlockByNumber, this method should yield the
correct state changes, and we can detect differences to our simulation.

If the state changes of a transaction only differ in the balances of the senders and the
block validators, we keep TOD candidates containing this transaction. Such differences
are to be expected when gas costs vary, as the gas costs affect the priority fee sent from
the transaction sender to the block validator. However, if there are other differences,
we exclude the transaction from further analysis, as the simulation does not reflect the
actual behavior in such cases.

A drawback of this inaccuracy is that we do not detect Ether flows between the senders
of ޓߋ and ޖߋ that are TOD. For instance, if the sender of ޓߋ sends one Ether to the
sender of ޖߋ in the normal scenario, but two Ether in the reverse scenario, then (ޓߋ, (ޖߋ
is TOD. However, our analysis would assume that the Ether changes are due to incorrect
gas cost calculations and exclude the TOD candidate from further analysis.

5.3 TOD assessment
We use the state changes Δޔߌ and Δޗߌ from the normal scenario and Δ′ޔߌ and Δ′ޗߌ
from the reverse scenario to check for TOD. For the approximation, we test Δޗߌ ≁ Δ′ޗߌ
and for the exact definition we test ⟨Δޔߌ , Δޗߌ⟩ ≁ ⟨Δ′ޔߌ , Δ′ޗߌ⟩.
Algorithm 1 shows, how we perform these state change comparisons. The changed keys,
prestates and poststates are obtained from the RPC calls. The black lines show the calcu-
lation for the approximation and the blue lines the modifications for the exact definition.
For each state key, we compute the change for this key in the normal scenario (1ߩ), and
the change in the reverse scenario (2ߩ). If the changes differ between the scenarios, we
have a TOD.

1 for ް ∈ changed_keys(Δޗߌ) ∪ changed_keys(Δ′ޗߌ)
2 ∪ changed_keys(Δޔߌ) ∪ changed_keys(Δ′ޔߌ)
3 1ߩ = poststate(Δޗߌ)(ް) − prestate(Δޗߌ)(ް)
4 2ߩ = poststate(Δ′ޗߌ)(ް) − prestate(Δ′ޗߌ)(ް)
5 1ߩ = 1ߩ + poststate(Δޔߌ)(ް) − prestate(Δޔߌ)(ް)
6 2ߩ = 2ߩ + poststate(Δ′ޔߌ)(ް) − prestate(Δ′ޔߌ)(ް)
7 if 1ߩ ≠ 2ߩ
8 return <TOD>
9 return <not TOD>

Algorithm 1: TOD assessment

35

5. TOD detection

5.4 Experiment
We checked all 2,320 TOD candidates we found previously for TOD and approximately
TOD. We then compare the results of these, to evaluate how well the approximation
performs in practice.

5.4.1 Results
In Table 7, we see the results for both definitions. From the 2,320 TOD candidates we
analyzed, slightly more than one third are TOD according to both definitions. For the
approximation, 19 TOD candidates cannot be analyzed because of execution inaccura-
cies. For the exact definition, this number is higher, as we need to execute double the
amount of transactions.

With both definitions, for 29% of the TOD candidates, ޖߋ fails because of insufficient
funds to cover the transaction fee when it is executed without the state changes by ޓߋ. This can happen when ޓߋ transfers Ether to the sender of ޖߋ, and ޖߋ has less bal-
ance than the transaction fee without this transfer. Furthermore, if the execution of ޖߋ
consumes more gas without the changes of ޓߋ, it needs to pay a higher transaction fee
which can also lead to insufficient funds. In both cases, the existence of ޓߋ enables the
execution of ޖߋ, therefore we do not consider these to be TOD attacks and ignore them
from further analysis.

Finally, one error occurred when analyzing for the TOD approximation which did not
occur with the exact definition. However, this error is not reproducible, potentially be-
ing a temporary fault with the RPC requests.

Result Approximately TOD TOD
TOD 809 775
not TOD 819 839
inaccurate execution 19 34
insufficient Ether 672 672
error 1 0

Table 7: The results of analyzing TOD candidates for TOD and the approximation of
TOD.

36

5. TOD detection

5.4.2 Analysis of differences
To understand in which cases the two definitions lead to different results, we manually
evaluate the cases where one result was TOD and the other not. To assist the analysis,
we let our tool output the relative changes of each transaction in both scenarios. In all
the cases, we manually verify that the manual application of Algorithm 1 on the relative
changes gives the same result as the automatic application, to ensure the algorithm was
correctly implemented.

Our analysis shows that 34 TOD candidates have been marked as approximately TOD
but not TOD. As such, we have Δޗߌ ≁ Δ′ޗߌ and ⟨Δޔߌ , Δޗߌ⟩ ∼ ⟨Δ′ޔߌ , Δ′ޗߌ⟩. In all
these cases, the differences of ޓߋ between the normal and reverse scenario balance out
the differences of ޖߋ between the normal and reverse scenario. One example is discussed
in detail in Appendix B.1.

Further 10 TOD candidates are TOD but not approximately TOD, i.e. ⟨Δޔߌ , Δޗߌ⟩ ≁⟨Δ′ޔߌ , Δ′ޗߌ⟩ but Δޗߌ ∼ Δ′ޗߌ . In these cases, ޓߋ creates different state changes depend-
ing on whether it was executed before or after ޖߋ, thus being TOD. The execution of ޖߋ is not dependent on the transaction order.

A weakness of this comparison is that we use TOD candidates that are tailored for the
TOD approximation and therefore TOD candidates that are TOD may be underrepre-
sented. This could be why we found 34 TOD candidates that are approximately TOD but
not TOD, while we only found 10 TOD candidates that are TOD but not approximately
TOD.

Nonetheless, of the 1,628 TOD candidates labeled as TOD or not TOD according to our
approximation, we obtained the same label with the exact TOD definition for 96.4% of
these TOD candidates. In the case that TOD transaction pairs are underrepresented in
our sample, this still demonstrates that most candidates labeled as approximately TOD
are also TOD.

37

6 TOD attack characteristics
Previously, we noted that the TOD definition is too general to be directly used for attack
or vulnerability detection. In this section, we discuss several characteristics of TOD at-
tacks that cover more specific cases than the general TOD definition.

6.1 Attacker gain and victim losses
In Section 3.3, we already discussed how the definition by W. Zhang et al. [3] relates to
our preliminary definition of TOD. We now present their definition in more detail.

Their definition considers two transaction orderings: ޓߋ → ޖߋ → ߀ߋ and ޖߋ ޓߋ→ → ߀ߋ . When an attack occurs, ޓߋ and ޖߋ are TOD. The transaction ߀ߋ is an op-
tional third transaction, which sometimes is required for the attacker to make financial
profits. Our study only considers transaction pairs, therefore we adapt their definition
and remove ߀ߋ from it.

They define an attack to occur when both of the following properties hold:

1. Attacker Gain: “The attacker obtains financial gain in the attack scenario compared
with the attack-free scenario.”

2. Victim Loss: “The victim suffers from financial loss in the attack scenario compared
with the attack-free scenario.”

Their attack scenario corresponds to the normal order and the attack-free scenario to
the reverse order.

For financial gains and losses, they consider Ether and ERC-20, ERC-721, ERC-777, and
ERC-1155 tokens. As an attacker, they consider either the sender of ޓߋ or the contract
that ޓߋ calls. The rationale for using the contract that ޓߋ calls is that it may be designed
to conduct attacks and temporarily store the profits (see e.g. [4] for more details). The
victim is the sender of ޖߋ.

6.1.1 Formalization
The authors of [3] do not provide a precise definition of attacker gain and victim loss,
therefore we formalize these definitions. For simplicity, we do not explicitly mention ޓߋ
and ޖߋ in all formulas, but assume that we inspect a specific TOD candidate (ޓߋ, (ޖߋ
and usages of the normal and reverse scenario refer to these two transactions.

38

6. TOD attack characteristics

6.1.1.a Assets
We use Assets(ޓߋ, in any of ޖߋ and ޓߋ to denote a set of assets that occur in (ޖߋ
the scenarios. As an asset, we consider Ether and the tokens that implement one of the
standards ERC-20, ERC-721, ERC-777 or ERC-1155. Let assets_normal(ޘ, (ߠ ∈ ℤ be the
amount of assets ޘ that address ߠ gained or lost by executing both transactions in the
normal scenario. Let assets_reverse(ޘ, .be the counterpart for the reverse scenario (ߠ

For example, assume an address ߠ converts 1 Ether to 3,000 USDT tokens
in the normal scenario, but in the reverse scenario converts 1 Ether to only
2,500 USDT. The assets that occur are Assets(ޓߋ, (ޖߋ = {Ether, USDT}. The cur-
rency changes are assets_normal(Ether, (ߠ = −1, assets_normal(USDT, (ߠ = 3, 000, assets_reverse(Ether, (ߠ = −1 and assets_reverse(USDT, (ߠ = 2, 500.

For Ether, we use the CALL and CALLCODE instructions to compute which addresses gained
and lost Ether in a transaction. We do not include the transaction value, as it stays the
same regardless of the transaction order¹¹. Furthermore, we ignore gas costs because of
the inaccuracies described in Section 5.2.

¹¹In the course of the evaluation, we actually discover that it would make sense to include the trans-
action value. See Section 7.2.2.a.

