# A Harmonic Balance Method for an Eddy Current **Problem with Circuit Coupling**

Der Wissenschaftsfonds.

Karl Hollaus, Valentin Hanser, Michael Leumüller and Markus Schöbinger



# Introduction

A technique to solve a nonlinear eddy current problem (ECP) in the steady state coupled with a voltage-driven circuit using the harmonic balance method (HBM) with the fixed-point method (FPM) is presented. The HBM is preferred to avoid long simulation times of a time stepping method (TSM) [1] to reach the steady state. Exploiting the FPM the entire nonlinear system of the finite element method (FEM) can be split into small ones according to the considered harmonics [2]. The harmonics of the unknown circuit currents are also included in the small systems. A slice model of a synchronous machine is studied to demonstrate the feasibility.

# **Numerical Techniques**

A 3D nonlinear ECP connected to a three-phase power supply via resistors  $R_s$  is solved, where the magnetic vector potential (MVP) A and the currents of the three phases  $i^U$ ,  $i^V$  and  $i^W$  are unknown.

#### A) Eddy Current Problem:

The partial differential equation with  $oldsymbol{A}$  reads as

## **Numerical Example**

A slice model of a synchronous machine [1] serves as a numerical example. Selected parameters are the fixed-point reluctivity  $\nu_{FP}$ , the number of considered harmonics of N = 3, the FEM order of one, the conductivity of iron  $\sigma = 2.08 \cdot 10^6$  S/m in S,  $R_s = 1\Omega$ ,  $N_T = 20$ ,  $N_S = 200$  and the frequency of f = 50Hz.



Fig. 1: One fourth of the slice model (left) with stator S and rotor R, dimensions are in mm. BH-curve (right).

# **Simulation Results**

$$\operatorname{curl} \nu(\boldsymbol{A}) \operatorname{curl}(\boldsymbol{A}) + \sigma \frac{\partial}{\partial_t} \boldsymbol{A} = \boldsymbol{J}_0.$$

**B)** Field Circuit Coupling:

The equations for coupling the ECP with the voltage-driven circuits are

$$i^{X}R_{s} + N_{T}N_{S}\frac{\partial}{\partial_{t}}\int_{\Omega}\boldsymbol{h}_{BS}^{X}\operatorname{curl}(\boldsymbol{A})\,d\Omega = u^{X},\tag{1}$$

where  $X \in \{U, V, W\}$ .

#### C) Weak Form:

The field circuit coupling (1) is integrated over the time and multiplied by -1 to obtain a symmetric FEM system:

Find 
$$\mathbf{A}(\mathbf{x}, t) \in V$$
,  $i^{U}(t)$ ,  $i^{V}(t)$  and  $i^{W}(t) \in C(0, T)$ , so that  

$$N_{S} \int_{\Omega} \nu_{FP} \operatorname{curl}(\mathbf{A}) \operatorname{curl}(\mathbf{v}) d\Omega - N_{S} \int_{\Omega} \sigma \frac{\partial}{\partial t} \mathbf{A} \mathbf{v} d\Omega$$

$$-N_{T} N_{S} \int_{\Omega} (i^{U} \mathbf{h}_{BS}^{U} + i^{V} \mathbf{h}_{BS}^{V} + i^{W} \mathbf{h}_{BS}^{W}) \operatorname{curl}(\mathbf{v}) d\Omega =$$

$$N_{S} \int_{\Omega} (\nu_{FP} - \nu(|\mathbf{B}|)) \operatorname{curl}(\mathbf{A}) \operatorname{curl}(\mathbf{v}) d\Omega,$$

$$-N_{T} N_{S} \int_{\Omega} \mathbf{h}_{BS}^{X} \operatorname{curl}(\mathbf{A}) d\Omega q^{X} - R_{s} \int_{0}^{t} i^{X} dt q^{X} = -\int_{0}^{t} u^{X} dt q^{X}$$

for all  $\boldsymbol{v}(\boldsymbol{x},t) \in V$  and  $q^{X}(t) \in C(0,T)$  with suitable initial and boundary conditions holds, where  $V = C(H(\operatorname{curl}, \Omega), (0, T))$ , T is the simulated time, u the magnetic reluctivity,  $oldsymbol{h}_{BS}^X$  the Biot-Savart field of the unit current of 1A,  $u^X$  a supply voltage, and  $N_S$  and  $N_T$  are the number of sheets in the iron core and turns in the windings, respectively.

The comparison of the circuit currents  $i^X$  in Fig. 2 shows a good agreement for the steady state. Simulation results are summarized in Tabs. I and II.



