A Harmonic Balance Method for an Eddy Current Problem with Circuit Coupling

Der Wissenschaftsfonds.

Karl Hollaus, Valentin Hanser, Michael Leumüller and Markus Schöbinger

Introduction

A 3D nonlinear ECP connected to a three-phase power supply via resistors R_s is solved, where the magnetic vector potential (MVP) \boldsymbol{A} and the currents of the three phases i^U , i^V and i^W are unknown.

A technique to solve a nonlinear eddy current problem (ECP) in the steady state coupled with a voltage-driven circuit using the harmonic balance method (HBM) with the fixed-point method (FPM) is presented. The HBM is preferred to avoid long simulation times of a time stepping method (TSM) [1] to reach the steady state. Exploiting the FPM the entire nonlinear system of the finite element method (FEM) can be split into small ones according to the considered harmonics [2]. The harmonics of the unknown circuit currents are also included in the small systems. A slice model of a synchronous machine is studied to demonstrate the feasibility.

Numerical Techniques

for all $\bm{v}(\bm{x},t) \in V$ and $q^X(t) \in C(0,T)$ with suitable initial and boundary conditions holds, where $V=C(H(\text{curl},\Omega),(0,T))$, T is the simulated time, ν the magnetic reluctivity, \bm{h}_{BS}^X the Biot-Savart field of the unit current of 1A, u^X a supply voltage, and N_S and N_T are the number of sheets in the iron core and turns in the windings, respectively.

A) Eddy Current Problem:

The partial differential equation with A reads as

$$
\operatorname{curl} \nu(\boldsymbol{A}) \operatorname{curl}(\boldsymbol{A}) + \sigma \frac{\partial}{\partial_t} \boldsymbol{A} = \boldsymbol{J}_0.
$$

B) Field Circuit Coupling:

The equations for coupling the ECP with the voltage-driven circuits are

$$
i^{X} R_{s} + N_{T} N_{S} \frac{\partial}{\partial_{t}} \int_{\Omega} \boldsymbol{h}_{BS}^{X} \operatorname{curl}(\boldsymbol{A}) d\Omega = u^{X}, \qquad (1)
$$

where $X \in \{U, V, W\}$.

C) Weak Form:

with \bm{u}_{1}^{X} $=$ $(u_{1}^{U}% ,u_{2}^{X})^{2}$ $_{1}^U,u_{1}^V,u_1^W)^T$, \boldsymbol{i}_k^X k $= (i_k^U)$ \mathcal{k} $, i_k^V$ k_i $, i_{k}^{W}$ \mathcal{k} \mathcal{C}^T and the Kronecker delta δ_{ij} . The entire nonlinear system with N harmonic blocks (2) is iteratively solved block by block with ascending harmonic order until it converges.

HBS: $|\bm{B}(t=0ms)|$ Fig. 3: Magnetic flux density $|B|$ distributions.

 P Losses, NLI no. nonlinear iterations, CT computation time, CC circuit coupling, PM Preis' method [3], relaxation method: $u = \alpha u + (1-\alpha)u_0$, n no, y yes, $^*)$ double material updates

A slice model of a synchronous machine [1] serves as a numerical example. Selected parameters are the fixed-point reluctivity ν_{FP} , the number of considered harmonics of $N = 3$, the FEM order of one, the conductivity of iron $\sigma=2.08\cdot 10^6$ S/m in S, $R_s=1\Omega$, $N_T=20$, $N_S=200$ and the frequency of $f = 50$ Hz.

The field circuit coupling (1) is integrated over the time and multiplied by -1 to obtain a symmetric FEM system:

Find
$$
\mathbf{A}(\mathbf{x},t) \in V
$$
, $i^U(t)$, $i^V(t)$ and $i^W(t) \in C(0,T)$, so that
\n
$$
N_S \int_{\Omega} \nu_{FP} \operatorname{curl}(\mathbf{A}) \operatorname{curl}(\mathbf{v}) d\Omega - N_S \int_{\Omega} \sigma \frac{\partial}{\partial t} \mathbf{A} \mathbf{v} d\Omega
$$
\n
$$
-N_T N_S \int_{\Omega} (i^U \mathbf{h}_{BS}^U + i^V \mathbf{h}_{BS}^V + i^W \mathbf{h}_{BS}^W) \operatorname{curl}(\mathbf{v}) d\Omega =
$$
\n
$$
N_S \int_{\Omega} (\nu_{FP} - \nu(|\mathbf{B}|)) \operatorname{curl}(\mathbf{A}) \operatorname{curl}(\mathbf{v}) d\Omega,
$$
\n
$$
-N_T N_S \int_{\Omega} \mathbf{h}_{BS}^X \operatorname{curl}(\mathbf{A}) d\Omega q^X - R_S \int_0^t i^X dt q^X = -\int_0^t u^X dt q^X
$$

The comparison of the circuit currents i^X in Fig. 2 shows a good agreement for the steady state. Simulation results are summarized in Tabs. I and II.

Fig. 2: Currents i^X of TSM and HBM with the peak value of the supply voltages of $\hat{u}_1^X\text{=}150\textsf{V}$.

D) Harmonic Balance Method: The HBM is based on a truncated Fourier series

$$
u(\boldsymbol{x},t) = u_0(\boldsymbol{x}) + \sum_{\substack{l=1,\\k=2l-1}}^N u_k^c(\boldsymbol{x}) \cos(k\omega t) + u_k^s(\boldsymbol{x}) \sin(k\omega t)
$$

for the MVP $\bm A(\bm x,t)$ and the currents $i^X(t)$, where ω is the angular frequency and x the field point. Due to the FPM with a suitably chosen fixed-point reluctivity ν_{FP} the nonlinearity can be moved to the right hand side yielding the k^{th} -harmonic block

- [1] K. Hollaus, V. Hanser, and M. Schöbinger, "Effective Material and Static Magnetic Field for the 2D/1D-Problem of Laminated Electrical Machines," IEEE Trans. Magn., 2024, accepted for publication.
- [2] S. Ausserhofer, O. Bíró, and K. Preis, "An Efficient Harmonic Balance Method for Nonlinear Eddy-Current Problems," IEEE Trans. Magn., vol. 43, no. 4, pp. 1229–1232, 2007.
- [3] O. Bíró and K. Preis, "Finite element calculation of time-periodic 3d eddy currents in nonlinear media," in Advanced Computational Electromagnetics, T. Homna, Ed. Budapest, Hungary: Elsevier, July 1995, pp. 62–74.

Supported by the Austrian Science Fund (FWF), Project P 31926 karl.hollaus@tuwien.ac.at

$$
\begin{pmatrix} S_k & k\omega M_k - \Lambda_k^X \ -\Lambda_k^X & diag(R_s) \end{pmatrix} \begin{pmatrix} \boldsymbol{a}_k \\ \boldsymbol{i}_k^X \end{pmatrix} = \begin{pmatrix} \boldsymbol{f}_k(\nu(|\boldsymbol{B}|)) \\ \delta_{k1} \boldsymbol{u}_1^X \end{pmatrix}
$$
 (2)

Numerical Example

Fig. 1: One fourth of the slice model (left) with stator S and rotor R, dimensions are in mm. BH-curve (right).

Simulation Results

References