To track the gains and losses for tokens we use the following standardized events:
• ERC-20: Transfer(address _from, address _to, uint256 _value)
• ERC-721: Transfer(address _from, address _to, uint256 _tokenId)
• ERC-777: Minted(address operator, address to, uint256 amount, bytes data,
bytes operatorData)

• ERC-777: Sent(address operator,address from,address to,uint256
amount,bytes data,bytes operatorData)

• ERC-777: Burned(address operator, address from, uint256 amount, bytes
data, bytes operatorData)

• ERC-1155: TransferSingle(address _operator, address _from, address _to,
uint256 _id, uint256 _value)

• ERC-1155: TransferBatch(address _operator, address _from, address _to,
uint256[] _ids, uint256[] _values)

We only consider calls and event logs if their call context has not been reverted. In
Ethereum, a reverted call context means that all changes except for the gas payment are
discarded, therefore reverted calls and logs do not influence the gained or lost assets.

6.1.1.b Attacker gain and victim loss
We use the following predicates to express the existence of some asset gain or loss for
an address ߠ:

39

https://etherscan.io/token/0xdac17f958d2ee523a2206206994597c13d831ec7

6. TOD attack characteristics

Gain(ߠ) ↔ ޘ∃ ∈ Assets(ޓߋ, (ޖߋ : assets_normal(ޘ, (ߠ > assets_reverse(ޘ, (ߠ)Loss(ߠ ↔ ޘ∃ ∈ Assets(ޓߋ, (ޖߋ : assets_normal(ޘ, (ߠ < assets_reverse(ޘ, (ߠ
Continuing the previous example of Ether to USDT token conversion, we would have Gain(ߠ) = ⊤, as ߠ makes more USDT in the normal scenario than in the reverse sce-
nario, and Loss(ߠ) =⊥, as neither for Ether, nor for USDT ߠ has fewer assets in the
normal scenario than in the reverse scenario.

However, we also need to consider the case, where both Gain(ߠ) and Loss(ߠ) are true.
For instance, maybe the attacker gains more USDT tokens but also pays more Ether in
the normal scenario. It is not trivial to compare arbitrary assets in Ether, therefore we
cannot determine if the lost Ether outweighs the gained tokens. To avoid such cases, we
introduce the following two predicates:OnlyGain(ߠ) ↔ Gain(ߠ) ∧ ¬ Loss(ߠ)OnlyLoss(ߠ) ↔ Loss(ߠ) ∧ ¬ Gain(ߠ)
Note that this only considers assets we explicitly model. In the case that ߠ loses some
asset that is not modeled, e.g. a token not implementing any of the above standards, OnlyGain(ߠ) can be true despite having losses of an unmodeled asset. This is a limita-
tion when not all relevant assets that occur in ޓߋ and ޖߋ are modeled.

With OnlyGain and OnlyLoss we define an attack to occur when the attacker has only
advantages in the normal scenario compared to the reverse scenario, and the victim has
only disadvantages:Attack ↔ (OnlyGain(sender(ޓߋ)) ∨ OnlyGain(recipient(ޓߋ)))∧ OnlyLoss(sender(ޖߋ))
We note that the definition by [3] is not explicit on how different kinds of assets are
compared. As such, our attack formalization may differ from their intention and imple-
mentation. This is a best effort to match their implementation and also the definitions
of a subsequent [44]¹².

¹²We use the tests in profit_test.go [27] and Appendix A of [44] to understand the intended defi-
nition.

6.2 Securify TOD properties
The authors of Securify describe three TOD properties [2]:

• TOD Transfer: “[…] the execution of the Ether transfer depends on transaction or-
dering”.

40

6. TOD attack characteristics

• TOD Amount: “[…] the amount of Ether transferred depends on the transaction or-
dering”.

• TOD Receiver: “[…] the recipient of the Ether transfer might change, depending on
the transaction ordering”.

For Ether transfers, they consider only CALL instructions. We also use CALLCODE instruc-
tions, as these can be used to transfer Ether similar to CALLs.

The properties can be applied by comparing the execution of a transaction in the normal
scenario with the reverse scenario. We say that a property holds for a transaction pair (ޓߋ, i.e. at least one of the ,ޖߋ and ޓߋ if it holds for at least one of the transactions (ޖߋ
transactions shows attack characteristics.

6.2.1 Formalization
We denote the execution of an instruction as a tuple (ުࠄࠇߵࠖߦ࠙ࠐࠖࠓࠄ, ,ߦࠇ޳ The .(ࠓࠖ࠙ࠊࠄު
location ߦࠇ޳ is a tuple (ࠓࠓ߬ࠐߩߩޒࠖࠢ߬ࠖࠄࠇޘ, ࠓࠓ߬ࠐߩߩޒࠖࠢ߬ࠖࠄࠇޘ where ,(ࠐ߬ࠖࠄ࠙ࠇޘࠁߠࠐ߲ࠇࠐ޿
is the address that is used for storage and balance accesses when executing the instruc-
tion, and ࠐ߬ࠖࠄ࠙ࠇޘࠁߠࠐ߲ࠇࠐ޿ is the byte offset of the instruction in the executed code.
Finally, ުࠓࠖ࠙ࠊࠄ is a sequence of stack values passed as arguments to the instruction.

Let ޺ޡ denote the set of CALL and CALLCODE instruction executions with a positive value
(i.e. ު[2]ࠓࠖ࠙ࠊࠄ > 0) in the normal scenario and ߆ޡ the equivalent for the reverse sce-
nario. We exclude calls that have been reverted. For a call execution ޘ ∈ ޺ޡ , we denote
its location with ޴ޘ, the value it transfers with ࠝޘ and the recipient of the transfer withߡޘ.

6.2.1.a TOD Transfer
If there is a location where the number of CALLs differ between the normal and the re-
verse scenario, we say that TOD Transfer is fulfilled:TOD-Transfer ↔ ߦࠇ߾∃ : ޘ}| ∈ ޺ޡ | ޴ޘ = |{ߦࠇ߾ ≠ ޘ}| ∈ ߆ޡ | ޴ޘ = |{ߦࠇ߾
6.2.1.b TOD Amount
If there is a location and a value where the number of CALLs differ between the normal
and the reverse scenario, we say that TOD Amount is fulfilled:TOD-Amount ↔ ¬TOD-Transfer∧ ,ߦࠇ߾∃ ࠜ : ޘ}| ∈ ޺ޡ | ޴ޘ = ߦࠇ߾ ∧ ࠝޘ = ࠜ}| ≠ ޘ}| ∈ ߆ޡ | ޴ޘ = ߦࠇ߾ ∧ ࠝޘ = ࠜ}|
We exclude cases where TOD Transfer is fulfilled, as TOD Amount would always be
fulfilled if TOD Transfer is fulfilled.

41

6. TOD attack characteristics

6.2.1.c TOD Receiver
We define TOD Receiver analogously to TOD Amount, except that we use the address
input instead of the value:TOD-Receiver ↔ ¬TOD-Transfer∧ ,ߦࠇ߾∃ ߠ : ޘ}| ∈ ޺ޡ | ޴ޘ = ߦࠇ߾ ∧ ߡޘ = |{ߠ ≠ ޘ}| ∈ ߆ޡ | ޴ޘ = ߦࠇ߾ ∧ ߡޘ = |{ߠ
6.3 ERC-20 multiple withdrawal
Finally, we also consider ERC-20 multiple withdrawal attacks, which we already dis-
cussed in Section 3.2.2. The ERC-20 standard defines that the following events must be
emitted when an approval takes place and when tokens are transferred [25].

• Approval(address _owner, address _spender, uint256 _value)
• Transfer(address _from, address _to, uint256 _value)

As a pattern to detect ERC-20 multiple withdrawal attacks we require the following
conditions to be true:
1. Executing ޓߋ in the normal scenario must emit an event Transfer(ࠜ, ,ߠ ࠢ) at addressࠖ.
2. Executing ޖߋ in the normal scenario must emit an event Approval(ࠜ, ,ߠ ࠥ) at addressࠖ.
3. Executing ޖߋ in the reverse scenario must emit an event Approval(ࠜ, ,ߠ ࠥ) at addressࠖ.
The variable ߠ represents the attacker address, ࠜ the victim address ࠢ the transferred
value and ࠥ the approved value. We require that the events are not reverted.

As shown in Table 1, executions of transferFrom and approve can be TOD because
approve overwrites the currently approved value with the newly approved value. While
this behavior is standardized in [25], other methods may prevent ERC-20 multiple with-
drawal attacks by making a relative increase of the approved value rather than over-
writing it. To ensure that there is indeed an overwrite, we require that the approval in
the normal scenario is equal to the one in the reverse scenario. If there were a relative
change of the approval, the approved value ࠥ would differ.

6.4 Trace analysis
To check for the TOD characteristics, we use the same approach to compute state over-
rides for the normal and reverse scenario as in Section 5.1. The debug_traceCall method
allows the definition of a custom tracer in Javascript that can process each execution
step. We use this tracer to track CALL and CALLCODE instructions and token events.

42

6. TOD attack characteristics

The Javascript tracer is described in Appendix C. When executing a transaction, it re-
turns all non-reverted CALL, CALLCODE, LOG0, LOG1, LOG2, LOG3 and LOG4 instructions and
their inputs. We parse the call instructions to obtain Ether changes and the log instruc-
tions for token changes and ERC-20 Approval events. The results are used to check for
the previously defined characteristics.

43

7 Evaluation
In this section, we evaluate the methods proposed above. We use a dataset from [3] as
a ground truth to evaluate our TOD candidate mining, the TOD detection and the de-
tection of the attacker gain and victim loss characteristic. For the Securify and ERC-20
multiple withdrawal characteristics, we rely solely on a manual evaluation.

The ground truth dataset contains 6,765 attacks in the block range of 11,299,000 to
11,300,000. From these attacks, 5,601 contain no profit transaction, which we excluded
from our definition of the attacker gain and victim loss property. The study by [4] also
investigated this block range, and the attacks they found are a subset of the 6,765 attacks
[3]. Therefore, showing that our method works well for this ground truth indirectly also
shows that it works well for the results of [4].