Fig. 2: Currents  $i^X$  of TSM and HBM with the peak value of the supply voltages of  $\hat{u}_1^X = 150$  V.



| TABLE I                    |            |           |       |        |  |  |  |  |  |
|----------------------------|------------|-----------|-------|--------|--|--|--|--|--|
| Comparison of TSM with HBM |            |           |       |        |  |  |  |  |  |
|                            | $P_{Loss}$ | DOFs      | NLI   | СТ     |  |  |  |  |  |
| Method                     | W          | -         | -     | S      |  |  |  |  |  |
| TSM                        | 21.07      | 264,671   | 4,371 | 32,011 |  |  |  |  |  |
| HBM                        | 21.27      | 1,588,026 | 22    | 1,816  |  |  |  |  |  |

| TABLE II           |            |    |                   |      |     |  |  |  |  |
|--------------------|------------|----|-------------------|------|-----|--|--|--|--|
| Convergence of HBM |            |    |                   |      |     |  |  |  |  |
| $ u_{FP}$          | $P_{Loss}$ | CC | ΡM                | lpha | NLI |  |  |  |  |
| m/H                | W          | -  | _                 | -    | -   |  |  |  |  |
| 5,000              | 13.91      | n  | n                 | 1.0  | 37  |  |  |  |  |
| 3,000              | 14.04      | n  | n                 | 1.0  | 32  |  |  |  |  |
| 5,000              | 21.23      | у  | n                 | 1.0  | 51  |  |  |  |  |
| 4,750              | 21.23      | у  | n                 | 1.0  | 49  |  |  |  |  |
| 2,000              | 21.24      | у  | У                 | 1.0  | 27  |  |  |  |  |
| 1,300              | 21.28      | у  | у                 | 1.0  | 25  |  |  |  |  |
| 800                | 21.27      | у  | У                 | 0.5  | 31  |  |  |  |  |
| 800                | 21.27      | у  | $\mathbf{y}^{*)}$ | 0.5  | 22  |  |  |  |  |

#### D) Harmonic Balance Method: The HBM is based on a truncated Fourier series

$$u(\boldsymbol{x},t) = u_0(\boldsymbol{x}) + \sum_{\substack{l=1,\\k=2l-1}}^{N} u_k^c(\boldsymbol{x}) \cos(k\omega t) + u_k^s(\boldsymbol{x}) \sin(k\omega t)$$

for the MVP A(x, t) and the currents  $i^X(t)$ , where  $\omega$  is the angular frequency and x the field point. Due to the FPM with a suitably chosen fixed-point reluctivity  $\nu_{FP}$  the nonlinearity can be moved to the right hand side yielding the  $k^{th}$ -harmonic block

$$\begin{pmatrix} S_k & k\omega M_k - \Lambda_k^X \\ -\Lambda_k^X & diag(R_s) \end{pmatrix} \begin{pmatrix} \boldsymbol{a}_k \\ \boldsymbol{i}_k^X \end{pmatrix} = \begin{pmatrix} \boldsymbol{f}_k(\nu(|\boldsymbol{B}|)) \\ \delta_{k1}\boldsymbol{u}_1^X \end{pmatrix}$$
(2)

with  $\boldsymbol{u}_1^X = (u_1^U, u_1^V, u_1^W)^T$ ,  $\boldsymbol{i}_k^X = (i_k^U, i_k^V, i_k^W)^T$  and the Kronecker delta  $\delta_{ij}$ . The entire nonlinear system with N harmonic blocks (2) is iteratively solved block by block with ascending harmonic order until it converges.

HBS:  $|\boldsymbol{B}(t=0ms)|$ Fig. 3: Magnetic flux density |B| distributions.

P Losses, NLI no. nonlinear iterations, CT computation time, CC circuit coupling, PM Preis' method [3], relaxation method:  $u = \alpha u + (1 - \alpha)u_0$ , n no, y yes, \*) double material updates

## References

- [1] K. Hollaus, V. Hanser, and M. Schöbinger, "Effective Material and Static Magnetic Field for the 2D/1D-Problem of Laminated Electrical Machines," IEEE Trans. Magn., 2024, accepted for publication.
- [2] S. Ausserhofer, O. Bíró, and K. Preis, "An Efficient Harmonic Balance Method for Nonlinear Eddy-Current Problems," IEEE Trans. Magn., vol. 43, no. 4, pp. 1229-1232, 2007.
- [3] O. Bíró and K. Preis, "Finite element calculation of time-periodic 3d eddy currents in nonlinear media," in Advanced Computational Electromagnetics, T. Homna, Ed. Budapest, Hungary: Elsevier, July 1995, pp. 62-74.

## Supported by the Austrian Science Fund (FWF), Project P 31926

## karl.hollaus@tuwien.ac.at