First, we combine the TOD candidate mining, the TOD detection, and the TOD attack
analysis method to analyze this block range. The results are discussed in Section 7.2,
where we evaluate our method for false positives. Afterwards, we compare the results
of each step individually with the ground truth to check for false negatives.

7.1 Evaluation limitations
We note that in our evaluation, we verify the correctness of the normal scenario, how-
ever our verification of the reverse scenario is limited as we do not have access to a
ground truth for comparison.

For the normal scenario, we can directly compare it with data from the blockchain, as
the executions in the normal scenario should equal the executions that happened on the
blockchain. We will use Etherscan [26] to access this blockchain data.

Contrary, for the reverse scenario, we simulate a transaction order that did not occur
on the blockchain. We can verify that our normal and reverse scenarios are suitable
for detecting TOD attacks by comparing our results to the ground truth dataset. How-
ever, we only have the results given in the dataset and not the exact executions of the
reverse scenario. Therefore, when we encounter differences we cannot conduct an in-
depth analysis to understand why differences occur between our method and the ground
truth. To allow future research making in-depth comparisons we provide traces for all
cases that we manually analyze (see Section 9.2), which contain each execution step for
the normal and reverse scenarios.

We also compare our normal scenario with the reverse scenario and evaluate where
these executions differ. We do so in Section 7.6.1.b, where we verify that the first differ-

44

7. Evaluation

ence between the normal and reverse scenario matches the state calculations we perform
according to the definitions of the normal and normal scenario.

7.2 Overall evaluation
We mined TOD candidates in the 1,000 blocks starting at 11,299,000, which resulted in
14,500 TOD candidates. From those, the TOD detection reported 2,959 as TOD. For 280
of these transaction pairs, we found an attacker gain and victim loss.

We compare the TOD candidates, TODs, and TOD attacks we found against the ground
truth in Table 8. Our mining procedure marks 115 of the attacks in the ground truth as
TOD candidates. From the 115 TOD candidates, 95 are detected as TOD, and of those,
85 are marked as an attack.

When mining the TOD candidates we drop 98% of the ground truth attacks. The fol-
lowing steps drop another 26% of the attacks. We evaluate the reasons for this in the
following sections, where we evaluate each component individually.

This section focuses on the 195 attacks we found that are not part of the ground truth.

In ground truth TOD candidate TOD Attacker gain and victim loss
Yes 115 95 85
No 14,385 2,864 195

Table 8: Comparison of results with the 5,601 attacks from the ground truth. The first
row shows how many of the 5,601 attacks in the ground truth are also found by our
analysis at the individual stages. The second row shows the results our method found,

which are not in the ground truth.

7.2.1 Block window filter
W. Zhang et al. [3] only consider transactions within block windows of size three. If
transactions are three more blocks apart from each other, they are not part of their
analysis. We use a block window of size 25, therefore finding more attacks.

Of the 195 attacks we find that are not in the ground truth, only 19 are within a block
window of size 3.

7.2.2 Manual analysis of attacks
We manually evaluate the 19 attacks to check if the attacker gain and victim loss prop-
erty holds. We perform the following steps for each attack:

45

7. Evaluation

1. We manually parse the execution traces of the normal and reverse scenario for calls
and events related to the attacker and victim accounts.

2. We compute the attacker gain and victim loss property based on these calls and
events.

3. For the normal scenario, we verify that the calls and logs for the attacker and victim
accounts are equal to those that occurred on the blockchain.

In all 19 cases, the manual evaluation shows that the attacker gain and victim loss prop-
erty holds and that the relevant calls and logs in the normal scenario match those on
the blockchain. However, we notice two shortcomings in our definition of the attacker
gain and victim loss property.

7.2.2.a Definition shortcomings
Firstly, we argued that the transaction value is independent of the transaction order,
because it is part of the transaction itself. However, when a transaction is reverted, the
value is not sent to the receiver. Therefore, the transfer of the transaction value may de-
pend on the transaction order. If we considered the transaction value in the calculation,
six of the 19 attacks would be false positives.

Secondly, in five cases, we have a loss for the sender of ޓߋ (the attacker’s EOA), while
we have only gains for the recipient of ޓߋ (considered the attacker’s bot in this case).
Our definition considers the attacker gain fulfilled for the attacker’s bot and ignores the
loss of the attacker’s EOA. If we considered them together, we may have different results
in such cases.

7.3 Evaluation of Securify and ERC-20 multiple with-
drawal characteristics
In the overall analysis, we also analyze the 2,959 transaction pairs that are TOD for the
Securify and ERC-20 multiple withdrawal characteristics.

We find that 626 transaction pairs fulfill the TOD Transfer characteristic, 244 TOD
Amount, and 1 TOD Receiver. Moreover, we have 15 that fulfill our definition of ERC-20
multiple withdrawal. As the ground truth does not cover these characteristics, we man-
ually analyze samples of each.

7.3.1 Manual evaluation of TOD Transfer
We take a sample of 20 transaction pairs that fulfill TOD Transfer. Our tool outputs the
locations at which there is a different amount of calls in the normal and reverse scenario.
For each sample, we verify the first call location it shows for ޓߋ and ޖߋ. To do so, we
manually check the execution traces of the normal and reverse scenario for this location

46

7. Evaluation

and extract the relevant calls. We further verify that these calls match the calls in the
normal scenario are equal to those on the blockchain.

We find that in all cases, the TOD transfer property holds for ޖߋ, and only in one case
it holds additionally for ޓߋ.

In 9 of the cases, ޖߋ makes a CALL in the normal scenario that is reverted in the reverse
scenario. As our definition only considers calls that are not reverted, these fulfill TOD
Transfer.

In 8 further cases, ޖߋ makes a CALL in the normal scenario but makes no CALL at this
location in the reverse scenario. In the 3 remaining cases, ޖߋ makes a CALL in the reverse
scenario but makes no CALL in the normal scenario at this location.

We also observe that the locations are often the same. For instance, in five of the cases,
the location we analyze is the address 0x7a250d5630b4cf539739df2c5dacb4c659f2488d
at program counter 15784. When inspecting all 626 transaction pairs that fulfill TOD
Transfer we find this location 86 times. Considering that we limit similar collisions to a
maximum of 10, this implies that different collisions affect the same functionality.

7.3.2 Manual evaluation of TOD Amount
We take a sample of 20 transaction pairs that fulfill TOD Amount. Similar to the TOD
Transfer evaluation, we manually verify the first location reported by our tool. For TOD
Amount, we verify that in both scenarios there exists a call at this location, but with
different values.

The evaluation shows that the property holds in all cases for ޖߋ, and in 3 cases also forޓߋ. In 12 cases, the amount of Ether sent is increased in the reverse scenario, and in 11
cases, it is decreased.

Again, we observe many calls happening at the same location. Of the
20 call locations we analyze, the location is 16 times at the address
0x7a250d5630b4cf539739df2c5dacb4c659f2488d at program counter 15784.

7.3.3 Manual evaluation of TOD Receiver
We evaluate the one transaction pair we found for TOD Receiver similar to how we
evaluate TOD Amount, except that we now verify whether the receiver of the Ether
transfer changed. Our evaluation shows that this is indeed the case. By inspecting the
traces, we can see that in the normal scenario the receiver address is loaded from a dif-
ferent storage slot than in the normal scenario, resulting in different recipients of the
Ether transfer.

47

7. Evaluation

7.3.4 Manual evaluation of ERC-20 multiple withdrawal
We evaluate all 15 transaction pairs where our tool reports an ERC-20 multiple with-
drawal attack. Our tool outputs pairs of Transfer and Approval events that should fulfill
the definition. For each case, we manually evaluate the first of these pairs by verifying
that the Transfer event exists in ޓߋ in the normal scenario and the Approval event
exists in ޖߋ in the normal and reverse scenario. We further verify that the logs in the
normal scenario are equal to those on the blockchain.

While we confirm that all of them fulfill the definition we provide for the ERC-20 mul-
tiple withdrawal attack, none of them actually is an attack.

7.3.4.a Definition shortcomings
Firstly, our definition does not require that the Transfer and Approval events have pos-
itive values. In nine cases we find an Approval event that approves 0 tokens and in one
case we find a transfer of 0 tokens. These should be excluded from the definition.

Moreover, in 14 cases ޓߋ contains an Approval event for the tokens that are transferred
in ޓߋ. As such, ޓߋ does not use any previously approved tokens, but approves the token
itself.

7.4 Evaluation of TOD candidate mining
In this section, we analyze why 98% of the attacks in the ground truth are not reported
as TOD candidates, and whether the TOD candidate filters work as intended.

We rerun the TOD candidate mining and count the number of attacks from the ground
truth that are in the TOD candidates before and after each filter is applied. Therefore,
we know how many of the attacks were removed by which filter.

In Table 9, we see that most filters do not filter out any attack from the ground truth.
However, they still filter out 500,141 other TOD candidates, thus significantly reducing
the search space for further analysis without affecting the attacks we can find.

Furthermore, Table 9 shows that only one attack is filtered because there is no collision
between the accessed and modified states of ޓߋ and ޖߋ. This TOD candidate is filtered,
because the second transaction of the filtered TOD candidate is part of block 11,300,000,
which is not part of the blocks we analyze¹³.

¹³In [3], the dataset is described as originating from an analysis of 1,000 blocks. Block 11,300,000
would be the 1, 001-th block, thus we assume an off-by-one error.

The filters “Same-value collision” and “Indirect dependency” remove 4,275 TOD candi-
dates with potential indirect dependencies. Finally, our deduplication filters remove an-

48

7. Evaluation

other 1,210 TOD candidates. In the following subsections, we evaluate whether these
filters fulfill their intention.

Filter name TOD candi-
dates after

filtering

Filtered TOD
candidates

Ground truth
attacks after

filtering

Filtered
ground truth

attacks
(unfiltered) 5,601
Collision (unknown) 5,600 1
Same-value
collision

638,313 (unknown) 3,537 2,063

Block win-
dows

422,384 215,929 3,537 0

Block valida-
tors

288,264 134,120 3,537 0

Nonce colli-
sion

220,687 67,577 3,537 0

Code collision 220,679 8 3,537 0
Indirect de-
pendency

161,062 59,617 1,325 2,212

Same senders 100,690 60,372 1,325 0
Recipient
Ether transfer

78,555 22,135 1,325 0

Limited colli-
sions per ad-
dress

17,300 61,255 199 1,126

Limited colli-
sions per code
hash

14,996 2,304 123 76

Limited col-
lisions per
skeleton

14,500 496 115 8

Table 9: Comparison of all filtered TOD candidates with filtered attacks from the ground
truth. Each row shows how many TOD candidate and attacks are filtered by this filter.
TOD candidates before filtering for same-value collisions were not compute because of

performance limitations.

49

7. Evaluation

7.4.1 Evaluation of indirect dependency filters
The “Same-value collision” and “Indirect dependency” filters both target TOD candidates
with indirect dependencies, as these may lead to unexpected analysis results (see Sec-
tion 3.9.2).

We evaluate, for how many of the removed attack TOD candidates (ޓߋ, -there ex ,(ޖߋ
ists an intermediary transaction ߘߋ , such that both (ޓߋ, ,ߘߋ) and (ߘߋ are TOD. In (ޖߋ
such cases, any reordering that moves ޓߋ after ߘߋ or ߘߋ after ޖߋ may influence how ޓߋ and ޖߋ execute. While our filters also remove indirect dependencies which require
more than one intermediary transaction (e.g. ޓߋ → 1ߘߋ → 2ߘߋ → we limit our ,(ޖߋ
evaluation to only one intermediary transaction for performance reasons.

We rerun the TOD candidate mining until the “Indirect dependency” filter would be
executed. For 1,720 of the 4,275 TOD candidates (ޓߋ, we evaluate, we find another (ޖߋ
two TOD candidates (ޓߋ, ,ߘߋ) and (ߘߋ These TOD candidates show a potential .(ޖߋ
indirect dependency of (ޓߋ, ߘߋ with the one intermediary transaction (ޖߋ . We do not
evaluate the remaining 2,555 TOD candidates, which either have an indirect dependency
with multiple intermediary transactions, or have an indirect dependency where one of
the TOD candidates (ޓߋ, ,ߘߋ) or (ߘߋ .has already been filtered (ޖߋ

We run or TOD detection on the 1,720 (ޓߋ, ,ߘߋ) TOD candidates and the 1,720 (ߘߋ (ޖߋ
TOD candidates. We find that in 1,319 cases both (ޓߋ, ,ߘߋ) and (ߘߋ .being TOD (ޖߋ
In 159 cases, at least one analysis failed. In the remaining 242 cases, at least one of the
TOD candidates (ޓߋ, ,ߘߋ) or (ߘߋ .is confirmed not to be TOD (ޖߋ

In summary, we show that in at least 1,319 of the 4,275 cases where we filtered out a an
attack of the ground truth, there exists a transaction that is TOD with both ޓߋ and ޖߋ
of this attack and thus potentially interferes with the TOD simulation.

7.4.2 Evaluation of duplicate limits
The filters “Limited collisions per address”, “Limited collisions per code hash” and “Lim-
ited collisions per skeleton” aim to reduce the amount of TOD candidates without re-
ducing the diversity of the attacks we find.

For our evaluation, we do not directly measure the diversity of the attacks. Instead, we
evaluate how well the attacks that were not filtered cover the attacks that were filtered.
To measure the coverage, we use collisions. We say, that a TOD candidate (ޓߋ, (ޖߋ
is covered by a set of TOD candidates {(0ޙߋ , ,(0ޜߋ …, ࠆޙߋ) , if the following {(ࠆޜߋ
condition holds: collisions(ޓߋ, (ޖߋ ⊆ ࠅ≥߶≥0⋃ collisions(ޙߋ߷ , (߷ޜߋ

50

7. Evaluation

For this analysis, we only consider collisions that remain after applying all previous
filters.

From the 1,210 attacks that were removed by duplicate limits, we have 703 that are cov-
ered by the remaining attacks. Thus, if we combine the collisions of the 115 remaining
attacks, we have the same collisions as if we included these 703 covered attacks. From
the 703 covered attacks, we can match at least¹⁴ 504 removed attacks (ޓߋ, with a (ޖߋ

¹⁴We use a naive algorithm to detect collision coverage, which does not minimize the required attacks
for coverage. Thus, the number of attacks covered by a single other attack is a lower bound.

remaining attack (ޙߋ , ,ޓߋ)such that collisions ,(ޜߋ (ޖߋ ⊆ collisions(ޙߋ , Thus, in .(ޜߋ
504 cases a removed attack is covered by exactly one remaining attack.

We also notice that attacks are concentrated around the same collisions. When we take
the top three attacks that were not removed by duplicate limits, we already cover 373 of
the 1,210 attacks we removed.

Our calculations of coverages are lower limits, as we only consider the 115 remaining
attacks from the ground truth but not the 195 attacks we find that are not in the ground
truth. All attacks we find are subject to the duplicate limit, therefore some ground truth
attacks may have been removed while keeping an attack not in the ground truth that
has similar collisions.

7.5 Evaluation of TOD detection
To evaluate our TOD detection method, we run it on the attacks from the ground truth.

From the 5,601 attacks, our method finds that 4,827 are TOD and 4,857 approximately
TOD. We do not manually compare the differences of the TOD detection with the ap-
proximation, as we already did so in Section 5. However, that for the attacks from the
ground truth one can use the TOD approximation without loosing attacks.

There are 774 attacks that our method misses. For 20 of those an error occurred while
analyzing for TOD¹⁵ and for 296 we detected execution inaccuracies (see Section 5.2)
and stopped the analysis.

¹⁵18 of the errors are caused by a bug in Erigon, where it reports negative balances for accounts for
some transactions (fixed in v2.60.3). 2 of them were caused by connection errors.

From the remaining 458 attacks, we find that most have the metadata “out of gas” in
the ground truth dataset. Attacks with this “out of gas” label account for 97.6% of the
attacks we do not find, while they only account for 19.1% of the 5,601 attacks in the
ground truth.

51

https://github.com/erigontech/erigon/issues/9531

7. Evaluation

7.5.1 Manual evaluation of attacks labeled “out of gas”
According to the dataset description, this label refers to a gas estimation griefing attack,
which is described in [3]. The authors consider such an attack to occur when ޖߋ runs
out of gas in the normal scenario but not in the reverse scenario.

We manually inspect a sample of 20 attacks and find that in 12 attacks, ޖߋ is indeed
reverted according to Etherscan. In these cases, our simulation method further shows
that ޖߋ is reverted in both scenarios. As ޖߋ also revertes in the reverse scenario, these
cases are no gas estimation griefing attacks according to our simulation.

In the remaining 8 cases, our method reports no reverts in either scenario. For one case,
Etherscan reports that ޖߋ had an internal out of gas error, which was caught without
reverting the whole transaction. Therefore, at least the 7 cases where ޖߋ did not revert
in the normal scenario are no gas estimation griefing attacks.

As such, it is unclear if this label classifies these attacks as gas estimation griefing at-
tacks. Furthermore, it appears that attacks with this label do not necessarily fulfill the
attacker gain and victim loss property. The dataset usually describes the profits of an
attacker and losses of a victim in each attack. However, 347 of the 1,043 attacks with
the “out of gas” label do not contain a description of the victim losses. However, this
description exists for all attacks without the “out of gas” label. In summary, it is unclear
how we should interpret these attacks from the ground truth and thus we ignore them
from further analysis.

7.5.2 Manual evaluation of attacks not labeled “out of gas”
We manually check the remaining 11 attacks that our method does not report as TOD.

We check if these are caused by bugs in the RPC method implementation by rerunning
the analysis with a Reth archive node, in addition to the Erigon archive node we use
for our experiments. In two cases, using Reth we report them as TOD because of the
same balance changes as reported in the ground truth, showing the inaccuracies from
Section 5.2.

Furthermore, we compare the traces of the instruction executions between the scenar-
ios. For 8 attacks, the traces in the normal scenario are equal to those in the reverse
scenario, therefeore no write-read or read-write TOD has occurred. By inspecting the
state changes in Etherscan, we also rule out write-write TODs, where both transactions
write to the same storage slot. As such, these are indeed TOD accocrding to the traces
of our simulation.

52

7. Evaluation

Finally, for one attack ޖߋ reverts in both scenarios. The ground truth dataset reports
token changes in the reverse scenario, therefore our execution must differ from theirs,
which we do not further investigate.

7.6 Evaluation of TOD attack analysis
We run our TOD attack analysis on the 5,601 attacks from the ground truth. Our analysis
reports an attacker gain and victim loss in 4,524 of the cases. In 19 cases we encountered
the same errors as for the TOD checking. In another 152 cases, we detect execution in-
accuracies. In the remaining 907 cases, our analysis runs without failures but reports
different results than in the ground truth.

From these 907 cases, 850 are labeled as “out of gas” in the ground truth. As discussed in
Section 7.5.1, it seems that these do not necessarily fulfill the attacker gain and victim
loss property. Therefore, we do not investigate these cases. We manually evaluate 10 of
the 56 cases without the “out of gas” label.

7.6.1 Manual evaluation of attacks

7.6.1.a Evaluation of profit calculations
We verify that the transaction pair does not fulfill the attacker gain and victim loss prop-
erty according to the execution traces of our normal and reverse scenarios. In each case,
we disprove the property by manually parsing the calls and logs and calculating the
profits and losses.

In five cases, there is a victim gain according to our traces. In three cases, we calculate
an attacker loss. In the two other cases, the traces of the attacker’s transaction behave
identical in the normal and reverse scenarios. We show that one of these cases is not
TOD in Appendix B.2.

7.6.1.b Evaluation of reverse scenario
We further want to verify that our tool correctly executes the reverse scenario.

For each case, we pick one of the transactions. For this transaction, we compare the ࠄ-
th executed instruction of the normal scenario with the ࠄ-th executed instruction of the
reverse scenario. We start with ࠄ = 0 and continue until we find a difference between
the executions. For the comparison, we use the current EVM stack, memory, program
counter, gas, and call context depth.

In one case, we do not find any difference, as the transactions are not TOD. In the other
nine cases, the first difference is after executing the SLOAD instruction, which loads a
value from the storage.

53

7. Evaluation

When we analyze the execution of the attacker’s transaction (ޓߋ), we execute it on the
states ඿ and ඿ + Δ′ޗߌ . Because we observer that SLOAD returns different values for ඿ and඿ + Δ′ޗߌ , the accessed storage slot should be modified by Δ′ޗߌ . We verify that in the
normal scenario, the result of the SLOAD is equal to the value this storage slot had before
executing ޓߋ according to Etherscan. For the reverse scenario, we compare it against
the last SSTORE of the execution of ޖߋ in the reverse scenario, i.e. the value that Δ′ޗߌ
changes it to.

We approach the verification of the accessed storage values of ޖߋ similarly. For ޖߋ we
use the states ඿ࠆߘ for the normal scenario and ඿ࠆߘ − Δޔߌ for the reverse scenario.
We compare the result of the SLOAD in the normal scenario with the value it had before
executing ޖߋ according to Etherscan. For the reverse scenario, we compare it with the
value it had before executing ޓߋ according to Etherscan. We notice that in all these
cases, ޓߋ wrote a value to this storage slot that is different from the one that ޖߋ reads in
the normal scenario. Therefore, there must be intermediary transactions that changed
this storage value between ޓߋ and ޖߋ, possibly causing an indirect dependency.

In summary, we verify that at least the first difference between the normal and reverse
scenarios is in accordance with the definition of the normal and reverse scenarios.

7.6.1.c Evaluation of indirect dependencies
As our previous evaluation shows, there are several attacks where an intermediary
transaction modifies a storage slot that is written by ޓߋ and accessed by ޖߋ, potentially
creating an indirect dependency. In this section, we additionally evaluate for a specific
kind of indirect dependency.

When we simulate an attack (ޓߋ, in the reverse scenario on the ޖߋ we execute ,(ޖߋ
state ඿ࠆߘ − Δޔߌ . Therefore, for all state keys ް ∈ changed_keys(Δޔߌ) we use the
value at prestate(Δޔߌ)(ް) and for the other state keys ް ∉ changed_keys(Δޔߌ) we
use ඿ࠆߘ(ް).
We now consider an intermediary transaction ߘߋ with the state changes Δߙߌ , where changed_keys(Δߙߌ) contains some keys that are changed by ޓߋ and also other keys
that ޓߋ does not change. When we execute ޖߋ on ඿ࠆߘ − Δޔߌ , we only overwrite some
of the changes of ߘߋ and keep the other changes. Therefore, ޖߋ executes on a state
where state changes of ߘߋ are only partially included.

Our evaluation shows that in 2 of the 10 cases, we can indeed find an intermediary
transaction ߘߋ , such that at ޖߋ accesses at least one change of ߘߋ that is overwritten
by computing ඿ࠆߘ − Δޔߌ , and one change of ߘߋ that is not overwritten. Thus, in these
cases, ޖߋ uses a possibly incoherent state. We further verify that (ޓߋ, ,ߘߋ) and (ߘߋ (ޖߋ

54

7. Evaluation

are both TOD. However, we do not investigate, how the partial revert of ߘߋ influences
the transaction execution.

7.6.1.d Unmodeled token events
In one case, the attacker’s transaction emits a Deposit event. This event is not part of
the token standards we model in our definition, therefore our profit calculations ignore
this event.

This Deposit event is emitted by the WETH token when someone converts Ether to
WETH tokens. Our analysis only assesses a loss of Ether, but not a gain of WETH tokens.
If we modeled the Deposit event, we would also mark this transaction pair as an attack.

By inspecting the source code at [27], we find that they also detect Deposit and
Withdrawal events when they are emitted by the address of the WETH token.

7.7 Performance evaluation
The evaluation of the 1,000 blocks took a total of 75 minutes, averaging to 4.5 seconds
per block.

For the TOD candidate mining, we spent 41 minutes fetching the state changes of the
1,000 blocks and inserting them into a database, another 13 minutes filtering the TOD
candidates, and 3 minutes for other tasks.

For the TOD detection and TOD attack analysis, we fetch the state changes and transac-
tions and store them in memory for faster access. Because the state changes are already
in our RPC cache, these two steps combined only took 5 minutes.

After fetching the state changes and transactions, we ran the TOD detection and TOD
attack analysis using 16 threads, enabling us to make multiple RPC requests in paral-
lel. To check the 14,500 TOD candidates for TOD it took 11 minutes, an average of 44
milliseconds per TOD candidate. The attack analysis of the 2,959 TOD transaction pairs
took 4 minutes, averaging to 77 milliseconds per analysis.

Compared with [3], our analysis took 4.5 seconds per block, while they report an aver-
age of 7.5 seconds per block. However, we cannot directly compare this, as their hard-
ware specifications differ from our setup and in our case the transaction execution is
outsourced to an archive node of which we do not know the hardware specifications.
Moreover, [3] only reports an average for their whole analysis, and it is not clear if e.g.
the vulnerability localization performed in this work is included in this time measure-
ment.

55

https://etherscan.io/token/0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2#code

8 Discussion
This thesis proposes a method to simulate transaction order dependencies. We precisely
define this simulation process and discuss its advantages and disadvantages. Our evalu-
ation shows that it can be used to detect TOD and several attack characteristics, finding
more than 80% of the attacks from a previous work.

Nonetheless, we note that our simulation method and the methods of two related studies
have drawbacks that can lead to analysis results that do not match the execution that
happened on the blockchain or are distorted by the influence of intermediary transac-
tions. The method by [4] removes intermediary transactions for the simulation. On the
downside, this may create results that differ from the blockchain even in the normal
transaction order. On the upside, the different orderings can then be compared without
the potential influence of intermediary transactions. The methods by [3] and us produce
results that are equal to the blockchain in the normal order, but can suffer influences
from intermediary transactions in the reverse order.

We discuss when influences from intermediary transactions can occur with our method,
and thus, we are able to avoid such cases. However, future work may continue to reduce
the influence of intermediary transactions on TOD simulations or analyze the tradeoffs
between existing methods.

56

9 Data availability and repro-
ducibility

9.1 Tool
The program used to run the experiments is available at https://github.com/TOD-theses/
t_race. It can be run with Python or Docker and requires an archive node that supports
the debug namespace, including JS tracing for the attack analysis. Refer to the documen-
tation on the repository for more details on using it.

The TOD candidates deduplication relies on randomness. To allow reproducibility, the
program sets a seed for the randomness before executing the randomized deduplication
step.

9.2 Data availability
The experiment results and evaluation artifacts produced by this thesis are available at
https://github.com/TOD-theses/t_race_results. This includes the outputs of the tool ex-
ecutions, post-processed data and the evaluation samples with corresponding notes.

9.3 Experiment setup
The experiments were performed on Ubuntu 22.04.04, using an AMD Ryzen 5 5500U
CPU with 6 cores and 2 threads per core and an SN530 NVMe SSD. We used a 16 GB
RAM with an additional 32 GB swap file.

For the RPC requests, we did not use our own archive node, but relied on a free service by
[45], which uses Erigon 2.59.3 [46] according to the web3_clientVersion RPC method.
In the evaluation, we also refer to the usage of a Reth instance for a few TOD checks. We
use a public Reth 1.0.4 instance for this [47]. We used a local cache to prevent repeating
slow RPC requests [48]. The cache was initially empty for experiments that measure the
running time.

57

https://github.com/TOD-theses/t_race
https://github.com/TOD-theses/t_race
https://github.com/TOD-theses/t_race_results

List of Figures
Figure 1: Indirect dependency graph .. 28
Figure 2: Block distances of TOD candidates .. 31
Figure 3: Limit for collisions per address ... 32

58

List of Tables
Table 1: Benign and attack scenario for ERC-20 approvals. 11
Table 2: State accessing instructions ... 22
Table 3: State modifying instructions ... 22
Table 4: TOD candidate filters .. 26
Table 5: TOD candidate filters evaluation .. 30
Table 6: TOD candidate deduplication evaluation ... 33
Table 7: TOD checking with definition comparison. .. 36
Table 8: Comparison of results with the ground truth. .. 45
Table 9: Comparison of all filtered TOD candidates with filtered attacks from the
ground truth .. 49

59

List of Algorithms
Algorithm 1: TOD assessment .. 35

60

Bibliography
[1] R. Rahimian, S. Eskandari, and J. Clark, “Resolving the Multiple Withdrawal At-

tack on ERC20 Tokens,” in 2019 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW), 2019, pp. 320–329. doi: 10.1109/EuroSPW.2019.00042.

[2] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, and M. Vechev, “Se-
curify: Practical Security Analysis of Smart Contracts,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, ACM, 2018,
pp. 67–82. doi: 10.1145/3243734.3243780.

[3] W. Zhang et al., “Combatting Front-Running in Smart Contracts: Attack Min-
ing, Benchmark Construction and Vulnerability Detector Evaluation,” IEEE Trans-
actions on Software Engineering, vol. 49, pp. 3630–3646, 2023, doi: 10.1109/
TSE.2023.3270117.

[4] C. F. Torres, R. Camino, and R. State, “Frontrunner Jones and the Raiders of the
Dark Forest: An Empirical Study of Frontrunning on the Ethereum Blockchain,”
in 30th USENIX Security Symposium (USENIX Security 21), USENIX Association,
2021, pp. 1343–1359. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity21/presentation/torres

[5] P. Daian et al., “Flash Boys 2.0: Frontrunning in Decentralized Exchanges, Miner
Extractable Value, and Consensus Instability,” in 2020 IEEE Symposium on Security
and Privacy (SP), 2020, pp. 910–927. doi: 10.1109/SP40000.2020.00040.

[6] Y. Wang, P. Zuest, Y. Yao, Z. Lu, and R. Wattenhofer, “Impact and User Percep-
tion of Sandwich Attacks in the DeFi Ecosystem,” in Proceedings of the 2022 CHI
Conference on Human Factors in Computing Systems, ACM, 2022, pp. 1–15. doi:
10.1145/3491102.3517585.

[7] D. Perez and B. Livshits, “Smart Contract Vulnerabilities: Vulnerable Does Not Im-
ply Exploited,” in 30th USENIX Security Symposium (USENIX Security 21), USENIX
Association, 2021, pp. 1325–1341. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity21/presentation/perez

[8] C. Ferreira Torres, A. K. Iannillo, A. Gervais, and R. State, “The Eye of Horus: Spot-
ting and Analyzing Attacks on Ethereum Smart Contracts,” in Financial Cryptog-
raphy and Data Security, N. Borisov and C. Diaz, Eds., Springer Berlin Heidelberg,
2021, pp. 33–52. doi: 10.1007/978-3-662-64322-8_2.

61

https://doi.org/10.1109/EuroSPW.2019.00042
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1109/TSE.2023.3270117
https://doi.org/10.1109/TSE.2023.3270117
https://www.usenix.org/conference/usenixsecurity21/presentation/torres
https://www.usenix.org/conference/usenixsecurity21/presentation/torres
https://doi.org/10.1109/SP40000.2020.00040
https://doi.org/10.1145/3491102.3517585
https://www.usenix.org/conference/usenixsecurity21/presentation/perez
https://www.usenix.org/conference/usenixsecurity21/presentation/perez
https://doi.org/10.1007/978-3-662-64322-8_2

[9] M. Zhang, X. Zhang, Y. Zhang, and Z. Lin, “{TXSPECTOR}: Uncovering Attacks in
Ethereum from Transactions,” in 29th USENIX Security Symposium (USENIX Secu-
rity 20), USENIX Association, 2020, pp. 2775–2792. [Online]. Available: https://
www.usenix.org/conference/usenixsecurity20/presentation/zhang-mengya

[10] S. Wu et al., “Time-travel Investigation: Toward Building a Scalable Attack De-
tection Framework on Ethereum,” ACM Transactions on Software Engineering and
Methodology, vol. 31, no. 3, pp. 1–33, 2022, doi: 10.1145/3505263.

[11] T. Chen et al., “SODA: A Generic Online Detection Framework for Smart Con-
tracts,” in Proceedings 2020 Network and Distributed System Security Symposium,
San Diego, CA: Internet Society, 2020. doi: 10.14722/ndss.2020.24449.

[12] G. Wood, “Ethereum: A secure decentralised generalised transaction ledger. Paris
version.” Accessed: Jul. 10, 2024. [Online]. Available: https://ethereum.github.io/
yellowpaper/paper.pdf

[13] S. Tikhomirov, “Ethereum: state of knowledge and research perspectives,” in Foun-
dations and Practice of Security: 10th International Symposium (FPS 2017), A. Imine,
J. M. Fernandez, J.-Y. Marion, L. Logrippo, and J. Garcia-Alfaro, Eds., in Lecture
Notes in Computer Science. Springer International Publishing, 2018, pp. 206–221.
doi: 10.1007/978-3-319-75650-9_14.

[14] “History and Forks of Ethereum.” Accessed: Jul. 10, 2024. [Online]. Available:
https://ethereum.org/en/history/

[15] smlXL, “EVM Codes.” Accessed: Jul. 10, 2024. [Online]. Available: https://www.
evm.codes/

[16] “Gasper.” Accessed: Jul. 11, 2024. [Online]. Available: https://ethereum.org/en/
developers/docs/consensus-mechanisms/pos/gasper/

[17] S. Eskandari, S. Moosavi, and J. Clark, “SoK: Transparent Dishonesty: Front-Run-
ning Attacks on Blockchain,” in Financial Cryptography and Data Security, A. Brac-
ciali, J. Clark, F. Pintore, P. B. Rønne, and M. Sala, Eds., Cham: Springer Interna-
tional Publishing, 2020, pp. 170–189. doi: 10.1007/978-3-030-43725-1_13.

[18] L. Heimbach, L. Kiffer, C. Ferreira Torres, and R. Wattenhofer, “Ethereum's Pro-
poser-Builder Separation: Promises and Realities,” in Proceedings of the 2023 ACM
on Internet Measurement Conference, in IMC '23. ACM, 2023, pp. 406–420. doi:
10.1145/3618257.3624824.

[19] “Nodes and clients.” Accessed: Jul. 11, 2024. [Online]. Available: https://ethereum.
org/en/developers/docs/nodes-and-clients/

62

https://www.usenix.org/conference/usenixsecurity20/presentation/zhang-mengya
https://www.usenix.org/conference/usenixsecurity20/presentation/zhang-mengya
https://doi.org/10.1145/3505263
https://doi.org/10.14722/ndss.2020.24449
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://doi.org/10.1007/978-3-319-75650-9_14
https://ethereum.org/en/history/
https://www.evm.codes/
https://www.evm.codes/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/gasper/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/gasper/
https://doi.org/10.1007/978-3-030-43725-1_13
https://doi.org/10.1145/3618257.3624824
https://ethereum.org/en/developers/docs/nodes-and-clients/
https://ethereum.org/en/developers/docs/nodes-and-clients/

[20] “Ethereum JSON-RPC Specification.” Accessed: Jul. 11, 2024. [Online]. Available:
https://ethereum.github.io/execution-apis/api-documentation/

[21] “go-ethereum: debug Namespace.” Accessed: Jul. 11, 2024. [Online]. Available:
https://geth.ethereum.org/docs/interacting-with-geth/rpc/ns-debug

[22] “RPC daemon.” Accessed: Jul. 11, 2024. [Online]. Available: https://erigon.gitbook.
io/erigon/advanced-usage/rpc-daemon

[23] “Reth Book.” Accessed: Jul. 11, 2024. [Online]. Available: https://reth.rs/jsonrpc/
debug.html

[24] T. Chen et al., “TokenScope: Automatically Detecting Inconsistent Behaviors of
Cryptocurrency Tokens in Ethereum,” in Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security, ACM, 2019, pp. 1503–1520. doi:
10.1145/3319535.3345664.

[25] F. Vogelsteller and V. Buterin, “ERC-20: Token Standard.” Accessed: Aug. 12, 2024.
[Online]. Available: https://eips.ethereum.org/EIPS/eip-20

[26] Etherscan, “Ethereum (ETH) Blockchain Explorer.” Accessed: Aug. 21, 2024. [On-
line]. Available: https://etherscan.io/

[27] W. Zhang et al., “erebus-redgiant.” Accessed: Jul. 13, 2024. [Online].
Available: https://github.com/Troublor/erebus-redgiant/tree/4544163f0c6a369b35
c3237851f482d240fa7bbd

[28] C. F. Torres, R. Camino, and R. State, “Frontrunner Jones.” Accessed: Jul. 13, 2024.
[Online]. Available: https://github.com/christoftorres/Frontrunner-Jones/tree/84e
98dae4ab37fad7629433fe3ad41967152431f

[29] “Erigon DB Walkthrough.” Accessed: Aug. 12, 2024. [Online]. Available: https://
github.com/erigontech/erigon/blob/9b19cd542008d4de3eb267df3c606b2203284ed
6/docs/programmers_guide/db_walkthrough.MD

[30] “Reth Database.” Accessed: Aug. 12, 2024. [Online]. Available: https://
github.com/paradigmxyz/reth/blob/269ba896369c6fcea10e046a124a1992a56af300/
docs/design/database.md

[31] P. Rebuffo, “Erigon 3 (Alpha 1), the first all-in-one EVM-node on the
efficient software frontier, is live..” Accessed: Aug. 12, 2024. [Online].
Available: https://erigon.tech/erigon-3-alpha-1-the-first-all-in-one-evm-node-on-
the-efficient-software-frontier-is-live/

[32] C. Ma, W. Song, and J. Huang, “TransRacer: Function Dependence-Guided Trans-
action Race Detection for Smart Contracts,” in Proceedings of the 31st ACM

63

https://ethereum.github.io/execution-apis/api-documentation/
https://geth.ethereum.org/docs/interacting-with-geth/rpc/ns-debug
https://erigon.gitbook.io/erigon/advanced-usage/rpc-daemon
https://erigon.gitbook.io/erigon/advanced-usage/rpc-daemon
https://reth.rs/jsonrpc/debug.html
https://reth.rs/jsonrpc/debug.html
https://doi.org/10.1145/3319535.3345664
https://eips.ethereum.org/EIPS/eip-20
https://etherscan.io/
https://github.com/Troublor/erebus-redgiant/tree/4544163f0c6a369b35c3237851f482d240fa7bbd
https://github.com/Troublor/erebus-redgiant/tree/4544163f0c6a369b35c3237851f482d240fa7bbd
https://github.com/christoftorres/Frontrunner-Jones/tree/84e98dae4ab37fad7629433fe3ad41967152431f
https://github.com/christoftorres/Frontrunner-Jones/tree/84e98dae4ab37fad7629433fe3ad41967152431f
https://github.com/erigontech/erigon/blob/9b19cd542008d4de3eb267df3c606b2203284ed6/docs/programmers_guide/db_walkthrough.MD
https://github.com/erigontech/erigon/blob/9b19cd542008d4de3eb267df3c606b2203284ed6/docs/programmers_guide/db_walkthrough.MD
https://github.com/erigontech/erigon/blob/9b19cd542008d4de3eb267df3c606b2203284ed6/docs/programmers_guide/db_walkthrough.MD
https://github.com/paradigmxyz/reth/blob/269ba896369c6fcea10e046a124a1992a56af300/docs/design/database.md
https://github.com/paradigmxyz/reth/blob/269ba896369c6fcea10e046a124a1992a56af300/docs/design/database.md
https://github.com/paradigmxyz/reth/blob/269ba896369c6fcea10e046a124a1992a56af300/docs/design/database.md
https://erigon.tech/erigon-3-alpha-1-the-first-all-in-one-evm-node-on-the-efficient-software-frontier-is-live/
https://erigon.tech/erigon-3-alpha-1-the-first-all-in-one-evm-node-on-the-efficient-software-frontier-is-live/

Joint European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering, in ESEC/FSE 2023. ACM, 2023, pp. 947–959. doi:
10.1145/3611643.3616281.

[33] X. Wang, J. Sun, C. Hu, P. Yu, B. Zhang, and D. Hou, “EtherFuzz: Mutation Fuzzing
Smart Contracts for TOD Vulnerability Detection,” Wireless Communications and
Mobile Computing, vol. 2022, p. e1565007, 2022, doi: 10.1155/2022/1565007.

[34] A. Kolluri, I. Nikolic, I. Sergey, A. Hobor, and P. Saxena, “Exploiting the laws of
order in smart contracts,” in Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, in ISSTA 2019. ACM, 2019, pp. 363–
373. doi: 10.1145/3293882.3330560.

[35] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making Smart Contracts
Smarter,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, ACM, 2016, pp. 254–269. doi: 10.1145/2976749.2978309.

[36] S. Munir and C. Reichenbach, “TODLER: A Transaction Ordering Dependency
anaLyzER - for Ethereum Smart Contracts,” in 2023 IEEE/ACM 6th International
Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB),
2023, pp. 9–16. doi: 10.1109/WETSEB59161.2023.00007.

[37] G. Ballet, V. Buterin, and D. Feist, “EIP-6780: SELFDESTRUCT only in same trans-
action.” Accessed: Jul. 14, 2024. [Online]. Available: https://eips.ethereum.org/
EIPS/eip-6780

[38] “Proof-of-stake rewards and penalties.” Accessed: Jul. 31, 2024. [Online].
Available: https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
rewards-and-penalties/

[39] Paradigm, “revm-inspectors.” Accessed: Jul. 14, 2024. [Online]. Available: https://
github.com/paradigmxyz/revm-inspectors/tree/b9850ffe4d67aadc46cba5e3798bee
459a01a560

[40] “go-ethereum: Built-in tracers.” Accessed: Jul. 14, 2024. [Online]. Available: https://
geth.ethereum.org/docs/developers/evm-tracing/built-in-tracers#prestate-tracer

[41] L. Zhang, B. Lee, Y. Ye, and Y. Qiao, “Evaluation of Ethereum End-to-end Transac-
tion Latency,” in 2021 11th IFIP International Conference on New Technologies, Mo-
bility and Security (NTMS), 2021, pp. 1–5. doi: 10.1109/NTMS49979.2021.9432676.

[42] Etherscan, “Ethereum Average Block Time Chart.” Accessed: Jul. 14, 2024. [Online].
Available: https://etherscan.io/chart/blocktime

64

https://doi.org/10.1145/3611643.3616281
https://doi.org/10.1155/2022/1565007
https://doi.org/10.1145/3293882.3330560
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1109/WETSEB59161.2023.00007
https://eips.ethereum.org/EIPS/eip-6780
https://eips.ethereum.org/EIPS/eip-6780
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/rewards-and-penalties/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/rewards-and-penalties/
https://github.com/paradigmxyz/revm-inspectors/tree/b9850ffe4d67aadc46cba5e3798bee459a01a560
https://github.com/paradigmxyz/revm-inspectors/tree/b9850ffe4d67aadc46cba5e3798bee459a01a560
https://github.com/paradigmxyz/revm-inspectors/tree/b9850ffe4d67aadc46cba5e3798bee459a01a560
https://geth.ethereum.org/docs/developers/evm-tracing/built-in-tracers#prestate-tracer
https://geth.ethereum.org/docs/developers/evm-tracing/built-in-tracers#prestate-tracer
https://doi.org/10.1109/NTMS49979.2021.9432676
https://etherscan.io/chart/blocktime

[43] M. di Angelo and G. Salzer, “Bytecode Skeletons for Sample Selection in the Analy-
sis of Blockchain Programs,” in Proceedings of the 6th IEEE International Conference
on Blockchain and Cryptocurrency, 2024.

[44] W. Zhang et al., “Nyx: Detecting Exploitable Front-Running Vulnerabilities in
Smart Contracts,” in 2024 IEEE Symposium on Security and Privacy (SP), IEEE Com-
puter Society, 2024, p. 149–150. doi: 10.1109/SP54263.2024.00146.

[45] Nodies, “Web3 RPC Platform.” Accessed: Aug. 20, 2024. [Online]. Available: https://
www.nodies.app/

[46] “Erigon Documentation.” Accessed: Jul. 16, 2024. [Online]. Available: https://
erigon.gitbook.io/erigon/

[47] Paradigm, “Reth.” Accessed: Aug. 20, 2024. [Online]. Available: https://reth.
paradigm.xyz/

[48] Fuzzland, “ETH RPC Cache Layer.” Accessed: Jul. 16, 2024. [Online]. Available:
https://github.com/fuzzland/cached-eth-rpc

65

https://doi.org/10.1109/SP54263.2024.00146
https://www.nodies.app/
https://www.nodies.app/
https://erigon.gitbook.io/erigon/
https://erigon.gitbook.io/erigon/
https://reth.paradigm.xyz/
https://reth.paradigm.xyz/
https://github.com/fuzzland/cached-eth-rpc

A. Overview of Generative AI Tools
Used
I used Grammarly to improve the readability of the text. The whole work was analyzed
and I applied several small suggestions.

66

http://grammarly.com/

B. Case studies

B.1. Analysis of definition differences
Here, we present one example for Section 5.4.2 that is approximately TOD but not TOD.

For the following two transactions:
• 0xa723f53edcae821203572a773b8f1b5cf5c008a734794ee2acae771540363f11 :ޓߋ
• 0x5aa39f4ff79f6653fdb0165a92fcb55e024ae8d5b8dba67c0b6e4c153ea4a8d4 :ޖߋ

Both transactions changed a specific storage slot. Our tool outputs the following
changes:
• 0+ :(normal) ޖߋ
• :(normal) ޓߋ
+0x1c7400

• :(reverse) ޖߋ
+0x1c7400

• 0+ :(reverse) ޓߋ

We see, that in both scenarios, the value increases by
0x1c7400, therefore
considering both transactions it is not TOD. However, if we only consider ޖߋ, we
would observe a TOD, as ޖߋ changes the storage slot differently in the scenarios (+0
vs +0x1c7400).

In our manual analysis of all cases, this information is enough to say that the application
of our definitions was correct, assuming that the state changes outputted by the tool are
correct. To further understand, why such changes occur in practice, we analyzed this
transaction pair in more detail.

Using Etherscan, we see that both transactions emit a UsdPerTokenUpdated event with
the parameters value: 0x429d069189e0000 and timestamp: 0x663c689f. Furthermore,
it shows for the storage slot at transaction ޓߋ:

• Before:
0x663c4c2b000429d069189e0000

• After: 0x663c689f000429d069189e0000

We observe, that the value after ޓߋ is composed of the timestamp and the value
of the emitted event. As both transactions emitted the same event with this value
and timestamp, it is likely, that both transactions set the value of this storage slot to
0x663c689f000429d069189e0000. For ޓߋ,

67

this led to a state change of this storage slot. As ޖߋ is executed after ޓߋ, the storage slot
was already at the target value and no change is recorded for ޖߋ. In the reverse scenario,ޖߋ is executed first and therefore we observe a state change here. And similarly for ޓߋ
we now record no state change.

The code that updates the storage slot is shown below, located at address
0x8c9b2efb7c64c394119270bfece7f54763b958ad. In line 5 we see the assignment to
the storage slot and in line 9 the logged event. Both transactions have the same val-
ues for update.usdPerToken and block.timestamp, therefore the value assigned to
s_usdPerToken[update.sourceToken] is the same in both cases.

1 contract PriceRegistry {
2 // ...
3 function updatePrices(/* ... */) {
4 // ...
5 s_usdPerToken[update.sourceToken] =
Internal.TimestampedPackedUint224({
6 value: update.usdPerToken,
7 timestamp: uint32(block.timestamp)
8 });
9 emit UsdPerTokenUpdated(update.sourceToken, update.usdPerToken,
block.timestamp);
10 }
11 }

B.2. Analysis of TOD
We analyze one of the cases where a TOD candidate (ޓߋ, -is not TOD ac (ޖߋ
cording to our definition, but is reported as an attack by [3]. The transaction ޓߋ
is 0x5cf84067556e7db37fd0279ec3bfe227d71758786cb53f1cc24e20f8afd9f8d8 and ޖߋ is
0xd24cffe4cd2dd7c89cc7ec3d38f44f4563d184b5fa9a952b46358a8a8e8176cc.

To evaluate if this TOD candidate is TOD, we start by determining the collisions of ޓߋ
and ޖߋ. If the execution of ޓߋ influences ޖߋ or vice versa, it must be at a state key that
one of them modifies and the other accesses or modifies as well. For this case study,
we evaluate (ޔߌߔ ∩ (ޗߌ߅ ∪ ޔߌߔ) ∩ (ޗߌߔ ∪ ޔߌ߅) ∩ to obtain the collisions (ޗߌߔ
rather than collisions(ޓߋ, as we do not want to rely on the TOD approximation ,(ޖߋ
underlying the definition of collisions(ޓߋ, .(ޖߋ
We use the debug_traceTransaction method to obtain the accessed state keys ޔߌ߅ andޗߌ߅ (refer to the Section 9.2 for the data). We then compare these state modifications ޔߌߔ and ޗߌߔ shown on Etherscan and only find a collision at the balance of the WETH

68

https://etherscan.io/tx/0x5cf84067556e7db37fd0279ec3bfe227d71758786cb53f1cc24e20f8afd9f8d8
https://etherscan.io/tx/0xd24cffe4cd2dd7c89cc7ec3d38f44f4563d184b5fa9a952b46358a8a8e8176cc
https://etherscan.io/address/0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2

contract. Therefore, the only way ޓߋ may influence ޖߋ, and vice versa, is by modifying
and accessing the balance of the WETH contract.

In Table 2, we see the instructions that can access balances. The instructions CALL,
CALLCODE, CREATE, CREATE2 and SELFDESTRUCT access a balance by sending Ether from
the caller to the recipient. These instructions can behave differently depending on
whether enough Ether is available. This is not the case, because the transactions trans-
fer less than 3 Ether from the WETH account to another account, but the WETH ac-
count had more than 6 million Ether at this time according to the eth_getBalance RPC
method.

The remaining two instructions that can cause TOD when accessing balances are
BALANCE and SELFBALANCE. We manually inspect the execution traces in the normal sce-
nario to see if these instructions are used to access the balance of the WETH contract.

According to our normal scenario traces, ޓߋ has three executions of SELFBALANCE and ޖߋ has two executions of SELFBALANCE, however none of these are lookup the balance
of the WETH contract. The traces also show no occurrence of the BALANCE instruction.

We further verify that our normal scenario traces execute the same instructions as on
Etherscan. We compare the number of execution steps from our traces, which matches
with those shown by Etherscan (15171 and 9164), thus we assume we execute the same
instructions as on the blockchain.

In summary, we ruled out that any instruction accesses the balance of the WETH con-
tract. As this is the only state key that one transaction writes and the other reads or
writes, ޓߋ and ޖߋ, these transactions cannot be TOD.

69

C. Javascript tracer
We use the following javascript tracer to extract CALL instructions and emitted token
events. The step function is executed for each instruction. In case a CALL or CALLCODE
instruction is found we append data to this.calls and for LOG0, LOG1, LOG2, LOG3 or
LOG4 instruction is found we append it to this.logs.

To detect reverted calls, we check in the exit function if an error occurred. As an error
reverts the current call context and all of its children, we store a mapping of each call
context to its children in children_of. When reverting a call context, we can then re-
cursively mark all child contexts as reverted.

The result function is called when the tracing has finished. We first check if the overall
transaction is reverted. Then we return the calls and logs for which their call context
has not been reverted.

{
 calls: [],
 logs: [],
 call_context_stack: [0],
 call_context_counter: 0,
 reverted_call_contexts: [],
 children_of: {},
 location: function(log) {
 return {
 'address': toHex(log.contract.getAddress()),
 'pc': log.getPC(),
 }
 },
 enter: function(callFrame) {
 current_call_context =
this.call_context_stack[this.call_context_stack.length - 1]
 this.call_context_counter += 1
 this.call_context_stack.push(this.call_context_counter)
 if (!this.children_of[current_call_context]) {
 this.children_of[current_call_context] = []
 }

this.children_of[current_call_context].push(this.call_context_counter)
 },
 exit: function(frameResult) {
 context_id = this.call_context_stack.pop(this.call_context_counter)
 error = frameResult.getError()

70

 if (error) {
 this._revert(context_id)
 }
 },
 _revert: function(id) {
 // revert context and all of its sub contexts
 this.reverted_call_contexts.push(id)
 children = this.children_of[id] || []
 for (child_id of children) {
 this._revert(child_id)
 }
 },
 step: function(log, db) {
 opcode = log.op.toNumber()
 if (opcode == 0xF1 || opcode == 0xF2) {
 this.calls.push({
 'op': opcode,
 'sender': toHex(log.contract.getAddress()),
 'to': toHex(toAddress(log.stack.peek(1).toString(16))),
 'value': log.stack.peek(2).toString(16),
 'location': this.location(log),
 'call_context_id':
this.call_context_stack[this.call_context_stack.length - 1],
 })
 }
 else if (opcode >= 0xA0 && opcode <= 0xA4) {
 offset = log.stack.peek(0).valueOf()
 size = log.stack.peek(1).valueOf()
 data = toHex(log.memory.slice(offset, offset + size))
 topics_amount = opcode - 0xA0
 topics = []
 for (i = 0; i < topics_amount; i++) {
 topics.push(log.stack.peek(2 + i).toString(16).padStart(64,
"0"))
 }
 this.logs.push({
 'topics': topics,
 'data': data,
 'address': toHex(log.contract.getAddress()),
 'location': this.location(log),
 'call_context_id':
this.call_context_stack[this.call_context_stack.length - 1],
 })
 }
 },

71

 fault: function(log, db) {},
 result: function(ctx, db) {
 if (ctx.error) {
 this._revert(0)
 }
 logs = this.logs.filter(log => !
this.reverted_call_contexts.includes(log['call_context_id']))
 calls = this.calls.filter(call => !
this.reverted_call_contexts.includes(call['call_context_id']))
 return {
 "gas": ctx.gasUsed,
 "calls": calls,
 "logs": logs,
 "reverted_call_contexts": this.reverted_call_contexts,
 };
 }
}

72

	Acknowledgements
	Kurzfassung
	Abstract
	Introduction
	Related works

	Background
	Ethereum
	World State
	EVM
	Transactions
	Blocks
	Transaction submission
	Transaction execution
	Nodes
	RPC
	Tokens

	Transaction order dependency
	Approaching TOD
	Motivating examples
	Password leaking
	ERC-20 multiple withdrawal

	Relation to previous works
	Imprecise definitions
	Intermediary transactions
	Code analysis of
	Code analysis of

	Block environments
	Code analysis of
	Code analysis of

	Initial state σ
	Code analysis of
	Code analysis of

	TOD simulation
	TOD definition
	TOD approximation
	Definition strengths
	Performance
	Similarity to blockchain executions

	Definition weaknesses
	Approximation focuses on effect on TB
	Indirect dependencies

	State collisions
	TOD candidates
	Causes of state collisions
	Causes with code execution
	Causes without code execution
	Relevant collisions for attacks

	Everything is TOD

	TOD candidate mining
	TOD candidate finding
	TOD candidate filtering
	Filters
	Same-value collisions
	Block windows
	Block validators
	Nonce and code collisions
	Indirect dependency
	Same sender
	Recipient Ether transfer

	Experiment
	Performance
	Filters
	Transactions
	Block distance
	Collisions

	Deduplication
	Results

	TOD detection
	Transaction execution via RPC
	Execution inaccuracy
	TOD assessment
	Experiment
	Results
	Analysis of differences

	TOD attack characteristics
	Attacker gain and victim losses
	Formalization
	Assets
	Attacker gain and victim loss

	Securify TOD properties
	Formalization
	TOD Transfer
	TOD Amount
	TOD Receiver

	ERC-20 multiple withdrawal
	Trace analysis

	Evaluation
	Evaluation limitations
	Overall evaluation
	Block window filter
	Manual analysis of attacks
	Definition shortcomings

	Evaluation of Securify and ERC-20 multiple withdrawal characteristics
	Manual evaluation of TOD Transfer
	Manual evaluation of TOD Amount
	Manual evaluation of TOD Receiver
	Manual evaluation of ERC-20 multiple withdrawal
	Definition shortcomings

	Evaluation of TOD candidate mining
	Evaluation of indirect dependency filters
	Evaluation of duplicate limits

	Evaluation of TOD detection
	Manual evaluation of attacks labeled "out of gas"
	Manual evaluation of attacks not labeled "out of gas"

	Evaluation of TOD attack analysis
	Manual evaluation of attacks
	Evaluation of profit calculations
	Evaluation of reverse scenario
	Evaluation of indirect dependencies
	Unmodeled token events

	Performance evaluation

	Discussion
	Data availability and reproducibility
	Tool
	Data availability
	Experiment setup

	Bibliography
	Overview of Generative AI Tools Used
	Case studies
	Analysis of definition differences
	Analysis of TOD

	Javascript tracer

		2024-08-29T12:32:18+0200
	Signaturpruefung unter http://www.signaturpruefung.gv.at

		2024-08-29T12:33:36+0200
	Signaturpruefung unter http://www.signaturpruefung.gv.at

		2024-08-29T12:35:17+0200
	Signaturpruefung unter http://www.signaturpruefung.gv.at

